Supplementary information for:

Structural and functional characterization of the bacterial biofilm activator RemA

Tamara Hoffmann^{1,5}, Devid Mrusek^{2,5}, Patricia Bedrunka^{2,5}, Fabiana Burchert², Christopher Nils Mais², Daniel B. Kearns³, Florian Altegoer², Erhard Bremer^{1,6} and Gert Bange^{2,4,6}

 ¹Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Biology, Karl-von-Frisch Strasse 14, 35043 Marburg, Germany
 ²Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Karl-von-Frisch Strasse 14, 35043 Marburg, Germany
 ³Department of Biology, Indiana University, Bloomington IN 47405.
 ⁴Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany
 ⁵These authors contributed equally to this work.
 ⁶Correspondence: gert.bange@synmikro.uni-marburg.de; bremer@staff.Uni-Marburg.de

Supplementary Figures 1 – 5

Supplementary Tables 1 – 4

Supplementary Figure 1. RemA forms 8- and 16-mers in a concentration-dependent manner a. Chromatograms of size exclusion chromatography of RemA at different concentrations as indicated in the figure. The wavelength was 278 nm. **b.** The (*Gt*)(RemA)₈/(RemA)₁₆ ratio as shown in supplementary figure 1a is plotted according to the RemA concentration injected to the SEC. Line represents a linear fit (R=0,9514). Each data point represents an independent size exclusion run. **c.** The (RemA)₈/(RemA)₁₆ ratio for wildtype RemA and different RemA variants at different protein concentration is shown. **d.** Chromatogram of an analytical SEC (black lines)-MALS (red lines) experiment of RemA-R18W. Source data are provided as a Source data file.

Supplementary Figure 2. Size exclusion chromatograms of His₆-GB1 fusions of (*Bs*)RemA and (*Gt*)RemA. a. Analytical size-exclusion chromatograms (as measured at a wavelength of 278 nm) of His₆-GB1-(*Bs*)RemA and of His₆-GB1-(*Gt*)RemA. Arrows indicate elution volumes and mass of molecular weight standards. The expected molecular weight for His₆-GB1-(*Bs*)RemA is 136 kDa; the estimated molecular weight for His₆-GB1-(*Gt*)RemA is 138 kDa. **b**. Coomassie-stained SDS-PAGE of His₆-GB1-(*Bs*)RemA and of His₆-GB1-(*Gt*)RemA (main peak fraction) after preparative size-exclusion chromatography. At least three independent size exclusion runs confirmed the presence of octameric RemA fusion proteins. Both monomeric fusion proteins have a theoretical molecular weight of approximately 20 kDa. Source data are provided as a Source data file.

Supplementary Figure 3. Structure of (*Gt***)RemA. a.** Crystal lattice of (*Gt***)**RemA. The unit cell is shown as white lines. **b.** Domain overview of AgrA and RemA. **c.** Schematic representation of the secondary/ternary structure arrangement of AgrA-C and (RemA)₂ shows that AgrA-C is highly reminiscent to a RemA dimer. Blue arrows and red boxes represent β -strands and α -helices, respectively. 'N' and 'C' indicates N- and C-termini, respectively. AgrA-C contains all secondary structural elements of RemA, except for α 1 and β 4. **d.** The RemA octamer (left, PDB-ID: <u>7BM2</u>) is highly reminiscent of the AgrA-C tetramer (middle, PDB-ID: <u>3BS1</u>) as shown by a superimposition (right) of the ring assemblies. **e.** Superimposition of RemA (light blue) and AgrA-C (pale green) shows that positive residues decorating the outer ring are in similar positions. **f.** EMSA of wild type (*Gt*)RemA proteins with or without a N-terminal hexa-histidine tag with a DNA fragment containing the regulatory *epsA* region. Results were confirmed with three independent preparations of recombinant protein. Source data are provided as a Source data file.

Supplementary Figure 4. a. Superimposition of (RemA)₈ and (RemA_{R51AR53A})₈ shows no deviations between the two assemblies. **b.** Superimposition of RemA (light blue, PDB-ID: <u>7BM2</u>) wildtype and RemA_{R51AR53A} (purple, PDB-ID: <u>7P1W</u>) shows that both proteins superpose well with a r.m.s.d. of 0.23 while positioning of residue 51 and 53 is unaffected **c.** Superimposition of two subunits of (RemA)₈ (green) and (RemA-R18W)₇ (blue) on one subunit (indicated as "superimposed") shows the relative rearrangement of the subunits to each other, which also leads to a repositioning of the DNA-binding arginines 50, 51 and 53 at the surface. **d.** EMSA of wild type (*Gt*)RemA and its R18W variant with a DNA fragment containing the regulatory *epsA* region. Results were confirmed with at least three independent preparations of recombinant protein. Source data are provided as a Source data file.

Supplementary Figure 5. Sequence alignment of various RemA proteins from Bacilli shows the arginines 50, 51 and 53, which are essential for DNA binding, are conserved.

Supplementary Table 1: Data collection and refinement statistics

	GtRemA (7BM2)	GtRemA _{R18W} (7BME)	GtRemAr51Ar53A (7P1W)
Data collection			· · ·
Space group	P23	C2221	1422
Cell dimensions			
a, b, c (Å)	106.91 106.91 106.91	103.89 116.97 114.135	89.323 89.323 109.236
α, β, γ (°)	90 90 90	90 90 90	90 90 90
Resolution (Å)	37.8 - 2.291 (2.373 - 2.291)	47.28 - 2.6 (2.693 - 2.6)	37.52 - 1.8 (1.864 - 1.8)
R _{merge}	0.1947 (3.529)	0.1129 (1.786)	0.02446 (0.8002)
l / σl	19.48 (1.18)	9.10 (0.79)	13.10 (0.81)
Completeness (%)	99.69 (98.25)	99.58 (99.77)	99.88 (99.76)
Redundancy	36.8 (23.1)	7.2 (7.5)	2.0 (2.0)
CC1/2	0.999 (0.562)	0.996 (0.404)	1 (0.49)
Wavelength (Å)	0.969	0.873	0.987
Refinement			
Resolution (Å)	37.8 – 2.29	47.28 - 2.60	37.52 - 1.80
No. reflections	18622 (1793)	21692 (2143)	20817 (2043)
Rwork / Rfree	17.8/22.3	21.6/27.6	20.0/22.0
No. atoms			
Protein	2425	4044	1172
Ligand/ion	215	0	0
Water	89	7	79
B-factors			
Protein	49.23	88.20	40.48
Ligand/ion	69.55	0	0
Water	50.24	63.69	41.07
Ramachandran (%)			
favored	96.41	96.50	98.01
allowed	3.27	3.50	1.99
outliers	0.33	0.00	0.00
R.m.s. deviations			
Bond lengths (Å)	0.010	0.008	0.004
Bond angles (°)	1.34	1.09	0.79

*Values in parentheses are for highest-resolution shell.

Supplementary Table 2. Plasmids and primers used in the study

Plasmid	Plasmid description	Primers used for construction ^a
		(sequence $5 \rightarrow 3$ direction)
pDR111	amyE::P _{hy} , spc ^R	kind gift of D. Rudner (Boston, MA, US)
	ectopic integration vector	
	with a strong IPTG-	
	inducible promoter	
pBB284	´ytnM-ytol`::spc ^R	kind gift of D. Rudner (Boston, MA, US)
	ectopic vector for	
	integration into the 'ytnM-	
	ytol` intergenic region	
pDG268	amyE::lacZ, cml ^R	Antoniewski <i>et al</i> , 1990 ¹
	ectopic integration vector	
	with a promoter-less lacZ	
	gene	
pFC1	pDG268 P _{epsA} -lacZ, cml ^R	7539: 5′- AGGAGGAATTCTTGTACGGCTTGCACTAAATGTAC
		3025: 5'- CTCCTGGATCCATTCATAGCCTTCAGCCTTCCCG
pTMB33	pDR111 (RBS) <i>remA</i>	remA-RBS-for: 5′-ATT <u>AAGCTT</u> GAGACGTCTATTTTACAGGGGGGA
		remA-rev: 5`-GCG <u>GCTAGC</u> CCCTCTTTCTTTCATGCGGC
pTMB42	pBB284 (<i>lacI</i> -P _{hy} remA ^{wild}	
	^{type} , spc ^R)1	
pTMB87	pBB284 (<i>lacI</i> -P _{hy} remA ^{R32A} ,	Bs-remA-R32A-for: 5` -
	<i>spc</i> ^R)4	GCCAATCAAA <mark>gcG</mark> ATGATTCAGGATGCAAGAGACCG
		Bs-remA-R32-rev: 5`-GCAGACTCCGGGCTGACA
pTMB88	pBB284 (<i>lacI</i> -P _{hy} remA ^{D36S} ,	Bs-remA-D36S-for: 5`-GATGATTCAG <mark>tcT</mark> GCAAGAGACCGCG
	spc ^R)5	Bs-remA-D36S-rev: 5`-CGTTTGATTGGCGCAGAC
pTMB90	pBB284 (<i>lacI-P_{hy} remA^{D39K}</i> ,	Bs-remA-D39K-for: 5`-GGATGCAAGAaagCGCGGAATGC
	spc ^R)7	Bs-remA-D39K-rev: 5`-CCTGAATCATCCGTTTGATTGG
pTMB92	pBB284 (<i>lacI-P_{hy} remA^{R18W}</i> ,	Bs-remA-R18W-for: 5`-CTCCGCCAAT <mark>tGG</mark> ATGATTTC
	spc ^R)9	Bs-remA-R18W-rev: 5`-ATGATATTGCCAAATCCG
pTMB93	pBB284 (<i>lacI-P_{hy} remA^{P29S},</i>	Bs-remA-P29S-for: 5`-GGAGTCTGCG <mark>tCA</mark> ATCAAACG
	<i>spc</i> ^R)10	Bs-remA-P29S-rev: 5`-GGGCTGACAATCGAAATC
pTMB94	pBB284 (<i>lacI</i> -P _{hy} remA ^{R50A} ,	Bs-remA-R50A-for: 5`-TACATACGGAgcAAGAACCCGTGC
	<i>spc</i> ^R)11	Bs-remA-R50A-rev: 5`-GCGTCAATTAGCATTCCG
pTMB95	pBB284 (<i>lacI</i> -P _{hy} remA ^{R51A} ,	Bs-remA-R51A-for: 5`-ATACGGACGAgcAACCCGTGCA
	<i>spc</i> ^R)12	Bs-remA-R51A-rev: 5`-GTAGCGTCAATTAGCATTC
pTMB109	pBB284 (<i>lacl</i> -P _{hy}	155-Q5-remA-D36A-D39A-f: 5`-ATGATTCAGGcTGCAAGAGCCC
	<i>remA</i> ^{D36A/D39A} , <i>spc</i> ^R)16	156-Q5-remA-D36A-D39A-r: 5`-CCGTTTGATTGGCGCAGA
	sinR::spc ^k LFR fusion PCR	
		404: 5'-ATCACCTCAAATGGTTCGCTGGGTTTATCAATGTCATCAC
	<i>remA::zeo</i> [*] LFR tusion PCR	remA-P1-tor: 5'-GCTATATTTTGAAGATAAGCTGAAACAGAC
		remA-P2-zeo(anti)-rev: 5 -
		CCATATCAAGATAACTICGTATAATGTATGTATCAGTTTAATCGTCATCTT
		remA-P3-zeo(anti)-for: 5'-
		GGACTGAATAACTTCGTATAGCATACATTACTGTTAAAGAAGAAAATTATGG
		ATGAAGGGC
		remA-P4-rev: 5'-TTCTTCTAAAGCTTTGCCTACATATTTGTG

Amplification of the <i>zeo</i> ^R	remA-RC-P2-zeo(anti): 5'-
resistance cassette	GAACGTAGAAGATGACGATTAAACTGATTACATACATTATACGAAGTTATC
	TTGATATGG
	remA-RC-P3-zeo(anti): 5'-
	GCCCTTCATCCATAATTTCTTCTTTAACAGTAATGTATGCTATACGAAGTTA
	TTCAGTCC
remA::tet ^R LFR fusion PCR	1087: 5´-TAGCGTGTCTATTGCCCTTTTATTAT
	1088: 5'-
	CAATTCGCCCTATAGTGAGTCGTAATCAGTTTAATCGTCATCTTCTACG
	1089: 5'-
	CCAGCTTTTGTTCCCTTTAGTGAGCAGACTTTCTGTTAAAGAAGAAATTATG
	1090: 5'-CAGCGATGCCTCCACTCACGCA
289 hn Penc A fragment for	150-eps/(+224)for: 5`_CTCCTCTATTCCTGTCGTTATTTCG
alectrophoretic mobility	$130 - epsA(\pm 2.54) = 0.000 + 0.0000 +$
shift assay (fluoroscoppo	145-epsa(-55)lev. 5 -COAATCTOTOTCTOACAATCOC
shint assay (Hubrescence	

^a Blue color indicates the ribosome binding site of *remA*. Red color indicates codons changed in *remA*.

Supplementary Table 3. *B. subtilis* strains used in this study

Strain	Genotype or description	Reference, source or construction ^a
PY79	wild type	Youngman <i>et al,</i> 1984 ²
BDR2258	PY79 ´ytnM-ytol`::cml ^R	kind gift of D. Rudner
	marker-replacement strain	(Boston, MA, US)
TMB410	JH642 ´ <i>ytnM-ytol</i> `:: <i>cml</i> [®] marker-replacement strain	chromosomal DNA (BDR2258) $ ightarrow ightarrow ightarrow$ JH642
TMB413	JH642 (<i>'ytnM-ytol</i> `:: <i>lacl-P_{hy} remA^{wild type}, spc</i> ^R)1	linearized (Pvul) pTMB42 \rightarrow TMB410
TMB489	JH642 ('ytnM-ytol`::lacl-P _{hy} remA ^{R32A} , spc ^R)4	linearized (Pvul) pTMB87 \rightarrow TMB410
TMB491	JH642 ('ytnM-ytol`::lacl-P _{hy} remA ^{D36S} , spc ^R)5	linearized (Pvul) pTMB88 \rightarrow TMB410
TMB495	JH642 ('ytnM-ytol`::lacl-P _{hy} remA ^{D39K} , spc ^R)7	linearized (Pvul) pTMB90 → TMB410
TMB499	JH642 (<i>'ytnM-ytol</i> `:: <i>lacl-P_{hy} remA</i> ^{R18W} , <i>spc</i> ^R)9	linearized (Pvul) pTMB92 → TMB410
TMB501	JH642 (<i>'ytnM-ytol</i> `:: <i>lacl-P_{hy} remA^{P29S}, spc</i> ^R)10	linearized (Pvul) pTMB93 → TMB410
TMB503	JH642 (<i>'ytnM-ytol</i> `:: <i>lacl-P_{hy} remA</i> ^{R50A} , <i>spc</i> ^R)11	linearized (Pvul) pTMB94 → TMB410
TMB505	JH642 ('ytnM-ytol`::lacl-P _{hy} remA ^{R51A} , spc ^R)12	linearized (Pvul) pTMB95 → TMB410
TMB561	JH642 ('ytnM-ytol`::lacl-P _{hy} remA ^{D36A/D39A} , spc ^R)16	linearized (Pvul) pTMB109 → TMB410
PepsA-rep	orter strains	
JH642	pheA1 trpC2 wild type	J. Hoch; BGSC ^b (1A96)
TMB196	JH642 (<i>remA</i> :: <i>zeo</i> ^R)1	LFR PCR (<i>remA</i> ´-zeoR- ` <i>remA</i>) → JH642
DS859	NCIB3610 (<i>sinR</i> :: <i>kan</i> [®])	LFR PCR (<i>sinR</i> ´-kanR- ` <i>sinR</i>) → PY79 → NCIB3610
DS518	NCIB3610 amyE::PepsA-lacZ, cml ^R	linearized pFC1 \rightarrow PY79 \rightarrow NCIB3610
TMB523	JH642 (remA::zeo ^R)1 sinR::kan ^R	chromosomal DNA (DS859) → TMB196
TMB524	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R	chromosomal DNA (DS518) → TMB523
TMB532	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{wild type} , spc ^R)1	chromosomal DNA (TMB413) → TMB523
TMB536	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{R32A} , spc ^R)4	chromosomal DNA (TMB489) → TMB523

TMB537	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{D36S} , spc ^R)5	chromosomal DNA (TMB491) → TMB523
TMB540	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytoI`::lacI-P _{hy} remA ^{D39K} , spc ^R)7	chromosomal DNA (TMB495) → TMB523
TMB541	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{R18W} , spc ^R)9	chromosomal DNA (TMB499) → TMB523
TMB542	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{P29S} , spc ^R)10	chromosomal DNA (TMB501) → TMB523
TMB543	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{R50A} , spc ^R)11	chromosomal DNA (TMB503) → TMB523
TMB544	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{R51A} , spc ^R)12	chromosomal DNA (TMB505) \rightarrow TMB523
TMB565	JH642 (remA::zeo ^R)1 sinR::kan ^R amyE::PepsA-lacZ, cml ^R ('ytnM- ytol`::lacl-P _{hy} remA ^{D36A/D39A} , spc ^R)16	chromosomal DNA (TMB561) → TMB523
Biofilm str	rains	
DK1042	coml ^{Q12L}	Konkol <i>et al.</i> , 2013 ³
DK1042 DK7212	coml ^{Q12L} coml ^{Q12L} (remA::tet ^R)3	Konkol <i>et al.,</i> 2013 ³ LFR PCR (<i>remA</i> '-tetR- ` <i>remA</i>) \rightarrow DK1042
DK1042 DK7212 DK6673	coml ^{Q12L} coml ^{Q12L} (remA::tet ^R)3 coml ^{Q12L} (remA::tet ^R)3 (´ytnM-ytol`::lacl-P _{hy} remA ^{R32A} , spc ^R)4	Konkol <i>et al.</i> , 2013 ³ LFR PCR (<i>remA</i> '-tetR- ` <i>remA</i>) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042
DK1042 DK7212 DK6673 DK6674	coml ^{Q12L} coml ^{Q12L} (remA::tet ^R)3 coml ^{Q12L} (remA::tet ^R)3 (´ytnM-ytol`::lacl-P _{hy} remA ^{R32A} , spc ^R)4 coml ^{Q12L} (remA::tet ^R)3 (´ytnM-ytol`::lacl-P _{hy} remA ^{P29S} , spc ^R)10	Konkol <i>et al.</i> , 2013 ³ LFR PCR (<i>remA</i> '-tetR- ` <i>remA</i>) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042 linearized (Pvul) pTMB93 \rightarrow DK1042
DK1042 DK7212 DK6673 DK6674 DK6675	com/ ^{Q12L} com/ ^{Q12L} (remA::tet ^R)3 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{R32A} , spc ^R)4 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{P29S} , spc ^R)10 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{R50A} , spc ^R)11	Konkol <i>et al.</i> , 2013 ³ LFR PCR ($remA'$ -tetR- ` $remA$) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042 linearized (Pvul) pTMB93 \rightarrow DK1042 linearized (Pvul) pTMB94 \rightarrow DK1042
DK1042 DK7212 DK6673 DK6674 DK6675 DK6847	com/ ^{Q12L} com/ ^{Q12L} (remA::tet ^R)3 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R32A} , spc ^R)4 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{P29S} , spc ^R)10 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R50A} , spc ^R)11 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{wild type} , spc ^R)1	Konkol <i>et al.</i> , 2013 ³ LFR PCR ($remA'$ -tetR- ` $remA$) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042 linearized (Pvul) pTMB93 \rightarrow DK1042 linearized (Pvul) pTMB94 \rightarrow DK1042 linearized (Pvul) pTMB42 \rightarrow DK1042
DK1042 DK7212 DK6673 DK6674 DK6675 DK6847 DK6849	com/ ^{Q12L} com/ ^{Q12L} (remA::tet ^R)3 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{R32A} , spc ^R)4 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{P29S} , spc ^R)10 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{R50A} , spc ^R)11 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{wild type} , spc ^R)1 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol`::lacl-P _{hy} remA ^{wild type} , spc ^R)1	Konkol <i>et al.</i> , 2013 ³ LFR PCR ($remA'$ -tetR- ` $remA$) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042 linearized (Pvul) pTMB93 \rightarrow DK1042 linearized (Pvul) pTMB94 \rightarrow DK1042 linearized (Pvul) pTMB42 \rightarrow DK1042 linearized (Pvul) pTMB88 \rightarrow DK1042
DK1042 DK7212 DK6673 DK6674 DK6675 DK6847 DK6849 DK7215	com/ ^{Q12L} com/ ^{Q12L} (remA::tet ^R)3 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R32A} , spc ^R)4 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{P29S} , spc ^R)10 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R50A} , spc ^R)11 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{wild type} , spc ^R)1 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{wild type} , spc ^R)1	Konkol <i>et al.</i> , 2013 ³ LFR PCR ($remA'$ -tetR- ` $remA$) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042 linearized (Pvul) pTMB93 \rightarrow DK1042 linearized (Pvul) pTMB94 \rightarrow DK1042 linearized (Pvul) pTMB42 \rightarrow DK1042 linearized (Pvul) pTMB88 \rightarrow DK1042 linearized (Pvul) pTMB92 \rightarrow DK1042
DK1042 DK7212 DK6673 DK6674 DK6675 DK6847 DK6849 DK7215 DK7216	com/ ^{Q12L} com/ ^{Q12L} (remA::tet ^R)3 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R32A} , spc ^R)4 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{P29S} , spc ^R)10 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R50A} , spc ^R)11 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{wild type} , spc ^R)1 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{wild type} , spc ^R)1 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{D36S} , spc ^R)5 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R18W} , spc ^R)9 com/ ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R51A} , spc ^R)12	Konkol <i>et al.</i> , 2013 ³ LFR PCR ($remA'$ -tetR- ` $remA$) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042 linearized (Pvul) pTMB93 \rightarrow DK1042 linearized (Pvul) pTMB94 \rightarrow DK1042 linearized (Pvul) pTMB42 \rightarrow DK1042 linearized (Pvul) pTMB92 \rightarrow DK1042 linearized (Pvul) pTMB92 \rightarrow DK1042 linearized (Pvul) pTMB95 \rightarrow DK1042
DK1042 DK7212 DK6673 DK6674 DK6675 DK6847 DK6849 DK7215 DK7216 TMB593	coml ^{Q12L} coml ^{Q12L} (remA::tet ^R)3 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R32A} , spc ^R)4 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{P295} , spc ^R)10 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R50A} , spc ^R)11 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{wild type} , spc ^R)1 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{D365} , spc ^R)5 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R18W} , spc ^R)9 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R18W} , spc ^R)9 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R51A} , spc ^R)12 coml ^{Q12L} (remA::tet ^R)3 ('ytnM-ytol'::lacl-P _{hy} remA ^{R51A} , spc ^R)7	Konkol <i>et al.</i> , 2013 ³ LFR PCR ($remA'$ -tetR- ` $remA$) \rightarrow DK1042 linearized (Pvul) pTMB87 \rightarrow DK1042 linearized (Pvul) pTMB93 \rightarrow DK1042 linearized (Pvul) pTMB94 \rightarrow DK1042 linearized (Pvul) pTMB42 \rightarrow DK1042 linearized (Pvul) pTMB98 \rightarrow DK1042 linearized (Pvul) pTMB92 \rightarrow DK1042 linearized (Pvul) pTMB95 \rightarrow DK1042 SPP1 Lysate of TMB495 \rightarrow DK7212

^a Linearized plasmid, PCR product or genomic DNA (left side of the arrow; name or origin given in parenthesis) used to transform an existing strain (right side of the arrow) used for construction. SPP1 phage lysates of a *B. subtilis* strain (given in parentheses) used to transduce a given allele into an existing strain (right side of the arrow) to create a new strain are listed.

^b BGSC: Bacillus Genetic Stock Center (Columbus, OH, USA)

	-	
Plasmid	Plasmid description	Primers used for construction ^a
		(sequence $5 \rightarrow 3$ direction)
pDM243	pET24d N-6H-(<i>Gt)remA</i>	Gt-remA-6H-for: 5'- TTAACCATGGGCCATCACCATCACCATGATGAAGTTTATTAATATC
		G Gt-remA-rev: 5'-TTAACTCGAGTTACCCTTCCTCGGAGAAATC
pDM286	pET24d N-6H-(<i>Gt</i>)remA	Gt-remA-P29S-for: 5'-CGGCGTCGATTAAACGAATC Gt-remA-P29S-rev: 5'-
		TTCGCGCGCATCTTGGATGATTCGTTTAATCGACGCCG
pDM288	pET24d N-6H-(<i>Gt)remA</i>	Gt-remA-R18W-for: 5'-GCCGCCTGGATCATTACGATT Gt-remA-R18W-rev: 5'-
		GCCGAATCGGGGCTGACAATCGTAATGATCCAGGCGGC
pDM292	pET24d N-6H-(<i>Gt)remA</i>	Gt-remA-R32A-for: 5'-CCGATTAAAGCAATCATCCAAGATGCGC Gt-remA-R32A-rev: 5'-
		CGACGAGCTTACCTTTTCGCGCGCATCTTGGATGATTGCTTTAATCG
pAL108	pET24d N-6H-(<i>Gt)remA</i>	Gt-remA-R32E-for: 5'-ccgattaaagaaatcatccaagatgcgc Gt-remA-R32E-rev: 5'-GCGCATCTTGGATGATTAGTTTAATCGG
pAL111	pET24d N-6H-(<i>Gt)remA</i>	Gt-remA-D36A-E39A-for: 5'- CATCCAAGCTGCGCGCGCAAAAGGTAAGCTCGTCG Gt-remA-D36A-E39A-rev: 5'- CGACGAGCTTACCTTTTGCGCGCGCAGCTTGGATG
pPB166	pET-N-6H-GB1-(<i>Gt</i>)remA	PB158fwd:
		5'-TTAAGGTCTCCCATGGGCATGATGAAGTTTATTAATATCGGATACGG
		5'-TTAAGGTCTCCTCGAGTTACCCTTCCTCGGAGAAATCATC
pPB173	pET-N-6H-GB1-(<i>Bs)remA</i>	PB156fwd:
		5′-TTAAGGTCTCCCATGGGCACGATTAAACTGATTAATATCGGATTTGG PB155rev: 5′-TTAAGGTCTCCTCGAGTTACCCCTGCCCTTCATCC

Supplementary References:

- 1. Antoniewski, C., Savelli, B. & Stragier, P. The *spollJ gene*, which regulates early developmental steps in *Bacillus subtilis*, belongs to a class of environmentally responsive genes. *J. Bacteriol.* **172**, 86–93 (1990).
- Youngman, P., Perkins, J. B. & Losick, R. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in *Bacillus subtilis* or expression of the transposon-borne erm gene. *Plasmid* 12, 1–9 (1984).
- 3. Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded *coml* inhibits competence in the ancestral 3610 strain of *Bacillus subtilis*. *J. Bacteriol*. **195**, 4085–4093 (2013).