Chemische Kinetik und Reaktionsdynamik (PC 3)

Prof. Dr. Michael Gottfried Jan Herritsch, Carolin Kalff, Carsten Zülch

Wintersemester 2018/19

Übungsblatt 4 (zu bearbeiten bis 19.11.2018)

Aufgabe 17: Zersetzung von Ozon

Betrachten Sie den unten gezeigten Mechanismus für die Zersetzung von Ozon.

- a. Leiten sie den Ausdruck für die Geschwindigkeit des Ozonabbaus, -d[O₃]/dt, ab.
- b. Unter welchen Bedingungen ist dieses Geschwindigkeitsgesetz erster Ordnung in Bezug auf O₃?

$$O_3 \xrightarrow{k_1} O_2 + O$$

$$O_3 + O \xrightarrow{k_2} 2 O_2$$

Aufgabe 18: Photochemische Kettenreaktion

Die photochemische Oxidation von Phosgen COCl2 verläuft gemäß der stöchiometrischen Gleichung:

$$2 \text{ COCl}_2 + O_2 \rightarrow 2 \text{ CO}_2 + 2 \text{ Cl}_2$$
.

Für die Reaktionsgeschwindigkeit wurde empirisch die Ratengleichung

$$\frac{d[CO_2]}{dt} = \frac{k \cdot I_0 \cdot [COCl_2]}{1 + \frac{[Cl_2]}{[O_2]} \cdot k'}$$

gefunden, wobei l_0 die Lichtintensität ist. Die Reaktion wird demnach durch Chlor (Cl₂) inhibiert. Die Quantenausbeute betrug φ = 2, d.h., je absorbiertem Lichtquant werden zwei Phosgen-Moleküle umgesetzt. Unter der Annahme, dass die Radikale ·ClO und ·COCl als Zwischenprodukte auftreten, soll ein Schema für den Reaktionsmechanismus aufgestellt werden, das mit der angegebenen Ratengleichung im Einklang ist.

Aufgabe 19: Explosionsreaktionen I

Skizzieren Sie die Explosionsgrenzen eines stöchiometrischen H_2/O_2 -Gemisches schematisch in einem p-T-Diagramm. Diskutieren Sie den Wechsel der relevanten Mechanismen an den Explosionsgrenzen.

Aufgabe 20: Explosionsreaktionen II

Die Konkurrenz der beiden Reaktionen:

(R1)
$$H \cdot + O_2 \rightarrow \cdot OH + O \cdot$$

$$(R2) \hspace{1cm} H \cdot \hspace{1cm} + \hspace{1cm} O_2 \hspace{1cm} + \hspace{1cm} M \hspace{1cm} \rightarrow \hspace{1cm} \cdot HO_2 \hspace{1cm} + \hspace{1cm} M$$

ist von zentraler Bedeutung in der Knallgasreaktion, weil erstere eine Verzweigungs-, letztere dagegen eine Terminierungs(Abbruch)-Reaktion ist, zumindest in der Nähe der zweiten Explosionsgrenze. Die Geschwindigkeiten der Reaktionen R1 und R2 werden gleich groß, wenn die Konzentration an Stoßpartnern [M] = k_1 / k_2 beträgt. Dieser Wert für [M] gibt in erster Näherung die zweite Explosionsgrenze wieder. Fertigen Sie eine graphische Auftragung von In [M] vs T für den Temperaturbereich zwischen 650 und 800 K an! Verwenden Sie dazu die folgenden Angaben für die Temperaturabhängigkeit der Geschwindigkeitskonstanten:

R1
$$k_1 = 3.8 \cdot 10^{-10} \cdot \exp(-70 \frac{kJ}{mol}/RT) \text{ [cm}^3/\text{(Molekül·s)]}$$

R2
$$k_2 = 5.8 \cdot 10^{-30} \text{ T}^{-1} [\text{cm}^6/(\text{Molekül}^2 \cdot \text{s})]$$
 (T in Kelvin)

Geben Sie an, bei welchem Druck die zweite Explosionsgrenze nach dieser Überlegung erreicht sein sollte, wenn die Temperatur 700 K beträgt. Nehmen Sie dabei an, dass praktisch jedes Gasmolekül oder -atom als Stoßpartner M zur Verfügung steht.