AC-2 Skriptum (Sundermeyer)

Einführung in die Koordinationschemie und Chemie der Übergangsmetalle (4 SWS)

11.1 Systematik der Elektronenkonfiguration Auffüllung der d- und f-Energieniveaus (PSE)

Übergangselemente (d-Metalle Gruppen 3-12):

unterscheiden sich in der Elektronenkonfiguration d^x der zweitäußersten d-Schale: [Edelgas] (n-1)d^xns² z.B. nach ₂₀Ca (4s²) folgen 10 3d-Metalle, dann ₃₁Ga

$$_{21}$$
Sc $(3d^{1}4s^{2}) \rightarrow _{30}$ Zn $(3d^{10}4s^{2})$ 3d-Metalle (1. Üg.reihe)
 $_{39}$ Y $(4d^{1}5s^{2}) \rightarrow _{48}$ Cd $(4d^{10}5s^{2})$ 4d-Metalle (2. Üg.reihe)
 $_{57}$ La $(5d^{1}6s^{2}) \rightarrow _{80}$ Hg $(5d^{10}6s^{2})$ 5d-Metalle (3. Üg.reihe)
 $_{89}$ Ac $(6d^{1}7s^{2}) \rightarrow _{112}$ EkaHg $(6d^{10}7s^{2})$ 6d-Metalle (radioaktiv)

Innere Übergangselemente (f-Metalle):

unterscheiden sich in der Elektronenkonfiguration f^x der drittäußersten f-Schale [Edelgas] (n-2)f^x(n-1)d⁰ns² n = 6 Lanthanoide und n = 7 Actinoide nach $_{57}$ La ($_{5d}^{1}$ 6s²) folgen 14 4f-Metalle, dann $_{72}$ Hf $_{58}$ Ce ($_{4f}^{2}$ 5d $_{06s}^{2}$) \rightarrow $_{71}$ Lu ($_{4f}^{14}$ 5d $_{06s}^{1}$) 14 Lanthanoide 5d $_{06s}^{1}$ wird i.d.R. in 4f promoviert (früher: "Lanthanide")

nach $_{89}$ Ac ($6d^{1}7s^{2}$) folgen 14 5f-Metalle, dann $_{104}$ EkaHf $_{90}$ Th ($5f^{0}6d^{2}7s^{2}$) \rightarrow $_{103}$ Lr ($5f^{14}6d^{1}7s^{2}$) **14 Actinoide**

Übergangselemente / Nebengruppen:

Energieunterschied von ns und (n-1)d Orbitalen gering

→ Trend, dass die d-Orbitale im elektronischen

Grundzustand der Metalle vorzugsweise halb oder
ganz gefüllt sind, z.B. 3d- und 4d-Metalle

Cr: $[Ar] 3d^54s^1$ nicht $3d^44s^2$

Cu: [Ar] 3d¹⁰4s¹ nicht 3d⁹4s²

Effekt der Lanthanidenkontraktion (s.u.) b. 5d-Metallen: W: [Xe] 4f¹⁴5d⁴6s² nicht 4f¹⁴5d⁵6s¹

Bei **Metallkationen** werden Energieniveaus der Valenzelektronen durch WW mit Liganden je nach Anzahl und geometr. Anordnung stark beeinflusst (vgl. Ligandenfeldtheorie). Die Unterscheidung von d- und s-Valenzelektronen macht keinen Sinn mehr; s- und d-Valenzelektronen VE werden zusammengefasst zu einer Elektronenkonfiguration dⁿ des Metallkations:

```
d<sup>0</sup>: alle Valenzelektr. abgegeben, höchste Ox.stufe
d<sup>n</sup>: alle Valenzel. vorhanden, Ox.0 = Elem.d. Gruppe n
d^0
    Ti(+4) V(+5) Cr(+6) Mn(+7) Os(+8)
d^1 Ti(+3) V(+4) Cr(+5) Mn(+6)
d^2 Ti(+2) V(+3) Cr(+4) Mn(+5) Fe(+6)
d^3 Ti(+1) V(+2) Cr(+3) Mn(+4)
d^4 Ti(0) V(+1) Cr(+2) Mn(+3)
d-Elektronen-arme Komplexe ↑
d-Elektronen-reiche Komplexe ↓ keine scharfe Grenze
d^5
    Mn(+2) Fe(+3)
d^6
    Mn(+1) Fe(+2) Co(+3)
d^7 Mn(0) Fe(+1) Co(+2)
d^8 Mn(-1) Fe(0) Co(+1) Ni(+2) Au(+3)
d^9
    Mn(-2) Fe(-1) Co(0) Ni(+1) Cu(+2)
d^{10}
    Mn(-3) Fe(-2) Co(-1) Ni(0) Cu(+1) Zn(+2)
```

11.2 Koordinationslehre von Alfred Werner Nobelpreis 1913

Bahnbrechende Erkenntnis: Es gibt Verbindungen, in denen das Zentralatom mehr Bindungen eingeht, als es dessen Wertigkeit / Oxidationsstufe entspricht.

Definition eines Komplexes (A. Werner ca. 1900): Ein Komplex ist eine Koordinationsverbindung, in der das Zentralatom (eine Lewis-Säure) typischerweise von mehr Liganden (anionischen oder neutralen Lewis-Basen) symmetrisch umgeben ist, als es der Hauptvalenz (= Wertigkeit, Oxidationsstufe) des Zentralatoms entspricht.

Beispiele: $[AICI_4]^-$, $[Fe(H_2O)_6]^{2+}$, $[Co(NH_3)_4CI_2]^+CI^-$

Alfred Werner's experimentelle Methodik:

1. Fällungsreaktionen mit Überschuss Ag+:

CoCl3 • 6 NH3 gelb 3 AgCl $\downarrow \rightarrow$ [Co(NH₃)₆]Cl₃

CoCl3 • 5 NH3 purpur 2 AgCl $\downarrow \rightarrow$ [Co(NH₃)₅Cl]Cl₂

CoCl₃ • 4 NH₃ grün 1 AgCl ↓ (Isomer 1) trans

CoCl₃ • 4 NH₃ violett 1 AgCl ↓ (Isomer 2) cis

CoCl₃ • 3 NH₃ violett 0 AgCl $\downarrow \rightarrow$ [Co(NH₃)₃Cl₃]

2. Leitfähigkeitsmessungen Λ_M / S·m²·mol⁻¹:

empir. Formel Λ_{M} Σ Ionen Chlorid (fällbar)

PtCl4 • 6 NH3 523 5 4

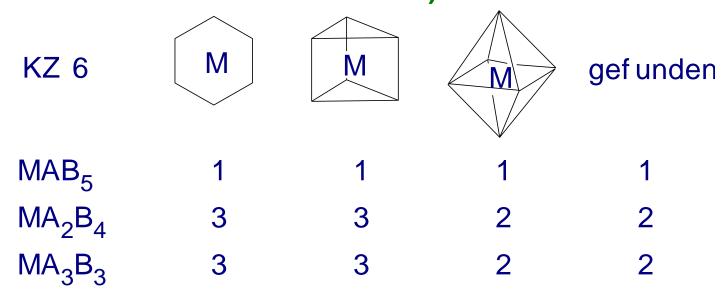
Werner-Formel \rightarrow [Pt(NH3)6]Cl4

PtCl4 • 5 NH3 404 4 3

Werner-Formel → [PtCl(NH3)5]Cl3

PtCl4 • 4 NH3 229 3 2

Werner-Formel → [PtCl₂(NH₃)₄]Cl₂


PtCl₄ • 3 NH₃ 97 2 1 <u>Werner-Formel</u> → [PtCl₃(NH₃)₃]Cl

PtCl4 • 2 NH3 0 0 0 Werner-Formel \rightarrow [PtCl4(NH3)2]

1. Werner'sches Postulat:

Co(III) und Pt(IV) haben in diesen Verbindungen die gleiche, einheitliche "sekundäre Valenz" (Nebenvalenz) = Koordinationszahl KZ (nach heutiger Sprechweise)

3. Symmetrieüberlegungen (Zahl der beobachtbaren Stereoisomere):

Das Oktaeder ist das wichtigste Strukturmotiv der Koordinationschemie der d-Metalle!

2. Werner'sches Postulat:

Koordinationsverbindungen haben eine bestimmte räumliche Struktur, wobei die Liganden möglichst symmetrisch um das Zentrum angeordnet sind.

Koordinationspolyeder im Überblick nach KZ

K Z 2	linear L-M-L	d10: Pt0, Cu+, Ag+, Au+, Hg2+, [Ag(NH3)2]+, [CuCl2]-, [Au(CN)2]-
K Z 3	trigonal planar	[Hgl3]-, Cr(NR2)3, Pt(PR3)3,
	seltener pyramidal	[SnCl3]- (nur bei Hauptgruppen gilt VSEPR Modell!)
K Z 4	tetraedrisch	d0: [VO4]3-, [CrO4]2-, [MnO4]-, [OsO4], [VOCl3], [CrO2Cl2], d10: [ZnCl4]2-, [Hgl4]2-, Ni(CO)4 aber auch [Cd(CN)4]2-,[CoCl4]2-, [NiCl4]2-, [FeCl4]-, [MnCl4]2-,[VCl4]-,
	quadratisch- planar	d8: (Co+), Ni2+, Rh+, Pd2+, Ag3+, Ir+, Pt2+, Au3+, [RhCl(PPh3)3] (Wilkinson-Kat.), [IrCl(CO)(PPh3)2] (Vaska-Kompl.), [Ni(CN)4]2-, [L2PtCl2], [Pt(CN)4]2-

K Z 5	Trigonal- bipyramidal tbp	d8: [Fe(CO)5], [Mn(CO)5]-, [Co(CNR)5]+ (Isonitril CNR)
	quadratisch- pyramidal qpy	[VO(acac) ₂] Vanadylacetylacetonat, [Ni(CN) ₅] ³ -
K Z 6	oktaedrisch Oktaeder	häufigstes Koord.polyeder, Cr3+ und Co3+ fast ausschließlich! [M(OH2)6]m+, [M(NH3)6]m+, [M(CN)6]m-, [M(CO)6], , [CoF6]-, [AIF6]-, [Ca(EDTA)]2
K Z 7	pentagonal- bipyramidal	[UF7]2-, [ZrF7]3-, [TaF7]2-
K Z 8	Würfel (sehr selten) →	[UF8] ³ - und Fluorometallate der Seltenerdmetalle.
	Quadr. Antiprisma →	[TaF8]3-, [ReF8]2-,
	Dodekaeder	[Mo(CN)8]4-
K Z 9	Dreifach- überkapptes trigonales Prisma	[ReH9]2-, [Nd(OH2)9]3+.

Weitere Leistungen A. Werners:

Erste optisch aktive rein anorganische Verbindungen mit Ethylendiamin-Chelatliganden:

2 Enantiomere des cis-Dichloro-K.

CI CI CI CI CI
$$H_0$$
 $Co(NH_3)_4$ Br_6

N $Co(NH_3)_4$ $Co(NH_3)_4$ $Co(NH_3)_4$

CI CI $CI(H_3N)_4$ $Co(NH_3)_4$

11.3 Isomerie bei Komplexen

1. Konstitutionsisomerie (Verknüpfungsisomerie):

Ambidente Anionen können je nach Charakter des Koordinationszentrums mit weichem oder härteren Haftatom koordinieren.

$$[SCN]^{-}$$

$$[NO_{2}]^{-}$$

$$[SO_{3}]^{2-}$$

$$[SO_{3}]^{2-}$$

$$[SO_{3}]^{2-}$$

$$[SO_{3}]^{2-}$$

$$[SO_{2}]$$

$$[SO_{2$$

2. Geometrische Isomerie (Stereoisomere):

KZ 4, quadratisch planar:

MA₂B₂ 2 Isomere

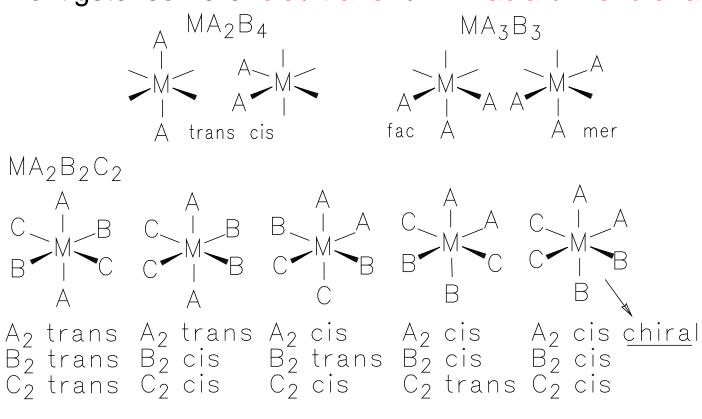
MA₂BC 2 Isomere

MABCD 3 Isomere

KZ 4, tetraedrisch:

optische Isomere / Enantiomere mit asymmetrischen Metallzentrum

KZ 5, trigonal-bipyramidal:


Berry-Pseudorotation: Dynamische Umwandlung axialin äquatorial-ständige Liganden - ohne M-L Bindungsbruch über Intermediat einer quadratischen Pyramide.

$$\begin{array}{c} \text{ax} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{B} \\ \text{eq} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{B} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \\ \text{A} \end{array} \qquad \begin{array}{c} \text{A} \\ \text{A} \end{array}$$

KZ 6, oktaedrisch:

hohe Energiebarrieren der Pseudorotation → viele geometrische Isomere isolierbar.

Wichtigste Isomere: cis / trans bzw. facial / meridional

3. Ionisationsisomerie:

[Co(NH3)5Br] SO4 [Co(NH3)5(SO4)] Br

2:2 Elektrolyt 1:1 Elektrolyt SO42- fällbar mit Ba2+ Br- fällbar mit Ag+

Br- nicht fällbar SO42- nicht fällbar

4. Solvatisomerie:

[Cr(H₂O)₃Cl₃] • 3 H₂O (grün)

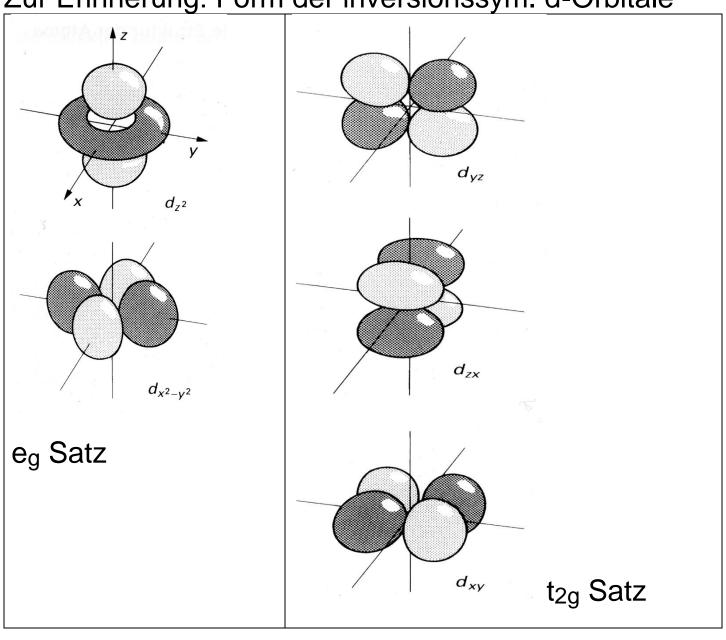
Schrittweise Hydrolyse der Cr-Cl Bindungen zum

[Cr(H₂O)₆] Cl₃ (violett)

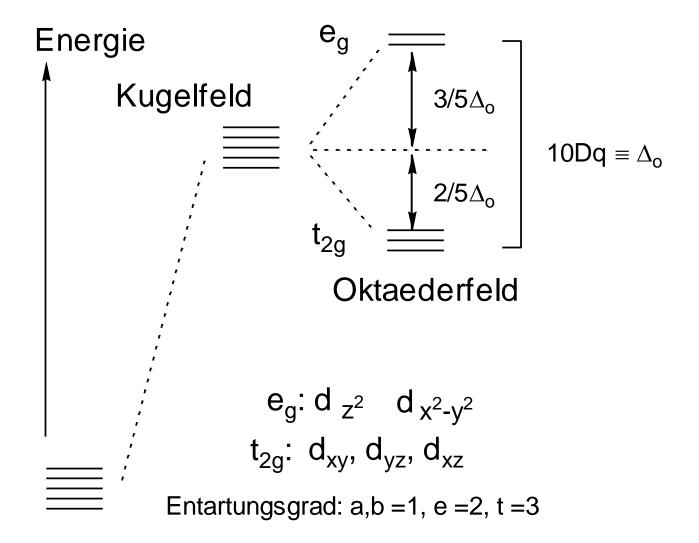
5. Koordinationsisomerie:

2 [PtCl₂(NH₃)₂] vs [Pt(NH₃)₄]²+ [PtCl₄]²- [Pt(NH₃)₄]²+[CuCl₄]²- vs [Cu(NH₃)₄]²+[PtCl₄]²- grün blauviolett

11.4 Elektronenstruktur der Komplexe Bethe 1929, van Vleck 1932


11.4.1 Die Ligandenfeldtheorie LFT (bzw. "erweiterte Kristallfeldtheorie CFT") versucht, eine Korrelation zwischen den physikalischen Eigenschaften der Komplexe bzw. Übergangsmetall-Festkörperstukturen (Farbe, Spektroskopie, Magnetismus, thermodynamische Größen) und der Anzahl, räumlichen Anordnung und Natur der Liganden (= Koordinationssphäre) herzustellen.

Grundannahmen:


Ionen eines Ionengitters oder Liganden eines Metallkomplexes wirken auf das Zentralion Mⁿ⁺ wie Punktladungen und erzeugen ein elektrostatisches Ligandenfeld, das auf die mit s-, p-, d- und f-Elektronen besetzten Orbitale einwirkt.

Im Ligandenfeld verlieren die d- und f-Orbitale ihre Entartung (energet. Gleichartigkeit): Zu den Liganden negativer Elektronendichte gerichtete d- und f-Orbitale mit negativer Elektronendichte werden dabei besonders stark abgestoßen bzw. energetisch angehoben. Die nicht auf die Liganden gerichteten Orbitale werden dagegen im Sinne des Energieerhaltungssatzes energetisch abgesenkt.

Zur Erinnerung: Form der inversionssym. d-Orbitale

Im Folgenden beschränken wir uns auf die Differenzierung der d-Orbitale im Feld oktaedrisch angeordneter Liganden:

Zwei d-Orbitale mit Ausdehnung auf x,y,z-Achsen (eg Satz) werden um den gleichen Energiebetrag energetisch angehoben, wie die drei d-Orbitale (t₂g Satz) energetisch abgesenkt werden. s- und p-Orbitale werden räumlich gleichartig beeinflusst → zwar energetische Anhebung, aber keine Aufspaltung, da sie in gleicher Weise auf den

x,y,z-Achsen liegen (d.h. keine Aufhebung ihrer Entartung).

11.4.2 Diskussion der Ligandenfeldaufspaltung Δ_0 (= 10 Dq Energieeinheiten)

Die Ligandenfeldaufspaltung ist die experimentell aus Elektronenspektren (UV-VIS) oder Gitterenergien ermittelbare energetische Aufspaltung der d-Orbitale.

Die d¹-Elektronenkonfiguration ist der einfachste Fall, da hier die beobachtbaren Spektralübergänge direkt die Energiedifferenz zwischen dem e_g- und t_{2g}-Niveau liefern.

Der allgemeine Fall (dⁿ Konfiguration des Metallkations) ist komplexer, da hier die Elektronen-Elektronen-WW berücksichtigt werden muss, die im Grundzustand und angeregten Zustand verschieden ist (→ Aufspaltung der Terme im Ligandenfeld → Master-Studiengang).

Beispiele: d^1 -ML₆ [Ti(OH₂)₆]³⁺ 3d Metall Ein d-Elektron besetzt t_{2g} Niveau: Lichtabsorption führt zum Übergang t_{2g}¹ e_g⁰ \rightarrow t_{2g}⁰ e_g¹: Absorptionsmaximum 20.300 cm⁻¹ (Δ ₀ = 243 kJ/mol) (o steht für oktaedrisches Ligandenfeld). d¹-MX₆ [ReF₆] Absorptionsmaximum 32.500 cm⁻¹ (Δ_0 = 389 kJ/mol). → Δ_0 offenbar größer für 5d Metall ! s.u. d.h. Beträge für 10 Dq liegen in der Größenordnung der Bindungsenergien kovalenter Bindungen (vgl. Cl-Cl 240 kJ/mol) !

Umrechnung: $E = N_L \bullet h_V = N_L \bullet h \bullet c/\lambda = N_L \bullet h \bullet c \bullet \widetilde{V}$ 500 nm \cong 20.000 cm⁻¹ \cong 2.5 eV 1 cm⁻¹ \cong 12 J/mol 350 cm⁻¹ \cong 1 kcal/mol

Farbe des d¹-Ti³⁺: Absorption von Grüngelb induziert d-d Übergang und liefert Komplementärfarbe Rotviolett als sichtbares Restlicht.

11.4.3 Größe der Ligandenfeldaufspaltung ($\Delta_0 \cong 100\text{-}500 \text{ kJ/mol}$)

1. Abhängigkeit vom Ligandentyp:

Bei konstantem Zentralatom erhöht sich Δ_0 in der folgenden Reihenfolge: **Spektrochemischen Reihe der Liganden**, geordnet nach zunehmender Ligandenfeldstärke:

 $I^- < Br^- < S^{2-} < SCN^- < CI^- < NO_3^-, N_3^- < F^- < NCO^ < OH^- < ONO^- < O^{2-} < H_2O < NCS^- < NH_3 < SO_3^{2-} < NO_2^- < PR_3, CH_3^-, < CN^- < CO < NO^+$ Problem: Punktladungsmodell ließe erwarten, dass anionische Liganden stärkstes Feld erzeugen, obwohl gerade diese am unteren Ende der empirisch gefundenen Reihe stehen (z.B. $OH^- < OH_2$). Das Konzept einer rein elektrostatischen WW muss daher angepasst werden. Reihenfolge besser mit MO-Modell erklärbar: π -acide Liganden mit Fähigkeit zur kovalenten $d\pi \rightarrow p\pi^*$ Rückbindung (CO, NO⁺) führen zur größten Ligandenfeldaufspaltung.

2. Abhängigkeit vom Zentralatom:

Bei gleichem Liganden ist die Änderung von Δ_0 innerhalb einer Periode (ÜM-Reihe) vergleichsweise gering, innerhalb einer Gruppe dagegen beachtlich: Δ_0 3d < 4d < 5d.

Faustregel: Δ_0 3d : 4d : 5d \cong 1 : 1.5 : 2. Beispiel: 10 Dq-Werte von Ethylendiamin-Komplexen $[\text{Co(en)}_3]^{3+}$ (23.200 cm⁻¹) $[\text{Rh(en)}_3]^{3+}$ (34.600 cm⁻¹), $[\text{Ir(en)}_3]^{3+}$ (41.400 cm⁻¹).

Mit wachsender Oxidationsstufe (Ladung) des Zentralatoms erhöht sich Δ_0 beträchtlich, da die Liganden infolge der stärkeren elektrostatischen Anziehung näher an das Metallzentrum herangezogen werden, wodurch die Störung der d-Orbitale durch das Ligandenfeld steigt.

Beispiel: Aquakomplexe dⁿ [M(OH₂)₆]ⁿ⁺ 10 Dq [cm⁻¹] Grundkonfig. im Oktaederfeld $d^2 V^{3+}$ t_{2g}^2 18.000 $t_{2g}{}^{3} \\$ $d^3 V^{2+}$ 11.800 d^3 Cr^{3+} $t_{2\alpha}{}^3 \\$ 17.400 (≈50% mehr als $d^3 V^{2+}$ d^4 Cr^{2+} $t_{2g}^3 e_g^1$ 14.000 d^4 Mn^{3+} $t_{2q}^3 e_q^1$ 21.000 (≈50% mehr als $d^4 Cr^{2+}$

3. Abhängigkeit von der geometrischen Anordnung der Liganden:

Ligandenfeldaufspaltung Δ_0 Δ tetraedrisch < Δ oktaedrisch < Δ quadratisch

Beobachtung:

Tetraeder-Komplexe besitzen in der Regel die größtmögliche Zahl ungepaarter d-Elektronen (highspin Zustand).

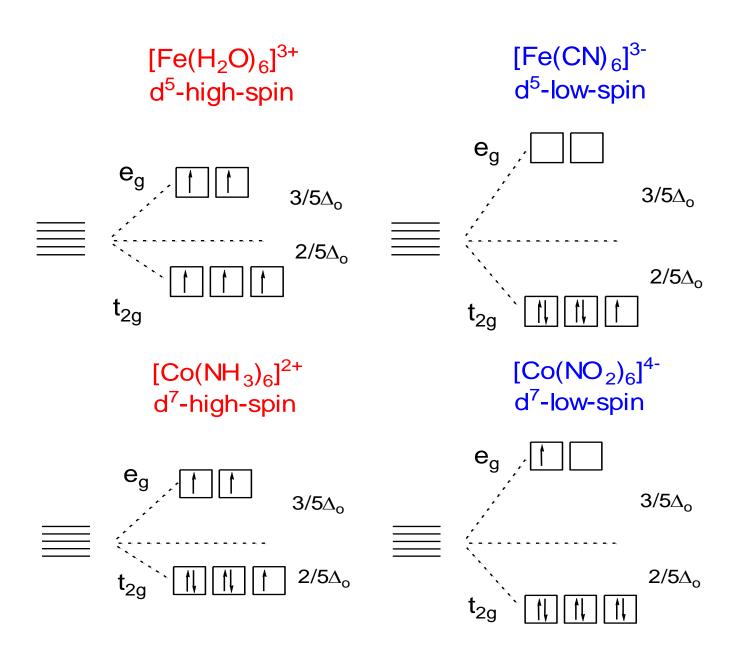
Quadratisch planare Komplexe besitzen dagegen die größtmögliche Zahl gepaarter d-Elektronen (low-spin Zustand).

Stark aufspaltende Liganden begünstigen insbesondere bei d⁸ Konfig. die quadratisch-planare Anordnung, z.B. Is d⁸-[Ni(CN)₄]²⁻, schwach aufspaltende die tetraedrische Anordnung, z.B. hs d⁸-[NiCl₄]²⁻.

A) Oktaedrisches Ligandenfeld:

Bei Oktaeder-Komplexen findet man für die Elektronenkonfigurationen d⁴, d⁵, d⁶ und d⁷ beides, high-spin und auch low-spin Zustände in Abhängigkeit vom Ligandentyp / Stellung in der spektrochem. Reihe und der Oxidationsstufe des Metallzentrums.

Erklärung:


Die Spin-Paarungsenergie P muss aufgewendet werden, um ein zweites Elektron antiparallelen Spins in ein und dasselbe Orbital zu zwingen.

Aus diesem Grund werden normalerweise erst alle 5 d-Niveaus zunächst mit Valenzelektronen entsprechend der d-Elektronenkonfiguration einfach besetzt: es resultieren high-spin hs (magnetisch normale) Komplexe.

Falls jedoch die Ligandenfeldaufspaltung Δ_0 größer ist als die Spinpaarungsenergie P, so wird die Spinpaarung und somit ein low-spin Is Zustand mit

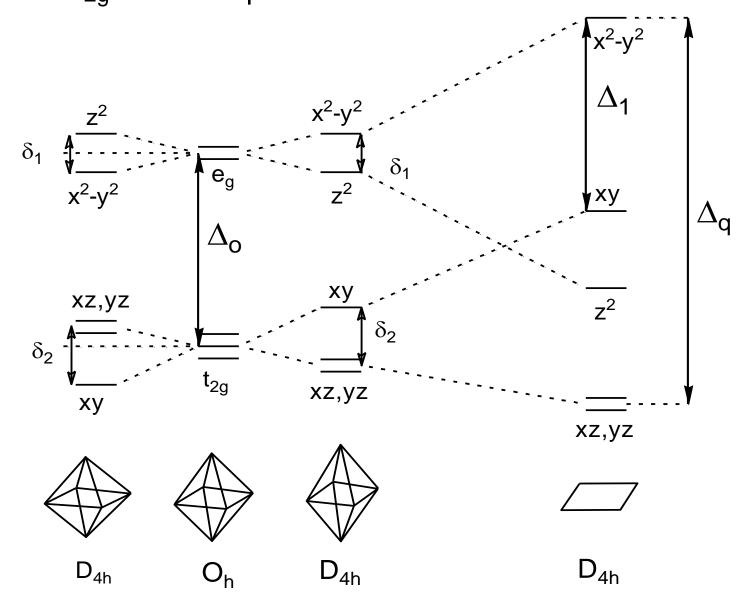
geringst möglicher Zahl ungepaarter Elektronen beobachtet.

Die Unterscheidung zwischen low-spin und high-spin lässt sich jedoch nur für die Elektronenkonfigurationen $d^4 - d^7$ treffen, da bei $d^1 - d^3$ und $d^8 - d^{10}$ die Orbitalbesetzung unabhängig von der Größe Δ_0 immer zum Spinsystem größtmöglicher Spinmultiplizität führt (1. Hund'sche Regel), Beispiele:

Ligandenfeldstabilisierungsenergie LFSE:

LFSE = Gewinn an d-Elektronen-Ligandabstoßungsenergie beim Übergang vom sphärischen Kugelfeld zum nichtsphärischen Ligandenfeld unter Berücksichtigung der unterschiedlichen Paarungsenergie P in beiden Feldern.

Beispiel:


LFSE (d⁷-hs) =
$$(2 \times 3/5) \Delta_0 + (5 \times -2/5) \Delta_0 + 0 P$$

= $-4/5 \Delta_0 + 0 P$ (x10)
= $-8 Dq + 0 P$

B) Jahn-Teller-Verzerrung des Oktaeders: Oktaeder → tetragonal verzerrt → quadratisch planares Ligandenfeld

Betrachtet wird die tetragonale Verzerrung des idealen Oktaeders, d.h. Stauchung entlang der z-Achse bzw. Dehnung entlang der z-Achse bis hin zur Entfernung der axialen Liganden.

Durch Dehnung in Richtung der z-Achse (einhergehend mit leichter Stauchung in x- und y-Richtung) erfahren d-Orbitale mit einer z-Komponente (xz, yz und insbesondere z²) eine Abnahme der elektrostatischen Abstoßung durch die Liganden und werden daher stabilisiert. Gleichzeitig werden alle anderen d-Orbitale destabilisiert, und zwar so, dass

der Energieschwerpunkt konstant bleibt. Ergebnis: eg und t_{2q} Niveaus spalten auf.

Die planar-quadratische Geometrie ist besonders vorteilhaft bei Metallionen mit d^8 -Konfiguration und starken Liganden, z.B. $[Ni(CN)_4]^{2^-}$. Diese Kombination führt zu low-spin Komplexen, bei denen die acht d-Elektronen die 4 energiearmen Orbitale d_{xz} , d_{yz} , d_{zz} und d_{xy} besetzen, während das energiereiche Orbital d_{x2-y2} unbesetzt bleibt.

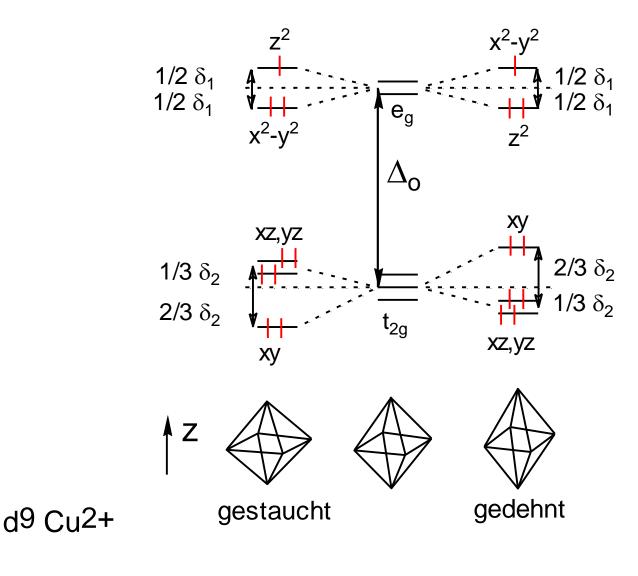
Verallgemeinerung:

Die Jahn-Teller-Verzerrung JTV tritt auf, wenn in oktaedrischen (seltener tetraedrischen) Ligandenfeldern eines der entarteten t2g- oder eg - Niveaus weder halb noch ganz besetzt ist.

Der Grund: Die d-Orbitale sind nicht kugelsymmetrisch, daher kann sich das System durch synchrone Verzerrung (Dehnung oder Stauchung) des Oktaeders und Unterbringung der Elektronen in energetisch günstigeren Orbitalen um den Betrag der Jahn-Teller-Stabilisierungsenergie JTSE stabilisieren.

Die JTV fällt i.a. für d¹, d², d⁴ (ls) nicht so sehr ins Gewicht, da die **JT-Aufspaltung** δ_1 etwa doppelt so groß ist wie δ_2 .

Besonders exponierte **JT-Ionen** mit hoher JTSE sind: **d9** (Cu2+), **d4** hs (Cr2+, Mn3+), **d7** ls (Co2+, Ni3+).


Keine JTV bei: d0, d10, d3, d5 (hs), d6 (ls), d8, da in all diesen symmetrisch besetzte t2g und eg Niveaus.

Beispiel: Elektronenkonfiguration d⁹ (t_{2g}⁶ e_g³)

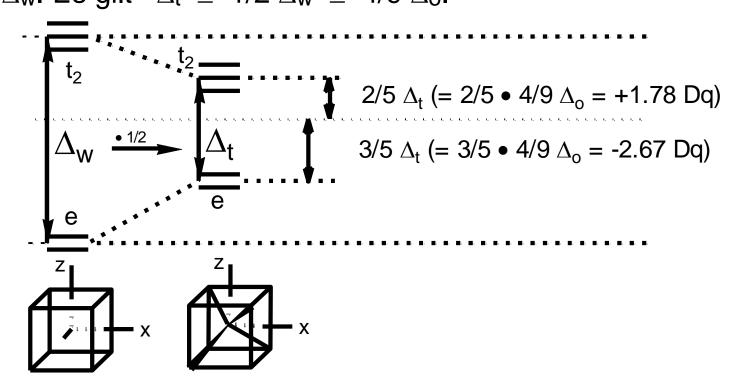
Beispiel: Cu2+ in [Cu(OH2)6]2+

das ungepaarte Elektron kann sich in einem d_X2-y2

oder dz2 Orbital befinden:

JTSE: $\frac{1}{2}\delta_1$ $\frac{1}{2}\delta_1$

z.B. [Cu(NH₃)₆]₂₊


Struktur: 4 Cu-N: 207 pm

2 Cu-N: 262 pm starke Dehnung!

C) Kubisch → Tetraedrisches Ligandenfeld

Das tetraedrische Ligandenfeld leitet sich vom kubischen ab. Gegenüber dem sphärischen Kugelfeld werden die auf die Würfelkanten weisenden t₂-Orbitale (d_{xy}, d_{xz}, d_{yz}) energetisch angehoben (destabilisiert)

der e-Satz, der auf die Flächenmitten weist dagegen energetisch abgesenkt. \rightarrow Kubisches Feld hat inverse Aufspaltung wie Oktaederfeld. Da im Tetraederfeld lediglich die Hälfte der Ecken des Würfels besetzt sind, sinkt die Aufspaltung Δ_t auf die Hälfte des Wertes für Δ_w . Es gilt $\Delta_t \cong 1/2 \ \Delta_w \cong 4/9 \ \Delta_o$.

11.5 Farbe, magnetische Eigenschaften und Reduktionspotentiale

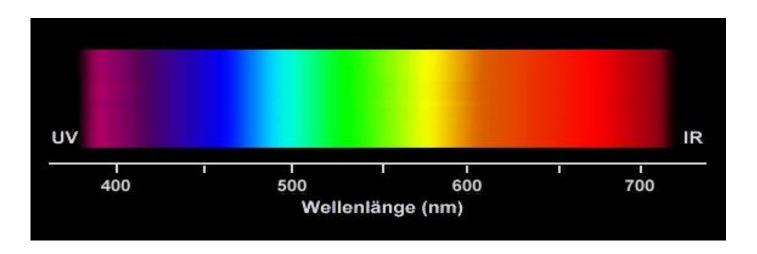
Farbe, magnetische Eigenschaften und Reduktionspotentiale hängen extrem von der Oxidationsstufe (El.konfiguration) sowie Art und Anordnung der Liganden ab (Erklärung: Ligandenfeldtheorie und MO-Theorie → Skriptum allg. Chemie).

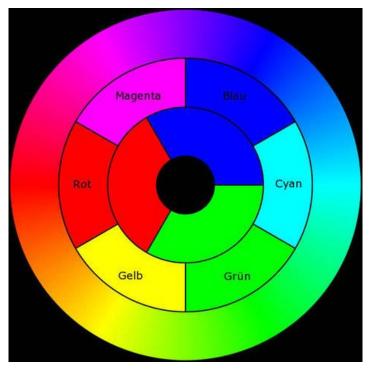
Reduktionspotentiale

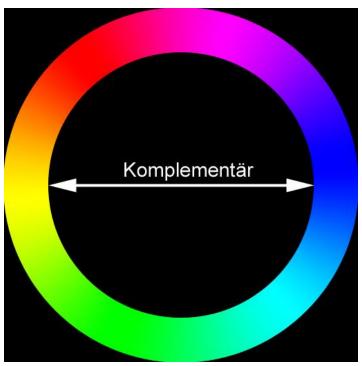
überstreichen weiten Bereich von stark elektropositiv / reduzierend, z.B. E°(Ti²⁺/Ti⁰) -1.6 V bis edel / oxidierend, z.B. E°(Au⁺/Au⁰) +1.46 V d.h. von H₂O reduzierend bis H₂O oxidiernd. Liganden haben extremen Einfluss auf Red.potentiale!

Beispiele von **Farbvariationen infolge d-d-Übergangen** für Werner-Komplexe (Lewis-Säure-Base-Komplexe / reine σ -Donorliganden):

 $[Co(NH_3)_6]Cl_3$ (gelb) $[Co(NH_3)_5Cl]Cl_2$ (violett)

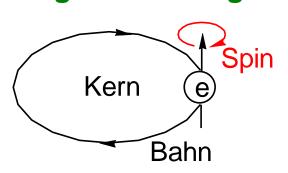

 $[Co(NH_3)_4Br_2]Br (grün) [Co(NH_3)_4(H_2O)_2]SO_4 (rot)$


 $[Co(en)_2Cl_2]Cl$ (blau) en = Ethylen-1,2-diamin


Ein anderer Grund für besonders intensive Farbe von Komplexen sind **Charge-Transfer-Phänomene** (→ Nutzung in analytischer Chemie):

Ligand-Metall-CT: MnO₄⁻, CrO₄²-, HgS, Fe(SCN)₃

Metal-Metall-CT: KFe^{III}[Fe^{II}(CN)₆] (Intervalenz-CT)



Wellenlänge des absorb.	Farbe	Restfarbe		
Lichts (nm)	absorbiert	reflektiert		
400-435	Violett	Gelbgrün		
435-480	Blau	Gelb		
480-490	Grünblau	Orange		
490-500	Blaugrün	Rot		
500-560	Grün	Purpur		
560-580	Gelbgrün	Violett		
580-595	Gelb	Blau		
595-605	Orange	Grünblau		
605-770	Rot	Blangriin		

Magnetische Eigenschaften:

Partielle Auffüllung der d-Orbitale führt häufig zu ungerader Zahl von Elektronen bzw. zu ungepaarten Elektronen in highspin-Komplexen, selbst wenn sie

eine gerade Zahl von d-Elektronen besitzen \rightarrow es resultiert Paramagnetismus.

Spinmagnetismus, bewirkt durch Spindrehimpulse ungepaarter Elektronen, bildlich dargestellt durch

Eigenrotation der EI. und beschrieben durch die <u>magnetische Gesamtspin-QZ MS</u> = Σm_S mit $m_S = \pm 1/2$ (Spinquantenzahl m_S eines Elektrons). MS besitzt 2S+1 Zustände S, S-1, S-2 -S.

Spinbeitrag: n ungepaarte Elektronen erzeugen einen Gesamtspin S = n/2 und das assoziierte magnet. Gesamtspinmoment $\mu_S = [S(S+1)]^{1/2} g \mu_B$

g \cong 2 (g-Faktor, gyromagnetische Anomalie) µB Bohr'sches Magneton (kleinste Einheit des magnetischen Moments, Elementarquantum des Magnetismus, µB = 9.27 x 10⁻²⁴ J/T) z.B. n = 5 \longrightarrow S = 5/2 \longrightarrow Ms = 5/2, 3/2, 1/2, -1/2, -3/2, -5/2 (n+1 bzw. 2S+1 = 6 Zustände)

Bahnmagnetismus, bewirkt durch Bahndrehimpulse der Elektronen, bildlich dargestellt durch Bahnbewegung in verschiedenen Orbitalen und beschrieben durch die Gesamtbahndrehimpuls QZ ML

= Σ m_I mit m_I = = I, I-1 ... -I (Bahndrehimpuls m_I eines Elektrons, Nebenquantenzahl I = 1 (p-Orb.), I = 2 (d-Orb.), I = 3 (f-Orb.)).

M_L besitzt 2L+1 Zustände L, L-1, L-2 ... -L.

Bahnbeitrag: n Elektronen erzeugen einen Gesamtbahnimpuls L und das assoziierte magnet. Gesamtbahnmoment $\mu_L = [L(L+1)]^{1/2} \mu_B$

Bei schwacher Spin-Bahn-Kopplung der Elektronen (LS- oder Russel-Saunders-Kopplung) nehmen L und S unabhängig voneinander alle im Raum erlaubten Lagen ein. Das effektive magnetische Moment µeff beträgt dann

$$\mu_{\text{eff}} = \mu_{\text{B}} \left[L(L+1) + 4S(S+1) \right]^{1/2}$$

Oft sind die Bahnmomente L ganz oder teilweise unterdrückt. Mit L = 0 erhält man die

"Spin-Only"-Werte: Das Magnetische Moment μ_{eff} berechnet sich dann allein aus dem Gesamtspin S:

$$\mu_{\text{eff}} = [S(S+1)]^{1/2} 2 \, \mu_{\text{B}}$$

 μ_{eff} normiert auf μ_{B} ergibt μ_{eff} / μ_{B} = Vielfache des Bohr'schen Magnetons = Spin-Only-Werte gut eingehalten für 3d¹ 3d⁵ Konfiguration

n	S	$\mu_{\text{eff}} / \mu_{\text{B}} = 2[S(S+1)]^{1/2}$
0	0	0 Spin-Only-Werte
1	1/2	1.73 -fache von μΒ
2	1	2.83
3	3/2	3.87
4	2	4.90
5	5/2	5.92

Abweichungen für $3d^6$ $3d^9$, wobei $\mu_{exp} > \mu_{eff}$ (aus Spin-Only). Bahnbeitrag ist zu berücksichtigen: Unter bestimmten Symmetriebedingungen erzeugt externes Magnetfeld eine räumliche Elektronenbewegung, Elektron wechselt Orbital (Nebenquantenzahl I), das Gesamtbahnmoment L koppelt mit dem Gesamtspin S.

Beispiele (setzen Kenntnisse zur Ligandenfeldtheorie / Ligandenstärke / high-spin / low-spin voraus):

Fe ^{III} (d ⁵)	S	μeff	Co^{III} (d^6)	S	μeff
$[FeF_6]^{3-}$	5/2		$[CoF_{6}]^{3-}$	2	5.3
$[Fe(H_2O)_6]^{3+}$	5/2	5.8	$[Co(NH_3)_6]^{3+}$	0	dia
$[Fe(CN)_{6}]^{3-}$	1/2	2.2	$[Co(CN)_{6}]^{3-}$	0	dia
Fe ^{II} (d ⁶)	S	μeff	Co ^{II} (d ⁷)	S	μeff
$[Fe(H_2O)_6]^{2+}$	2	5.3	$[Co(H_2O)_6]^{2+}$	3/2	5.1
$[Fe(CN)_6]^{4-}$	0	dia	$[Co(NO_2)_6]^{4-}$	1/2	1.8

11.6 Trends / Vergleich der d-Block Elemente zu Elementen des s- und p-Blocks

<u>Ionenradien und Ionisierungsenergien (IE)</u>

Sc \rightarrow Zn: <u>effektive</u> Kernladung nimmt zu, da d-Elektronen zunehmende Kernladung schlechter abschirmen als s- und p-Elektronen. Folglich nehmen Atom- und Ionenradien innerhalb der ÜR ab \rightarrow Ionisierungsenergien innerhalb der ÜR zu \rightarrow , bei Bildung von Kationen zuerst s-El. abgegeben.

Grober Trend: Edler Charakter wächst ↓ → Ausnahmegruppe 12: Zn unedler als Fe, Mn (Einfluss von Hydratation, Komplexbildung, hs /ls Spinzustand von Fe, Mn)

Zn, Cd, Hg verwenden die geschlossene d¹⁰ Schale nicht für Bindungen → niedrige Fp. und Verdam-pfungsenthalpien der Metalle (flüchtig), Hg flüssig.

→ HG-ähnliche Chemie, weil sie nur ns² Elektronen benutzen (max. Valenz +2).

Aufgrund schlechter Abschirmungseigenschaften der 4f-Orbitale (Anstieg der eff. Kernladung) nehmen die Ionenradien der Lanthanoide $_{57}\text{La}^{3+}$ 105pm \rightarrow $_{71}\text{Lu}^{3+}$ 85pm ab (**Lanthanidenkontraktion**). Diese Radienabnahme kompensiert die eigentlich zu erwartende Radienzunahme zwischen 2. ÜR (4d-Metalle) \rightarrow 3. ÜR (5d-Metalle).

WICHTIG: Daraus ergibt sich ein

Eigenschaftssprung zwischen 3d- und 4d-Metallen, dagegen eine

große Ähnlichkeit zwischen Homologen der 4d- und 5d-Metalle (Radien, IE, Reaktivität, Molekül- und Festkörperstrukturen).

Ti Chemie anders als Zr, Hf V Chemie anders als Nb, Ta Fe Chemie anders als Ru, Os etc.

Oxidationsstufen im Überblick:

- + Hauptoxidationsstufen
- + weitere Oxidationsstufen
- + Oxidationsstufen exklusiv bei 4d- und 5d-Metallen

Gruppe	3	4	5	6	7	8	9	10	11	12
Ox.st.	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn
0 Elkon.	d^1s^2	d^2s^2	d^3s^2	d^5s^1	d^5s^2	d^6s^2	d^7s^2	d^8s^2	$d^{10}s^1$	$d^{10}s^2$
1		+	+	+	+	+	+	+	+	
2		+	+	+	+	+	+	+	+	+
3	+	+	+	+	+	+	+	+	+	
4		+	+	+	+	+	+	+	+	
5			+	+	+	+	+	+	+	
6				+	+	+	+	+		
7					+	+				
8						+				

3d, 4d und 5d-Metalle: Höchste Ox.stufe Sc → Mn entspricht Gruppennummer, danach Abnahme wobei 4d- und 5d-Metalle ab Gruppe 8 auch in höheren Oxidationsstufen vorkommen, z.B:

höchstvalente Fluoride: NiF₃, PdF₄, PtF₆ (kov. / flüchtig) höchstvalente Oxide: FeO₄²⁻, RuO₄/OsO₄ (kov./ flüchtig)

Größte <u>Vielfalt</u> der realisierbaren Oxidationsstufen in der <u>Mitte</u> einer Übergangsmetallreihe bei Mn: Sc, Ti: zu wenig El., die abgegeben (lonenbdg.) bzw. geteilt (kovalente Bdg.) werden können. Cu, Zn: d-Elektronen zu fest gebunden, um hohe Ox.stufen zu erlauben (→ effektive Kernladung).

Mit zunehmender Ordnungszahl ändern d-Elektronen Charakter von "Valenz-Elektronen" in Richtung "Rumpf-Elektronen" (ab Fe-Triade abnehmende Neigung, hohe Ox.stufen anzunehmen).

Übergangselemente bilden häufig Verbindungen in benachbarten Oxidationsstufen ± 1 , z.B. Fe(2,3), Cu(1,2), Mn(2,3,4,5,6,7) \longrightarrow Redoxkatalyse!

Hauptgruppenelemente existieren bevorzugt in Ox.stufen, die sich durch ±2 Einheiten unterscheiden, z.B. Sn(2,4), P(3,5), S(2,4,6).

Entgegengesetzter Trend wie bei HG-Verbindungen: Die Stabilität der höchsten Oxidationsstufe nimmt zu innerhalb einer Gruppe zu schwereren Homologen, Beispiele

V₂O₅ Redoxkatalysator, Nb₂O₅ und Ta₂O₅ stabil

CrO₃ < MoO₃ < WO₃ Stabilität

 $CrO_3 > MoO_3 > WO_3$ Oxidationskraft

 Mn_2O_7 Zers. 0°C, Tc_2O_7 Fp. 120°C, Re_2O_7 Fp. 220°C. CrF_6 instabil > -100°C, MoF_6 und WF_6 stabil Kp. 17°C!

Bei Abwesenheit π -acider Liganden (CO, bipy etc.) wird in Komplexen mit reinen σ -Donoren (Aqua, Ammoniak, Halogenid...) als niedrigste die Ox.stufe (+2) realisiert:

Ti(+2), V(+2) stark reduzierend \rightarrow Mn(+2), Cu(+2) stabilste Ox.stufe \rightarrow Zn(+2) ausschließlich.

Oxidationsstufen der f-Metalle:

Lanthanoide Ln

typischerweise +3 (wie Lanthan), Ausnahmen: +2, +4

+4: Ce, Pr, Tb

+2: Sm, Eu, Tm, Yb

Actinoide nicht wie Actinium (+3), sondern +4: Th \longrightarrow +3 bis +6: U und Pu

Analogien zwischen HG- und NG-Elementen

vor allem bei höhervalenten d⁰-Verbindungen:

- 5. HG/NG (Poly)Phosphate Na₃PO₄ / Vanadate Na₃VO₄ Halogenide PCl₅ / NbCl₅ flücht. Festkörper
- 6. HG/NG (Poly)Sulfate Na₂SO₄ / Chromate Na₂CrO₄

Oxide SO_3 / CrO_3

Halogenide SF₆ / WF₆ beides Gase

Hochvalente Metalloxide d⁰- TiO₂, V₂O₅, CrO₃, Mn₂O₇, OsO₄ sind Anhydride entsprechender Metall-Oxosäuren: tendenziell geringere Acidität und höhere Kondensationsneigung im Vergleich zu HG-Oxosren. In vielen Fällen ist die Stabilität der Metall-Oxoanionen größer als die der Anhydride, deren kovalenter Charakter und Flüchtigkeit im PSE wie folgt steigt ↑—→.

Niedervalente Metalloxide M²⁺O²⁻ wegen Abnahme des Ionenradius ↑→ zunehmend weniger ionisch / basisch: CaO > MnO > CuO und ZnO < CdO < HgO

Die Chemie der zwei und dreiwertigen Lanthanoide ähnelt sehr der Chemie zweiwertiger Erdalkalimetalle von Ca/Sr/Ba²⁺ bzw. von In³⁺: Hoher ionischer Bindungsanteil, hohe Koordinationszahlen bis KZ 12, hervorragende Lewis-Säuren.

11.7 Bedeutung der Übergangsmetalle

Fe, Ti Werkstoffe

Fe wichtigstes Gebrauchsmetall, andere (Cr, V, Mo, W, Ni, Co, Ti) als Legierungsbestandteil in Stählen

Edelmetalle (Ru, Os, Ir, Rh, Pd, Pt) Katalysatoren für Hydrierungen, Carbonylierungen, C-C-Knüpfungen

Ti, V Alkyle Kats für Olefin-Polymerisation V₂O₅, MoO₃, Re₂O₇, OsO₄ Kats für Oxidationen Natur: Zn als enzymat. Kats für Hydrolysen, Fe + Cu als enzymat. Kats f. Oxidationen (Bioanorgan. Chemie)

Cu als elektrischer Leiter Ag, Au Schmuck, elektrische Kontakte Fe, Co, Ni Ferromagnete CrO₂, γ-Fe₃O₄ Magnetbänder und Pigmente

....und viel mehr spannende und nützliche Chemie

12. Scandiumtriade: Gruppe 3 Sc, Y, La inkl. 4f-Metalle = Seltenerdmetalle

Metalle sind unedler als Al und kommen gemäß $(n-1)d^{1}ns^{2}$ Konfiguration nur als M^{3+} Ionen vor Chemie ähnlich Al: Chloride starke Lewis-Säuren, Bildung von Metallaten $[ScCl_{6}]^{3-}$ (größerer Ionenradius 75 pm als Al 45 pm), Hydrolyse der Chloride, $Sc(OH)_{3}$ amphoter $\longrightarrow [Sc(OH)_{6}]^{3-}$ $Y(OH)_{3}$ zunehmend basisch $La(OH)_{3}$ basisch $Ln \rightarrow Abnahme Basizität \rightarrow Lu(OH)_{3}$

Sc, Y so häufig wie Pb, Sn aber sehr verdünnt Gewinnung aus M₂O₃ oder MF₃ durch Reduktion mit Ca, Mg, Li M³⁺ Ionen sind farblos

Spezialanwendungen:

Y³⁺ aber rot fluoreszierend → Anwend. Fernsehröhre YAG Laser: Yttrium-Aluminium-Granat Y₃Al₅O₁₂ Sc₂O₃ Dotierung in Magnetspeichern erhöht Geschwindigkeit der Magnetisierung Lambda λ-Sonde O₂-Partialdruckmessung, ZrO₂/Y₂O₃ La(I) extrahiert Plutonium aus geschmolzenem Uran LaNi₅ als Wasserstoffspeicher YBa₂Cu₃O_{7-x} Supraleiter mit Sprungtemperatur 93 K

Nobelpreis Bednorz, Müller 1987 (Kp. N₂ 77 K!)

Lanthanoide Ln: Elektronenkonf. der Ln³⁺ Kationen:

f¹

f¹

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
+3+4	+3+4	+3+4	+3	+2 +3	+2 +3	+3	+3+4	+3+4	+3			+2 +3	

Beispiel: Sm³⁺ hat 4f⁵ Konfiguration (5 ungepaarte El.)

Trends:

Ionenradien nehmen kontinuierlich ab Ln-Kontrakt. —>
Basizität der Hydroxide nimmt ab —>
Amphoterer Charakter der Hydroxide nimmt zu —>
Reduktionspotential M³+/M fällt —>
Dichte und Fp Ln steigt —> (rel. Minima bei Eu, Yb)
Atomradien sinken —> (rel. Max. bei Eu, Yb)

4f Niveaus gegen äußere Einflüsse der Liganden weitgehend abgeschirmt \rightarrow geringer Einfluss des schwachen Kristallfeldes / Bindung ionogen \longrightarrow nur high-spin-Komplexe (maximales magnetisches Moment μ), einzig Lu³⁺ ist diamagnetisch.

Stabilität Ln(+2): $Eu^{2+}(f^7) > Yb^{2+}(f^{14}) > Sm^{2+} > Tm^{2+}$ Stabilität Ln(+4): $Ce^{4+}(f^0) > (Tb^{4+}, Pr^{4+}, Dy^{4+}, Nd^{4+})$ nur Ce⁴⁺ ist in wässriger Lösung stabil (Rest oxidiert Wasser zu O₂), Anwendung in der **Ceremetrie**Ce³⁺ ← Ce⁴⁺ + 1e⁻ pH abhängig, da CeO²⁺ Bldg.
Cer(IV)-Ammoniumnitrat CAN (NH₄)₂Ce(NO₃)₆
starkes Einelektronenoxidans mit stabilem Titer

Chemie erinnert an Erdalkalimetalle (vgl. Ca):

Alle Ln reagieren mit Wasser unter H₂ Entwicklung In NH₃ blaue Lösungen: Elektride Ln³⁺(NH₃)_n e(NH₃)_n typisch sind hohe KZ:

[La(H₂O)₉]³⁺ KZ 9 [Ce(NO₃)₆]²⁻ KZ 12

Gewinnung der nicht selten, aber sehr verdünnt vorkommenden Elemente durch lonenaustauscher-Chromatographie und Flüssig-Flüssig-Extraktion mit Tri-n-butylphosphat (TBP, (BuO)₃P=O) aus Nitratlösungen.

HighTech-Anwendungen ähnlich wie Gruppe 3: Leuchtstoffe (Lumineszenz) für Fernsehröhren und Leuchtstoffröhren (Eu und Y).

157Gd-Komplexe als Kontrastmittel in
 Kernspintomographie und Neutroneneinfangtherapie
 (Zerfall unter β-Strahlung dient zur Krebsbekämpfung)

Glühstrümpfe (CeO₂/ThO₂)
Feuerzeug-Zündstein (Ce-Legierung)
Materialien für Feststofflaser u. magnetooptische Disc

Nd₂Fe₁₄B stärkster bekannter Permanentmagnet Katalyse (sehr gute Lewis-Säuren).

13. Titantriade: Gruppe 4
Ti, Zr, Hf

Elektronenkonfiguration: ns^2 (n-1) d^2 (n \geq 4) Oxidationsstufen: Ti: bevorzugt +4, auch +3, selten +2 Zr, Hf: bevorzugt +4, selten +3 (schwerer reduzierbar)

Chemisch sind Zr und Hf sehr ähnlich und von Ti deutlich verschieden, Grund: Lanthanoidenkontraktion Kovalenz- / Ionenradien:

r (Ti) = 132 pm, r (Zr) = 145 pm, r (Hf) = 144 pm r (Ti⁴⁺) = 61 pm, r (Zr⁴⁺) = 74 pm, r (Hf⁴⁺) = 75 pm

Analogien zwischen 4. Haupt-/Nebengruppe:

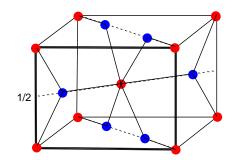
Ti⁴⁺ und Sn⁴⁺ ähnliches Ionenpotential

Gruppe 4 TiCl₄ flüssig, kovalent, TiO₂ Rutilgitter Gruppe 14 SnCl₄ flüssig, kovalent, SnO₂ Rutilgitter ähnliche Halogenokomplexe: $[TiX_6]^{2-}$ $[SnX_6]^{2-}$

Vorkommen, Darstellung, Verwendung

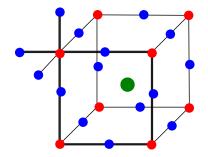
Ti: Häufiges Element (10. Stelle; 0,6 % der Erdrinde; häufiger als N, C, S, Ni, Cu, aber in geringer Konz.)

Erze: FeTiO₃ Ilmenit


CaTiO₃ Perowskit

TiO₂ Rutil, Anatas, Brookit

Zr: ZrO₂, ZrSiO₄ Zirkon


Hf: immer in Begleitung von Zr

Ti-Mineralien sind namengebende Prototypen dreier wichtiger Strukturtypen:

 $Ti_{8/8+1}O_{4/2+2}$ TiO₂ Rutil

KZ 6:3 (oktaedr.-trigonal) tetragonal innenzentr. Kationengitter verzerrte TiO₆ Oktaeder über gemeinsame Kanten zu Bändern verknüpft O: verzerrt hdp, Ti: 1/2 der Oktraederlücken z.B. MnF₂, CaCl₂, NiF₂, PbO₂, VO₂, NbO₂, CrO₂, WO₂, MnO₂

ABX₃ Perowskit CaTiO₃ Ca_{1/1}Ti_{8/8}O_{12/4}

A 12-fach von X koordiniert

B 6-fach von X koordiniert Summe der Ladungen von A und B = +6

Ca + O: kdp, Ti: Oktaederlücken

z.B. KNbO₃ (1+5), CaTiO₃ (2+4), YAIO₃ (3+3), KMgF₃

Stannate, Titanate, Niobate, Chromate, Ferrate, Aluminate

Ilmenit FeTiO₃:

Prototyp vieler ternärer Oxide. Leitet sich von Korund (Al₂O₃) ab: O: hdp, Fe²⁺ und Ti⁴⁺ (statt Al³⁺) in 2/3 der Oktaederlücken.

Doppeloxide:

Perowskit-Typ MTiO₃: Große Kationen Ca 106 pm etc. Ilmenit-Typ MTiO₃: kleinere Kationen Fe 82 pm etc. Spinell-Typ M₂TiO₄ (Mg, Zn, Mn, Co)

Titan Metallurgie: leichter als Stahl, aber ähnliche mechan. Festigkeit, korrosionsbeständig gegen Seewasser, Laugen, HNO₃ (Passivierung), Legierungsbestandteil für Leichmetallegierungen.

Darstellung von Titan aus FeTiO₃ oder TiO₂: Reduktion mit C oder mit C + Luft nicht möglich: Bildung der hochschmelzenden Keramiken TiC (Titancarbid), TiN (Titannitrid); beide NaCl-Typ (Härtung von Werkstoffen).

Ausweg Carbochlorierung:

TiO₂ + 2 C + 2 Cl₂ \longrightarrow TiCl₄ + 2 CO \triangle H°= -80 kJ/mol Destillative Reinigung von TiCl₄ kovalentes Halogenid nicht durch Elektrolyse entladbar

Kroll-Prozess:

TiCl₄ + 2 Mg(I) \longrightarrow Ti + 2 MgCl₂(I) unter Ar Schutzgas Recycling von Mg d. Schmelzelektrolyse von MgCl₂.

Hunter-Verfahren:

 $TiCl_4 + 4 Na \longrightarrow Ti + 4 NaCl$

Hochreines Titan erhält man durch eine "Transportreaktion" im "van Arkel-de Boer"-Verfahren:

Ti + 2
$$I_2$$
 — 600°C \rightarrow Ti I_4 (subl.) — 1200°C \rightarrow Ti + 2 I_2

Til₄-Dampf wird am glühenden Titandraht zersetzt: "Chemischer Transport"

Reinigung / Herstellung von TiO₂ (3 Mio jato) wichtigstes Weißpigment (früher BaSO₄) TiO₂ in der Natur durch Fe-Beimengungen rötlich

Trockener Aufschluss: Lösliche Titanate d. Schmelzen mit Alkalicarbonaten oder -hydroxiden:

$$TiO_2 + Na_2CO_3 \longrightarrow Na_2TiO_3 + CO_2$$

In H₂O erfolgt Hydrolyse (Im Basischen: Na₂SiO₄ bleibt gelöst, "Rotschlamm" Fe(OH)₃ wird abfiltriert (Verw. als Pigment für rote Ziegel(steine), Keramikfliesen etc.):

$$TiO_4^{4-} + 4 H_2O \longrightarrow "Ti(OH)_4" + 4 OH^- \longrightarrow ansäuern \rightarrow Titansäure Kondensation $\longrightarrow "TiO_2 x n H_2O" \downarrow (restl. Si^{4+} bleibt gelöst) $\longrightarrow \Delta \rightarrow TiO_2$ (Anhydrid d. Titansäure).$$$

Nasser Aufschluss: Erhitzen von TiO₂ mit H₂SO₄: TiO₂ + H₂SO₄ \longrightarrow Ti(SO₄)₂ + 2 H₂O Bei Verdünnen Hydrolyse:

 $Ti^{4+} + H_2O \longrightarrow "TiO^{2+"} + 2 H^+ "Titanyl-Ion"$ $TiO(SO_4)_{aq} \longrightarrow TiO_{2 aq} + H_2SO_4 \longrightarrow 800^\circ \longrightarrow TiO_2$ "Abfall" in diesem Prozess ist sog. "Dünnsäure", d.h. verdünnte Schwefelsäure / FeSO_4 aus Ilmentit, die früher in die Nordsee "verklappt" wurde.

"TiO^2+" liegt in wässriger Lösung nicht als freies Ion vor, sondern hydratisiert als $[Ti(OH)_2(H_2O)_4]^{2+}$ bzw. $[Ti(OH)_3(H_2O)_3]^+$ (je nach pH), in festem $TiO(SO_4) \cdot x$ H_2O als polymere $(-Ti-O-Ti-O-)_n$ -Kette.

TiO₂ ist amphoter:

$$Ti(OH)_2^{2+}aq \leftarrow H^+ - TiO_2 - OH^- \rightarrow Ti(OH)_6^{2-}$$

Titanyl Titanat

Chlorid-Verfahren zur Gewinnung von TiO2:

Verwendung und Recycling von Chlorgas aus der "Chlor-Alkali-Elektrolyse":

$$TiO_2 + 2 Cl_2 + 2 C \longrightarrow TiCl_4 (Dest.) + 2 CO$$

 $TiCl_4 + O_2 \longrightarrow Flamme 1400°C \longrightarrow TiO_2 (Pigm.) + 2 Cl_2$

TiO₂ Farbpigmente: gezielter Einbau farbgebender Ionen (Postgelb früher CdS, heute TiO₂ + Cr,Ni,Sb) Perlglanzpigmente: TiO₂ Fällung auf Glimmerplättchen (→ Interferrenzfarben abhängig von Schichtdicke).

Analyt. Ti-Nachweis:

$$(H_{2}O)_{4}Ti \xrightarrow{OH} + H_{2}O_{2} \xrightarrow{-2} H_{2}O \xrightarrow{(H_{2}O)_{4}Ti} \xrightarrow{O} \uparrow 2 + hv \xrightarrow{H_{2}O} (H_{2}O)_{4}Ti \xrightarrow{O} \uparrow 2 + hv \xrightarrow{O$$

LMCT (Ligand-Metall-Charge-Transfer): Anregung eines nichtbindenden Ligandelektrons von O_2^{2-} in ein leeres Metallorbital von $Ti^{4+} \rightarrow mikroreversible$ Redoxreaktion zu O_2^-

Entfärbung mit F⁻: Umwandlung in farblosen Kompl.: $Ti(O_2)^{2+} + 6 F^- + 2 H_2O \rightarrow TiF_6^{2-} + H_2O_2 + 2 OH^-$

Reduktion von TiO²⁺:

2 TiO²⁺aq.+ 4 H⁺ + Zn \longrightarrow 2 Ti³⁺ + Zn²⁺ + 2 H₂O Es liegen [Ti(H₂O)₆]³⁺ Komplexe vor; rotviolette Lösung (d-d Übergang, Anreg. v. d-Elektr.) d¹-Ti³⁺ starkes Reduktionsmittel:

$$2 \text{ Ti}^{3+} + \text{Cu}^{2+} \longrightarrow 2 \text{ Ti}^{4+} + \text{Cu}^{0}$$

Ti-Halogenide:

TiCl₄ kovalentes Titansäurechlorid

a) Ti + 2 Cl₂
$$\longrightarrow$$
 TiCl₄

b)
$$TiO_2 + 2 C + 2 CI_2 \longrightarrow TiCI_4 + 2 CO$$

Flüssigkeit (farblos), tetraedrisches Molekül,
starke Lewis-Säure $\longrightarrow [L_2TiCI_4]$

TiCl₄ + (2+x) H₂O \longrightarrow TiO₂ x H₂O + 4 HCl ("raucht" an der Luft infolge Hydrolyse, vgl. SnCl₄)

Hexachlorotitansäure (eine Chlorometallsäure):

TiCl₄ + 2 HCl → H₂[TiCl₆] nur wasserfrei, ansonsten Hydrolyse, Salze der Hexachlorotitansäure stabil: z.B. Cs₂TiCl₆, (NH₄)₂TiCl₆

TiCl₃ ionisches Titantrichlorid (Ionenpotential)

2 TiCl₄ + H₂ — 400°C \rightarrow 2 TiCl₃ + 2 HCl "Ziegler-Natta Katalysator" in Verbindung mit Al(C₂H₅)₃ zur Gewinnung von Polyethylen, Polypropylen.

Zirconium, Hafnium

Hauptunterschiede zu Ti:

- keine wesentliche Chemie für M^{+2,+3}
- größerer Ionenradius → stabile Komplexe mit KZ ≥ 6 (TiCl₄ Flüssigkeit, KZ 4 tetraedr., ZrCl₄ hochschmelzend Koordinationspolymer, KZ 6 oktaedr., verbrückende CI Liganden).

KZ 8:
$$Zr(OAc)_4$$
, $Zr(C_2O_4)_4]^{4-}$, ZrF_8^{4-}

O-Basizität ZrO₂ > TiO₂, Lewis-Acidität TiO₂ > ZrO₂ dennoch keine Ionen [Zr(H₂O)₆]⁴⁺ sondern Kondensation zu Isopolysäuren: Zirconylchlorid ZrOCl₂ x 8 H₂O = [Zr₄(OH)₈(H₂O)₁₆]⁸⁺ 8 Cl⁻(H₂O)₁₂ KZ 8, saure Reaktion infolge Hydrolyse

14. Vanadiumtriade: Gruppe 5V, Nb, Ta

Elektronenkonfiguration: ns^2 (n-1) d^3 (n \geq 4)

Oxidationsstufen: bevorzugt +5

V: auch +4, +3, +2 leicht zugänglich

Stabilität von M(+5): V < Nb < Ta

In Komplexen, z.B. [V(CO)₆] und metallorganischen

Verbindungen, auch +1, 0, -1

Nb und Ta zeigen ähnliche Eigenschaften

Analogien zwischen 5. Haupt-/Nebengruppe:

PCI₅ / NbCl₅ sublimieren, KZ 5(g), KZ 6(s),

L.-Säuren: $ECI_5 + CI^- \longrightarrow ECI_6^-$

saure Oxide E₂O₅, Polyoxosäuren (Polykondensation),

VOCl₃ "Vanadylchlorid", POCl₃ "Phosphorylchlorid", kovalente rauchende Flüssigkeiten.

Vorkommen

V (30): Nb (6): Ta (1)

Erze: z.B. VS₄ Patronit (Disulfid),

Vanadate: K(UO₂)VO₄ Carnotit (V Nebenprodukt der

Urangewinnung), V2O5 im Flugstaub der

Erdölverbrennung (fossile maritime Organismen

reicherten V an).

Niobate, Tantalate: (Fe,Mn)[NbO₃]₂

Gewinnung der Metalle (Metallurgie): Struktur von V, Nb, Ta: kubisch innenzentriert $V_2O_5 + 5 Ca - 950^{\circ}C \rightarrow 2 V + 5 CaO$ (auch aluminothermisch mit Al \longrightarrow Al₂O₃)

Hochreines Vanadium: (van Arkel-de Boer) VI₃ —950°C → V + 1.5 I₂

Ferrovanadin (50% Fe, 50% V) aus Fe₂O₃ / V₂O₅ mit Kohle (Legierungszusatz, Werkzeug-/Panzerstahl) Tantal: Stähle, Ta₂O₅ High-k-Dielektrikum (Kondensator) Nb, Ta: K₂MF₇—frakt. Krist. \rightarrow K₂NbF₇ + K₂TaF₇ Nb, Ta Trennung: frakt. NbCl₅/TaCl₅ Destillation K₂MF₇ (Schmelze) + Na (I) \longrightarrow Nb bzw. Ta M₂O₅ Red. mit C \rightarrow Gefahr Carbidbildung (NbC, TaC)

Koordinationsverbindungen:

- d⁰ V(+5) V₂O₅ (Redoxkatalysator, SO₃ Gewinnung)
 Vanadate, Polyvanadate s.u.
 VF₅, "VCl₅" instabil → VCl₄ + 1/2 Cl₂
 Zerfall entropisch begünstigt, NbCl₅ stabil
- d¹ V(+4) VCl₄ tetraedr. kovalent, flüssig
 VOCl₂L₂ blau, quadr. pyram. V=O Komplex
 VO₂ oktaedr. s.u.

$$d^3 V(+2) [V(H_2O)_6]^{2+}$$

$$d^{5/6} V(0,-1) [V(CO)_6] - 1e^- \rightarrow [V(CO)_6]^- (18 VE)$$

Redoxchemie in wässriger Lösung (EXP)

$$d^0 VO_2^+ \rightarrow d^1 VO^{2+} \rightarrow d^2 V^{3+} \rightarrow d^3 V^{2+}$$

blassgelb blau grün violett

Vanadium-Oxide:

VO (NaCl-Typ) grau, basisch

V₂O₃ (Korund-Typ) schwarz, basisch

VO₂ (Rutil-Typ) blauschwarz, amphoter

V₂O₅ (Schichtstruktur aus verzerrten

Oktaedern, amphoter orangerot wegen LMCT)

V_nO_{2n+1} (n= 3,4,6) auch Defektstrukturen mit Phasenbreite VO_{1.89 ...1.75}

V₂O₅ Amphoterie: Anhydrid der Vanadiumsäure

$$V_2O_5 + H_2SO_4 \longrightarrow (VO_2)_2SO_4 + H_2O_4$$

VO2+: Vanadylionen in wässr. Lösung [V(OH)4(H2O)2]+

V₂O₅ + 6 NaOH → 2 Na₃VO₄ + 3 H₂O Orthovanadat nur in alkalischen Lösungen Bei Säurezusatz Kondensation zu Isopolymetallaten:

Divanadat V₂O₇⁴-

Trivanadat V₃O₉³–

Polyvanadate, z.B. bei pH 6: Dekavanadat V₁₀O₂₈⁶⁻

$$(= 5 \times V_2O_5 + 3 O^{2-})$$

In starken Säuren schließlich VO₂+, VO³⁺

(d⁰ "Vanadyl"-Säurefunktion): VOCl₃ "Vanadylchlorid", kovalente rauchende Flüssigkeit.

$$V_2O_5 + 3 SOCl_2 \longrightarrow 2 VOCl_3 + 3 SO_2$$

Bei höheren Temp. reduziert S(+4) das V(+5):

 $V_2O_5 + Na_2SO_3 \longrightarrow 2 VO_2 + Na_2SO_4$ (Schmelze)

 $VO_2 + H_2SO_4 \longrightarrow VO(SO_4) + H_2O$

VO²⁺: d¹ Vanadyl(+4) -lon tiefblau

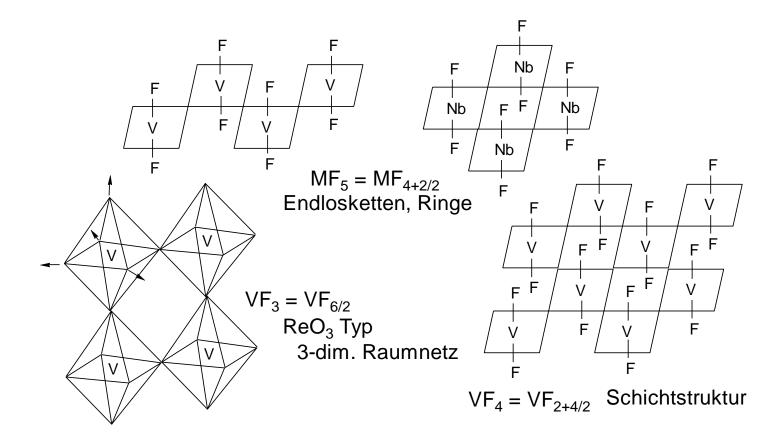
Schwerlösliche Schwermetallvanadate (Minerale):

Ag₃VO₄ orangerot, Pb₃(VO₄)₂ gelb, Ba₃(VO₄)₂ weiß

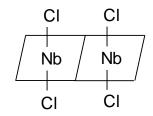
Peroxovanadyl-Spezies (EXP)

kationische im sauren, anionische im neutralen bzw. basischen Medium, Farbe: LMCT

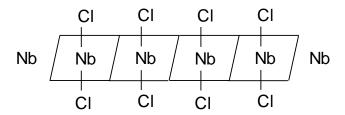
$$(H_2O)_4V \xrightarrow{OH} + H_2O_2 \xrightarrow{-2 H_2O} (H_2O)_4V \xrightarrow{O} + H_2O_2 \xrightarrow{-2 H_2O} (H_2O)_4V \xrightarrow{O} + H_2O_2 \xrightarrow{O} = O \xrightarrow{O}$$

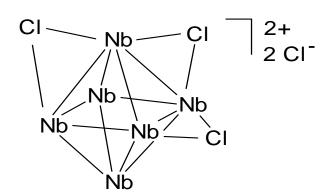

Vanadiumabhängige Haloperoxidasen: Enzyme mit Peroxovanadium-Funktionen oxidieren Halogenid zu Hypohalogenit OCl⁻, OBr⁻ (wird zur Chlorierung / Bromierung von Naturstoffen in vivo verwendet).

Sulfide:


Alkalische Vanadat-Lösungen + Sulfid → VS₄³⁻ Thiovanadat, z.B. K₃VS₄, Ansäuern: braunes V₂S₅

Strukturprinzipien der Halogenide:


Fluoride bilden bevorzugt eckenverknüpfte Oktaeder


Chloride bilden bevorzugt kantenverknüpfte Oktaeder

 $NbCl_5 = NbCl_{4+2/2}$ Dimer

 $NbCl_4 = NbCl_{2+4/2}$ Endloskette

Subvalente Nb, Ta chloride

M₆ Metall-Cluster
Metall-Metall-Bdg.
Nb₆Cl₁₄ = [(NbCl₂)₆ - 2e⁻]Cl₂
gemischtvalent Nb(+2.33)
12 Cl über 12 Kanten des Oktaeders
2 Chlorid nicht koordiniert

VCI₄: kovalente paramagnet. Flüssigkeit (Ionenpot., Radius!)

15. Chromtriade: Gruppe 6 Cr, Mo, W

Elektronenkonfiguration

Cr: $4s^1 3d^5$, Mo: $5s^1 4d^5$, W: $6s^2 5d^4$

Bei Cr und Mo anomal (halbbesetzte d-Schale:

Stabilisierung)

Oxidationsstufen: +2 +3 +4 +5 +6Mo, W Verbindungen schwerer zu reduzieren als Cr Mit π -aciden Liganden auch $+1 \ 0 \ -1 \ -2 \ z.B.$ [Cr(CO)₆], [Cr(CO)₅]²⁻, Dibenzolchrom Cr(C₆H₆)₂

Analogien zwischen 6. Haupt-/Nebengruppe:

Chromsäure CrO₂(OH)₂ und Schwefelsäure SO₂(OH)₂ bzw. flüchtige hochreaktive, oxidierende Säurechloride Chromylchlorid CrO₂Cl₂ und Sulfurylchlorid SO₂Cl₂.

Anhydride CrO₃ und SO₃ bilden Kettenstrukturen eckenverknüpfter Tetraeder.

Gasförmige Fluoride SF₆ und WF₆ (CrF₆ bis -100°C). In der Strukturchemie von W(+6) und Te(+6) Oxoverbindungen, z.B. Säuren, dominiert das EO₆ Oktaeder.

Vorkommen:

Cr: Chromeisenstein Fe^{II}Cr^{III}₂O₄ (SpineII)

Mo: Molybdänglanz MoS2

W: Wolframate von Mn, Fe, Ca, Pb: MIIWO4

Darstellung der Metalle:

Nicht durch Reduktion mit C, wegen Bildung von Carbiden, z.B. WC (Drehstähle)

Cr: a) Thermitverfahren (Goldschmidt)

$$Cr_2O_3 + 2 AI \longrightarrow 2 Cr + Al_2O_3$$

- b) elektrolytische Verchromung
- c) hochreines Chrom "van Arkel-de Boer"

$$Cr_{roh} + I_2 - 900^{\circ}C \rightarrow CrI_2 - 1000 - 1300^{\circ}C \rightarrow Cr_{rein} + I_2$$

Mo, W: Reduktion der Oxide MO₃ mit H₂ WO₃ + 3 H₂ \longrightarrow W + 3 H₂O

Anwendung der Transportreaktion in der Halogenlampe (höhere Temp. / Lichtausbeute, selbstheilender Effekt der W-Wendel):

$$W_{\text{verd.}} + 2 I_2 \longrightarrow WI_4 \longrightarrow >1800^{\circ}C \longrightarrow W + 2 I_2$$

Für die Legierung mit Fe werden Gemenge aus Fe₂O₃ und dem jeweiligen Oxid mit C reduziert, z.B. Ferrochrom (60 % Cr/Fe) aus Chromeisenstein Fe^{II}Cr^{III}₂O₄

Elektrolytische Verchromung (Vorteil: extrem gute Passivierung durch porendichte Cr-Schicht, die durch

eine Oxidschicht "passiviert" ist → Korrosionschutz; Nachteil: Lokalelement Fe/Cr bei Beschädigung)

Nachweis der Passivierung:

Cr + verd. H_2SO_4 / $HCI \longrightarrow Auflösung zu Cr^{3+}$ Cr + verd./konz. $HNO_3 \longrightarrow keine Auflösung$

Cr, Mo, W sehr hohe Schmelzpunkte (W mit 3380 °C höchster Fp./Flüchtigkeit eines Metalls/Elements: Anwendung in Glühlampenwendel)

Cr-Verbindungen als Pigmente: PbCrO₄ Chromgelb, PbCrO₄ x Pb(OH)₂ Chromrot, Cr₂O₃ Chromgrün.

Schwerlösliche Schwermetallchromate:

PbCrO₄, BaCrO₄, Ag₂CrO₄, Hg₂CrO₄

MoS₂: Schmiermittelzusatz zu Ölen; Schichtstruktur

Chromate, Dichromate (+6):

a) alkalisch:

 $2 \text{ Cr}^{3+} + 10 \text{ OH}^- + 3 \text{ H}_2\text{O}_2 \longrightarrow 2 \text{ CrO}_4^{2-} + 8 \text{ H}_2\text{O}$ Cr^{3+} bildet kinetisch sehr stabile Komplexe, z.B. $[\text{Cr}(\text{H}_2\text{O})_6]^{3+}$ (hohe Akt.energie des Lig.austausches)

b) in oxidierenden Schmelzen:

Soda-Salpeter-Schmelze

$$Cr_2O_3 + 3 NaNO_3 + 2 Na_2CO_3 \longrightarrow$$

2 Na₂CrO₄ + 3 NaNO₂ + 2 CO₂

c) im Sauren Oxidation von Cr3+ mit Peroxodisulfat

Chromate sind starke Oxidationsmittel:

$$+6$$
 $+4$ $+3$ $+6$
 $Cr_2O_7^{2-} + 3 SO_2 + 2 H^+ \rightarrow 2 Cr^{3+} + 3 SO_4^{2-} + H_2O$
 $+6$ -1 $+3$ 0
 $Cr_2O_7^{2-} + 6 Cl^- + 14 H^+ \rightleftharpoons $2 Cr^{3+} + 3 Cl_2 + 7 H_2O$$

Chromat- Dichromat- Gleichgewicht

2
$$CrO_4^{2-}$$
 + 2 H^+ \longrightarrow $Cr_2O_7^{2-}$ + H_2O gelb orange

Mechanismus der Kondensation von Hydrogenchromat HOCrO₃⁻ in konz. Säure:

$$Cr_3O_{10}^{2-} \longrightarrow Cr_4O_{13}^{2-} \longrightarrow (CrO_3)_X$$

Trichromat Tetrachromat (CrO₃)_x Eckenverknüpfte Tetraederkette, Endprodukt der Kondensation, intensiv rot, cancerogen, giftig, starkes Oxidationsmittel **Isopolysäuren (Isopolyanionen)**:

- a) Eckenverknüpfte Tetraeder bei kleinen Si, P, V, Cr: Isopolysilicate, -phosphate, -vanadate, -chromate. (Vanadium z.T. KZ 5, quadrat. pyr. Ecken- und Kantenverknüpfung).
- b) Kanten und eckenverknüpfte Oktaeder bei großen Mo, W (KZ 6) z.B. Heptamolybdat, Octamolybdat $(NH_4)_6 [Mo_7O_{24}] = [(MoO_3)_7 + 3 O^{2-}]$ $K_4 [Mo_8O_{26}] = [(MoO_3)_8 + 2 O^{2-}]$

Heteropolysäuren (Heteropolyanionen):

entstehen in Kombination von Molybdat (Wolframat, Vanadat) mit einer zweiten schwachen Oxosäure, bzw. deren Anion PO₄³⁻, SiO₄⁴⁻, TiO₄⁴⁻, IO₆⁵⁻, TeO₆⁶⁻....

Beispiel: [PMo₁₂O₄₀]³⁻ = [PO₄(Mo₃O₉)₄]³⁻ Molybdophosphat gelb, zum Phosphatnachweis **Keggin-Struktur:** je drei MoO₃ Baugruppen an jedem der 4 O Atome des zentralen Templations PO₄³⁻ ankondensiert, innerhalb dieser Mo₃O₉ Einheiten KZ 6 / gemeinsamen Oktaederkanten, dagegen zur benachbarten Mo₃O₉ Einheit gemeinsame Ecken.

Wolframophosphat [PO₄(W₃O₉)₄]³-

Molybdosilikat [SiO₄(Mo₃O₉)₄]⁴⁻

Anwendung als Katalysatoren (mehr als 1000 bekannte Varianten): In der protonierten Säureform, z.B. H₃[PO₄(Mo₃O₉)₄], sehr acide (da geringe Basizität des Anions). Redoxkatalysator, da 12 Mo(+6) elektronisch gekoppelt.

Peroxoverbindungen des Chroms und Molybdäns a) in saurer Lösung: Perhydrolyse von Chromat / H₂O₂:

$$CrO_4^{2-} + H^+ + 2 H_2O_2 \longrightarrow [Cr(O)(O_2)_2(OH)]^- + 2 H_2O$$

violettblau LMCT

Im Sauren mit Diethylether Et₂O ausschüttelbar:

$$[HO-CrO_5]^- + H^+ + OR_2 \longrightarrow [R_2O \rightarrow CrO_5] + H_2O$$

b) in alkalischer Lösung: Peroxochromate (vgl. V) hierbei Reduktion $Cr^{6+} \rightarrow Cr^{5+}$ (Bildung v. O₂ [CrO₈]³⁻)

c) [Mo(O)(O₂)₂L] Komplexe (gelb, LMCT) lassen sich für die katalytische Aktivierung von H₂O₂ für Oxidationen einsetzen.

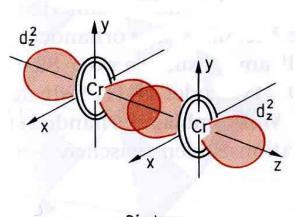
Molybdänblau / Wolframblau: (EXP)

 $[Mo_7O_{24}]^{6-} + 1e^- - Zn, Sn^{2+} \rightarrow [Mo_7O_{24}]^{7-}$ $Mo^{+5/+6}$ MMCT Intervalenz-Charge-Transfer **Wolframbronzen Na_nWO₃** (metallischer Glanz, Perowskit-Defektstruktur, von Na stammende Elektronen im Leitungsband)

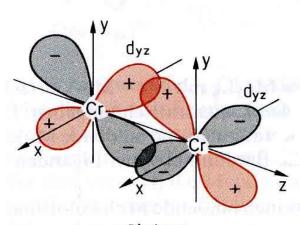
Na₂WO₄ - Schmelze + H₂ \rightarrow Na_nWO₃ (n = 0 < n \leq 1)

Halogenide

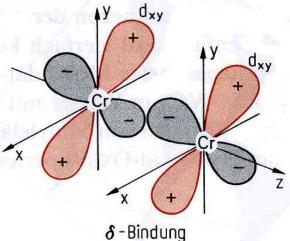
Erschöpfende Chlorierung (Chlorstrom): Chrom \rightarrow CrCl₃ violette Kristalle (eher ionisch, polym.) Molybdän \rightarrow MoCl₅ schwarzgrüne subl. Krist. (koval.) Wolfram \rightarrow WCl₆ schwarzviolette subl. Krist.(kovalent) "MCl₆" (M= Cr, Mo) nicht existent, M-Cl Homolyse CrF₆ Zers. > -100°C, MoF₆, WF₆ sind Gase (kovalente Lewis-Säuren, z.B. — F $^- \rightarrow$ WF₈ $^{2-}$) Techn. Darstellung der Halogenide über Carbochlorierung. z.B. Cr₂O₃ + C + Cl₂


Subvalente Acetate, Halogenide MX₂:

 $[Cr(H_2O)_6]^{2+}$ wie alle Cr(+2) Verbindungen starkes Reduktionsmittel, Darstellung über Red. von Cr(+3) mit Zn/H^+ unter Ausschluss von Sauerstoff \longrightarrow Zugabe

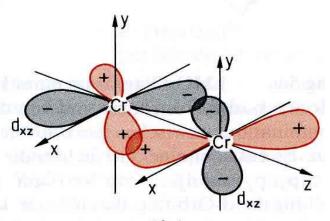

von Acetat führt zu dinuklearen Chrom(II)-acetat mit einem extrem kurzen Cr-Cr Abstand

→ Cr-Cr-Vierfachbindung


- 1 σ Bdg. keine Knotenebene,
- 2π Bdg. eine Knotenebene,
- 1 δ Bdg. zwei Knotenebenen.

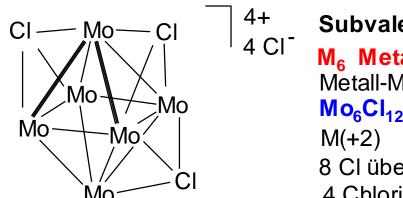
 σ - Bindung

 π -Bindung



 H_2O

ĆH₃


CH₃

9 - Ringring

 π - Bindung

Bei den 4d- und 5d-Homologen MoX₂ und WX₂ werden je nach sterischem Anspruch der Reste X entweder Vierfachbindungen oder die Assoziation zu Metall-Clustern mit M-M Einfachbindungen beobachtet:

Subvalente Mo, W chloride

M₆ Metall-Cluster
Metall-Metall-Bdg.
Mo₆Cl₁₂ = [Mo₆Cl₈]⁴⁺ Cl₄
M(+2)
8 Cl überkappen 8 Flächen d. Oktaed.

4 Chlorid nicht koordiniert

Chemie des Cr(III) in wässriger Lösung:

Cr(+3) ist wie Al(+3) amphoter: Cr(OH)₃ löst sich in Säuren und Basen: [Cr(H₂O)₆]³⁺ \leftarrow 3 H⁺— Cr(OH)₃ —3 OH⁻ \rightarrow [Cr(OH)₆]³⁻ Hexahydroxochromat

Hydratisomerie:

Chloridliganden und Aqualiganden verteilen sich bei gleicher Zusammensetzung anders auf innere /äußere Koordinationssphäre

 d^3 -Cr $^{3+}$ Ionen in oktaedrischer Umgebung CrL $_6$ gehören zu den wenig reaktiven ("inerten") Übergangsmetallionen, die o.g. Hydrolyse der Cr-Cl Bindung durch Wasser (Ligandsubstitution) erfolgt sehr langsam, da sowohl assoziativer als auch dissoziativer Reaktionsweg mit einer hohen Ligandenfeldaktivierungsenergie belegt sind (\rightarrow VL Koordinationschemie).

Chrom(IV)-Magnetpigmente:

CrO₂: Chromdioxid, ferromagnetisch, ungewöhnliche Ox.-stufe +4, Rutil-Typ, für magnet. Informationsträger.

16. Mangantriade Gruppe 7 Mn, Tc, Re

Elektronenkonfiguration: $ns^2 (n-1)d^5 (n \ge 4)$

Oxidationsstufen:

Mn wichtigstes Metall der Gruppe Ox.stufen-Chamäleon (bervorzugte Ox.stufe, s.u.): niedrige Ox.stufen nur mit π -Akzeptorliganden (CO...) hohe Ox.stufen nur mit π -Donatorliganden (O²⁻....)

- -1 Mn(CO)₅ Pentacarbonylmanganat
- O Mn₂(CO)₁₀ Dimangandecacarbonyl (Mn-Mn)
- +1 CpMn(CO)₃ Cp = $[\eta^5$ -C₅H₅]⁻, K₅[Mn(CN)₆]
- +2 [Mn(H₂O)₆]²⁺ d⁵ high-spin, schwach rosa
- +3 [Mn(acac)₃] Acetylacetonat [O=CMe-CH=CMe-O]⁻
- +4 MnO₂ Braunstein, Manganat(IV) CaMnO₃ braun
- +5 [MnO₄]³⁻ Manganat(V) blau
- +6 [MnO₄]²⁻ Manganat(VI) grün
- +7 [MnO₄]⁻ Permanganat(VII) violett

Tc, Re: bevorzugt +4, +5, +6 und +7 $[M(H_2O)_6]^{2+}$ (M = Tc, Re) nicht existent, da Wasser zu H_2 reduziert würde. Umgekehrt sind die d⁰ M(+7)-

Verbindungen Re₂O₇ und KReO₄ (Perrhenat) im Vergleich zu Mn-Analoga stabil (Regeltrend).

Analogien zwischen 7. Haupt-/Nebengruppe:

...wie immer nur bei d⁰ Metall-Verbindungen:

MnO₄⁻ und ClO₄⁻ oxidierende Oxoanionen, insbesondere im Sauren (pH abhängiges Potential); kovalente, stark endotherme Anhydride (explosiv) Cl₂O₇ / Mn₂O₇. Flüchtige Fluoride IF₇, ReF₇.

Vorkommen und Metallurgie:

MnO₂ Braunstein (Rutil-Typ), MnO(OH) Manganit, Mn₃O₄ Hausmannit (Spinell-Typ Mn^{III}₂O₄)

Mangan Darstellung:

nicht über Koks, da Carbidbildung

- a) elektrolytisch $Mn^{2+} \rightarrow Mn$ (unedel, nicht passiviert)
- b) aluminothermisch (Goldschmidt-Verfahren)
- $3 \text{ MnO}_2 + 4 \text{ Al} \longrightarrow 3 \text{ Mn} + 2 \text{ Al}_2\text{O}_3$
- c) als Ferromangan (Legierung für Stahlerzeugung): MnO₂ + Fe₂O₃ + n+5 C → Mn/Fe/C_n + 5 CO

Technetium = künstliches Element: $^{93}_{43}$ Tc wird aus Endprodukten der Uran-Spaltung extrahiert. Einsatz in Radiodiagnostik: β -Strahler (τ = 200.000 a)

Rhenium aus Flugstaub der Röstprozesse von MoS₂. In wässriger Lösung wird schwerlösliches KReO₄ ausgefällt (Parallele: rel. schwerlösl. KClO₄).

Reduktion der Tc/Re Oxide mit H₂ (Parallele: Mo, W).

Anwendungen für Mangan:

Legierungsbestandteil (Ferromangan)

MnO₂ in Trockenbatterien (Leclanché-Element):

Zn + 2 MnO₂ + 8 NH₄⁺ \rightarrow Zn²⁺ + 8 NH₃ + 2 Mn³⁺ + 4 H₂O NH₄⁺ Paste dient als H⁺ Spender

MnO₂ dient zur Umwandlung von H₂ (aus Zn + NH₄⁺)

Zn²⁺ dient als Scavenger für NH₃ z.B. als [Zn(NH₃)₄]²⁺ Zn + 2 MnO₂ + 2 NH₄Cl \rightarrow [Zn(NH₃)₂Cl₂] + 2 MnO(OH)

MnO₂ in Alkali-Batterie (basische Bedingungen):

 $Zn + 2 MnO_2 + 2 H_2O \rightarrow Zn(OH)_2 + MnO(OH)$

MnO₂ als "Glasmacherseife"

grüne Moselweinflasche: Fe(+2) Silikat

braune Rheinweinflasche: Fe(+3) Fe₂O₃, MnO₂

Fe(+2) Silikat + MnO₂ \rightarrow Fe(+3) + Mn(+3) Silikat (violett) = Komplementärfarbe zu grün, \longrightarrow Grünglas wird durch MnO₂ bei genauer Dosierung entfärbt.

Keramische Ferrite (Mn^{II},Fe^{II})Fe^{III}₂O₄ (SpineII-Typ) ersetzen teure metallische Magnete in Fernsehgeräten / Elektronenstrahlröhren. 0.3-1.0 kg Ferrit / Gerät.

Die Natur verwendet im Photosystem II einen gemischtvalenten Mn^{III / IV}-Oxo-Cluster als Elektronentransfer-Katalysator zwecks Oxidation von Wasser zu O₂: H₂O \longrightarrow ½ O₂ + 2 H⁺ + 2e⁻ Vergleiche: Permanganat ist in Wasser metastabil, thermodynamisch gesehen sollte es Wasser zu O₂ oxidieren, Reaktion kinetisch jedoch inhibiert, Prozess photolytisch aktivierbar, daher braune Flaschen:

$$MnO_4^- + 4 H^+ + 3e^- \rightarrow MnO_2 + 2 H_2O E(pH7) +1.20V$$

1/2 $O_2 + 2 H^+ + 2e^- \rightarrow H_2O E(pH7, 1bar) +0.82V$

Manganometrie in saurer Lösung,

Vorteil: selbstindizierend,

Problem: Redoxreaktion katalysiert durch Mn²⁺ (Zeit,

langsame Zugabe);

Nachteil: Stabilität des Titers (metastabil, lichtempf.).

Quantitativ bestimmbare Reduktionsmittel:

Fe(+2), Oxalsäure, Nitrit, Sulfit und sogar Peroxid (!)

2
$$MnO_4^- + 5 H_2O_2 + 6 H_3O^+ \longrightarrow$$

2 $Mn^{2+}aq + 5 O_2 + 14 H_2O$

Verbindungen des Mangans:

Ionenpotential bestimmt chem. Charakter:

MnO Basenanhydrid ionisch — H₂O → Mn(OH)₂

MnO₂ amphoter — HCl \rightarrow MnCl₄ — $\Delta \rightarrow$ MnCl₂ + Cl₂

— CaO→ CaMnO₃ Manganat(IV)

Mn₂O₇ Säureanhydrid kovalent — H₂O → HMnO₄

Mn(+2) stabilste Oxidationsstufe, d-Orb. halb besetzt d⁵ high-spin Oktaederkomplexe typisch low spin nur mit extrem starken Lig. CN⁻ ...

Typisch für isoelektronische d⁵ hs Ionen Mn^{2+} / Fe^{3+} : Magnetisches Moment geringer als erwartet wegen Neigung zur Ausbildung OH- oder CI-verbrückter oktaedr. Mehrkernkomplexe $L_nMn(\mu^2-X)_2MnL_n \rightarrow durch$ antiferromagnetische Kopplung der 2 x 5 ungepaarten Elektronen resultiert ein geringerer Gesamtspin.

Maskierung durch Komplexbildung: [Mn(NH₃)₆]²⁺ keine Fällung von Mn(OH)₂

Mn²⁺-Verbindungen sind nur schwach rosa gefärbt (d-d Übergänge spin-verboten und unwahrscheinlich).

Langsame Oxidation von farblosem Mn(OH)₂ an Luft $2 \text{ Mn(OH)}_2 + \frac{1}{2} \text{ O}_2 \longrightarrow 2 \text{ MnO(OH)} + \text{H}_2\text{O} \text{ (braun)}$ $+ \text{O}_2 \longrightarrow \text{MnO(OH)}_2 \longrightarrow \text{H}_2\text{O} \longrightarrow \text{MnO}_2$ Mn(+3): Nur im festen Zustand und in Komplexen, da $[Mn(H_2O)_6]^{3+}$ zur Disproportionierung zu MnO₂ und Mn²⁺ neigt. Entropiebedingte O₂-Abspaltung: MnO₂ — 600°C \rightarrow Mn₂O₃ — 800°C \rightarrow Mn₃O₄ (+O₂)

Stabile Halogenokomplexe: KMnF₄, K₂MnF₅

Trigonales Mn₃(μ³-O) Strukturmotiv:

Basische M(III)-Acetate gleiches Strukturmotiv

 $[M_3O(OOCR)_6L_3]$ +

Mn(+4): MnO₂ Rutil-Struktur;

katalytische Eigenschaften (H₂O₂-Zerfall)

MnCl₄ relativ instabil $\longrightarrow \triangle \rightarrow$ MnCl₂ + Cl₂

 $MnF_4 \longrightarrow \Delta \longrightarrow MnF_3 + \frac{1}{2} F_2$ (!)

 $MnX_4 + 2 KX \longrightarrow K_2MnX_6 (X = CI, F)$

Mn(+4) Oxidationsmittel im Weldon-Prozess:

$$4 \text{ NaCl} + 2 \text{ H}_2\text{SO}_4 + \text{MnO}_2 \longrightarrow$$

Cl₂ + 2 Na₂SO₄ + MnCl₂+ 2 H₂O

Mn(+5) bis Mn(+7):

Alle niederen Oxidationsstufen führen in der alkalischen Oxidationsschmelze zu d¹ Mn(+6):

 $MnO_2 + K_2CO_3 + KNO_3 \longrightarrow K_2MnO_4 + KNO_2 + CO_2$ Manganat(VI) im Alkalischen grüne Lösung;

Beim Ansäuern → Disproportionierung:

$$5 \text{ MnO}_4^{2-} + 8 \text{ H}^+ \longrightarrow 4 \text{ MnO}_4^- + \text{Mn}^{2+} + 4 \text{ H}_2\text{O}$$

MnO₄ violett Metallorbital angeregt

Technische Gewinnung von KMnO₄:

K₂MnO₄ (aus Oxidationsschmelze) anodisch oxidiert Labor: Oxidation von Mn²⁺ in saurer Lösung:

$$2 \text{ Mn}^{2+} + 5 \text{ S}_2 \text{O}_8^{2-} + 8 \text{ H}_2 \text{O} \rightarrow 2 \text{ MnO}_4^- + 10 \text{ SO}_4^{2-} + 16 \text{ H}^+$$

Das Redoxpotential von MnO₄ ist stark pH abhängig:

$$E(MnO_4^-/Mn^{2+}) = 1.51 \text{ V bei pH 0 } (= E^0)$$

= 0.34 V bei pH 14

- → in saurer Lösung oxidiert Permanganat bis Mn²⁺
- → in alkalischer Lösung i.d.R. nur bis Mn⁴⁺ MnO(OH)₂

EXP Mineralisches Chamäleon (LMCT): Schrittweise Reduktion von Permanganat durch Peroxid in kalter alkalischer Lösung

$$KMnO_4$$
 (violett) \longrightarrow K_2MnO_4 (grün) \longrightarrow K_3MnO_4 (blau) \longrightarrow $MnO(OH)_2$ (braun)

EXP Blitze unter Wasser:

Extrem stark oxidierend ist Mn₂O₇: grünes (reflektiertes Licht) im Durchlicht rotes explosives Öl, Feuererscheinung mit MeOH 2 KMnO₄ + H₂SO₄ → K₂SO₄ + Mn₂O₇ + H₂O

EXP Glycerin + KMnO₄: Selbstentzündung 15 Sek.

Tc, Re - Verbindungen

Tc Verbindungen ähneln sehr den Re Verbindungen (Grund: Lanthanoidenkontraktion), außer dass sie β -Strahler sind.

Re₂O₇ Dirheniumheptoxid entsteht in exothermer Reaktion bei Verbrennung von Rhenium:

2 Re + 7 $O_2 \longrightarrow Re_2O_7$ (Fp. 303°C, partiell kovalent) Vergleiche: Mn₂O₇ endotherm, explosiv

Anhydrid der Rheniumsäure "HReO₃", die als asymmetrisches Hydrat kristallisiert:

Tetraeder und Oktaeder mit gemeinsamer Ecke. ReO₄⁻ Perrhenat farblos, da LMCT Bande im UV ReO₃ Strukturtyp: allseitig eckenverknüpfte Oktaeder ReO_{6/2}, d¹ Elektron befindet sich im Leitungsband, das über den gesamten Kristall delokalisiert ist (rot, metallisch glänzend).

Im Unterschied zu Mangan gibt es keine binären Oxide der Oxidationsstufen +2, +3.

Re-Halogenide durch Direktsynthese aus Elementen ReF₇ Gas, Lewis-Säure, einziges Heptafluorid der ÜM ReX₆ (X = F, Cl) ReX₅ (X = F, Cl, Br) ReX₄ (X = F, Cl, Br, I) ReX₃ (X = -, Cl, Br, I) ReF₇ + F $^-$ [ReF₈] $^-$ quadratisches Antiprisma

Interessante subvalente Halogenide von d^4 Re(+3) Therm. Zersetzung von ReX₅ \rightarrow ReX₃ + X₂ (X = CI, Br) d^4 Re(+3) besitzt 4 ungepaarte Metallelektronen \longrightarrow Stabilisierung von ReX₃ als trinuklearer Re₃ -Cluster mit 2 Re=Re Doppelbindungen pro Re Atom oder Clusterabbau in Gegenwart zusätzlicher Chloridliganden zu Oktachloro-dirhenat mit Re-Re Vierfachbindung (Parallelen NbX₂, TaX₂, MoX₂, WX₂).

Hochvalenter Re(+7) Hydridokomplex [ReH₉]²⁻

 $KReO_4 + K / Ethylendiamin \longrightarrow K_2ReH_9$

Struktur: dreifach flächenüberkapptes trigon. Prisma

17. Eisentriade: Gruppe 8 Fe, Ru, Os

Elektronenkonfiguration: $ns^2 (n-1)d^6 (n \ge 4)$

Oxidationsstufen:

typisch: Fe +2, +3

Ru +2, +3, +4

Os +3, +4, +8

niedrige Ox.stufen nur mit π -Akzeptorliganden (CO...) hohe Ox.stufen nur mit π -Donatorliganden (O²⁻....)

- -2 $[Fe(CO)_4]^{2-}$
 - O Fe(CO)₅, Fe₂(CO)₉, Fe₃(CO)₁₂ Eisen-Carbonyle
- +2 d⁶ hs [Fe(H₂O)₆]²⁺, d⁶ ls [Fe(CN)₆]⁴⁻
- +3 d^5 hs $[Fe(H_2O)_6]^{3+}$, d^5 ls $[Fe(CN)_6]^{3-}$, $[FeCl_4]^-$

+4 Ferrylkomplex $[FeO]^{2+}$ in vivo (Häm = Porphyrin-K.) +6 $d^2 [FeO_4]^{2-}$ Ferrat(VI)

Vorkommen, Darstellung, Verwendung

Fe: an 4. Stelle (nach O, Si, Al) der Häufigkeitsskala der Erdkruste,

elementar in Meteoriten und Erdkern (90% Fe, 10% Ni)

Fe₃O₄ Magnetit, Magneteisenstein

Fe₂O₃ Hämatit, Roteisenstein

FeO(OH) Nadeleisenerz, Goethit

FeS₂ Pyrit (ein Disulfid S₂²⁻), Eisenkies FeS

Fe-Anreicherung und Reduktion mit CO / Kohle im Hochofenprozess

Sulfidische Erze werden zuvor geröstet:

2 FeS + 3.5 O₂ $\longrightarrow \Delta \rightarrow$ Fe₂O₃ + 2 SO₂

Die Zonen des Hochofens:

Vorwärmzone: Beschickung mit

Erz (Fe₂O₃) + Koks + Zuschläge (Schlackebildner)

CaCO₃ für saure Gangart (Al₂O₃, SiO₂)

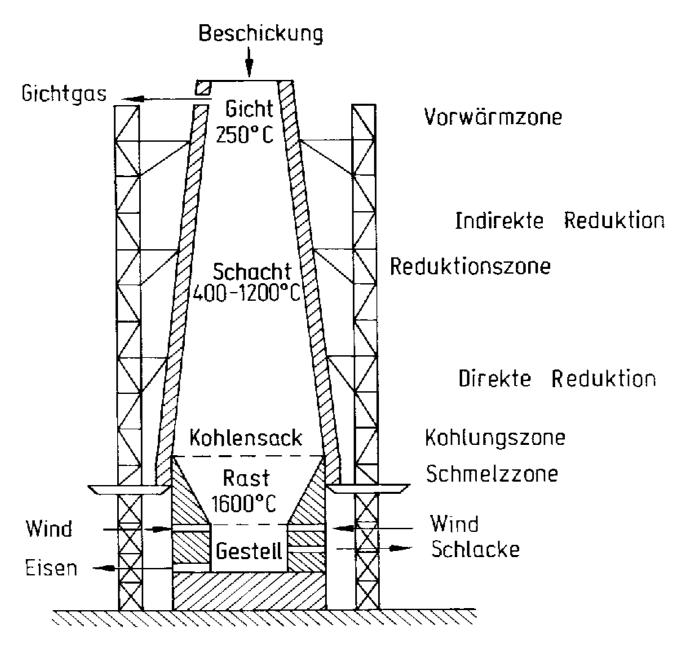
SiO₂ für basische Gangart (CaCO₃)

Reduktionszone 400-1200°C: Indirekte Reduktion 400-700°C

$$3 \text{ Fe}_2\text{O}_3 + \text{CO} \longrightarrow 2 \text{ Fe}_3\text{O}_4 + \text{CO}_2$$

 $\text{Fe}_3\text{O}_4 + \text{CO} \longrightarrow 3 \text{ FeO} + \text{CO}_2$

Boudouard-Gleichgewicht liefert CO aus C + "Wind":


$$C + CO_2 \rightleftharpoons 2 CO$$
 $\Delta H^\circ = + 173 \text{ kJ/mol}$ $\Delta S^\circ > 0 \text{ entrop. begünstigt}$

Energie für diesen Prozess wird hauptsächlich durch vollständige Verbrennung von Koks zu CO₂ geliefert.

Direkte Reduktion: 700-1200°C:

FeO + CO \longrightarrow Fe(fl) + CO₂ \triangle H° = -17 kJ/mol Zum Teil wird Phosphat und Silikat zu P und Si reduziert, Rest bildet mit CaO (aus Kalk) die Schlacke.

Stoffbilanz: 2 t Erz, 1 t Koks, ½ t Zuschlag, 5,5 t Wind → 1 t Eisen, 1 t Schlacke, 7 t Gichtgas

Das Roheisen enthält gelöst: 2-4% C, 1-3% Si, 0-2% P, 1-6% Mn

Si-haltiges Roheisen → Guß, spröde, nicht schmiedbar Mn-haltiges Roheisen —Entkohlung→ Stahl schmiedbar

Stahlerzeugung:

Verringerung des C Anteils des Roheisens < 1.7%

alte Verfahren:

Windfrischverfahren im Konverter (Thomasbirne): Durch Bodendüsen wird Luft durch flüssiges Eisen durchgeblasen (Oxidation von C, Si, P und Fe, Zusatz von CaCO₃ liefert Silikat, Phosphat, das als Dünger eingesetzt werden kann).

Herdfrischverfahren im Siemens-Martin Ofen: mit Brenngas wird ein Roheisen-Schrott-Gemisch aufgeschmolzen. Die Oxidation von C, Si, P erfolgt durch beigefügten Schrottanteil (Fe₂O₃) und durch Aufblasen von Luft.

neuere Verfahren:

LD-Verfahren (Linz-Donawitz): heute 75%
In flüssiges Roheisen wird in einem mit Dolomit /
Magnesit feuerfest ausgekleidetem Konverter über
Sauerstofflanze O₂ eingeblasen (ca. 20 min).
Kalkzusatz → Dünger, 200-400 t Rohstahl pro Abstich.
Elektrostahlverfahren: heute 25%
Hauptsächlich für Recycling-Eisen. Unlegierter
Eisenschrott wird mit Koks durch Lichtbogen
eingeschmolzen, danach erfolgt das "Frischen", die
Behandlung mit Sauerstoff.

Stahl: Fe + CO Dünger: Ca₃(PO₄)₂, CaSiO₃, CaCO₃

Stahlveredelung:

Entschwefelung, Entgasung, Legierungsbestandteile:

Ni, V: Zähigkeit

Cr: Härte, Warmfestigkeit, >12% korrosionsbeständig

Si: Säureresistenz

Mo, W: Warmfestigkeit

Beispiel V2A Edelstahl:

70% Fe, 20% Cr, 8% Ni, (Rest Si, C, Mn)

Oberflächenhärtung von Stahl (Schmied: glühendes Werkstück eintauchen in Öl) führt zu verschiedenen harten, stahlblauen Fe-Carbid-Oberflächenphasen: Austenit, Zementit Fe₃C, Ferrit, Perlit.

Chemie des Fe:

Oxide gemischter Valenz typisch für Eisen: FeO, Fe₂O₃, Fe₃O₄

FeO: nichtstöchiometrisch Fe_xO (x = 0,90 - 0,95) → geringer Anteil Fe³⁺; NaCl-Gitter mit Fe-Fehlstellen

Fe₂O₃: α-Fe₂O₃ (Hämatit, hdp v. O²⁻, Korund-Typ) γ-Fe₂O₃ (kdp v. O²⁻, Spinell-Typ, Fehlstellen) Fe₃O₄: Inverse Spinellstruktur Fe^{III}(Fe^{II}Fe^{III})O₄ kdp v. O²⁻, Tetraederlücke, Oktaederlücke

Chemie in wässriger Lösung durch Ox.stufen +2 und + 3 bestimmt: Fe³⁺ schwach oxidierend; Fe²⁺ reduzierend [Fe(H₂O)₆]²⁺ hellgrün; liegt auch in FeSO₄ x 7 H₂O und (NH₄)₂Fe(SO₄)₂ x 6 H₂O (Mohrsches Salz) vor. Fe^{II} Reduktionswirkung in alkalischer Lösung: FeSO₄ + 2 OH⁻ \longrightarrow Fe(OH)₂ (farblos) + SO₄²⁻

Fe(OH)₂ + O₂ (+ H₂O₂) \longrightarrow Fe(OH)₃ braun NO₃⁻ + 8 Fe(OH)₂ + 6 H₂O \rightarrow NH₃ + 8 Fe(OH)₃ + OH⁻

Stabilität der Ox.stufe + Spin hängt v. Ligandenfeld ab:

Is Fe $[Fe(CN)_6]^{3-} + e^- \rightarrow [Fe(CN)_6]^{4-} + 0.36V$ hs Fe Luftox. $[Fe(H_2O)_6]^{3+} + e^- \rightarrow [Fe(H_2O)_6]^{2+} + 0.77V$ Is Fe $[Fe(phen)_3]^{3+} + e^- \rightarrow [Fe(phen)_3]^{3+} + 1.12V$ phen:Phenanthrolin blau \rightarrow rot Ferroin Redoxindikator

FeCO₃ ähnlich CaCO₃ löslich in Kohlensäure:

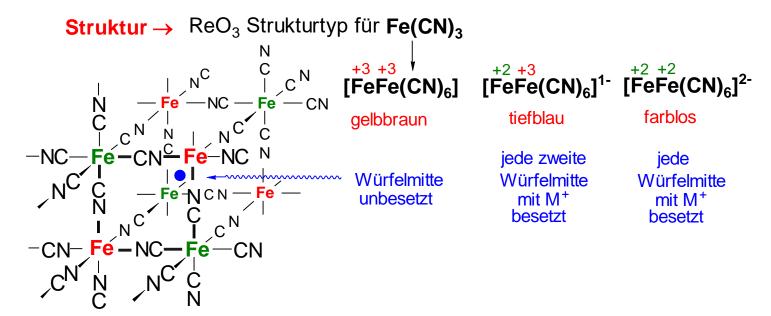
FeCO₃ + H₂O + CO₂ → Fe(HCO₃)₂ Fe-haltige Quellen, Bäder, gelbbraune Farbe von Tropfsteinen, Ablagerungen in Wasserleitungen

FeCl₃ ähnlich AlCl₃:

kovalent, sublimiert bei 120°C, Schichtgitter, hdp von Cl⁻, Fe³⁺ in Oktaederlücken, Gas: Dimer / Monomer Lewis-Säure: FeCl₃ + Cl⁻ → [FeCl₄]⁻

Fällung von Fe(OH)₃ komplizierter als Gleichung Fe³⁺ + 3 OH⁻ \longrightarrow Fe(OH)₃ \downarrow vermittelt: \longrightarrow Hydrolyse + Kondensationsreaktionen Hydrolysereaktion [Fe(H₂O)₆]³⁺ in Wasser verantwortlich für saure Reaktion der Lewis-Säure Fe³⁺: [Fe(H₂O)₆]³⁺ + H₂O \rightleftharpoons [Fe(H₂O)₅OH]²⁺ + H₃O⁺ Kondensation: Bildung Hydroxy-verbrückter(μ) Spezies [Fe(H₂O)₅OH]²⁺ \rightarrow [(H₂O)₄Fe(μ -OH)₂Fe(H₂O)₄]⁴⁺+ 2 H₂O u.s.w. bis Fe_n(μ -OH)_{3n}(H₂O)_m

Eisen-Cyanide und Cyanoferrat-Komplexe:


Fe-Nachweis über gelbes bzw. rotes Blutlaugensalz $Fe^{2+} + 2 \text{ CN}^{-} \rightarrow [Fe(\text{CN})_2] \downarrow - 4 \text{ CN}^{-} \rightarrow [Fe^{II}(\text{CN})_6]^{4-}$ gelb, stabil, inert, 18 VE $[Fe(\text{CN})_6]^{4-} + 1/2 \text{ Cl}_2 \longrightarrow [Fe^{III}(\text{CN})_6]^{3-} + \text{CI}^{-}$ rot, labil, 17 VE \rightarrow Ox.mittel

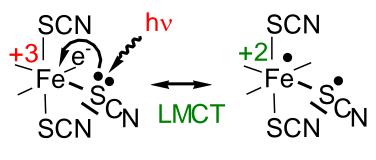
Berliner-Blau Reaktion:

$$K^+ + Fe^{3+} + [Fe(CN)_6]^{4-} \longrightarrow K[Fe^{II}Fe^{III}(CN)_6]$$

 $K^+ + Fe^{2+} + [Fe(CN)_6]^{3-} \longrightarrow K[Fe^{II}Fe^{III}(CN)_6]$

lösliches Berliner-Blau Fe³⁺ Überschuss: Turnbulls-Blau Fe^{III}[Fe^{II}Fe^{III}(CN)₆]₃

Farbe und Struktur von Berliner Blau:


Anwendung im Natriumionen-Akku: Würfel zu 50% [Fe₂(CN)₆]¹⁻ oder 100% [Fe₂(CN)₆]²⁻ mit Na⁺ gefüllt

Cyanid ist ein ambidenter, verbrückender Ligand mit weichem (stark Ligandenfeld aufspaltenden) und hartem (schwach LF-aufspaltenden) Donorzentrum.

Farbe → Intervalenz-Charge-Transfer

Eisen-Nachweis über Rhodanit:

Fe(SCN)₃(H₂O)₃ rot wegen LMCT: nicht-bind. El. v. Lig. in ein Metallorbital angeregt

Höhervalente Eisen-Spezies von Bedeutung

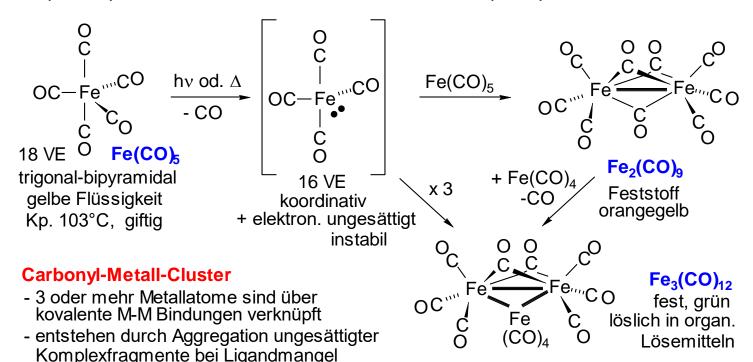
Häm = prostetische Gruppe, physiologisch wichtiger Eisenkomplex im Hämoglobin (roter Blutfarbstoff):

Porphyrin(2-) Ligand (ein redoxaktives Tetrapyrrol, 18 π Aromat)

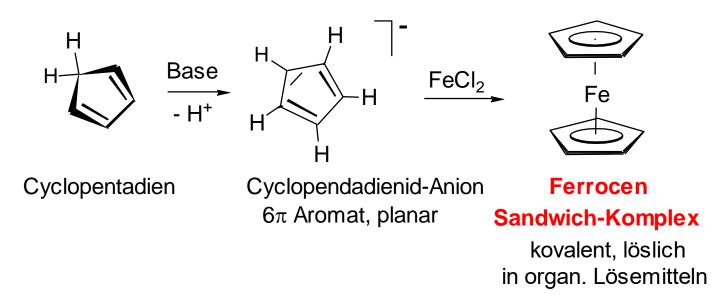
d² [FeO₄]²⁻ (rot): Paramagnetisches Tetraoxoferrat(VI); Synthese durch Oxidation mit Chlor im Alkalischen

Fe₂O₃
$$\longrightarrow$$
 2 FeO₄²⁻ + 6e⁻ Oxidation
Cl₂ + 2e⁻ \longrightarrow 2 Cl⁻ \mid x 3 (Elektr. bilanz)

 $Fe_2O_3 + 3 Cl_2 \rightarrow 2 FeO_4^{2-} + 6 Cl^- + 10 OH^- (Stoffbilanz)$


$$Fe_2O_3 + 3 Cl_2 + 10 OH^- \rightarrow 2 FeO_4^{2-} + 6 Cl^- + 5 H_2O$$

Superbatterie, Nachfolgemodell für Alkali-Mn-Zelle: (M = Ba, 2 K)


MFeO₄ + 3/2 Zn \longrightarrow 1/2 Fe₂O₃ + 1/2 ZnO + MZnO₂ Hohe Ladungsdichte (3e), konstante Spannung 1.45 V.

Niedervalente Eisen-Carbonyle von Bedeutung

Eisenpentacarbonyl, -eneacarbonyl, -dodecacarbonyl Fe (fein verteilt) + 5 CO —100 bar→ Fe(CO)₅ Fe(OAc)₂ + CO + Al —100 bar→ Fe(CO)₅

Ferrocen: wichtigste metallorganische Verbindung des Eisens (OX formal zw. Fe⁺² u. Fe⁰)

Mehr dazu in Modul AC-3

Überblick Platinmetalle:

Fe Co Ni Eisengruppe, Metalle RT-ferromagnet.

Ru Rh Pd leichte Platinmetalle 4d

Os Ir Pt schwere Platinmetalle 5d

Ru Rh Pd ↓ → zunehmende Standardpotentiale Os Ir Pt Pt(2+) oxidierender als Ru(2+)

Ru ist das unedelste, Pt das edelste der Platinmetalle

Ru Rh Pd ↓ ← höchste Oxidationszahlen (Stabilität)

Os Ir Pt Os erreicht +8, Pd dagegen nur max. +4

Ru Rh Pd ↓ ← Zunahme von Dichte, Smp./ Sdp. Os Ir Pt Os höchste, Pd niedrigste Werte

Gewinnung der Platinmetalle teuer und kompliziert:

Vorkommen: vergesellschaftet in Cu-Ni-Erzen ca. 1g Platinmetalle / Tonne Erz Platinmetalle reichern sich im Anodenschlamm bei der elektrolytischen Cu und Ni Reinigung an, bzw. als nicht flüchtiger Rückstand bei der Ni(CO)₄ Destillation (s.u.).

In Königswasser lösen sich Pt, Pd nicht aber Os, Ir, Rh Oxidation: flüchtige Tetroxide OsO₄ / RuO₄ abtrennbar

Verwendung: Katalysatoren (für Oxidationen, Hydrierungen, Abgasreinigung), Pt-Thermoelemente

Ruthenium Ru und Osmium Os Verbindungen

Trends:

Stabile Oxide in +4 und +8 (zunehmend kovalent) RuO₄ (Smp. 25°C, Sdp. 100°C) extrem oxidierend OsO₄ (Smp. 40°C, Sdp. 130°C) stark oxidierend

Verwendung von OsO₄ zum Anfärben von organ. (reduzierenden) Präparaten in der Mikroskopie → Schwarzfärbung durch Os-Metall (Vorsicht Augen !!)

Oxo-Anionen:

Ruthenat(VII) [RuO₄]⁻

"Perruthenat" orange, tetraedrisch, Ähnlichkeit zu Permanganat, jedoch paramagnetisch, da d¹-Ru(+7)

RuO₄ oxidiert OH⁻ zu O₂:

$$4 \text{ RuO}_4 + 4 \text{ OH}^- \longrightarrow 4 [\text{RuO}_4]^- + 2 \text{ H}_2\text{O} + \text{O}_2$$

OsO₄ reagiert dagegen in alkalischer wässriger Lösung unter KZ-Aufweitung:

Säure/Base Reaktion - keine Redoxreaktion!

$$OsO_4 + 2OH^- \longrightarrow [OsO_4(OH)_2]^{2-}$$

Komplexverbindungen:

d⁶-Ru²⁺, d⁶-Os²⁺ typisch: oktaedrisch, t_{2g}⁶ low-spin Aquakomplex [Ru(H₂O)₆]²⁺ (Is) stärker reduzierend als [Fe(H₂O)₆]²⁺ (hs), [Os(H₂O)₆]²⁺ instabil Im Vergleich zum härteren Eisen (O-Lig. bevorzugt) ausgeprägtere Ru,Os-Chemie mit N-Liganden:

Synthese des ersten **Distickstoff-Komplexes** (1965) $Ru^{3+}aq - N_2H_4 / NH_3 \rightarrow [Ru(NH_3)_5(N_2)]^{2+}$

 N_2 , CN^- , CO, NO^+ sind isoelektronische Liganden \longrightarrow zunehmender π^* -Rückbindungsfähigkeit

d^5 -Ru³⁺, d^5 -Os³⁺ oktaedrisch, t_{2g}^5 low-spin (S = 1/2)

Chemolumineszenz: EXP

Strahlender Übergang aus einem elektron. angeregten Zustand*; Chemische Energie wird als Lichtquant abgestrahlt. bipy = 2,2'-Bipyridin Chelat d^5 -[Ru(bipy)₃]³⁺ — NaBH₄ \rightarrow *d⁵-[Ru³⁺(bipy)₂(bipy⁻)]²⁺ *d⁶-[Ru(bipy)₃]²⁺ + hv

Ru und Os sind wichtige Katalysemetalle:

Nobelpreis: Sharpless asymmetrische Olefin-cis-Hydroxylierung

Nobelpreis: Grubbs Olefin-Metathese

18. Cobalttriade: Gruppe 9 Co, Rh, Ir

Elektronenkonfiguration: $ns^2 (n-1)d^7 (n \ge 4)$

Oxidationsstufen: typisch Co +2, +3 Rh +1, +3 Ir +1, +3, +4

niedrige Ox.stufen nur mit π -Akzeptorliganden (CO...)

hohe Ox.stufen nur mit π -Donatorliganden (F⁻, O²⁻....)

- 0 d⁹ K₄[Co(CN)₄] (17 VE, tetraedr.), Co₂(CO)₈
- +1 d⁸ H-Co(CO)₄
- +2 d^7 hs $[Co(NH_3)_6]^{2+}$, d^7 hs $[CoCl_4]^{2-}$, Is $[Co(CN)_5]^{3-}$
- +3 d^6 Is $[Co(NH_3)_6]^{3+}$, d^6 Is $[Co(CN)_6]^{3-}$, hs $[CoF_3]$ Is $[Co(H_2O)_6]^{3+}$, hs $[Co(H_2O)_3F_3]$, hs $[CoF_6]^{3+}$ KZ 6 bis auf wenige Ausnahmen: hs Co^{2+} , Is Co^{3+}

Vorkommen, Darstellung, Verwendung

Erz: Ni, Co, Cu- Arsenide und Sulfide CoAsS etc.

↓ Rösten mit Na₂CO₃ und KNO₃

Ni, Co, Cu Oxide + Na,K -arsenat, -sulfat

↓ HCI

Ni²⁺, Co²⁺, Cu²⁺

↓ CaCl(OCl), Ca(OH)₂ fraktion. Fällung / Oxidation

Co₂O₃ (aq) Cobalt(III)oxid /-hydroxid

↓ Calcinieren (Erhitzen)

Cobalt ovide:

Cobalt-oxide:

CoO NaCl Struktur

Co₃O₄ Spinell Co^{II}(Co^{III}₂)O₄ kdp von O, Co^{III} in OL

Co in vivo: Zentralatom in Vitamin B₁₂ Coenzym,

Corrol-Ligand, auch ein Tetrapyrrol nur 3 mg/Mensch, aber essentiell

Verwendung:

Legierungen (Permanentmagnete, Hartstähle) Cobaltspinelle (Keramiklasuren)

Thenard-Blau CoAl₂O₄

Rinnman-Grün ZnCo₂O₄

Li_xCoO₂ Elektrode in Li-Akkus (Aufnahme von Li⁺ + e⁻)

Der Ligand am Cobalt bestimmt

Stabilität der Oxidationsstufe und Redoxpotential:

A: Im schwachen Ligandenfeld ist Co³⁺ besonders oxidierend

B: Im starken Ligandenfeld ist Co²⁺ besonders reduzierend

Beispiele:

Zu A: In Festkörpern und hydratisierten Salzen (Aquakomplexen) ist Co(II) stabiler als Co(III): $2 d^6 ls [Co(H_2O)_6]^{3+} + H_2O - Zers. \rightarrow$ $2 d^7 hs [Co(H_2O)_6]^{2+} + 1/2 O_2 + 2 H^+$

CoF₃ Fluorierungsmittel, oxidiert Wasser zu O₂!

Zu B: In Komplexverbindungen mit stärkeren Liganden ist Co(III) stabiler als Co(II):

2 d⁷ hs
$$[Co(NH_3)_6]^{2+}$$
 (gelb) + 1/2 O₂ + 2 H⁺
— luftempfindlich \rightarrow d⁶ ls $[Co(NH_3)_6]^{3+}$ + H₂O (rot)

$$\frac{[\text{Co}^{\text{III}}(\text{CN})_{6}]^{3-} + 1\text{e}- \longrightarrow [\text{Co}^{\text{II}}(\text{CN})_{5}]^{3-} + \text{CN}^{-} - 0.8 \text{ V}}{17 \text{ VE}} + (+2 \text{ VE})$$

Der reduzierende, koordinativ + elektronisch ungesättigte 17 VE Komplex (d^7 Is, S = 1/2) bildet unter Spinpaarung ein 34 VE Dimer (S = 0) mit Co^{II} - Co^{II} Bindung (jedes Co erreicht somit 18VE):

$$2 \left[\bullet \text{Co}^{\text{II}}(\text{CN})_5 \right]^{3-} \quad \Longrightarrow \quad \left[(\text{NC})_5 \text{Co} - \text{Co}(\text{CN})_5 \right]^{6-}$$

EXP: Geheimtinte / Feuchtigkeitsindikator

$$[\text{Co}(\text{H}_2\text{O})_6]^{2+} 2 \text{ CI}^- \rightleftharpoons 2 \text{ H}_2\text{O} + [\text{Co}(\text{H}_2\text{O})_4]^{2+} 2 \text{ CI}^-$$

rosa oktaedrisch $35^{\circ}\text{C} \rightarrow \text{blau tetraedrisch}$
 $-2 \text{ CI}^- \rightarrow [\text{CoCI}_4]^{2-}$

Rhodium Rh und Iridium Ir Verbindungen

Trends: beständigste Oxidtationsstufen:

$$d^8$$
 Rh¹⁺, Ir¹⁺ quadr. planar m. π-Akzeptorlig. CO, PR₃ d^6 Rh³⁺, Ir³⁺ oktaedr. Is mit klassischen Liganden (reinen El.-paar-σ-Donoren) d^5 Ir⁴⁺ oktaedr. Is paramagnetisch [IrCl₆]²⁻

Verwendung:

Rh: Autoabgaskatalysatoren (heterogen, auch Pd, Pt) Hydrierungskatalysatoren für Olefine (homogen) Hydroformylierungskatalysatoren für Olefine

3-Wege-Katalysator: "Green Chemistry"

Al₂O₃ Träger mit 2 Gramm Rh, Pd, Pt feinvert.

- (1) $C_mH_n + m+n/4 O_2 \longrightarrow m CO_2 + n/2 H_2O$
- $(2) \qquad 2 \text{ CO} + \text{O}_2 \longrightarrow 2 \text{ CO}_2$
- $(3) \qquad 2 \text{ CO} + 2 \text{ NO} \longrightarrow 2 \text{ CO}_2 + \text{N}_2$

Genial: λ -Sonde im Abgasstrom misst und regelt Luftmenge (λ), damit unter O₂ - mageren Bedingungen noch genügend CO für die NO Reduktion übrig bleibt.

Ir: chirurgische Instrumente

Unterschiede zur Cobaltchemie:

- Die Edelmetalle lösen sich nicht in Mineralsäuren, sondern müssen mit Chlor aufgeschlossen werden.
- Die Metalle Rh, Ir lassen sich im Gegensatz zu Co leicht durch Reduktion von [M(H₂O)₆]³⁺ gewinnen.
- Die wasserfreien Rh-, Ir-Halogenide MCl₃ (Koordina tionspolymere) lösen sich nicht spontan in Wasser Rh + 3/2 Cl₂ → RhCl₃ 3 NaCl → Na₃[Rh⁺³Cl₆] lösl.
 OH⁻→ Rh₂O₃ aq HCl → [RhCl₃(H₂O)₃] löslich

Iridium wird unter ähnl. Bedingungen nach +4 oxidiert: $Ir + 2 Cl_2 + 2 NaCl \rightarrow Na_2[Ir^{+4}Cl_6]$ lösl., oxidiert Wasser $2 [Ir^{+4}Cl_6]^{2-} + 2 OH^- \rightarrow + 1/2 O_2 + H_2O + 2 [Ir^{+3}Cl_6]^{3-}$ rotbraun iridios (gr.): regenbogenfarbig gelbgrün

VIPs der metallorganischen Komplexe:

- d⁸-M⁺¹ Verbind. quadrat. planar, ls, diamagn., 16VE
- leichter Wechsel von 16 / 18 VE im Zuge der oxidativen Addition von H₂ / O₂ → Katalysatoren

Vaska-Komplex

O₂-Fixierung

19. Nickeltriade: Gruppe 10 Ni, Pd, Pt

Elektronenkonfiguration: $ns^2 (n-1)d^8 (n \ge 4)$

Oxidationsstufen: Ni 0, +2, +3 (JT)

Pd 0, +2, +4

Pt 0, +2, +4, +6

- O d¹⁰ K₄[Ni(CN)₄], Ni(CO)₄, kein [Pd(CO)₄], da schlechtere π-Rückbindung, aber Pd(PR₃)₄
- +2 d⁸ tetraedr. paramagn. [(Ph₃P)₂NiCl₂], [NiCl₄]²⁻ vgl. vgl.

quadr. planar diamagn.: [(Et₃P)₂NiCl₂], [Ni(CN)₄]²⁻, typisch für d⁸ Pd^{II}, Pt^{II} 16VE [PtCl₄]²⁻,

Zeise-Salz: Ethen verdrängt Cl⁻: [Pt(C₂H₄)Cl₃]⁻

quadr.-pyramidal diamagn. [Ni(CN)₅]³⁻

oktaedr. [Ni(dmgh)₂(H₂O)₂]²⁺(Diacetylglyoxim) [Ni(en)₃]²⁺ (20VE), oktaedr. selten für Pd^{II}, Pt^{II}

- +3 d⁷ Ni₂S₃, NiO(OH), Pd^{III} / Pt^{III} unbekannt, immer gemischtvalent M^{II / IV}
- +4 $[MCl_6]^{2-}$ (M = Pd,Pt), aber nur PtCl₄, PtO₂ stabil

d⁶ Pt(IV) Verb. i.d.R. oktaedr., diamag. 18VE +6 PtF₆ starkes Oxidationsmittel, oxidiert Xe und O₂

```
Ni Vorkommen, Darstellung, Verwendung
```

Alternative: elektrolytische Raffination

Elektrolyse: Cu / Ni - Opferanode (+), 99.9% Ni-Kathode (-), Elektrolyt verd. H₂SO₄. Unedleres Ni wird an der Anode oxidiert zu Ni²⁺ und wandert zur Kathode, wo es abgeschieden wird; edleres Cu (mit Pd, Pt) sinkt als metallischer Anodenschlamm ab.

in vivo: Methanogene Bakterien enthalten Ni im aktiven Zentrum eines Enzyms, das CO₂ zu CH₄ reduziert (Sumpfgas, anaerobe Bedingungen).

Verwendung:

Legierungen Apparatebau (Edelstahl Fe-Ni-Cr,

Monelmetall Cu-Ni, Neusilber Cu-Zn-Ni),
Hydrierkatalysatoren, Ni-Cd- und Ni-MH-Akku:
2 NiO(OH)+ Cd + 2H₂O→→ 2 Ni(OH)₂ + Cd(OH)₂
NiO(OH) + TiNi₂H →→ Ni(OH)₂ + TiNi₂ Legierung

Ni²⁺ besitzt in Wasser

einfache Redoxchemie (Ni²⁺ dominiert) komplizierte Strukturchemie (versch. KZ / Polyeder) interessante Magnetochemie (Gl.gew.dia/paramagn.)

Oxidation von Ni²⁺ bevorzugt im Basischen Ni²⁺ + 1/2 Br₂ + 3 OH⁻ → NiO(OH)aq. + Br⁻ + H₂O schwarz

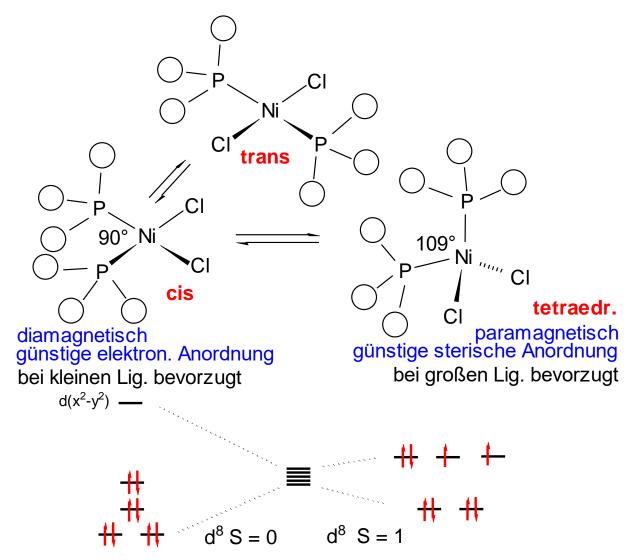
NiS (lösl. in HCl) — altern an Luft / $H_2O \rightarrow Ni(OH)S$ — + $H_2S \rightarrow Ni_2S_3$ (unlöslich in HCl) Ni^{2+} fällt nicht (oder doch ?) in der H_2S Gruppe

Interessante Gleichgewichtsreaktionen, Nachweis:

Diacetyldioxim = Dimethylglyoxim roter Komplex [Ni(dmgh) 2]

Niederschlag: Assoziation zu quadrat. planarem Stapelverband

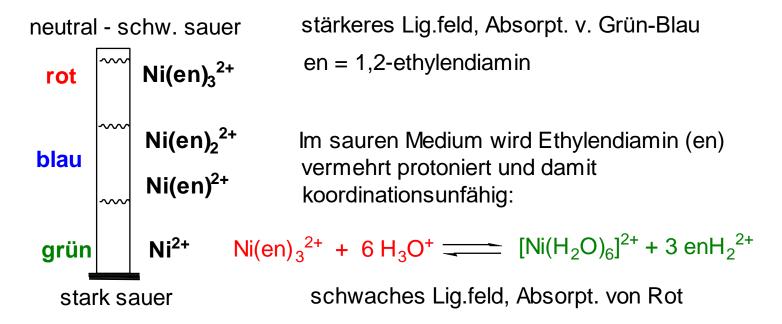
$$H_2O$$
 $-OH_2$ $-H_2O$ [Ni(dmgh)₂(H_2O)₂] [Ni(dmgh)₂]


Magnetisches Verhalten:

Einige Ni(II)-Komplexe befolgen nicht das CURIE-WEISS - Gesetz: Die paramagnetische

Suszeptibilität χ_{para} (X Xi) paramagnetischer Verbindungen ist umgekehrt proportional zur Temperatur T; dabei kann die paramagn. Curie-Temperatur Θ (Q Theta) einen positiven oder negativen Wert annehmen.

$$\chi_{para} = Curie-Konstante C / (T - \Theta)$$


Anormales magnetisches Verhalten als Folge eines thermischen Gleichgewichtes zwischen tetraedrischer und quadr.-planarer Koordinationsform.

Koordinationsgleichgewichte (EXP):

Proton H⁺ und Lewis-Säure Mⁿ⁺ sind immer Konkurrenten um die Gunst des Ligand-Elektronenpaares.

Gute Donoren haben häufig auch eine hohe Protonenaffinität / Basizität, aber nicht immer korreliert Donorfähigkeit (vs Mⁿ⁺) mit Basizität (vs H⁺). Beispiel weich-weich Paare: Ni²⁺....bevorzugen SH⁻ vor OH⁻.

Redoxgleichgewicht und Struktur:

Ni(0) immer tetraedrisch, da für d ¹⁰ keine LF-Stabilisierungsenergie

Palladium Pd und Platin Pt Verbindungen Trends:

Pd^{II / IV} Komplexe weniger stabil als die von Pt^{II / IV}
Pt^{II / IV} Komplexe sind kinetisch träge (hohe Barrieren des Ligandenaustausches → Verw. Cis-Platin) weicher Charakter → bevorzugt Amine, Halogene, CN⁻, PR₃ Liganden, weniger O-Liganden

Reaktionen:

PtCl₂ (wasserunlösliches Koord.polymer, kovalent)
↓ 2 Cl⁻

[PtCl₄]²⁻ (wasserlösl.) —2 NH₃
$$\rightarrow$$
 cis- [PtCl₂(NH₃)₂] "Cis-Platin"

Cytostaticum (Antitumormittel)
Pt²⁺ koordiniert an DNA-Basenpaare

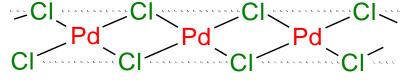
Auflösen von Pt / Pd in Königswasser:

eine Chlorometallsäure: Hexachloroplatinsäure

Pt + HCI / HNO₃ \longrightarrow (H₃O)₂ [PtCl₆] (orange Krist.) (od. HCI / Cl₂) $\Delta \downarrow$ Cl₂ Atmosphäre

PtCl₄ (rotbraun)

Das stärkste Oxidationsmittel neben Fluor:


 $[PtF_6] + O_2 \longrightarrow O_2^+[PtF_6]^-$ Dioxigenyl-Salz

 $[PtF_6] + Xe \longrightarrow Xe^+[PtF_6]^-$ erste Xe-Verbindung

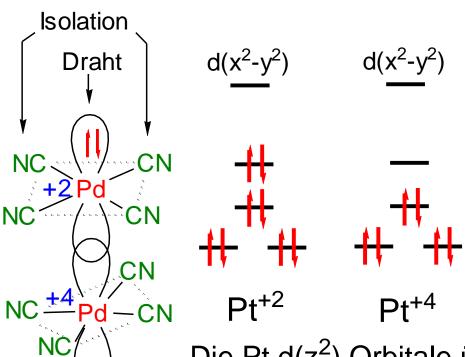
Strukturmotive:

... alles im Zeichen quadr.-planarer Anordnungen

 α - und β - Modifikationen von PdCl₂

α-PdCl₂: kantenverknüpfte Quadrate (vgl. Gegensatz BeCl₂)

Pd Pd Cl Pd Cl Pd Cl Pd Cl


β-PdCl₂: molekulare Pd₆Cl₁₂ Cluster (keine Elementarzelle!)

Eindimensionale metallische Leiter

Krogman-Salze mit Kolumnarstruktur entstehen bei der partiellen Oxidation von K₂[Pt(CN)₄], z.B. mit Chlor:

 $K_2[Pt(CN)_4] + CI_2 \longrightarrow K_2[Pt(CN)_4] Cl_{0.25} Pt(+2.25)$ Zusätzl. Chloridionen befinden sich zwischen Strängen

 $K_2[Pt(CN)_4] \times 3 H_2O \longrightarrow Ox. \longrightarrow K_{1.75}[Pt(CN)_4] \times 1.5 H_2O$ Kation-Fehlstellen

Die Pt $d(z^2)$ Orbitale überlappen in Stapelrichtung \rightarrow Band unvollständig gefüllt in dem Maße wie Pt(+4) neben Pt(+2) vorliegt \rightarrow Leitungsband \rightarrow bronzefarben, metall. Leiter dotiert mit Kationen-Fehlstellen, alternativ zusätzlichen Anionen und Pt(+4).

20. Kupfertriade: Gruppe 11 Cu, Ag, Au Münzmetalle

füher: "1. Nebengruppe"

Elektronenkonfiguration: $ns^1 (n-1)d^{10} (n \ge 4)$

Oxidationsstufen: stabilste rot unterstrichen

Cu +1, +2 (JT), +3

Ag +1, +2, +3

Au +1, -, +3 (d⁸, quadr.pl.), +5

Analogien 1. Hauptgruppe *vs* 1. Nebengruppe treten, wenn überhaupt, nur für d¹⁰-M(+1) auf: Wegen inerter geschlossener d¹⁰ Schale treten ÜM-Eigenschaften zurück und Ligandenfeldeffekte nicht auf.

Vergleich K (3d⁰4s¹) vs Cu(3d¹⁰4s¹) offenbart jedoch:

- 1) Wegen der schlechteren Abschirmungseigenschaften der d-Orbitale ist der Ionenradius von Cu⁺ viel geringer als der von K⁺, daher ist das Ionenpotential höher und die Cu (Ag, Au) Verbindungen eher kovalent denn ionisch.
- 2) CuX (CI, Br, I) kristallisieren im Zinkblende-Typ KZ 4:4, nicht im NaCI- oder CsCI-Typ.
- 3) CuX (Cl, Br, I) schwerlöslich und schwer hydratisierbar, da kovalentes Gitter (vgl. ZnS).

4) Die 1. IE ist höher bei Cu (edler) als bei K, doch die 2. IE und 3. IE sind viel niedriger, daher sind für Cu, Ag und Au auch höhere Ox.stufen möglich als bei K. Vorkommen, Gewinnung, Verwendung der Metalle

Cu: Ag: Au = 1000: 20: 1

Kupfer: In sulfidischen Erzen: CuFeS₂ Kupferkies; Cu₂S Kupferglanz oder in oxidischen Erzen: Cu₂O Cuprit; Cu₂CO₃(OH)₂ Malachit (Patina-Cu-Dach)

Anreicherung von CuS durch selektives Rösten des FeS in Gegenwart von SiO₂ bei 1400°C:

CuFeS₂ +3/2 O₂+ SiO₂ \longrightarrow CuS \downarrow + SO₂ + FeSiO₃ \longrightarrow leichte Schlacke als Schaum durch Flotation abgetrennt.

- 1. Röstreaktionsprozess mit CuS / Cu₂S:
- 2 Cu₂S + 3 O₂ \longrightarrow \square 2 Cu₂O + 2 SO₂ exotherm Cu₂S + 2 Cu₂O \longrightarrow 6 Cu + SO₂ endotherm 3 Cu₂S + 3 O₂ \longrightarrow 6 Cu + 3 SO₂ \triangle H_R = -620 kJ/ mol
- Auslaugen (Leaching) des Erzes unter Luftzutritt mit H₂SO₄ → CuSO₄
- 3. Biomining, Impfen des Erzes mit Mikroorganismen, die unlösl. Cu-Sulfid mit Luft zu lösl. Sulfat oxidieren

und diese Reaktion als Energiequelle nutzen.

Reinigung durch elektrolytische Raffination: Elektrolyse mit Rohkupfer-Anode / Reinstkupfer-Kathode (diese Methode ist anwendbar auf Ni, Cu, Ag, Au).

Silber: gediegen und als Sulfid-Begleitmineral im Bleiglanz PbS (s.u.) und Kupferkies; Ag₂S Silberglanz; AgCl Hornsilber

Cyanidlaugerei, Lösen von Ag₂S od. Ag:

Ag₂S + 4 NaCN + 2 O₂
$$\rightarrow$$
 2 Na⁺[Ag(CN)₂]⁻ + Na₂SO₄
2 Na[Ag(CN)₂] + Zn \longrightarrow Na₂[Zn(CN)₄] + 2 Ag

Silberextraktion aus flüssigem Blei durch flüssiges Zink: Zink löst sich kaum in Blei (2 flüssige Phasen). Silber löst sich 300 Mal besser in Zink als in Blei → Ag wird mit 1% flüssigem Zink extrahiert. Der erkaltete Zinkschaum (Ag-Zn-Legierung) wird isoliert, Zn abdestilliert, anhaftendes Pb zu PbO (fl.) oxidiert und abgetrennt → Rohsilber (95%) bleibt zurück.

Reinigung durch elektrolytische Raffination.

Gold: gediegen

Cyanidlaugerei: nassvermahlenes Au(Ag)-Erz wird gut belüftet mit Natriumcyanid-Lösung behandelt; das lösliche Dicyano-aurat (argentat) wird mit Zn reduziert. $2Au + H_2O + 4 NaCN + \frac{1}{2} O_2 \rightarrow 2 Na[Au(CN)_2] + 2NaOH 2 Na[Au(CN)_2] + Zn \longrightarrow Na_2[Zn(CN)_4] + 2 Au$

Cyanid aus [Zn(CN)₄]²⁻ z.T. wieder zurückgewonnen.

Luftoxidation der elementaren Edelmetalle durch Verschiebung der Redoxpotentiale via Komplexbildung $Ag^+(aq.) + e^- \longrightarrow Ag$ $E^0 = +1.17 \text{ V}$ Ox.mittel $Ag(CN)_2^-(aq.) + e^- \longrightarrow Ag + 2 \text{ CN}^ E^0 = -0.31 \text{ V}$ Red.mittel gegenüber O_2 ($E^0 = +0.90 \text{ V}$) Cyanid macht Ag / Au unedler. Da Ag^+ / Au^+ zu einem extrem stabilen Komplex abgefangen wird und daher die Aktivität von $M^+(aq.)$ quasi gegen Null strebt,

Goldwäsche: 1. Anreicherung des Goldstaubes durch Flotation (Teller / Wasser). 2. Extraktion des Golds mit Quecksilber als Amalgam — Verdampfen von Hg.

verschiebt sich das Potential nach Nernst-Gleichung.

Verwendung der Metalle:

Nach Fe > Al ist Cu drittwichtigstes Gebrauchsmetall: hohe elektr. und therm. Leitfähigkeit, gute Korrosionsbeständigkeit → Leiter, Kontakte, Legierungen:

Messing: Cu-Zn (20-80) → feinmechanische Teile

Bronze: Cu-Sn (20) → Kunst, Glockenguss

Monel: Cu-Ni (70) → Apparatebau

Konstantan: Cu-Ni (40) → Thermoelement

Neusilber: Cu-Ni-Zn — versilbert → Alpaka

Ag, Au sind edler, Blattgold stabil gegen Luft und H₂O, aber zu weich als Werkstoff; etwas härtere Schmuck-Legierungen:

Rotgold: Au-Cu

Weißgold: Au-Ag (Ni, Cu)

1000er Gold hat 24 Karat (100%)

750er Gold hat 18 Karat (75% Au-Anteil)

Chemie des Kupfers:

s¹d¹⁰-Cu⁰: Verbindungen unbekannt, da π-Rückbin dungen an CO schwach wegen d¹⁰;

→ "Cu₂(CO)₆" unbekannt

d¹⁰-Cu^l: linear [CuCl₂]⁻, [Cu(CN)]_x , [Cu(SCN)]_x tetraedrisch [Cu(CN)₄]³⁻ d¹⁰: alle farblos

d⁹-Cu^{II}: tetraedrisch [CuCl₄]²⁻
quadrat.-planar [Cu(NH₃)₄]²⁺
oktaedr. JT-verzerrt [Cu(H₂O)₆]²⁺, [CuCl₂]_x
blau-grün

d⁸-Cu^{III}: quadrat.-planar 16 VE Cs[CuF₄], Na[CuO₂]

Cu ist edler als $H_2 \rightarrow$ keine Auflösung in HCl, aber Oxidation durch ox. Sre. HNO3: $Cu + 2 H^{+} + 2 HNO_{3}(konz.) \rightarrow Cu^{2+} + 2 NO_{2} + 2 H_{2}O$ 3 Cu +6 H⁺ +2 HNO₃(verd.) \rightarrow 3 Cu²⁺ +2 NO +4 H₂O

Besonderheit: Cu²⁺ in wässriger Lösung stabil als

[Cu(H₂O)₄]²⁺. Komplexe Ionen am Beispiel CuCl₂:

verdünnte

hellgrün grün hellblau

Cu²⁺ häufig quadr. planar wegen hoher JT-Stab.energie

Nachweis: blauer Tetrammin-Komplex - Entfärbung $Cu^{2+} + 4 NH_3 \longrightarrow [Cu(NH_3)_4]^{2+} K = 10^{13} I^4/mol^4$ $[Cu(NH_3)_4]^{2+} + 5 CN^{-} \rightarrow [Cu(CN)_4]^{3-} + 4 NH_3 + \frac{1}{2} (CN)_2$ blau \rightarrow Redoxreakt. \rightarrow farblos K = $10^{24} \, I^4 / \text{mol}^4$

Cu²⁺ oxidiert weiche Anionen Iodid, Sulfid, Cyanid, Thiocyanat:

 $Cu^{2+} + 2 I^{-} \longrightarrow [CuI]_X + \frac{1}{2} I_2$ (Iodometr. Cu-Best.)

EXP: Cu²⁺ oxidiert reduzierende Zucker (Aldosen) im Basischen (Fehling-Probe: Roter Nd. von Cu₂O):

$$O_{+1}H$$
 $O_{-1}H$
 O_{-

Tartrat-Chelat verhindert Ausfällung von Cu(OH)₂
Cu(OH)₂ ist amphoter: tiefblaues Cuprat(II)

$$Cu^{2+} \longrightarrow OH^{-} \rightarrow Cu(OH)_{2} \downarrow \longrightarrow OH^{-} \rightarrow [Cu(OH)_{4}]^{2-}$$

Trend:

$$Ti^{2+}$$
 V^{2+} Co^{2+} Ni^{2+} Cu^{2+} Zn^{2+} r^{2+} 90 88 74 72 72 74 basisch amphoter nur Aqua-kationen auch Oxo(hydroxo)metallate(II)

Cu⁺ nur in Festkörpern, in wasserunlöslichen Salzen mit geringem Löslichkeitsprod. (geringer Cu⁺aq. Konz.) oder in stabilen Komplexen existent.

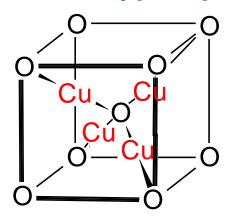
Hydratisiertes Cu⁺aq. disproportioniert in H₂O:

Cu
$$\leftarrow$$
 +0.52 V— Cu⁺ \leftarrow +0.15 V — Cu²⁺
2 Cu⁺aq. \rightarrow Cu⁰ + Cu²⁺aq. Δ E⁰ = +0.37 V

$$K = [Cu^{2+}] / [Cu^{+}]^{2} = 10^{6} I/mol$$

nota bene: $-\Delta G^0 = n F \Delta E^0 = RT ln K$

Disproportionierung bei harten Liganden:


$$Cu_2SO_4 - H_2O \rightarrow Cu^{2+} + SO_4^{2-} + Cu$$

Aber auch Komproportionierung bei Stabilisierung durch Komplexbildung:

$$Cu + CuCl_2 + 2Cl^{-} \rightarrow 2[CuCl_2]^{-} \longrightarrow -Cl^{-} \rightarrow [CuCl]_X \text{ farbl.}$$

Cu + Cu²⁺ + 4 NH₃
$$\longrightarrow$$
 2 [Cu(NH₃)₂]⁺ (linear, farbl.)

Strukturtyp Cuprit Cu₂O:

KZ 2:4 (linear-tetraedr.)

kub.-innenzentr. Anionengitter

Cu auf den Tetraederachsen

z.B. Cu₂O, Ag₂O invers zu SiO₂

Höhervalente / gemischtvalente Oxocuprate:

1,2,3-Hochtemperatur-Supraleiter:

$$YBa_2Cu_3O_{7-x}$$
 (x \approx 0.1) $Y^{3+}Ba^{2+}_2(Cu_2^{2+}Cu_3^{3+})O_{7-x}$

Sprungtemperatur 93 K (höher als flüssiger Stickstoff 77 K), darunter sinkt der elektr. Widerstand sprungartig auf Null; Perowskit-Defektstruktur.

Chemie des Silbers:

```
s<sup>1</sup>d<sup>10</sup>-Ag<sup>0</sup>: unbekannt
```

d⁹-Ag^{II}: AgF₂ starkes Fluorierungsmittel, [Ag py₄]²⁺

 d^8 -Ag^{III}: AgO = Ag^I[Ag^{III}O₂], Ag^{III}₂O₃, K[AgF₄] Halogenide schwerlöslich:

$$L(AgCI) = 10^{-10}$$
, $L(AgBr) = 10^{-13}$, $L(AgI) = 10^{-16} \text{ mol}^2/I^2$

AgF hingegen löslich (ionisch, Anion-Hydratation) AgOH bzw. Ag₂O mäßig löslich, basisch, ionisch. Ag₂O (edel) — T> 180° C \rightarrow Ag + 1/2 O₂ (Δ S > 0)

Abnahme des Lp und der Komplex-diss.konstante \rightarrow AgCl —NH₃ \rightarrow [Ag(NH₃)₂]⁺—Br⁻ \rightarrow AgBr — S₂O₃²⁻ \rightarrow [Ag(S₂O₃)₂]³⁻ — I⁻ \rightarrow AgI —CN⁻ \rightarrow [Ag(CN)₂]⁻ — S²⁻ \rightarrow Ag₂S

Photographischer Prozess (Daguerre 1840): Belichtung:

AgBr — $hv \rightarrow Ag + \frac{1}{2} Br_2$ (reagiert mit Gelatineschicht)

Entwicklung des latenten Bildes:

2 AgBr + Hydrochinon → 2 Ag + Chinon + 2 HBr Ag⁺ Reduktion wird selektiv an bereits vorhandenen Ag-Keimen katalysiert → Verstärkung des Negativs.

Fixieren des sichtbaren Negativs mit Fixiersalz: Überschüssiges AgBr durch Komplexbildung entfernt; ambidentes Thiosulfat koord. über S (Ag-Thiophilie) AgBr + $2 S_2 O_3^{2-} \longrightarrow [Ag(S_2 O_3)_2]^{3-} + Br^-$

Belichtung durch Negativ und Wiederholung des Prozesses auf Photopapier führt zu Photopositiv.

Versilberung (Spiegel) chemisch auf Nichtleiter Glas:

4
$$[Ag(NH_3)_2]^+ + N_2H_4 + 4 OH^- \longrightarrow 4 Ag + N_2 + 8 NH_3 + 4 H_2O$$

andere Reduktionsmittel: K,Na-Tartrat, H₃PO₃ etc. Tollens-Reagenz [Ag(NH₃)₂]⁺: red. Zucker Glucose → Gluconsäure s.o.

Versilberung galvanisch auf Leiter Cu, Ni etc.

[Ag(CN)₂]⁻ \Longrightarrow 2 CN⁻ + Ag⁺ — e⁻ \rightarrow Ag Großes Reservoir an Silber bei geringer Konz. an Ag⁺aq. führt zu schönem, gleichmäßigen Spiegel (zu versilbernder Gegenstand als Kathode). Problem: Cyanid-haltige Abwässer (Entgiftung mit H₂O₂).

Silber-Anlauffarbe Schwarz:

$$2 Ag + H_2S + 1/2 O_2 \longrightarrow Ag_2S + H_2O$$

Strukturchemie:

Ag⁺ bevorzugt lineare Koordination: Zunehmende s,p-Separierung führt zur ds-Hybridisierung mit d(z²).

selbst mit Ethylendiamin Chelatligand "en" bildet Ag⁺ Ketten mit linearer N-Ag-N Achse.

Ketten-Koordinationspolymere: [Ag(CN)]x, [Ag(SCN)]x

$$Ag^+ + S_2O_8^{2-}$$
— $py \rightarrow [Ag^{II}py_4] SO_4 d^9 JT-quadr.-planar$

Chemie des Golds:

Au⁰ und Au^{II} unbekannt, bei d⁹-Au²⁺ wäre Besetzung des d(x²-y²) Orb. im Vgl. zu Cu²⁺ ungünstig

 d^{10} -Au^I: linear [AuCl₂]⁻, [Au(CN)₂]⁻ , [Au(SCN)]_x [Au(PR₃)₂]⁺ d^{10} : alle farblos

Disprop.: $3 \text{ Au}^{+}_{\text{aq.}} \longrightarrow 2 \text{ Au} \downarrow + \text{Au}^{3+}$

 d^8 -Au^{III}: [Au(CN)₄]⁻, [(AuCl₃)₂], [AuCl₄]⁻, Au₂O₃

Au⁺aq. und Au³⁺aq. oxidieren Wasser und H₂O₂ zu O₂ unter Bildung von Au, daher keine Chemie der reinen Aqua-Komplexkationen bekannt, wohl aber Chemie von Komplexen anderer Liganden in wässriger Lösung: z.B. Cyanidlaugerei, galvan. Vergoldung (analog Ag).

Scheidewasser (konz. HNO₃) scheidet Silber von Gold, Königswasser löst auch Gold:

Au +
$$3 \text{ NO}_3^-$$
 + 4CI^- + 6 H^+ + $\text{H}_3 \text{O}^+ \rightarrow 3 \text{ NO}_2$ + $3 \text{ H}_2 \text{O}$
+ $\text{H}_3 \text{O}^+$ [AuCl₄]⁻(Tetrachlorogoldsäure)

2 Au + 3 Cl₂ \rightarrow Au₂Cl₆ (rot, LMCT, d⁸, planar, 2 μ -Cl) vgl. Gegensatz zu Al₂Cl₆(g) tetraedrisch

Cassius'scher Goldpurpur (Goldrubinglas, Kirchenfenster) kolloidales Gold (= Nano-Goldcluster) auf SnO₂ adsorbiert:

 $2 \text{ Au}^{3+} + 3 \text{ Sn}^{2+} + 18 \text{ H}_2\text{O} \rightarrow 2 \text{ Au} + 3 \text{ SnO}_2 + 12 \text{ H}_3\text{O}^+$

21. Zinktriade Gruppe 12

Zn, Cd, Hg füher: "2. Nebengruppe"

Elektronenkonfiguration: $ns^2 (n-1)d^{10} (n \ge 4)$

Oxidationsstufen: Zn +2

Cd +2

Hg +1,+2

 $M^0(CO)_3$ mangels π -Rückbdg.

unbekannt

Trends:

- Elemente unedler als die der Cu-Gruppe;
 Hg etwa vergleichbar mit Ag (Schrägbeziehung)
- Redoxchemie wenig ausgeprägt
- d¹⁰ Elektronen besitzen keinen Valenzelektronencharakter → nur s-Elektronen zur Metallbindung beigesteuert → Niedrige Fp., Sdp., Subl.enthalpien.
- Analogie von Zn zur 2. HG Be, Mg ausgeprägter: ähnliche Strukturen: MO, M(OH)₂, MS
 Amphoterie und Ionenpotential ähnlich: M(OH)₂

Vorkommen:

Zinkspat ZnCO₃

überwiegend sulfidische Erze:

ZnS: 2 Modifikationen Zinkblende + Wurtzit (weiß)

CdS: Cadmiumblende (gelb), stets als Begleiter des Zn

HgS: Zinnober (rot)

El.konfig. $d^{10} M^{2+} \longrightarrow$ Farbe kommt von LMCT

Zink in vivo in Enzymen (Biokatalysatoren):

Hydrolasen (Hydrolyse der Peptid- und

Phosphorsäureester-Bindung), Carboanhydrase:

Zerfall von Hydrogencarbonat zu CO₂ in der Lunge....).

Gewinnung der Metalle:

Rösten von ZnS und CdS bzw. Brennen von ZnCO $_3 \rightarrow$ ZnO, CdO

↓ bei Reduktion mit C destillieren die Metalle ab Zn, Cd + CO Jato: Fe > Al > Cu > Zn >...
 Zn auch durch Zn²⁺aq.-Elektrolyse (H₂ Überspannung)
 Zn reduziert Cd²⁺ zu Cd (edler, flüchtiger), el. Raffinat.

HgS: Röstreaktionsverfahren oder Reduktion mit Fe:

 $HgS + O_2 \longrightarrow Hg + SO_2$

 $HgS + Fe \longrightarrow Hg + FeS$

Verwendung:

Zn und Cd an der Luft beständig; Schutzschicht aus Oxid oder basischem Carbonat → Verzinken von Eisenteilen als Korrosionsschutz (hohe Überspannung von H₂, Passivierung, Kratzer: Zn-Opferanode), ZnO Photoleiter (s.u.) in Laserprintern; ZnO Katalysator. CdS und CdSe als Gelbpigmente (giftig) u. Halbleiter, Ni-Cd-Akku,

Hg (tendenziell megaout): Thermometer, Manometer, Amalgam-Verfahren, Zahnfüllungen,

Hg-Schalter, Hg-Diffusionspumpe.

Chemie des Zinks und Cadmiums:

Ähnlichkeit auch zu Aluminium (und Be):

Zn unedler als H2, löslich in verdünnten Säuren und

Basen; hochrein: Überspannung für H2

$$Zn + 2 OH^{-} + 2 H_2O \longrightarrow [Zn(OH)_4]^{2-} + H_2$$

Zn(OH)₂ amphoter, Cd(OH)₂ basischer, nicht amphoter:

$$Zn^{2+}aq. + 2 OH^{-} \longrightarrow Zn(OH)_2 \downarrow$$

$$Zn(OH)_2 + 2 OH^- \longrightarrow [Zn(OH)_4]^{2-}$$
 Zinkat

ZnS und CdS schwerlöslich:

$$M^{2+} + S^{2-} \longrightarrow ZnS \downarrow weiß, CdS \downarrow gelb LMCT$$

Struktur-Prototypen:

Zinkblende: kubisch dichteste Packung von S²⁻,

2n Tetraederlücken zur Hälfte mit Zn²⁺

besetzt, KZ 4:4

Wurtzit: hexagonal dichteste Packung von S²⁻,

2n Tetraederlücken zur Hälfte mit Zn²⁺

besetzt, KZ 4:4

Cdl₂: hexagonal dichteste Packung von I⁻,

CdCl₂: kubisch dichteste Packung von Cl⁻,

n Oktaederlücken jeder zweiten Schicht

komplett mit Cd²⁺ besetzt, KZ 6:3 CdX₂ Schichtstrukturen, Spaltbarkeit

ZnO zeigt Thermochromie und Photoleitfähigkeit:

ZnO (farblos) + △ ➡ ZnO_{1-x} (gelb) + X/2 O₂ (vgl. HgO zerfällt komplett zu Hg)
ZnO_{1-x}: n-Halbleiter mit Zn⁰ auf Zwischengitterplätzen — hv → guter elektr. Leiter (Anw.: Xerographie)

Besondere Zn-Cd-Komplexchemie:

Zn^{II}- und Cd^{II}-Komplexe (farblos, unmagnetisch) besitzen kleine Stabilitätskonstanten, denn Stabilisierung durch LFSE entfällt (d¹⁰) → allein die Größe der Liganden (Sterik) entscheidet, ob Tetraeder (nie quadr.-plan. Struk.) oder Oktaeder gebildet wird.

Beispiele: $[Zn(NH_3)_4]^{2+}$, $[Zn(NH_3)_6]^{2+}$ unbekannt, aber bekannt: $[Cd(NH_3)_6]^{2+}$, $[Cd(H_2O)_6]^{2+}$, $[Zn(H_2O)_4]^{2+}$, $[Zn(H_2O)_5]^{2+}$ 2 $CdBr_2 - H_2O \rightarrow [Cd(H_2O)_6]^{2+}$ $[CdBr_4]^{2-}$

Cu-Cd-Trennung:

Maskierung von Cu durch Cyanid als stabiles $[Cu^{I}(CN)_{4}]^{2-}$ \rightarrow Fällung v. CdS aus instab. $[Cd(CN)_{4}]^{2-}$ $[Cd(CN)_{6}]^{4-}$

Subvalente Zn(I)-, Cd(I)-Verbindungen nur zu geringem Anteil beobachtet in der Salzschmelze:

$$ZnCl_2 + Zn + 2 AlCl_3 \longrightarrow [Zn-Zn]^{2+} 2 [AlCl_4]^-$$

$$CdCl_2 + Cd + 2 AlCl_3 \longrightarrow [Cd-Cd]^{2+} 2 [AlCl_4]^-$$

Disprop. in Wasser, Gegensatz zum stabilen [Hg-Hg]²⁺

Chemie des Quecksilbers:

Alle löslichen Hg-Verbindungen und Hg-Dämpfe sind (wie auch Cd) giftig

Hg⁺: $d^{10}s^{1}$, in Verbindungen stets als [Hg-Hg]²⁺, zwei s-Elektronen bilden kovalente Bindung, zunehmende s-p Orbitalseparierung \rightarrow keine sp- sondern sd-Hybridisierung v. $d(z^{2})$ + s Orb.

In wässriger Lösung Gleichgewicht:

$$Hg + Hg^{2+} \longrightarrow Hg_2^{2+}$$

Hg₂²⁺-Verbindungen nur, wenn das Gleichgewicht nach rechts verschoben ist, durch

- geringe Löslichkeit der Hg₂²⁺-Verbindungen
- stabile Komplexe von Hg₂²⁺

Beispiel Komproportionierung:

Schwerlösliches, lichtempfindliches Hg₂Cl₂:

$$HgCl_2 + Hg \longrightarrow [Hg-Hg]^{2+} + 2 Cl^- Kalomel$$

Beispiele Disproportionierung von Hg₂²⁺:

 Hg_2^{2+} 2 CI^- + 2 $NH_3 \longrightarrow Hg^0$ + $[Hg^{II}(NH_2)]CI$ + NH_4CI "unschmelzbares Präzipitat"

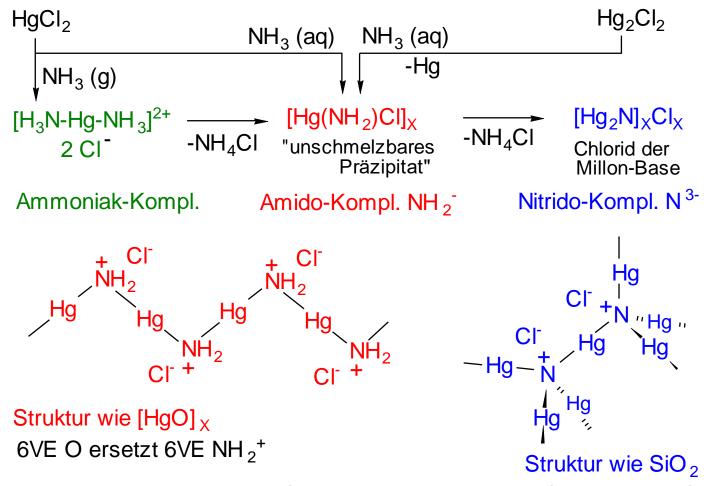
$$Hg_2^{2+} + 2 OH^- \longrightarrow Hg + HgO + H_2O$$

 $Hg_2^{2+} + S^{2-} \longrightarrow Hg + HgS$

Typische Reaktionen von Hg²⁺:

Hg²⁺ häufig KZ 2, lineare Koordination:

$$HgCl_2 + SnCl_2 \longrightarrow Hg + SnCl_4$$


 $HgSO_4 + 2 NaCl \longrightarrow HgCl_2 (subl.) + Na_2SO_4$ $HgCl_2 (,,Sublimat"): Cl-Hg-Cl (g) aus Molekülgitter,$ bildet als Lewis-Säure Chloromercurate [HgCl₃]⁻, [HgCl₄]²⁻ (d¹⁰ → keine LF-Effekte → sterisch günstigste trigonal-planare od. tetraedr. Anordnung)

Quantitativer NH₃ / NH₄⁺ Nachweis im Trinkwasser:

$$Hg^{2+} + 2 I^- \longrightarrow HgI_2 \downarrow \longrightarrow 2 KI \longrightarrow K_2[HgI_4]$$
 carminrot Nesslers Reagenz: $K_2HgI_4 + KOH$
 $NH_4^+ + K_2HgI_4 + KOH \longrightarrow [Hg_2N]^+I^- +$
 $Iodid der Millon-Base = brauner Niederschlag$

Reaktionen von Hg2²⁺ und Hg²⁺ mit NH₃ (Aminen) interessant und relevant für die Toxikologie von Hg-Verbindungen:

Betrachten wir [X-Hg^{II}]⁺ als eine Art metallisches Proton, eine X-Hg^{II}-X Einheit als Pseudo-Wasserstoffbrücke, so lassen sich die folgenden Kondensationsreaktionen als Poly-ammoniumion-Chemie beschreiben:

Christobalit = Zinkblende Si ersetzt Zn, S Hier: N-Hg-N ersetzt Si-O-Si Hg_2N^+ ersetzt O_2Si

END of Elements (?)