Supporting information

Synthesis of the compatible solute proline by *Bacillus subtilis*: point mutations rendering the osmotically controlled *proHJ* promoter hyperactive

Tamara Hoffmann^{1*}, Monika Bleisteiner^{1*}, Praveen Kumar Sappa², Leif Steil²,

Ulrike Mäder², Uwe Völker² and Erhard Bremer^{1,3**}

¹Philipps-University Marburg, Department of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany

²Interfaculty Institute of Genetics and Functional Genomics, Department Functional Genomics, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Str. 15, D-17475 Greifswald, Germany ³LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerweinstr. 6, D-35043 Marburg, Germany

<u>Running Title</u>: Osmoregulation of gene expression

Keywords: Salt stress - compatible solutes - promoter - proteomics - Bacillus subtilis

^{*}Both authors contributed equally

**Corresponding author. Mailing address: Philipps-University Marburg, Dept. of Biology, Microbiology,

Karl-von-Frisch-Str. 8, D-35043 Marburg, Germany. Phone: (+49)-6421-2821529. Fax: (+49)-6421-

2828979. E-Mail: bremer@staff.uni-marburg.de.

Fig. S1. Phylogenetic tree of Bacillus and Halobacillus species and their predicted proline biosynthetic genes. We compared a set of 152 genome sequences [both unfinished and finished (\bullet)] from the genera *Bacillus* and Halobacillus, whose 16S DNA information were available, to generate a phylogenetic tree at the IMG/M homepage (Integrated microbial genome and metabiome samples database; https://img.jgi.doe.gov/cgi-bin/m/main.cgi). Subsequent BLAST searches against these genome sequences using the B. subtilis ProH, ProA and ProB protein sequences as queries were performed. The gene neighborhoods of the resulting hits were analyzed and revealed the following types of L-proline biosynthesis operons: the osmo-adaptive B. subtilis-type proH-proJ-(■), the osmo-adaptive *B. licheniformis*-type *proH-proJ*proAA- (\blacksquare), the anabolic proBAC- (\blacksquare) and proBAoperons (■).

Species harboring genes for the synthesis of the compatible solute ectoine [ectABC (\blacksquare) and or hydroxyectoine (ectD; \blacksquare)] were identified by a BLAST search using the EctC amino acid sequence of *Virgibacillus pantothenticus* (Gene ID: 2655618993) and the EctD amino acid sequence of *Salibacillus salexigens* (Bursy et al., 2007) as search query. Some *Bacilli* possess only the gene for the ectoine synthase [ectC (\blacksquare) but lack the ectAB biosynthetic genes; this phenomenon has been observed in many other microbial species (Widderich et al., 2014). It is not clear if these strains can synthesize ectoine by themselves or whether they rely on the import of the EctC substrate from the environment (Kurz et al., 2010).

Fig. S2. Proline pools were determined in cells that possess either an intact PutBCP proline import and degradation system (+), or those lacking it (-). *B. subtilis* strains carrying either the wild type *proHJ* operon or its mutant derivative (*proHJ*-M10) were cultivated in SMM without (-) or with (+) 1.2 M NaCl. After the cultures have reached mid-exponential growth phase (OD_{578nm} of about 1.7) cells were harvested and assayed for its proline content using a colorimetric assay (Bates et al., 1973). Shown are the averaged data from three to four biological replicates.

primer pairs used for site directed mutagenesis			resulting plasmid derived from	
name	sequence (5' \rightarrow 3')	mutation	pJS35 ^a	pMD15 ^b
1-MutHJ fwd	gacatcatttcctcacgaggtaacattttaaacgtgtga aaatgcg	M1	nMD1	
1-MutHJ rev	cgcattttcacacgtttaaaatgttacctcgtgaggaaa tgatgtc		μιστ	
2-MutHJ fwd	gacatcatttcctcacgtcgtaacattttaaacgtgtga aaatgcg	M2	nMD2	
2-MutHJ rev	cgcattttcacacgtttaaaatgttacgacgtgaggaaa tgatgtc	IVIZ	μινισε	
7-MutHJ fwd	gacatcatttcctcacgtggtaacagtttaaacgtgtga aaatgcg	M3	pMD8	
7-MutHJ rev	cgcattttcacacgtttaaactgttaccacgtgaggaaa tgatgtc	NI J		
4-MutHJ fwd	gacatcatttcctcacgtggta <mark>t</mark> cattttaaacgtgtgaa aatgcg	N44	pMD5	
4-MutHJ rev	cgcattttcacacgtttaaaatg <mark>a</mark> taccacgtgaggaa atgatgtc	IVI4		
5-MutHJ fwd	gacatcatttcctcacgtggtaa <mark>a</mark> attttaaacgtgtga aaatgcg	ME	pMD4	pMD16
5-MutHJ rev	cgcattttcacacgtttaaaat <mark>t</mark> ttaccacgtgaggaaa tgatgtc	IVIS		
6-MutHJ fwd	gacatcatttcctcacgtggta <mark>ta</mark> attttaaacgtgtgaa aatgcg	MC		-MD17
6-MutHJ rev	cgcattttcacacgtttaaaat <mark>ta</mark> taccacgtgaggaaa tgatgtc	M6	риил	рилт
8-MutHJ fwd	ggccttcaaacttgacatt <mark>tt</mark> cctcacgtggtaacatttt aaacg	N/7	pMD6	nMD18
8-MutHJ rev	cgtttaaaatgttaccacgtgagg <mark>a</mark> aaatgtcaagtttg aaggcc	1717	рмво	μινιστο
9-MutHJ fwd	ggccttcaaacttgacatcatttcctcatcgtggtaacat tttaaacg	MQ	pMD0	
9-MutHJ rev	cgtttaaaatgttaccacg <mark>a</mark> tgaggaaatgatgtcaag tttgaaggcc	IVIO	pivida	
10-MutHJ fwd	ggccttcaaacttgacatcattttttcctcacgtggtaaca ttttaaacg	MQ	nMD10	nMD19
10-MutHJ rev	cgtttaaaatgttaccacgtgagg <mark>aa</mark> aaatgatgtcaa gtttgaaggcc	IVIƏ	μιτιστο	PIUDIO
12-MutHJ fwd	ggccttcaaacttgacatcattttcctcacgtggta <mark>ta</mark> at tttaaacg	M10	pMD12	pMD20
12-MutHJ rev	cgtttaaaattataccacgtgaggaaatgatgtcaagtt tgaaggcc	UTIN		

Table S1. Primers and plasmids used for proH promoter mutagenesis and strain construction

^aPlasmid pJS35 carries the 153 bp *proHJ* promoter fragment fused to a promotre-less *treA* reporter gene.

^bPlasmid pMD15 carries the *proHJ* operon under control of its natural promoter and can be used for integration into the *B. subtilis* chromosome at the *amyE* gene.

Table S2. B.	subtilis	strains	used	in	this	study	ļ
--------------	----------	---------	------	----	------	-------	---

Strain	Relevant genotype	Origin or reference ^a
JH642	trpC2 pheA1	J. Hoch; BGSC 1A96
FSB1	(treA::neo)1	(Spiegelhalter and Bremer, 1998)
JSB8	Δ(proHJ::tet)1	(Brill et al., 2011a)
JSB36	(treA::neo)1 (amyE::\pPwt proH'-treA, cml)	(Brill et al., 2011b)
MDB8	(treA::neo)1 (amyE:: φP _{M1} proH'-treA, cml)	This study
MDB9	(treA::neo)1 (amyE:: φP _{M2} proH'-treA, cml)	This study
MDB13	(treA::neo)1 (amyE:: φP _{M3} proH'-treA, cml)	This study
MDB6	(treA::neo)1 (amyE:: φP _{M4} proH'-treA, cml)	This study
MDB11	(treA::neo)1 (amyE:: φP _{M5} proH'-treA, cml)	This study
MDB12	(treA::neo)1 (amyE:: φP _{M6} proH'-treA, cml)	This study
MDB7	(treA::neo)1 (amyE:: φP _{M7} proH´-treA, cml)	This study
MDB14	(treA::neo)1 (amyE:: φP _{M8} proH'-treA, cml)	This study
MDB15	(treA::neo)1 (amyE:: φP _{M9} proH´-treA, cml)	This study
MDB17	(treA::neo)1 (amyE:: φP _{M10} proH´-treA, cml)	This study
MDB20	Δ(proHJ::tet)1 (amyE::P _{wt} proHJ, cml)	This study
MDB24	Δ(proHJ::tet)1 (amyE::P _{M5} proHJ, cml)	This study
MDB25	Δ(proHJ::tet)1 (amyE::P _{M6} proHJ, cml)	This study
MDB26	Δ(proHJ::tet)1 (amyE::P _{M7} proHJ, cml)	This study
MDB27	Δ(proHJ::tet)1 (amyE::P _{M9} proHJ, cml)	This study
MDB28	Δ(proHJ::tet)1 (amyE::P _{M10} proHJ, cml)	This study
SMB44	Δ(putBCP::spc)1	Susanne Moses
TMB411	Δ(proHJ::tet)1 (amyE::P _{wt} proHJ, cml) ΔputBCP::spc	This study
TMB412	Δ(proHJ::tet)1 (amyE::P _{M10} proHJ, cml) ΔputBCP::spc	This study

^{*a*} BGSC: Bacillus Genetic Stock Center (Columbus, OH, USA). All strains are genetically derived from the domesticated *B. subtilis* wild-type strain JH642 (Smith et al., 2014).

Protein	Peptide sequences
ProA	TVENVQEAVK, ELLDQLENAGVEIR
ProB	VFIGTGSGEQK, QYSLTPGQILLTR
ProG	LLEAETEAGISR, LNELLSVFSR
ProH	SIGAQTLLGAAK, DAENALSSLK, LTELELQYGIK
ProI	ALLETIGDATLVEER, EITSPGGTTEAGLR
ProJ	GIIPIINENDTVTVNR, LEALVDQVVK

Table S3. Set of final peptides used for SRM assays in this study

References

Bates, S.L., Waldren, R.P., and Teare, I.D. (1973) Rapid determination of free proline for water-stress studies. *Plant and Soil* **39**: 205-207.

Brill, J., Hoffmann, T., Putzer, H., and Bremer, E. (2011a) T-box-mediated control of the anabolic proline biosynthetic genes of *Bacillus subtilis*. *Microbiology* **157**: 977-987.

Brill, J., Hoffmann, T., Bleisteiner, M., and Bremer, E. (2011b) Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of *Bacillus subtilis* against high osmolarity. *J Bacteriol* **193**: 5335-5346.

Bursy, J., Pierik, A.J., Pica, N., and Bremer, E. (2007) Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. *J Biol Chem* **282**: 31147-31155.

Kurz, M., Burch, A.Y., Seip, B., Lindow, S.E., and Gross, H. (2010) Genome-driven investigation of compatible solute biosynthesis pathways of *Pseudomonas syringae* pv. *syringae* and their contribution to water stress tolerance. *Appl Environ Microbiol* **76**: 5452-5462.

Smith, J.L., Goldberg, J.M., and Grossman, A.D. (2014) Complete genome sequences of *Bacillus subtilis subsp. subtilis* laboratory strains JH642 (AG174) and AG1839. *Genome Announc* **2**: e00663-00614.

Spiegelhalter, F., and Bremer, E. (1998) Osmoregulation of the *opuE* proline transport gene from *Bacillus subtilis*: contributions of the sigma A- and sigma B-dependent stress-responsive promoters. *Mol Microbiol* **29**: 285-296.

Widderich, N., Höppner, A., Pittelkow, M., Heider, J., Smits, S.H., and Bremer, E. (2014) Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms. *PLoS One* **9**: e93809.