www.sciencesignaling.org/cgi/content/full/10/475/eaal3011/DC1

Supplementary Materials for

Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in *Bacillus subtilis*

Jan Gundlach, Christina Herzberg, Volkhard Kaever, Katrin Gunka, Tamara Hoffmann, Martin Weiß, Johannes Gibhardt, Andrea Thürmer, Dietrich Hertel, Rolf Daniel, Erhard Bremer, Fabian M. Commichau, Jörg Stülke*

*Corresponding author. Email: jstuelk@gwdg.de

Published 18 April 2017, *Sci. Signal.* **10**, eaal3011 (2017) DOI: 10.1126/scisignal.aal3011

This PDF file includes:

Fig. S1. Activity of *B. subtilis* K⁺ transporters in *E. coli*.
Fig. S2. Alignment of KimA homologs.
Table S1. Bacterial strains used in this study.
Table S2. Plasmids and oligonucleotides used in this study.

Fig. S1. Activity of *B. subtilis* K^+ transporters in *E. coli*. (A) Complementation assay with KimA in *E. coli* strain LB650, which lacks all native potassium transporters. LB650 was transformed with the IPTG-inducible empty vector pWH844, pBP372 (KtrAB) and pGP2913 (KimA). Cells were grown during the day in 4 ml LB-K without IPTG induction; the cells were then centrifuged, washed and resuspended in washing buffer and subsequently plated on minimal media containing 1 mM IPTG and two different potassium concentrations (low: 0.05 mM KCl; high: 200 mM KCl). (B) Dependence of growth rate on external K⁺ concentration for *E. coli* LB650 harboring the empty vector (pWH844) or synthesizing either KtrAB (pBP372), or KimA (pGP2913) grown in minimal medium supplemented with the indicated potassium concentrations. Saturation curves were fitted according to the Michaelis-Menten equation (n = 3 experiments).

Fig. S2. Alignment of KimA homologs. ClustalW alignments of KimA from *B. subtilis* and homologs from *S. aureus*, *S. pneumoniae*, *L. monocytogenes*, *L. casei*, *C. difficile*, *S. coelicolor*, *M. tuberculosis*, *C. aggregans*, *C. trachomatis*, *D. gobiensis*, *G. kilaueensis*, *Anabaena sp.*, *Synechococcus sp.*, *Francisella sp.*, *M. xanthus*, *Rhizobium sp.*, *E.coli*. Amino acids in blue are conserved in all sequences; amino acids in red are conserved in at least 80% of the sequence.

Strain	Genotype	Reference/ Construction
168	trpC2	Laboratory collection
JH642	trpC2 pheA1	9
BP144	<i>trpC2 amyE</i> ::(P _{kimA} -RS- <i>lacZ cat</i>)	$pBP135 \rightarrow 168$
BP193	<i>trpC2 amyE</i> ::(P _a - <i>lacZ cat</i>)	$pBP164 \rightarrow 168$
BP610	trpC2 disA-Strep spc	pBP599 → 168
GHB1	trpC2 pheA1 ∆ktrAB::aphA3	9
GHB12	$trpC2 pheA1 \Delta ktrD::tet$	9
GHB15	<i>trpC2 pheA1</i> Δ ktrD::tet Δ ktrC::spc Δ <i>ktrAB</i> :: <i>aphA3</i>	9
GP92	trpC2 ∆ktrAB::aphA3	$GHB1 \rightarrow 168$
GP93	trpC2 ∆kimA::cat	$LFH \rightarrow 168$
GP94	trpC2 ∆cdaA::spc	$LFH\text{-}PCR\to 168$
GP715	trpC2 ΔyhcK::ermC ΔdgcW::cat	$LFH \to GP848$
GP848	trpC2 ΔyhcK::ermC	$LFH \rightarrow 168$
GP850	trpC2 ∆dgcW::cat	GP715 → 168
GP983	trpC2 ∆cdaS::ermC	12
GP997	trpC2 ∆cdaA::cat	12
GP991	trpC2 \triangle cdaS::ermC \triangle disA::tet	12
GP1341	<i>trpC2 ganA::(p_{xyl} cdaS aphA3</i>)	12
GP1381	trpC2 cdaA-FLAG ermC	3
GP2030	trpC2 ∆ktrD::tet	$\text{GHB12} \rightarrow \text{168}$
GP2048	<i>trp</i> C2 ∆ <i>ktr</i> C:: <i>cat</i>	$LFH \rightarrow 168$
GP2079	trpC2 ∆ktrC::tet	$LFH \rightarrow 168$
GP2083	trpC2 ∆ktrAB::aphA3 ∆ktrC::tet	$\text{GP2079} \rightarrow \text{GP92}$
GP2136	trpC2 ∆ktrAB::aphA3 ∆ktrD::tet	$\text{GP2030} \rightarrow \text{GP92}$
GP2165	trpC2 ∆ktrAB::aphA3 ∆kimA::cat	$GP93 \rightarrow GP92$
GP2167	trpC2 ∆ktrD::tet ∆kimA::cat	$\text{GP2030} \rightarrow \text{GP93}$
GP2169	trpC2 ∆ktrAB::aphA3 ∆ktrC::cat ∆ktrD::tet	$GP2048 \rightarrow GP2136$
GP2182	<i>trpC2 amyE</i> ::(p _{kimA} -lacZ cat)	$pGP2915 \rightarrow 168$
GP2198	<i>trpC2 amyE</i> ::(P _a -RS <i>-lacZ cat</i>)	$pGP2916 \rightarrow 168$
GP2200	<i>trpC2 ganA</i> ::(p _{xy/} cdaS aphA3) amyE::(p _a -RS- <i>lacZ</i>	$pGP2916 \rightarrow GP1341$
	cat)	
GP2209	trpC2 ∆cdaA::spc ∆cdaS::ermC	$GP94 \rightarrow GP983$
GP2222	trpC2 \triangle cdaA::cat \triangle cdaS::ermC \triangle disA::tet	$GP997 \rightarrow GP991$

GP2223	$trpC2 \Delta cdaA::cat \Delta cdaS::ermC \Delta disA::tet nhaK_{S187F}$	Suppressor isolation of
		GP2222
GP2226	trpC2 ∆nhaK::aphA3	$LFH \rightarrow 168$
GP2227	trpC2 \triangle cdaS::ermC \triangle disA::tet \triangle nhaK::aphA3	$\text{GP2226} \rightarrow \text{GP991}$
GP2228	trpC2 \triangle cdaA::cat \triangle cdaS::ermC \triangle disA::tet	$\text{GP997} \rightarrow \text{GP2227}$
	∆nhaK::aphA3	
GP2229	trpC2 \triangle cdaA::cat \triangle cdaS::ermC \triangle disA::tet nhaK _{R22W}	Suppressor isolation of
		GP2222
GP2230	$trpC2 \Delta cdaA::cat \Delta cdaS::ermC \Delta disA::tet nhaK_{P349L}$	Suppressor isolation of
		GP2222
GP2231	$trpC2 \Delta cdaA::cat \Delta cdaS::ermC \Delta disA::tet nhaK_{L391P}$	Suppressor isolation of
		GP2222
GP2232	$trpC2 \Delta cdaA::cat \Delta cdaS::ermC \Delta disA::tet nhaK_{F23L}$	Suppressor isolation of
		GP2222
GP2233	$trpC2 \Delta cdaA::cat \Delta cdaS::ermC \Delta disA::tet nhaK_{P553L}$	Suppressor isolation of
		GP2222
GP2234	$trpC2 \Delta cdaA::cat \Delta cdaS::ermC \Delta disA::tet nhaK_{T531}$	Suppressor isolation of
		GP2222
GP2235	$trpC2 \Delta cdaA::cat \Delta cdaS::ermC \Delta disA::tet nhaK_{A395V}$	Suppressor isolation of
		GP2222
GP2236	$trpC2 \Delta dgcW::cat \Delta cdaS::ermC \Delta disA::tet$	$\text{GP850} \rightarrow \text{GP2227}$
	∆nhaK::aphA3	
GP2279	trpC2 cdaA-FLAG ermC disA-Strep spc	$BP610\toGP1381$
GP2405	trpC2 kimA-3×FLAG spc	pGP2789 → 168

Table S1. Bacterial strains used in this study. Arrows indicate construction by transformation. LFH, long flanking homology PCR.

Plasmid	Description	Construction/ Reference
pAC5	Vector for the construction of translational <i>lacZ</i> fusions that can be integrated at the <i>amyE</i> site.	31
pAC6	Vector for the construction of transcriptional <i>lacZ</i> fusions that can be integrated at the <i>amyE</i> site.	32
pAC7	Vector for the construction of translational $lacZ$ fusions that can be integrated at the $amyE$ site.	33
pBP135	pAC5/ EcoRI+BamHI	PCR prod. <i>kimA</i> native promoter + riboswitch FC274/275/ EcoRI/BamHI
pBP164	pAC6/ EcoRI/BamHI	Papromoter LS27/LS28/ EcoRI/BamHI
pBP599	pGP1389/ BamHI/Sall	PCR prod. disA FC332/333 BamHI/Sall
pBP372	pWH844/ EcoRI/BamHI	PCR prod. ktrABJH53/JH54/ EcoRI/BamHI
pGP1331	Integrative vector for the fusion of 3x FLAG tag to the C-terminus of a protein, keeping expression under the natural promotor.	40
pGP1389	Integrative plasmid for the fusion of the C-terminus of a protein to a Strep tag, keeping the control of expression under control of the natural promotor of the target gene.	34
pGP2789	pGP1331/ BamHI/Sall	PCR prod. kimA MW13/14/ BamHI/Sall
pGP2912	pAC6/ EcoRI+BamHI	PCR prod. <i>kimA</i> native promoter + riboswitch FC274/275/ EcoRI/BamHI
pGP2913	pWH844/BamHI+PstI	PCR prod. kimA JN465/466/ BamHI/PstI
pGP2915	pAC6/ EcoRI+BamHI	PCR prod. <i>kimA</i> native promoter - riboswitch FC274/JN493/ EcoRI/BamHI
pGP2916	pAC5/ EcoRI+BamHI	PCR prod. <i>kimA</i> artificial promoter4 + riboswitch JN570/FC275/ EcoRI/BamHI

pGP2917	pAC7/ EcoRI+BamHI	PCR prod. <i>kimA</i> artificial promoter4 + riboswitch JN570/FC275/ EcoRI/BamHI
pGP2920	pAC6/ EcoRI+BamHI	PCR prod. <i>kimA</i> artificial promoter4 + riboswitch JN570/FC275/ EcoRI/BamHI
pWH844	Fusion of a His-tag at the N-terminus of a protein for inducible overexpression via IPTG in <i>E. coli.</i>	35
LacZ fusi	on primers	
FC274	AAA <u>GAATTC</u> GATTTTAGCCTCTGTTTTTTATTTTG GTAAGTAAATTCC	fwd_ <i>kimA</i> riboswitch, EcoRI
FC275	TTT <u>GGATCC</u> ATCGATGTCTTCCCCTTTTAATTTCTCA TTTTTCAATTAAAACAATAAAACATCC	rev_ <i>kimA</i> riboswitch, BamHI
JN493	TTT <u>GGATCC</u> GCCGTTCTATTGGGTCCCC	rev_ <i>kimA</i> promoter region (-riboswitch),
JN570	AAA <u>GAATTC</u> TTGTCAAGTGAAGGCGCGCTATGCTA CAATCTCTTTTAGAAAACAAATCGCTTAATCTGAA	fwd_ <i>kimA</i> riboswitch p_a , EcoRI
LS27	<u>AATTC</u> TTGTCAAGTGAAGGCGCGCTATGCTACAAT ACAGCTTGGAAATG	fwd_p _a
LS28	<u>GATCC</u> ATTTCCAAGCTGTATTGTAGCATAGCGCGC CTTCACTGACAAG	rev_p _a
Primers u	used for the construction of deletion mutants	
CD213	GCTTCCTGACAAATACAGAACAGTCATCG	LFH_cdaA_up_fwd
CD214	CCTATCACCTCAAATGGTTCGCTG GAATATCAACG GCATTGCCGAGGTAC	LFH_ <i>cdaA</i> _up_rev, kan ^R
CD219	GCCTGAAGATGCAGTTGTATCGCTG	LFH_ <i>cdaA</i> _seq_fwd
CD230	CCGAGCGCCTACGAGGAATTTGTATCGCACCAGA GACACTTCTTCTAACCGC	LFH_ <i>cdaA</i> _down_fwd, kan ^R
CD231	CCGCTTCACTATCGACTTCTATATGC	LFH_ <i>cdaA</i> _down_rev
CD232	GAGAGCCTTTAGCCGTTACATCTATC	LFH_ <i>cdaA</i> _seq_rev
JN247	CCTATCACCTCAAATGGTTCGCTGCAAATACTGCC ACCAAAACGGC	LFH_ <i>ktrC</i> _up_rev, kan ^R
JN248	GTCTTTCAAGTGGTTTTGCCTTTAAAAT	LFH_ <i>ktrC</i> _up_fwd

JN249	CCGAGCGCCTACGAGGAATTTGTATCGGTTACAG ACATCTCCCGTTTCGA	LFH_ <i>ktrC</i> _down_fwd, kan ^R
JN250	GAAAAAGAACCGGCGTGCG	LFH_ <i>ktrC</i> _down_rev
JN251	GAAAAGGGCACTGGACTGGG	LFH_ <i>ktrC</i> _seq_fwd
JN252	CTTGAATCGCCATTTTCACCTGAT	LFH_ <i>ktrC</i> _seq_rev
JN636	CCTATCACCTCAAATGGTTCGCTGCGTTAATAATA CGAGCACAACTAAAAATATGT	LFH_ <i>nhaK</i> _up_rev, kan ^R
JN637	CGTATCATTTCGATCATAACGGCG	LFH_ <i>nhaK</i> _up_fwd
JN638	CCGAGCGCCTACGAGGAATTTGTATCGCATTAATG ATGTCGAAGCCGCC	LFH_ <i>nhaK</i> _down_fwd, kan ^R
JN639	CTCTTGCCACACCGGATTCT	LFH_ <i>nhaK</i> _down_rev
JN640	CGTAAAAGAAGAATTGGAAAACCGTC	LFH_ <i>nhaK</i> _seq_fwd
JN641	GTTTCATAGCCTTGATCTTCATTCCA	LFH_ <i>nhaK</i> _seq_rev
KG301	GACGTTACAGCAAATGATGCGAAAGGACG	LFH_ <i>kimA</i> _up_fwd
KG302	CCTATCACCTCAAATGGTTCGCTGGAATGATACAT CGATGTCTTCCCCTTTTAATTTCTC	LFH_ <i>kimA</i> _up_rev, kan^R
KG303	CCGAGCGCCTACGAGGAATTTGTATCCACACCATC CTTCACAACCAATCGGC	LFH_ <i>kimA</i> _down_fwd, kan ^R
KG304	GACTTCGCCAGAAGAAACCTGTCCTG	LFH_ <i>kimA</i> _down_rev
KG305	CGTAAGCCAATCGAAGCTAGAGGAGC	LFH_ <i>kimA</i> _seq_fwd
KG306	GGAAGTGATTCCGCGCTATGTAC	LFH_ <i>kimA</i> _seq_rev

Primers used for the construction of *E. coli kimA* expression

JH53	AAA <u>GAATTC</u> AAGGGAGATATGAACA <u>TTG</u> GGAAGAA TTAAAAATAAG	fwd_ <i>ktrAB</i> , native RBS, EcoRI
JH54	TTT <u>GGATCCTCA</u> CCCTGTAAACACTTCGCCATCA	rev_ <i>ktrAB,</i> BamHI
JN465	AAA <u>GGATCC</u> TGAGAAATTAAAAGGGGAAGACATCG	fwd_ <i>kimA</i> , native RBS, BamHI
JN466	TTT <u>CTGCAG</u> TTACTTTTTAAAATGATACGGCAGTGT GGCAAC	rev_ <i>kimA,</i> PstI

Primers used for KimA overexpression

MW13	AAA <u>GGATCC</u> GGCGCTCTGATATCATTTATGGTTC	fwd_ <i>kimA,</i> BamHI
MW14	TTT <u>GTCGAC</u> CTTTTTAAAATGATACGGCAGTGTGG	rev_ <i>kimA,</i> Sall

Primers used for DisA FLAG-tag

FC332	AAA <u>GGATCC</u> CAAACACTTGAAAAATATAAGACAATC CTCGATAAAACG	fwd_d <i>isA</i> , BamHI
FC333	TTT <u>GTCGAC</u> CAGTTGTCTGTCTAAATAATGCTTCTC TTGCAG	rev_ <i>disA,</i> Sall

Internal primer pairs to *disA*, *cdaS cdaA*, *cdaR*, and *dgcW*

FX20	GGGGCGAAACACGAGTTAG	fwd_ <i>disA</i>
FX21	GTCCACCACTTCTTTACTTTATC	rev_ <i>disA</i>
FX22	GCGTTCAAGGGGAAAATACAG	fwd_ <i>cdaS</i>
FX23	GGATGCAATCCCCTGCATG	rev_ <i>cdaS</i>
FX24	GATATATAAATTGATTATGGTGATACGC	fwd_ <i>cdaA</i>
FX25	AATCCCCATGTTATCGCTTGGT	rev_ <i>cdaA</i>
FX26	GGTTAACAGCAACCAAGCAC	fwd_ <i>cdaR</i>
FX27	ACCGTTTGCGGAACACCC	rev_ <i>cdaR</i>
FX38	GTCCATATGGAAATGCCGATG	fwd_ <i>dgcW</i>
FX39	GCCAAGCACAACTGATCCG	rev_dgcW

Table S2. Plasmids and oligonucleotides used in this study.