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Abstract

The cytoplasm of bacterial cells is a highly crowded cellular compartment
that possesses considerable osmotic potential. As a result, and owing to the
semipermeable nature of the cytoplasmic membrane and the semielastic
properties of the cell wall, osmotically driven water influx will generate tur-
gor, a hydrostatic pressure considered critical for growth and viability. Both
increases and decreases in the external osmolarity inevitably trigger water
fluxes across the cytoplasmic membrane, thus impinging on the degree of
cellular hydration, molecular crowding, magnitude of turgor, and cellular
integrity. Here, we assess mechanisms that permit the perception of osmotic
stress by bacterial cells and provide an overview of the systems that allow
them to genetically and physiologically cope with this ubiquitous environ-
mental cue. We highlight recent developments implicating the secondary
messenger c-di-AMP in cellular adjustment to osmotic stress and the role of
osmotic forces in the life of bacteria-assembled in biofilms.
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Osmolality: the
osmotic pressure at a
particular temperature;
expressed in molal
units (osmoles per
kilogram of solvent)

Turgor pressure:
hydrostatic pressure
difference balancing
the osmotic pressure
difference between the
exterior and interior of
walled microbial cells
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1. INTRODUCTION

The development of the semipermeable cytoplasmic membrane was a key event in the evolution
of microbial cells because it provided a confined space for copying genetic material and a reaction
vessel with optimized conditions for key cellular functions (125, 142). The cytoplasm is a crowded
compartment that possesses considerable osmotic potential because of the high concentrations
of its various constituents (134, 144). As a result, water influx is instigated, which in turn causes
the buildup of hydrostatic pressure, turgor, in essentially all walled microbial cells (17, 57, 144).
However, the semipermeability of the cytoplasmic membrane makes cells vulnerable to variations
in the osmolality of the environment, one of the most ubiquitous stress factors encountered by
microorganisms in their habitats (33, 73, 93, 108, 124, 144, 145). The exit of water under hy-
perosmotic conditions triggers cytoplasmic dehydration and a drop in turgor to physiologically
nonsustainable values (17, 144). Conversely, excessive water influx under hypoosmotic circum-
stances threatens cellular integrity as a result of the concomitant increase in turgor (12, 13, 32).
Both scenarios impair the ability of the cell to perform vital biochemical tasks and therefore re-
quire precise control of water influx and efflux to adjust turgor.

Due to the small size of bacteria, turgor is experimentally quite difficult to determine, and with
the use of different techniques, values for the magnitude of turgor in Escherichia coli differing by a
factor of ten have been reported; values range between 30 kPa (0.3 atm) (42) and 300 kPa (3 atm)
(25). The considerably higher turgor pressure measured for Bacillus subtilis (1.9 MPa) (19 atm)
(139) is generally thought to be required to stretch the much thicker peptidoglycan sacculus of
this gram-positive bacterium when the cell doubles its volume before it divides. Turgor is gener-
ally considered essential for growth (47, 109), but there is still considerable debate as to whether
turgor presses the cytoplasmic membrane onto the peptidoglycan sacculus or the cytoplasm and
periplasm of gram-negative bacteria are actually isosmotic, which would make the outer mem-
brane the turgor-restraining cellular structure (25, 47).

No microorganism can actively pump water into or out of the cytoplasm to compensate for the
osmotically instigated water fluxes across the cytoplasmic membrane.Hence, cellular adjustments
to both hyper- and hypoosmotic stress must rely on indirect countermeasures that allow the cell
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Osmotic pressure:
hydrostatic pressure
arising in an aqueous
solution surrounded
by semielastic walls
and separated from
pure water by a
semipermeable
membrane

Water activity (αw):
partial vapor pressure
of water in a substance
divided by partial
vapor pressure of pure
water at the same
temperature; pure
water has an αw of 1,
and water migrates
from areas of high αw
to areas of low αw

Osmolarity: the
osmotic pressure at a
particular temperature;
expressed in molar
units (osmoles per liter
of solution)

Macromolecular
crowding: Impact of
high concentrations of
macromolecules, e.g.,
proteins, in a solution
on properties of
functional elements of
the cell

Osmoregulation:
physiological processes
that alleviate changes
in cell structure(s) and
physiological processes
caused by changes in
extracellular osmotic
pressure

Compatible solute:
an organic osmolyte
that can attain
exceedingly high
cytoplasmic
concentrations while
being fully congruent
with cellular
biochemistry and
physiology

to direct and scale water influxes or effluxes as the environmental osmolality fluctuates (17, 33, 73,
142, 145). Here, we address those biochemical and cellular events that allow the bacterial cell to
perceive osmotic stress and to cope with its negative consequences. We focus on those microor-
ganisms that attain in their core osmotic adjustment through the accumulation and expulsion of
physiologically compatible organic osmolytes (17, 33, 73, 142). We refer readers to reviews on
those bacteria and archaea that achieve osmotic adjustment to high-saline environments by the
massive accumulation of ions (K+/Cl−) (57) or by using a hybrid strategy involving the accumula-
tion of both ions and organic osmolytes (116).We point readers to other excellent reviews dealing
with various aspects of osmotic stress and cells’ adaptive responses among bacteria, archaea and
fungi (12, 18, 32, 57, 67, 93, 102, 108).

2. PHYSIOLOGICAL AND BIOPHYSICAL BACKGROUNDS

2.1. Biophysics of Osmostress

Numerous reviews and articles are available in which the (bio)physical background of osmostress
and its impact onmacromolecules and cellular structures are expertly described (10, 104, 142, 144).
Consequently, only a brief outline is given here. The osmotic pressure � of an aqueous solution
is given by � = −(RT/Vw) · lnαw, where R is the gas constant, T the temperature, Vw the partial
molar volume of water, andαw the water activity.The osmolality of a solution is then�/RT, which
is equal to −Vw lnαw. Osmolality, the osmotic pressure of a given solution, has the dimension of
osmoles per kilogram of water (osmolal), whereas the unit of osmolarity, which refers to moles of
solute per liter of water, is osmoles per liter of water (osmolar). Since osmolality, in contrast to
osmolarity, can experimentally be measured using osmometers, we prefer the former expression
here, which has been used in previous articles as well (142, 144).

In the basic equations, the activity and not the concentration of the solvent involved, water,
the predominant cellular constituent, is relevant. This makes a significant difference, since the
bacterial cytoplasm is far from being an ideal (dilute) solution but is instead a very crowded en-
vironment (134, 142, 144, 152). Thus, under native conditions, solute activities (product of solute
concentration and activity coefficient of solute) are also far from the value of solute concentra-
tion.The osmotic conditions of the cytoplasm affect cellular macromolecules (e.g., proteins) (126),
metabolic networks (123), the interaction of RNA polymerase with promoters (20, 54), and other
key cellular processes (e.g., by reducing the initiation volume for DNA replication and by slow-
ing translation elongation) (38, 39). Because proteins have charged surfaces, both conformation
and function are influenced by interactions with surrounding water and solutes, respectively, pro-
cesses depending on their activities α (10, 104). Another relevant aspect related to protein-solute
interactions is macromolecular crowding. This term refers to the effect of the concentration of
macromolecules, e.g., proteins, on other cellular functions, e.g., enzyme activities, based on the
space they occupy in a compartment, e.g., the cytoplasm (134, 144). There is increasing evidence
that a change in macromolecular crowding in the cytoplasm upon hyperosmotic challenge may
have significant consequences for cellular functions (104, 112, 134, 152).

2.2. Physiology of Osmostress and Osmoregulation in Bacteria

A crucial aspect of microbial adjustment to fluctuating environmental osmolalities is the ability of
the cell to scale water fluxes and direct them across the semipermeable cytoplasmic membrane to
prevent dehydration (at high external osmolality) and rupture (at low external osmolality). Syn-
thesis, import, and release of compatible solutes assume center stage in these processes.
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Figure 1

General scheme of osmostress response systems and structural views into glycine-betaine-binding sites present in transport systems for
compatible solutes. (a) Bacteria using the salt-out osmostress response accumulate compatible solutes via either synthesis or import, and
they tightly control their intracellular K+ and Na+ pools (33, 73, 142). Under hypoosmotic conditions, the cells rapidly jettison, in a
nonspecific fashion, organic and inorganic compounds via mechanosensitive channels (Msc) to reduce the osmotic potential of the
cytoplasm to curb water influx (12, 32). An aquaporin is a water-conduction channel (e.g., AqpZ). (b) Architectures of glycine-
betaine-binding sites in extracellular substrate-binding proteins [Archaeoglobus fulgidus ProX (PDB accession code 1SW2), Escherichia
coli ProX (PDB accession code 1R9L), Bacillus subtilis OpuAC (PDB accession code 2B4L)] operating in conjunction with ABC
transporters, or which are present in the membrane-embedded BetP transporter from Corynebacterium glutamicum (PDB accession code
4AIN). The main chain of the indicated proteins is shown in gray. The side chains of amino acids relevant for binding of the
substrate(s) are shown as colored rods, as is the glycine betaine ligand (oxygen is red, nitrogen is blue, and carbon is yellow or dark
gray). In the substrate-binding site of BetP, the carboxylate of glycine betaine interacts with a Na+ ion (orange sphere).

2.2.1. Aquaporins and transmembrane water fluxes. The discovery of aquaporins (AqpZ) in
Escherichia coli (22) by the Nobel laureate Peter Agre and his coworkers raised the expectation
that these types of dedicated water channels might be an important component of the cells’ man-
agement of osmotic stress, as they can mediate accelerated water fluxes along osmotic gradients
(Figure 1a). However, a physiological function of AqpZ during osmotic up- and downshifts is
by and large unclear, and its absence in many bacteria makes a central role of AqpZ-type aqua-
porins in osmotic adjustment unlikely (62, 132) [see, however, data on Synechocystis sp. PCC 6803
(1) and E. coli (40) that could support such a function]. Apparently, the water permeability of the
cytoplasmic membrane is generally high enough (9, 147) that the cell can react in a timely way to
fluctuations in environmental osmolality by adjusting the osmotic potential of the cytoplasm to
direct water fluxes (12, 13, 17, 32, 144). These adjustment processes occur primarily through the
amassing of a selected group of physiologically compliant organic osmolytes, the compatible so-
lutes, when the environmental osmolality is raised (17, 33, 73, 144). Conversely, rapid expulsion of
these compounds, ions, andmetabolites occurs through the transient opening of mechanosensitive
channels when the external osmolality is suddenly reduced (12, 13, 32).
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Ionic strength:
a measure of the total
ion content of a dilute
solution

Halotolerant: able to
tolerate high salinity

Preferential
exclusion: the
thermodynamically
unfavorable exclusion
of a solute from the
immediate hydration
shell of a protein

2.2.2. Synthesis and import of compatible solutes. Those bacteria that employ the salt-out
adjustment response will not increase their cellular ion pool on a sustained basis to counteract the
negative effects of high external osmolality on cellular hydration (17, 33, 73, 144, 145).While they
temporarily increase their K+ content as an emergency stress reaction to limit water efflux (14, 44,
138), these bacteria prefer the accumulation of compatible solutes as a sustained stress response.
The amassing of compatible solutes, a process that can be attained through synthesis and uptake
(17, 73, 145), allows the reduction of the ionic strength of the cytoplasm through export of K+

(Figure 1a) without compromising the osmotic potential of the cytoplasm; hence, physiologically
appropriate levels of cellular hydration and turgor can be maintained.

Compatible solutes are operationally defined as highly water-soluble organic osmolytes whose
physicochemical properties make them physiologically compliant with cellular biochemistry (10,
26). Representative types of compatible solutes synthesized or imported by members of the Eu-
bacteria are proline, glycine betaine, carnitine, proline betaine, dimethylsulfoniopropionate, ec-
toine/hydroxyectoine, trehalose, and glucosylglycerol (33, 37, 73, 93, 108, 145). The accumulation
of compatible solutes, although they are energetically costly to produce (90), provides a flexible
means for the cell to adjust to a broad range of environmental salinities and osmolalities (17, 57,
108, 145).

Both the synthesis and the import of compatible solutes are typically subject to osmoregulation
(17, 73, 142, 145). Characteristically, expression levels of genes for compatible solute synthesis are
tuned to the degree of osmotic stress imposed on the cell (17, 33, 73, 142, 145). However, de-
spite decades of research, the biophysical and genetic sequence of events that leads to osmoreg-
ulated transcriptional regulation is still insufficiently understood. An interesting exception might
be BusR, a repressor protein for the genes encoding an ABC-import system (BusAB/OpuA) for
glycine betaine in Lactococcus lactis, as its DNA-binding activity is dictated by the ionic strength of
the cytoplasm (111). A mechanistically interesting example for the activity control of a compati-
ble solute biosynthesis route is that for glucosylglycerol (93). The glucosylglycerol synthase from
the halotolerant cyanobacterium Synechocystis sp. PCC 6803 is regulated by the reversible binding
(low cytoplasmic Na+) and detachment (high Na+) to and from the chromosomal DNA, thereby
switching between the inactive (bound) and active (free) forms of the enzyme (89). The alternative
sigma factor RpoS, the master regulator of the general stress response network of E. coli, plays an
important role for the transcriptional regulation of many osmostress-responsive genes (61), in-
cluding those encoding the biosynthetic enzymes for trehalose, the dominant compatible solute
produced de novo by E. coli.

Acquisition of compatible solutes from environmental sources is particularly useful, as it allows
the cells to preserve precious energetic and biosynthetic resources. For example, synthesis of a sin-
gle ectoine molecule requires the expenditure of about 40 high-energy bonds when cells grow as
heterotrophs with glucose as the carbon source, and the expenditure of even about 50 high-energy
bonds is needed when they grow as autotrophs with CO2 as their carbon source (90). In contrast,
the hydrolysis of just two ATP molecules is required to import an ectoine molecule via an ABC
transport system (80). Both principles of compatible solute accumulation (osmoregulated activity
control and osmoregulation of transcription) are particularly important for various types of com-
patible solute importers. These two levels of stress control provide the osmotically upshocked cell
with practically instantaneous increased transport capacity for osmostress-relieving compounds
through the activation of preexisting transporters and the subsequent, slower, de novo synthesis
of additional copies of these import systems (17, 102, 142, 143, 153).

2.2.3. Compatible solutes: preferential exclusion and high-affinity binding. A hallmark of
compatible solutes is their preferential exclusion from the surface, which in the case of proteins,
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is primarily mediated by unfavorable interactions with the protein backbone (10, 24, 126, 129,
149). For thermodynamic reasons, this acts against the unfolded state and leads to a preferential
hydration of the protein surface and the preservation of the native conformation (10, 24, 26, 126).
However, high-affinity and specific interactions between compatible solutes and transporters have
to take place when the cell scavenges these compounds from scarce environmental sources. How
is this accomplished?

The crystallographic analysis of extracellular high-affinity substrate-binding proteins from
ABC transporters for osmostress protectants provided an answer to this question. The first
view into the architecture of the ligand-binding site for a glycine-betaine-binding protein was
attained by the crystal structure of the periplasmic ligand-binding protein (ProX) from the ProU
transporter from E. coli (117). Three Trp residues form an aromatic cage in which the negatively
charged surface of these side chains partner via cation-π interactions with the positively charged
trimethylammonium head group of glycine betaine (Figure 1b). The carboxylate of the ligand
protrudes out of the aromatic cage and is stabilized within the binding site through additional
contacts (117). Similarly configured glycine-betaine-binding sites, and those for its biosynthetic
precursor choline,were found in substrate-binding proteins from the hyperthermophilic archaeon
Archaeoglobus fulgidus (118) and those from the gram-positive bacterium Bacillus subtilis (45, 68,
100) and other microorganisms (91). Strikingly, a substrate-binding site with an architecture
similar to that of the OpuAC substrate-binding protein from B. subtilis is also present in the
transmembrane segment of the Na+-coupled BCCT-type (153) glycine transporter BetP from
Corynebacterium glutamicum (95, 96) (Figure 1b). In the case of glycine betaine, the interaction of
the positively charged trimethylammonium head group with aromatic hydrocarbons (24) enables
high-affinity ligand binding via cation-π interactions. Hence, building upon the physicochemical
parameters of compatible solutes (10, 126, 129), nature has found a common solution for how
these compounds can be specifically recognized. Minor variations on this theme allow the design
of ligand-binding sites for compatible solutes that will yield transporters with either narrow or
broad substrate specificity (45, 64, 100, 133).

2.2.4. Expulsion and excretion of compatible solutes. When bacteria are faced with a sudden
osmotic downshock, they must react instantaneously (19), as turgor will increase within millisec-
onds (12, 13) to a degree that cannot be restrained by the cell wall (79).This emergency reaction to
a sudden drop in the environmental osmolality relies on the transient opening of different types of
mechanosensitive channels (13, 32). Microorganisms typically harbor several types of these chan-
nels (MscM, MscS, MscL) (46), and these possess different electrophysiological properties and
gating behavior and, in their open forms, different diameters. These attributes of mechanosensi-
tive channels permit a graded response of the cell to the severity of the osmotic downshift (12, 13,
32). MscL- and MscS-type channels typically do not possess substrate specificity, but the unusual
MscS-type channel MscCG from C. glutamicum also specifically mediates the efflux of glutamate
under particular conditions in the absence of an osmotic downshock (8, 32).

Microorganisms often possess transporters for the same type of compatible solutes that they
synthesize. When these are genetically disrupted, considerable quantities of newly synthesized
compatible solutes can be found in the growth medium (55, 65), indicating that these osmoregu-
lated transporters also function as recycling systems for newly synthesized osmostress protectants
that are either leaking or actively extruded from the cell. In C. glutamicum, glycine betaine that had
been imported via BetP under sustained high-osmolality growth conditions is partially released
again by the MscCG channel (the so-called pump-and-leak model) (15). In contrast, hydroxyec-
toine secretion/efflux was observed in a synthetic E. coli cell factory lacking all known MscL-,
MscS-, and MscM-type channels (36), and in another study ectoine was released/secreted from

318 Bremer • Krämer

A
nn

u.
 R

ev
. M

ic
ro

bi
ol

. 2
01

9.
73

:3
13

-3
34

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
W

IB
61

00
 -

 U
ni

ve
rs

ity
 o

f 
M

ar
bu

rg
 o

n 
09

/1
0/

19
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



MI73CH15_Bremer ARjats.cls August 5, 2019 14:49

an E. coli cell factory independent of the ProU and ProP transporters that can mediate its uptake
(35). These findings, and data reported on the release of various compatible solutes in different
bacteria (55, 63, 84), raise the question of whether this synthesis/import-release-recapture process
under steady-state high-osmolality growth conditions is simply an accident or serves a useful phys-
iological function (e.g., for the fine-tuning of turgor). In addition to mechanosensitive channels
(15), extrusion systems for compatible solutes could perhaps involve multidrug-resistance-type
exporters with a broad substrate profile [e.g., EmrE (7)] or substrate-restricted efflux systems (53)
similar to those used for the export of amino acids (81) and other types of compounds from mi-
crobial cells.

3. OSMOSTRESS-RESPONSIVE CELLULAR SYSTEMS

3.1. Basic Requirements for Systems Responding to Osmostress

Osmoresponsive systems compensate for the adverse effects of changing osmolalities on cellular
fitness (142). Mechanistic requirements to achieve this aim are as follows:

1. The cell must be capable of sensing osmostress in both quality (nature) and quantity (extent).
This is reflected by a linear correlation between extent of stress and extent of related cellular
response, e.g., concentration of accumulated compatible solutes (66).

2. The cell must be able to switch stress response systems according to the actual need. Be-
sides varying in type, osmostress may also differ in onset (fast/slow) and duration (transient/
persistent) (17, 144).

3. Osmoresponsive systems are optimized with respect to carbon and energy demand. Stress
response is costly; cells will thus optimize both its efficiency and economy. Cells will choose
whether a response system is constitutive or inducible, i.e., whether response will be at
the level of activity or synthesis. Accordingly, as a frequent decision, uptake of compatible
solutes is preferred over de novo synthesis (17, 73, 145), thereby saving both carbon and
energy (90).

3.2. Sensing, Signal Transduction, and Cellular Responses

For a basic understanding of microbial responses to osmotic stress on a mechanistic level, the
complex scenario will be dissected into different aspects, e.g., the nature of relevant external stim-
uli and the way they are sensed, the conversion of stimuli into cellular signals, and, finally, the
generation of useful functional responses in the microbial cell.

3.2.1. Sequence of events. For proper classification and as a basis for mechanistic understand-
ing, the response to osmotic stress can be discriminated into consecutive steps (Figure 2).

1. Change in external and internal osmolality. The former is the primary event and occurs in
the environment, whereas the latter is an inevitable consequence of the high water perme-
ability of membranes (9, 147). This causes instant water influx in hypoosmotic conditions
andwater efflux in hyperosmotic conditions and occurs in a time range ofmilliseconds (142).
Transmembrane water flux may depend on membrane composition; however, there are no
systematic studies on this topic available for bacteria.

2. Generation of a functionally relevant physical stimulus. A change in external osmolality, i.e.,
a change in the concentration of solute molecules, is per se not a relevant physical stimulus;
at least it is not used by the cell. Consequently, the cell’s ability to properly react will depend
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Figure 2

Stimulus perception and signal transduction in bacterial osmostress response. The figure discriminates between a full-scale signal
transduction cascade (left) and a shortcut version for carriers and channels (right). The primary event, a change in external osmolality
(●1 ), generates a physical stimulus in the medium, the cytoplasm, or the membrane (●2 ). This stimulus is perceived by a sensor (●3 ) and
converted into a useful signal (●4 ), which in turn is transduced to specific targets, leading to their activation (●5 ). This ultimately results
in an appropriate response of the bacterial cell (●6 ) to the basic change in osmolality.

on the availability of a physical stimulus that the cell is able to perceive by a sensor and that
closely corresponds to the change in external osmolality.

3. Stimulus perception by a sensor system. A physical stimulus becomes relevant for the cell
by the presence of an appropriate sensor system located either in the membrane or in
the cytoplasm. The consequence of stimulus perception is a structure/function change
in the respective sensor protein. Although various types of sensor systems can be recog-
nized, the mechanisms of stimulus perception by them are still unknown in most cases.

4. Generation of an appropriate cellular signal and signal transduction.Only if converted into a
mechanistically relevant signal is the cell able to make use of the physical stimulus perceived
by the sensor. Typical examples for such kinds of signals are conformational or structural
changes of signal-transducing components, e.g., protein phosphorylation and/or a confor-
mational switch of these components. The cellular signal is then transduced to an appro-
priate target system (signal transduction).

5. Structure/function change in the target system. As a consequence of signal transduction,
the target system changes its functional state, e.g., by switching its enzymatic activity or its
affinity for binding to further components of the cell, such as specific DNAmotifs or target
proteins.

6. Cellular responses. Functional alterations of the target system will finally cause appropriate
cellular responses to the primary osmotic event, e.g., gene expression, metabolite synthesis,
protein synthesis, or activation of an enzyme or a transport protein. The diversity of typ-
ical cellular responses has explicitly been discussed in several review articles (17, 64, 142,
144).
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3.2.2. Examples of signal-transduction systems. In transporters and channel proteins not
all these steps are realized, and the signal pathway is cut short. These membrane proteins inte-
grate three steps, namely, stimulus perception, signal transduction, and target (carrier or channel)
activation (Figure 2).

The most elaborate examples of extended cascades of events are bacterial two-component sys-
tems (TCSs) involved in osmostress response. TCSs are often transmembrane signaling systems
receiving an external physical stimulus and transducing this information into an intracellular sig-
nal (127, 154). They consist of a membrane-bound sensor histidine kinase and a corresponding
response regulator (transducer). Stimulus input into TCSs involved in osmoregulation may also
occur from the cytoplasmic side.

A well-studied osmoresponsive TCS is EnvZ/OmpR of gram-negative bacteria (49). EnvZ is
a sensor histidine kinase anchored in the plasma membrane. At elevated osmolality, EnvZ be-
comes autophosphorylated, resulting in an increased phosphorylation of the response regulator
OmpR, which in turn activates transcription of the genes encoding the outer membrane porins
OmpF and OmpC. The nature of the stimulus is not known. The fact that stimulus input into
EnvZ happens at its cytoplasmic domain indicates that it relates to the cytoplasmic concentration
of a relevant solute. Another example is the MtrAB system, a highly conserved stress-responsive
TCS from Actinobacteria, e.g., Mycobacterium and Corynebacterium (16, 94). The involvement of
the membrane-bound sensor kinase MtrB from C. glutamicum in osmoregulation was analyzed in
proteoliposomes. Stimulus input was located at its cytoplasmic domain, and activation was linked
to changes in the hydration state of this domain in response to cytoplasmic solute concentration
(86, 87). Recently, PhoQ/PhoP, a TCS playing important roles in the response of enterobacteria
to various stimuli of their mammalian hosts, was found to also perceive osmotic upshifts. Sen-
sory input into the sensor kinase PhoQ relied on conformational changes in the transmembrane
domains of PhoQ prompted by perturbation in membrane thickness and lateral pressure in the
cytoplasmic membrane (148).

KdpDE, a TCS from E. coliwith special features, is associated with the KdpFABCK+ transport
ATPase, which is critically involved in K+ uptake and thus indirectly related to osmoregulation.
Sensing and signal transduction by the sensor kinase KdpD have been studied intensively for a
long time (2), and only recently has a sophisticated mechanism involving both extracellular and
intracellular sensor elements for K+ in KdpD been unraveled, showing a dual-sensor mechanism
for effective K+ homeostasis in E. coli (120).

3.2.3. Nature of relevant physical stimuli and sensor principles. Cells need useful physical
stimuli as a proxy for the change in external osmolality, which is not directly detectable, because of
the lack of appropriate sensormechanisms.Thus, the question is what kind of stimuli bacterial cells
recognize when exposed to osmotic stress. Plausible candidates are the concentration of specific
internal indicator solutes, e.g., monovalent cations; cytoplasmic water activity via its impact on
protein conformation;macromolecular crowding; alteration of forces in the cell membrane (lateral
pressure); and alteration of membrane surface properties (surface charge density). The availability
of a suitable sensing principle will define what kind of stimulus is relevant for an individual cell.

Understanding of stimulus perception is rather advanced for mechanosensitive channels (sens-
ing of lateral membrane forces), for a couple of solute transporters (changes in internal solutes and
lipid behavior), and for some TCSs (changes in internal conditions). In addition, experimental ev-
idence has been provided for molecular crowding being a primary stimulus for osmoregulation
(112, 134, 152).

3.2.4. Significance of lipid environment for osmosensing and osmoregulation. A number
of osmoresponsive elements in bacteria are embedded in the cell envelope; the surrounding lipids
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are thus an obvious candidate for stimulus input and signal generation. Lipids may contribute
at different levels, via bulk phase or via direct (specific) interaction (78). Although the specific
lipid requirement is known for several membrane proteins, mainly bulk-phase effects seem to be
relevant for osmoresponsive elements. The paradigmatic examples are mechanosensitive channel
(Msc) proteins. Notably, membrane lipid interactions have been analyzed in detail for Piezo1, a
structurally unrelated eukaryotic mechanosensitive channel (32, 60).

Recently, also for bacterial membranes, segregation of lipid domains has come into focus (128),
although there is no proven example for this phenomenon being relevant for osmoregulatedmem-
brane proteins. The observation, however, that ProP from E. coli is concentrated into membrane
areas with a higher content of cardiolipin, resulting in spatial segregation to the cell poles, may be
associated with this concept (110).

Lipid binding is relevant for several osmoregulated transporters. Bound lipid molecules have
been identified for members of the BCCT family of carriers (75, 153). For BetP, the best-studied
member, it was found that regulation critically depends on lipid composition (92) and, in par-
ticular, that the physical state of the surrounding lipid phase determines the response of BetP
to hyperosmotic stress (83). Moreover, direct phospholipid-protein interaction was identified by
spectroscopic techniques (56).

3.3. Mechanosensitive Channels

Bacterial mechanosensitive channels are pore-forming proteins in the plasma membrane that gate
(open) in response to mechanical force originating from transmembrane osmotic stress. In case
of emergency, i.e., upon hypoosmotic stress, gating occurs on a millisecond time scale (32). There
are two major families of mechanosensitive channels, namely,MscL-like [L for large conductance
(131)] and MscS-like [S for small conductance (79)] channels. They differ in conductance and in
gating threshold, i.e., the mechanical force at which they open. For the sake of a graded response,
bacterial cells in general harbor multiple mechanosensitive channels. For example,E. coli possesses
one MscL and six MscS-like channels (46).

The structures of severalmechanosensitive channels have been solved byX-ray crystallography,
e.g.,MscL fromMycobacterium tuberculosis (27) andMscS fromE. coli (6).MscL is a homopentamer,
while MscS forms homoheptameric channels. The conformational events upon gating have been
modeled on the basis of available structures, and gating mechanisms have been proposed for both
channel types (32, 97, 130, 137).

Besides being fundamental examples of mechanosensation,mechanosensitive channels are also
paradigms for understanding stimulus input and protein–lipid bilayer interaction. It is widely ac-
cepted that gating of these channels is achieved by the so-called force-from-lipids mechanism (32,
77). This concept assumes that mechanical force (lateral pressure) is directly transferred to the
channel via the lipid bilayer (23). Experimental evidence argues for the validity of this concept,
e.g., the fact that reconstituted mechanosensitive channels retain their mechanosensitivity (41),
as well as the impact of membrane bending (82), phospholipid composition (85), and acyl chain
length (97). Although this concept is based on bulk-phase lipid interaction, earlier observations
also suggested specific interactions (103), and a recent study indicated a significant role. Based on a
higher-resolution structure of E. coliMscS, lipid-binding pockets in the transmembrane region of
the channel were identified (101).Depending on the conformational state of MscS, which changes
during the gating event, alternatively phospholipid and lysolipid molecules were shown to bind to
these pockets.

In spite of broad knowledge of the function of mechanosensitive channels, their structure, and
conformational events during gating, the details of stimulus perception, the exact mechanisms of
gating, and coupling between these events are still largely unknown.
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Osmosensor:
a protein monitoring
changes in water
activity or derived
alterations in cells,
membranes, or the
composition of the
cytoplasm

3.4. Osmoresponsive Transport Systems

Like mechanosensitive channels, osmoregulated transport proteins are characterized by common
features; some of them are based on their nature as carriers (e.g., substrate specificity, saturation
kinetics, solute flux slower than channels), and some are related to their capacity of being os-
moregulated (e.g., fast response to osmotic challenges, ability to adapt their activity to the extent
of stress, and integration of the properties of osmosensor, transducer, and transporter) (17, 153).

Osmoresponsive transport proteins are regulated at the level of activity and potentially also
synthesis. In mechanistic terms activity regulation is achieved by modulating intrinsic properties
of the carrier, e.g., substrate affinity, transport capacity (Vmax), or efficiency of coupling to the
driving force. As far as what has been studied, regulation at the Vmax level, i.e., modulating the
activation energy barrier of transport (50), seems to be the common mechanism.

Osmoregulated compatible solute carriers are found in various transporter classes, namely, pri-
mary transporters (ABC systems), secondary systems, and binding-protein-dependent secondary
systems (TRAP transporters) (17, 55, 64, 142–145, 153). In several organisms, the full setup of
osmoregulated transporters has been described, e.g., E. coli, B. subtilis, and C. glutamicum (64, 73,
98, 143). In a few cases, detailed analyses concerning the activation mechanism have been carried
out, resulting in the identification of common principles, e.g., direction of stimulus input from the
cytoplasm. This mainly refers to the two secondary transporters BetP from C. glutamicum (Na+

coupled) and ProP from E. coli (H+ coupled), and to the ABC transporter OpuA from Lactococcus
lactis (102). The BCCT transporter BetP stands out because several high-resolution structures are
available (96, 106), a mechanistic view of the catalytic cycle was unraveled (95), and interactions
with specific lipids were identified (75, 92, 119). For BetP, activation depends on both a mem-
brane trigger and a change in the cytoplasmic K+ concentration (83, 114), whereas OpuA from
L. lactis is stimulated by changes in the internal ionic strength (102, 135). Recent work on the
MFS-type transporter ProP points to cellular dehydration, which alters membrane properties, as
being responsible for osmotic activation (34, 102).

For a full regulation cycle of BetP,mechanistic analysis revealed the requirement of two oppos-
ing principles for both activation and deactivation (upon adaptation to stress), taking into account
that the situation is not the same before onset of stress and after adaptation to it (15). For deactiva-
tion, two different mechanisms have been suggested, coordinated cooperation with mechanosen-
sitive channels and ceasing of the specific (membrane) trigger (15, 83).

Similar to the case of mechanosensitive channels, the question arises as to what extent avail-
able structural information provides insight into a mechanistic understanding of regulation. This
is independent of the structure of solute-binding sites and of structural aspects of carrier catalysis
(95, 96, 106). Although structural elements involved in osmoregulation, e.g., particular domains
of BCCT proteins, of ProP, and of OpuA, have been identified (34, 72, 153), the static information
obtained from X-ray studies is not sufficient to unravel the process of osmotic activation. Appli-
cation of dynamic techniques, e.g., single-molecule Förster resonance energy transfer (FRET)
spectroscopy or high-speed atomic force microscopy (AFM), will provide more information, as
shown for the (not regulated) bacterial glutamate transporter GltPH (107, 113).

4. OSMOREGULATION AT COMPLEX CELLULAR LEVELS

4.1. Impact of Osmotic Stress on Cellular Ion Homeostasis

Transmembrane ion fluxes are an integral part of bacterial osmoregulation. Bacteria have devel-
oped elaborate mechanisms of ion homeostasis, mainly concerning the cations Na+, K+, and H+,
while anion homeostasis is less well studied. Although the steady-state H+ concentration in the
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cell is orders of magnitude lower than that of other monovalent cations, and the buffer capacity of
the cytoplasm is rather low (11), fluctuation of cytoplasmic pH upon osmotic stress is effectively
balanced by high-capacity proton flux mediated by the electron transport chain, and by effective
Na+/H+ antiport systems (76) (Figure 1a).

Na+ is accumulated either by passive influx in response to high externalNaCl concentrations or
by active Na+ cotransport with certain types of compatible solute uptake. A similar pattern might
occur for H+-coupled uptake systems, leading to an increased influx of protons. Prominent exam-
ples of osmoregulatory transporters are BetP from C. glutamicum for the former case and ProP
from E. coli for the latter. The cell actively keeps the cytoplasmic concentration of the cytotoxic
Na+ ion at a low level, mainly through the activity of Na+/H+ antiporters (Figure 1a). Bacteria
in general harbor a variety of these transporters with different structural complexity, mechanisms,
and regulation (70).

The connection of K+ fluxes to cell turgor and osmoregulation is even more complex. Many
bacteria, in particular gram-positive species,maintain surprisingly high internal K+ concentrations
(up to several 100 mM) under standard growth conditions, in contrast to their Na+ concentra-
tions (14, 44, 138). The rapid imposition of high osmolality leads to increased K+ uptake in many
bacteria to counteract the outflow of water, but the K+ pool is typically only transiently increased,
as the cells extrude this cation again through dedicated export systems (44, 51, 138) (Figure 1a).

It is relevant to emphasize in the context of cellular ion homeostasis that there are important
differences between salt stress and osmotic stress. Salt stress includes osmostress, but the converse
is not necessarily true.Many bacteria can cope with both types of stress; however, cases exist where
cells discriminate between the two, a well-studied example being Synechocystis sp. (89). Adapted to
live in salt water, this cyanobacterium efficiently counteracts salt stress. Osmostress upon increase
of a neutral solute, however, causes cell death, a phenomenon with interesting consequences for
the mechanism of osmoregulation.

4.2. Osmotic Stress and Biology of the Second Messenger c-di-AMP

The secondmessenger c-di-AMP (29, 31) has gained considerable attention in connectionwithK+

homeostasis and osmotic stress responses (28). c-di-AMP is essential in many bacteria, and both its
synthetic depletion and overproduction are detrimental to growth and cellular integrity. Notably,
such strains often become osmotically sensitive (28, 99, 140).Mutants that lack c-di-AMP entirely
can generally only be obtained under special growth conditions (e.g., in media with low K+) (58),
or through the selection of suppressor mutations in strains with physiologically imbalanced c-di-
AMP pools. These suppressors often affect K+ and ion homeostasis and the uptake of compatible
solutes (43, 58, 99, 140, 150, 151).

As an example,B. subtilis possesses three transport systems for K+ (KtrAB, KtrCD,KimA) (58),
and each of them is negatively affected by increases in the c-di-AMP pool. Transcription of ktrAB
and kimA is controlled by the YdaO c-di-AMP-sensing riboswitch (88), which upon binding two
c-di-AMPmolecules triggers premature termination of transcription (52, 88, 105). c-di-AMP also
negatively affects the transport activity of theKtrAB andKtrCD systems by binding to theRCK_C
domain (RCK for regulator of conductance of K+) present in their cytoplasmic KtrA/KtrC reg-
ulatory component (30, 74), and the KimA K+ importer has recently also been shown to bind, in
a yet to be discovered manner, this signaling molecule to inhibit KimA transporter activity (59).
Gundlach et al. (59) also detected c-di-AMP binding to various K+ export systems in B. subtilis
and speculated that the activity of these exporters might be activated by c-di-AMP. In this way,
c-di-AMP would be a key player in setting homeostasis of K+ (59), an ion that plays in many cases
a crucial role in bacterial osmoregulation.
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Notably, a B. subtilis strain lacking the ability to synthesize c-di-AMP can only grow in media
with high K+ concentrations when suppressor mutations are present that increase the activity of
the cation exporter NhaK (58). Mutations that inactivate K+ importers are often found among
the suppressors that allow growth of bacterial strains with imbalanced c-di-AMP pools (99, 150).
The gating component of Ktr-related K+ transporters from Streptococcus agalactiae (43) and Strep-
tococcus pneumoniae (5, 150) is also a direct target of c-di-AMP, as is the KdpD sensor kinase of the
KdpDE TCS (120) that regulates the expression of the Kdp K+ importer in Staphylococcus aureus
(30).

c-di-AMP impacts compatible solute import either by influencing gene expression or by af-
fecting the activity of the encoded transporters. It inhibits the activity of the OpuC carnitine
transporter in S. aureus and Listeria monocytogenes by binding to paired cystathionine-β-synthase
(CBS) domains present in the ATPases (OpuCA) of these ABC systems (69, 121). Notably,
the CBS domain present in the BusR repressor controlling the expression of the genes for the
glycine betaine ABC-type transporters BusAA-BusAB (OpuA) in L. lactis and S. agalactiae is also
the target for c-di-AMP (43, 99).

Judging from the known targets of c-di-AMP in various bacteria (29, 31), and the types of
suppressor mutants obtained from strains with a physiologically imbalanced c-di-AMP content
(43, 58, 99, 150, 151), the control of cellular K+ pools, and thus indirectly turgor, seems to lie at
the core of the crucial function of c-di-AMP (28, 58, 59). However, its role as an allosteric effector
molecule for controlling compatible solute transporters (69, 121) is far from being resolved.

4.3. Osmotic Stress and Biofilm Formation

Biofilms are a major lifestyle of microorganisms, as these single- or multiple-species assemblies
protect the cells from predation and various environmental insults (48). In such communities,
cells are embedded in a matrix consisting of extracellular polymeric substances (EPSs), often com-
posed of exopolysaccharides and fibril proteins and sometimes also of DNA (48, 63). Complex ge-
netic and physiological regulatory circuits determine biofilm formation, communication between
cells, cellular differentiation into various cell types, cooperation and competition between cells,
and nutrient acquisition. The genetics of biofilm formation has been particularly well studied in
B. subtilis, which can form complex structured biofilms on surfaces (Figure 3a,b) and pellicles at
liquid-air interfaces (21, 71, 136).The surface of the biofilm is covered with the redox-sensitive hy-
drophobin BslA (3), which provides it with water-repellent, Teflon-like properties (4) (Figure 3c).
Water fluxes into the biofilm, and along with it nutrients, driven by osmotic gradients established
by the considerable osmotic pressure exerted by copious amounts of the EPS matrix (21). A pio-
neering study by Seminara et al. (122) revealed that spreading of the biofilm on solid surfaces is
crucially dependent on the osmotic pressure generated by the EPS. Such a phenomenon is not
specific to biofilms developed by B. subtilis; it also drives the expansion of biofilms formed by the
gram-negative bacterium Vibrio cholerae (146). The osmotic pressure of the EPS generates a phys-
ical cue that is perceived in B. subtilis by the membrane-embedded histidine sensor kinase KinD
(115), which in its activated form determines the phosphorylation status of the master regulator
of B. subtilis cellular differentiation, Spo0A (136). High-level Spo0A-P represses matrix gene ex-
pression (115) and favors sporulation (136). Strikingly, the genetic disruption of RemA, a crucial
activator of genes required for biofilm formation in B. subtilis (141) (Figure 3d), prevents expres-
sion not only of the genes for the matrix components but also of the osmoregulated opuA, opuB,
and opuC operons (141), which encode major compatible solute import systems of B. subtilis (64).
Hence, cells in the biofilm experience osmotic stress as the biofilm expands, and they try to ame-
liorate it through the import of osmostress protectants.
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Figure 3

Osmotic forces at work in a Bacillus subtilis biofilm. (a) Schematic cross section of a biofilm colony formed by the environmental B.
subtilis isolate strain NCIB3610 on a solid surface (21, 63, 136). Coloring of the cells represents various differentiation states leading to
the characteristic surface architecture of B. subtilis biofilms grown on MSgg agar plates. BslA is a redox-sensitive hydrophobin (3)
covering in different states both the surface and the bottom of the B. subtilis biofilm (4). (b) Colony morphology of a biofilm developed
after four days of growth on MSgg agar plates. (c) The hydrophobicity of the biofilm surface can be visualized by placing a droplet of
colored water onto the B. subtilis biofilm macrocolony (4, 21). (d) Colony appearance of a B. subtilis remA mutant in which the core
biofilm-forming gene clusters are no longer expressed (141). Photographs in panels b and c courtesy of Tamara Hoffmann.

5. CONCLUDING REMARKS

Great strides have beenmade to understand howmicroorganisms cope genetically, physiologically,
and biochemically with both sustained and fluctuating osmotic stress, an issue that is fundamental
for an in-depth understanding not only of the ecophysiology of microorganisms in their varied
natural habitats but also of food safety, virulence of pathogens, and the performance of microbial
cell factories in industrial-scale fermenters. As the field progresses, old questions persist and new
ones emerge.

FUTURE ISSUES

1. What is the precise nature of the physical stimuli used by the cell as a proxy for osmotic
challenge? Are the two known ways of stimulus generation, in the cytoplasm (solute
concentration, hydration state) and in themembrane (lateral forces), completely separate
principles? Is the cell capable of measuring the concentration of particular solutes in the
cytoplasm, e.g., ions or compatible solutes? How are internal forces in the phospholipid
membrane transferred to membrane proteins? If, besides bulk-phase interaction, specific
lipid molecules are involved, what is their function at the protein surface?

2. How can we translate the events occurring during signal transduction induced by os-
motic stress into protein action? How does this happen in terms of dynamic structural
events in sensor proteins and target systems (soluble or membrane bound)? Do common
structural principles for sensor mechanisms exist, e.g., using molecular devices of similar
or functionally comparable construction (sensory domains, sensory surfaces)?
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3. What are the molecular and biochemical mechanisms that allow a high-osmolality
stressed cell to precisely tune cytoplasmic compatible-solute pools to the degree of the
stress it perceives? How are activated enzymes or transporters deactivated upon osmotic
adaptation in spite of the fact that at least some of the stimuli persist, e.g., an increased
solute concentration in the cytoplasm? Do dedicated efflux systems (substrate-specific
channels and/or carriers) for compatible solutes exist, and what might be their precise
physiological role?

4. How do osmotic forces shape the spatial structure of microbial communities assembled
in biofilms, and how do they affect matrix production and the communication and social
behavior of the resident bacteria in these assemblies? Do compatible solutes released by
producer bacteria serve as public goods for those microorganisms that can acquire them
via transport?
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