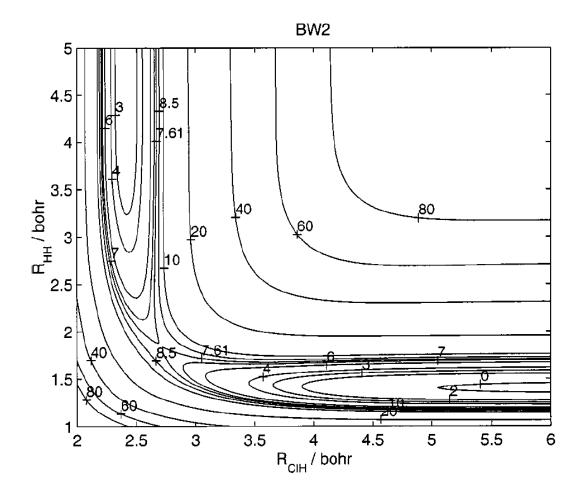


Chemische Kinetik und Reaktionsdynamik (PC 3)

Prof. Dr. Michael Gottfried Jan Herritsch, Carolin Kalff, Carsten Zülch Wintersemester 2018/19

<u>Übungsblatt 10</u> (Aufgabe 33 bis 14.01.2019, Aufgaben 34 und 35 bis 21.01.2019)


Aufgabe 33: Theorie des Übergangszustands und Potentialflächen

Schätzen Sie mit Hilfe der Eyring-Gleichung die Geschwindigkeitskonstante der Reaktion

$$\mathsf{CI} \; + \; \mathsf{H}_2 \; \rightarrow \; [\mathsf{CI}^{\ldots}\mathsf{H}^{\ldots}\mathsf{H}]^{\scriptscriptstyle \#} \; \rightarrow \; \mathsf{CIH} \; + \; \mathsf{H}$$

ab, die einen Kettenfortpflanzungsschritt in der Chlorknallgas-Reaktion darstellt! Machen Sie dazu mit Hilfe der unten abgebildeten Potentialfläche sinnvolle Annahmen über die Struktur des (linearen) Übergangszustands. Die Aktivierungsenergie kann ebenfalls abgelesen werden (Hinweis: der genaue Wert beträgt 8.14 kcal/mol). Vernachlässigen Sie die Beiträge der Molekülschwingungen zu den Zustandssummen! Die Temperatur soll 300 K betragen. Führen Sie die Berechnungen für das Isotop ³⁵Cl durch.

Hinweis zur Abbildung: Das Konturdiagramm zeigt die potentielle Energie in kcal/mol (Umrechnung: 1 kcal = 4.186 kJ) als Funktion der Abstände R_{HH} und R_{CIH} in Einheiten des Bohrschen Radius, a_0 = 52.9 pm, für eine lineare Geometrie Cl···H···H. (Literatur: W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220.)

Aufgabe 34: Viskosität und Diffusion im idealen Gas

In den Tabellen sind Viskosität $\eta(T)$ und Selbstdiffusions-Koeffizient D(T) für N_2 bei einem Druck von 1 atm = $1.01325 \cdot 10^5$ Pa in Abhängigkeit von der Temperatur angegeben. Bestimmen Sie aus jeder Messreihe mithilfe einer geeigneten Auftragung jeweils einen Wert für den Stoßquerschnitt $\sigma(N_2)$. Benutzen Sie dabei die einfache Stoßtheorie.

Anmerkung: Mit einer verbesserten Theorie erhält man $\sigma(N_2) = 0.43$ nm². Benutzen Sie diesen Wert für Aufgabe 35.

(a) Viskosität

T in K	273	293	323	373	473	573	673	873	1073
η in 10 ⁻⁵ kgm ⁻¹ s ⁻¹	1.65	1.74	1.87	2.08	2.46	2.80	3.11	3.66	4.13

(b) Selbstdiffusionskoeffizient

T in K	194	273	298	353
D in $10^{-5} \text{ m}^2\text{s}^{-1}$	1.04	1.85	2.12	2.87

Aufgabe 35: Wärmeleitfähigkeit im idealen Gas

- (a) Die Wärmeleitfähigkeit κ_W eines idealen Gases hängt theoretisch nicht vom Druck ab. Warum ist es trotzdem sinnvoll, die Wandungen von Dewar-Gefäßen zu evakuieren? Hinweis: Wie ändert sich die Druckabhängigkeit, wenn die mittlere freie Weglänge der Gasmoleküle die Behälterdimensionen übertrifft?
- (b) Die Wandung eines Dewar-Gefäßes habe eine inneren Weite von 1 cm. Welcher Druck muss darin unterschritten sein, damit die Wärmeleitfähigkeit zum Druck proportional wird und eine Wärmedämmung auftreten kann (Berechnung für N_2 bei 300 K)?
- (c) Die Wandungen von Dewar-Gefäßen können typischerweise bis auf einen Druck von 10⁻⁶ Pa evakuiert werden. In sogenannten Ultrahochvakuum-Apparaturen, die z.B. für Oberflächenuntersuchungen benutzt werden, herrschen Drücke um 10⁻⁸ Pa. Berechnen Sie für beide Fälle die mittlere freie Weglänge und die mittlere Zeitdauer zwischen zwei Kollisionsereignissen! Nehmen Sie dabei an, dass das Gas aus N₂ besteht und eine Temperatur von 300 K aufweist.