Hauptinhalt

Publikationen und Patente

Prof. Dr. Daniel Rhinow

Nr.

Patente

19

Hermanns, C. F., Rhinow, D., Rumler, M., Schneider, H., Tu, F., Ahmels, L., Herd, B. (inventors)
Verfahren und Vorrichtung für Maskenreparatur.
DE102022202803A1, EP4250005A1, publication date: 2023-09-27
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102022202803A1

18

Hermanns, C. F., Rhinow, D., Rumler, M., Spies, P. (inventors)
Method and apparatus for mask repair.
DE101022202061A1, WO23165975A1, publication date: 2023-09-07
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2023165975A1

17

Rhinow, D., Hermanns, C. F., von Saldern, J. C., Marbach, H., Auth, N., Szafranek, B., Preischl, C. (inventors)
Verfahren und Vorrichtung zur Maskenreparatur.
DE102022202058A1 , publication date: 2023-09-05
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102022202058A1

16

Rhinow D., Budach, M., Emmrich, D. A., Spies, P., Braun, J., Rensing, C., Stelzner, R., Auth, N., Baralia, G.-G., Hermanns, C. F., Laemmle, D., Solowan, H.-M. (inventors)
Verfahren und Vorrichtung zum Elektronenstrahl-induzierten Bearbeiten eines Defekts einer Photomaske für die Mikrolithographie.
DE102022121129A1, publication date: 2023-08-17
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102022121129A1

15

Rhinow, D., Bauer, M. (inventors)
Verfahren und Vorrichtung zum Bestimmen eines Strahlausläufers eines fokussierten Teilchenstrahls.
DE102021210005A1, publication date: 2023-03-16
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102021210005A1

14

Auth, N., Rhinow, D., Fettig, R. (inventors)
Method and apparatus for repairing a defect of a sample using a focused particle beam.
DE102021210019A, WO2023036895A1, publication date: 2023-03-16
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2023036895A1

13

Rhinow, D. (inventor)
Vorrichtung zum Analysieren und/oder Bearbeiten einer Probe mit einem Teilchenstrahl und Verfahren.
DE102021120913B3; WO2023017117A2, publication date: 2023-02-16
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2023017117A2

12

Rhinow, D. (inventor)
Endpointing by induced desorption of gases and analysis of the re-covering.
DE102021206564A1; WO2022268924A1, publication date: 2022-12-29
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2022268924A1

11

Rhinow D. (inventor)
Endpunktbestimmung mittels Kontrastgas.
DE102020216518A1; WO2022135981A1, publication date: 2022-06-23
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102020216518A1

10

Guentner, J., Rhinow, D.; Marbach, H.; Auth, N.; Hoinkis, O. (inventors)
Apparatus for Analysing and/or Processing a sample with a Particle Beam And Method.
DE102020124307A1; WO2022058424A1, publication date: 2022-03-24
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2022058424A1

9

Rhinow, D. (inventor)
Verfahren zur Analyse einer elektrischen Ladung in einer Probe.
DE102020119182A1, publication date: 2022-01-27
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102020119182A1

8

Rhinow, D.; Schöneberg, J. (inventors)
Method, Test Structure, Test Device and Device.
DE102020118150A1; WO2022008675A1, publication date: 2022-01-13
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2022008675A1

7

Rhinow, D.; Welte, J.; Bauer, M. (inventors)
Method and Apparatus for Setting a Side Wall Angle of a Pattern Element of a photolithographic mask.
DE102020208185A1; DE102020208185A9; WO2022002931A1, publication date: 2022-01-06
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2022002931A1

6

Rhinow, D.; Szafranke, B.; Welte, J. (inventors)
Method and Apparatus for Processing a Lithographic Mask.
DE102020208183A1; WO2022002728A1, publication date: 2022-01-06
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2022002728A1

5

Rhinow, D.; Fettig, R.; Bauer, M. (inventors)
Verfahren und Vorrichtung zur Untersuchung eines Strahls geladener Teilchen.
DE102018210522A1; DE102018210522B4; JP2021530084A; TW202013444A; TWI734999B; US2021110996A1; WO2020002344A1, publication date: 2020-01-02
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102018210522A1

4

Rhinow, D.; Bauer, M.; Hermanns, C. F.; Welte, J. (inventors)
Vorrichtung und Verfahren zum Bestimmen einer Prozessauflösung eines Teilchenstrahl-induzierten Bearbeitungsprozesses eines Elements für die Fotolithographie.
DE102018221304A1, publication date: 2019-12-24
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102018221304A1

3

Auth, N.; Rhinow, D. (inventors)
Verfahren und Vorrichtung zum Analysieren eines Substrats.
DE102018217025A1, publication date: 2019-10-17
https://worldwide.espacenet.com/patent/search?q=pn%3DDE102018217025A1

2

Terfort, A.; Rhinow, D. (inventors)
Method for Preparing a Cross-Linked Hydrogel Nanomembrane, the Cross-Linked Hydrogel Nanomembrane, TEM Grid Comprising the Same and Use Therof.
EP3619733A1; US2020239642A1; WO2018202837A1, publication date: 2018-11-08
https://worldwide.espacenet.com/patent/search?q=pn%3DWO2018202837A1

1

Terfort, A.; Rhinow, D.; Turchanin, A. (inventors)
Functionalized nanomembrane, a method for preparation thereof and their use.
CN107249731A; CN107249731B; EP3050620A1; EP3250319A1; US10794908B2; US2018017558A1; WO2016120450A1, publication date: 2016-08-04
https://worldwide.espacenet.com/patent/search?q=pn%3DUS10794908B2

Nr.

Wissenschaftliche Publikationen

45

Hermans, Y., Heil, T., Capelli, R., Szafranek, B., Rhinow, D., Mette, G., Salg, P., Hermanns, C. F., Dey, B., Halipre, D., Trivkovic, D., Delgadillo, P, R., Marschner, T., Halder, S.
EUV mask defect inspection for the 3nm technology node.
Proc. SPIE 12802, 38th European Mask and Lithography Conference (EMLC 2023) 2023,128020H.
https://doi.org/10.1117/12.2678392

44

Lin, K.-Y.; Preischl, C.; Hermanns, C. F.; Rhinow, D.; Solowan, H.-M.; Budach, M.; Marbach, H.; Edinger, K.; Oehrlein, G. S.
Electron beam-induced etching of SiO2, Si3N4, and poly-Si assisted by CF4/O2 remote plasma.
J. Vac. Sci. Technol. A 2023, 41, 013004.
https://doi.org/10.1116/6.0002234

43

Lin, K.-Y.; Preischl, C.; Hermanns, C. F.; Rhinow, D.; Solowan, H.-M.; Budach, M.; Edinger, K.; Oehrlein, G. S.
SiO2 etching and surface evolution using combined exposure to CF4/O2 remote plasma and electron beam.
J. Vac. Sci. Technol. A 2022, 40, 063004.
https://doi.org/10.1116/6.0002038

42

Riedel, R.; Frese, N.; Yang, F.; Wortmann, M.; Dalpke, R.; Rhinow, D.; Hampp, N.; Gölzhäuser, A.
Fusion of purple membranes triggered by immobilization on carbon nanomembranes.
Beilstein J. Nanotechnol. 2021, 12, 93-101.
https://doi.org/10.3762/bjnano.12.8

41

Schneider, H.; Tu, F.; Ahmels, L.; Szafranek, B.; Gries, K.; Rhinow, D.; Vollmar, S.; Krugmann, A.; Schoenberger, R.; Pauls, W.; Verch, A.; Capelli, R.; Di Vincenzo, A.; Kersteen, G.; Marbach, H.; Waldow, M.
High-end photomask repairs for 5 nm technology and beyond.
Proc. SPIE Photomask Technology 2020, 1151808.
[Artikel]

40

Rhinow, D.; Hampp, N.
Electron beam-induced electrostatic charging causes spectral changes of an electrochromic insulating material.
Appl. Phys. Lett. 2020, 117, 083701.
https://doi.org/10.1063/5.0022695

39

Scherr, J.; Tang, Z.; Küllmer, M.; Balser, S.;Scholz, A. S.; Winter, A.; Parey, K.; Rittner, A.; Grininger, M.; Zickermann, V.; Rhinow, D.; Terfort, A.; Turchanin, A.
Smart Molecular Nanosheets for Advanced Preparation of Biological Samples in Electron Cryo-Microscopy.
ACS Nano 2020, 14, 9972-9978.
https://doi.org/10.1021/acsnano.0c03052

38

Dasbach, M.; Pyschik, M.; Lehmann, V.; Parey, K.; Rhinow, D.; Rhinow, D.; Reinhardt, H. M.; Hampp, N. A.
Assembling Carbon Nanotube Architectures.
ACS Nano, 2020, 14, 8181-8190.
https://doi.org/10.1021/acsnano.0c01606

37

Reinhardt, H. M.; Maier, P.; Kim, H.-C.; Rhinow, D.; Hampp, N.
Nanostructured Transparent Conductive Electrodes for Applications in Harsh Environments Fabricated via Nanosecond Laser-Induced Periodic Surface Structures (LIPSS) in Indium-Tin Oxide Films on Glass.
Adv. Mat. Interf. 2019, 6, 1900401.
https://doi.org/10.1002/admi.201900401

36

Scherr, J.; Neuhaus, N.; Parey, K.; Klusch, N.; Murphy, B. M.; Zickermann, V.; Kühlbrandt, W.; Terfort, A.; Rhinow, D.
Noncovalent functionalization of carbon substrates with hydrogels improves structural analysis of vitrified proteins by electron cryo-microscopy.
ACS Nano 2019, 13, 7185-7190.
https://doi.org/10.1021/acsnano.9b02651

35

Reich, S.; Kaiser, P.; Mafi, M.; Schmalz, H.; Rhinow, D., Freitag, R.; Greiner, A.
High-temperature spray-dried polymer/bacteria microparticles for electrospinning of composite nonwovens.
Macromol. Biosci. 2019, 19, 1800356.
https://doi.org/10.1002/mabi.201800356

34

Frese, N.; Scherr, J.; Beyer, A.; Terfort, A.; Gölzhäuser, A.; Hampp, N.; Rhinow, D.
Multicomponent patterned ultrathin carbon nanomembranes by laser ablation.
Appl. Surf. Sci. 2018, 427, 126-130.
https://doi.org/10.1016/j.apsusc.2017.07.303

33

Scherr, J.; Parey, K.; Klusch, N.; Murphy, B. J.; Balser, S.; Neuhaus, A.; Zickermann, V.; Kühlbrandt, W.; Terfort, A.; Rhinow, D.
Self-perforated hydrogel nanomembranes facilitate structural analysis of proteins by electron cryo-microscopy.
ACS Nano 2017, 11, 6467-6473.
https://doi.org/10.1021/acsnano.7b03099

32

Nürnberger, P.; Reinhardt, H.; Rhinow, D.; Riedel, R.; Werner, S.; Hampp, N. A.
Controlled growth of periodically aligned copper-silicide nanocrystals on silicon directed by laser-induced periodic surface structures (LIPSS).
Appl. Surf. Sci. 2017, 420, 70-76.
https://doi.org/10.1016/j.apsusc.2017.05.005

31

Wilkes, M.; Madej, M. G.; Kreuter, L.; Rhinow, D.; Heinz, V.; Sanctis, S. Ruppel, S.; Richter, R. M.; Joos, F.; Grieben, M.; Pike, A. C. W.; Huiskonen, J.; Carpenter, E. P.; Kühlbrandt, W.; Ziegler, C.
Ca2+ selectivity switching in the Polycystin-2 TRP channel.
Nat. Struct. Mol. Biol. 2017, 24, 123-130.
https://doi.org/10.1038/nsmb.3357

30

Rhinow, D.
Towards an optimum design for thin film phase plates.
Ultramicroscopy 2016, 160, 1-6.
https://doi.org/10.1016/j.ultramic.2015.09.003

29

Kraushaar, T.; Brückner, S.; Veelders, M.; Rhinow, D.; Birke, R.; Pagenstecher, A.; Mösch, H.-U.; Essen, L.-O.
Interactions by the fungal Flo11 adhesin depends on a fibronectin type III-like adhesin domain girdled by aromatic bands.
Structure 2015, 23, 1-13.
https://doi.org/10.1016/j.str.2015.03.021

28

Rhinow, D.
Nanomembranes for biological transmission electron microscopy.
in Nanobiotechnology in Energy, Environment, and Electronics (C. Nicolini ed.), CRC press, 2015 p. 137-153.

27

Fischer, M.; Rhinow, D.; Zhu, Z.; Mills, D. J.; Zhao, Z. K.; Vonck, J.; Grininger, M.
Cryo-EM structure of fatty acid synthase (FAS) from Rhodosporidium toruloides provides insights into its novel splitting of the multi-functional polypeptide chains and its evolutionary development.
Protein Sci. 2015, 24, 987-995.
https://doi.org/10.1002/pro.2678

26

Walter, A.; Steltenkamp, S.; Schmitz, S.; Holik, P.; Pakanavicius, E.; Sachser, R.; Huth, M.; Rhinow, D.; Kühlbrandt, W.
Towards an optimum design for electrostatic phase plates.
Ultramicroscopy 2015, 153, 22-31.
https://doi.org/10.1016/j.ultramic.2015.01.005

25

Busch, A. P.; Rhinow, D.; Yang, F.; Reinhardt, H.; Geyer, A.; Gölzhäuser, A.; Hampp, N.
Site-selective biomineralization of native biological membranes.
J. Mater. Chem. B 2014, 2, 6924-6930.
https://doi.org/10.1039/C4TB00468J

24

Köster, S.; van Pee, K.; Hudel, M.; Leustik, M.; Rhinow, D.; Chakraborty, T.; Kühlbrandt, W.
Crystal structure of listeriolysin O reveals molecular details for oligomerization and pore formation.
Nat. Commun. 2014, 5, 3690.
https://doi.org/10.1038/ncomms4690

23

Imhof, M.; Rhinow, D.; Hampp, N.
Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications.
App. Phys. Lett. 2014, 104, 081921.
https://doi.org/10.1063/1.4867164

22

Imhof, M.; Rhinow, D.; Linne, U.; Hampp, N.
Two-photon-induced selective decarboxylation of aspartic acids D85 and D212 in bacteriorhodopsin.
J. Phys. Chem. Lett. 2012, 3, 2991-2994.
https://doi.org/10.1021/jz301292n

21

Imhof, M.; Pudewills, J.; Rhinow, D.; Chizhik, I.; Hampp, N.
Stability of purple membranes from Halobacterium salinarum towards surfactants – Inkjet printing of a retinal protein.
J. Phys. Chem. B 2012, 116, 9727-9731.
https://doi.org/10.1021/jp3057459

20

Kämpken, B.; Wulf, V.; Auner, N.; Winhold, M.; Huth, M.; Rhinow, D.; Terfort, A.
Directed deposition of silicon nanowires using neopentasilane as precursor and gold as catalyst.
Beilstein J. Nanotechnol. 2012, 3, 535-545.
https://doi.org/10.3762/bjnano.3.62

19

Rhinow, D.; Weber, N.-E.; Turchanin, A.
Atmospheric pressure, temperature-induced conversion of organic monolayers into nanocrystalline graphene.
J. Phys. Chem. C 2012, 116, 12295-12303.
https://doi.org/10.1021/jp301877p

18

Rhinow, D.; Imhof, M.; Chizhik, I.; Baumann, R.-P.; Hampp, N.
Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
J. Phys. Chem. B 2012, 116, 7555-7562.
https://doi.org/10.1021/jp2112846

17

Rhinow, D.; Hampp, N.
Patterned self-assembled monolayers of alkanethiols on copper nanomembranes by submerged laser ablation.
Appl. Phys. A 2012, 112, 755-759.
https://doi.org/10.1007/s00339-012-6930-6

16

Walter, A.; Muzik, H.; Vieker, H.; Turchanin, A.; Beyer, A.; Gölzhäuser, A.; Lacher, M.; Steltenkamp, S.; Schmitz, S.; Holik, P.; Kühlbrandt, W.; Rhinow, D.
Practical aspects of Boersch phase contrast electron microscopy of biological specimens.
Ultramicroscopy 2012, 116, 62-72.
https://doi.org/10.1016/j.ultramic.2012.03.009

15

Rhinow, D.; Weber, N.-E.; Turchanin, A.; Gölzhäuser, A.; Kühlbrandt, W.
Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples.
Appl. Phys. Lett. 2011, 99, 133701.
https://doi.org/10.1063/1.3645010

14

Barton, B.; Rhinow, D.; Walter, A.; Schröder, R.; Benner, G.; Majorovits, E.; Matijevic, M.; Niebel, H.; Müller, H.; Haider, M.; Lacher, M.; Schmitz, S.; Holik, P.; Kühlbrandt, W.
In-focus electron microscopy of frozen-hydrated biological samples with a Boersch phase plate.
Ultramicroscopy 2011, 111, 1696-1705.
https://doi.org/10.1016/j.ultramic.2011.09.007

13

Rhinow, D.; Büenfeld, M.; Weber, N.-E.; Beyer, A.; Gölzhäuser, A.,; Kühlbrandt, W.; Hampp, N.; Turchanin, A.
Energy-filtered transmission electron microscopy of biological samples on highly transparent carbon nanomembranes.
Ultramicroscopy 2011, 111, 342-349.
https://doi.org/10.1016/j.ultramic.2011.01.028

12

Rhinow, D.; Chizhik, I.; Baumann, R.-P.; Noll, F.; Hampp N.
Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity.
J. Phys. Chem. B 2010, 114, 15424-15428.
https://doi.org/10.1021/jp108502p

11

Collins, A. M.; Kaus, N. H. M; Speranza, F.; Briscoe, W. H.; Rhinow, D.; Hampp, N.; Mann, S.
Assembly of poly(methacrylate)/purple membrane lamellar composite films by intercalation and in situ polymerization.
J. Mater. Chem. 2010, 20, 937-941.
https://doi.org/10.1039/C0JM01358G

10

Schranz, M.; Baumann, R.-P.; Rhinow, D.; Hampp, N.
Dynamics of bacteriorhodopsin in solid-supported purple membranes studied with tapping-mode atomic force microscopy.
J. Phys. Chem. B 2010, 114, 9047-9053.
https://doi.org/10.1021/jp102377c

9

Rhinow, D.; Vonck, J.; Schranz, M.; Beyer, A.; Gölzhäuser, A.; Hampp, N.
Ultrathin conductive carbon nanomembranes as support films for structural analysis of biological specimens.
Phys. Chem. Chem. Phys. 2010, 12, 4345-4350.
https://doi.org/10.1039/B923756A

8

Rhinow, D.; Hampp, N.
Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content.
J. Phys. Chem. B 2010, 114, 549-556.
https://doi.org/10.1021/jp908408d

7

Collins, A.; Rhinow, D., Hampp, N.; Mann, S.
Structure and properties of silicified purple membrane thin films.
Biomacromolecules 2009, 10, 2767-2771.
https://doi.org/10.1021/bm900625u

6

Rhinow, D.; Kühlbrandt, W.
Electron cryo-microscopy of biological specimens on conductive titanium–silicon metal glass films.
Ultramicroscopy 2008, 108, 698-705.
https://doi.org/10.1016/j.ultramic.2007.11.005

5

Rhinow, D.; Hampp, N. A.
Light- and pH-dependent conformational changes in protein structure induce strong bending of purple membranes – active membranes studied by cryo-SEM.
J. Phys. Chem. B 2008, 112, 13116-13120.
https://doi.org/10.1021/jp803510t

4

Neebe, M.; Rhinow, D., Schromczyk, N.; Hampp, N. A.
Thermochromism of bacteriorhodopsin and its pH dependence.
J. Phys. Chem. B 2008, 112, 6946-6951.
https://doi.org/10.1021/jp7111389

3

Rhinow, D.; Hampp, N. A.
Sugar-induced blue membrane: Release of divalent cations during phase transition of purple membranes observed in sugar-derived glasses.
J. Phys. Chem. B 2007, 112, 4613-4619.
https://doi.org/10.1021/jp710694s

2

Rhinow, D.; Hampp, N. A.
Solid-supported multicomponent patterned monolayers.
Adv. Mater. 2007, 19, 1967-1972.
https://doi.org/10.1002/adma.200602387

1

Rhinow, D.; Hampp, N. A.
Forming alkanethiol microstructured self-assembled monolayers on gold by laser ablation.
IEEE Trans. Nanobiosci. 2006, 5, 188-192.
https://doi.org/10.1109/TNB.2006.880830