Supplementary Information

From substrate specificity to promiscuity: hybrid ABC transporters for osmoprotectants

Laura Teichmann¹, Chiliang Chen¹,², Tamara Hoffmann¹, Sander H.J. Smits³, Lutz Schmitt³, and Erhard Bremer^{1,2*}

¹Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Karlvon-Frisch Str. 8, D-35043 Marburg, Germany

²LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, D-35043 Marburg, Germany

³Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany

Running title: Hybrid osmolyte ABC transporters

Keywords: ABC transporters - salt stress - compatible solutes - substrate-binding proteins -

Bacillus subtilis

For correspondence during the reviewing and editorial process:

Erhard Bremer: Philipps-University Marburg, Dept. of Biology, Laboratory for Microbiology, Karlvon-Frisch-Str. 8, D-35032 Marburg, Germany. Phone: (+49)-6421-2821529. Fax: (+49)-6421-2828979. E-Mail: bremer@staff.uni-marburg.de

*For correspondence. E.B.: E-mail <u>bremer@staff.ini-marburg.de</u>; Tel. (+49)-6421-2821529; (+49)-6421-2828979

Table S1: Bacterial strains

Strain	Relevant genotype	Reference /origin
JH642	trpC2 pheA1	J. Hoch
CCB2	$\Delta(opuA::tet)$ $\Delta(opuB::ery)$ $\Delta(opuC::spc)$ $\Delta(opuD::kan)$ $2 amyE::opuB$	This study
CCB3	$\Delta(opuA::tet)$ $\Delta(opuB::ery)$ $\Delta(opuC::spc)$ $\Delta(opuD::kan)$ $2 amyE::opuC$	This study
SBB2	$\Delta(opuA::tet)$ 3 $\Delta(opuD::kan)$ 2 $\Delta(opuB::ery)$ 1	S. Broy
SBB5	$\Delta(opuA::tet)$ 3 $\Delta(opuC::spc)$ 3 $\Delta(opuD::kan)$ 2	S. Broy
TMB107	$\Delta(opuA::tet)$ 3	This study
TMB108	$\Delta(opuC::spc)$ 3	This study
TMB112	$\Delta(opuC::spc)$ 3 $\Delta(opuB::ery)$ 3	This study
TMB116	$\Delta(opuB::ery)$ 1	This study
TMB118	$\Delta(opuA::tet)$ $\Delta(opuB::ery)$ $\Delta(opuC::spc)$ $\Delta(opuD::kan)$ 2	This study
RMKB7	$\Delta(opuD::neo)2$	(Kappes et al.,
		1996)
GNB40	$\Delta(gbsR::neo)1 \Delta(treA::ery)2$	(Nau-Wagner et
		al., 2012)
GNB48	$\Delta(gbsR::neo)1 \Delta(treA::ery)2 amyE::\Phi(gbsA'-treA)$	G. Nau-Wagner
GNB51	$\Delta(gbsR::neo)1 \Delta(treA::ery)2 amyE::\Phi(gbsA'-treA)-gbsR$	G. Nau-Wagner
STHB53	$\Delta(gbsR::spc)2 \Delta(treA::ery)1 amyE::\Phi(opuBA'-treA)$	S. Ronzheimer
LTB1 ¹	$\Delta(opuA::tet)$ 3 $\Delta(opuB::ery)$ 3 $\Delta(opuC::spc)$ 3 $\Delta(opuD::kan)$ 2	This study
	<i>amyE:: opuB::opuCC</i> * (M211/I)	
LTB3 ¹	$\Delta(opuA::tet)$ 3 $\Delta(opuB::ery)$ 3 $\Delta(opuC::spc)$ 3 $\Delta(opuD::kan)$ 2	This study
	<i>amyE</i> :: <i>opuB</i> :: <i>opuCC</i> * (M211I), gbsR [¶] [G39/E (M1)]	
LTB4 ¹	$\Delta(opuA::tet)$ 3 $\Delta(opuB::ery)$ 3 $\Delta(opuC::spc)$ 3 $\Delta(opuD::kan)$ 2	This study
	<i>amyE</i> :: <i>opuB</i> :: <i>opuCC</i> * (M211I), <i>gbsR</i> [¶] [T79/A (M2)]	
LTB5 ¹	$\Delta(opuA::tet)$ $\Delta(opuB::ery)$ $\Delta(opuC::spc)$ $\Delta(opuD::kan)$ 2	This study
	<i>amyE</i> :: <i>opuB</i> :: <i>opuCC</i> * (M211I), $gbsR^{\P}$ [R85/S (M3)]	
LTB10	$\Delta(opuA::tet)$ $\Delta(opuB::ery)$ $\Delta(opuC::spc)$ $\Delta(opuD::kan)$ 2	This study
	amyE:: opuB::opuCC	
LTB11 ¹	$\Delta(gbsR::neo)1 \ \Delta(treA::ery)2 \ amyE::\Phi(gbsA'-treA), \ gbsR^{\P} \ [G39/E \ (M1)]$	This study
LTB12 ¹	$\Delta(gbsR::neo)1 \ \Delta(treA::ery)2 \ amyE::\Phi(gbsA'-treA), \ gbsR^{\P} \ [T79/A \ (M2)]$	This study
LTB14	$\Delta(opuA::tet)$ $\Delta(opuB::ery)$ $\Delta(opuC::spc)$ $\Delta(opuD::kan)$ 2	This study
	$amyE::opuC\Delta opuCC$	
LTB15	$\Delta(opuA::tet)$ $\Delta(opuB::ery)$ $\Delta(opuC::spc)$ $\Delta(opuD::kan)$ 2	This study
	$amyE::opuB\Delta opuBC$	

$\Delta(opuA::tet)$ 3 $\Delta(opuB::ery)$ 3 $\Delta(opuC::spc)$ 3 $\Delta(opuD::kan)$ 2	This study	
amyE::opuC\DeltaopuCC::BC		
$\Delta(gbsR::neo)1 \Delta(treA::ery)2 amyE::\Phi(gbsA'-treA), gbsR^{\mathbb{T}}[R85/S (M3)]$	This study	
$\Delta(gbsR::spc)2 \Delta(treA::ery)1 amyE::\Phi(opuBA'-treA), ytoI::gbsR$	This study	
$\Delta(gbsR::spc)2 \Delta(treA::ery)1 amyE::\Phi(opuBA'-treA), ytoI::gbsR^{\P}[G39/E]$	This study	
(M1)]		
$\Delta(gbsR::spc)2 \Delta(treA::ery)1 amyE::\Phi(opuBA'-treA), ytoI::gbsR^{\parallel}$ [T79/A	This study	
(M2)]		
$\Delta(gbsR::spc)2 \Delta(treA::ery)1 amyE::\Phi(opuBA'-treA), ytoI::gbsR^{\P}[R85/S]$	This study	
(M3)]		
	$\Delta(opuA::tet) \exists \Delta(opuB::ery) \exists \Delta(opuC::spc) \exists \Delta(opuD::kan) 2$ $amyE::opuC\Delta opuCC::BC$ $\Delta(gbsR::neo) 1 \ \Delta(treA::ery) 2 \ amyE::\Phi(gbsA'-treA), \ gbsR^{\P}[R85/S \ (M3)]$ $\Delta(gbsR::spc) 2 \ \Delta(treA::ery) 1 \ amyE::\Phi(opuBA'-treA), \ ytoI::gbsR^{\P}[G39/E \ (M1)]$ $\Delta(gbsR::spc) 2 \ \Delta(treA::ery) 1 \ amyE::\Phi(opuBA'-treA), \ ytoI::gbsR^{\P}[T79/A \ (M2)]$ $\Delta(gbsR::spc) 2 \ \Delta(treA::ery) 1 \ amyE::\Phi(opuBA'-treA), \ ytoI::gbsR^{\P}[R85/S \ (M3)]$	

¹The *opuCC* gene marked by a star (*) carries a point mutation [ATG to ATA] that leads to singe amino acid substitution [Met²¹¹ to IIe] in the OpuCC substrate-binding protein. The suppressor derivatives from strain LTB1 carry point mutations in the *gbsR* repressor gene (Nau-Wagner *et al.*, 2012) and these are indicated by (¶). The following mutants were isolated: M1 [GbsR-Gly³⁹/Glu, strain LTB3]; M2 [GbsR-Thr⁷⁹/Ala, strain LTB4]; and M3 [GbsR-Arg⁸⁵/Ser, strain LTB5].

Table S2: DNA primers

Primer name	Primer sequences 5'-3'
opuCF	AGCTGATCATCCCTTCAAATGGC
opuCR	AGCGTTTTCTCCTTTACAAAAAAACATTTAG
opuBF	CGGTTTCATCCTTTCAGCTAACAATTC
opuBR	TACGATTTAAAGAGAAAAAAGAGGCTGGAC
pXF	CATGTTTGACAGCTTATCATCGGC
pXR	GGACCCAAATGCAGCTGTGGAAAT
pXRb	CCATTATGTACTATTTCGATCAGACCAGTT
opuCCF	ATGACAAAAATCAAATGGCTTGGCG
opuCCR	TTAGTCAAAATAATGATGTTTCTCTAAAAATTCCTTTGC
opuCClessF	TTTCAACAGTGCCAACTCCTTACGATAC
opuCClessR	GAAAAGAGGTGGATCATATGGAAGTACTACAGCAG
opuBCF	ATGAAAAGAAAATATCTCAAATTAATGATAGGTTTAGCAC
opuBCR	TCACGATTCGAAATAGCGATGTTTTTCTAAATATTCC
opuBClessF	GAGCCGCCTCCTTATGACAATTCCTTC
opuBClessR	AAGGGGGAAGAGGTCAATGAACGTGC
GbsR TreA Mfrag for	AAA <u>CCCGGG</u> GGGACTTTGACAGTTTAAAAACC
MAL-C2 GbsR rev	AAA <u>GGATCC</u> GTTTCCCAGGCGTTTTCTGCT
Q5_OpuCCMut_TzuC_F	AAACCGCATCCATTTTCCCGTTTTTG
Q5_OpuCCMut_TzuC_R	TGGCTTATTCAACGGATG
Q5_GbsRMut1_GzuA_F	ATTTTATATGAGACGATGTATATGAGGGATGAG
Q5_GbsRMut1_GzuA_R	CCCGACACTGCGGGTAAT
Q5_GbsRMut2_AzuG_F	AGTGAAAAAAGCATTTCACCGG
Q5_GbsRMut2_AzuG_R	ACATTTAAGTCTTGAAGCTTTTTG
Q5_GbsRMut3_CzuA_F	CCGGGGCATCAGCAAGCATAC
Q5_GbsRMut3_CzuA_R	TGAAATGTTTTTTCACTACATTTAAGTCTTG
gbsR-F	AAA <u>GCTAGC</u> GGTTTTTAAACTGTCAAAGTCCC
gbsR-R	AAA <u>GCTAGC</u> CTGCTTTACTTTGTTTCGACCG
OpuC-Seq1	CAGAAAATTTAAAGGAAACCTGCGGAGG
OpuC-Seq2	CCCACGATATGGATGAAGCGATTAAGC
OpuC-Seq3	CTGACCAGGGGGGGGGGGGGGGCTCTTTTAAGATG
OpuC-Seq4	GAATATATCATTGGCGGTGCCGTGCCTGTC
OpuC-Seq5	GGAGCATATTAACACCGTGTCTGACCTG
OpuC-Seq6	GCTCGGCATCCTGATAGCCAGATACAGAAG
OpuC-Seq7	CATCCCTTCAAATGGCAATTGATGGTGTC
opuAA-P1	AGTAGAGACATGAAACTGATCCTGTAAAAG

Tet-opuAA-P2	CATAGCTGTTTCCTGTGTGAAATTGTTATCGGTTTAACATCCGTACTAAA GTTGATTTAC
Tet-opuAC-P3	CAACTTTTTATCTCTCTTCGTTCTTTGTTCGGCTTGTTGTTCCTCAATATA TGAAAAATG
opuAC-P4	TAATGCTGCTAAAAAAAAAAACAACCTGAGCTTC
REV-opuAA-Tet-P2	GTAAATCAACTTTAGTACGGATGTTAAACCGATAACAATTTCACACAGG
	AAACAGCTATG
REV-opuAC-Tet-P3	CATTTTTCATATATTGAGGAACAACAAGCCGAACAAAGAACGAAGAGA
	GATAAAAAGTTG
opuC-P1	ATGATGCAAAAAGCAGCTCTCTTATTTTAG
Spc-opuC-P2	TCATAGCTGTTTCCTGTGTGAAATTGTTATTATACTTTTGACACTTGTTC
	CAATTTCAGC
Spc-opuC-P3	CTTGCCAGTCACGTTACGTTATTAGTTATAAAAAACCACCTCTATTTAAAT
	ACAACAGAGG
opuC-P4	CCAATAATTAAAAAGATACCAACACCAAGC
opuC-Spc-REV-P2	GCTGAAATTGGAACAAGTGTCAAAAGTATAATAACAATTTCACACAGG
	AAACAGCTATGA
opuC-Spc-REV-P3	CCTCTGTTGTATTTAAATAGAGGTGGTTTTTATAACTAATAACGTAACGT
	GACTGGCAAG
opuB-P1	GCTAGTCAGAATAATCAACAAAAAATGGAT
Ery-opuB-P2	TCTTTAATAATTCATCAACATCTACACCGCGGTTAATCATTTTCATTGTT
	GTCGTTTTTC
Ery-opuB-P3	CATTCAATTTTGAGGGTTGCCAGAGTTAAACAAACGCAACAAACGGAA
	CTGCGATTATTC
opuB-P4	TGAATGAGTTTACCGAAAGCATTGATAAAG
opuB-Ery-REV-P2	GAAAAACGACAACAATGAAAATGATTAACCGCGGTGTAGATGTTGATG
	AATTATTAAAGA
opuB-Ery-REV-P3	GAATAATCGCAGTTCCGTTTGTTGCGTTTGTTTAACTCTGGCAACCCTCA
	AAATTGAATG

Table S3: Plasmids

Plasmid	Genotype/Description	Resistance	Reference
рХ	integration vector amyE::cat::amyE	bla, cat	(Kim et al.,
			1996)
pJB007	gbsR, gbsAB	cat	(Boch <i>et al.</i> , 1996)
pJMB1	amyE::treA	bla, cat	M. Jebbar
pFSB1	amyE::bgaB	bla, cat	F. Spiegelhalter
pGNB2	$amyE::\Phi gbsA'-bgaB, gbsR$	bla, cat	(Nau-Wagner
			<i>et al.</i> , 2012)
pGNB13	$amyE::\Phi gbsA'-treA, gbsR$	bla, cat	G. Nau-Wagner
pBB287	integration vector ytoI::tet::ytoI	tet	D. Rudner,
pDG1515	tetracycline resistance cassette	tet	(Guerout-
			Fleury et al.,
			1995)
pDG646	erythromycin resistance cassette	ery	(Guerout-
			Fleury et al.,
			1995)
pDG1726	spectinomycin resistance cassette	spc	(Guerout-
			Fleury et al.,
			1995)
pChen1	opuB operon with native promoter cloned into pX-amyE-site	bla, cat	This study
pChen3	opuC operon with native promoter cloned into pX-amyE-site	bla, cat	This study
pChen5 ¹	opuB with native promotor (pChen1) but opuBC replaced by	bla, cat	This study
	opuCC* (M211/I) (opuB::opuCC*)		
pChen6	opuC with native promoter (pChen3) but opuCC replaced by	bla, cat	This study
	opuBC (opuC::opuBC)		
pChen10	opuB with native promoter (pChen1) but opuBC removed from	bla, cat	This study
	start to stop codon ($opuB\Delta opuBC$)		
pChen11	opuC with native promoter (pChen3) but opuCC removed	bla, cat	This study
	from start to stop codon ($opuC\Delta opuCC$)		
pLT1	pChen5 with correct opuCC (opuB::opuCC)	bla, cat	This study
pLT2 ¹	site directed mutagenesis of $gbsR$ in pGNB13: $gbsR^{\P}$ [G39/E	bla, cat	This study
	(M1)]		
pLT3 ¹	site directed mutagenesis of $gbsR$ in pGNB13: $gbsR^{\P}$ [T79/A (M2)]	bla, cat	This study
	(M2)]		

pLT4 ¹	site directed mutagenesis of gbsR in pGNB13: gbsR [¶] [R85/S	bla, cat	This study
	(M3)]		
pLT5	gbsR with native promoter cloned into pBB287-ytoI-site	tet	This study
pLT6 ¹	site directed mutagenesis of $gbsR$ in pBB287: $gbsR^{\$}$ [G39/E	tet	This study
	(M1)]		
pLT7 ¹	site directed mutagenesis of $gbsR$ in pBB287: $gbsR^{\P}$ [T79/A	tet	This study
	(M2)]		
pLT8 ¹	site directed mutagenesis of gbsR in pBB287: gbsR [¶] [R85/S	tet	This study
	(M3)]		

¹The *opuCC* gene marked by a star (*) carries a point mutation [ATG to ATA] that leads to singe amino acid substitution [Met²¹¹ to Ile] in the OpuCC substrate-binding protein. The suppressor derivatives from strain LTB1 carry point mutations in the *gbsR* repressor gene (Nau-Wagner *et al.*, 2012) and these are indicated by (¶). The M1 (plasmid pLT2), M2 (plasmid pLT3), and M3 (plasmid pLT4) suppressor mutants, harbor point mutations in *gbsR* that lead to single amino acid substitutions at either positions 39 [Gly/Glu] (M1), 79 [Thr/Ala] (M2), or 85 [Arg/Ser] (M3) in the 180 amino acid-comprising GbsR regulatory protein (Nau-Wagner *et al.*, 2012).

Fig. S1 Osmostress protection of *B. subtilis* strains. Strains SSB5 and SSB2 possess the gene for the OpuB or OpuC ABC transporter at their authentic position in the genome but lack otherwise the OpuA and OpuD compatible solute transporters; these are however present in strain TMB112. Strains were grown in SMM containing 1.2 M NaCl either in the absence or the presence of the indicated osmostress protectants. The growth yield of the cultures was determined by measuring their OD_{578} after 17 hours of incubation at 37°C. The shown values represent data from two independent biological experiments and the reported errors represent the corresponding standard deviation.

ориВ	<i>opuBB</i> <u>TCA TAA</u> G	GAGGCGGCTC	opuBC ATG AAA .	XXX 1	TCG TAA	AAGGGGG	AAGAGGTCA	opuBD <u>ATG AAC</u>	
ориВ [ΔориВС]	<i>opuBB</i> <u>TCA TAA</u> G	GAGGCGGCTC	[Δ]	AAGGGGG	AAGAGGTCA	opuBD ATG AAC	
opuB::opuCC	opuBB <u>TCA TAA</u> G	GGAGGCGGCTC	opuCC ATG ACA .	XXX (GAC TAA	AAGGGGG	SAAGAGGTCA	opuBD ATG AAC .	
ориС	<i>opuCB</i> <u>TCG TAA</u> G	GGAGTTGGCACT	GTTGAAA	opuCC ATG ACA	A XXX	. GAC TAA	GAAAAGAGG	TGGATCAT	opuCD ATG GAA
opuC [ΔopuCC]	opuCB <u>TCG TAA</u> G	GGAGTTGGCACT	GTTGAAA	[Δ]	GAAAAGAGG	IGGATCAT	opuCD ATG GAA
opuC::opuBC	opuCB <u>TCG TAA</u> G	GGAGTTGGCACT	GTTGAAA	<i>opuBC</i> ATG AAA	A XXX	. TCG TAA	GAAAAGAGG	TGGATCAT	opuCD ATG GAA

Fig. S2 Deletion and insertion junctions of the *opuB* and *opuC* mutant operons. The DNA sequences of the junctions for the constructed *opuBC* and *opuCC* deletions and those of the insertions of the foreign *opuBC* and *opuCC* genes into the *opuC* and *opuB* operons are shown. Coding regions are underlined.

Fig. S3 Import of compatible solutes under osmotic stress conditions via the OpuB and OpuC wild-type ABC transporters, and the corresponding mutant systems lacking their substratebinding protein. Cells of *B. subtilis* strains were grown in SMM containing 1.2 M NaCl in the absence or presence of 1 mM of various osmostress protectants. The growth yield of the cultures was determined by measuring their OD₅₇₈ after 17 hours of incubation at 37°C. The shown values represent data from two independent biological experiments and the reported errors represent the corresponding standard deviation.

Fig. S4 Detection of the OpuBC and OpuCC ligand-binding proteins by immuno-blot analysis. Proteins of total cell lysates of *B. subtilis* strains grown in SMM with 1.2 M NaCl were separated by SDS-PAGE followed by Western Blot analysis. Sample normalization was achieved by adjusting the cell suspensions to the same OD_{578} . Proteins transferred to the blotting membrane were probed either with a polyclonal antiserum raised against OpuBC or a serum raised against OpuCC.

It should be noted that the used polyclonal anti-sera recognize their substrates with different specificities. The OpuBC anti-serum recognizes effectively OpuBC, and weakly the amino acid sequence-related OpuCC protein. It also cross-reacts with an unknown *B. subtilis* protein (marked by a star*), a contaminating activity that was already present in the preserum. The OpuCC anti-serum does not recognize the OpuBC protein (Kappes *et al.*, 1999).

Fig. S5 Michaelis-Menten kinetics of the wild-type OpuB and OpuC ABC transporters and of the synthetically constructed hybrid transport systems OpuB::OpuCC and OpuC::OpuBC with radiolabeled glycine betaine, choline and carnitine as substrates. The substrate concentration was varied between 3 μ M and 120 μ M for glycine betaine, between 3 μ M and 500 μ M for choline and between 3 μ M and 13 mM for carnitine. Each of the transport assays was conducted with two independently grown cultures, and the reported error bars represent the corresponding standard deviations.

Fig. S6 Michaelis-Menten kinetics of the hybrid ABC transport system OpuB::OpuCC* and of the suppressor strains M1, M2 and M3, harboring the same OpuB::OpuCC* hybrid transporter and additional *gbsR*-mutant alleles. Measurements were conducted with radiolabeled glycine betaine as substrate. The star indicates an undesired point mutation $(Met^{211}Ile)$ at a considerable distance from the OpuCC ligand-binding site. The concentration of glycine betaine varied between 3 μ M and 120 μ M. The OpuCC protein marked by a star (*) carries a point mutations [ATG to ATA] that leads to single amino acid substitution [Met²¹¹ to Ile] in the OpuCC substrate-binding protein. Each of the transport assays was conducted with two independently grown cultures, and the reported error bars represent the corresponding standard deviations.

Fig. S7 Crystal structure of the substrate-binding protein OpuCC in complex with its ligand choline. The crystal structure of the OpuCC::choline complex (PDB accession code: 3PPQ) (Du *et al.*, 2011) is shown. The aromatic cage accommodating the positively charged head-group of choline is represented in blue and the choline molecule is shown in yellow. The OpuCC* amino acid substitution mutation (Met-211 to Ile) (shown in green) present in our starting plasmid pChen5 (*opuB::opuCC**) was projected onto this structure.

Fig. S8 Possible docking interfaces of the substrate-binding proteins OpuBC and OpuCC with their corresponding TMDs. (A) Alignment of the amino acid sequences of the biosynthetic precursors of the OpuBC and OpuCC proteins from *B. subtilis* (Kappes *et al.*, 1999). Identical amino acids are colored in blue. Highlighted in red are those regions that potentially will form the docking-interface with the integral membrane components (OpuBB/OpuBD and OpuCB/OpuCD) of the OpuB and OpuC ABC transport systems. Black arrowheads point out the four amino acid residues forming the aromatic cage that bind the trimethly-ammonium head group of various ligands of the OpuBC and OpuCC substrate-binding proteins. (B) A view onto those areas of the OpuBC and OpuCC proteins that will face the TMDs in the fully assembled ABC transport system. Crystal-structures of the OpuBC (PDB accession code: 3R6U) and OpuCC (PDB accession number: 3PPQ) protein in complex with their common ligand choline (shown as green sticks (Pittelkow et al., 2011; Du et al., 2011). The surfaces of possible interaction regions of the binding proteins with their cognate TMDs are highlighted; negatively charged amino acids are indicated in red and positively charged amino acids in represented in blue. Modeling of the regions that potentially interact with the OpuBB/OpuBD and OpuCB/OpuCD TMDs of the OpuB and OpuC transporters (Kappes et al., 1999) was carried out with the molybdate importer (ModABC) from the archaeoglobus fulgidus (PDB accession number 20NK) (Hollenstein et al., 2007) as the template.

15

References

- Boch, J., Kempf, B., Schmid, R., and Bremer, E. (1996) Synthesis of the osmoprotectant glycine betaine in *Bacillus subtilis*: characterization of the *gbsAB* genes. *J Bacteriol* 178: 5121-5129.
- Du, Y., Shi, W.W., He, Y.X., Yang, Y.H., Zhou, C.Z., and Chen, Y. (2011) Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the *Bacillus subtilis* ABC transporter OpuC. *Biochem J* 436: 283-289.
- Guerout-Fleury, A.M., Shazand, K., Frandsen, N., and Stragier, P. (1995) Antibioticresistance cassettes for *Bacillus subtilis*. *Gene* 167: 335-336.
- Hollenstein, K., Frei, D.C., and Locher, K.P. (2007) Structure of an ABC transporter in complex with its binding protein. *Nature* **446**: 213-216.
- Kappes, R.M., Kempf, B., and Bremer, E. (1996) Three transport systems for the osmoprotectant glycine betaine operate in *Bacillus subtilis*: characterization of OpuD. *J Bacteriol* 178: 5071-5079.
- Kappes, R.M., Kempf, B., Kneip, S., Boch, J., Gade, J., Meier-Wagner, J., and Bremer, E. (1999) Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in *Bacillus subtilis*. *Mol Microbiol* 32: 203-216.
- Kim, L., Mogk, A., and Schumann, W. (1996) A xylose-inducible *Bacillus subtilis* integration vector and its application. *Gene* 181: 71-76.
- Nau-Wagner, G., Opper, D., Rolbetzki, A., Boch, J., Kempf, B., Hoffmann, T., and Bremer, E. (2012) Genetic control of osmoadaptive glycine betaine synthesis in *Bacillus subtilis* through the choline-sensing and glycine betaine-responsive GbsR repressor. J *Bacteriol* 194: 2703-2714.
- Pittelkow, M., Tschapek, B., Smits, S.H., Schmitt, L., and Bremer, E. (2011) The crystal structure of the substrate-binding protein OpuBC from *Bacillus subtilis* in complex with choline. *J Mol Biol* **411**: 53-67.