## AC-3 SKRIPTUM GRUNDLAGEN DER KOORDINATIONSCHEMIE (Sundermeyer)

Kapitel 1.1 bis 1.7 sind Stoff der Module AC-0 und AC-2, ab Kapitel 2 beginnt Stoff von AC-3 (Teil 2, Reaktionsmechanismen, 2 SWS)

## Gliederung

- 1. Einführung in die Koordinationschemie der Übergangsmetalle / Inneren Übergangsmetalle
- 1.1 Systematik der Elektronenkonfigurationen
- 1.2 Koordinationslehre von Alfred Werner
- 1.3 Isomerie bei Komplexen
- 1.4 Elektronenstruktur der Komplexe
- 1.4.1 Die Ligandenfeldtheorie LFT
- 1.4.2 Diskussion der Ligandenfeldaufspaltung  $\Delta$
- 1.4.3 Größe der Ligandenfeldaufspaltung (Spektrochemische Reihe, oktaedrische, tetraedrische, quadratisch planare Komplexe, high- und low-spin, Jahn-Teller-Verzerrung, Ligandenfeldstabilisierungsenergie)
- 1.5 Farbe, magnetische Eigenschaften und Reduktionspotentiale von Komplexen
- 1.6 MO-Betrachtung bei Komplexen [ML<sub>n</sub>], KZ = n
- 1.6.1 MO-Beschreibung oktaedrischer Komplexe
- 1.6.2 Einbeziehung v.  $\pi$ -Bindungen beim Oktaeder
- 1.7 Trends von Eigenschaften bei Verbindungen der d-Metalle (Ionenradien, Hydratations- und Gitterenergien, Oxidationsstufen, Ionisierungsenergien)

- 2. Reaktionsmechanismen der Koordinationschemie
- 2.1 Ligand-Substitution
- 2.1.1 Nucleophile Ligandsubstitution nach D, Id, Ia, A
- 2.1.2 Radikalische Ligandsubstitution
- 2.1.3 Metathetische Ligandsubstitution
- 2.1.4 Ligandsubstitution durch Sequenz aus oxidativer Addition-reduktiver Eliminierung
- 2.1.5 Katalytische Ligandsubstitution Basenkatalysierte Substitution, D<sub>cb</sub> Säurekatalysierte Substitution, D<sub>ca</sub> Elektronentransfer-katalysierte Substitution D<sub>et</sub>
- 2.1.6 Aspekte der Stereoselektivität der Ligandsubstitution, Isomerisierungen Pseudorotation, kinetischer *trans*-Effekt
- 2.2 Thermodynamische Stabilität / Instabilität versus kinetische Inertheit / Labilität v. Kompl.
- 2.2.1 Gleichgewichte der Ligandsubstitution, Stabilitätstrends, Chelateffekt, HSAB Prinzip, Irving-Williams-Reihe, thermodyn. *trans*-Einfluss
- 2.2.2 Ligandenfeldeffekte auf Reaktionsgeschwindigkeit der Ligandsubstitution. Kinetisch labile und inerte Metallkationen
- 2.3 Oxidative Addition/ reduktive Eliminierung
- 2.3.1 Synchron-Addition orbitalkontrolliert
  - H-H, Si-H, C-H Additionen
- 2.3.2 SET-induzierte Radikalchemie schrittweise
- 2.3.3 Atom-Transfer-Chemie (Mo=O, Fe=O)

2.4. Elektronentransfer ( $\rightarrow$  Masterstudium)

2.4.1 Outer Sphere Mechanismus / Barrieren

2.4.2 Inner Sphere Mechanismus / Barrieren

W = besonders prüfungsrelevante Grundlagen

#### **Empfohlene Literatur:**

C. Janiak, H.-J. Meyer (Hrsg.), D. Gudat, R. Alsfasser, RIEDEL Moderne Anorganische Chemie, 4. Auflage, de Gruyter Berlin 2012, Kapitel 2.

J. Huheey, E. Keiter, R. Keiter, Anorganische Chemie, de Gruyter, Berlin 1995.

R.B. Jordan, Mechanismen anorganischer und metallorganischer Reaktionen, Teubner, Stuttgart 1994.

R.A. Henderson, Reaktionsmechanismen von Übergangsmetallverbindungen, Basistext Chemie Vol. 8, VCH Weinheim 1995.

R.G. Wilkins, Kinetics and Mechanism of Reactions of Transition Metal Complexes, VCH Weinheim 1991.

L.H. Gade, Koordinationschemie, Wiley-VCH, Weinheim 1998, Kapitel 7.

D.F. Shriver, P.W. Atkins, C.H. Langford (J. Heck, W. Kaim, M. Weidenbruch; Hrsg.) Anorganische Chemie, Wiley-VCH, Weinheim 1997.

Cotton, Wilkinson, Advanced Inorganic Chemistry, 5th Ed., Wiley, New York 1989.

1. Einführung in die Koordinationschemie der Übergangsmetalle / Inneren Übergangsmetalle

## **1.1 Systematik der Elektronenkonfiguration W** Auffüllung der d- und f-Energieniveaus (PSE)

↓ n (Hauptquantenzahl) 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d (6f) l = 0 1 2 3 (Nebenquantenzahl)

## Übergangselemente (d-Metalle Gruppen 3-12):

unterscheiden sich in der Elektronenkonfiguration d<sup>x</sup> der zweitäußersten d-Schale: [Edelgas] (n-1)d<sup>x</sup>ns<sup>2</sup> z.B. nach <sub>20</sub>Ca (4s<sup>2</sup>) folgen 10 3d-Metalle, dann <sub>31</sub>Ga

21Sc  $(3d^{1}4s^{2}) \rightarrow {}_{30}Zn (3d^{10}4s^{2})$  3d-Metalle (1. Üg.reihe) 39Y  $(4d^{1}5s^{2}) \rightarrow {}_{48}Cd (4d^{10}5s^{2})$  4d-Metalle (2. Üg.reihe) 57La  $(5d^{1}6s^{2}) \rightarrow {}_{80}Hg (5d^{10}6s^{2})$  5d-Metalle (3. Üg.reihe) 89Ac  $(6d^{1}7s^{2}) \rightarrow {}_{112}EkaHg (6d^{10}7s^{2}) 6d$ -Metalle (radioaktiv)

# Innere Übergangselemente (f-Metalle):

unterscheiden sich in der Elektronenkonfiguration f<sup>x</sup> der drittäußersten f-Schale [Edelgas] (n-2)f<sup>x</sup>(n-1)d<sup>0</sup>ns<sup>2</sup> n = 6 Lanthanoide und n = 7 Actinoide nach  ${}_{57}$ La (5d<sup>1</sup>6s<sup>2</sup>) folgen 14 4f-Metalle, dann  ${}_{72}$ Hf  ${}_{58}$ Ce (4f<sup>2</sup>5d<sup>0</sup>6s<sup>2</sup>)  $\rightarrow$   ${}_{71}$ Lu (4f<sup>14</sup>5d<sup>1</sup>6s<sup>2</sup>) **14 Lanthanoide** 5d<sup>1</sup> wird i.d.R. in 4f promoviert (früher: "Lanthanide")

nach <sub>89</sub>Ac (6d<sup>1</sup>7s<sup>2</sup>) folgen 14 5f-Metalle, dann <sub>104</sub>EkaHf <sub>90</sub>Th (5f<sup>0</sup>6d<sup>2</sup>7s<sup>2</sup>)  $\rightarrow$  <sub>103</sub>Lr (5f<sup>14</sup>6d<sup>1</sup>7s<sup>2</sup>) **14 Actinoide** 

#### Übergangselemente / Nebengruppen:

Energieunterschied von ns und (n-1)d Orbitalen gering  $\rightarrow$  Trend, dass die d-Orbitale im elektronischen **Grundzustand der Metalle** vorzugsweise halb oder ganz gefüllt sind, z.B. 3d- und 4d-Metalle Cr: [Ar]  $3d^54s^1$  nicht  $3d^44s^2$ Cu: [Ar]  $3d^{10}4s^1$  nicht  $3d^94s^2$ 

Effekt der Lanthanidenkontraktion (s.u.) b. 5d-Metallen: W: [Xe] 4f<sup>14</sup>5d<sup>4</sup>6s<sup>2</sup> nicht 4f<sup>14</sup>5d<sup>5</sup>6s<sup>1</sup>

Bei **Metallkationen** werden Energieniveaus der Valenzelektronen durch WW mit Liganden je nach Anzahl und geometr. Anordnung stark beeinflusst (vgl. Ligandenfeldtheorie). Die Unterscheidung von d- und s-Valenzelektronen macht keinen Sinn mehr; s- und dValenzelektronen VE werden zusammengefasst zu einer Elektronenkonfiguration d<sup>n</sup> des Metallkations: W d<sup>0</sup>: alle Valenzelektr. abgegeben, höchste Ox.stufe d<sup>n</sup>: alle Valenzel. vorhanden, Ox.0 = Elem.d. Gruppe n  $d^0$ Ti(+4) V(+5) Cr(+6) Mn(+7) Os(+8) d<sup>1</sup> Ti(+3) V(+4) Cr(+5) Mn(+6) d<sup>2</sup> Ti(+2) V(+3) Cr(+4) Mn(+5) Fe(+6)  $d^3$  Ti(+1) V(+2) Cr(+3) Mn(+4)  $d^4$ Ti(0) V(+1) Cr(+2) Mn(+3) d-Elektronen-arme Komplexe 1 d-Elektronen-reiche Komplexe  $\downarrow$  keine scharfe Grenze  $d^5$ Mn(+2) Fe(+3)  $d^6$ Mn(+1) Fe(+2) Co(+3)  $d^7$ Mn(0) Fe(+1) Co(+2) d<sup>8</sup> Mn(-1) Fe(0) Co(+1) Ni(+2) Au(+3) d<sup>9</sup> Mn(-2) Fe(-1) Co(0) Ni(+1) Cu(+2)  $d^{10}$ Mn(-3) Fe(-2) Co(-1) Ni(0) Cu(+1) Zn(+2)

#### 1.2 Koordinationslehre von Alfred Werner Nobelpreis 1913 W

**Bahnbrechende Erkenntnis:** Es gibt Verbindungen, in denen das Zentralatom mehr Bindungen eingeht, als es dessen Wertigkeit / Oxidationsstufe entspricht. Definition eines Komplexes (A. Werner ca. 1900): Ein Komplex ist eine Koordinationsverbindung, in der das Zentralatom (eine Lewis-Säure) typischerweise von mehr Liganden (anionischen oder neutralen Lewis-Basen) symmetrisch umgeben ist, als es der Hauptvalenz (= Wertigkeit, Oxidationsstufe) des Zentralatoms entspricht.

Beispiele:  $[AICI_4]^-$ ,  $[Fe(H_2O)_6]^{2+}$ ,  $[Co(NH_3)_4CI_2]^+CI^-$ 

**Alfred Werner's experimentelle Methodik:** 

| 1. Fällungsreaktionen mit Überschuss Ag+: |                   |         |                                                                                        |  |
|-------------------------------------------|-------------------|---------|----------------------------------------------------------------------------------------|--|
| $CoCl_3 \bullet$                          | 6 NH <sub>3</sub> | gelb    | $3 \text{ AgCl} \downarrow \rightarrow [\text{Co}(\text{NH}_3)_6]\text{Cl}_3$          |  |
| $CoCl_3 \bullet$                          | 5 NH3             | purpur  | $2 \text{ AgCI} \downarrow \rightarrow [\text{Co}(\text{NH}_3)_5\text{CI}]\text{CI}_2$ |  |
| $CoCl_3 \bullet$                          | 4 NH <sub>3</sub> | grün    | 1 AgCl $\downarrow$ trans-[Co(NH <sub>3</sub> ) <sub>4</sub> Cl <sub>2</sub> ]Cl       |  |
| $CoCl_3$ •                                | 4 NH <sub>3</sub> | violett | 1 AgCl $\downarrow$ cis-[Co(NH <sub>3</sub> ) <sub>4</sub> Cl <sub>2</sub> ]Cl         |  |
| CoCl <sub>3</sub> •                       | 3 NH3             | violett | $0 \text{ AgCl} \downarrow \rightarrow [\text{Co}(\text{NH}_3)_3\text{Cl}_3]$          |  |

2. Leitfähigkeitsmessungen  $\Lambda_M$  / S·m<sup>2</sup>·mol<sup>-1</sup>: <u>empir. Formel</u>  $\Lambda_M$  ∑ lonen Chlorid (fällbar) PtCl<sub>4</sub> • 6 NH<sub>3</sub> 523 5 4 <u>Werner-Formel</u> → [Pt(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>4</sub>

 $\begin{array}{cccc} \text{PtCl}_4 \bullet 5 \ \text{NH}_3 & 404 & \textbf{4} & & 3\\ \hline \text{Werner-Formel} \to [\text{PtCl}(\text{NH}_3)_5]\text{Cl}_3 \end{array}$ 

 $\begin{array}{rrr} \text{PtCl}_4 \bullet 4 \text{ NH}_3 & 229 & \textbf{3} \\ \hline \text{Werner-Formel} \to [\text{PtCl}_2(\text{NH}_3)_4]\text{Cl}_2 \end{array}$ 

 $\begin{array}{rrr} \text{PtCl}_4 \bullet 3 \ \text{NH}_3 & 97 & 2 & 1 \\ \hline \underline{\text{Werner-Formel}} \to [\text{PtCl}_3(\text{NH}_3)_3]\text{Cl} \end{array}$ 

 $\begin{array}{cccc} PtCI_4 & \bullet & 2 \ NH_3 & 0 & 0 & 0 \\ \hline \hline Werner-Formel & \rightarrow & [PtCI_4(NH_3)_2] \end{array} \end{array} 0$ 

## **1. Werner'sches Postulat:**

Co(III) und Pt(IV) haben in diesen Verbindungen die gleiche, einheitliche "sekundäre Valenz" (Nebenvalenz) = <u>Koordinationszahl</u> KZ (nach heutiger Sprechweise)

# 3. Symmetrieüberlegungen (Zahl der beobachtbaren Stereoisomere):



Das Oktaeder ist das wichtigste Strukturmotiv der Koordinationschemie der d-Metalle !

2

## 2. Werner'sches Postulat:

Koordinationsverbindungen haben eine bestimmte räumliche Struktur, wobei die Liganden möglichst symmetrisch um das Zentrum angeordnet sind.

# Koordinationspolyeder im Überblick nach KZ

| K           | linear                 | d <sup>10</sup> : Pt <sup>0</sup> , Cu <sup>+</sup> , Ag <sup>+</sup> , Au <sup>+</sup> , Hg <sup>2+</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Z<br>2      | L-M-L                  | [Ag(NH <sub>3</sub> ) <sub>2</sub> ] <sup>+</sup> , [CuCl <sub>2</sub> ] <sup>-</sup> , [Au(CN) <sub>2</sub> ] <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| K<br>Z<br>3 | trigonal<br>planar     | [HgI <sub>3</sub> ]⁻, Cr(NR <sub>2</sub> ) <sub>3</sub> , Pt(PR <sub>3</sub> ) <sub>3</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | seltener<br>pyramidal  | [SnCl <sub>3</sub> ] <sup>-</sup> (nur bei Hauptgruppen gilt<br>VSEPR Modell !)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| K<br>Z<br>4 | tetraedrisch           | d <sup>0</sup> : [VO <sub>4</sub> ] <sup>3-</sup> , [CrO <sub>4</sub> ] <sup>2-</sup> , [MnO <sub>4</sub> ] <sup>-</sup> ,<br>[OsO <sub>4</sub> ], [VOCI <sub>3</sub> ], [CrO <sub>2</sub> CI <sub>2</sub> ],<br>d <sup>10</sup> : [ZnCI <sub>4</sub> ] <sup>2-</sup> , [HgI <sub>4</sub> ] <sup>2-</sup> , Ni(CO) <sub>4</sub><br>aber auch<br>[Cd(CN) <sub>4</sub> ] <sup>2-</sup> ,[CoCI <sub>4</sub> ] <sup>2-</sup> , [NiCI <sub>4</sub> ] <sup>2-</sup> ,<br>[FeCI <sub>4</sub> ] <sup>-</sup> , [MnCI <sub>4</sub> ] <sup>2-</sup> ,[VCI <sub>4</sub> ] <sup>-</sup> , |
|             | quadratisch-<br>planar | <b>d<sup>8</sup>:</b> (Co <sup>+</sup> ), Ni <sup>2+</sup> , Rh <sup>+</sup> , Pd <sup>2+</sup> , Ag <sup>3+</sup> , Ir <sup>+</sup> ,<br>Pt <sup>2+</sup> , Au <sup>3+</sup> ,<br>[RhCl(PPh <sub>3</sub> ) <sub>3</sub> ] (Wilkinson-Kat.),<br>[IrCl(CO)(PPh <sub>3</sub> ) <sub>2</sub> ] (Vaska-Kompl.),<br>[Ni(CN) <sub>4</sub> ] <sup>2-</sup> , [L <sub>2</sub> PtCl <sub>2</sub> ], [Pt(CN) <sub>4</sub> ] <sup>2-</sup>                                                                                                                                               |

| K<br>Z<br>5 | Trigonal-<br>bipyramidal<br>tbp                  | <b>d<sup>8</sup>:</b> [Fe(CO) <sub>5</sub> ], [Mn(CO) <sub>5</sub> ] <sup>-</sup> ,<br>[Co(CNR) <sub>5</sub> ] <sup>+</sup> (Isonitril CNR)                                                                                                                                                                                                                         |
|-------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | quadratisch-<br>pyramidal<br>qpy                 | [VO(acac) <sub>2</sub> ] Vanadylacetylacetonat,<br>[Ni(CN) <sub>5</sub> ] <sup>3-</sup>                                                                                                                                                                                                                                                                             |
| K<br>Z<br>6 | oktaedrisch<br>Oktaeder                          | häufigstes Koord.polyeder, $Cr^{3+}$ und<br>Co <sup>3+</sup> fast ausschließlich !<br>[M(OH <sub>2</sub> ) <sub>6</sub> ] <sup>m+</sup> , [M(NH <sub>3</sub> ) <sub>6</sub> ] <sup>m+</sup> ,<br>[M(CN) <sub>6</sub> ] <sup>m-</sup> , [M(CO) <sub>6</sub> ], , [CoF <sub>6</sub> ] <sup>-</sup> ,<br>[AIF <sub>6</sub> ] <sup>-</sup> , [Ca(EDTA)] <sup>2-</sup> . |
| K<br>Z<br>7 | pentagonal-<br>bipyramidal                       | [UF <sub>7</sub> ] <sup>2-</sup> , [ZrF <sub>7</sub> ] <sup>3-</sup> , [TaF <sub>7</sub> ] <sup>2-</sup>                                                                                                                                                                                                                                                            |
| K<br>Z<br>8 | Würfel (sehr<br>selten) →                        | [UF <sub>8</sub> ] <sup>3-</sup> und Fluorometallate der<br>Seltenerdmetalle.                                                                                                                                                                                                                                                                                       |
|             | Quadr.<br>Antiprisma →                           | [TaF <sub>8</sub> ] <sup>3-</sup> , [ReF <sub>8</sub> ] <sup>2-</sup> ,                                                                                                                                                                                                                                                                                             |
|             | Dodekaeder                                       | [Mo(CN) <sub>8</sub> ] <sup>4-</sup>                                                                                                                                                                                                                                                                                                                                |
| K<br>Z<br>9 | Dreifach-<br>überkapptes<br>trigonales<br>Prisma | [ReH <sub>9</sub> ] <sup>2-</sup> , [Nd(OH <sub>2</sub> ) <sub>9</sub> ] <sup>3+</sup> .                                                                                                                                                                                                                                                                            |

# Weitere Leistungen A. Werners: W

Erste optisch aktive rein anorganische Verbindungen mit Ethylendiamin-Chelatliganden:

2 Enantiomere des cis-Dichloro-Komplexe



# 1.3 Isomerie bei Komplexen W

# 1. Konstitutionsisomerie (Verknüpfungsisomerie):

Ambidente Anionen können je nach Charakter des Koordinationszentrums mit weichem oder härteren Haftatom koordinieren.

 $\begin{bmatrix} SCN \end{bmatrix}^{-} & \begin{bmatrix} NO_{2} \end{bmatrix}^{-} & \begin{bmatrix} SO_{3} \end{bmatrix}^{2} - S-Sulfito-$ O-Sulfito-O-Sulfito-M-OM S-Thiocyanato- $Weicher O' & [SO_{2}]$ M N-Thiocyanato-N=C=S O-Nitrito-M-N=C=S Inear N-Nitrito-M-N=C=S Inear N-Nitrito-H=N=C=S Inear N-Nitrito-H=N=C=S Inear N-Nitrito-

KZ 5, trigonal-bipyramidal:

mit asymmetrischen

Metallzentrum

Berry-Pseudorotation: Dynamische Umwandlung axialin äquatorial-ständige Liganden - ohne M-L Bindungsbruch über Intermediat einer quadratischen Pyramide.



KZ 6, oktaedrisch:

hohe Energiebarrieren der Pseudorotation  $\rightarrow$  viele geometrische Isomere isolierbar.

Wichtigste Isomere: cis / trans bzw. facial / meridional



 $\Lambda(\Delta)$  Enantiomer: Links(Rechts)schraube bzgl. C<sub>3</sub>-Achse

#### 3. Ionisationsisomerie:

[Co(NH<sub>3</sub>)<sub>5</sub>Br] SO<sub>4</sub> 2:2 Elektrolyt SO<sub>4</sub><sup>2-</sup> fällbar mit Ba<sup>2+</sup> Br⁻ nicht fällbar

[Co(NH<sub>3</sub>)<sub>5</sub>(SO<sub>4</sub>)] Br 1:1 Elektrolyt Br<sup>-</sup> fällbar mit Ag<sup>+</sup> SO<sub>4</sub><sup>2-</sup> nicht fällbar

## 4. Solvatisomerie:

[Cr(H<sub>2</sub>O)<sub>3</sub>Cl<sub>3</sub>] • 3 H<sub>2</sub>O (grün) Schrittweise Hydrolyse der Cr-Cl Bindungen zum [Cr(H<sub>2</sub>O)<sub>6</sub>] Cl<sub>3</sub> (violett)

## 5. Koordinationsisomerie:

2 [PtCl<sub>2</sub>(NH<sub>3</sub>)<sub>2</sub>] vs [Pt(NH<sub>3</sub>)<sub>4</sub>]<sup>2+</sup>[CuCl<sub>4</sub>]<sup>2-</sup> vs grün [Pt(NH<sub>3</sub>)<sub>4</sub>]<sup>2+</sup> [PtCl<sub>4</sub>]<sup>2-</sup> [Cu(NH<sub>3</sub>)<sub>4</sub>]<sup>2+</sup>[PtCl<sub>4</sub>]<sup>2-</sup> blauviolett

#### **1.4 Elektronenstruktur der Komplexe W** Bethe 1929, van Vleck 1932

1.4.1 Die Ligandenfeldtheorie LFT (bzw. "erweiterte Kristallfeldtheorie CFT") versucht, eine Korrelation herzustellen zwischen den physikalischen Eigenschaften der Komplexe bzw. Übergangsmetall-Festkörperstukturen (Farbe, Spektroskopie, Magnetismus, thermodynamische Größen) und der Anzahl, räumlichen Anordnung und Natur der Liganden (= Koordinationssphäre).

#### Grundannahmen:

Ionen eines Ionengitters oder Liganden eines Metallkomplexes wirken auf das Zentralion M<sup>n+</sup> wie Punktladungen und erzeugen ein elektrostatisches Ligandenfeld, das auf die mit s-, p-, d- und f-Elektronen besetzten Orbitale einwirkt.

Im Ligandenfeld verlieren die d- und f-Orbitale ihre Entartung (energet. Gleichartigkeit): Zu den Liganden negativer Elektronendichte gerichtete d- und f-Orbitale mit negativer Elektronendichte werden dabei besonders stark abgestoßen bzw. energetisch angehoben. Die nicht auf die Liganden gerichteten Orbitale werden dagegen im Sinne des Energieerhaltungssatzes energetisch abgesenkt.

Zur Erinnerung: Form der inversionssym. d-Orbitale



Im Folgenden beschränken wir uns auf die Differenzierung der d-Orbitale im Feld oktaedrisch angeordneter Liganden:



Zwei d-Orbitale mit Ausdehnung auf x,y,z-Achsen (eg Satz) werden um den gleichen Energiebetrag energetisch angehoben, wie die drei d-Orbitale (t<sub>2g</sub> Satz) energetisch abgesenkt werden. s- und p-Orbitale werden räumlich gleichartig beeinflusst  $\rightarrow$  zwar energetische Anhebung, aber keine Aufspaltung, da sie in gleicher Weise auf den x,y,z-Achsen liegen (d.h. keine Aufhebung ihrer Entartung). **1.4.2** Diskussion der Ligandenfeldaufspaltung  $\Delta_0$ (= 10 Dq Energieeinheiten) Die Ligandenfeldaufspaltung ist die experimentell aus Elektronenspektren (UV-VIS) oder Gitterenergien ermittelbare energetische Aufspaltung der d-Orbitale.

Die d<sup>1</sup>-Elektronenkonfiguration ist der einfachste Fall, da hier die beobachtbaren Spektralübergänge direkt die Energiedifferenz zwischen dem eg- und t<sub>2g</sub>-Niveau liefern.

Der allgemeine Fall (d<sup>n</sup> Konfiguration des Metallkations) ist komplexer, da hier die Elektronen-Elektronen-WW berücksichtigt werden muss, die im Grundzustand und angeregten Zustand verschieden ist ( $\rightarrow$  Aufspaltung der Terme im Ligandenfeld  $\rightarrow$  Master-Studiengang).

Beispiele: d<sup>1</sup>-ML<sub>6</sub> [Ti(OH<sub>2</sub>)<sub>6</sub>]<sup>3+</sup> 3d Metall Ein d-Elektron besetzt t<sub>2g</sub> Niveau: Lichtabsorption führt zum Übergang t<sub>2g</sub><sup>1</sup>  $e_g^0 \rightarrow t_{2g}^0 e_g^1$ : Absorptionsmaximum 20.300 cm<sup>-1</sup> ( $\Delta_0 = 243$  kJ/mol) (o steht für <u>o</u>ktaedrisches Ligandenfeld).

d<sup>1</sup>-MX<sub>6</sub> [ReF<sub>6</sub>] Absorptionsmaximum 32.500 cm<sup>-1</sup> ( $\Delta_0$  = 389 kJ/mol).  $\rightarrow \Delta_0$  offenbar größer für 5d Metall ! s.u.

d.h. Beträge für 10 Dq liegen in der Größenordnung
der Bindungsenergien kovalenter Bindungen (vgl. CI-CI
240 kJ/mol) !

Umrechnung:  $E = N_L \bullet h_V = N_L \bullet h \bullet c/\lambda = N_L \bullet h \bullet c \bullet \widetilde{V}$ 

500 nm  $\cong$  20.000 cm<sup>-1</sup>  $\cong$  2.5 eV 1 cm<sup>-1</sup>  $\cong$  12 J/mol 350 cm<sup>-1</sup>  $\cong$  1 kcal/mol

Farbe des d<sup>1</sup>-Ti<sup>3+</sup>: Absorption von Grüngelb induziert d-d Übergang und liefert Komplementärfarbe Rotviolett als sichtbares Restlicht.

# **1.4.3 Größe der Ligandenfeldaufspaltung W** $(\Delta_0 \cong 100-500 \text{ kJ/mol})$

# **1. Abhängigkeit vom Ligandentyp:**

Bei konstantem Zentralatom erhöht sich  $\Delta_0$  in der folgenden Reihenfolge: **Spektrochemischen Reihe der Liganden**, geordnet nach zunehmender Ligandenfeldstärke:

 $I^- < Br^- < S^{2-} < SCN^- < CI^- < NO_3^-, N_3^- < F^- < NCO^- < OH^- < ONO^- < O^{2-} < H_2O < NCS^- < NH_3 < SO_3^{2-} < NO_2^- < PR_3, CH_3^-, < CN^- < CO < NO^+$ 

Problem: Punktladungsmodell ließe erwarten, dass anionische Liganden stärkstes Feld erzeugen, obwohl gerade diese am unteren Ende der empirisch gefundenen Reihe stehen (z.B.  $OH^- < OH_2$ ). Das Konzept einer rein elektrostatischen WW muss daher angepasst werden. Reihenfolge besser mit MO-Modell erklärbar (Kap. 1.6):  $\pi$ -acide Liganden mit Fähigkeit zur kovalenten  $d\pi \rightarrow p\pi^*$  Rückbindung (CO, NO<sup>+</sup>) führen zur größten Ligandenfeldaufspaltung.

# 2. Abhängigkeit vom Zentralatom:

Bei gleichem Liganden ist die Änderung von  $\Delta_0$ innerhalb einer Periode (ÜM-Reihe) vergleichsweise gering, innerhalb einer Gruppe dagegen beachtlich:  $\Delta_0$  3d < 4d < 5d.

Faustregel:  $\Delta_0 \ 3d : 4d : 5d \cong 1 : 1.5 : 2.$ Beispiel: 10 Dq-Werte von Ethylendiamin-Komplexen  $[Co(en)_3]^{3+} (23.200 \text{ cm}^{-1}) \qquad [Rh(en)_3]^{3+} (34.600 \text{ cm}^{-1}),$  $[Ir(en)_3]^{3+} (41.400 \text{ cm}^{-1}).$ 

Mit wachsender Oxidationsstufe (Ladung) des Zentralatoms erhöht sich  $\Delta_0$  beträchtlich, da die Liganden infolge der stärkeren elektrostatischen Anziehung näher an das Metallzentrum herangezogen werden, wodurch die Störung der d-Orbitale durch das Ligandenfeld steigt.

 $[M(OH_2)_6]^{n+}$ Beispiel: Aquakomplexe d<sup>n</sup> 10 Dq [cm<sup>-1</sup>] Grundkonfig. im Oktaederfeld  $t_{2g}^2$  $d^2 V^{3+}$ 18.000  $t_{2g}{}^3$ d<sup>3</sup> V<sup>2+</sup> 11.800  $t_{2g}^3$  $d^3$   $Cr^{3+}$ 17.400 (≈50% mehr als  $d^3 V^{2+}$ )  $t_{2g}{}^{3}e_{g}{}^{1}$  $t_{2g}{}^{3}e_{g}{}^{1}$  $d^4$  Cr<sup>2+</sup> 14.000 d<sup>4</sup> Mn<sup>3+</sup> 21.000 (≈50% mehr als  $d^4 Cr^{2+}$ )

- 3. Abhängigkeit von der räumlichen Konfiguration der Liganden:
- Ligandenfeldaufspaltung  $\Delta_0$
- $\Delta$  tetraedrisch <  $\Delta$  oktaedrisch <  $\Delta$  quadratisch

#### **Beobachtung:**

Tetraeder-Komplexe besitzen in der Regel die größtmögliche Zahl ungepaarter d-Elektronen (highspin Zustand).

Quadratisch planare Komplexe besitzen dagegen die größtmögliche Zahl gepaarter d-Elektronen (low-spin Zustand).

Stark aufspaltende Liganden begünstigen insbesondere bei d<sup>8</sup> Konfig. die quadratisch-planare Anordnung, z.B. Is d<sup>8</sup>-[Ni(CN)<sub>4</sub>]<sup>2–</sup>, schwach aufspaltende die tetraedrische Anordnung, z.B. hs  $d^8$ -[NiCl<sub>4</sub>]<sup>2–</sup>.

## A) Oktaedrisches Ligandenfeld:

Bei Oktaeder-Komplexen findet man für die Elektronenkonfigurationen d<sup>4</sup>, d<sup>5</sup>, d<sup>6</sup> und d<sup>7</sup> beides, high-spin und auch low-spin Zustände in Abhängigkeit vom Ligandentyp / Stellung in der spektrochem. Reihe und der Oxidationsstufe des Metallzentrums.

#### **Erklärung:**

Die Spin-Paarungsenergie P muss aufgewendet werden, um ein zweites Elektron antiparallelen Spins in ein und dasselbe Orbital zu zwingen. Aus diesem Grund werden normalerweise erst alle 5 d-Niveaus zunächst mit Valenzelektronen entsprechend der d-Elektronenkonfiguration einfach besetzt: es resultieren high-spin hs (magnetisch normale) Komplexe.

Falls jedoch die Ligandenfeldaufspaltung  $\Delta_0$  größer ist als die Spinpaarungsenergie P, so wird die Spinpaarung und somit ein low-spin Is Zustand mit geringst möglicher Zahl ungepaarter Elektronen beobachtet. Die Unterscheidung zwischen low-spin und high-spin lässt sich jedoch nur für die Elektronenkonfigurationen  $d^4 - d^7$  treffen, da bei  $d^1 - d^3$  und  $d^8 - d^{10}$  die

Orbitalbesetzung unabhängig von der Größe  $\Delta_0$  immer zum Spinsystem größtmöglicher Spinmultiplizität führt (1. Hund'sche Regel), Beispiele:



#### Ligandenfeldstabilisierungsenergie LFSE: W LFSE = Gewinn an d-Elektronen-

Ligandabstoßungsenergie beim Übergang vom sphärischen Kugelfeld zum nichtsphärischen Ligandenfeld unter Berücksichtigung der unterschiedlichen Paarungsenergie P in beiden Feldern, z.B.

LFSE (d<sup>7</sup>-hs) = 
$$(2 \times 3/5) \Delta_0 + (5 \times -2/5) \Delta_0 + 0 P$$
  
=  $-4/5 \Delta_0 + 0 P$  (x10)  
=  $-8 Dq + 0 P$ 

LFSE (d<sup>6</sup>-ls) = (6 x -2/5)  $\Delta_0$  + 2 P = - 24 Dq + 2 P

## **B)** Jahn-Teller-Verzerrung des Oktaeders: W Oktaeder $\rightarrow$ tetragonal verzerrt $\rightarrow$ quadratisch planares Ligandenfeld

Betrachtet wird die tetragonale Verzerrung des idealen Oktaeders, d.h. Stauchung bzw. Dehnung entlang der z-Achse bis hin zur Entfernung der axialen Liganden.

Durch Dehnung in Richtung der z-Achse (einhergehend mit leichter Stauchung in x- und y-Richtung) erfahren d-Orbitale mit einer z-Komponente (xz, yz und insbesondere  $z^2$ ) eine Abnahme der elektrostatischen Abstoßung durch die Liganden und werden daher stabilisiert. Gleichzeitig werden alle anderen d-Orbitale destabilisiert, und zwar so, dass der Energieschwerpunkt konstant bleibt. Ergebnis:  $e_g$  und  $t_{2g}$  Niveaus spalten auf.



Die planar-quadratische geometrische Konfiguration ist besonders vorteilhaft bei Metallionen mit  $d^8$ -Elekronenkonfiguration und starken Liganden, z.B.  $[Ni(CN)_4]^{2^-}$ . Diese Kombination führt zu low-spin Komplexen, bei denen die acht d-Elektronen die 4 energiearmen Orbitale d<sub>xz</sub>, d<sub>yz</sub>, d<sub>z</sub>2 und d<sub>xy</sub> besetzen, während das energiereiche Orbital d<sub>x2-y2</sub> unbesetzt bleibt.

#### Verallgemeinerung:

Die Jahn-Teller-Verzerrung JTV tritt auf, wenn in oktaedrischen (seltener tetraedrischen) Ligandenfeldern eines der entarteten t<sub>2g</sub>- oder eg - Niveaus weder halb noch ganz besetzt ist.

Der Grund: Die d-Orbitale sind nicht kugelsymmetrisch, daher kann sich das System durch synchrone Verzerrung (Dehnung oder Stauchung) des Oktaeders und Unterbringung der Elektronen in energetisch günstigeren Orbitalen um den Betrag der Jahn-Teller-Stabilisierungsenergie JTSE stabilisieren.

Die JTV fällt i.a. für d<sup>1</sup>, d<sup>2</sup>, d<sup>4</sup> (ls) nicht so sehr ins Gewicht, da die **JT-Aufspaltung**  $\delta_1$  etwa doppelt so groß ist wie  $\delta_2$ .

Besonders exponierte **JT-Ionen** mit hoher JTSE sind:  $d^9$  (Cu<sup>2+</sup>),  $d^4$  hs (Cr<sup>2+</sup>, Mn<sup>3+</sup>),  $d^7$  ls (Co<sup>2+</sup>, Ni<sup>3+</sup>).

Keine JTV bei:  $d^0$ ,  $d^{10}$ ,  $d^3$ ,  $d^5$  (hs),  $d^6$  (ls),  $d^8$ , da in all diesen symmetrisch besetzte  $t_{2g}$  und  $e_g$  Niveaus.

Beispiel: Elektronenkonfiguration  $d^9$  ( $t_{2g}^6 e_g^3$ ) Beispiel: Cu<sup>2+</sup> in [Cu(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup> das ungepaarte Elektron kann sich in einem d<sub>x</sub>2-y<sup>2</sup> oder d<sub>z</sub>2 Orbital befinden:



C) Kubisches → Tetraedrisches Ligandenfeld W Das tetraedrische Ligandenfeld leitet sich vom kubischen ab. Gegenüber dem sphärischen Kugelfeld werden die auf die Würfelkanten weisenden t<sub>2</sub>-Orbitale (d<sub>xy</sub>, d<sub>xz</sub>, d<sub>yz</sub>) energetisch angehoben (destabilisiert) der e-Satz, der auf die Flächenmitten weist dagegen energetisch abgesenkt.  $\rightarrow$  Kubisches Feld hat inverse Aufspaltung wie Oktaederfeld. Da im Tetraederfeld lediglich die Hälfte der Ecken des Würfels besetzt sind, sinkt die Aufspaltung  $\Delta_t$  auf die Hälfte des Wertes für  $\Delta_w$ . Es gilt  $\Delta_t \cong 1/2 \Delta_w \cong 4/9 \Delta_0$ .



#### 1.5 Farbe, magnetische Eigenschaften und Reduktionspotentiale W

Farbe, magnetische Eigenschaften und Reduktionspotentiale hängen extrem von der Oxidationsstufe (El.konfiguration) sowie Art und Anordnung der Liganden ab.

## Reduktionspotentiale

Aquakomplexe überstreichen weiten Bereich von stark elektropositiv / reduzierend, z.B. E° $(Ti^{2+}/Ti^{0})$  -1.6 V bis edel / oxidierend, z.B. E° $(Au^{+}/Au^{0})$  +1.46 V, d.h. von H<sub>2</sub>O reduzierend bis H<sub>2</sub>O oxidierend. Liganden haben extremen Einfluss auf Red.potentiale !  $(CO)_{5}$  kann abhängig vom Lö-sungsmittel ein stärkers Oxidationsmittel sein als V<sup>+5</sup>O<sub>4</sub><sup>3-</sup>, was zählt ist das HOMO/LUMO des Moleküls!

**Farben infolge d-d-Übergangen** für Werner-Komplexe (je stärker das Ligandenfeld, desto kurzwelliger das absorb. Licht / langwelliger komplementäre Restfarbe):  $[Co(NH_3)_5CI]Cl_2$  (violett)  $[Co(en)_2Cl_2]CI$  (blau)  $[Co(NH_3)_4Br_2]Br$  (grün)  $[Co(NH_3)_6]Cl_3$  (gelb)  $[Co(NH_3)_4(H_2O)_2]SO_4$  (rot) en = Ethylen-1,2-diamin



Ligandenfeld-Spektroskopie: Thema Masterprogramm Termsymbole, Zahl der Banden, erlaubte Übergänge



Ein

| Wellenlänge des<br>absorb. | Farbe      | <b>Restfarbe</b><br>reflektiert |  |
|----------------------------|------------|---------------------------------|--|
| Lichts (nm)                | absorbiert |                                 |  |
| 400-435                    | Violett    | Gelbgrün                        |  |
| 435-480                    | Blau       | Gelb                            |  |
| 480-490                    | Grünblau   | Orange                          |  |
| 490-500                    | Blaugrün   | Rot                             |  |
| 500-560                    | Grün       | Purpur                          |  |
| 560-580                    | Gelbgrün   | Violett                         |  |
| 580-595                    | Gelb       | Blau                            |  |
| 595-605                    | Orange     | Grünblau                        |  |
|                            | Rot        |                                 |  |

anderer Grund für besonders intensive Farbe von Komplexen sind **Charge-Transfer-Phänomene** (→ Nutzung in analytischer Chemie): Ligand-Metall-CT: MnO4<sup>-</sup>, CrO4<sup>2-</sup>, HgS, Fe(SCN)<sub>3</sub> Metall-Ligand-CT: [Fe<sup>III</sup>(bipy)<sub>3</sub>]<sup>3+</sup>/[Fe<sup>III</sup>(bipy)<sub>2</sub>(bipy<sup>-</sup>)]<sup>3+</sup>, Metall-Metall-CT: KFe<sup>III</sup>[Fe<sup>III</sup>(CN)<sub>6</sub>] (Intervalenz-CT)

29

## Magnetische Eigenschaften:



Partielle Auffüllung der d-Orbitale Spin führt häufig zu ungerader Zahl von Elektronen bzw. zu ungepaarten Elektronen in highspin-Komplexen, selbst wenn sie

eine gerade Zahl von d-Elektronen besitzen  $\rightarrow$  es resultiert Paramagnetismus.

**Spinmagnetismus**, bewirkt durch Spindrehimpulse ungepaarter Elektronen, bildlich dargestellt durch

Eigenrotation der El. und beschrieben durch die <u>magnetische Gesamtspin-QZ Ms</u> =  $\Sigma m_s$  mit m<sub>s</sub> = <u>+</u> 1/2 (Spinquantenzahl m<sub>s</sub> *eines* Elektrons). Ms besitzt 2S+1 Zustände S, S-1, S-2 .... -S.

Spinbeitrag: n ungepaarte Elektronen erzeugen einen Gesamtspin S = n/2 und das assoziierte magnet. Gesamtspinmoment  $\mu_S = [S(S+1)]^{1/2} g \mu_B$ 

g ≅ 2 (g-Faktor, gyromagnetische Anomalie) µB Bohr'sches Magneton (kleinste Einheit des magnetischen Moments, Elementarquantum des Magnetismus, µB = 9.27 x 10<sup>-24</sup> J/T) z.B. n = 5 → S = 5/2 → M<sub>S</sub> = 5/2, 3/2, 1/2, -1/2, -3/2, -5/2 (n+1 bzw. 2S+1 = 6 Zustände) Bahnmagnetismus, bewirkt durch Bahndrehimpulse der Elektronen, bildlich dargestellt durch Bahnbewegung in verschiedenen Orbitalen und beschrieben durch die Gesamtbahndrehimpuls QZ ML

=  $\Sigma m_I$  mit  $m_I$  = = I, I-1 ... -I (Bahndrehimpuls  $m_I$  eines Elektrons, Nebenquantenzahl I = 1 (p-Orb.), I = 2 (d-Orb.), I = 3 (f-Orb.)).

M<sub>L</sub> besitzt 2L+1 Zustände L, L-1, L-2 ... -L.

Bahnbeitrag: n Elektronen erzeugen einen Gesamtbahnimpuls L und das assoziierte magnet. Gesamtbahnmoment  $\mu_L = [L(L+1)]^{1/2} \mu_B$ 

Bei schwacher Spin-Bahn-Kopplung der Elektronen (LS- oder Russel-Saunders-Kopplung) nehmen L und S unabhängig voneinander alle im Raum erlaubten Lagen ein. Das effektive magnetische Moment  $\mu_{eff}$ beträgt dann  $\mu_{eff} = \mu_B [L(L+1) + 4S(S+1)]^{1/2}$ Oft sind die Bahnmomente L ganz oder teilweise unterdrückt. Mit L = 0 erhält man die "Spin-Only"-Werte: Das Magnetische Moment  $\mu_{eff}$ berechnet sich dann allein aus dem Gesamtspin S:  $\mu_{eff} = [S(S+1)]^{1/2} 2 \mu_B$ 

 $\mu_{eff}$  normiert auf  $\mu_B$  ergibt  $\mu_{eff} / \mu_B$  = Vielfache des Bohr'schen Magnetons = Spin-Only-Werte gut eingehalten für d<sup>n</sup> = 3d<sup>1</sup> .... 3d<sup>5</sup> Konfiguration

|   |     | · · · · · · · · · · · · · · · · · · ·   |
|---|-----|-----------------------------------------|
| n | S   | $\mu_{eff} / \mu_{B} = 2[S(S+1)]^{1/2}$ |
| 0 | 0   | 0 Spin-Only-Werte                       |
| 1 | 1/2 | 1.73 -fache von $\mu_B$                 |
| 2 | 1   | 2.83                                    |
| 3 | 3/2 | 3.87                                    |

| 4 | 2   | 4.90 |
|---|-----|------|
| 5 | 5/2 | 5.92 |
|   |     |      |

Abweichungen für  $3d^6 \dots 3d^9$ , wobei  $\mu_{exp} > \mu_{eff}$  (aus Spin-Only). Bahnbeitrag ist zu berücksichtigen: Unter bestimmten Symmetriebedingungen erzeugt externes Magnetfeld eine räumliche Elektronenbewegung, Elektron wechselt Orbital (Nebenquantenzahl I), das Gesamtbahnmoment L koppelt mit dem Gesamtspin S. (Spinkopplung ist Thema des Masterprogramms).

Folge von Ligandenfeldstärke / high-spin / low-spin: W

|                                      | •   |      |                                      |     | •        |
|--------------------------------------|-----|------|--------------------------------------|-----|----------|
| Fe <sup>III</sup> (d <sup>5</sup> )  | S   | µeff | Co <sup>III</sup> (d <sup>6</sup> )  | S   | μeff     |
| [FeF <sub>6</sub> ] <sup>3–</sup>    | 5/2 | 5.8  | [CoF <sub>6</sub> ] <sup>3–</sup>    | 2   | 5.3      |
| $[Fe(H_2O)_6]^{3+}$                  | 5/2 | 5.8  | $[Co(NH_3)_6]^{3+}$                  | 0   | dia      |
| [Fe(CN) <sub>6</sub> ] <sup>3–</sup> | 1/2 | 2.2  | [Co(CN) <sub>6</sub> ] <sup>3–</sup> | 0   | dia      |
| Fe <sup>II</sup> (d <sup>6</sup> )   | S   | μeff | Co <sup>II</sup> (d <sup>7</sup> )   | S   | μeff     |
| $[Fe(H_2O)_6]^{2+}$                  | 2   | 5.3  | $[Co(H_2O)_6]^{2+}$                  | 3/2 | 5.1      |
| [Fe(CN) <sub>6</sub> ] <sup>4–</sup> | 0   | dia  | $[Co(NO_2)_6]^{4-}$                  | 1/2 | 1.8      |
| Ni <sup>II</sup> (d <sup>8</sup> )   | S   | μeff | Ti <sup>III</sup> (d <sup>1</sup> )  | S   | μeff     |
| [NiCl4] <sup>2–</sup>                | 1   | 2.9  | $[Ti(H_2O)_6]^{3+}$                  | 1/2 | 1.73     |
| [Ni(CN)4] <sup>2–</sup>              | 0   | dia  |                                      | Sp  | oin-Only |
|                                      |     |      | $\sqrt{\frac{11}{2}}$                | C   |          |

 $V^{(m)}(d^2)$  S  $\mu_{eff}$  $[V(H_2O)_6]^{3+}$  1 2.82

# **1.6 MO-Betrachtung bei Komplexen [ML<sub>n</sub>], KZ = n**

**VB-Theorie:** Behandelt nur kovalente Bindungsanteile der Komplexe im elektronischen Grundzustand (halbwegs bewährt für Komplexe starker Liganden CO, CN, CNR, NO, PR<sub>3</sub>, CH<sub>3</sub> etc.). **CF-Theorie:** Behandelt rein elektrovalenten Anteil der koordinativen Bindung über Störung der d-Orbitale von M<sup>n+</sup> im elektrostatischen Feld punktförmiger Ligandladungen (bewährt für viele Festkörperstrukturen und Komplexe mit schwachen Liganden F<sup>-</sup>, Cl<sup>-</sup>, Br<sup>-</sup>, l<sup>-</sup>, O<sup>2-</sup>, OH<sup>-</sup>, H<sub>2</sub>O etc.).

MO-Theorie: "Theorie der Molekülzustände" (ab 1930 Hund, Mulliken, van Vleck) umfasst beides: VB- und CF-Modell sind lediglich Grenzfälle des umfassenden MO-Modells, das sowohl kovalente als auch elektrovalente M-L-Bindungsanteile berücksichtigt, welches also die Energiezustände der Valenzelektronen im Feld der Atomrümpfe der Metallzentren und der Liganden betrachtet. Jedes MO erstreckt sich über das Metall und mehrere Liganden:

- Für die LCAO werden in der 3d-ÜM Reihe die 3d, 4s und 4p Metallorbitale herangezogen.
- Zunächst kombinieren n Ligandenorbitale (AO's) vom σ-Symmetrie zu n Liganden-Gruppenorbitalen "LGO" (Symmertieorbitalen), die die für die σ-WW mit den Metallorbitalen geforderte Symmetrie aufweisen.

 Diese n LGO kombinieren mit n Metallorbitalen gleicher Symmetrie, d.h. solche, die nach der Gruppentheorie symmetriegeeignet für eine σ-WW sind, zu n <u>bindenden</u> (σ) und n <u>antibindenden</u> (σ\*) Molekülorbitalen.

Der Rest (9-n) verbleibt in <u>nicht-  $\sigma$  -bindenden</u> Molekülzuständen.

- <u>18-VE-Regel</u>: Sind n bindende MO's durch Ligand-Elektronenpaare und (9-n) nichtbindende MO's durch Metall-Valenzelektronen komplett besetzt, so resultiert ein besonders stabiler Komplex mit [(9-n) + n] x 2 = 18 VE (Edelgaskonfiguration, keine Besetzung antibindender MO's).
- Berücksichtigung von <u>π-Bindungsanteilen</u>: LC von zusätzlich m LGO's von π-Symmetrie mit m Metallorbitalen von π -Symmetrie zu m bindenden (π-) und m antibindenden (π\*-) MO's.

**1.6.1 MO-Beschreibung oktaedrischer Komplexe** Die <u>Symmetrieeigenschaften der s,p und d-</u> <u>Valenzorbitale</u> in einem oktaedrischen Komplex können der Charaktertafel der Punktgruppe O<sub>h</sub> entnommen werden, die zeigt dass das s-Orbital als  $a_{1g}$  transformiert, die drei p-Orbitale als  $t_{1u}$  (p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>), während die fünf d-Orbitale ihre Entartung teilweise einbüßen und zwei Sätze von e<sub>g</sub>-Symmetrie (d<sub>x</sub>2-y<sup>2</sup>, d<sub>z</sub>2) und t<sub>2g</sub>-Symmetrie (d<sub>xy</sub>, d<sub>yz</sub>, d<sub>xz</sub>) bilden.

- LGO's von σ-Symmetrie sind grundsätzlich um den Betrag ΔE energieärmer als die Metall-d-Orbitale. ΔE spiegelt <u>polaren Anteil an der σ-Kovalenzbindung</u> wider (negative Partialladung auf den Liganden infolge ΔEN). Zu ΔE bei π-Bindung, s.u.
- Die Überlappung der 4s- und 4p-Orbitale mit den LGO's ist wesentlich besser als mit den diffuseren 3d-Orbitalen, was bei ersteren zu einer besonders großen energetischen Aufspaltung in bindende und antibindende MO's führt. Der abnehmende Grad der Orbital-WW (Überlappung) spiegelt sich in der energetischen Reihenfolge der MO's, d.h. ihres Abstandes vom Energieschwerpunkt, wider: a<sub>1g</sub> > t<sub>1u</sub> > e<sub>g</sub> > t<sub>2g</sub> (= 0).
- <u>Bilanz für</u> [ML<sub>6</sub>]: 9 Metall-Orbitale (s,3p,5d) kombinieren mit 6 LGO's von σ-Symmetrie zu insgesamt 15 (= 9+6) MO's, von denen 6 bindend, 6 antibindend und 3 nichtbindend sind.

Kombination von Ligand-Atomorbitalen zu LGO`s: Beispiel: Addition aller Wellenfunktionen der 4 Ligand-AO's mit x,y-Anteilen ( $\sigma_x$ ,  $\sigma_{-x}$  etc.) führt zu einer neuen Ligandgruppen-Wellenfunktion Σ.

Während  $\Sigma_{x^2-y^2}$  mit dem  $d_{x^2-y^2}$  Orbital gleicher Symmetrie überlappen kann und daher in  $\sigma$ - und  $\sigma^*$ -Molekülzustände aufspaltet, führt die WW von  $\Sigma_{x^2-y^2}$ mit dem  $d_{xy}$  Orbital aufgrund unterschiedlicher Symmetrie zu keiner Nettoüberlappung ( $\rightarrow$  nichtbindender Zustand, bindende + antibindende WW halten sich die Waage):



**1.6.2** Einbeziehung v.  $\pi$ -Bindungen beim Oktaeder Das t<sub>2g</sub>-Niveau spaltet zusätzlich auf, wobei maximal drei  $\pi$ -Bindungen entstehen, 2 Grenzfälle:

(b) Für  $\pi$ -Donorliganden mit elektronegativen Haftatomen und besetzten Ligand-p-Orbitalen (z.B. F<sup>-</sup>, OH<sup>-</sup>, NR<sub>2</sub><sup>-</sup>, O<sup>2-</sup>, RN<sup>2-</sup>) sind LGO's von  $\pi$  -Symmetrie um den Betrag  $\Delta$ E' energieärmer als die Metall-d-Orbitale (nichtbindendes t<sub>2g</sub>-Niveau).  $\Delta$ E' spiegelt polaren Anteil der  $\pi$ -Bindung wider. Die bindenden  $\pi$  -MO's ähneln mehr den Fluororbitalen ("sie besitzen Ligandcharakter"), umgekehrt ähneln
die antibindenden  $\pi^*$  -MO's mehr den Metallorbitalen ("sie besitzen Metallcharakter").



(c) Für  $\pi$ -Akzeptorliganden mit weniger elektronegativen Haftatomen und unbesetzten Ligand-p- (Fischer-Carben) oder  $\pi^*$ -Orbitalen (CO, Pyridin, Ethylen etc) sind LGO's von  $\pi$ -Symmetrie um den Betrag  $\Delta E'$  energiereicher als die Metall-d-Orbitale (nichtbindendes t<sub>2g</sub>-Niveau).  $\Delta E'$  spiegelt polaren Anteil der  $\pi$ -Bindung wider. Die bindenden  $\pi$ -MO's ähneln mehr den Metallorbitalen ("sie besitzen Metallcharakter"), umgekehrt ähneln die antibindenden  $\pi^*$ -MO's mehr den Ligandorbitalen ("sie besitzen Ligandcharakter").

<u>Wie lassen sich LGO's von  $\pi$ -Symmetrie konstruieren</u>? Beispiel: Die Linearkombination von 4 der  $\Sigma$ 12 besetzten p-AO's von  $\pi$ -Symmetrie (z.B. in [CoF<sub>6</sub>]<sup>3-</sup>) führt zu einem LGO von t<sub>2g</sub>-Symmetrie, das in der Lage ist, <u>eine delokalisierte</u>  $\pi$ -Bindung mit dem d<sub>xz</sub>-Metallorbital (t<sub>2g</sub>-Satz) einzugehen:



Erklärung der spektrochemischen Reihe: Warum ist [OH]<sup>-</sup> ein schwächer LF-aufspal. Ligand als H<sub>2</sub>O? Die  $\pi$ -WW der t<sub>2g</sub>-Metallorbitale und LGO's führt im Falle der  $\pi$ -Donorliganden zu einer <u>Veringerung</u> von  $\Delta_0 = 10$  Dq. Die <u>t<sub>2g</sub>-Niveaus werden durch</u> <u>Ligandelektronen besetzt</u> (sie besitzen Ligandcharakter)  $\rightarrow$  <u>Metallelektronen müssen in den</u> <u>antibindenden t<sub>2g</sub>\*-Niveaus</u> (und e<sub>g</sub>\*-Niveaus bei highspin) untergebracht werden (Fall b).

Warum ist CO ein stärker LF-aufspal. Ligand als H<sub>2</sub>O? Die  $\pi$ -WW der t<sub>2g</sub>-Metallorbitale und LGO's führt im Falle der  $\pi$ -Akzeptorliganden zu einer Vergrößerung von  $\Delta_0 = 10$  Dq. Die t<sub>2g</sub>-Niveaus werden nicht durch Ligandelektronen besetzt (sie besitzen Metallcharakter)  $\rightarrow$  Metallelektronen können in den bindenden t<sub>2g</sub>-Niveaus (und antibindenden e<sub>g</sub>\*-Niveaus) untergebracht werden (Fall c).

# Erklärung der Anwendungsbreite der 18 VE-Regel:

Die 18 VE-Regel angewendet auf einen Komplex [ML<sub>n</sub>] fordert die Besetzung aller n bindenden und (9-n) nichtbindenden MO's, bzw. die Nichtbesetzung n antibindender MO's.

Sie ist immer dann gut erfüllt, wenn sich nichtbindende und antibindende MO's energetisch deutlich unterscheiden. Dies gilt insbesondere für **Komplexe mit**  $\pi$ -**Akzeptorliganden** (Fall c). Bei Komplexen mit reinem  $\sigma$ -Ligandenregime, z.B. H<sub>2</sub>O, NR<sub>3</sub>, ist dagegen der energetische Abstand t<sub>2g</sub> (nb-MO) zu e<sub>g</sub>\* derart gering, dass diese Niveaus wahlweise mit max. 6 und 4 Metallelektronen besetzt werden können. Es resultieren im Bereich der mittleren Oxidationsstufen hs- bzw. Is-Komplexe mit 14 VE [V(H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup> (d<sup>2</sup>-ML<sub>6</sub>) bis 22 VE [Cd(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> (d<sup>10</sup>-ML<sub>6</sub>) (Fall a)

**Erklärung der Stabilisierung formaler Oxidationsstufen des Metalls durch**  $\pi$ -Liganden: Metallzentren in <u>niedrigen Oxidationsstufen</u> (d<sup>6</sup> - d<sup>10</sup> -Elekronenkonfiguration) werden insbesondere durch  $\pi$ -**Akzeptorliganden** stabilisiert. Durch Besetzung der t<sub>2g</sub>-Niveaus mit 6 Metallelektronen steht dann genügend Elektronendichte für max. 3  $\pi$ -Rückbindungen zu beispielsweise CO Liganden zur Verfügung. Beispiele für d<sup>6</sup>: [V(CO)<sub>6</sub>]<sup>-</sup>, [Cr(CO)<sub>6</sub>], [Mn(CO)<sub>6</sub>]<sup>+</sup>.

Metallzentren in <u>hohen Oxidationsstufen</u> (d<sup>0</sup>, d<sup>1</sup>, d<sup>2</sup> -Elekronenkonfiguration) werden durch  $\pi$ -Ligand-Bindungsanteile stabilisiert. Besonders stabile Komplexe resultieren, wenn t<sub>2g</sub>-Niveau mit 6 Elektronen ( $\Sigma$  d<sup>n</sup>Metall +  $\pi$ -Donor El.) besetzt ist, z.B.:



Bei Komplexen [ML<sub>n</sub>] mit n starken  $\sigma$ + $\pi$ -Donor-Liganden, z.B. F<sup>-</sup>, Cl<sup>-</sup>, OR<sup>-</sup>, NR<sub>2</sub><sup>-</sup>, O<sup>2-</sup> (Oxo), NR<sup>2-</sup> (Imido) etc., ist je nach Stärke und Anzahl symmetrieerlaubter  $\pi$ -WW davon auszugehen, dass das  $\sigma$ -Bindungsgerüst durch ein  $\pi$ -Bindungsgerüst von maximal (9-n)  $\pi$ -dativen Bindungen ergänzt wird, so dass eine 18 VE-Konfiguration im Grenzfall erreicht werden kann (ähnlich p $\pi$ -p $\pi$  Bdg. in BF<sub>3</sub> zur Erlangung der 8 VE Zahl). Die dativen L $\rightarrow$ M p $\pi$ -d $\pi$  Bindungen ("Hinbindungen") sind deutlich schwächer als die  $\sigma$ -Bindungen, sie haben aber einen Einfluss auf die molekulare Struktur und Reaktivität insbesondere höhervalenter ÜM-Komplexe.

 $\begin{array}{ll} \label{eq:constraint} \hline \text{H\"ohere Bindungsordnung durch $\pi$-dative Bindungen} \\ d^0\text{-}ML_6 \ [Mo(=O)(\equiv O)Cl_2L_2] & 6\sigma+3\pi \ \text{El.p.=18VE} \\ d^0\text{-}ML_6 \ [WF_6] \rightarrow [W(=F)_3F_3]: & 6\sigma+3\pi \ \text{El.p.=18VE} \\ d^0\text{-}ML_5 \ [Re(\equiv NR)_2Cl_3] & 5\sigma+4\pi \ \text{El.p.=18VE} \\ d^0\text{-}ML_4 \ [OsO_4] \rightarrow [Os(=O)(\equiv O)_3]: & 4\sigma+5\pi \ \text{El.p.=18VE} \\ d^0\text{-}ML_4 \ [Ti(=NR_2)_4]: & 4\sigma+4\pi \ \text{El.p.=16VE} \\ \end{array}$ 

 $\pi$ -Bindungsanteile können sich auch auf mehrere  $\pi$ -Liganden verteilen. Die aus der der IR-Streckschwingung abgeleitete durchschnittliche Os-O Bindungsordnung BO in [OsO<sub>4</sub>] beträgt 2,66, die W-F BO in [WF<sub>6</sub>] beträgt 1,5, die Ti-N BO in [Ti(NR<sub>2</sub>)<sub>4</sub>] beträgt 2, die Mo-O BO in [Mo(O)<sub>2</sub>Cl<sub>2</sub>L<sub>2</sub>] beträgt 2,5.

#### **1.7 Trends von Eigenschaften bei Verbindungen der d-Metalle W**

## Ionenradien, Hydratations- und Gitterenergien

Sc $\rightarrow$ Zn: <u>effektive</u> Kernladung nimmt zu, da d-Elektronen zunehmende Kernladung schlechter abschirmen als s- und p-Elektronen. Folglich nehmen Atom- und Ionenradien innerhalb der ÜR ab  $\rightarrow$ **M<sup>2+</sup>-Ionenradien** [pm] für KZ 6 (O<sub>h</sub>)



Es resultieren allgemein <u>kleinere Ionenradien</u>, als für das Ion im Kugelfeld, wobei insbesondere <u>Ionen mit</u> <u>Iow-spin Konfiguration geringere Radien</u> als solche mit high-spin-Konfiguration besitzen. <u>Grund:</u> Durch die Aufspaltung der d-Orbitale im O<sub>h</sub>-Feld werden bevorzugt die  $t_{2g}$  Niveaus besetzt. Die direkt auf die Liganden gerichteten  $e_g$ -Orbitale bleiben im Schnitt weniger besetzt und wirken dadurch weniger abstoßend auf die Liganden als im entarteten kugelsymmetrischen Zustand. Daher besitzt die high-spin-Kurve ein Maximum bei kugelsymm.  $t_{2g}^3 e_g^2$ Konfiguration (d<sup>5</sup> hs), rel. Minima bei  $t_{2g}^3$  und  $t_{2g}^6 e_g^2$ , die low-spin-Kurve ein abs. Minimum bei  $t_{2g}^6$  (d<sup>6</sup> ls).

Aufgrund schlechter Abschirmungseigenschaften der 4f-Orbitale (Anstieg der eff. Kernladung) nehmen die Ionenradien der Lanthanoide  ${}_{57}La^{3+} 105pm \rightarrow {}_{71}Lu^{3+}$ 85pm ab (Lanthanoidenkontraktion). Diese Radienabnahme kompensiert die eigentlich zu erwartende Radienzunahme zwischen 2. ÜR (4d-Metalle)  $\rightarrow$  3. ÜR (5d-Metalle).

WICHTIG: Daraus ergibt sich ein Eigenschaftssprung zwischen 3d- und 4d-Metallen, dagegen eine große Ähnlichkeit zwischen Homologen der 4d- und 5d-Metalle (Radien, IE, Reaktivität, Molekül- und Festkörperstrukturen).

Ti Chemie anders als Zr, Hf V Chemie anders als Nb, Ta Fe Chemie anders als Ru, Os etc. M<sup>2+</sup>-Hydratationsenergien [kJ/mol] KZ 6  $M^{2+}(g) + 6 H_2O \longrightarrow [M(H_2O)_6]^{2+} (aq)$ 



Wegen der unsteten Abnahme der hs-Ionenradien ergibt sich ein entsprechend inverser Trend zum Doppelhöckerverlauf auch bei Hydratationsenthalpien.  $\rightarrow$  Für d<sup>0</sup>, d<sup>5</sup> (hs) und d<sup>10</sup> erwartet man keinen Beitrag der LFSE zur Hydratationsenthalpie.

## Gitterenergien der Halogenide MX<sub>2</sub> [kJ/mol] KZ 6



radienabhängig gleicher Trend wie Hydratationsenergien

# Ionisierungsenergien (IE) und Oxidationsstufen

# Oxidationsstufen im Überblick: W

- + Hauptoxidationsstufen
- + weitere Oxidationsstufen
- + Oxidationsstufen exklusiv bei 4d- und 5d-Metallen

| Gruppe   | 3        | 4        | 5        | 6                             | 7        | 8        | 9        | 10       | 11                             | 12            |
|----------|----------|----------|----------|-------------------------------|----------|----------|----------|----------|--------------------------------|---------------|
| Ox.st.   | Sc       | Ti       | V        | Cr                            | Mn       | Fe       | Со       | Ni       | Cu                             | Zn            |
| 0 Elkon. | $d^1s^2$ | $d^2s^2$ | $d^3s^2$ | d <sup>5</sup> s <sup>1</sup> | $d^5s^2$ | $d^6s^2$ | $d^7s^2$ | $d^8s^2$ | d <sup>10</sup> s <sup>1</sup> | $d^{10}s^{2}$ |
| 1        |          | +        | +        | +                             | +        | +        | +        | +        | +                              |               |
| 2        |          | +        | +        | +                             | +        | +        | +        | +        | +                              | +             |
| 3        | +        | +        | +        | +                             | +        | +        | +        | +        | +                              |               |
| 4        |          | +        | +        | +                             | +        | +        | +        | +        | +                              |               |
| 5        |          |          | +        | +                             | +        | +        | +        | +        | +                              |               |
| 6        |          |          |          | +                             | +        | +        | +        | +        |                                |               |
| 7        |          |          |          |                               | +        | +        |          |          |                                |               |
| 8        |          |          |          |                               |          | +        |          |          |                                |               |

3d, 4d und 5d-Metalle: <u>Höchste Ox.stufe</u> Sc  $\rightarrow$  Mn entspricht Gruppennummer, danach Abnahme wobei 4d- und 5d-Metalle ab Gruppe 8 auch in höheren Oxidationsstufen vorkommen, z.B:

höchstvalente Fluoride: NiF<sub>3</sub>, PdF<sub>4</sub>, PtF<sub>6</sub> (kov. / flüchtig) höchstvalente Oxide: FeO<sub>4</sub><sup>2-</sup>, RuO<sub>4</sub>/OsO<sub>4</sub> (kov./ flüchtig)

Größte <u>Vielfalt</u> der realisierbaren Oxidationsstufen in der <u>Mitte</u> einer Übergangsmetallreihe bei Mn: Sc, Ti: zu wenig EI., die abgegeben (Ionenbdg.) bzw. geteilt (kovalente Bdg.) werden können. Cu, Zn: d-Elektronen zu fest gebunden, um hohe Ox.stufen zu erlauben ( $\rightarrow$  effektive Kernladung).

Mit zunehmender Ordnungszahl ändern d-Elektronen Charakter von "Valenz-Elektronen" in Richtung "Rumpf-Elektronen" (ab Fe-Triade abnehmende Neigung, hohe Ox.stufen anzunehmen).

Übergangselemente bilden häufig Verbindungen in benachbarten Oxidationsstufen  $\pm 1$ , z.B. Fe(2,3), Cu(1,2), Mn(2,3,4,5,6,7)  $\longrightarrow$  Redoxkatalyse !

Hauptgruppenelemente existieren bevorzugt in Ox.stufen, die sich durch  $\pm 2$  Einheiten unterscheiden, z.B. Sn(2,4), P(3,5), S(2,4,6).

Entgegengesetzter Trend wie bei HG-Verbindungen: Die Stabilität der höchsten Oxidationsstufe nimmt zu innerhalb einer Gruppe zu schwereren Homologen, Beispiele

V<sub>2</sub>O<sub>5</sub> Redoxkatalysator, Nb<sub>2</sub>O<sub>5</sub> und Ta<sub>2</sub>O<sub>5</sub> stabil

 $CrO_3 < MoO_3 < WO_3$  Stabilität  $CrO_3 > MoO_3 > WO_3$  Oxidationskraft

Mn<sub>2</sub>O<sub>7</sub> Zers. 0°C, Tc<sub>2</sub>O<sub>7</sub> Fp. 120°C, Re<sub>2</sub>O<sub>7</sub> Fp. 220°C. CrF<sub>6</sub> instabil > -100°C, MoF<sub>6</sub> und WF<sub>6</sub> stabil Kp. 17°C ! Bei Abwesenheit  $\pi$ -acider Liganden (CO, bipy etc.) wird in Komplexen mit reinen  $\sigma$ -Donoren (Aqua, Ammoniak, Halogenid...) als niedrigste die Ox.stufe (+2) realisiert:

Ti(+2), V(+2) stark reduzierend  $\rightarrow$  Mn(+2), Cu(+2) stabilste Ox.stufe  $\rightarrow$  Zn(+2) ausschließlich.

#### **Oxidationsstufen der f-Metalle:**

Lanthanoide Ln typischerweise +3 (wie Lanthan), Ausnahmen: +2, +4 +4: Ce, Pr, Tb +2: Sm, Eu, Tm, Yb

Actinoide nicht wie Actinium (+3), sondern +4: Th  $\longrightarrow$  +3 bis +6: U und Pu

**Ionisierungsenergien** nehmen in der ÜM-Reihe zu  $\rightarrow$  bei Bildung von Kationen zuerst s-El. abgegeben. **Edler Charakter** der ÜM-Metalle wächst  $\downarrow \longrightarrow$ 

Ausnahmegruppe 12: Zn unedler als Fe, Mn (Einfluss von Hydratation, Komplexbildung, hs /ls Spinzustand von Fe, Mn)

Zn, Cd, Hg verwenden die geschlossene d<sup>10</sup> Schale nicht für Bindungen  $\rightarrow$  niedrige Fp. und Verdampfungsenthalpien der Metalle (flüchtig), Hg flüssig.  $\rightarrow$  HG-ähnliche Chemie, weil Zn, Cd, Hg nur ns<sup>2</sup> Elektronen ionisieren (max. Valenz +2).

# Reaktionsmechanismen der Koordinationschemie Ligand-Substitution W

# 2.1.1 Nucleophile Ligandsubstitution D, Id, Ia, A

Es gibt zwei Grenzfälle A und D des Austausches zweier 2-Elektronen-Donorliganden L, L':

# Assoziativer Mechanismus A (schrittweise):

ML<sub>n</sub>L' mit um 1 erhöhter KZ stellt ein nachweisbares ZP dar (deutliche Energiemulde auf Hyperfläche).



Reaktionskoordinate

Vergleich mit OC: Additions-Eliminierungsmechanismus an Carbonylverbindungen (C der KZ 3) über tetraedrisches ZP, z.B. bei der Esterhydrolyse. Charakteristische Beispiele: Assoziation von Liganden an quadratisch-planare 16VE Komplexe der Elektronenkonfiguration d<sup>8</sup> : Rh, Ir(I), Ni, Pd, Pt(II), Au(III)

Assoziation von Liganden an oktaedrische Komplexe der Elektronenkonfiguration  $d^0$ : Y-Angriff auf WF<sub>6</sub> in Richtung der C<sub>3</sub>-Achsen, auf denen die t<sub>2g</sub> Orbitale (LUMO bzw. schwache  $\pi$ -Donor-Bindung) liegen. Addukt oder At-Komplex [WF<sub>6</sub>Y] isolierbar.



# **Dissoziativer Mechanismus D** (schrittweise):

ML<sub>n-1</sub> mit um 1 verminderter KZ stellt ein nachweisbares ZP dar (Energiemulde auf Hyperfläche)



Charakteristisches Beispiel: photochemische oder thermische Dissoziation eines 18VE Komplexes zu einem 16VE Intermediat, danach Assoziation. [W(CO)<sub>5</sub>] spektroskopisch in Matrix nachweisbar.

 $[W(CO)_6] \longrightarrow [W(CO)_5] + CO$ 

 $[W(CO)_5] + PPh_3 \longrightarrow [W(CO)_5(PPh_3)]$ 

# Interchange (Austausch) Mechanismen I (konzertiert):

Häufiger Regelfall: Im aktivierten Komplex (Übergangszustand) besteht eine Bindungsbeziehung sowohl zu L als auch zu L', wobei die M-L und M-L' Bindungslängen sich unterscheiden können.

Es handelt sich um einen <u>assoziativen Austausch Ia</u>, wenn die Bindungsknüpfung M-L' dem Bindungsbruch M-L etwas vorauseilt.



(vgl. OC: S<sub>N</sub>2)

Es handelt sich um einen <u>dissoziativen Austausch Id</u>, wenn der Bindungsbruch M-L der Bindungsknüpfung M-L' etwas vorauseilt.

Charakteristisches Beispiel: Ligandsubstitution in oktaedrischen Komplexen mit schwachem Ligandenfeld und besetzten  $e_{2g}$  Orb. (z.B. d<sup>8</sup>) erfolgt über I<sub>d</sub>-Angriff auf eine Dreiecksfläche des Oktaeders. [Ni(OH<sub>2</sub>)<sub>6</sub>]<sup>2+</sup> + L  $\longrightarrow$  [Ni(OH<sub>2</sub>)<sub>5</sub>L]<sup>2+</sup> + H<sub>2</sub>O

 $I_d$  aber auch bei starken Ligandenfeldern und Photolyse: [W(CO)<sub>6</sub>] + Et<sub>2</sub>O / h<sub>V</sub> → [W(CO)<sub>5</sub>(OEt<sub>2</sub>)] + CO

# <u>A, la bevorzugt:</u>

- Bei großen Metallionen mit hoher Ladung
- Bei sterisch wenig anspruchvollen Liganden L bzw. L'
- Bei niedriger KZ 4 (bei quadr. planar quasi immer)
- Bei elektronisch noch nicht abgesättigten Koordinationszentren <18VE mit einem energetisch tiefliegenden, metallzentrierten LUMO: wenn bei oktaedrischen reinen σ-Komplexen eines der t<sub>2g</sub> -Orbitale nicht besetzt ist (d<sup>0</sup>-WCl<sub>6</sub>, d<sup>1</sup>-WCl<sub>5</sub>L und d<sup>2</sup>-WCl<sub>4</sub>L<sub>2</sub>, L = Neutralligand).
- Bei Liganden mit flexibler π-Elektronendonor-Kapazität, z.B.NO, NR, η<sup>5</sup>/η<sup>3</sup>-Cp, η<sup>5</sup>/η<sup>3</sup>-Indenyl, homolytische Betrachtungsweise:



<u>Nachbargruppeneffekt von L</u>: Substitutionen an 18-VE-Komplexen erfolgen auf assoziativem Wege, wenn ein Komplexligand ein ursprüngliche M-L  $\pi$ -bindendes Elektronenpaar im Intermediat in nichtbindenden Ligandorbitalen L untergebracht werden kann.

#### Beispiele:

Während Ni(CO)<sub>4</sub> nach einem D-Mechanismus reagiert, vermag das isoelektronische Co(NO)(CO)<sub>3</sub> radioaktiv markiertes \*CO über einen assoziativen Mechanismus rasch auszutauschen.

Bei hoher Oxidationsstufe und  $\pi$ -Donorliganden: CrO<sub>2</sub>Cl<sub>2</sub> bzw. Cr(NR)<sub>2</sub>Cl<sub>2</sub> oder WF<sub>6</sub> sind gute Lewis-Säuren, da bei Assoziat-Bildung unter Erhöhung der KZ eine neue stabile  $\sigma$ -Bindung zu Lasten einer vergleichsweise schwachen  $\pi$ -dativen Bindung (zu O, NR, F) gebildet wird.

# Hinweise auf einen I<sub>a</sub>- bzw. A-Mechanismus

liefert die Messung der Reaktionsgeschwindigkeit unter extremem Druck, k = f(p) 1....10 kbar: Reaktionsbeschleunigung und ein negativer Wert für das Aktivierungsvolumen  $\Delta V^{\neq}$   $\Delta V^{\neq} = V$  (Akt. Kompl. od. ZP) - V (Edukte) < 0, falls V (Edukte) > V (Akt. Kompl. od. ZP) sowie eine negative Aktivierungsentropie  $\Delta S^{\neq} < 0$  (Abnahme der Teilchenzahl im ÜZ bzw. ZP unter Berücksichtigung der Solvatationsentropie).

Geschwindigkeitsbestimmender Schritt ist i.d.R. der Assoziationsschritt. In diesem Fall hängt die RG von Konzentration bzw. Aktivität c(ML<sub>n</sub>) und von c(L`) ab (Geschw.gesetz 2. Ordnung).

Abnahme der RG mit Zunahme der Größe der variierten Zuschauerliganden und des eintretenden Donorliganden L` liefert Hinweis auf einen A(I<sub>a</sub>) Mechanismus.

# D, Id bevorzugt:

- Bei kleinen Metallionen mit geringer Ladung
- Bei sterisch anspruchvollen Zuschauerliganden und neutralen Fluchtliganden L
- Bei kleinen basischen Fluchtliganden (F,CI,OH), die durch Elektrophil (H<sup>+</sup>, L.-Sre.) in vorgelagertem Schritt aktivierbar sind (s.u. katalytische D<sub>ca</sub>)
- Bei hoher KZ 6, 7, 8 des Eduktes
- Bei niedriger Oxidationsstufe, z.B. KZ 4 (T<sub>d</sub>) Ni(CO)<sub>4</sub> (Ausnahme Co(NO)(CO)<sub>3</sub>, s.o.), KZ 6 (O<sub>h</sub>) W(CO)<sub>6</sub> Mit wachsender d-Elektronenzahl tolerieren die Metallzentren den elektronisch und koordinativ ungesättigten Zustand leichter: drastische Zunahme

der CO/\*CO-Austausch-Geschwindigkeit bei 25°C: Cr(CO)<sub>6</sub> ( $\tau$  = 250.000a) < Fe(CO)<sub>5</sub> (4 a) < Ni(CO)<sub>4</sub> (1min)

- i.a. bei elektronisch abgesättigten Koordinationszentren, insbesondere aber, wenn bei oktaedrischen Komplexen die eg -Orbitale teilweise oder ganz besetzt sind (d<sup>7</sup>, d<sup>8</sup>, d<sup>9</sup>, d<sup>10</sup> Konfiguration). Letztere besitzen im Sinne der MO Theorie antibindenden, M-L-destabilisierenden Charakter und wirken einer Annäherung eines Elektronenpaardonors zunehmend entgegen.
- Dissoziation kann durch <u>Nachbargruppeneffekte</u>, etwa Liganden mit freiem Elektronenpaar begünstigt werden. z.B. D<sub>cb</sub> (Dissoziation via <u>conjugate base</u>): Die drastische Zunahme der Hydrolysegeschwind. von [Co(NH<sub>3</sub>)<sub>5</sub>CI]<sup>2+</sup> in Gegenwart von OH<sup>-</sup>



ist darauf zurückzuführen, dass der geschw.best. dissoziative Schritt D<sub>cb</sub> nach Bildung einer  $\pi$ -Donor-Amidogruppe extrem begünstigt wird (s.u.).

Erhöht sich die Ladung eines Komplexions durch Ligandsubstitution eines anionischen Liganden Xdurch Neutralliganden L, wie etwa bei der Hydrolyse oktaedrischer Halogenokomplexe, so wird diese Reaktion aber auch durch starke  $\sigma$ -Donoren L = NH<sub>3</sub> >> H<sub>2</sub>O als Zuschauerliganden gefördert (Grundzustand des hochgeladenen Kations stabilisiert).

## Hinweise auf einen Id- bzw. D-Mechanismus

liefert die Messung der Reaktionsgeschwindigkeit unter extremem Druck:

Reaktionshemmung und ein positiver Wert für das Aktivierungsvolumen  $\Delta V^{\neq}$ 

 $\Delta V^{\neq} = V$  (Akt. Kompl. od. ZP) - V (Edukte) > 0, falls V (Edukte) < V (Akt. Kompl. od. ZP) sowie eine positive Aktivierungsentropie  $\Delta S^{\neq} < 0$  (Zunahme der Teilchenzahl im ÜZ bzw. ZP unter Berücksichtigung der Solvatationsentropie).

Geschwindigkeitsbestimmender Schritt ist i.d.R. der Dissoziationsschritt. In diesem Fall hängt die RG nur von Konzentration bzw. Aktivität c(ML<sub>n</sub>) ab (Geschw.gesetz 1. Ordnung).

Wenn die RG bei Zunahme der Größe der variierten Zuschauerliganden wächst, kann dies ein Hinweis auf einen D(I<sub>d</sub>) Mechanismus sein.

# 2.1.2 Radikalische Ligandsubstitution

Durch Thermolyse oder Photolyse wird ein offenschaliges Starterradikal gebildet, das die Propagation der Radikalkettenreaktion induziert. Die meisten Übergangsmetallhydride reagieren mit CCl<sub>4</sub> wie folgt:

 $[CpMo(CO)_{3}H] + CCI_{4} \longrightarrow [CpMo(CO)_{3}CI] + HCCI_{3}$ 

Radikalreaktionen liegen wahrscheinlich auch den C-C Kupplungsmethoden zwischen Kupferorganylen und und R-I zugrunde:

 $Cu-R' + R-I \longrightarrow Cu-I + R-R'$ 

# 2.1.3 Metathetische Ligandsubstitution W

Die meisten Metathesereaktionen laufen über eine Sequenz aus 2+2 Cycloaddition zum Vierring-Intermediat gefolgt von Cycloreversion ab.

Metathese (Austausch) in <u> $\pi$ -Bindungssystemen</u>:  $\pi$ -Bindungsmetathese (schrittweise)



Metathese von  $\sigma,\pi$ -Donorliganden OR, CI, NR<sub>2</sub> etc. mit Ligand-Lone-Pair an Lewis-Säuren mit metallzentriertem LUMO:

σ-Bindungsmetathese (schrittweise)



Metathese <u>von reinen  $\sigma$ -Donorliganden</u> ( $\sigma$ -Bindungsmetathese): Voraussetzung sind das Vorhandensein einer Elektronenmangelsituation am Metallzentrum und eine sehr polare M-C Bindung.

Während der Alkylgruppenaustausch in Aluminiumorganylen (oder mit Seltenerdmetallorganylen) wahrscheinlich über 4-Ring-Intermediate mit Mehrzentrenbindungen abläuft

 $AIMe_3 + AIEt_3 \implies AIMe_2Et + AIEt_2Me$ 

nimmt man bei der Hydrogenolyse oder Silanolyse einer Seltenerdmetall-Kohlenstoff-Bindung zugunsten der i.d.R. thermodynamisch etwas stabileren M-H Bindung durch Reaktion mit Wasserstoff oder Si-H Bindungen ein 4-Ring-Übergangszustand an:

 $\sigma$ -Bindungsmetathese (konzertiert,  $I_a$ )

2.1.4 Ligandsubstitution durch Sequenz aus oxidativer Addition - reduktiver Eliminierung bzw. inverse Sequenz, drei Beispiele

 $\begin{bmatrix} \mathsf{Pt}(\mathsf{CH}_3)\mathsf{CI}(\mathsf{PR}_3)_2 \end{bmatrix} + \begin{bmatrix} \mathsf{CI}_2 & \longrightarrow & [\mathsf{Pt}(\mathsf{CH}_3)\mathsf{CI}_3(\mathsf{PR}_3)_2] \\ \Delta & \longrightarrow & [\mathsf{Pt}\mathsf{CI}_2(\mathsf{PR}_3)_2] + & \mathsf{CI}\text{-}\mathsf{CH}_3 \end{bmatrix}$ 

Intermolekulare CH-Aktivierung:

18-VE  $[Cp^*Rh(PR_3)(Me)H] \implies [Cp^*Rh(PR_3)] + Me-H$  $[Cp^*Rh(PR_3)] (16-VE) + RH \implies [Cp^*Rh(PR_3)(R)H]$ RH liefert thermodyn. stabileres Produkt bei R= H, Aryl.

**Metall-Basen** besitzen ein metallzentriertes HOMO ("lone pair"), das durch Protonen oder Lewis-Säuren wie BF<sub>3</sub>, AlMe<sub>3</sub> angegriffen werden kann. So wird im folgenden d<sup>2</sup>-Mo(+4)-Komplex formal das Elektrophil H<sup>+</sup> durch D<sup>+</sup> substituiert eingeleitet durch Protonierung des Metalls (gebunden am Mo ist H<sup>+</sup> dann allerdings zu H<sup>-</sup> umgepolt, Mo im kation. ZP dann formal 6+):

 $[Cp_2Mo(H)_2] + D^+ X^- \longrightarrow [Cp_2Mo(H)_2D]^+ X^ [Cp_2Mo(H)_2D]^+ X^- + Base \longrightarrow [Cp_2Mo(H)(D)] + HB^+X^-$ 

# 2.1.5 Katalytische Ligandsubstitution W

# A Basenkatalysierte Hydrolyse, D<sub>cb</sub>

Voraussetzungen:

-acide Protonen des koordinierten Amins,
-hohe positive Ladung des Metallzentrums günstig,
-sterisch anspruchsvollere Liganden begünstigen D<sub>cb</sub>

[Co(MeNH<sub>2</sub>)<sub>5</sub>X] <sup>2+</sup> reagiert mit H<sub>2</sub>O / OH<sup>-</sup> 100.000 mal schneller als [Co(NH<sub>3</sub>)<sub>5</sub>X] <sup>2+</sup>.

Erhöhte Labilität trotz geringerer NH-Acidität und höheren sterischen Anspruchs, da Dissoziation geschwindigkeitsbestimmend ist, Abnahme des sterischen Drucks,  $\rightarrow$  elektronische und sterische Stabilisierung des tby-Intermediats.

## Kriterien:

Die Ladungstrennung der anionischen Abgangsgruppe im Übergangszustand der Dissoziation ist für den konjugierten Basenkomplex mit [L<sub>n</sub>M=NHR] (s.o.) leichter als für die korrespondierende Säure.

#### Indizien:

Messung des kinet. Isotopeneffektes / Geschwindigkeit verringert sich mit H /D-Austausch  $\rightarrow D_{cb}$ 

# B Säurekatalysierte Hydrolyse, dissoziativ über konjugierte Säure, D<sub>ca</sub>

<u>Voraussetzungen:</u> -freies Elektronenpaar od. HOMO am Fluchtliganden

Insbesondere bei schlechten, basischen oder nucleophilen <u>anionischen</u> Abgangsgruppen wird durch elektrophilen Angriff eines freien Elektronenpaars des Liganden die Ladungstrennung im Übergangszustand zum Zwischenprodukt begünstigt. Das sich bildende Metallkation trennt sich dissoziativ leichter von einer neutralen als von einer anionischen Fluchtgruppe.

<u>Beispiele:</u> Säurekatalysierte Hydrolyse der Co(III)-F Bindung eines Ethylendiamin (en) Komplexes



Die Option eines katalytischen D<sub>ca</sub> Mechanismus bewirkt, dass anionische Liganden (F, Cl, OH, H, CH<sub>3</sub>) unter protischen Bedingungen in Bezug auf ihre Substitution (z.B. Hydrolyse durch Wasser, Am(m)inolyse durch NH<sub>3</sub>) kinetisch labiler als die im gebund. Zustand nicht-basischen Neutralliganden NR<sub>3</sub> und PR<sub>3</sub> sind.

# Verallgemeinerung des D<sub>ca</sub> Mechanismus: Dissoziative Substitution anionischer Fluchtgruppen induziert durch Angriff eines Elektrophils:

M-X Dissoziation in Trispyrazolylborat(1-) Tripod-Komplexen wird induziert durch Bildung eines ZP aus Ligand und Elektrophil.



HgCl<sub>2</sub> als Elektrophil, Pt-C Bdg. als Nucleophil (HOMO):

 $[Pt(CH_3)CI(PR_3)_2] + HgCI_2$  $\longrightarrow [PtCI_2(PR_3)_2] + CI-Hg-CH_3$ 

## C Single-Electron-Transfer (SET)-katalysierte Substitution D<sub>et</sub> W

Offenschalige Spezies, z.B. 19-VE-Spezies, dissoziieren leichter, 17-VE-Spezies assoziieren leichter als 18-VE-Spezies. <u>Beispiel 1:</u> Cluster aus 3 x 16 VE Ru(CO)<sub>4</sub> Fragmenten

| Ru <sub>3</sub> (CO) <sub>12</sub> + e <sup>-</sup>    | > | [Ru <sub>3</sub> (CO) <sub>12</sub> ] <sup>-</sup> SET                                               |
|--------------------------------------------------------|---|------------------------------------------------------------------------------------------------------|
| (48-VE, rel. inert)                                    |   | (49-VE, labil bzgl. D)                                                                               |
| [Ru <sub>3</sub> (CO) <sub>12</sub> ] <sup></sup>      |   | [Ru <sub>3</sub> (CO) <sub>11</sub> ] <sup>–</sup> + CO<br>(47-VE, labil bzgl. A)                    |
| [Ru <sub>3</sub> (CO) <sub>11</sub> ] <sup>-</sup> + L |   | [Ru <sub>3</sub> (CO) <sub>11</sub> L] <sup>–</sup><br>(49-VE, labil bzgl. D od<br>Reduktionsmittel) |

 $[Ru_{3}(CO)_{11}L]^{-} + Ru_{3}(CO)_{12} \longrightarrow [Ru_{3}(CO)_{11}L] + [Ru_{3}(CO)_{12}]^{-}$ Ketten-Propagation via SET

 $Ru_3(CO)_{12} + L \longrightarrow [Ru_3(CO)_{11}L] + CO$ 

Hinweis auf  $D_{et}$  / SET-Mechanismus, z.B. bei L = PR<sub>3</sub>: Zugabe von Elektronen / Tropfen Na-Ketyl Na[Ph<sub>2</sub>CO] (blau) führt zur Erhöhung der RG um Faktor >10.000.

#### Beispiel 2:

Die Handelsform Chromtrichlorid-Hexahydrat [Cr(H<sub>2</sub>O)<sub>4</sub>Cl<sub>2</sub>]Cl x 2 H<sub>2</sub>O sind dkl-grüne Kristalle, weitgehend wasserunlöslich. In Gegenwart katalyt. Mengen Zn-Staub oder eines Eisennagels lösen sich die Kristalle dagegen rasch in Wasser zu einer violetten Lösung.

Erklärung: SET löst Hydrolyse + Hydratation aus.

| $ \begin{array}{ll} [Cr^{III}(H_2O)_4CI_2]^+ + 1e^- & \longrightarrow [Cr^{II}(H_2O)_4CI_2] \\ \text{Kinet. inert} & \text{SET} & \text{kinet. labil bzgl. Subst.} \end{array} $ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $[Cr^{II}(H_2O)_4CI_2] + 2 H_2O \longrightarrow [Cr^{II}(H_2O)_6]^{2+} CI^-, CI^-$                                                                                               |
| $[Cr^{II}(H_2O)_6]^{2+} + Cr^{III}(H_2O)_4CI_2]^+ \longrightarrow [Cr^{II}(H_2O)_4CI_2] + [Cr^{III}(H_2O)_6]^{3+}$                                                               |
| $ [Cr(H_2O)_4Cl_2]Cl \ge 2 H_2O \longrightarrow [Cr^{III}(H_2O)_6]^{3+}+ 3 Cl^- aq. $<br>dkl-grün, wenig lösl. violett, löslich                                                  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                             |

64

#### **Beispiel 3**:

Bei Reaktionen elektronenreicher Nucleophile insbes. mit sterisch abgeschirmten und elektronenarmen Metallzentren (z.B. d<sup>0</sup>-Konfiguration) konkurrieren i.d.R. Redoxreaktionen (Elektronentransfer) mit der Ligandsubstitution (Nucleophiltransfer):

## Prinzip:

Rascher SET löst Wechsel von A zu D Mechanismus aus

A-Mechanismus: zu einfach um wahr zu sein WCl<sub>6</sub> + MeLi  $\longrightarrow$  Li<sup>+</sup> [MeWCl<sub>6</sub>]<sup>-</sup> Li<sup>+</sup> [MeWCl<sub>6</sub>]<sup>-</sup>  $\longrightarrow$  MeWCl<sub>5</sub> LiCl

Statt dessen SET-D-Mechanismus (Radikalkettenreaktion):  $WCl_6 + MeLi \longrightarrow Li^+ [WCl_6]^- + Me \cdot SET$   $Li^+ [WCl_6]^- \iff LiCl + [WCl_5] \quad Anion: D rasch$   $[WCl_5] + MeLi \longrightarrow Li^+ [MeWCl_5]^- KZ 5: A rasch$  $Li^+ [MeWCl_5]^- + WCl_6 \longrightarrow Li^+ [WCl_6]^- + MeWCl_5 SET$ 

## 2.1.6 Aspekte der Stereoselektivität der Ligandsubstitution, Isomerisierungen, Pseudorotation, kinetischer *trans*-Effekt

Stereochemische Umwandlungen der Konfiguration von Komplexen verlaufen....

- schrittweise über assoziative oder dissoziative Mechanismen, d.h. durch Änderung der KZ, Bindungsbruch oder
- konzertiert ohne Bindungsbruch durch sogenannte
   Pseudorotation

# **KZ 4 tetraedrisch**

Tetraedrische Komplexe mit metallzentrierter Chiralität [ML<sup>1</sup>L<sup>2</sup>L<sup>3</sup>L<sup>4</sup>]<sup>m+</sup> sind nur in Ausnahmefällen konfigurativ stabil. Es existieren viele Wege der Racemisierung bzw. Inversion der Konfiguration:



Einfluss von d-Elektronenkonfiguration und VE-Zahl:  $d^{10}$  Komplexe mit 18-VE  $Ni(CO)_4$ ,  $Ni(CO)_2(PPh_3)_2$ ,  $Ni\{P(OEt)_3\}_4$  bzw.  $Cu(X)L_3$ ,  $ZnX_2L_2$  reagieren i.d.R. <u>dissoziativ</u> über KZ 3 (trig. planar), da t<sub>2</sub>-Orbitale gemäß LF-T / antibindende MO gemäß MO-T gefüllt sind. Assoziation an KZ 3 führt zu Racemisierung.

d<sup>8</sup> NiBr(CI)(PPh<sub>3</sub>)(PMe<sub>3</sub>) (16-VE) würde mit hoher Wahrscheinlichkeit über <u>Pseudorotation</u> racemisieren, da der quadr.-planare ÜZ für die 3d-Metalle bei schwachem Ligandenfeld nur wenig instabiler ist als die tetraedr. Konfiguration.



d<sup>7</sup> [CoBr<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>] (15-VE) oder d<sup>5</sup> [FeBr<sub>4</sub>]<sup>-</sup> (13-VE) reagieren <u>assoziativ zu ZP mit</u> <u>KZ 5</u>. Grund: niedrige VE + niedrige KZ, wobei der destabilisierende Effekt der hohen d-Elektronenkonfiguration s.o. (hoher Besetzungsgrad des t<sub>2</sub>-Satzes) fehlt.

# KZ 5 trig.-bipyramidal

D-Mechnismen:

Komplex-Spezies oder Assoziate der KZ 5 sind stereochemisch sehr labil. Der Dissoziationsschritt kann aus axialer oder equatorialer Position erfolgen.

A-Mechanismen:

Die Assoziation an Komplexe der KZ 5 erfolgt über die drei Angriffs-richtungen in der Äquatorebene



## Pseudorotation (konzertiert):

Axiale (a) wie equatoriale (e) Positionen können zudem über Berry- oder Turnstyle-Pseudorotation in einem Gleichgewicht niedriger Energiebarriere austauschen, d.h. Positionen wechseln.

#### <u>A Berry-Pseudorotation:</u> W

Festhalten eines Liganden e: dann konzertiert über einen quadratisch-pyramidalen ÜZ



#### **B** Turnstyle-Rotation:

Festhalten zweier Liganden e + a', dann konzertierter left- or right-turn der drei anderen. ÜZ energetisch etwas anspruchsvoller als Berry-PR.



# KZ 4 quadrat.-planar

Quadr.-planare Komplexe existieren in Form verschiedener Diastereomere, im einfachsten Fall, einem *cis*- und *trans*-Diastereomer.

Die wenigen quadr.-planaren Komplexe der 3d-Metalle (mit starkem Ligandenfeld, z.B. L<sub>2</sub>Ni(X)A mit X = CN, L = PPh<sub>3</sub>) können über eine Pseudorotation isomerisieren, da die tetraedr. Konfiguration energetisch nur wenig über der quadr.-planaren liegt:



trans

Häufig besitzen derartige d<sup>8</sup>-Nickel(II)-Phosphin-Komplexe gar einen Grundzustand, der zwischen quadr.-planarer und tetraedr. Konfiguration liegt (XRD-Strukturanalyse).

cis

Konfigurativ stabil sind hingegen die d<sup>8</sup>-Komplexe der 4d und 5d-Metalle

<u>Assoziative Mechanismen A, Ia dominieren:</u> Nucleophil nähert sich dem Metallzentrum entlang der Achse senkrecht zu der Ebene der Liganden über qpy ÜZ und Bildung einer trigonalen Bipyramide (ZP), die das Nucleofug X und das Nucleophil Y in der Äquatorialebene enthält.

Häufig übernimmt das in hoher Konzentration vorliegende koordinierende Lösungsmittel (Sol = H<sub>2</sub>O, MeCN, dmso) die Rolle der Stabilisierung des tby-ZP, bzw. der Labilisierung der M-X Bindung.



Assoziative Mechanismen werden durch sterisch anspruchsvolle Liganden inhibiert (dissoziative dagegen gefördert). So reagiert [Pt(Et<sub>5</sub>dien)Cl]<sup>+</sup> assoziativ um den Faktor 10<sup>5</sup> mal langsamer mit Wasser ab als [Pt(H<sub>5</sub>dien)Cl]<sup>+</sup> (dien = N-substituiertes Ethylentriamin R<sub>2</sub>N-C<sub>2</sub>H<sub>4</sub>-NR-C<sub>2</sub>H<sub>4</sub>-NR<sub>2</sub>, R = Et, H). Dieser Effekt wird bei hohem pH verstärkt, da der NHfunktionelle Ligand alternativ über einen D<sub>cb</sub> Mechanismus den Dissoziationsschritt zu einem Intermediat der KZ 3 fördern kann. In der Regel sind

dissoziative Mechanismen an quadr.-planaren Komplexen jedoch auf die Chemie in nicht-koord. Lösungsmitteln beschränkt.

Es gilt: Besitzt das d<sup>8</sup>-Metallzentrum bereits ein Set an sterisch anspruchsvollen, starken  $\sigma$ , $\pi$ -Donorliganden, so können gute Fluchtgruppen auf dissoziativem Wege austreten, wobei ein kurzlebiges, isomerisierbares T-förmiges 14-VE-Intermediat stabilisiert wird.

Beispiele:

Lewis-Sre.-katalysierte Dissoziation / Isomerisierung:

| Ļ       |    | Ļ     |             | +      | ст <sup>–</sup> | ÇĻ     |
|---------|----|-------|-------------|--------|-----------------|--------|
| L-Pt-Cl |    | LPt   | <del></del> | L-Pt-L |                 | L-Pt-L |
| I<br>R  | Cl | <br>R |             | I<br>R |                 | <br>R  |

D- /  $I_d$ -Mechanismus: [PtMe<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub>] + P<sup>i</sup>Pr<sub>3</sub>  $\longrightarrow$  [PtMe<sub>2</sub>(PPh<sub>3</sub>)( P<sup>i</sup>Pr<sub>3</sub>)] [RhCl(PPh<sub>3</sub>)<sub>3</sub>] + P<sup>i</sup>Pr<sub>3</sub>  $\longrightarrow$  [RhCl(PPh<sub>3</sub>)<sub>2</sub>(P<sup>i</sup>Pr<sub>3</sub>)]

Die Substitutionsgeschwindigkeit (A, Ia)an quadr.-planaren d<sup>8</sup>-Metallzentren hängt ab:• vom Zentralatom (LF-Aktivierungsenergie, s.u.)Au(III) ← Pt(II) → Pd(II) → Ni(II)ca. 10<sup>4</sup>10<sup>6</sup> inert

Geschwindigkeiten

Ausnutzung im Cytostaticum "Cisplatin" [Pt(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>] (inhibiert DNA-Replikation d. Koord. der Nucleobasen)

- von der Polarisierbarkeit (Weichheit) der eintretenden Gruppe: Es gilt am weichen Pt<sup>2+</sup> Zentrum eine ganz andere, z.T. inverse Nucleophilie-Skala als am harten sp<sup>3</sup>-Kohlenstoffzentrum: F << Cl < Br < I OR<sub>2</sub> << SR<sub>2</sub> NR<sub>3</sub> << PR<sub>3</sub>
- vom M-L-Kovalenzanteil der austretenden Gruppe: Geschwindigkeit der Subst. nimmt ab OH<sub>2</sub> > CI > I > N<sub>3</sub> > SCN > NO<sub>2</sub> > CN
- vom kinetischen trans-Effekt: W Elektronischer Effekt eines nicht reagierenden, transdirigierenden Liganden "T" auf die Austauschgeschwindigkeit des dazu trans-ständigen Liganden. Beobachtet bevorzugt in quadr.-planaren (und oktaedr.) Komplexen. Zunahme der Wirkung des trans-Effektes: Pt(II) > Pd(II) > Ni(II)

<u>Erklärung des kinetischen trans-Effektes von T:</u> <u>Stabilisierung des Übergangszustandes</u> T muss sich nicht länger die σ,π-Bindungsanteile mit den exakt *trans*-ständigen Liganden teilen, wenn eine
quadratisch-planare Anordnung in eine tby-artige (bei A/ $I_a$ ) bzw. T-förmige (bei D  $/I_d$ ) übergeht.

Die Verstärkung der M-T-Bindung im ÜZ kompensiert einen Teil der aufzubringenden Aktivierungsenergie für die Bindungsverlängerung zum Nucleofug X):



Aus  $\sigma$ - und  $\pi$ -Bindungseffekten ergibt sich die folgende Reihe *trans*-dirigierender Liganden, geordnet nach **Zunahme des (kinetischen)** <u>trans-Effektes</u>: F, H<sub>2</sub>O, OH < NH<sub>3</sub>  $\leq$  py < CI < Br < I, SCN, NO<sub>2</sub><sup>-</sup>, S=C(NH<sub>2</sub>)<sub>2</sub>, Ph < SO<sub>3</sub><sup>2-</sup> < PR<sub>3</sub>, AsR<sub>3</sub>, SR<sub>2</sub>, CH<sub>3</sub> < H < NO, C<sub>2</sub>H<sub>4</sub>  $\leq$  CO  $\leq$  CN

Ausnutzung des *trans*-Effektes bei der stereoselektiven Synthese geometrisch-isomerer quadr.-planarer Komplexe unter kinetischer Kontrolle (bei reversiblen Reaktionen und D<sub>ca</sub> Katalyse gibt es allerdings Abweichungen vom kinet. vorgezeichneten Weg).

Stereoselektive Synthese quadr.-planarer Pt-Komplexe



Zur Anwendung kommt T-Sequenz: NH<sub>3</sub> < py < CI < Br

#### **KZ 6 oktaedrisch**

Oktaedrische Komplexe sind in der Regel konfigurativ stabiler als solche mit KZ 4 bzw. 5, insbesondere wenn die Zahl möglicher Isomerisierungswege durch Chelatliganden exakt vorgegebenen Bisswinkels und mit rigidem Rückgrat stark eingeschränkt wird. Zwei Chelatliganden reichen häufig nicht aus, um eine Racemisierung auf dissoziativem Weg zu verhindern, sie verhindern allenfalls eine Berry-Pseudorotation des ZP mit KZ 5.

Die Pfeile zeigen die Angriffsrichtung in der Äquatorebene des Intermediates aus D



Daraus ergeben sich statistisch je nach Orientierung der beiden Chelatliganden (eq/eq od. eq/ax) unterschiedliche Isomerisierungpfade für das  $\Lambda$ -Enantiomer



Stereoselektive Substitutionen sind jedoch nach streng konzertierten Interchange-Mechanismen möglich, z.B. wenn Subst. von X durch Y nur ein Diastereomer liefert. Darüber hinaus existieren für oktaedrische Tris-Chelatkomplexe zwei konzertierte Racemisierungswege der Pseudorotation:

A <u>Bailar-Twist:</u> trigonale Verdrillung um echte C<sub>3</sub>-Achse W



**B** <u>**Ray-Dutt-Twist:</u>** rhombische Verdr. um pseudo-  $C_3$ -A.</u>

Im Falle symmetrischer A-A Liganden entstehen aus dem  $\Lambda$ -Enantiomer (links) das  $\Delta$ -Enantioner (rechts)

Im Falle unsymmetrischer A-A' Chelatliganden bleibt beim trigonalen Twist bei der Inversion die *fac*-Anordnung erhalten, während beim rhombischen Twist aus *fac*- ein *mer*-Diastereomer entsteht.

Festhalten v. A,A,A, Synchron-Verdrillung von A',A',A'.



Festhalten v. A-A', A, Synchron-Verdrillung von A', A'-A.

- 2.2 Thermodynamische Stabilität / Instabilität versus kinetische Inertheit / Labilität von Komplexen
- 2.2.1 Gleichgewichte der Ligandsubstitution, Stabilitätstrends, Chelateffekt, HSAB Prinzip, Irving-Williams-Reihe, *trans*-Einfluss W

Die Komplex-Bildungskonstante (Stabilitätskonstante) beschreibt das Gleichgewicht der Verdrängung eines oder mehrere Liganden durch andere Liganden.

Beispiel: Die Bildung eines Tetracyanido-Cadmiumkomplexes in Wasser ist ein n-Stufen-Prozess (n = 4), charakterisiert durch vier Stufenstabilitätskonstanten  $K_{1-4}$ . W

Erste Stufe K<sub>1</sub>:  $k_1$  $[Cd(H_2O)_6]^{2+} + CN^- \qquad \underset{k_{-1}}{\longrightarrow} \qquad [Cd(CN)(H_2O)_5]^+ + H_2O$ 

$$[Cd(CN)(H_2O)_5]^+$$

$$K_{1} = \frac{10^{5.48} \text{ J/mol}}{[Cd(H_{2}O)_{6}]^{2+} \cdot [CN^{-}]} = \frac{10^{5.48} \text{ J/mol}}{pK_{1} = -5.48}$$

| k1 groß:              | $[Cd(H_2O)_6]^{2+}$ |
|-----------------------|---------------------|
| k <sub>1</sub> klein: | $[Cd(H_2O)_6]^{2+}$ |
| K₁ groß:              | $[Cd(H_2O)_6]^{2+}$ |
| K <sub>1</sub> klein: | $[Cd(H_2O)_6]^{2+}$ |

kinetisch labil gegenüber  $CN^$ kinetisch inert gegenüber  $CN^$ thermodyn. instabil,  $pK_1 < 0$ thermodyn. stabil,  $pK_1 > 0$ 

Thermodynamische Stabilität der Stufen bei 25°C (vereinfachte Darst.): $Cd^{2+}aq + CN^{-}$  $\Longrightarrow$  $Cd(CN)^{+}aq$  $K_{1} = 10$ 5.48 $pK_{1} = -5.48$  $Cd(CN)^{+}aq + CN^{-}$  $\Longrightarrow$  $Cd(CN)_{2}aq$  $K_{2} = 10$ 5.12 $pK_{2} = -5.12$  $Cd(CN)_{2}aq + CN^{-}$  $\Longrightarrow$  $Cd(CN)_{3}^{-}aq$  $K_{3} = 10$ 4.63 $pK_{3} = -4.63$  $Cd(CN)_{3}^{-}aq + CN^{-}$  $\Longrightarrow$  $Cd(CN)_{4}^{2-}aq$  $K_{4} = 10$ 3.55 $pK_{4} = -3.55$ 

 $Cd ^{2+}aq + 4 CN^{-} \implies Cd(CN_{4}^{2-}aq \quad K_{B} = 10 \ ^{18.78} \ pK_{B} = -18.78$  $K_{B} = \prod K_{n} \qquad pK_{B} = \sum pK_{n}$ 

$$K_{B} = \frac{[Cd(CN)_{4}^{2} aq]}{[Cd^{2} + aq] \cdot [CN^{-}]^{4}} = K_{1} \cdot K_{2} \cdot K_{3} \cdot K_{4} = \Pi K_{n} = 10^{-\Sigma} pK_{n}$$

0

Die stetige Abnahme der Stufenkonstanten K<sub>1</sub> > K<sub>2</sub> > K<sub>3</sub> > K<sub>4</sub> ist in gekoppelten Glgew. die Regel, da die statistische Wahrscheinlichkeit eines reaktiven Stoßes mit der Anzahl noch zu substituierender Aqualiganden und auch die Affinität der Lewis-Säure gegenüber Cyanid mit zunehmenden Substitutionsgrad abnimmt. Ausnahme bei spin-crossover: K<sub>2</sub> hs [Fe(bipy)<sub>2</sub>]<sup>2+</sup> < K<sub>3</sub> ls [Fe(bipy)<sub>3</sub>]<sup>2+</sup>

Komplex-<u>B</u>ildungskonstante K<sub>B</sub> (Stabilitätskonst.) Komplex-<u>D</u>issoziationskonstante K<sub>D</sub> (Zerfallskons.)

 $K_B = K_D^{-1}$   $pK_B = -lg K_B$   $K_B = 10^{-pK_B}$ 

Je größer K<sub>B</sub> und je negativer pK<sub>B</sub>, desto thermodynamisch stabiler der Komplex

Aus den Stufenstabilitätskonstanten  $K_1$  bis  $K_4$  (n= 1-4) lässt sich die prozentuale Verteilungskurve für die im Glgew. stehenden Cd-Komplexspezies in Abhängigkeit von der Cyanidkonzentration bei pH 7 berechnen:



**pH-Abhängigkeit von Komplexgleichgewichten** Viele organische Liganden und alle anionischen Liganden sind protonierbar. Daher ist verständlich, dass gerade bei Liganden mit einer hohen Protonenaffinität (Gasphase) bzw. Basizität (Lösung) die M-L dative Bindung des Elektronenpaares der Ligand-Lewis-Base mit der L-Protonierung konkurriert.

## Kurzum: W

- H<sup>+</sup> und M<sup>n+</sup> stehen im Wettbewerb um Ligand Ionepair.
- Das Ligand-Protolyse- und Komplexbildungs-Gleichgewicht sind über den pH gekoppelt.
- Starke c(H<sup>+</sup>) Erhöhung führt zu Dekomplexierung nahezu eines jeden Komplexes und Bildung von LH<sup>+</sup> und [M(H<sub>2</sub>O)<sub>m</sub>]<sup>n+</sup>
- Protische Liganden HX von Anionen X setzen sich durch Wegpuffern von H<sup>+</sup> im Basischen oder

80

Verwendung von Salzen NaX im Komplex-Gleichgewicht durch:

 $[Cr(H_2O)_6]^{3+} + 3 Hacac \implies [Cr(acac)_3] + 3 H_3O^+ + 3 H_2O$ 

 Zu starke Erhöhung von c(OH<sup>-</sup>) kann ebenfalls zur Dekomplexierung und Bildung, sogar Ausfällung von Metallhydroxid-Spezies führen:

z.B. 3 Na(acac) +  $[Cr(OH)_6]^3 = [Cr(acac)_3] + 3 Na+ + 6 OH^-$ 

z.B.  $HN=C(NMe_2)_2 + [Fe(OH_2)_6]^{3+} \rightarrow Fe(OH)_3 + {}^{+}H_2N=C(NMe_2)_2$ Die Verteilung der verschiedenen Spezies im Glgew. wird über potentiometrische Titrationen (d.h. pH-Messung bei kontinuierlicher Zugabe von Base zur Metall-Ligand-Pufferlösung) ermittelt. Beispiel:

1:1:1 Mischung von bpy, IDA-H<sub>2</sub> / IDA, Cu(NO<sub>3</sub>)<sub>2</sub> Ig $\beta$  entspricht den individuellen

Stabilitäts/Protolysekonstanten K = 10 exp(lg $\beta$ )



#### Stabilitätstrends bei Komplexen A Chelateffekt W

Komplexe mit mehrzähnigen Chelatliganden sind thermodynamisch stabiler ( $\Delta$ G, K<sub>B</sub>) als vergleichbare Komplexe mit einzähnigen Liganden, wobei gilt:  $\Delta$ G = -RT InK<sub>B</sub> (K<sub>B</sub> muß dimensionslos sein  $\rightarrow$ Verwendung von Molenbrüchen statt Aktivitäten)  $\Delta$ G =  $\Delta$ H -T $\Delta$ S bzw. K<sub>B</sub> = exp(- $\Delta$ G / RT)

**Beispiel:** 

A: monodentates Amin  $[Cd(H_2O)_6]^{2+} + 4 NH_2Me \implies [Cd(NH_2Me)_4(H_2O)_2]^{2+} + 4 H_2O$  Translationsfreiheitsgrade von 5 Teilchen vs.  $\rightarrow K_{B}$  aq = 3.3 x 10<sup>6</sup> l<sup>4</sup> / mol<sup>4</sup>

B: bidentates Chelatamin "en"  $[Cd(H_2O)_6]^{2+} + 2 H_2N-(CH_2)_2-NH_2 \iff [Cd(en)_2(H_2O)_2]^{2+} + 4 H_2O$ Translationsfreiheitsgrade von 3 Teilchen vs. 5 Teilchen  $\rightarrow K_B aq = 4.0 \times 10^{10} l^2 / mol^2$ 

Komplex ca. 4 Größenordnungen thermodyn. stabiler

|   | lg K <sub>B</sub> | lg K <sub>B</sub> | $\Delta H_B$ | $\Delta S_B$ | T∆S <sub>B</sub> | $\Delta G_B$ |
|---|-------------------|-------------------|--------------|--------------|------------------|--------------|
|   | mol/l             | mol/Σmol          | kJ/mol       | J/K mol      | kJ/mol           | kJ/mol       |
| Α | 6.55              | 13.53             | -57.3        | -67.3        | -19.9            | -37.4        |
| В | 10.62             | 14.11             | -56.5        | +14.1        | +4.2             | -60.0        |

**Thermodynamische Erklärung des Chelateffektes:** Die Bindungsenthalpien der M-N-Bindung sind im **Fall A** und **Fall B** nahezu gleich. Daher sind die Reaktionsenthalpien  $\Delta$ H nahezu gleich. Der enthalpische Beitrag  $\Delta(\Delta H)$  zum Chelateffekt  $\Delta G_B$  ist vernachlässigbar, nicht dagegen der entropische Beitrag  $\Delta(\Delta S)$ :

Da im **Fall B** die Zahl translatorisch beweglicher Teilchen zunimmt, steigt der Grad der Unordnung, die Entropie wird positiv  $\rightarrow$  der Energieterm {-T $\Delta$ S} trägt zur Absenkung der

freien Reaktionsenthalpie  $\Delta G$  um 22.6 kJ/mol bei, was einer Stabilisierung des Komplexes um den Faktor 10<sup>4</sup> (!!) bedeutet:  $\Delta G \sim -\ln K$ 

## **Faustregel:** $\Delta(\Delta S) \cong n \times 25-30 \text{ J / K mol}$

5 Teilchen

für n Chelatringe, wobei jeder Chelatring bei 300 K ca. 10-15 kJ / mol zu  $\Delta$ G beiträgt.

Der Chelateffekt ist ein Entropie-Effekt, wobei neben Entropieänderungen infolge translatorischer Freiheitsgrade auch Änderungen rotatorischer Freiheitsgrade und Solvatationsfernordnungen berücksichtigt werden müssen !

Die Betrachtung von Ig K<sub>B</sub> unter Verwendung von Molenbrüchen zeigt, dass der **Chelateffekt insbesondere in hochverdünnten Lösungen groß** ist (Konzentration des freigesetzten Solvenliganden gering im Vergleich zur Summe aller Solvensmoleküle).

<u>Kinetische Erklärung des Chelateffektes:</u> <u>Besetzung der ersten Koordinationsstelle</u>:  $L'_{n}M \leftarrow L$  versus  $L'_{n}M \leftarrow L^{L}$ : Bei gleicher Konzentration von L und L^L ist die Wahrscheinlichkeit für einen reaktiven Stoß mit dem Koordinationszentrum konzentrationsabhängig und für L bzw. L^L nahezu gleich groß.

## Besetzung der zweiten Koordinationsstelle:

Die effektive Konzentration des zweiten Donorzentrums von L^L am Komplexzentrum ist infolge der Verknüpfung mit dem Erstdonor höher als die Konzentration bei ungehinderter translatorischer Bewegungsfreiheit (Stoßtheorie). Die Geschwindigkeit der Substitution ist folglich höher als bei einem in der Lösung frei beweglichen zweiten Liganden L, die Aktivierungsenergie für L^L Abspaltung höher:  $E_a \sim -lnk$ 

# Die Größe des Chelateffektes hängt ab

- von der elektronischen Struktur des Zentralions (hs,ls, J.-Teller)
- vom "Biss" des Liganden (Abstand der Donoratome bei spannungsfreier Ausrichtung der freien Elektronenpaare auf das Zentralatom).
- von der Ladung
- von der Zähnigkeit
- vom räumlichen Bau und der konformativen Beweglichkeit der Liganden (makrocyclicher Effekt).

Beispiele für prominente Chelatliganden: Polyamino-essigsäuren /-acetate (Komplexone)



Nobelpreis: Kronenether- (Pederson) und Kryptand-Komplexe (Lehn)



Dibenzo-14-C-4



Krone C(rown)

12-C-4





Podant (hier tripodal)

Kryptand [m,n,l] = [2,2,2]

#### Übersicht über die stabilsten Komplexe

| ronenether | Hohlraum [pm]                                  |
|------------|------------------------------------------------|
| 2-C-4      | 120-150                                        |
| 5-C-5      | 170-220                                        |
| 3-C-6      | 260-320                                        |
| 1-C-7      | 340-430                                        |
|            | ronenether<br>2-C-4<br>5-C-5<br>3-C-6<br>1-C-7 |

Kryptate bilden  $10^5$  mal stabilere Komplexe als Kronenether. Am stabilsten sind: Li+ [2.1.1] Na+ [2.2.1] K+ [2.2.2] Natrid- und Elektrid-Salze: 2 Na + [2.2.2]  $\longrightarrow$  {Na[2.2.2]}+ Na<sup>-</sup> ("Alkalide") Na + [2.2.2]  $\longrightarrow$  {Na[2.2.2]}+ e<sup>-</sup> ("Elektride") Templat-Reaktionen unter Ausnutzung des Templat

(= Schablonen)-Effektes:

Templat-Reaktionen spielen in der Natur bei der Synthese makrocyclischer Ligandsysteme eine große Rolle. Biologisch-enzymatische bzw. biomimetische Liganden  $\rightarrow$  Bioanorganische Chemie:



#### Stabilitätstrends bei Komplexen B Irving-Williams Reihe W

Der Trend der Kristallfeldstabilisierungsenergien CFSE folgt dem inversen Trend der Ionenradien:



Ein hoher Beitrag der CFSE zur Stabilität (K<sub>B</sub>) von Komplexen ist insbes. bei oktaedrischen Komplexen mit Zunahme der Ligandefeldstärke (Ersatz von H<sub>2</sub>O durch NH<sub>3</sub>) zu erwarten.

→ Die Stabilität der *hs*-Am(m)in-Komplexe der zweiwertigen 3d-Metalle Mn<sup>2+</sup>.....Zn<sup>2+</sup> folgt in etwa dem Trend der Hydratationsenergien oder der CFSE bzw. dem inversen Trend der *hs*lonenradien: Zu erwarten wäre ein Anstieg von K<sub>B</sub> von Mn<sup>2+</sup> bis zum Max. bei *hs*-d<sup>8</sup>-Ni<sup>2+</sup>, danach Abnahme.

Nach Irving-Williams gefunden wird aber für die ersten vier Substitutionen von Aqua- durch Ammin-Liganden der Stabilitätstrend bei Tetraminkomplexen:  $Mn^{2+} < Fe^{2+} < Co^{2+} < Ni^{2+} < Cu^{2+} > Zn^{2+}$  ...ein Maximum von K<sub>B</sub> bei d<sup>9</sup>-Cu<sup>2+</sup>, der Grund: durch die JT-Verzerrung von d<sup>9</sup> werden die ersten 4 Aminliganden equatorial an Cu<sup>2+</sup> vergleichsweise zu d<sup>8</sup>-Ni<sup>2+</sup> stärker (mit besonders kurzen Cu-N Bdg.), die beiden letzten Aminliganden entsprechend viel schwächer (extrem elongiert) gebunden.

d<sup>10</sup>-Zn<sup>2+</sup> hat einen geringfügig größeren Ionenradius als Cu<sup>2+</sup>, daher wird Abnahme der K<sub>B</sub> erwartet. Letzteres hat auch einen zweiten Grund in der max. erreichbaren KZ 4 (tetraedrisch) infolge der sterisch anspruchsvollen A(m)min-Liganden, entsprechend geringer CFSE:

 $[Zn(H_2O)_6]^{2+} + 4 NH_3 \implies [Zn(NH_3)_4]^{2+} + 6 H_2O$ 

Alles was CFSE bzw. LFSE erhöht, erhöht auch K<sub>B</sub>: Is > hs, höheres > geringeres Ionenpotential Fe<sup>3+</sup> > Fe<sup>2+</sup> höhergeladene > weniger gel. M<sup>n+</sup> höher > weniger LF-aufspaltende Liganden

#### Stabilitätstrends bei Komplexen W C Thermodynamischer *trans*-Einfluss (*trans*-Effekt)

Destabilisierung d. Grundzustandes eines Komplexes: Trans-ständige starke σ-Donor-Liganden konkurrieren um das gleiche Metallorbital von σ-Symmetrie. W Trans-ständige  $\pi$ -Donor- oder  $\pi$ -Akzeptor-Liganden konkurrieren um das gleiche Metallorb. von  $\pi$ -Symm.

 $H-M-CH_3$ 



s - p - sp<sup>3</sup> σ-Donor-Beiträge OC=M=CO



π\* - d - π\* π-AkzeptorO=M=O



p - d - p π-Donor-Beiträge

Der schwächste Ligand im Regime befindet sich mit verlängerter / geschwächter Bindung *trans* zu dem Liganden mit dem größten *trans*-Einfluss:



 $R_2O < R_3N, CI^- < NO, CO, CN^-, C_2H_4 < CH_3^-, H^- < O^{2-} < N^{3-}$ 

# Stabilitätstrends bei Komplexen D HSAB-Konzept von Pearson W

R.G. Pearson, J. Chem. Ed. 64 (1987) 561

#### Weiche und harte Metall-Säuren

Weiche Säuren: geringes HOMO-LUMO Gap, Akzeptoratom mit hoher Polarisierbarkeit (niedriger positiver Ladung + großem Ionenradius), besitzen (z.B. für  $\pi$ -Rückbindungen) leicht anregbare Elektronen in energetisch hochliegendem HOMO mit überwiegend Metallcharakter), z.B. [W(CO)<sub>5</sub>], [Rh(PR<sub>3</sub>)<sub>3</sub>]+ etc., besitzen Liganden mit  $\pi$ -Akzeptor-Charakter (energetisch niedrigliegendem LUMO mit Ligandcharakter).

Harte Säuren: großes HOMO-LUMO Gap, Akzeptoratom mit geringer Polarisierbarkeit (hoher positiver Ladung + geringem Ionenradius), besitzen für  $\pi$ -Rückbindungen nur äußerst schwer anregbare Elektronen in energetisch tiefliegenden Orbitalen (niedriges HOMO überwiegend Ligandcharakter), dagegen ein energetisch hochliegendes, metallzentriertes LUMO, z.B. [WF<sub>5</sub>]+, [Re(O)<sub>3</sub>]+, [BF<sub>3</sub>] etc., Liganden mit  $\pi$ -Donor-Charakter).

#### Weiche und harte Ligand-Basen

Weiche Basen: geringes HOMO-LUMO Gap, Donoratom mit hoher Polarisierbarkeit + niedriger Elektonegativität, leicht oxidierbar, hohes HOMO (niedriges Ionisierungspotential I), gleichzeitig niedriges LUMO (hohe Elektronenaffinität EA) für  $\pi$ -Rückbindungen geeignet, z.B. CN<sup>-</sup>, I<sup>-</sup>, SR<sup>-</sup>, SR<sub>2</sub>, PR<sub>3</sub>,  $\eta^{5}$ -C<sub>5</sub>H<sub>5</sub> ....

Harte Basen: großes HOMO-LUMO Gap, Donoratom mit geringer Polarisierbarkeit + hoher Elektonegativität, schwer oxidierbar, niedriges HOMO (hohes lonisierungspotential I), gleichzeitig hohes LUMO (niedrige Elektronenaffinität EA), besitzen keine  $\pi$ -Rückbindungsfähigkeit, dafür aber ein ligandzentriertes, energetisch niedrig liegendes HOMO, das sich z.T. für  $\pi$ -Donorbindungen eignet, z.B. F<sup>-</sup>, OH<sup>-</sup>, OH<sub>2</sub> ....

Weiche Säuren und Basen besitzen ein energetisch hochliegendes HOMO energetisch tiefliegendes LUMO geringes HOMO-LUMO-Gap leicht anregbare Valenzelektronen

Harte Säuren und Basen besitzen ein energetisch tiefliegendes HOMO energetisch hochliegendes LUMO großes HOMO-LUMO-Gap schwer anregbare Valenzelektronen Beispiele:

| Harte Säuren                                                | Grenzfall                                                                    | Weiche Säuren                                                      |
|-------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|
| H+, Li+K+                                                   | Fe,Co,Ni,Cu,Zn <sup>2+</sup>                                                 | TI+, TI <sup>3+</sup>                                              |
| Be <sup>2+</sup> Sr <sup>2+</sup>                           | Sn <sup>2+</sup> , Pb <sup>2+</sup>                                          | Cd <sup>2+</sup> ,Hg <sup>2+</sup> , Hg <sub>2</sub> <sup>2+</sup> |
| Al <sup>3+</sup> In <sup>3+</sup>                           | Sb <sup>3+</sup> , Bi <sup>3+</sup>                                          | Cu <sup>+</sup> , Ag <sup>+</sup> , Au <sup>+</sup>                |
| Sc <sup>3+</sup> Co <sup>3+</sup>                           | Ru <sup>2+</sup> , Os <sup>2+</sup>                                          | Au <sup>3+</sup> , Pt <sup>4+</sup> , Te <sup>4+</sup>             |
| Ti <sup>4+</sup> Hf <sup>4+</sup>                           | Rh <sup>3+</sup> , Ir <sup>3+</sup>                                          | RSe <sup>+</sup> , RTe <sup>+</sup>                                |
| Ti <sup>4+</sup> Mn <sup>4+</sup>                           | $R_3C^+$ , NO <sup>+</sup> , BR <sub>3</sub>                                 | BH <sub>3</sub>                                                    |
| Ln <sup>3+</sup> , Ln <sup>4+</sup> , BF <sub>3</sub>       | Ln <sup>2+</sup>                                                             |                                                                    |
|                                                             |                                                                              |                                                                    |
| Harte Basen                                                 | Grenzfall                                                                    | Weiche Basen                                                       |
| F <sup>-</sup> , CI <sup>-</sup>                            | Br <sup>_</sup>                                                              | <b>I</b> -                                                         |
| $H_2O$ , $R_2O$ , $ROH$                                     | <u>S</u> O <sub>3</sub> <sup>2–</sup> , <u>N</u> O <sub>2</sub> <sup>–</sup> | R₂S, RS⁻,                                                          |
| OH, O <sup>2–</sup> , RO <sup>–</sup>                       | $N_2$ , $N_3^-$ , $PhNH_2$                                                   | SCN <sup>-</sup> ,S <sub>2</sub> O <sub>3</sub> <sup>2-</sup>      |
| RCOO <sup>-</sup> , RPO <sub>3</sub> <sup>2-</sup>          | Pyridin, Imidazol                                                            | R <sub>3</sub> P, R <sub>3</sub> As                                |
| CIO <sub>4</sub> <sup>-</sup> PO <sub>4</sub> <sup>3-</sup> |                                                                              | CO, CN⁻, RNC,                                                      |
| NO <sub>3</sub> <sup>-</sup> CO <sub>3</sub> <sup>2-</sup>  |                                                                              | $C_2H_4, C_6H_6$                                                   |
| NH <sub>3</sub> , RNH <sub>2</sub>                          |                                                                              | R⁻, H⁻,                                                            |
|                                                             |                                                                              | NHC, P-Ylid                                                        |

"Elektroneutralitäts-Prinzip" nach Pauling: In isolierbaren kovalenten Verbindungen AB<sub>n</sub> wie auch in stabilen Komplexen [MX<sub>n</sub>L<sub>m</sub>]<sup>x-/x+</sup>

gleichen sich die Ladungsdichten von A und B bzw. von M und X, L derart aus,

dass die Realladungen  $\delta^+ / \delta^-$  von A bzw. M  $\delta^+ 0 \dots +1.5$  und Ldg.summen von B bzw. X,L  $\Sigma \delta^- 0 \dots -1.5$  aufweisen.

Besonders stabile Verbindungen mit hohem kovalenten Bindungsanteil (hohem Orbital-Überlappungsintegral) entstehen durch Vereinigung harter L.-Säuren mit harten L.-Basen: WF<sub>6</sub> (flüchtig) weicher L.-Sren. mit weichen L.-Basen: W(CO)<sub>6</sub> (flüchtig). In ersteren ist der polare Anteil in der Bindung größer

Einfluss des Ionenpotentials, der Polarisierbarkeit, Delokalisierbarkeit und Oxidationsstufe auf Härte:

```
\begin{array}{ll} \label{eq:Harte:} \\ F^- > CI^- > Br^- > I^- \\ F^- > OH^- > NH_2^- > CH_3^- \\ NR_3 > PR_3 > AsR_3 \\ OH_2 > OH^- > RCO^- \\ [SiO_4]^{4-} > [PO_4]^{3-} > [SO_4]^{2-} > [CIO_4]^- \\ [O]^{2-} > [NR]^{2-} > [CR_2]^{2-} \\ TI^{3+} > TI^+ \qquad Cu^{2+} > Cu^+ \qquad Fe^{3+} > Fe^{2+} > Fe^0 \end{array}
```

<u>Elektroneutralitäts-Prinzip und Ligand-Verdrängung:</u> Komplexstabilität von [MX<sub>n</sub>] für weiche Säuren Pd<sup>2+</sup>, Pt<sup>2+</sup>, Cu<sup>+</sup>, Ag<sup>+</sup>, Au<sup>+</sup>, Hg<sup>2+</sup>: X = I > Br > CI > F Sulfide > Oxide

Komplexstabilität von  $[MX_n]$  für harte Säuren Ln<sup>3+</sup>, Al<sup>3+</sup>, Si<sup>4+</sup>, Ti<sup>4+</sup>, W<sup>6+</sup>: X = F > Cl > Br > l Oxide > Sulfide

Ligandeinfluss auf die Härte des Zentralatoms:

Harte Lig. erhöhen indirekt die Härte des Zentralatoms Weiche Lig. verringern indirekt Härte des Zentralatoms

Härte des Zentralatoms:  $BF_3 > BR_3 > BH_3$   $[WF_4] > [W(OR)_4] > [W(SR)_4]$   $[W(O)_2]^{2+} > [W(NR)_2]^{2+} > [W(S)_2]^{2+}$  $[(RO)_3Ti]^+ > [(Me_2N)_3Ti]^+ > [Cp_3Ti]^+$ 

Härte des Donors:  $OH_2 > OR_2$   $OH^- > OR^- > OSiMe_3^-$  ...ebenso N,S  $NH_3 > NR_3 > N(sp^2)$  Pyridin, Imidazol ~ N(sp) R-CN  $-CH_3 > -C_6H_5 > -CH_2Ph > C(NHC) ~ -CN$ 

#### Ligand-Verdrängungsgleichgewichte:

Harte Säuren bilden stabilere Komplexe mit harter Base Weiche Säuren bilden stabilere Komplexe mit weicher Base

 $BF_{3} \bullet SR_{2} + OR_{2} \longrightarrow BF_{3} \bullet OR_{2} + SR_{2}$   $h - w + h \qquad h - h \qquad + w$   $BH_{3} \bullet OR_{2} + SR_{2} \longrightarrow BH_{3} \bullet SR_{2} + OR_{2}$   $w - h \qquad + w \qquad \qquad \rightarrow BH_{3} \bullet SR_{2} + OR_{2}$   $w - w \qquad + h$   $[W(CO)_{5}CI]^{-} + I^{-} \longrightarrow [W(CO)_{5}I]^{-} + CI^{-}$   $w - h \qquad + w \qquad \qquad + h$   $[W(CO)_{5}CI]^{-} + I^{-} \longrightarrow [W(CO)_{5}I]^{-} + CI^{-}$   $w - w \qquad + h$ 

<u>Reaktivitätstrend von Silyl- und Stannylhalogeniden</u> Me<sub>3</sub>SiF (h - h, unreaktiv, stabile Abgangsgruppe) < Me<sub>3</sub>SiCl < Me<sub>3</sub>SiBr (h - w, reaktives Silylhalogenid)

Me<sub>3</sub>SnF (w - h, reaktiv, Fluoriddonor) > Me<sub>3</sub>SnCl > Me<sub>3</sub>SnBr (w - w, unreakt. Stannylhalogenid)

Reaktiv Sn-OR > Sn-SR unreaktiv Reaktiv CsF > CsI unreaktiv Reaktiv AgF > AgI unreaktiv Reaktiv Li-CH<sub>3</sub> > TI-CH<sub>3</sub> unreaktiv Erzwungene Grenzfälle: An einer weichen Säure verdrängt harte, starke Base die weiche, schwache Base: MeHg-Br +  $OH^- \longrightarrow MeHg-OH$  (reaktiv !) +  $Br^-$ [Rh(PR<sub>3</sub>)<sub>3</sub>Br] +  $OH^- \longrightarrow [Rh(PR_3)_3(OH)]$  (reaktiv !) +  $Br^-$ 

H<sub>2</sub>O (die härtere, aber schwächere Base als OH<sup>-</sup>) kann erwartungsgemäß Br<sup>-</sup> nicht verdrängen!

Lage v. Redoxgleichgewichten abhängig v. Liganden: Cu<sup>+</sup> ist in Wasser instabil, in NH<sub>3</sub> metastabil, es disproportioniert leicht: 2 [Cu(H<sub>2</sub>O)<sub>n</sub>]<sup>+</sup> + H<sub>2</sub>O  $\longrightarrow$  [Cu(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> stabil + Cu

Cu<sup>2+</sup> und Cu komproportionieren in Pyridin oder RCN:  $[Cu(MeCN)_4]^{2+} + MeCN + Cu \longrightarrow 2 [Cu(MeCN)_4]^+$  stabil ähnlich auch: CuBr<sub>2</sub> + Cu  $\longrightarrow$  2 CuBr

## Quantifizierung von Elektronegativität und Härte

Nach der MO-Theorie entspricht Ionisierungspotential  $I = -\varepsilon_{HOMO}$  (Energie d. HOMO's) Elektronenaffinität  $E_A = -\varepsilon_{LUMO}$  (Energie d. LUMO's)

Mullikan-Elektronegativität  $\chi = \frac{1}{2} (I + E_A)$ Absolute Härte (Pearson)  $\eta = \frac{1}{2} (I - E_A)$  2.2.2 Ligandenfeldeffekte auf Reaktionsgeschwindigkeit der Ligandsubstitution. W Kinetisch labile und inerte Metallkationen

Der Liganden-Selbstaustausch mit  $\Delta G^R = 0$  als Maß für die kinetische Labilität  $\Delta G^{\neq}$  eines Komplexes:

| $[Ni(CN)_4]^2 + 4^{14}CN^-$      | $\rightarrow$ | $[Ni(^{14}CN)_4]^{2-} + 4CN^{-}$ | $t_{1/2} \approx 30 \mathrm{s}$ |
|----------------------------------|---------------|----------------------------------|---------------------------------|
| $[Mn(CN)_6]^{3-} + 6^{14}CN^{-}$ | $\rightarrow$ | $[Mn(^{14}CN)_6]^{3-} + 6CN^{-}$ | $t_{1/2} \approx 1 \mathrm{h}$  |
| $[Cr(CN)_6]^{3-} + 6^{14}CN^{-}$ | $\rightarrow$ | $[Cr(^{14}CN)_6]^{3-} + 6CN^{-}$ | $t_{1/2} \approx 24 \mathrm{d}$ |

Ahnliche Fragestellung: Wann tauschen Aquakomplexe den Wasserliganden schnell, wann langsam aus?  $[M(H_2O)_n]^{m+} + H_2^{17}O \implies H_2O + [M(H_2O)_{n-1}(H_2^{17}O)]^{m+}$  $Cu^{2+}Cr^{2+}Mn^{2+}\underline{Fe}^{2+}\underline{Co}^{2+}\underline{Ni}^{2+}Pd^{2+}V^{2+}$ Ru<sup>2+</sup> Pt<sup>2+</sup> Cr<sup>3+</sup> Rh<sup>3+</sup>  $La^{3+} Sc^{3-} Y^{3+} \underline{Ln}^{3+} \qquad \underline{Ga}^{3+} \qquad \underline{A}$  $\underbrace{\underline{Ba}^{2^{+}} \underline{Sr}^{2^{+}} \underline{Ca}^{2^{+}}}_{|||} \underbrace{\underline{Mg}^{2^{+}}}_{|||} \underbrace{\underline{Be}^{2^{+}}}_{||||}$  $\underline{Cs}^{+}\underline{Rb}^{+}\underline{K}^{+}\underline{Na}^{+}\underline{Li}^{+} \qquad UO_{2}^{+} \quad VO^{2+}$ 10<sup>0</sup>  $10^{-2}$  $10^{2}$  $\tau_{1/2}$  ca.10<sup>-10</sup> 10-6  $10^{-4}$  $10^{4}$ 10<sup>6</sup> 10-8  $10^{8}$ sec 106  $10^{2}$ 10-6 10-4  $10^{-8}$  $10^{8}$  $10^4$  $10^{0}$ 10-2 1010 sec<sup>-1</sup> k

## Grobe Einteilung in 4 Klassen kinetischer Labilität:

| Klas-   | Reakti-                                                                           | Methode                                                                                            | Bindungs                                                                       | <b>Z</b> <sup>2</sup> /r | Metallionen                                                                                                                                                                                                                                         |
|---------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| se<br>I | labil,<br>extrem<br>schnell,<br>k > 10 <sup>8</sup>                               | Reaktion<br>diffusi-<br>onskon-<br>trolliert                                                       | -typ<br>elektrosta<br>-tisch<br>(ionogen),<br>JT-<br>Verzerr.<br>Keine<br>LFSE | < 4                      | Alkalimetalle (geringe<br>Lad.dichte),<br>größere Erdalkalimetalle,<br>JT: Mn <sup>3+</sup> Cr <sup>2+</sup> (d <sup>4</sup> hs),<br>Cu <sup>2+</sup> (d <sup>9</sup> )<br>große d <sup>0</sup> und d <sup>10</sup> lonen,<br>z.B. Hg <sup>2+</sup> |
| II      | labil,<br>schnell,<br>10 <sup>5</sup> < k<br>< 10 <sup>8</sup>                    | Relaxation<br>stechnik<br>p,T-<br>Sprung,<br>paramag.<br>Linienver-<br>breiterung<br>im<br>17O-NMR | ionogen /<br>kovalent,<br>LFSE<br>relativ<br>gering                            | 4 -<br>12                | zweiwertige ÜM Katio-<br>nen, max. b. hs d <sup>5</sup> Mn <sup>2+</sup><br>dreiwertige<br>Lanthanoidionen Ln <sup>3+</sup> ,<br>Mg <sup>2+</sup> (höhere<br>Lad.dichte, stärkere<br>Bindung)                                                       |
| 111     | mäßig<br>labil,<br>relativ<br>langsam<br>10 <sup>0</sup> < k<br>< 10 <sup>4</sup> | Schnell-<br>misch-<br>methoden,<br>Stömungs<br>methoden<br>stopped<br>flow                         | ionogen /<br>kovalent,<br>mittlere<br>LFSE                                     | >12                      | dreiwertige 3d-ÜM Kat.<br>Ti, V, <del>Cr</del> , Mn, Fe <sup>3+</sup><br>hochgel. HG-Kationen<br>Be <sup>2+</sup> , Al <sup>3+</sup><br>(Ladungsdichte)                                                                                             |
| IV      | inert,<br>langsam<br>10 <sup>-9</sup> < k<br><10 <sup>-1</sup>                    | klassische<br>analyt.<br>Verfahren                                                                 | ionogen /<br>kovalent,<br>große<br>LFSE                                        | >12                      | V <sup>2+</sup> Cr <sup>3+</sup> (d <sup>3</sup> ),<br>Co <sup>3+</sup> Rh <sup>3+</sup> Ru <sup>2+</sup> (d <sup>6</sup> ls),<br>Pt <sup>2+</sup> (d <sup>8</sup> ), Ru <sup>3+</sup> (d <sup>5</sup> ls)                                          |

#### Z<sup>2</sup>/r: lonenpotential

Neben rein elektrostatischen Erwägungen spielt die zusätzlich aufzubringende, geschwindigkeitshemmende

# **Ligandenfeld-Aktivierungsenergie** = $\triangle$ LFSE W

beim Übergang vom oktaedrischen Komplex in den aktivierten Komplex: KZ 5 qpy bei dissoziativem, KZ 7 pbpy bei assoziativem Substitutionsmechanismus eine entscheidende Rolle.

Negativ Werte für ∆ LFSE bedeuten Absenkung der Aktivierungsenergie, dadurch Labilisierung, positive bedeuten Hemmung durch Ligandenfeldeffekte.

| Struktur- |             | Struktur- Spin-         |    | • 1              | 12        | 13         | ΔLF   | SE [Dq | -Einheit | en]        | 18           | 19    | 110 |
|-----------|-------------|-------------------------|----|------------------|-----------|------------|-------|--------|----------|------------|--------------|-------|-----|
| and       | erung       | ubergang                | d° | ď.               | ď*        | <b>Č</b> * | ď     | ď″     | 0"       | <b>d</b> ' | ۵°           | ď ´   | d   |
| Okta-     | quadr.      | high $\rightarrow$ high | 0  | 0.(              | 4.4       | 10         | - 3.1 | 0      | - 0.6    | - 1.1      | · <b>?</b> 0 | 2.1   | ٥   |
| eder      | →<br>Pyram. | $low \rightarrow low$   |    | - 0.0            | -0.6 -1.1 |            | +1.4  | - 0.9  | + 4.0    | - 1.1      | + 2.0        | - 3.1 | U   |
| Okta-     | pent.       | high → high             |    | . <u></u><br>1 ) | 14        | . <u>.</u> | +1.1  | 0      | - 1.3    | - 2.6      |              | 1     | 0   |
| eder      | →<br>Bipyr. | $low \rightarrow low$   | 0  | -1.3             | - 2.0     | + 4.3      | + 3.0 | + 1.7  | + 8.5    | + 5.3      | +4.3         | + 1.1 | U   |

Deutung dieser nützlichen Tabelle:

d<sup>0</sup>, d<sup>10</sup> und d<sup>5</sup> *hs*:  $\Delta$  LFSE = 0 → kein Beitrag zu E<sub>a</sub> d<sup>3</sup> und d<sup>8</sup> (Cr<sup>3+</sup>,Pt<sup>2+</sup>):  $\Delta$  LFSE > 0 für D und A-Mechanismus → beide Wege durch hohe Barrieren gehemmt. d<sup>4</sup> *hs*, d<sup>7</sup> *Is*, d<sup>9</sup>:  $\Delta$ LFSE > 0 JT-Verzerrung erniedrigt Barrieren des Austritts(D) / erhöht B. des Eintritts(A). d<sup>6</sup> *Is* (Ru<sup>2+</sup>, Ir<sup>3+</sup>) sowohl A- als auch D-Mechanismen durch hohe zusätzliche  $\Delta$ LFSE > 0 inhibiert / erschwert. d<sup>6</sup> Fe<sup>2+</sup>,Co<sup>3+</sup>: *Is* erschwert A+D, *hs* begünstigt A+D-M. d<sup>1</sup>, d<sup>2</sup>:  $\Delta$  LFSE < 0 → A- und D-Mechan. begünstigt

# **Allgemeine Trends:**

# Labile Komplexionen W

- *per se* weisen d<sup>0</sup> (Ti<sup>4+</sup>) Kationen geringe Barrieren bzgl. A auf (energet. niedriges LUMO, leere  $t_{2g}$ ). Dagegen sind *hs* d<sup>5</sup> (Mn<sup>2+</sup>, Fe<sup>3+</sup>) und d<sup>10</sup> (Zn<sup>2+</sup>) labil in Bezug auf D-Mechanismen (paritätisch hoher Besetzungsgrad an bindenden  $t_{2g}$  und eher M-L antibindenden e<sub>g</sub> Niveaus).  $\Delta$  LFSE = 0 bedeutet, dass hier Ligandenfeldeffekte keine zusätzliche Labilisierung oder Stabilisierung des ÜZ beitragen.
- d<sup>1</sup> (Ti<sup>3+</sup>, V<sup>4+</sup>), d<sup>2</sup> (V<sup>3+</sup>, Cr<sup>4+</sup>): Besitzen wenigstens ein unbesetztes, energetisch tiefliegendes t<sub>2g</sub> Orbital (LUMO), das von eintretenden Gruppen als Einflugschneise im Sinne eines assoziativen Mechanismus (A, I<sub>a</sub>) genutzt wird.
- Rest der Konfigurationen muss mit Blick auf Labilisierung individuell bewertet werden: Bei JTlonen d<sup>4</sup> hs (Mn<sup>3+</sup>), d<sup>7</sup> ls (Co<sup>2+</sup>) und d<sup>9</sup> (Cu<sup>2+</sup>) ist der Austritt eines Liganden (KZ 5) i.d.R. begünstigt, der Eintritt (KZ 7) erschwert.

# Inerte Komplexionen W

 Besitzen kein völlig unbesetztes tiefliegendes t<sub>2g</sub>-Akzeptor-Orbital als LUMO, aber auch kein besetztes e<sub>g</sub> Orbital als HOMO mit seinem antibindenden, M-L schwächenden Charakter. Somit sind assoziative und dissoziative Reaktionswege inhibiert bei: Cr<sup>3+</sup>, V<sup>2+</sup> (d<sup>3</sup>) !!! Mn<sup>2+</sup>, Fe<sup>3+</sup> (d<sup>5</sup> *Is*) bei starkem LF → Cyanidokompl. Re<sup>2+</sup>, Os<sup>3+</sup> (d<sup>5</sup> *Is*) !!! Co<sup>3+</sup>, Fe<sup>2+</sup> (d<sup>6</sup> *Is*) bei starkem LF, Fe(CN)<sub>6</sub><sup>4-</sup>,Co(CN)<sub>6</sub><sup>3-</sup> Ir<sup>3+</sup>, Os<sup>2+</sup> (d<sup>6</sup> *Is*) !!! Pt<sup>2+</sup>, Au<sup>3+</sup> (d<sup>8</sup>) gilt für KZ 4 (quadr.-pl. Konfiguration)

- Assoziative Mechanismen sind f
  ür d<sup>3</sup> .... d<sup>9</sup> und starkem Ligandenfeld durchgehend erschwert (kein niedrig liegendes LUMO bzw. leeres t<sub>2g</sub>).
- Dissoziative Mechanismen sind f
  ür hs d<sup>4</sup> .... d<sup>7</sup> und schwachem Ligandenfeld durchgehend erleichtert (partiell besetzte eg Orbitale von antibindendem Charakter).

# Konkrete Trends: W

- Labilität der M<sup>3+</sup> Komplexe der 3d Metalle (ggf. hs): Cr<sup>3+</sup>(d<sup>3</sup>) < hs Co<sup>3+</sup>(d<sup>6</sup>) < hs Fe<sup>3+</sup>(d<sup>5</sup>) < V<sup>3+</sup>(d<sup>2</sup>) < Ti<sup>3+</sup>(d<sup>1</sup>) < Mn<sup>3+</sup>(d<sup>4</sup>,JT) < Sc<sup>3+</sup> inert Beachte: Spin-Zustand hs/ls entscheidet über ∆CFSE und Reihenfolge ls Co<sup>3+</sup>(d<sup>6</sup>) < Cr<sup>3+</sup>(d<sup>3</sup>)
- Labilität der M<sup>2+</sup> Komplexe der 3d Metalle (ggf. *hs*): V<sup>2+</sup>(d<sup>3</sup>)< Ni<sup>2+</sup>(d<sup>8</sup>)< hs Co<sup>2+</sup>(d<sup>7</sup>)< hs Fe<sup>2+</sup>(d<sup>6</sup>)< Mn<sup>2+</sup>(d<sup>5</sup>)<hs Cr<sup>2+</sup>(d<sup>4</sup>,JT)<Cu<sup>2+</sup>(d<sup>9</sup>, JT) inert
- Komplexe der 4d- und 5d-Metalle sind i.d.R. /skonfiguriert und infolge dessen inerter als diejenigen der 3d-Reihe (*hs* + *ls*)

Labilität nimmt innerhalb einer Gruppe des PSE ab (LF-Aufspaltung, LFSE und  $\Delta$  LFSE nehmen zu): relativ gesehen sind...

Fe<sup>2+</sup> (d<sup>6</sup> *ls*) weniger inert als Ru<sup>2+</sup>, Os<sup>2+</sup>(d<sup>6</sup> *ls*), Ni<sup>2+</sup> (d<sup>8</sup>) weniger inert als Pd<sup>2+</sup>, Pt<sup>2+</sup> (d<sup>8</sup>),

 $Co^{3+}$  (d<sup>6</sup> /s) weniger inert als Rh<sup>3+</sup>, Ir<sup>3+</sup> (d<sup>6</sup> /s).

- Bei isoelektronischen Paaren der gleichen El.konfiguration d<sup>n</sup> führen höhere pos. Ladungen zu stärken M-L-Bindungen, höheren LFSE und ∆ LFSE, somit zu inerteren Komplexen: Inertheit bei d<sup>3</sup>: V<sup>2+</sup> < Cr<sup>3+</sup> Labilität bei d<sup>5</sup>: Mn<sup>2+</sup> > Fe<sup>3+</sup> etc.
- Höher neg. Ladungen schwächen die M-L-Bindung bei anionischen Komplexen, fördern D, hemmen A: Labilität [AIF<sub>6</sub>]<sup>3-</sup> > [SiF<sub>6</sub>]<sup>2-</sup> > [PF<sub>6</sub>]<sup>1-</sup> > [SF<sub>6</sub>] (inert). [YF<sub>6</sub>]<sup>3-</sup> (D>A) > [ZrF<sub>6</sub>]<sup>2-</sup> > [NbF<sub>6</sub>]<sup>1-</sup> > [WF<sub>6</sub>] (A>D)

#### 2.3 Oxidative Addition / reduktive Eliminierung

#### Einteilung nach Änderung der Metall-Oxidationsstufe / d<sup>n</sup>-Konfiguration W

 $\frac{\text{Ein-Elektronen-OA / RE}}{d^n \rightarrow d^{n\pm 1}}$ 

 $2 d^{n} M + R-X \xrightarrow{OA} d^{n-1} M - R + d^{n-1} M - X$  17 VE 18 VE 1

17 VE [M] z.B. durch Homolyse einer M-M-Bindung durch R-X aber auch andere, vorzugsweise paramagnetische Metallzentren

$$d^{n}M + R-X \xrightarrow{OA} d^{n-1}M-X + R^{-1}$$

**Beispiele:** 

oxidat. Spaltung, 
$$Cl_2$$
 od.  $CCl_4$   
 $d^7$ 
 $(OC)_5Mn - Mn(CO)_5 \xrightarrow{\text{Licht}} 2 \cdot Mn(CO)_5 \xrightarrow{CCl_4} 2 \cdot Cl - Mn(CO)_5$   
red. Kupplung / Eliminierung Mg, THF, - MgCl<sub>2</sub>

Katalytische Atom-Transfer-Radical-Polymerisation ATRP



104

 $\frac{Zwei-Elektronen-OA / RE}{d^n \rightarrow d^{n\pm 2}}$ 

#### W

Dies ist der mit Abstand häufigste und wichtigste Typ, Beispiele:

| d <sup>n</sup> M<br>16 VE | +  | R-H         | OA<br>RE  | R<br>I<br>d <sup>n-2</sup> M—H<br>18 VE                      |
|---------------------------|----|-------------|-----------|--------------------------------------------------------------|
| d <sup>n</sup> M<br>16 VE | +  | El-Nu       | OA<br>RE  | Nu<br>I<br>d <sup>n-2</sup> M—EI<br>18 VE                    |
| d <sup>n</sup> M<br>18 VE | +  | El-Nu       | OA<br>RE  | d <sup>n-2</sup> M—EI <sup>]+</sup> Nu <sup>-</sup><br>18 VE |
| R = H,                    | Ar | , Alk, SiMe | 3 El-Nu = | = Br-Br, R-Br, H-Br                                          |
|                           |    |             |           |                                                              |

Atomtransfer-Reaktionen  $X = CI^{-}, SR_2$ , py  $d^n M + O^{-}X \xrightarrow{OA}_{RE} d^{n-2} M = O + X$ 

# $\frac{\text{Drei-Elektronen-OA / RE}}{d^n \rightarrow d^{n\pm 3}}$

Seltener aber hochinteressanter Fall einer Metathese von C≡C, C≡N, N≡N und M≡M Bindungen zu Alkylidin- bzw. Nitrido-Komplexen:



...in der Summe eine konzertierte 6-Elektronen-Reduktion und Spaltung von N<sub>2</sub> durch zwei Mo(III) zu zwei komplexstabilisierten Nitridionen N<sup>3-</sup> (deren Hydrolyse führt zu NH<sub>3</sub>).

#### 2.3.1 Synchron-Addition orbitalkontrolliert H-H, Si-H, C-H Additionen W

Wichtiger Elementarschritt bei katalytischen Hydrierungen und Hydrosilylierungen von Olefinen.

**1,1-Addition (OA)** am koordinativ und elektronisch ungesättigtem Metallzentrum:

konzertiert, stereoselektiv *cis* über 3-Zentren-ÜZ, Retention der Konfiguration am C-Atom. Tritt insbesondere auf bei Reaktionen <u>unpolarer Bindungen</u> H-H, Si-H und R-H.



An d-elektronenreichen Metallzentren kann die Mehrzentrenbindung von M und H-H, C-H bzw. Si-H als Zusammenspiel zweier Orbitalwechselwirkungen angesehen werden:



 $\sigma \rightarrow M (\sigma \text{-dativ}) \qquad M \rightarrow \sigma^* (\pi \text{-retrodativ})$   $M + H_2 \implies [M - (H_2)]^{(\neq)} \implies M(H)_2$ Reaktionskoordinate über  $\eta^2 - (H_2)$ -Komplex (meist ÜZ) zum Dihydridokomplex *vice versa.* 

**Cyclometallierung:** Intramolekulare Variante der C-H-Aktivierung (*Chem. Rev. 90*, **1990**, 403) **W** 



agost. Ww.

**Bimolekulare** <u>CH-Aktivierung</u> (bei ungesättigten Systemen i.d.R. über  $\pi$ -Komplex)

 $Cp^{*}Rh(PMe_{3})(H)CH_{3} \xrightarrow{-17^{\circ}} Cp^{*}Rh(PMe_{3}) + CH_{4}$   $\downarrow^{C}_{6}H_{6}$   $Cp^{*}Rh(PMe_{3})(H)C_{6}H_{5} \xrightarrow{Rh} PMe_{3}$ 

108
# 2.3.2 SET-induzierte Radikalchemie schrittweise W

Wichtiger Elementarschritt bei Pd-katalysierten C-C-, C-O und C-N-Kupplungsreaktionen v. Arylhalogeniden.

**1,1-Addition (OA)** am koordinativ und elektronisch ungesättigten elektronenreichen Metallzentrum, Pd(0), Rh(I), Ir(I):

Schrittweise über SET und Zerfall des Radikalanion-Intermediates im Solvenskäfig in Radikal und Anion. Tritt insbesondere auf bei Reaktionen <u>polarer</u> <u>elektronenarmer Bindungen</u> C-Hal, insbes. Ar-X mit niedrig liegendem LUMO.



Da eine energetisch günstige synchrone reduktive Eliminierung ausschließlich aus der *cis* Position der beiden Abgangsgruppen erfolgen kann, werden bei Pd-katalysierten Kupplungsreaktionen i.d.R. Phosphin-Chelatliganden L^L eingesetzt.

Für schrittweisen Mechanismus spricht die Bildung von Produkten, die EI / Nu <u>nicht</u> cis zueinander enthalten.

Bei 2-EI.-OA an 16 VE Vaska-Komplex [IrL<sub>2</sub>(CO)CI] (L = PPh<sub>3</sub>) kennt man radikalisch /schrittweise und orbitalkontrolliert /konzertierte Wege:



Oxidative Addition and Ir(I) KZ 4 und Reduktive Eliminierung an Ir(III) KZ 6 sind gegenläufige Prozesse.

**2-EI.-OA an Metall-Basen im Sinne S<sub>N</sub>2-Reaktion: W** konzertiert, orbitalkontrolliert, stereoselektiv über Walden'sche Umkehr / Inversion der Konfiguration am C-Atom. Tritt auf bei Reaktionen polarer od. polarisierbarer Bindungen H-X, R-X od. X-X.



#### Beispiele: Reaktionen von Metall-Basen

Anion-assistierte Steigerung der Metall-Nucleophilie durch vorgelagertes Gleichgewicht, z.B. beim Monsanto-Essigsäureverfahren MeOH + CO  $\rightarrow$  MeCOOH, Katatysator mit L= CO

16 VE [Rh( $\mu$ -I)L<sub>2</sub>]<sub>2</sub> + I<sup>-</sup> (Promotor)  $\implies$  [RhI<sub>2</sub>L<sub>2</sub>]<sup>-</sup> [RhI<sub>2</sub>L<sub>2</sub>]<sup>-</sup> — MeI  $\rightarrow$  16 VE [Me-RhI<sub>2</sub>L<sub>2</sub>] + I<sup>-</sup>

# 2.3.3 Atom-Transfer-Chemie (Mo=O, Fe=O)

Die katalytische oxidative Übertragung eines Metallgebundenen Sauerstoffatoms spielt eine entscheidende Rolle in zahlreichen Metalloenzymen.

**Beipiel 1: Mo=O - orbitalkontrolliert, konzertiert** Modellsubstanzen für Molybdoenzyme: Xanthin-Oxidase (zu Harnsäure), Sulfit-Oxidase etc. Mo(+4/+6)-Komplex katalysiert die folgende O-Transfer-Modellreaktion / 2-Elektronen OA / RE:

 $Me_2S=O + PPh_3 \longrightarrow Me_2S + O=PPh_3$ 

Mechanismus der O-Übertragung S<sub>N</sub>2 – artig am O: <u>O-Beladung</u>: HOMO des Mo(IV)-Komplexes (d-Elektronenpaar des Mo(IV)) greift in das  $\sigma^*$ -Orbital (LUMO) der S=O Bindung an.

<u>O-Übertragung:</u> HOMO von Phosphin greift in das LUMO des Mo(VI)-Komplexes an, dass den Charakter des  $\pi^*$ -Orbitals der Mo=O Bindung besitzt.



#### Oxen [O]- und Nitren [NR]- Transfer

Prinzip dieser 2-Elektronen OA:  $d^{n} M + O-X \iff d^{n-2} M=O + X$  $d^{n} M + RN-X \iff d^{n-2} M=NR + X$ 

Oxen-Generatoren O-X: 1,1-Eliminierung an O Oxenoide M-OCI, M-O-OR PhI=O, N<sub>2</sub>=O, Me<sub>2</sub>S=O, L<sub>n</sub>M=O

Nitren-Generatoren RN-X: 1,1-Eliminierung an N Nitrenoide M[RN-CI], M[RN-OR] PhI=NR, N<sub>2</sub>=NR, L<sub>n</sub>M=NR

### Beipiel 2: Fe=O - radikalisch, schrittweise

## Cytochrom P450:

Fe(+2/+3/+4)-Porphyrin-Komplex, Hämgruppe, axial Cysteinat + H<sub>2</sub>O

Name von UV-Vis Absorpt.-Max. des CO Kompl. 450 nm



Cytochrom P450 katalysiert Übertragung von O-Atom aus  $O_2$  auf Kohlenwasserstoffe R-H und RCH=CH<sub>2</sub>. Dabei wird <u>nur ein O Atom aus O<sub>2</sub> oxidativ übertragen</u>, das andere wird zu H<sub>2</sub>O reduziert (eine Monooxygenase)

Schrittweiser Mechanismus, entscheidend sind -Spin-Wechsel zwischen I.s. und h.s. Fe -Reduktion von end-on O<sub>2</sub> über [O<sub>2</sub>]<sup>--</sup> zu [O<sub>2</sub>]<sup>2-</sup> -Redoxaktiver Por-Ligand zur Stabilisierung von Fe(+4) -Koordinierter NADH-Elektronentransfer + O-Transfer

Katalytischer Kreislauf der physiologisch wichtigen Stoffwechsel-Reaktion:

?

 $R-H + O_2 + 2 e^- + 2 H^+ \longrightarrow R-OH + H_2O$ 

# Cytochrom P450 Katalysezyklus:



Zwei besonders interessante Redox-Teilschritte:

- 1. Generierung, Stabilisierung und Natur der oxidierenden "Fe-O" Spezies:
  - a) Protonen-vermittelte Disproportionierung von Peroxid

115

- b) Statt Koordination von [O]<sup>2-</sup> an Fe<sup>+5</sup> vielmehr Koordination von Radikal [O]<sup>--</sup> an Fe<sup>+4</sup>: Die beiden ungepaarten Elektronen befinden sich in Spinorbitalen orthogonal zueinander.
- c) Der elektronenreiche Charakter des "noninnocent" [Por]<sup>2-</sup> Liganden führt zur Stabilisierung von Fe<sup>4+</sup> durch Valenzgleichgewicht / Spindelokalisation auf die gesamte Hämgruppe [Fe(Por)] · (n-1)+ = [Por]<sup>--</sup> + Fe<sup>n+</sup>
- d) Reaktives O-Radikal durch stabiles Häm-Radikal



Peroxidzerfall in O + O<sup>2-</sup> nicht existent

O-Triplett-Diradikal

2. Übertragung / Insertion von [O] in C-H schrittweise über den Rebound-Mechanismus:

