Supplementary Material

Compatible Solute Synthesis and Import in the Moderate Halophile Spiribacter salinus: Physiology and Genomics

María José León¹, Tamara Hoffmann², Cristina Sánchez-Porro¹, Johann Heider^{2,3}, Antonio Ventosa^{1*}, and Erhard Bremer^{2,3*}

¹Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain ²Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany ³LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany

[¶]These authors contributed equally

For correspondence during the reviewing and editorial process please contact: Dr. Erhard Bremer, Philipps-University Marburg, Dept. of Biology, Laboratory for Microbiology, Karl-von-Frisch-Str. 8, D-35032 Marburg, Germany. Phone: (+49)-6421-2821529. Fax: (+49)-6421-2828979. E-Mail: bremer@staff.uni-marburg.de

*Correspondence:

Antonio Ventosa: ventosa@us.es Erhard Bremer: bremer@staff.uni-marburg.de

Supplementary Figure 1. Phylogenetic tree of protein sequences identified via a BLAST analysis using the OpuD1 (SPISAL_05155) and OpuD2 (SPISAL_05630) amino acid sequences of *S. salinus* M19-40 as the search template against the UniProt Knowledgebase (http://www.uniprot.org/). The indicated phylogenetic distances are based on an alignment of the amino acid sequences that was created with the CLUSTAL OMEGA algorithm (Sievers et al., 2011).

A

Supplementary Figure 2. Sequence comparison of EctC proteins that exist as homologues in the same organism. The amino acid sequences of three EctC homologues in *Marinobacter aquaeolei* VT8 (EctC1 [Maqu_0444], EctC2 [Maqu_0079], EctC3 [Maqu_0616]), two EctC homologues in *Marinobacter salsuginis* SD-14B (EctC1 [Msal_04565], EctC2 [Msal_04384]), three EctC homologues in *Marinobacter sp.* CP1 (EctC1 [Ga0098240_112317], EctC2 [Ga0098240_112233], EctC3 [Ga0098240_1115]) and two EctC homologues in *Marinobacter nanhaiticus* (EctC1 [J057_15490] and EctC2 [J057_07276]) were compared to the EctC proteins of *S. salinus* M19-40 [SPISAL_06145] and *Halomonas elongata* [HELO_2590]. (A) EctC amino acid sequences were aligned using the CLUSTAL OMEGA algorithm (Sievers et al., 2011). (B) The phylogenetic tree was built on the basis of the EctC amino acid alignments.

A		
A	EctD2_Chromohalobacter_salexigens	
	EctD_Halomonas_elongata	
	EctD1_Marinobacter_nanhaiticus	
	EctD1_Marinobacter_gudaonensis	
	EctD1_Marinobacter_aquaeolei	
	EctD1_Marinobacter_hydrocarbonoclasticus	
	EctD2_Marinobacter_gudaonensis	
	EctD1_Chromohalobacter_salexigens	
	EctD2_Marinobacter_hydrocarbonoclasticus	
	EctD2_Marinobacter_aquaeolei	
	EctD2_Marinobacter_nanhaiticus	
	EctD3_Marinobacter_nanhaiticus	

Supplementary Figure 3. Sequence comparison of EctD proteins that exist as homologues in one microorganism. The amino acid sequences from two EctD proteins from *Chromohalobacter salexigens* (EctD1 [Csal_3003] and EctD2 [Csal_0542], three EctD proteins from *Marinobacter nanhaiticus* D15-8W (EctD1 [J057_08271], EctD2 [J057_16265] and EctD3 [J057_19620]), two EctD proteins from *Marinobacter gudaonensis* CGMCC 1.6294 (EctD1 [Ga0070159_2058] and EctD2 [Ga0070159_1429]), two EctD proteins from *Marinobacter aquaeolei* VT8 (EctD1 [Maqu_3892] and EctD2 [Maqu_1849]) and two EctD proteins from *Marinobacter hydrocarbonoclasticus* ATCC 49840 (EctD1 [MARHY3849] and EctD2 [MARHY1452]) were compared with the EctD protein of *Halomonas elongata* [HELO_4008]. (A) The EctD amino acid sequences were aligned using the CLUSTAL OMEGA algorithm (Sievers et al., 2011). The 17 amino acids consensus sequence of ectoine hydroxylases (Höppner et al., 2014) is given in red . (B) The phylogenetic tree was built on the basis of the amino acid alignment of the various EctD proteins.

Supplementary Figure 4 *in silico* model of the ProX homolog of the *S. salinus* M19-40 SPISAL_05285 ligand-binding protein in complex with glycine betaine. The *Escherichia coli* ProU system is a ABC-type transporter and consists of the ProVWX subunits; ProX is the periplasmic substrate-binding protein of the ProU transporter. The ProX::glycine betaine complex of *E. coli* was used as the template for modeling and its crystal structure was taken from the PDB database (PDB 1R9L) (Schiefner et al., 2006). (A) Overall structure of the *S. salinus* ProX model (cyan) [QMEAN4: -9.58 (Arnold et al., 2006)] overlaid with the crystal structure of the ProX::glycine betaine complex from *E. coli* (yellow). (B) The ligand-binding site of the *E. coli* ProX protein with the three Trp (W) residues forming the aromatic cage for the coordination of the trimethylammonium head group of glycine betaine is shown (Schiefner et al., 2006). Within this hydrophobic pocket, the positively charged trimethlyammonium head-group of glycine betaine is coordinated via cation- π interactions and the carboxylate of the glycine betaine ligand protrudes out of the aromatic cage.

Supplementary Figure 5 *in silico* model of the OpuAC homolog of *S. salinus* M19-40 (SPISAL_06004) in complex with glycine betaine. The *Bacillus subtilis* OpuA system is a ABC-type transporter and consists of the OpuAA-OpuAB-OpuAC subunits; OpuAC is the extracellular substrate-binding protein of the OpuA transporter and is tethered to the outer-face of the cytoplasmic membrane via a lipid modification of the N-treminal Cys residue. The OpuAC::glycine betaine complex of *B. subtilis* was used as the template for modeling; the crystal structure data of the OpuAC::glycine betaine complex were taken from the PDB database (PDB 2B4L) (Horn et al., 2006). (A) Overall structure of the *S. salinus* M19-40 OpuAC model (pink) [QMEAN4: -5.5 (Arnold et al., 2006)] overlaid with the protein structure of the OpuAC::glycine betaine complex from *B. subtilis* (yellow)) (Horn et al., 2006). (B) The ligand-binding site of OpuAC with its aromatic cage formed by three Trp (W) residues is shown. Within this hydrophobic pocket, the positively charged trimethlyammonium head-group of glycine betaine is coordinated via cation- π interactions and the carboxylate of the glycine betaine ligand protrudes out of the aromatic cage.

Supplementary Figure 6 *in silico* model of the TeaA homolog of the *S. salinus* M19-40 SPISAL_01895 ligand-binding protein in complex with ectoine. TeaABC system from *Halomonas elongata* is a TRAP-type transport system. The crystal structure of the TeaA::ectoine complex of *H elongata* was used as the template for modeling and its structural data were taken from the PDB database (PDB 2VPN) (Kuhlmann et al., 2008). (A) Overall structure of the *S. salinus* M19-40 TeaA model (magenta) [QMEAN4: -6.38 (Arnold et al., 2006)] overlaid with the crystal structure of the TeaA::ectoine complex from *H. elongata* (yellow) (Kuhlmann et al., 2008). (B) The active site of the TeaA ligand binding protein is overlaid with the model for the *S. salinus* M19-40 SPISAL_01895 protein.

ame	Locus tag	Annotation ^{a)}	Search Template	Organism	Accession No. ^{b)}	e Valu
otassium	uptake					
rkA	SPISAL_00310	uptake protein-TrkA	TrkA	Escherichia. coli	CAA54371.1	0E+00
rkH	SPISAL_00315	potassium uptake protein TrkH	TrkG	E. coli	BAA14960.1	5E-10
			TrkH	E. coli	BAE77454.1	3E-15
rkA	SPISAL_06575	TrkA	TrkA	E. coli	CAA71360.1	2E+00
rkG	SPISAL_06570	Trk-type K+ transport system, membrane component	TrkG	E. coli	BAA14960.1	2E-26
			TrkH	E. coli	BAE77454.1	1E-25
otassium	efflux					
	SPISAL_01180	potassium efflux system protein	KefC	E. coli	CTX42374.1	7E-69
odium effl	xn					
1rpA/D	SPISAL_06665	monovalent cation/H+ antiporter subunit D	MrpA	Bacillus subtilis	AGG62567.1	1E-40
			MrpD	B. subtilis	AGG62570.1	3E-38
1rpA/D	SPISAL_06670	NADH dehydrogenase (quinone)	MrpA	Bacillus subtilis	AGG62567.1	2E-41
			MrpD	B. subtilis	AGG62570.1	1E-19
frpA/D	SPISAL_06680	monovalent cation/H+ antiporter subunit D	MrpA	Bacillus subtilis	AGG62567.1	3E-29
			MrpD	B. subtilis	AGG62570.1	1E-23
1rpB	SPISAL_06650	monovalent cation/H+ antiporter subunit B				
1rpB	SPISAL_06655	monovalent cation/H+ antiporter subunit B				
1rpC	SPISAL_06660	NADH-ubiquinone oxidoreductase chain 4L	MrpC	B. subtilis	AGG62569.1	2E-08
1rpE	SPISAL_06635	cation antiporter	MrpE	B. subtilis	AGG62571.1	1E-07
1rpF	SPISAL_06640	multiple resistance and pH regulation protein F				
1rpG	SPISAL_06645	monovalent cation/proton antiporter subunit MnhG/PhaG				
ompatible	solute uptake systen	ns				
'puAC	SPISAL_06400	glycine betaine/proline transport system substrate-binding protein	OpuAC	B. subtilis	NP_388182.1	9E-36
PuAB	SPISAL_06405	proline/glycine betaine ABC transporter permease	OpuAB	B. subtilis	NP_388181.1	7E-66
buAA	SPISAL_06410	glycine betaine/L-proline ABC transporter ATPase	+ neighbor			
AL A	00000 110000					11
row	067 CO_TACIAS	glycine betaine/proline ABC transporter permease	OpuAB	B. Subtilis	NP_388181.1	1E-38
roV	SPISAL_05295	glycine betaine/proline ABC transporter ATP-binding protein	ProW	E. coli	BAA16543.1	1E-44
roX	SPISAL_05285	glycine betaine ABC transporter substrate-binding protein	+ neighbor			

genome sequence
salinus M19-40
of the S.
1. Mining
Table
Supplementary

8

Supplementary Table

^{a)}Original gene product name (IMG product name). ^{b)} Sequence accession.version number according to the NCBI protein database.

Name	Locus tag	Annotation ^{a)}	Search Template	Organism	Accession No. ^{b)}	e Value
OpuD1	SPISAL_05155	high-affinity choline uptake protein	OpuD	B. subtilis	NP_390885.1	7E-140
			BetH	Halobacillus trueperi	AAS05826.1	1E-131
			EctT	V. pantothenticus	AAL16076.1	2E-107
OpuD2	SPISAL_05630	choline/carnitine/betaine transporter	OpuD	B. subtilis	NP_390885.1	2E-108
			BetH	H. trueperi	AAS05826.1	1E-90
			EctT	V. pantothenticus	AAL16076.1	8E-71
TeaA	SPISAL_01895	TRAP transporter substrate-binding protein TeaA	TeaA	Halomonas elongata	CBV44158.1	0E+00
			UehA	Ruegeria pomeroyi	Q5LUA7.1	4E-129
TeaB	SPISAL_01890	TRAP transporter small transmembrane protein TeaB	UehB	R. pomeroyi	Q5LUA8.1	2E-76
TeaC	SPISAL_01885	transporter subunit; dicarboxylate transporter (IMG: DctM subunit)	UehC	R. pomeroyi	Q5LUA9.1	0E+00
Usp	SPISAL_01880	regulatory protein TeaD (IMG UspA-family)				
	SPISAL_04635	TRAP dicarboxylate transporter- DctP subunit	TeaA	H. elongata	CBV44158.1	2E+00
	SPISAL_04635	TRAP dicarboxylate transporter- DctP subunit	UehA	R. pomeroyi	Q5LUA7.1	8E-21
	SPISAL_04640	tripartite ATP-independent periplasmic transporter DctQ	UehB	R. pomeroyi	Q5LUA8.1	1E+00
	SPISAL_04645	TRAP dicarboxylate transporter subunit DctM	UehC	R. pomeroyi	Q5LUA9.1	7E-22
ectoine syn	nthesis					
EctA	SPISAL_06140	diaminobutyrate acetyltransferase	EctA	V. pantothenticus	AAS93806.1	2E-39
EctB	SPISAL_02400	4-aminobutyrate aminotransferase	EctB	V. pantothenticus	AAS93807.1	8E-47
EctC	SPISAL_06145	ectoine synthase	EctC	V. pantothenticus	AAS93808.1	3E-46
trehalose s	synthesis					
OtsB	SPISAL_07860	HAD family hydrolase	OtsB	E. coli	BAA15718.1	9E-54
	SPISAL_07865	glycoside hydrolase 15-like protein				
OtsA	SPISAL_07870	alpha,alpha-trehalose-phosphate synthase	OtsA	E. coli	BAA15717.2	9E-123
glucose up	itake					
Glk	SPISAL_03590	glucokinase	Glk	E. coli	KOZ53643.1	2E-51
mechanose	ensitive channels					
MscS	SPISAL_03885	mechanosensitive ion channel MscS	MscS (YkuT)	B. subtilis	NP_389304.2	2E+00
	SPISAL_03885	mechanosensitive ion channel MscS	MscS	E. coli	BAI32234.1	3E+00
•••••••••••••••••••••••••••••••••••••••						

Supplementary Table 1. Mining of the S. salinus M19-40 genomes sequence (continue)

^{a)}Original gene product name (IMG product name). ^{b)} Sequence accession.version number according to the NCBI protein database.

Supplementary Table

Supplementary References

Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. *Bioinformatics* 22, 195-201. doi: 10.1093/ bioinformatics/bti770.

Höppner, A., Widderich, N., Lenders, M., Bremer, E., and Smits, S.H.J. (2014). Crystal structure of the ectoine hydroxylase, a snapshot of the active site. *J Biol Chem* 289, 29570-29583. doi: Doi 10.1074/Jbc.M114.576769.

Horn, C., Sohn-Bösser, L., Breed, J., Welte, W., Schmitt, L., and Bremer, E. (2006). Molecular determinants for substrate specificity of the ligand-binding protein OpuAC from *Bacillus subtilis* for the compatible solutes glycine betaine and proline betaine. *J. Biol. Chem.* 357, 592-606.

Kuhlmann, S.I., Terwisscha van Scheltinga, A.C., Bienert, R., Kunte, H.J., and Ziegler, C. (2008). 1.55 A structure of the ectoine binding protein TeaA of the osmoregulated Trap-Transporter TeaABC from *Halomonas elongata*. *Biochemistry* 47, 9475-9485. doi: 10.1021/bi8006719

Schiefner, A., Breed, J., Bösser, L., Kneip, S., Gade, J., Holtmann, G., et al. (2004). Cation-pi Interactions as determinants for binding of the compatible solutes glycine betaine and proline betaine by the periplasmic ligand-binding protein ProX from *Escherichia coli*. J. Mol. Biol. 279, 5588-5596.

Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7:539 doi:10.1038/msb.2011.75