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Abstract: Virtual water and water footprint have received increasing attention. However, no published
research has conducted a quantitative and objective review of this field from the perspective of
bibliometrics. Therefore, based on the Web of Science Core Collection, this study employs CiteSpace
to quantitatively analyze and visualize information about countries, institutions, and authors that
have conducted virtual water and water footprint research over the past two decades. As of July 2020,
there were 1592 publications on virtual water and water footprint, showing an increasing trend
overall. The annual average number of publications was only 7.4 in 1998–2008, while it was 126.5 in
2009–2019. Among them, up to 618 publications in the field of environmental science, accounting for
46%. China was the most productive country with a total of 344 articles, but the Netherlands had the
strongest influence with a betweenness centrality of 0.33, indicating its leading position. It is essential
to strengthen cooperation between developed (water-rich) and developing (water-poor) countries
and to incorporate virtual water into social water cycle research. This study is expected to provide
a new perspective for investigating the research frontiers and hot spots of virtual water and water
footprint research.
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1. Introduction

1.1. Motivation

Water resource is an indispensable natural capital for human production and life [1]. However,
with the rapid growth of the global population, the transformation of human lifestyles, consumption
patterns approaching high-water-consuming foods, and unreasonable ways of water extraction and
utilization, as well as climate change, water resources are under increasingly severe pressure [2–5].
The shortage of available water resources not only restricts the sustainable development of society
and economy but also poses a serious threat to ecological and environmental security [6,7]. The water
resource crisis has evolved into one of the most concerning resources and environmental issues in the
world, which is considered to be the biggest challenge facing mankind in this century [8]. Therefore,
ensuring water availability is set as one of the 2030 sustainable development goals (SDGs) [9,10].
It is predicted that 47% of the population will live in countries and regions with severe water
shortages by 2030 [11], due to the extremely unequal distribution of global freshwater resources.
In this context, “virtual water” has been heralded as the answer to this imbalance [12], which has
aroused great interest of scholars in the fields of water resource management, agricultural production,
environmental assessment, etc.
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1.2. Literature Review

Virtual water (VW) refers to the freshwater consumed by a product or service in its place of
origin, and which is then traded and transported to another region embedded in these products or
services [13]. The volume of global trade has continued to expand since the 20th century, resulting in an
increasing amount of virtual water exchange through commodities [14]. VW theory has thus laid a solid
foundation for accurately measuring the real water consumption of a country or region. Meanwhile,
by seeing water itself as an internationally traded commodity, it also offers an alternative way for
water-poor regions to effectively solve the shortage of water resources by importing “freshwater”
through international trade [15].

However, VW has received relatively little attention until “water footprint (WF)” was proposed
and introduced to international researchers [16]. Based on VW theory, WF represents the total amount
of water consumed by a country (region or individual) in a given period, including the water contained
in all products and services, which is an analog to the concept of ecological footprint proposed by
the Canadian economist Willian E. Rees in the early 1990s [17,18]. WF is a supplement to traditional
measurement indicators of water consumption due to the following features it possesses: (1) it made a
connection between physical water and VW, and extended VW assessment from the geographical scale
(country, region, and watershed) to the individual and product scale. (2) It expanded the boundary
of water resources research from the consumption of blue WF to green WF and gray WF [19,20].
Blue WF means water comes from surface or groundwater; green WF means water comes from
precipitation which is stored in the soil; gray WF means water used to assimilate pollutants [21].
By doing this, the problems of insufficient research on green water and independent evaluation
of water quality and quantity have been solved, thereby broadening the evaluation system and
connotation of water resources (Qian et al., 2019). (3) It linked water resources assessment with human
consumption patterns [22,23]. Calculating the real occupancy of water resources from the perspective
of consumption, which can help people understand the meaning of VW and increase their awareness
of saving water [24]. Because of the above advantages, WF has been widely concerned by scholars
around the world since its introduction and has become one of the important indicators for measuring
and evaluating the environmental impact of human activities.

The research methods of VW and WF are similar, which can be summarized as two types
of “bottom-up” and “top-down” methods [25,26]. The “bottom-up” methods are mainly used in
the agricultural sector, that is, using crop growth models such as CropWat [10,27,28], EPIC [29],
AquaCrop [30,31], and LPJmL [32] to calculate crop growth water footprint, including blue WF and
green WF. The “top-down” approaches, similar to life cycle assessment (LCA), are mainly based
on the inter-sector input-output (IO) tables. Input-output models are used (including single-region
input-output models and multi-regional input-output models) to measure direct and indirect WFs and
VW flow between all sectors. Therefore, the bottom-up approach is mainly suitable for estimating
the WF of agricultural products. A large body of physical water from irrigation is consumed during
the growth of crops. The top-down approach can take the VW (indirect water resources) contained in
the raw materials between sectors into account, it is thus suitable for estimating the regional water
consumption of all sectors and VW flows between countries and regions.

The research on VW and WF has extended from the initial global, national, or regional level to
small watersheds, cities, and single products, and from a single annual evaluation to inter-annual
comparative research. As for the research content, it has gone from quantitative accounting of crop
WF, regional VW flow, to qualitative analysis of WF sensitivity and inter-regional VW flow driving
factors. In general, VW and WF research has developed rapidly in the past two decades, which has
attracted increasing attention of international scholars. In addition to research articles, there are also
some reviews, which qualitatively elaborate and explain VW and WF research in terms of conceptual
interpretation, research content, research objects, and research scale [33].

However, few academic endeavors have been made from the perspective of bibliometric statistics.
As far as we know, only Zhang, et al. [34] conducted a bibliometric study of WF in 2006–2015, but it did
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not include VW. The WF mostly refers to water consumed in the local production process, and the VW
refers to the water embedded in the product being transported to other regions, that is, the WF has a
feature of “static”, while the VW has a feature of “dynamic”. The essence of WF accounting is still VW
accounting, and it can even be said that VW accounting is the basis of WF accounting [35]. Therefore,
the two concepts complement each other and it is necessary to analyze both at the same time.

1.3. Bibliometrics

In the face of a huge amount of literature, the qualitative literature analysis method has certain
limitations of subjectivity and one-sidedness, and cannot comprehensively, objectively, and intuitively
reflect the research trends and dynamic development of a field. The application of modern scientometrics
and information metrology technology can conduct a multivariate and historical dynamic analysis
of massive literature. Mapping Knowledge Domains is one of the important methods of document
analysis and visualization [36]. In recent years, the development of literature analysis tools represented
by CiteSpace has provided an effective way for the big data measurement analysis and visual display
of literature [37]. CiteSpace can identify research frontiers, detect research characteristics and evolution
trends, and identify the interactive relationship between different research topics through co-citing
literature and collaborative network analysis. Since its release, the software has been widely used in
document measurement and analysis and data visualization [38]. At present, it has been gradually
applied in the fields of geography, ecology, and the environment [34,38–40].

1.4. Objectives

With the help of CiteSpace, this study attempts to use the knowledge map to display the research
literature of VW and WF, find out the key literature, and make a further summary and analysis of
the VW and WF research since they were proposed. It aims to reveal the development path and
research trend of VW and WF more objectively, provide a new perspective for the exploration of
research frontiers and hot spots in this field, and deliver some innovative clues and suggestions for
future research.

The main research objectives are to (1) investigate the development trajectory of VW and WF
research, including the number of articles and research fields; (2) clarify the team and distribution
of VW and WF research, including major countries, institutions, and research teams; (3) summarize
the temporal and spatial dynamics of the research topics and research hotspots of VW and WF;
and (4) explore the current deficiencies and future development directions of VW and WF research.

2. Materials and Methods

2.1. CiteSpace

CiteSpace was developed by Chen [41] to analyze and visualize scientific literature. It can extract
and analyze the hidden information of keywords, topics, authors, institutions, cited documents,
cited authors, cited journals, and other information, and visually present relevant information with
the help of visual knowledge maps. Through the convergence of this information, it can show the
development path of a field and the relationships of interdisciplinary fields in a certain period, and fully
reveal the research status of this field, which helps to understand and predict research hotspots and
frontiers. In addition to information science and library science, CiteSpace has been increasingly used
in economics, sociology, geography, and environmental science [37].

In the knowledge map of CiteSpace, N represents the number of network nodes, and the color and
size of the nodes represent the year and quantity. E represents the number of connections. Modularity
is a reflection of network structure. When the value of the modularity larger than 0.3, it means that the
network community structure is remarkable. The value of silhouette is an index for measuring the
network homogeneity. When it is greater than 0.5, indicating that the clustering result is reasonable.
Regarding the Keyword Co-appearance Analysis map, Li, et al. [42] believe that frequency is the
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number of occurrences of words in the analyzed documents. The distribution of keyword frequency
can reflect the frequency of citations or the number of articles published in a certain field. The fields
with the most published articles or the most frequently cited articles are often research hotspots.

The main indicators used in this article include betweenness centrality and burst terms.
Betweenness centrality is an indicator that reflects the importance of a node, indicating that the
node serves as the number of shortest paths between the other two nodes. The higher the betweenness
centrality of a node, the greater its influence in the network. Generally, nodes whose betweenness
centrality is greater than or equal to 0.1 are regarded as key nodes. Burst terms refer to research terms
that appear to have a sudden and rapid increase in frequency, and it can more accurately reveal research
frontiers than keywords due to their dynamic change characteristics over time. The emergence of burst
terms indicates that scholars have discovered new research fields and research perspectives during this
period, and thus appear as academic frontiers, which are often shown in red in the knowledge map.

2.2. Data Collection

The Web of Science Core Collection (WOSCC) is considered as a reliable database for visual
analysis [40]. Water footprint and virtual water usually appear in the title of research in this field in the
form of fixed phrases. Therefore, we first searched for all publications containing the phrases “virtual
water” or “water footprint” in the title from 1993 to 2020, and then we manually removed publications
unrelated to virtual water and water footprint research. Finally, a total of 1592 publications were
retrieved on 22 July 2020.

3. Results

3.1. Characteristics of Publication Outputs

In general, the number of annual publications can reflect the importance of a particular field
and the degree of attention it receives. As shown in Figure 1, although VW was proposed as early as
1993, the first publication retrieved was in 1998. This is an editorial in which Allan [15] explained the
strategic significance of VW from the perspective of “the definition of water deficit, the relationship
between water and food, and water resources and politics”, and VW could be a global way to address
regional water deficits. He argued that reducing the rate of population growth and water-intensive
food consumption is the fundamental solution to water shortages.
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It was not until the WF theory was developed in 2002 that clarify the team and distribution of
VW and WF research gradually began to receive more attention. As of July 2020, there were a total
of 1592 publications on VW and WF, showing an increasing trend overall. Among them, the annual
average number of publications was only 7.4 in 1998–2008, while it was 126.5 in 2009–2019. It indicates
that after 2008, the year that Allan won the Stockholm Water Award for virtual water, the research on
VW and WF grew rapidly.

These publications were classified into 12 types, of which there were 1252 articles, accounting
for 79%; 143 proceedings papers, accounting for 9%; 35 reviews, accounting for 2%; and 162 other
publications, accounting for 10%.

In terms of disciplines, although VW and WF are concerned with the sustainable use of water
resources, there are up to 618 publications in the field of environmental science, accounting for 46%
(Figure 2), followed by water resources (371, 28%), engineering environmental (241, 18%), and green
sustainable science technology (235, 17%). This shows that VW and WF have become important
methods and indicators in the field of environmental impact assessment, and WF has therefore been
regarded as one of the environmental footprint indicators.
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3.2. Cooperative Network Analysis

3.2.1. Contribution of Country Analysis

As shown in Figure 3, a total of 84 countries have published articles in the field of VW or WF,
and the density of cooperation networks among countries is 0.0813. In terms of publication time,
the United States published the earliest article in 2001. Other countries with earlier publication
times include Japan (2002), the United Kingdom (2003), Italy (2003), France (2003), Sweden (2004),
the Netherlands (2005), China (2005), and India (2005). China is the most productive country with
the largest number of 344 articles, accounting for 27%, followed by the United States (245, 20%),
the Netherlands (139, 11%), and Italy (105, 8%).
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and the location of the node represents the time when the earliest article was published).

In terms of influence, the betweenness centralities of Netherlands (0.33), USA (0.29), China (0.23),
Germany (0.22), Sweden (0.11), and the United Kingdom (0.10) are higher than or equal to 0.1,
which indicates that these six countries played the most influential role in the field of VW and WF
research. Although the number of articles published in the Netherlands is smaller than that of China
and the United States, the betweenness centrality is greater than that of China and the United States,
highlighting the leading role of the Netherlands in this field.

Through further analysis, a total of 414 funds have supported research on VW and WF over the
past ten years, of which 377 funds came from China, accounting for 91%, while only 37 funds came
from other countries or institutions, accounting for 9%. This could explain why research on VW and
WF developed rapidly in China after 2010.

3.2.2. Contribution of the Institutions

In terms of research institutions, of the 11 institutions in the top 10 in terms of the number of articles,
there are eight in China, and one in the Netherlands, Singapore, and Japan. As shown in Figure 4,
the institution that published the most articles was the University of Twente (94). The institutions
ranked second to tenth are the Chinese Academy of Sciences (80), Beijing Normal University (55),
Hohai University (39) and Northwest Agriculture and Forestry University (33), University of Chinese
Academy of Sciences (28), National University of Singapore (26), China Agricultural University
(19), Beijing Forestry University (19), Shanghai Jiaotong University (14) and the National Institute
for Environmental Studies, Japan (14). In terms of influence, only the betweenness centralities
of the Chinese Academy of Sciences (0.22) and University of Twente (0.17) were higher than 0.1,
reflecting the key role of these two institutions in the field of VW and WF research. The betweenness
centralities of Beijing Normal University (0.09) and Hohai University (0.08) were close to 0.1, which is
expected to become the core institution of VW and WF research. Overall, the density of institutional
cooperation networks is only 0.0099, indicating that cooperation among institutions is relatively low.
Through further analysis, it can be seen that closely cooperating institutions are often in the same
country or city.
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3.2.3. Contribution of Authors

The authors’ co-occurrence analysis can identify cooperation and mutual citation relations
between core figures and other researchers. In total, 40 authors have published more than 5 articles
(Figure 5). Among them, A Y HOEKSTRA published 82 articles, far ahead of second-place P T WU (25),
which exemplifies the dominant status of Hoekstra, the introducer of the water footprint. The authors
with the third, fourth, and fifth place are M M MEKONNEN (21), A K CHAPAGAIN (18), and LA ZHUO
(13). It can be seen that the cooperation between the authors is generally poor, mainly concentrated in
the same country and department, and presents a relatively fixed cooperative relationship. The two
most prominent research groups are led by A Y HOEKSTRA and P T WU. LA ZHUO is the link
between the two groups because she has studied in these two institutions. Therefore, strengthening
the exchange and learning among researchers will help to improve the international cooperation and
influence of VW and WF research.
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3.3. The Evolution of the Frontier on VW and WF Research

3.3.1. Keywords Analysis

Keywords represent the core topics of the article and can better reflect the research hotspots.
Visual analysis of keywords in a certain field can intuitively present the research frontier and dynamic
evolution path. As shown in Figure 6, in the keywords network for VW and WF research, there are 149
nodes, 265 connections, and a density of 0.024. Among them, there are 31 keywords with an occurrence
frequency greater than 50.
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The largest node is “water footprint”, which has appeared 408 times. The nodes closely connected
to it are virtual water (269) and flow (122), indicating that the WF is the development and continuation
of VW theory. The second-largest node is “consumption (348)”. The main nodes connected to it
are resource (248), trade (201), impact (189), environmental impact (78), energy (98), and food (69),
indicating that research of VW and WF focuses on the consumption of resources, especially energy and
food, and its environmental impact has also received increasing attention.

In terms of influence, the node “agriculture” has the highest betweenness centrality of 0.44,
and it has entered the top 50 keywords since 2004, reflecting that VW and WF research has been
mainly concentrated in the agricultural sector. Land had the second-highest betweenness centrality
of 0.40, which entered the top 50 keywords for the first time in 2012. This is because the land is
another important resource in agricultural production, and agricultural water resources research
cannot conduct without consideration of factors such as land productivity. Climate change (0.29) and
sustainability (0.17) also had a greater influence in the keyword network, reflecting that research on
virtual water and water footprint was increasingly concerned with sustainable development in the
context of climate change.
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3.3.2. Burst Terms Analysis

Burst terms are extracted from keywords, titles, abstracts, etc., which are often used to judge
the development trajectory and trend of a field. As shown in Table 1, there were 24 burst terms
in the field of VW and WF. These burst terms can be divided into three time periods (2003–2010,
2011–2015, and 2016–2020). The three burst terms with the highest strength are virtual water (11.34),
water resources management (6.90), and environmental impacts (6.85), which respectively represent
research hotspots in different periods.

Table 1. Burst terms of virtual water and water footprint research.

Burst Terms Strength Begin Year End Year 2003–2020

virtual water 11.34 2003 2008 ������������������
food security 5.33 2004 2008 ������������������
food
production 5.75 2005 2014 ������������������

water supply 3.91 2007 2013 ������������������
global water
resources 3.52 2007 2012 ������������������

input-output
analysis 3.68 2009 2011 ������������������

international
trade 6.26 2010 2012 ������������������

greenhouse gas 3.52 2011 2012 ������������������
crop water
footprint 3.26 2013 2015 ������������������

Water footprint
assessment 3.53 2014 2016 ������������������

environmental
impacts 6.85 2014 2016 ������������������

water
productivity 6.11 2014 2016 ������������������

water demand 3.13 2014 2016 ������������������
agricultural
production 4.36 2015 2017 ������������������

water
requirement 4.70 2015 2016 ������������������

irrigation 5.11 2015 2016 ������������������
water stress 5.90 2016 2017 ������������������
water resources
management 6.90 2016 2018 ������������������

water pollution 6.67 2016 2017 ������������������
sustainable
development 6.26 2017 2020 ������������������

grey water
footprint 3.84 2017 2020 ������������������

total water
footprint 5.85 2018 2020 ������������������

water scarcity
footprint 5.48 2018 2020 ������������������

life cycle
assessment 6.11 2018 2020 ������������������

In 2003–2010, the burst terms reflected that the research hotspots at this stage were mainly based
on VW theory, focusing on water-food nexus and international trade. The input-output analysis
was the representative method. In 2011–2015, the burst terms reflected that the research hotspots at
this stage were dominated by WF theory, mainly focusing on the estimation of crop water footprint,
environmental impact assessment. Research on the combination of water footprint and other footprint
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indicators at this stage began to attract attention. In 2016–2020, the burst terms reflected that research
hotspots at this stage were more closely integrated with sustainable development, and researchers
were trying to apply VW and WF to traditional water resources management. The LCA method has
received more and more attention at this stage. However, the overall duration of each prominent word
was relatively short, reflecting that systematic research in these fields has not yet been formed.

3.4. Co-Citation Analysis

As shown in Figure 7, 30 publications have been cited more than 50 times by these 1252 articles,
of which Hoekstra is the first or corresponding author of 15 articles. In terms of the number of
citations, the book “The water footprint assessment manual” published in Earthscan by Hoekstra,
Chapagain, Aldaya and Mekonnen [21] has the highest citations of 421. The book introduces in detail
the “Goals and Scope of WF Evaluation”, “WF Account”, “WF Sustainability Evaluation” and how
different stakeholders, such as consumers, farmers, enterprises, and governments, can reduce WFs.

Water 2020, 12, x FOR PEER REVIEW 10 of 20 

 

country in 1997–2001 and concluded that the WF of a country is mainly affected by climate conditions, 
agricultural structure, and consumption patterns. 

In addition to the research group of Hoekstra, the most influential publication is “national water 
footprint in an input-output framework: A case study of China 2002” with third-place of betweenness 
Centrality (0.35), which was published by Zhao, et al. [44]. In this article, the national WFs of all 
industry departments were calculated, which was divided into 23 sectoral units per the input-output 
table. On this basis, a new indicator of national WF intensity was proposed to evaluate the intensities 
of water use in different sectors for an accurate water-saving strategy. 

In addition to the research group of Hoekstra, the most cited publication is “Assessing the 
environmental impacts of freshwater consumption in LCA”, ranking eighth with 88 citations, which 
is published by Pfister, et al. [45]. Based on LCA, this paper has developed a method to assess the 
impact of freshwater consumption on the environment from the three dimensions of human health, 
ecosystem production, and water resources, which is also very useful for researchers to assess the 
environmental impacts of VW and WF. 

 
Figure 7. Publications cited more than 50 times by these 1252 articles. 

4. Discussion 

4.1. Problems 

In recent years, research on VW and WF has received extensive attention [18,34]. However, it 
can be known from this study that most of the research is mainly conducted in a few nations of China, 
the United States, and the Netherlands, and even in individual institutions and research groups in 
these countries, and there is little cooperation between them. In theory, research of VW and WF 
should be given more attention in water-scarcity countries and regions, such as the Middle East, 
Central Asia, and Africa, because the original intention of VW is to provide an alternative method for 

Figure 7. Publications cited more than 50 times by these 1252 articles.

In terms of time, the earliest publication with citations of more than 50 is a book of “Water footprints
of nations”, which was published by Chapagain and Hoekstra [43]. It is also the most influential
publication with a betweenness Centrality of 0.6. The book estimated the WF of each country in
1997–2001 and concluded that the WF of a country is mainly affected by climate conditions, agricultural
structure, and consumption patterns.

In addition to the research group of Hoekstra, the most influential publication is “national water
footprint in an input-output framework: A case study of China 2002” with third-place of betweenness
Centrality (0.35), which was published by Zhao, et al. [44]. In this article, the national WFs of all
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industry departments were calculated, which was divided into 23 sectoral units per the input-output
table. On this basis, a new indicator of national WF intensity was proposed to evaluate the intensities
of water use in different sectors for an accurate water-saving strategy.

In addition to the research group of Hoekstra, the most cited publication is “Assessing the
environmental impacts of freshwater consumption in LCA”, ranking eighth with 88 citations, which is
published by Pfister, et al. [45]. Based on LCA, this paper has developed a method to assess the
impact of freshwater consumption on the environment from the three dimensions of human health,
ecosystem production, and water resources, which is also very useful for researchers to assess the
environmental impacts of VW and WF.

4. Discussion

4.1. Problems

In recent years, research on VW and WF has received extensive attention [18,34]. However, it can
be known from this study that most of the research is mainly conducted in a few nations of China,
the United States, and the Netherlands, and even in individual institutions and research groups in
these countries, and there is little cooperation between them. In theory, research of VW and WF should
be given more attention in water-scarcity countries and regions, such as the Middle East, Central Asia,
and Africa, because the original intention of VW is to provide an alternative method for solving
water shortages in water-scarce regions [15]. It is thus necessary for international academic groups
to strengthen exchanges and cooperation, especially between developed and developing countries,
water-rich and water-poor countries (regions), to further promote the development of VW and WF.

Currently, most research on VW and WF is published in journals in the field of ecological
environment and sustainable development [17]. This reflects that research on VW and WF is still
in the stage of theoretical exploration and improvement, and has not been widely adopted in the
optimal allocation of water resources utilization. It is well known that VW, as an intangible but actually
existing resource, always participates in the flow of water resources. It should be incorporated into
the water conservancy planning together with physical water to promote the rational planning and
management of water resources, so as to better meet the needs of economic development. “VW flow”
is essentially the circulation of the water resources “embedded” in the product in the socio-economic
system, including blue water and green water. Although it is estimated that 80% of water consumption
in agricultural production comes from green water, green water has not received corresponding
attention in traditional water resources research. We believe that the “VW flow” phenomenon can
be regarded as the secondary distribution of water resources, especially for precipitation. Therefore,
it should become one of the focuses of social water cycle research, and only by incorporating it into the
social water cycle can VW and WF research is recognized and funded by policymakers.

The “bottom-up” method has been well applied for calculating crop WF [25], while it has been
difficult to estimate the WF of animal products and industrial products. This is because various existing
hydrological, ecological, and crop models can be directly applied to crop WF calculation, and data
acquisition is relatively easy. Although the application of hybrid technology based on the LCA method
in recent years has provided novel ideas for solving the VW calculation of animal products and
industrial products [46], they are still in the initial stage. The quantification of water consumption of
animal products and industrial products is still the frontier of future research on VW and WF. Regarding
the “top-down” method, the input-output model is mainly used to investigate VW consumption
between different industrial sectors and VW flow between regions. However, because this method
requires input-output tables, it is currently only applicable to some countries and large regional studies.
Therefore, how to calculate the VW consumption of various industrial sectors in small areas of lacking
input-output data will still be the challenge for future research on VW and WF.
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4.2. Future Research Trends

4.2.1. Water–Food–Energy–Land–Climate Nexus

Water, energy, and food (WEF) are indispensable resources supporting human life and
socio-economic development [47]. In recent decades, the use of water, energy, and food, and their
interrelationships have received increasing attention due to population growth, urbanization,
and changes in the dietary pattern [48,49]. The WEF nexus approach is a novel perspective to
address the complex interactions and to identify synergies and trade-offs between these sectors [50]
(Figure 8). It is increasingly prominent on the agenda of policymakers [51], partly related to the SDGs
of the post-2015 agenda [52].
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However, at present, almost all studies on WEF only consider blue water and ignore green water.
As mentioned before, regarding global food production, green water is the main contributor and
plays a more prominent role than blue water. In the context of climate change, global warming will
affect regional water resources and agricultural patterns through changes in rainfall and its spatial
distribution, thereby affecting food production and energy use [53].

Land, as an important input element in agricultural production, has also been included in some
WEF nexus studies in recent years. Moreover, changes in land use and land cover can contribute to
climate change by affecting the biogeochemical and biophysical processes of ecosystems, and then
the climate changes land-use patterns by affecting food production and environmental pollution
in ecosystems [54].

Therefore, it is essential to continue to explore the dynamic relationship of “water-food-energy-
land-climate” from the perspective of WF. For example, in the context of climate change, we can
adjust and simulate crop planting patterns based on land resources and water resources endowment
(including green water), and explore the relationship between food production, economic benefits,
energy consumption, and environmental impacts.

4.2.2. Footprint Family and Planet Boundary

In the past two decades, the introduction of the concept of the ecological footprint has driven
the development of other footprint indicators in the field of resource utilization and environmental
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impact assessment [33]. A series of footprint indicators such as water footprint, carbon footprint,
nitrogen footprint, energy footprint, land footprint, and biodiversity footprint came into being [55–57],
which have substantially enriched the quantitative assessment indicators of the influence of human
activities on the ecosystem [58].

However, the occupation of various natural capitals by human activities and the interference
with ecosystems are not independent of each other. Therefore, Galli, et al. [59] conducted a detailed
comparison of ecological footprint, water footprint, and carbon footprint for the first time in 2012,
and the concept of footprint family was proposed. The footprint family is a series of index clusters,
which track the pressure of human activities on the ecosystem from multiple perspectives. Subsequently,
Čuček, et al. [60] reviewed the definition, methods, and measurement units of various types of footprint
indicators comprehensively, and proposed a series of social and economic footprint indicators in
addition to environmental indicators. Hoekstra and Wiedmann [61] put forward the concept of
maximum sustainable footprint, which provides a reference basis for quantitative assessment of the
environmental sustainability of human activities. Based on the theory of LCA, Ridoutt, et al. [62] argued
that all footprint indicators should be able to support the comprehensive evaluation of environmental
impact characterized by a single value. The concept of footprint family measures the resource occupancy
and the environmental impacts of human activities from the perspective of consumption, but most
footprint indicators lack corresponding carrying capacity indicators that can be used to assess whether
they exceed the threshold of sustainable development.

To explore whether the increasingly serious resource and environmental problems such as carbon
emissions, water resource utilization, and climate change have exceeded the sustainable “boundary”,
Rockstrom, et al. [63] proposed the concept of planetary boundaries from the perspective of carrying
capacity. Based on this concept, the study for the first time clarified the biophysical critical thresholds
or tipping points of several global resource and environmental issues and received extraordinary
attention and discussion [64,65]. The concept of planetary boundary makes up for the shortcomings of
environmental carrying capacity indicators that have not been comprehensive enough for a long time.
Due to their respective advantages and strong complementarities (Figure 9), the combined research of
the footprint family and the planetary boundary has gained momentum in recent years [33,66,67].
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Therefore, in the future, it is not only imperative to strengthen the research on the integration
of WF and other footprint indicators, but also need to measure the “critical threshold” of sustainable
water use from the perspective of VW and WF.

4.2.3. Material Metabolism

The interplay between human activities and ecosystems in the given region is likened to a
metabolic process of “material exchange and energy transfer” [68]. The most commonly used method
of material metabolism research is material flow analysis (MFA), which involves the source, path,
and sink of material circulation [69]. Material metabolism research investigates the natural resources
entering the socio-economic system and the pollutants discharged into the eco-environment system
through material flow analysis, thereby evaluating the interaction between human activities and
the natural environment. The material flow account is currently a more systematic account system
for measuring the use of human material and its impact on the natural environment. It has been
applied at global, national, and city scales [70–73] and has formed a relatively complete theoretical
method system.

The social water cycle is defined as the circulation process of water in the socio-economic
system [74], which generally includes four subsystems: water supply, water use, drainage, and sewage
reuse. There is a large body of water transfer in the social water cycle is in the form of VW [75],
and closely related to socioeconomic development. The exploration of the mechanism of VW flow is a
pivot of the study of the social water cycle, and it is also the entry point to truly understand the driving
mechanism and evolution of the social water cycle.

However, in previous material metabolism studies, VW was basically not considered in the water
resource account and the amount of water (gray WF) used to absorb the pollutants carried in industrial
wastewater and domestic sewage was not estimated. In fact, physical water consumption only accounts
for a small part of the regional water cycle, while VW hidden in products or services accounts for more
than 90% [76]. Therefore, in the future, it is vital to introduce material flow analysis methods into the
study of regional VW and WF (Figure 10) to make up for the deficiencies of traditional physical water
and virtual water separate evaluation. Based on the theory of material metabolism, integrating VW and
physical water into the evaluation of the social water cycle, studying the complex coupling mechanism
of them, and exploring its driving mechanism will still be the frontiers of VW and WF research.
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4.2.4. Telecoupling Sustainability Assessment

Sustainable development is the biggest challenge facing humanity in the 21st century [78]. It is
necessary to comprehensively consider the three dimensions of economy, society, and the environment
to measure the sustainable development level of a region (Figure 11). With regard to water use,
this means not only ensuring the domestic water demand of different interest groups (social equity)
and the normal operation of economic production (economic efficiency) but also controlling water
pollution within standard thresholds (environmental limits).
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In the modern world, distant regions are interconnected and influenced by one another in
many ways [79], and resource allocation is driven by forces of supply and demand in the market
economy system. The “social-economic-environmental” system in a region is inextricably linked to
the “social-economic-environmental” system in other regions through trade (Figure 11). For example,
the China-US trade war has not only led to rising consumption costs for both sides, and it also has caused
or would cause major impacts on the agricultural structure, farmers’ income, and ecosystem services
in other countries. To understand this kind of interconnected effect, the framework of telecoupling
was proposed by Liu, Hull, Batistella, DeFries, Dietz, Fu, Hertel, Izaurralde, Lambin, Li, Martinelli,
McConnell, Moran, Naylor, Ouyang, Polenske, Reenberg, de Miranda Rocha, Simmons, Verburg,
Vitousek, Zhang, and Zhu [79], which is employed to evaluate the social, economic, and environmental
interactions between distant human-natural systems. This is considered to be a new perspective to
solve multidimensional challenges facing global sustainable development [80].

In terms of VW and WF research, Chapagain, Hoekstra, Savenije, and Gautam [20] assessed the
influence of global consumption of cotton products on water resources in cotton-producing countries
from 1997 to 2001 and concluded that about 84% of cotton WF in the EU 25 countries came from
outside, with significant effects in Uzbekistan and India. Chapagain and Orr [81] investigated the
impact of Spanish tomato consumption in the EU on Spanish freshwater resources and argued that this
impact has local features, which depend on the local agro-climatic characteristics, water resources,
and total yield of tomatoes. However, these studies were only based on the perspective of water
resource utilization, without considering economic benefits and environmental impacts. Therefore,
as the concept of telecoupling has received increasing attention in recent years, it should and will
become the new frontier of VW and WF research.
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5. Conclusions

Based upon the Web of Science Core Collection, this study employs CiteSpace to quantitatively
analyze and visualize information about countries, institutions, and authors that have conducted VW
and WF research over the past two decades, and the changing characteristics of research hotspots are
analyzed through keywords and burst terms. On this basis, the future research frontiers of VW and
WF are further predicted. The main results are as follows:

As of July 2020, there were 1592 publications on VW and WF, showing an increasing trend overall.
The annual average number of publications was only 7.4 in 1998–2008, while it was 126.5 in 2009–2019.
Among them, up to 618 publications belong to environmental science, accounting for 46%, followed by
water resources (371, 28%), engineering environmental (241, 18%), and green sustainable science
technology (235, 17%), which shows that VW and WF have become important methods and indicators
of environmental impact assessment.

In total, 84 countries have published research articles on VW and WF. Although China was
the most productive country with a total of 344 articles, and 8 of the 11 institutions with the most
articles were in China, the Netherlands had the largest influence with a betweenness centrality of
0.33, indicating its leading position. Hoekstra has published 82 articles, far ahead of second-place
P. T. WU (25), and he was also the first author, corresponding author, or co-author of half of the
publications that have been cited more than 50 times by 1252 articles, which exemplifies his dominant
role in the field of VW and WF.

It is essential to strengthen cooperation between developed and developing countries, water-rich
countries (regions), and water-poor countries (regions), and to incorporate VW into social water
cycle research. Besides, future research should also be conducted from the perspectives of the
“water-food-energy-land-climate nexus”, “footprint family and planet boundary”, “material metabolism
theory”, and “telecoupling sustainability assessment”.
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60. Čuček, L.; Klemeš, J.J.; Kravanja, Z. A Review of Footprint analysis tools for monitoring impacts on
sustainability. J. Clean. Prod. 2012, 34, 9–20. [CrossRef]

61. Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117.
[CrossRef] [PubMed]

62. Ridoutt, B.G.; Pfister, S.; Manzardo, A.; Bare, J.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Frischknecht, R.;
Hauschild, M.; Henderson, A.; et al. Area of concern: A new paradigm in life cycle assessment for the
development of footprint metrics. Int. J. Life Cycle Assess. 2015, 21, 276–280. [CrossRef]

63. Rockstrom, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S., 3rd; Lambin, E.F.; Lenton, T.M.; Scheffer, M.;
Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [CrossRef]

64. Erb, K.H.; Haberl, H.; DeFries, R.; Ellis, E.C.; Krausmann, F.; Verburg, P.H. Pushing the planetary boundaries.
Science 2012, 338, 1419–1420. [CrossRef]

65. Lewis, S.L. We must set planetary boundaries wisely. Nature 2012, 485, 417. [CrossRef]
66. Li, M.; Wiedmann, T.; Hadjikakou, M. Towards meaningful consumption-based planetary boundary

indicators: The phosphorus exceedance footprint. Glob. Environ. Chang. 2019, 54, 227–238. [CrossRef]
67. Dao, H.; Peduzzi, P.; Friot, D. National environmental limits and footprints based on the Planetary Boundaries

framework: The case of Switzerland. Glob. Environ. Chang. 2018, 52, 49–57. [CrossRef]
68. Wolman, A. The metabolism of cities. Sci. Am. 1965, 213, 178–193. [CrossRef]
69. Hashimoto, S.; Moriguchi, Y. Proposal of six indicators of material cycles for describing society’s metabolism:

From the viewpoint of material flow analysis. Resour. Conserv. Recycl. 2004, 40, 185–200. [CrossRef]
70. Allesch, A.; Brunner, P.H. Material Flow Analysis as a Tool to improve Waste Management Systems: The Case

of Austria. Environ. Sci. Technol. 2017, 51, 540–551. [CrossRef]
71. Condeixa, K.; Haddad, A.; Boer, D. Material flow analysis of the residential building stock at the city of Rio

de Janeiro. J. Clean. Prod. 2017, 149, 1249–1267. [CrossRef]
72. Sun, X.; Hao, H.; Zhao, F.; Liu, Z. Tracing global lithium flow: A trade-linked material flow analysis.

Resour. Conserv. Recycl. 2017, 124, 50–61. [CrossRef]
73. Song, J.; Yan, W.; Cao, H.; Song, Q.; Ding, H.; Lv, Z.; Zhang, Y.; Sun, Z. Material flow analysis on critical raw

materials of lithium-ion batteries in China. J. Clean. Prod. 2019, 215, 570–581. [CrossRef]
74. Qin, D.; Lu, C.; Liu, J.; Wang, H.; Wang, J.; Li, H.; Chu, J.; Chen, G. Theoretical framework of dualistic

nature–social water cycle. Chin. Sci. Bull. 2014, 59, 810–820. [CrossRef]

http://dx.doi.org/10.1016/j.resconrec.2020.104789
http://dx.doi.org/10.1016/j.resconrec.2018.11.018
http://dx.doi.org/10.1038/nclimate1789
http://dx.doi.org/10.1038/nclimate2250
http://dx.doi.org/10.1016/j.ecolecon.2015.04.008
http://dx.doi.org/10.1021/acs.est.8b03359
http://www.ncbi.nlm.nih.gov/pubmed/30428259
http://dx.doi.org/10.1021/acs.est.0c00176
http://dx.doi.org/10.1038/s41893-018-0021-4
http://dx.doi.org/10.1016/j.ecolind.2011.06.017
http://dx.doi.org/10.1016/j.jclepro.2012.02.036
http://dx.doi.org/10.1126/science.1248365
http://www.ncbi.nlm.nih.gov/pubmed/24904155
http://dx.doi.org/10.1007/s11367-015-1011-7
http://dx.doi.org/10.1038/461472a
http://dx.doi.org/10.1126/science.338.6113.1419-d
http://dx.doi.org/10.1038/485417a
http://dx.doi.org/10.1016/j.gloenvcha.2018.12.005
http://dx.doi.org/10.1016/j.gloenvcha.2018.06.005
http://dx.doi.org/10.1038/scientificamerican0965-178
http://dx.doi.org/10.1016/S0921-3449(03)00070-3
http://dx.doi.org/10.1021/acs.est.6b04204
http://dx.doi.org/10.1016/j.jclepro.2017.02.080
http://dx.doi.org/10.1016/j.resconrec.2017.04.012
http://dx.doi.org/10.1016/j.jclepro.2019.01.081
http://dx.doi.org/10.1007/s11434-013-0096-2


Water 2020, 12, 3068 20 of 20

75. D’Odorico, P.; Carr, J.; Dalin, C.; Dell’Angelo, J.; Konar, M.; Laio, F.; Ridolfi, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al.
Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts.
Environ. Res. Lett. 2019, 14. [CrossRef]

76. Graham, N.T.; Hejazi, M.I.; Kim, S.H.; Davies, E.G.R.; Edmonds, J.A.; Miralles-Wilhelm, F. Future changes in
the trading of virtual water. Nat. Commun. 2020, 11, 3632. [CrossRef]

77. Meng, L.; Yang, D.; Ding, Z.; Wang, Y.; Ma, W. Spatiotemporal variations of water resources metabolism
efficiency in the Beijing-Tianjin-Hebei region, China. Water Supply 2020, 20, 1178–1188. [CrossRef]

78. Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes.
Landsc. Ecol. 2013, 28, 999–1023. [CrossRef]

79. Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.;
Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18. [CrossRef]

80. Hull, V.; Liu, J. Telecoupling: A new frontier for global sustainability. Ecol. Soc. 2018, 23. [CrossRef]
81. Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local

water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/1748-9326/ab05f4
http://dx.doi.org/10.1038/s41467-020-17400-4
http://dx.doi.org/10.2166/ws.2020.028
http://dx.doi.org/10.1007/s10980-013-9894-9
http://dx.doi.org/10.5751/ES-05873-180226
http://dx.doi.org/10.5751/ES-10494-230441
http://dx.doi.org/10.1016/j.jenvman.2008.06.006
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Motivation 
	Literature Review 
	Bibliometrics 
	Objectives 

	Materials and Methods 
	CiteSpace 
	Data Collection 

	Results 
	Characteristics of Publication Outputs 
	Cooperative Network Analysis 
	Contribution of Country Analysis 
	Contribution of the Institutions 
	Contribution of Authors 

	The Evolution of the Frontier on VW and WF Research 
	Keywords Analysis 
	Burst Terms Analysis 

	Co-Citation Analysis 

	Discussion 
	Problems 
	Future Research Trends 
	Water–Food–Energy–Land–Climate Nexus 
	Footprint Family and Planet Boundary 
	Material Metabolism 
	Telecoupling Sustainability Assessment 


	Conclusions 
	References

