- 1. Es liegt eine wässrige Essigsäurelösung vor (c = 0.05 mol/L; 1 L).
 - a) Berechnen Sie den Dissoziationsgrad ($pK_S = 4,75$)
 - b) Was passiert, wenn Sie die Lösung von a) verdünnen?

d) Wenn Sie jetzt 0,05 mol NaOH(s) zugeben, welchen pH-Wert messen Sie

ply = 4,75 no Ks = 1,78.10-5 md/L

 $= \frac{\sqrt{0.05 \cdot 1.78 \cdot 10^{-5}}}{0.05} = 0.019$ (1.8%)X = Chot (1)

(line & = 1)

d) Lösing am Ágni valent punkt, (I pH bei ca. 9

2. a) Bestimmen Sie die stöchimetrischen Faktoren bei folgender Redoxgleichung:

$$a \text{ MnO}_{4^-(aq)} + b \text{ H}_2\text{O}_{2(aq)} + c \text{ H}^+_{(aq)} \iff d \text{ Mn}^{2^+_{(aq)}} + e \text{ O}_{2(aq)} + f \text{ H}_2\text{O}$$

- b) Sie erhöhen den pH-Wert. In welche Richtung verschiebt sich das GG.
- c) Nennen Sie das Oxidations- und Reduktionsmitteln unter den Edukten der Reaktion.

a)
$$a=2$$
 $d=2$ jeweile (1)
 $b=5$ $e=5$
 $c=6$ $f=8$

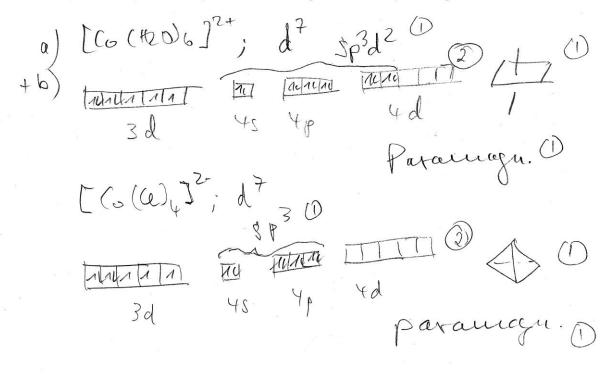
b) nade links (2 c) Ox neitel: heroy-red wittel: H2O2

3. Bestimmen Sie die 1	mittlere Oxi	dationsstufe der	Schwefelatome in d	en folgenden
Verbindungen.				

- a) S₈
- b) S₆
- c) $SF_6 + 6$
- d) H_2S_2 Λ
- e) H₂SO₄ + 6
- f) Na₂SO₃ + ¢
- g) $Na_2S_2O_3 + 2$
- h) $Na_2S_4O_6 + \lambda_1$
- i) SO₃ + 6
- j) H₂S 2

- 4. Sie haben ein Zweiphasengemisch von H_2O ($\rho=1$ g/cm³) und CCl_4 ($\rho=1,595$ g/cm³; Tetrachlorkohlenstoff).
 - a) Sie gießen jeweils 100 mL der Flüssigkeiten in denselben Standzylinder. Welche Phase liegt oben und warum?
 - b) Nun geben Sie 0,02 mol KI_{3(s)} in den Standzylinder und schütteln kräftig durch. Welche Stoffmengenkonzentration des Kaliumtriiodids liegen in den jeweiligen Phasen vor, wenn der Nernst'sche Verteilungskoeffizient H₂O/CCl₄ 10 für KI₃ betragen soll. Nachträgliche Reaktionen des KI₃ müssen nicht beachtet werden.

a) $\frac{1}{14}$ $\frac{1}{1$

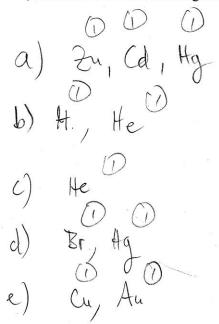

- 5. Ca(OH)_{2(s)} ist nur mäßig schwerlöslich.
 - a) Stellen Sie die Dissoziationsgleichung auf.
 - b) Berechnen Sie den pH-Wert eines Liters Suspension, wenn der pL-Wert des Hydroxids 5,3 beträgt.

beträgt.

a)
$$C_0(0H)_{2(1)} \neq C_0(0H)_{2(0q)} \neq C_0(0H)_{2(0q)} + 20H_{eq}$$

b) $PL = 5.3$ 10 $L = 5.10^{-6} \text{ neol}^3/3$

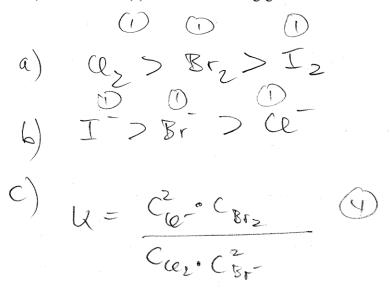
- 6. $[\text{Co}(\text{H}_2\text{O})_6]^{2+}$ und $[\text{Co}(\text{Cl})_4]^{2-}$ sind zwei high-spin-Komplexe.
 - a) Stellen sie nach der VB-Methode ("Kästchenschema") die Elektronenkonfiguration auf.
 - b) Welche Hybridisierung, Struktur und Magnetismus hat a) zur Folge?



- 7. a) Welchen Aufbau muss eine einfache Batterie haben, damit die Reaktion c) ablaufen kann. (bitte in exergonischer Richtung)
 - b) Stellen Sie die Reaktionsgleichung auf (bitte in exergonischer Richtung).
 - c) Berechnen Sie die EMK der Reaktion von Sn [$E^{o}(Sn^{2+}/Sn) = -0.14 \text{ V}; c(Sn^{2+}) = 0.1 \text{ mol/L}]$ mit Cu^{2+} [$E^{o}(Cu^{2+}/Cu) = 0.35 \text{ V}; c(Cu^{2+}) = 0.2 \text{ mol/L}].$

$$\frac{1}{2} = \frac{1}{2} = \frac{1}$$

- 8. . Eine wässrige Lösung die $[Cr(H_2O)_6]^{3+}$ -Ionen und Sulfat-Ionen enthält wird von Ihnen erhitzt. Es bildet sich der Komplex $[Cr(H_2O)_4(Sulfat)]^+$.
 - a) Welche Struktur muss der Produktkomplex besitzen, wenn sich die Koordinationszahl am Cr³⁺-Ion nicht verändert hat (zeichnen)?
 - b) Wie nennt man Liganden, die wie das Sulfat-Ion wirken?
 - c) Nun setzen sie [Cr(H₂O)₆]³⁺ mit drei Äquivalenten Ethylendiamin (en) um. Beschreiben Sie die Reaktion mittel Reaktionsgleichung.


- 9. a) Welche Elemente enthält die 12. Gruppe?
 - b) Welche Elemente enthält die erste Periode?
 - c) Welches der Elemente von b) liegt bei 20 °C als einatomiges Gas vor?
 - d) Nennen Sie beiden Elemente, die bei 20 °C flüssig sind.
 - e) Nennen Sie die beiden farbigen Metalle (alle anderen sind silber-grau).

 Unten sehen Sie eine Reihe von Reaktionen, deren Gleichgewicht eindeutig auf der rechten Seite liegt.

$$Cl_{2(aq)} + 2 I_{(aq)} \iff 2 Cl_{(aq)} + I_{2(aq)}$$
 (1)
 $Br_{2(aq)} + 2 I_{(aq)} \iff 2 Br_{(aq)} + I_{2(aq)}$ (2)

- $Cl_{2(aq)} + 2 Br_{(aq)} \leftrightarrows 2 Cl_{(aq)} + Br_{2(aq)}$ (3)
- a) Stellen Sie eine Reihe der Oxidationsmittel unter den Halogenen auf (stärkstes zuerst, schwächstes zuletzt).
- b) Stellen Sie eine Reihe der Reduktionsmittel unter den Halogenid-Ionen auf (stärkstes zuerst, schwächstes zuletzt).
- c) Stellen Sie für (3) das Massenwirkungsgesetz auf.

