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Abstract

As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic
osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes
is ectoine. A sub-group of the ectoine producer’s enzymatically convert this tetrahydropyrimidine into a hydroxylated
derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute
but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine
hydroxylation (EctD) is a member of the non-heme iron(II)-containing and 2-oxoglutarate-dependent dioxygenases (EC
1.14.11). These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo
intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine
hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe3+ at a resolution of 1.85 Å. Like
other non-heme iron(II) and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-
stranded b-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-
site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three
residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-
oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in
members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus
maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural
studies of this biotechnologically interesting enzyme family.
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Introduction

Environmentally imposed osmotic gradients instigate large

water fluxes across the semi-permeable cytoplasmic membrane

of microorganisms. As a result, the bacterial cell is threatened by

rupture at low osmolality due an undue rise in turgor [1] or by

dehydration and a collapse of turgor at high osmolality [2,3]. At

high external osmolality, many microorganisms accumulate a

selected group of organic osmolytes, the so-called compatible

solutes, to actively counteract the detrimental effects of water

efflux on cell physiology [4]. These compounds are fully

congruous with metabolism and other cellular functions and

can thus be amassed to exceedingly high intracellular levels. As

a direct consequence of compatible solute accumulation, the

osmotic potential of their cytoplasm is raised. This allows

retention of water by the microbial cell, promotes water re-

entry, stabilizes turgor and aids the cell in its physiological

adjustment to the prevailing osmotic conditions in its

environment [2–4].

Ectoine [(S)-2-methyl-1,4,5,6-tetrahydropyrimidine-4-carboxyl-

ic acid] (Figure 1) is one of the most widely synthesized compatible

solutes by microorganisms [4–6]. In all ectoine-producing bacteria

analyzed so far, ectoine biosynthesis is strongly enhanced under

high-osmolality growth conditions. This is largely a consequence

of the osmotic induction of the expression of the ectoine

biosynthetic genes, ectABC [5,7–14]. Three enzymes mediate

ectoine biosynthesis from L-aspartate-b-semialdehyde, a central

intermediate in amino acid metabolism [15], through the

sequential catalytic actions of the L-2,4-diaminobutyrate transam-

inase (EctB), the L-2,4-diaminobutyrate acetyltransferase (EctA)

and the ectoine synthase (EctC) [4–6,11]. A subset of microbial

ectoine producers also synthesize a hydroxylated derivative of

ectoine, 5-hydroxyectoine [(S,S)-2-methyl-5-hydroxy-1,4,5,6-tetra-

hydropyrimidine-4-carboxylic acid] (Figure 1) [5,16,17]. Synthesis

of 5-hydroxyectoine depends on the prior production of ectoine. It

should be noted in this context that a microbial cell stressed by

high salinity cannot gain any advantage in adjusting to high

osmolality by enzymatically converting de novo synthesized ectoine
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into 5-hydroxyectoine. This suggests that the physiological

function of 5-hydroxyectoine production is not primarily a

response to osmotic challenges, but instead is directed towards

other types of environmental and cellular stress conditions. Indeed,

formation of 5-hydroxyectoine is required in Chromohalobacter

salexigens to attain full thermo-stress resistance [16]; in addition,

Streptomyces coelicolor cells challenged by high temperature produce

5-hyroxyectoine in preference to ectoine [7]. Furthermore, the

formation of 5-hydroxyectoine is stimulated when either S. coelicolor

[7], V. salexigens [5] or Marinococcus M52 [18] cultures become

stationary, a growth phase that posesses considerable challenges

for microbial cells.

Ectoine and 5-hydroxyectoine are closely related chemically

(Figure 1) and both function as effective compatible solutes [18–

22]. Their cellular accumulation, either via de novo synthesis or

transport processes [7,23,24], can confer protection against salt

stress, temperature stress and dehydration [7,9,23–25]. However,

the influence of ectoine and 5-hydroxyectoine on biological

macromolecules and cells can differ in several aspects. For

instance, ectoine decreases, whereas 5-hydroxyectoine increases

the melting temperature of DNA [26,27]. Furthermore, the

protein-stabilizing capacity of these two tetrahydropyrimidines can

substantially vary when tested in vitro with the same model proteins

[19,28].

Ectoine and 5-hydroxyectoine have attracted considerable

biotechnological attention and are currently produced on an

industrial scale by high-density fermentation of salt-tolerant

bacteria [29]. They have found versatile uses as in vitro protein

stabilizers, as PCR enhancers, as in vivo protein folding catalysts, as

whole cell stabilizers and, foremost in skin care products for

cosmetics [29,30]. Medical applications for both ectoine and 5-

hydroxyectoine are currently considered [20,31,32]. Furthermore,

the ectoine biosynthetic genes have been used for the genetic

engineering of tobacco plants resistant to salt stress [33].

The ability to form 5-hydroxyectoine is dependent on an

evolutionarily conserved ectoine hydroxylase, EctD [5,7,16,17].

The biochemical characterization of this hydroxylase from the

moderate halophile Virgibacillus salexigens (formerly Salibacillus

salexigens) [5] and from the soil bacterium S. coelicolor [7] has

revealed that the EctD enzyme is a member of the non-heme

iron(II)-containing and 2-oxoglutarate-dependent dioxygenases

superfamily (EC 1.14.11). Members of this enzyme family are

widespread in both Pro- and Eukarya and catalyze a broad

spectrum of oxidative reactions including cyclizations, ring

fragmentations, C-C bond cleavages, epimerizations, desatura-

tions, halogenations, and hydroxylations of widely varying organic

compounds [34–36]. This group of enzymes typically couples the

decarboxylation of 2-oxoglutarate with the formation of a high-

energy ferryl-oxo intermediate that acts as a hydrogen-abstracting

species. The formed Fe(IV) = O species is directly responsible for

the oxidation of the organic substrate bound by the enzyme. Non-

heme iron(II)-containing and 2-oxoglutarate-dependent dioxy-

genases probably constitute the most versatile group of all

oxidizing biological catalysts [37].

Structural studies of these dioxygenases revealed a common

protein fold as well as a highly conserved iron-binding motif, the

so-called 2-His-1-carboxylate facial triad [34–36]. The amino acid

sequence of EctD possesses this type of iron-binding motif

[5,7,16,17] and EctD catalyzes an enzymatic reaction [5,7] that

is common in non-heme iron(II)-containing and 2-oxoglutarate-

dependent dioxygenases [38]. In this reaction, the O2-dependent

hydroxylation of the substrate ectoine is accompanied by the

oxidative decarboxylation of 2-oxoglutarate to form succinate and

CO2 (Figure 1).

EctD-type proteins are found widely in members of the domain

of Bacteria [5,16], but a crystal structure of an ectoine hydroxylase

has not yet been reported. Building on the biochemical

characterization of the ectoine hydroxylase from V. salexigens [5],

we now report the crystal structure of EctD in complex with Fe3+

at a resolution of 1.85 Å. The EctD crystal structure reveals the

details of the iron-binding site and also suggests an architectural

arrangement for three residues that likely bind and position the co-

substrate 2-oxoglutarate with the active site of the EctD enzyme.

Our structural data identify the ectoine hydroxylase as a member

of the sub-group of PhyH-like enzymes [39,40] within the non-

heme iron(II)-containing and 2-oxoglutarate-dependent depen-

dent dioxygenases superfamily.

Results and Discussion

Structure determination of EctD
The X-ray structure of the EctD protein from V. salexigens was

determined by multi-wavelength anomalous diffraction (MAD)

using selenium in selenomethionine as the anomalous scatterer.

Crystals of both selenomethionyl-EctD and natural EctD typically

showed a mosaicity of more than 2u so that among many obtained

crystals only a very few proved to be suitable for X-ray analysis.

Since the lowest mosaicity and best resolution was attained from a

selenomethionyl-EctD crystal, we used a dataset from this crystal

recorded at a remote wavelength for refinement. The crystal

structure of EctD was refined at a resolution of 1.85 Å with an

Rcryst of 19.3% and an Rfree of 22.8% (for crystallographic details

see Tables S1 and S2). The crystal structure revealed one protein

monomer per asymmetric unit, which represents the functional

unity of the V. salexigens EctD enzyme as previously shown by size

exclusion chromatography [5]. One molecule of the V. salexigens

EctD protein originally consists of 300 amino acids, resulting in a

molecular mass of 34.4 kDa. The ectoine hydroxylase from V.

salexigens used for crystallization was produced in Escherichia coli by

recombinant DNA techniques and modified with a carboxy-

terminal Strep-affinity tag for protein purification. However, the

Strep-tag peptide as well as the carboxy-terminal four amino-acid

residues (297 to 300) of the authentic EctD protein were

disordered in the crystal and thus excluded from the model of

Figure 1. Enzymatic reaction scheme for the EctD-mediated
hydroxylation of ectoine.
doi:10.1371/journal.pone.0010647.g001

Ectoine Hydroxylase
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the EctD structure. In addition, a putative loop region extending

from amino acid residues 195 to 211 was omitted from the model

since no electron density could be assigned to this segment of the

EctD protein. The amino-terminal (seleno-) methionine of EctD,

although ill-defined in the electron density, was included in the

model since the position of its selenium atom was unambiguously

identified during the MAD experiment. It represents residue 1 in

our numbering system. In addition to 197 water molecules, the

refined structure contains one Fe3+ ion as well as four non-

specifically bound sulfates and two glycerol molecules that

originate from the reservoir and cryo-solutions, respectively.

Overall three-dimensional architecture of EctD
As commonly observed for members of the non-heme iron(II)-

containing and 2-oxoglutarate-dependent dioxygenases, the EctD

structure consists of a double-stranded b-helix (DSBH) core

decorated with and stabilized by a number of a-helices (Figure 2A).

The DSBH, also referred to in literature as the jelly-roll fold, is

formed by two four-stranded anti-parallel b-sheets which are

arranged in the form of a b-sandwich. It is composed of strands b-

5, b-6, b-7, b-8, b-10, b-11, b-12, and b-13 (Figure 2A), hereafter

referred to as b-I to b-VIII for consistency in nomenclature. As in

other non-heme iron(II)-containing and 2-oxoglutarate-dependent

dioxygenases, b-II, b-VII, b-IV, and b-V form the distorted minor

sheet, which is so called because of its shorter strand lengths, while

the major sheet is formed by b-I, b-VIII, b-III, and b-VI. In EctD,

the major sheet is extended on both sides by the anti-parallel

strands b-2, b-3, and b-4 (Figure 2A).

A structural alignment search using the DALI server [41] and the

EctD structure as search template revealed that most non-heme

iron(II)-containing and 2-oxoglutarate-dependent dioxygenases and

related enzymes are structurally similar to EctD (‘‘Z-scores’’ » 2).

Two of these showed a particularly high structural similarity to

EctD: the human phytanoyl-CoA 2-hydroxylase PhyH [40] and the

halogenase SyrB2 from Pseudomonas syringae [42] (Z-scores of 22.5 or

18.2, respectively). Remarkably, the specific substrates of these two

enzymes are covalently tethered as thioesters to a phosphopan-

tetheinyl group of CoA (in case of PhyH) or of a peptidyl carrier

protein domain (in case of SyrB2), whereas the substrate of EctD is

freely diffusible. In the ‘‘Structural Classification of Proteins’’

(SCOP) database [39], PhyH and SyrB2 are combined into the

family of PhyH-like enzymes. Our data on the crystal structure of

EctD now group this ectoine hydroxylases into the PhyH family as

well. In the crystal structures of EctD, PhyH, and SyrB2, an

extended region containing four a-helices packed against the major

sheet of the DSBH motif precede the amino terminus of the DSBH.

This amino-terminal section is highly reminiscent of that present in

enzymes of the isopenicillin-N-synthase IPNS/deacetoxycephalos-

porin C synthase (DAOCS)-like family [43,44]. However, in the

members of this family, the helices a-3 and a-4 present in EctD,

PhyH, and SyrB2 are fused to one long helix (Figure 3). The major

difference between the enzymes of the IPNS/DAOCS family and

that of the PhyH family is the way in which b-strands IV and V of

the DSBH structural motif are linked with each other. In the IPNS/

DAOCS family these strands are connected by a short loop in the

structures of the EctD, PhyH, and SyrB2 proteins, but this loop is

extended and most likely forms part of the ligand-binding pocket in

all three enzymes [40,42].

When the crystal structures of EctD, PhyH, and SyrB2 are

compared, the largest structural differences in these three enzymes

Figure 2. Ribbon and surface representation of the EctD ectoine hydroxylase. (A) The successive segments of the double-stranded b-helix
(DSBH) are coloured according to the scheme of Branden and Tooze [75]. The Fe3+ ion bound by EctD is shown as a blue sphere. A dashed line
indicates a disordered loop region connecting the DSBH b-strands IV and V. (B) The surface of the EctD protein is represented and the side-chains of
the iron-coordinating residues His-146, Asp-148 and Asp-248 are shown as sticks. The iron ion bound by the crystallized EctD protein is shown as a
blue sphere.
doi:10.1371/journal.pone.0010647.g002

Ectoine Hydroxylase
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Figure 3. Topology diagrams of PhyH-family enzymes PhyH, SyrB2 and EctD and of the DAOCS enzyme. (A) PhyH (PDB code: 2A1X), (B)
SyrB2 (PDB code: 2FCU) and (C) EctD (PDB code: 3EMR). (D) Topology diagram of DAOCS (PDB code: 1DCS), a representative of the family of the IPNS/
DAOCS-like enzymes. Arrows represent b-strands, while a-helices are shown as cylinders. 310-helices are also shown as cylinders, but not numbered.
The b-strands forming the DSBH-motif are coloured according to the scheme of Branden and Tooze [75]. In the diagrams of EctD and PhyH, the
disordered putative ‘‘lid’’ region within the segment connecting DSBH b-strands IV and V is shown by dashed lines. For the sake of clarity and
comparability, DSBH b-strand II is included in the topology diagram of PhyH, although this strand is largely disordered and invisible in the
corresponding crystal structure [40].
doi:10.1371/journal.pone.0010647.g003

Ectoine Hydroxylase
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occur at their amino and carboxy termini. There are also

differences in the region connecting helices a-2 and a-3

(Figure 3). In EctD and PhyH, this region harbours two anti-

parallel b-strands that extend the major DSBH sheet by adjoining

the carboxy-terminal part of b-strand I. Such anti-parallel b-

strands are missing in the corresponding region of SyrB2.

Compared to PhyH and SyrB2, the amino terminus of EctD is

significantly extended. It contains a b-strand (b-1) that is aligned

anti-parallel to b-strand 9 located in the segment connecting

DSBH b-strands IV and V. In contrast, both PhyH and SyrB2 are,

in comparison to EctD, prolonged at their carboxy termini, which

in both enzymes contain a b-strand adjoining anti-parallel to the

amino-terminal part of DSBH b-strand I (Figure 3).

The Fe2+ binding site in EctD
The enzymatic function of the non-heme iron(II)-containing

and 2-oxoglutarate-dependent dioxygenases depends on a highly

reactive iron species [35–38]. Typically for this enzyme super-

family, the two sheets of the DSBH form the main portion of a

deep cavity containing the catalytic Fe2+, the binding site for the

co-substrate 2-oxoglutarate, and at least part of the substrate-

binding site. In most enzymes of this group, the Fe2+ ion is

coordinated by two histidine imidazoles and the carboxylate of an

aspartate or, more rarely, a glutamate residue which together form

the so-called 2-His-1-carboxylate facial triad. One of the histidines

and the aspartate/glutamate residue are arranged in a conserved

His-X-Asp/Glu sequence motif [34–38]. Although no iron salt had

been added to the buffer used for crystallisation of the EctD

protein, the experimental electron density clearly indicated a

bound metal ion in the active centre of the enzyme that was

subsequently refined as an iron ion. It has been previously

reported, that the EctD enzyme from V. salexigens when

heterologously produced in E. coli contains a ferric ion [5] and

this iron molecule was apparently maintained in the crystallization

process of the EctD protein. The metal ion is coordinated by the

functional groups of His-146, Asp-148 and His-248 of the EctD

protein and three water molecules in an almost perfect octahedral

geometry (Figure 4). The temperature- or B-factor of an atom

within a structural model is a measure of the freedom of

movement of this atom. In the structure of EctD, the B-factor of

the bound metal ion was refined to 23.9 Å2 which is below the

average B-factor of the protein main chain atoms (26.3 Å2; Table

S2) indicating that the Fe3+ is rigidly bound to the protein and

excellently defined in the electron density map. The B-factors of

the water ligands are 31.3 Å2, 36.0 Å2, and 47.9 Å2 (average B-

factor of all water molecules: 37.2 Å2; Table S2). The three

residues (His-146, Asp-148, His-248) forming this iron-binding site

protrude into a deep cavity in the EctD structure that houses the

active site of the enzyme (Figure 2B).

Residues likely to be involved in 2-oxoglutarate binding
by EctD

In all non-heme iron(II)-containing and 2-oxoglutarate-depen-

dent dioxygenases, the co-substrate 2-oxoglutarate is bound at the

base of the binding cavity of the enzyme and participates in the

coordination of the Fe2+ ion via its 1-carboxylate and 2-oxo moiety

in a bidentate manner. The 5-carboxylate is typically stabilized by

a salt bridge formed with the basic group of an arginine or lysine

side chain and by at least one hydrogen bond formed to a hydroxyl

group of the protein [34]. With few exceptions, the basic residue

salt-bridging the 5-carboxylate of 2-oxoglutarate protrudes from

the amino-terminus of the DSBH b-strand VIII. An arginine

residue is invariantly present in 71 EctD-type proteins compiled by

us through database searches (Figure S1) and corresponds to Arg-

259 in the V. salexigens EctD enzyme (Figure 5D). In members of

the IPNS/DAOCS family and a few other non-heme iron(II)-

containing and 2-oxoglutarate-dependent dioxygenases, the basic

residue and hydroxyl group stabilizing the 5-carboxylate of 2-

oxoglutarate stem from an Arg–X–Ser sequence motif [34]. This

motif is not present in EctD, as residue 261 of the S. salexigens

enzyme is a non-conserved asparagine residue (Figure S1).

Despite intensive efforts, we were not able to grow EctD crystals

in the presence of 2-oxoglutarate. We therefore can only glean

information about those residues that might be involved in 2-

oxoglutarate binding by comparing the EctD ligand-binding

pocket with crystal structures of non-heme iron(II)-containing

and 2-oxoglutarate-dependent dioxygenases that actually contain

this co-factor. In the PhyH enzyme that is structurally most closely

related to EctD, the 2-oxoglutarate-interacting hydroxyl group is

provided by Ser-266, positioned two residues away from the Fe2+-

chelating His-264 residue on DSBH b-strand VII [40] (Figure 5A).

The corresponding residue Ser-250 is strictly conserved in 71

EctD-type proteins (Figure S1) and as in PhyH, it is positioned two

residues after the invariant Fe2+-chelating His-248 (Figure 5D and

Figure S1). Furthermore, in the EctD-related SyrB2 crystal

structure, two residues after His-235, there is a serine residue

(Ser-237) at the corresponding position as well. However, in the

SyrB2 halogenase, the hydroxyl group of Ser-237 is not directly

involved in 2-oxoglutarate binding. Instead, it forms hydrogen

bonds with the hydroxyl group of Thr-113, thereby establishing an

additional hydrogen bond to the 5-carboxylate of 2-oxoglutarate

(Figure 5B) [42].

Notably, in the recently determined structure of the pentaleno-

lactone biosynthesis enzyme PtlH from Streptomyces avermitilis, a

serine is also found two residues after the Fe2+-chelating His-226

[45]. As in the PhyH structure, Ser-228 of the PtlH enzyme

directly hydrogen-bonds the 5-carboxylate of 2-oxoglutarate

(Figure 5C). PtlH shows high structural similarity to EctD (DALI

Z-score of 16.3) and, according to its overall topology, most likely

is a member of the structural family of PhyH-like enzymes as well.

With the exception of a prolyl-4-hydroxylase from Chlamydomonas

reinhardtii [46], none of the remaining non-heme iron(II)-contain-

ing and 2-oxoglutarate-dependent dioxygenases with known

structure contains a serine at the corresponding position.

Therefore, the His-X-Ser motif, with the histidine being the distal

Fe2+-chelating residue and the serine providing an alcohol directly

or indirectly stabilizing the 5-carboxylate of the co-substrate 2-

Figure 4. Stereo view of the EctD Fe2+-binding site. A co-purified
Fe3+ (orange sphere) is coordinated by the side chain functional groups
of His-146, Asp-148 and Asp-248 of EctD and by three water molecules
(shown as red spheres). The |Fobs| – |Fcalc| difference electron density
(blue mesh) is shown at a sigma level of 3.0 after refinement of the
structural model excluding both the Fe3+ and its three water ligands.
doi:10.1371/journal.pone.0010647.g004

Ectoine Hydroxylase
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oxoglutarate, may represent a typical feature within the family of

PhyH-like enzymes.

We noted that the phenyl ring of Phe-143 on DSBH b-strand II

protrudes into the presumed binding pocket of the EctD enzyme,

where it makes no interactions with any further EctD residue

(Figure 5D). Accordingly, the aromatic ring system of this amino

acid is freely rotatable and, therefore, ill defined in the electron

density. Nevertheless, its positioning suggests that it is able to

make, upon binding of 2-oxoglutarate, a stacking interaction with

the co-substrate via its aromatic side-chain. Consistent with the

proposed role of Phe-143 in 2-oxoglutarate binding, replacement

of this amino acid by either Ala, Trp or Tyr residues resulted in

enzymatically inactive EctD derivatives (M. Pittelkow and E.

Bremer; unpublished data). A phenylalanine is not found at an

equivalent position in any other non-heme iron(II)-containing and

2-oxoglutarate-dependent dioxygenase of known structure with

the exception of the human histone demethylase JMJD2A [47,48].

Indeed, the corresponding Phe-185 residue in JMJD2A makes via

its aromatic side chain a Van-der-Waals contact to the bound 2-

oxoglutarate or its analogue N-oxalylglycine. The histone

demethylase JMJD2A shows, however, only moderate overall

structural similarity to EctD (DALI Z-score of 5.9).

It should be noted in the context of the discussion of the

architecture of the 2-oxoglutarate-binding site, that the actual

orientation of the guanidino function of Arg-259, as represented in

the EctD crystal structure, is not in a position that would allow

Arg-259 to form a salt bridge to 2-oxoglutarate (Figure 5D). This

can readily be rationalized in view of the absent 2-oxoglutarate in

Figure 5. Binding of 2-oxoglutarate by PhyH-like enzymes. (A) PhyH, (B) SyrB2 and (C) PtlH (PDB code: 2RDN) and (D) EctD. The Fe2+ ion is
shown as a blue sphere, water molecules are shown as red spheres. Side chains of residues involved in 2-oxoglutarate binding or in Fe2+ coordination
are represented as sticks. Secondary structure elements are indicated as ribbons. The positioning of Phe-143 residue in the EctD structure makes in all
likelihood an interaction via its aromatic side chain with 2-oxoglutarate. However, the conformation of the Phe-143 side chain shown in this figure
must be regarded as tentative as it is poorly defined in the electron density map (in contrast to the Phe-143 main chain atoms). In addition, the actual
orientation of the Arg-259 side chain in the EctD crystal structure is not in a position enabling its guanidino function to salt bridge the 5-carboxylate
of a bound 2-oxoglutarate. However, a position allowing this interaction can easily be achieved through torsion around rotatable single bonds within
the side chain of this Arg residue. It also should be noted that the DSBH b-strand II of PhyH is largely disordered in the crystal structure of this protein.
In the EctD structure, the corresponding b-strand also strongly deviates from ideal b-strand geometry.
doi:10.1371/journal.pone.0010647.g005

Ectoine Hydroxylase
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the EctD active site in the crystallized protein, which will allow

flexibility in the positioning of the Arg-259 side-chain. However,

an Arg-259 position that allows interaction with 2-oxoglutarate

can easily be achieved through torsion around rotatable single

bonds within the side chain of this Arg residue.

A flexible loop in EctD that might be involved in
structuring the ligand-binding pocket

The section of the EctD polypeptide chain extending from

residues Gly-195 to Leu-211 is disordered in the crystal and

consequently not visible in the electron density map. This putative

loop region is part of an expanded section of the polypeptide chain

connecting DSBH b-strands IV and V of EctD (Figure 2A and

Figure 3D). Val-194 and the strictly conserved Gly-212 (Figure

S1), two residues that are positioned close to the border of the

presumable ligand-binding cavity, flank the disordered loop in the

EctD crystal structure. Such an arrangement suggests that this

loop might constitute a kind of a flexible ‘‘lid’’ which becomes

ordered upon substrate binding.

Notably, in the crystal structure of the EctD-related PhyH

protein, the region between residues 223 and 233, which largely

corresponds to the disordered loop in EctD, is disordered as well

[40]. The PhyH crystal structure was determined in complex with

the ligands Fe2+ and 2-oxoglutarate but without the PhyH-specific

substrate, phytanoyl-CoA. McDonough et al. [40] discussed the

possibility that the flexible loop present in PhyH might serve to

enclose the active site after binding of all reactants by the PhyH

enzyme. In the recently determined crystal structure of the non-

heme iron(II)-containing and 2-oxoglutarate-dependent aspara-

gine hydroxylase AsnO from S. coelicolor, such a lid has been clearly

identified [49]. A loop comprising residues 208 to 223 of AsnO is

partially disordered in the crystal structure of the apo-form of

AsnO but upon ligand-binding, a pronounced structural rear-

rangement occurs that allows the crystallographic resolution of this

flexible segment in AsnO [49]. Strikingly, this mobile lid-structure

of AsnO corresponds to the unstructured regions in both the EctD

and PhyH crystal structures. As discussed for PhyH [40], Strieker

et al. [49] also suggest that the flexible loop of AsnO serves to shield

the reactants from the surrounding solvent during enzyme

catalysis. Furthermore, in the AsnO-related VioC L-arginine

oxygenase involved in the biosynthesis of the tuberactinomycin

antibiotic viomycin from Streptomyces vinaceus, a structurally flexible

lid-like region that shields the active site upon substrate binding

has been identified as well [50]. In view of the available data on

the lid-regions in the PhyH, AsnO, and VioC crystal structures, it

is tempting to speculate, that a similar ‘‘lid-movement’’ mecha-

nism might also operate during the catalytic cycle of the EctD-

mediated hydroxylation of ectoine.

A structural perspective on the signature sequence motif
of EctD–type ectoine hydroxylases

Based on an alignment of a restricted number of EctD-related

proteins, Bursy et al. [5] have previously noted a conserved

segment of nine amino acid residues (-W145HSDFETWH153-) and

suggested that it might serve as a signature-sequence motif for bona

fide ectoine hydroxylases. Our updated data base searches for

proteins related to the V. salexigens ectoine hydroxylase extended

this signature sequence motif to F143-X-WHSDFETWH-X-EDG-

M/L-P159. This motif is invariably present in the amino acid

sequence of each of the 71 EctD-type proteins compiled by us, and

it stands out as the most conserved part of the ectoine hydroxylase

protein sub-family of the non-heme iron(II)-containing and 2-

oxoglutarate-dependent dioxygenases (Figure S1). The EctD

signature sequence motif comprises two (His-146 and Asp-148)

of the three residues forming the iron-binding pocket in the EctD

enzyme (Figure 4) and one of the residues (Phe-143) that in all

likelihood is involved in 2-oxoglutarate binding (Figure 5D).

It is now possible to inspect the F143-X-WHSDFETWH-X-

EDG-M/L-P159 motif within the framework of a crystal structure

of a biochemically characterized ectoine hydroxylase. Most of the

residues forming the ectoine hydroxylase signature-sequence motif

are structurally organized as an a-helix (a-helix 5; Figure 3D and

Figure 6). This helix consists of nine amino acids (Asp-148 to Asp-

156), all of which, except Val-154, are strictly conserved in EctD-

type proteins (Figure S1). This is in contrast to the other five a-

helices present in the EctD structure (Figure 3D), none of which

contains a single invariant amino acid (Figure S1). Along with the

carboxy-terminal loop of EctD and b-strands 3 and 4, a-helix 5

expands the ligand-binding cavity, whose core is formed by the

DSBH motif (Figure 2A and Figure 6). In analogy to what is

observed in crystal structures of EctD-related non-heme iron(II)-

containing and 2-oxoglutarate-dependent dioxygenases with

bound substrates, this expansion is likely to form an important

part of the ectoine-binding site. This assumption is strengthened

when one considers the spatial proximity within the EctD structure

of a-helix 5 to residues Val-194 and Gly-212, two residues that

flank the putative ‘‘lid’’ region of the EctD enzyme.

Despite intensive efforts, we have not been able to obtain EctD

crystals with either the substrate ectoine or the product 5-

hydroxyectoine. We can thus currently not tell how or where the

ectoine ligand is bound within the presumed EctD active site.

Figure 6. The ectoine hydroxylase signature sequence motif
represented in the context of the EctD crystal structure. The V.
salexigens EctD structure is shown in ribbon representation with those
residues constituting the EctD signature motif [F143-X-WHSDFETWH-X-
EDG-M/L-P159] highlighted in yellow. This string of amino acids is
invariantly present in 71 compiled EctD-type proteins (Figure S1). The
side chains of the Fe2+-chelating amino acids (His-146, Asp-148, His-248)
are shown as red sticks and those forming the putative 2-oxoglutarate-
binding site (Phe-143, Ser-250, Arg-259) are represented by green sticks.
The iron ligand (Fe3+) present in the EctD crystal structure is
represented as blue sphere.
doi:10.1371/journal.pone.0010647.g006
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Recently, the crystal structures of ectoine/5-hydroxyectoine

ligand-binding proteins from an ABC and two TRAP transporters

have been reported. The binding of both compatible solutes by

EhuB from Sinorhizobium meliloti [51], TeaA from Halomonas elongata

[52], and UehA from Silicibacter pomeroyi [53] relies on cation-p
interactions between the positive charge of both ectoine and 5-

hydroxyectoine (Figure 1) and aromatic side chains of the ligand-

binding proteins and on directed protein-ligand interactions via

salt-bridges and hydrogen bonds. In view of this information, we

inspected the likely active centre of the EctD enzyme (Figure 2B

and Figure 6) for an arrangement of amino acid side chains similar

to that found within the ectoine/5-hydroxyectoine-binding pockets

of EhuB, TeaA and UehA. However, the presumed active site of

the EctD enzyme apparently does not contain an ectoine/5-

hydroxyectoine-binding site that closely matches that is present in

these ligand-binding proteins.

EctD-type proteins within the context of microbial
genomes and microbial physiology

The structural gene (ectD) for the ectoine hydroxylase is either

part of the ectoine biosynthetic gene cluster or it is encoded

separately from ectABC operon somewhere else in microbial

genomes [5,15]. Using the amino acid sequence of the ectoine

synthase (EctC) as a diagnostic tool to identify potential ectoine

producers via data-base searches, we identified 197 microbial

species as putative ectoine producers. Of these, 67 species were

also found to contain EctD-type ectoine hydroxylases. Four

microbial genomes carried two copies of ectD genes.

The 71 compiled EctD-type proteins exhibit a degree of amino

acid sequence identity to the EctD protein from V. salexigens that

ranges from 55 to 41%. These proteins comprise a similar number

of amino acid residues and all align with each other without major

gaps (Figure S1). Only a sub-group of these EctD-type proteins are

currently functionally annotated in the databases as ectoine

hydroxylases. Many EctD-type proteins are referred to as either

proline- or phytanoyl-CoA-hydroxylases, or are non-specifically

referred to as probable hydroxylases/dioxygenases. Proline-

hydroxylases are members of the non-heme iron(II)-containing

and 2-oxoglutarate-dependent dioxygenase superfamily (EC

1.14.11) and carry out an enzymatic reaction similar to that

catalyzed by the EctD ectoine hydroxylase [54,55], but the amino

acid sequence of this type of enzymes can readily be distinguished

from those of ectoine hydroxylases in BLAST searches. Our

finding that EctD is structurally closely related to the human

phytanoyl-CoA-hydroxylase PhyH (Figure 3A), probably explains

the annotation of many EctD-type hydroxylases in the databases

as putative microbial phytanoyl-CoA-hydroxylases.

Microbial genomes usually contain only one copy of the ectD

gene but we found four exceptions: Rhodococcus sp. RHA1,

Rhodococcus opacus B4, Marinobacter aquaeolei VT8 and C. salexigens

each encode two EctD-type proteins (Figure S1). In the case of C.

salexigens, the contributions of the two EctD-type proteins (referred

to as EctD and EctE, respectively) for the synthesis of 5-

hydroxyectoine have already been investigated through gene

disruption experiments. Only the EctD protein significantly

contributes to 5-hydroxyectoine production, despite the fact that

the amino acid sequence of EctD and EctE of C. salexigens are 50%

identical [16].

Ectoine and 5-hydroxyectoine were so far considered as

compatible solutes exclusively synthesised by members of the

domain of the Bacteria [4]. However, our database searches

revealed an EctD-type protein encoded in the genome of the

archaeon Nitrosopumilus maritimus SCM1 (NCBI accession number

NC_010085). The ectD gene of this marine group 1 Crenarchaeon

[56] is part of a gene cluster (ectABCD) that encodes the three

enzymes required for ectoine biosynthesis as well. There is

considerable evidence for extensive lateral gene transfer between

members of the domains of the Bacteria and the Archaea [57,58]. It

is thus tempting to speculate that N. maritimus SCM1 acquired the

ectoine and 5-hydroxyectoine biosynthetic genes via lateral gene-

transfer from a member of the Bacteria that shares the marine

habitat with this archaeon. The presence of the ectoine/5-

hydroxyectoine gene cluster in N. maritimus SCM1 was recently also

noted by Lo et al. [15] in connection with a cohesion group

approach for the evolutionary analysis of microbial aspartokinases,

enzymes that are crucial for the production of L-aspartate-b-

semialdehyde, the precursor for the biosynthesis of ectoine [15,59].

EctD-possessing microorganisms are quite diverse with respect

to their taxonomic affiliation, physiology, lifestyles and habitats

(Figure S1). There are well-known pathogens among this group of

bacteria such as Norcadia farcina, Mycobacterium abscessus and various

species of Bordetella. But there are also representatives of

biotechnologically important microorganisms such as S. coelicolor

and Streptomyces griseus, which are both employed for antibiotic

production. Represented are also microorganisms that live in

extreme habitats with respect to growth temperature (e.g. the

thermophilic Geobacillus sp Y412MC10 and the psychrophilic

Sphingopyxis alaskensis RB2256) and pH tolerance (e.g. Acidiphilum

cryptum JF5 and Alkalilimnicola ehrlichei MLHE-1). A substantial

number of ectD-possessing microorganisms inhabit high-salinity

environments or marine habitats. One representative of this group

is the cosmopolitan hydrocarbonoclastic marine bacterium

Alcanivorax borkumensis SK2, whose ability to synthesize ectoine

and 5-hydroxyectoine is key for its ability to colonize high salinity-

habitats [60]. It will be interesting to see in future studies how the

EctD-mediated synthesis of 5-hydroxyectoine contributes to the

specific adaptation of microorganisms to their varied ecological

niches.

Materials and Methods

Chemicals
Ectoine and 5-hydroxyectoine either were purchased from

Biomol (Hamburg, Germany) or were a kind gift from Dr. T.

Schwarz (Bitop AG, Witten, Germany). 2-oxoglutarate (disodium

salt) was obtained from Sigma-Aldrich (St. Louis, MO, USA).

Anhydrotetracycline-hydrochloride, desthiobiotin, and Strep-Tac-

tin Superflow chromatography material were purchased from IBA

(Göttingen, Germany).

Culture conditions for bacterial strains
E. coli strains were grown aerobically in Luria-Bertani (LB) rich

medium and were propagated on LB-agar plates at 37uC [61].

Ampicillin (100 mg mL21) was added to liquid and solid media to

select for the presence of the ectD+ plasmid pBJ10 [5] in the E. coli

strain DH5a (Invitrogen, Karlsruhe, Germany). Overproduction

of the EctD protein was performed in minimal medium A [61]

with 0,5% (w/v) glucose as the carbon source, 0.5% (w/v)

casaminoacids, 1 mmol L21 MgSO4 and 3 mmol L21 thiamine.

Overproduction and purification of the recombinant
EctD protein in E. coli

Plasmid pJB10 is a derivative of the expression vector pASK-

IBA3 (IBA, Göttingen, Germany) and carries the ectD+ gene from

V. salexigens (DSM 11483T) under the transcriptional control of the

anhydrotetracycline-inducible tet-promotor present on pASK-

IBA3. The ectD coding region is fused at its 39-end to a DNA

segment that encodes a Step-tag-II affinity peptide. Expression of
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the recombinant V. salexigens ectD gene in E. coli DH5a (pBJ10) was

triggered by the addition of anhydrotetracyline (final concentra-

tion: 0.2 mg mL21) to mid-log-phase-cultures (OD578 of 0.7)

propagated in minimal medium A. Growth of the cells was

continued for two hours after the addition of the inducer to allow

EctD-Strep-tag-II protein production, and the cells were subse-

quently harvested by centrifugation (4uC, 10 min at 5 0006g).

EctD-Strep-tag-II production was carried out in batch-cultures

(661 liter minimal medium A). The recombinant EctD-Strep-tag-II

protein was purified from cleared cell lysates of the E. coli DH5a
(pJB10) producer cells by affinity chromatography on a Strep-

Tactin Superflow column as detailed by Bursy et al. [5]. In general,

approximately 8 mg of purified EctD-Strep-tag-II protein were

obtained per liter of E. coli DH5a (pJB10) culture. The purified

EctD-Strep-tag-II protein was shock-frozen in liquid nitrogen and

stored at 280uC for subsequent enzyme assays [5] and

crystallization trials.

Crystallization of the EctD protein from V. salexigens
The EctD-Strep-tag-II protein was crystallized at 293 K by the

hanging-drop vapour diffusion method using VDXTM plates

(Hampton Research, USA). For an initial screen, the 98 solutions

of the Crystal Screen and Crystal Screen II kit from Hampton

Research (USA) were used. 1.5 mL of protein solution (10 g L21

EctD protein in 10 mmol L21 TES, pH 7.5; 80 mmol L21 NaCl;

2 mmol L21 DTT) were mixed with 1.5 mL reservoir solution and

equilibrated against 0.5 mL of reservoir solution. A large number of

very small crystals appeared overnight in 2.0 mol L21 (NH4)2SO4

buffered with 0.1 mol L21 sodium acetate (pH 4.6); Crystal Screen

#47). Optimization of this condition using the Additive Screen

kit from Hampton Research (USA) led to a reservoir solution

containing 1.0 mol L21 (NH4)2SO4, 0.1 mol L21 NaF, 2 mmol L21

TCEP, 0.02% (w/v) sodium azide buffered with 0.1 mol L21 sodium

acetate at pH 5.0. When 2 mL of protein solution were mixed with

3 mL of the refined reservoir solution, large crystals were obtained

after five days. The crystals were of bipyramidal shape with a

hexagonal base and were approximately 0.8 mm in length and

0.5 mm in width. Only a small fraction of the obtained crystals

showed good diffraction behaviour. Omitting NaF from the reservoir

solution inevitably resulted in morphologically imperfect crystals

exhibiting an extremely high mosaicity. For a multiwavelength

anomalous diffraction (MAD) experiment, selenomethionine (Se-

Met)-substituted EctD was produced according to the metabolic

inhibition protocol established by Van Duyne et al. [62] with slight

modifications. The presence of the SeMet in the protein was

confirmed by matrix-assisted laser desorption/ionisation (MALDI-

TOF) mass spectrometry. Purification was identical to sulfurmethio-

nine EctD. For crystallization of SeMet-labelled EctD the concen-

tration of (NH4)2SO4 in the reservoir solution had to be decreased

to 0.9 mol L21.

Data collection, processing, and structure determination
by means of multiwavelength anomalous diffraction
(MAD)

For data collection at 100 K, crystals were cryopreserved in a

reservoir solution with an increased (NH4)2SO4 concentration

(1.4 mol L21) plus 30% (v/v) glycerol. The crystals belonged to the

hexagonal space group P6522 with unit cell dimensions of

a = b = 102.7 Å, c = 158.8 Å. Calculation of a Matthews coefficient

of 3.7 Å3/Da implied one protein monomer per asymmetric unit,

yielding a solvent content of 66.9%. The crystal structure of EctD

was determined by MAD using selenium of SeMet incorporated

into the EctD protein as anomalous scatterer [63]. The MAD

experiment was performed at the Proteine Structure Factory (PSF)

beamline 14.2 at the Berliner Elektronenring-Speicherring für

Synchrotronstrahlung (BESSY; Berlin, Germany) equipped with a

MAR-165CCD detector. One crystal of selenomethionyl EctD

was used to collect a MAD data set at three different wavelengths

at 2.1 Å resolution each (1u oscillation steps at a crystal to detector

distance of 150 mm). Subsequently, data of 1.85 Å resolution were

collected from a further crystal of selenomethionyl EctD (0.5u
oscillation steps at a crystal to detector distance of 135 mm) at the

remote wavelength. This data set was used as the ‘‘native’’ data set

and for refinement of the EctD crystal structure. All data were

processed and scaled with the programs DENZO and SCALE-

PACK implemented in the HKL2000 package [64]. For MAD

data the option ‘NO MERGE ORIGINAL INDEX’ was used to

allow local scaling. Data collection statistics are summarized in

Table S1. The data quality was examined with SHELXC as

implemented in HKL2MAP [65]. The ‘‘native’’ data set was used

as a reference for the calculation of the correlation coefficient. The

anomalous signal/noise (.1.5) and the correlation coefficient

(.30) between data sets were significant up to a resolution of

2.2 Å. The selenium substructure was determined with the

program SHELXD [66]. Five of the seven selenium atoms

present in the SeMet-labelled EctD protein were found. Among

these was the selenium atom of the N-terminal methionine of

EctD, which was only poorly defined both in the experimental

and refined electron density map. In addition, a complexed Fe3+

ion showing a week anomalous signal at the wavelengths used for

the MAD experiment was identified. The correlation coefficient

for the best solution was 71.0 and the R-factor was 21.1%.

Reference phases from the selenium positions were calculated

and improved by density modification using SHELXE [67].

Phase extension was performed with the ‘‘native’’ dataset to

1.85 Å resolution. The correct enantiomorph of the Patterson

function returned a single solution with a final contrast of 1.00

and a connectivity of 0.95 (inverted site ; P6122: contrast: 0.07,

connectivity: 0.73).

Model building and crystallographic refinement
The automatic model building program ARP/wARP was

applied for automatic tracing of the electron density and model

building [68]. After 200 refinement cycles, this procedure provided

an initial model consisting of 276 out of 300 amino acid residues

(not taking into account the carboxy-terminal Strep-affinity tag)

with a connectivity index of 0.99. Residues 195 to 212 as well as

the six C-terminal residues 295 to 300 were missing in this first

model. A Fe3+ ion that was clearly visible in the experimental

electron density was manually introduced. Initially, simulated

annealing and B-factor refinement was performed in CNS [69].

After some cycles of refinement, the refined electron density

allowed building of residues 212, 295 and 296 using the program

O [70]. In addition, the refined electron density clearly revealed

two alternative side chain conformations for residues SeMet-63,

Ser-73, Asp-101, Asp-124 and Ile-229. The alternative side chain

conformations, two glycerol molecules and four sulfate ions that

were visible in the electron density, were built in O. Further

refinement of the model was done using the program SHELXL

[71] until the Rfree no longer decreased (see Table S2 for

refinement and model statistics). Since no or only poor electron

density could be assigned to the side chains of Glu-2, Leu-4, Gln-9,

Asn-10, Asn-11, Gln-12, Lys-14, Lys-17, Glu-38, Glu-85, Glu-87,

Lys-141, Phe-143, Lys-292, Gln-293 and Val-295, these residues

were modelled as alanines. The Q,y-angle combination of Glu-87

whose main chain portion was excellently defined in the electron

density map is in the forbidden area of the Ramachandran plot. As
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analyzed by means of the program PROMOTIF [72], it is present

in a type IV beta turn motif.

Protein Data Bank accession number
The coordinates of the EctD crystal structure in complex with

Fe3+ were deposited with the Brookhaven Protein Data Bank

under accession number 3EMR.

Figure preparation
Structural figures were prepared using Pymol (http://www.

pymol.org).

Database searches and computer analysis of protein
sequences

Proteins that are homologous either to the EctC or EctD

proteins from V. salexigens were searched via the Web-server of the

DOI Joint Genome Institute (http://www.jgi.doe.gov/) or that of

the National Center for Biotechnology Information institute

(http://www.ncbi.nlm.nih.gov/) using the Blast algorithm [73].

The genome context of finished and unfinished microbial genomes

in the vicinity of the ectD gene was analyzed using the gene

neighbourhood tool (http://img.jgi.doe.gov/cgi-bin/pub/main.

cgi) provided by the JGI Web-server. Sequence alignments of

EctD-type proteins were performed using ClustalW [74] as

implemented in the Vector NTI software package (Invitrogen,

Karlsruhe, Germany).

Supporting Information

Figure S1 The Virgibacillus salexigens EctD amino acid sequence

(accession number: AAY29689) was used as a query sequence in

BLAST searches using the web tools of the National Center for

Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.

gov/) or the Joint Genome Institute (JGI; http://www.jgi.doe.

gov/). The retrieved amino acid sequences were then aligned

using the ClustalW algorithm as implemented in the Vector NTI

DNA analysis software. The position of those amino acids that are

involved either in iron or in 2-oxoglutarate binding by the V.

salexigens EctD protein are labelled by red and green boxes,

respectively. The numbering of these residues is according to the

amino acid sequence of the V. salexigens EctD protein.

Found at: doi:10.1371/journal.pone.0010647.s001 (0.36 MB

PDF)

Table S1 X-ray data collection statistics for the EctD protein.

Found at: doi:10.1371/journal.pone.0010647.s002 (0.03 MB

DOC)

Table S2 Refinement and model statistics for the EctD crystal

structure (PDB code: 3EMR).

Found at: doi:10.1371/journal.pone.0010647.s003 (0.03 MB

DOC)
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