
Organopseudohalogenometalates

The reaction of alkali metal pseudohalides M'X with metallanes R₃M of Al, Ga, or In yields Triorganopseudohalogenometalates:

 $R_3M \ + \ M'X \to M'[R_3MX]$

In the reactions with pseudohalides metalates with other ratios metallane : Pseudohalide than 1:1 can be formed. The 1:1 metalate may react with another metallane unit to form a complex $M'[(R_3M)_2X]$. The success of such a reaction is strongly depending on the used solvent, owing to preformed adducts which change the electrophilic and nucleophilic properties:

 $M'\{R_3MX\} + [R_3M(L)] \rightarrow M'[(R_3M)_2X] + L$

Especially pseudohalides are known for their function as multidentate ligands. Indeed, the structures of the Triorganopseudohalogenometalates are more complex than the ones with halide ions. As an example figure 1 shows the structure of the azido compound $[Cs{(PhCH_2)_3GaN_3}]_n$.

figure 1: coordination sphere of the N_3^- -ligand and the Cs^+ -cations in $[Cs{(PhCH_2)_3GaN_3}]_n$

The structure exhibits the common feature of the Organohalogenometalates with organic ligands containing p-electrons, namely the significant electrostatic interactions of the aromatic p-systems with the Cs^+ -cations.

The principle difference can be seen from the comparison of the structures of the hexamethylcyanodigallate compounds $[Cs{(Me_3Ga)_2CN}]_n$ (figure 2) and $[Cs(toluene)_2{(Me_3Ga)_2CN}]_n$ (figure 3).

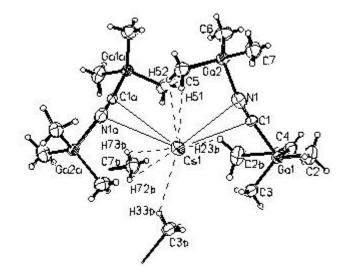


figure 2: coordination sphere of the Cs^+ -cations in $[Cs\{(Me_3Ga)_2CN\}]_n$

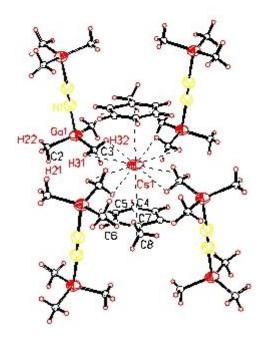


figure 3: coordination sphere of the Cs⁺-cations in $[Cs(toluene)_2\{(Me_3Ga)_2CN\}]_n$, Cs⁺(toluene)₂-sandwich

Literature:

Azidometalates: Mike R. Kopp, B. Neumüller, *Organometallics* **1997**, *16*, 5623. Cyanometalates Mike R. Kopp, B. Neumüller, *Z. Anorg. Allg. Chem.* **1998**, *624*, in press.