Chemische Kinetik und Reaktionsdynamik (PC 3)

Prof. Dr. Michael Gottfried Jan Herritsch, Yuriy Yusim, Carsten Zülch Wintersemester 2019/20

Übungsblatt 8 (zu bearbeiten bis 16.12.2019)

Aufgabe 29: Struktur-Reaktivitäts-Beziehungen I

Diskutieren Sie anhand der folgenden Elementarreaktionen den Einfluss der Struktur bzw. Molekularität auf die Aktivierungsentropie!

Aufgabe 30: Struktur-Reaktivitäts-Beziehungen II

Für den bimolekularen Austausch von Brom in Bromalkanen durch lodid in Aceton als Lösungsmittel:

$$R-Br + I^- \rightarrow R-I + Br^-$$

wurden in Abhängigkeit von der Struktur der Alkylreste die in der Tabelle aufgeführten Geschwindigkeitskonstanten bzw. Aktivierungsparameter gefunden (T = 298 K). Diskutieren Sie, in welcher Weise elektronische und sterische Faktoren die Reaktionsgeschwindigkeit beeinflussen und inwiefern sich diese Einflüsse in der Größe der Aktivierungsparameter widerspiegeln!

R	k in 10 ⁻⁵ l mol ⁻¹ s ⁻¹	E _A in kJ mol ⁻¹	ΔS^{\pm} in J mol ⁻¹ K ⁻¹	
CH ₃	25 000	68,2	-33	
CH ₃ CH ₂	166	76,7	-42	
$CH_3CH_2CH_2$	137	86,6	-46	
$(CH_3)_2CH$	1,3	86,0	59	
$(CH_3)_3CCH_2$	0,002	100,5	- 59	

Aufgabe 31: Einfluss der Ionenstärke auf die Reaktionsrate (Primärer Salzeffekt)

Die Kinetik der Redoxreaktion zwischen Kaliumperoxodisulfat und Kaliumiodid in wässriger Lösung:

$$S_2O_8^{2-} + 2I^- \rightarrow 2SO_4^{2-} + I_2$$

wurde mittels der Methode der Anfangsgeschwindigkeiten untersucht. Dabei wurde insbesondere die Abhängigkeit der Reaktionsgeschwindigkeit von der Ionenstärke ermittelt (siehe Tabelle). Die Ionenstärke wurde durch Zusatz wechselnder Mengen KNO₃ und K₂SO₄ eingestellt.

lonenstärke I in $mol \cdot dm^{-3}$	0.17167	0.15083	0.14042	0.10917	0.07792
k_{exp} in 10 ⁻³ dm ³ ·mol ⁻¹ ·s ⁻¹	2.87	2.68	2.59	2.49	2.18

- a) Bestätigen Sie mit Hilfe einer geeigneten Auftragung das Vorliegen eines primären Salzeffekts und bestimmen Sie den Wert der Konstante A im Debye-Hückel-Grenzgesetz sowie den Grenzwert k_{id} der Geschwindigkeitskonstante im Fall unendlicher Verdünnung, d.h. verschwindender Ionenstärke!
- b) Erklären Sie, wieso die Geschwindigkeitskonstante mit zunehmender Ionenstärke anwächst. Welches Verhalten erwarten Sie bei Reaktionen zwischen Ionen mit *un*gleichnamigen Ladungen?

Aufgabe 32: Reaktionen in Lösung: Lösungsmitteleffekte

Bei einer nukleophilen Substitutionsreaktion an einem asymmetrisch substituierten (chiralen) C-Atom wurde in einem wenig polaren Lösungsmittel eine negative Aktivierungsentropie und ein negatives Aktivierungsvolumen gemessen ($\Delta S^{\circ \neq} < 0$, $\Delta V^{\circ \neq} < 0$). Wurde die Reaktion dagegen In einem stark polaren Lösungsmittel durchgeführt, waren beide Größen positiv ($\Delta S^{\circ \neq} > 0$, $\Delta V^{\circ \neq} > 0$). Erklären Sie die Befunde und geben Sie an, in welchem Fall Sie Racemisierung erwarten.