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Abstract: 

This article presents a spatio-temporal panel vector-autoregressive approach 

(SptpVAR) as an extended spatial econometric method for analysing spillover effects 

of regional economic change in time and space. The approach aims to extend the 

spatial dimension of SpVAR models by capturing the overall cross-regional spillover 

dynamics over time through additional estimations of effects into neighbouring re-

gions and backward spillover to the source region. By showing how local economic 

dynamics trigger spillover dynamics in economically linked regions, the results are 

of particular interest to policy makers. To demonstrate the functioning of the 

SptpVAR approach, it is applied to 361 German regions using a regional growth 

model and a regional panel data set in the time-period 2000-2017 in an exemplary 

application. 
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1 INTRODUCTION 

Regional sciences face growing interest in applied spatial econometrics and 

interest in spatial data analysis tools. Especially the analysis of economic 

spillover and externalities across regional units is an important topic to 

understand the spatial dynamics of economic systems. Simultaneously, 

dynamic flexible vector-autoregressive panel models (pVARs), as one of many 

methods, have become an essential tool in the empirical analysis of economic 

systems with interrelated variables and estimation of responses to exogenous 

shocks, such as economic policy interventions. Although cutting-edge pVAR 

models are referred to as spatial panel VARs (SpVAR), these models provide 

scope for improvement in the integration of cross-regional interdependencies 

among variables and the spatial dissemination of economic effects in 

neighbouring or economically linked regions (e.g. the models of Beenstock & 

Felsenstein 2007, Mitze et al, 2018, Eberle et al, 2019). Local economic 

growth shocks cause spatial externalities in economically linked regions due 

to various transmission channels that affect the mobility of production factors, 

such as technology and knowledge diffusion, commuting, or cross-border 

trade. Thus, effects from a single economic shock can disseminate in space 

by causing multiplicative effects. 

The used SpVAR approaches fall short to capture the complete spatiotemporal 

dynamics for two reasons: First, only direct spatial effects from neighbouring 

regions to the analysed region are considered (so-called in-spillover), 

neglecting economic linkages with larger geographic distance. Second, in 

most of these cases spatial effects are only used to avoid statistical biases 
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caused by spatially autocorrelated error terms. Further spatial effects over 

time are usually not analysed (an exception is Wardenburg & Brenner, 2020). 

This is somewhat inconsistent, because the SpVAR approaches considers 

indirect effects among the variables included, meaning the effects from one 

variable to another and from this variable to a third variable and from there 

back to the first variable are included in the analysis, while effects to the 

neighbouring region and feedback effects into the initial region are not 

examined. The reason for this shortcoming in the literature can be found in 

the complexity of spatial spillover. On the one hand, the spatial structure 

allows for a large variety of third-order and higher spillover effects. On the 

other hand, the spillover effects strongly depend on the type of regions 

involved. In principle, a complete analysis of spatial spillover would require to 

consider each region with its specific characteristics and neighbours 

separately, which would imply separate regressions for each region, which 

usually is not statistically possible without increasing the number of 

observations.  

The purpose of this paper is to develop an approach that is able to capture 

and analyse spatial spillover processes as far as possible within a rather 

general statistical approach, integrate them into the resulting impulse-

response-functions (IRFs) and estimate the spatial expansion of regional 

economic shocks over neighbouring and economically linked regions. To this 

end the SpVAR approach is extended to include the spatial dissemination of 

local economic shocks over time while considering regional heterogeneity in 

region types and economic structure. To demonstrate the functioning of the 
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approach, it is applied to the economic development in German regions. The 

assessment of spatial effects is of particular importance for regional policy 

makers, since it is important to know how economic policy measures for one 

region affect other regions.  

Using German regional panel data in the time-period 2000 to 2017, we use 

our recursive SptpVAR to analyse the spatio-temporal dissemination of 

economic changes, especially local labour demand shocks and productivity 

growth. The study focusses on the extent to which both variables affect 

economic development in economically connected regions. A specific interest 

in this paper is in supra-regional labour market migration in reaction to local 

economic shocks, that has an intrinsic spatial dimension. 

The remainder of the paper succeeds as follows. Section 2 presents the theory 

on spatial interdependent growth models and cross-regional spillover 

dynamics as well as spatial VAR models. Section 3 introduces our SptpVAR 

framework strategy and exemplary data and variables. The empirical results 

are presented in section 4. Section 5 concludes with a summary. 

2 THEORETICAL BACKGROUND 

As it is widely shown in theoretical and empirical works, the economic 

development of countries, regions or cities depends to a certain extend on 

economic processes within nearby regions or countries due to growth spillover 

and cross-regional interdependencies (e.g. Ertur & Koch, 2007; Grossmann & 

Helpman, 1991; Howitt, 2000; Rey & Janikas, 2005; Rey & Montouri, 1999). 

From an observer’s perspective this can be seen in historical examples such 
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as the spatiotemporal dissemination of the industrial revolution across 

England and Europe, but also in the present co-movement in business cycles 

of neighbouring and economically linked regions (Montoya & de Haan, 2008).  

Multi-country growth models explaining spatially interdependent growth by 

considering cross-unit spillover have been developed in endogenous as well 

as neoclassical settings. Endogenous growth models that emphasize the role 

of knowledge and innovation spillover as source of spatially interdependent 

technological progress are more common (Coe & Helpman, 1995; Ertur & 

Koch, 2011; Grossmann & Helpman, 1991; Howitt, 2000; Howitt & Mayer-

Foulkes, 2005). Basile & Usai (2015) provide a summary on these models. 

Nevertheless, for the basic mechanisms in our application we build on a 

neoclassic model that considers the spatial effects of technology and 

knowledge diffusion and the mobility of further production factors, such as 

workers that contribute to spatial interdependencies between regions. 

 

2.1 Spatial Growth Models 

Neoclassic regional growth models build on the Solow-Modell, which explains 

regional growth of a closed market as a function of Capital (K), Labour (L) 

and Technology (A) (Solow, 1956). Borts and Stein (1964) advanced this 

model to the first regional growth model allowing for spatial spillover.  

Following Lopez-Bazo et al. (2004) who extend the common neoclassical 

growth model from Mankiw et al. (1992) by including cross-regional spatial 

spillover that are mainly caused by technological diffusion, we start with 
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formulating the labour productivity in a simple regional economy i in period t 

as: 

(1)  𝑦𝑖𝑡 =  𝐴𝑖𝑡𝑘𝑖𝑡
𝜏𝑘ℎ𝑖𝑡

𝜏ℎ, 

where k and h are physical and human capital per labour unit and 𝜏𝑘 and 𝜏ℎ 

are internal returns to both factors, determined by population growth, 

technology growth and depreciation rate (Lopez-Bazo et al., 2004). The 

spatial dimension is integrated trough spatial technology and knowledge 

diffusion. Thus, 𝐴𝑖𝑡 depends on the technological level of neighbouring regions, 

which, in turn, depends on physical and human capital intensity in this 

regions. So 𝐴𝑖𝑡 is defined as: 

(2)  𝐴𝑖𝑡 =  ∆𝑡(𝑘𝜌𝑖𝑡
𝜏𝑘 ℎ𝜌𝑖𝑡

𝜏ℎ )𝛾, 

with the exogenous component ∆𝑡 that is assumed to be constant over regions 

and 𝑘𝜌𝑖𝑡 and ℎ𝜌𝑖𝑡 denoting the physical and human capital ratios in neighbor 

regions while 𝛾 measures the strength of externalities across regions (Lopez-

Bazo et al., 2004). Combining (1) and (2), it becomes clear that a region’s 

steady state labour productivity and growth rate depend on capital 

investments within the region and in its neighbours. Thus, labour productivity 

in a region profits from investments in neighbouring regions, even without 

own investments. In consequence, regional growth systems cannot be 

analysed without incorporating spatial interdependencies. Similar to Mankiw 

et al. (1992), physical and human capital growth within a region is a function 

of regional capital accumulation, population and technology growth and 

depreciation rate. Additionally, due to decreasing returns to capital, 



 

9 
 

investment rates are a decreasing function of capital stocks, while it is an 

increasing function of capital stocks in neighbouring regions due to 

externalities across economies, which makes investments more profitable in 

regions surrounded by regions with high capital intensity (Lopez-Bazo et al. 

2004).  The authors conclude, that the initial conditions for regional growth 

within a region equal the ones in Mankiw et al (1992), while externalities 

across regions cause that growth to depend on the initial productivity and 

growth rates in their neighbours. As a consequence, the growth rates of two 

identical economies with identical preconditions may differ if preconditions in 

their neighbours differ (Lopez-Bazo et al, 2004). The authors argue that 

spillover do not accelerate the convergence rate across regions as they are a 

function of parameters within each economy, while persistent inequalities are 

intensified by more intensive knowledge diffusion among neighbouring strong 

economies (Lopez-Bazo et al, 2004).  In addition, Pfaffermayr (2009) points 

out, that knowledge and innovation advantages affect neighbouring regions 

first, but become global within time due to spatial diffusion. 

Ertur & Koch (2007) develop a similar spatially augmented growth model 

based on the Solow-Model (Solow, 1956) with technological interdependence 

with similar theoretical assumptions as Lopez-Bazo et al. (2004). In their 

model, a region’s steady state real income per worker depends positively on 

the region’s saving rate and negatively on population growth. The same 

applies for savings and population growth in neighbouring regions due to 

spatial externalities and technological interdependence.  
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2.2 Factor mobility spillover effects 

Both the models of Lopez-Bazo et al. (2004) and Ertur & Koch (2007) focus 

on knowledge and technological spillover as the only factors that are able to 

cross regional borders. Pecuniary production factors are still handled as closed 

economies, ignoring capital and labour mobility and other spillover that have 

direct impact on the regional steady state by affecting physical and human 

capital intensity as well as regional population growth (Pfaffermayr, 2012). 

We argue, that this should also be considered in analysing spatial growth 

systems. 

Capello (2009) identifies three major categories of spatial spillover: 

Knowledge spillover, industry spillover and growth spillover, pointing out that 

cross-regional interdependencies are not limited to knowledge spillover. 

Industry spillover, that may include knowledge spillover, occur on firm level 

within related industries, if linked firms benefit from value or productivity 

gains of dynamic, usually large firms without direct compensation through 

input or output linkages (Barrios et el. 2003). Growth spillover in the most 

general form summarize all types of growth transmissions between related 

regions, including knowledge and industry spillover (Capello, 2009, Arora & 

Vamvakidis, 2005, Cheshire, 1995). Spatial externalities result from the 

openness and spatial as well as economical limitation of regional economic 

systems, which are not self-sufficient, but necessarily interact, inter alia, in 

supply and demand of goods, production factors and common supply chains 

(Capello, 2009). Thus, local economic volatility that affects the demand and 

supply of goods and production factors has a direct transmission channel into 
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other regions by increasing the needs for imports from other regions, as 

additional demand cannot be fully absorbed by local supply. These pecuniary 

externalities may lead to income and GDP growth in trade-linked regions and 

further multiplicative effects in those regions as developed in the Export-

Growth-Theory (North, 1955). Moreover, regions directly interact via 

commuting that cause spatial externalities (Shearmur & Motte, 2009). 

Spending capacities and consumption demands at the place of residence 

directly depend on the workplace income per worker. 

2.3. Labour Market Mobility 

Migration between regions is modelled as exogenous in the presented 

neoclassical growth models. However, labour productivity, income per worker 

and labour market migration are strongly interwoven and migration has large 

impact on population growth. Therefore, Pfaffermayr (2012) presents an 

augmented Solow growth model including net-migration, based on the works 

of Barro & Sala-I-Martin (2004), Sung (2010) and Braun (1993). These 

postulate (average) income differentials per worker as main driver of 

migration across regions, whereby individuals migrate towards regions with 

higher income and job opportunities (Barro & Sala-I-Martin, 2004). 

Pfaffermayr (2012) models net immigration ξ for a set of regions 𝑦𝑁 as: 

(3)  ξ(𝑦1 … , 𝑦𝑁) ≈ κ[(𝑦𝑖 − 𝑦𝑖
∗) − ∑ 𝑚𝑖𝑗(𝑦𝑗 − 𝑦𝑗

∗)𝑁
𝑗=1 ] , 

where, 𝑚𝑖𝑗 denotes the exogenous spatial weights, representing that 

relocations spanning smaller distances are more likely than large distance 

moves, due to financial and social migration costs and frictions, y* denotes 



 

12 
 

steady state regional income and κ is a parameter reflecting the sensitivity of 

willingness to migrate at a given spatially weighted average differential 

income per worker (Pfaffermayr, 2012). Thus, κ is a factor of the individual 

weighting of locational utilities that result from economic incentives, natural 

amenities and cultural (manmade) residential amenities (Rodriguez-Pose & 

Ketterer, 2012, Wardenburg & Brenner, 2020). 

The question whether labour market migration has positive or negative effects 

on regional growth and convergence across regions is answered differently in 

the literature (Ozgen et al, 2010, Huber & Tondl, 2012, Fratesi & Percoco, 

2014). From a neoclassical perspective immigration enhances population 

growth and therefore reduces economic growth by decreasing the capital-

labour ratio and vice versa for emigration. On the other hand, emigration 

potentially decreases a regions human capital, with negative effects on output 

and labour productivity. Hence, Pfaffermayr & Fischer (2018) argue that 

migration accelerates convergence between high and low income regions if 

human capital of immigrants is not higher than that of natives. Given, that 

the income differentials result inter alia from higher average human capital in 

the immigration region, this should apply on average. However, assuming that 

migrants are particularly high-skilled seeking for additional income rewards 

brain-drain dynamics reduce the human capital of the sending region and 

decelerate convergence.  

Given these dependencies, an econometric model for analysing the spatial 

effects in economic growth should consider physical and human capital 

growth, innovation, labour as well as income and migration. While the 
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possibility of negative spatial externalities is not considered in the mentioned 

spatial growth literature, their presence in reality is likely due to brain-drain 

effects and competition between firms in neighbouring regions causing 

productivity increases in one region negatively affecting other regions  

2.4 Spatial VAR-Models 

Flexible VAR models have their origin in Sims (1980) approach for vector-

autoregressive time-series forecasting. Their main advantage is that flexible 

models are able to estimate mutual time-lagged interaction across dynamic 

regional variables without making too many a priori restrictions. Holtz-Eakin, 

Newey and Rosen (1988) adapted Sims approach for panel data VAR (pVAR) 

estimations. pVARs model economic interdependencies by estimating 

simultaneous dynamic regression models in which each variable in the system 

is a dependent variable, depending on lagged values of all variables in the 

system. Therefore, our starting point is a reduced form simultaneous dynamic 

first-order panel VAR estimation system in its aggregated form with M 

estimations, where M equals the number of variables in the system and i and 

t represent region and time (Rickmann, 2010): 

(4)  𝑦𝑖𝑡 =  𝜇𝑖 + 𝜏𝑡 +  A𝑦𝑖𝑡−1 + εit . 

In this basic form A represents an M*M coefficient matrix. Its values describe 

the relationship of 𝑦𝑖𝑡 to time-lagged endogenous variables in the system, 

while 𝜇𝑖  and 𝜏𝑡  represent individual and time-fixed effects to control for cross-

sectional heterogeneity and global economic dynamics and trade-cycle effects 

(such as economic crisis) within the panel data set.  
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This unrestricted model has serious shortcomings as it treats all variables as 

fully endogenous, which results in over-parametrization and biased impulse-

response-functions (Rickmann, 2010). To overcome this problem, the 

structural VAR model is used. An a-priori causal variable ordering that 

represents the causal economic structure of variables based on their assumed 

degree of endogeneity is done (Bernanke, 1986). A subsequent decomposition 

of the variance-covariance matrix prevents that contemporaneous relations 

across variables are captured by the instantaneous covariance of the error 

term (Mitze et al, 2018). The detailed procedure is described in section 3. 

Since the presented structural VAR model ignores potential spatial spillover 

effects, it does not fit regional panel datasets. Beenstock & Felsenstein (2007) 

and Di Giacinto (2010) proposed ways to calculate coefficients for A that are 

not biased by spatial autocorrelation by including spatial lag variables as 

additional independent variables to equation (4): 

(5)  𝑦𝑖𝑡 =  μ𝑖 + 𝜏𝑡 + 𝐴1𝑦𝑖𝑡−1 + 𝐻1𝑊𝑦𝑖𝑡−1 + εit ,  

where H is an additional M*M matrix of spatial lag coefficients and W is a 

spatial weight matrix, constant over the M-estimations and over time. In 

general, further past times (t-2, t-3, …) can be included in Equation (5) 

implying the use of further coefficient matrices 𝐴2, 𝐻2, 𝐴3, 𝐻3 and so on. To keep 

the presentation of our methodological extension simple and since only one 

past time is relevant in our application example, we consider only 

dependencies on time t-1. Various analyses of the effects of local economic 

shocks have used this kind of model (e.g. Eberle et al, 2019). Although, these 

models are able to correct for exogenous push-in spillover effects, where 
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economic growth results from developments in related regions, they still do 

not quantify these effects or integrate push-out spillover effects, since the 

values of H are ignored in the further examination. Wardenburg & Brenner 

(2020) present an extended spatial indirect SpVAR model and calculate push-

in spillover effects by estimating additional impulse-responses representing 

the effects of a shock in a neighbouring region, based on a one-time growth 

spillover into the estimated region, however, still ignoring possible later 

second-order spillover. 

Canova & Cicarelli (2009) model a multi-country VAR for multiple time-series 

based on a global vector-autoregression (GVAR) approach. This approach 

allows for time variation in the estimated coefficients, but does not explicitly 

focus on spatial interdependencies. In a restricted GVAR approach Dewachter, 

Houssa & Torffamo (2012) model a European cross-country VAR which models 

push-out spillover for Germany under the assumption of a homogenous 

spatial lag structure. Ramajo, Marquez & Hewings (2017) follow a multiREG-

SpVAR that is also based on GVAR methods for seventeen Spanish regions. 

The model estimates push-in and push-out spillover and explicitly allows for 

heterogeneity in spillover intensity across regions and allows to identify 

regions as growth generators with large outward growth spillover. However, 

this estimation technique ignores effects over time and needs to estimate 

individual regression systems for every regional unit. Thus, it is not 

appropriate for data sets with a large number of regions. 

In general, within a SpVAR approach all estimation techniques that are used 

in panel data analysis can be applied. Ellhorst (2012) provides an overview of 
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adequate estimators and their limitations for dynamic panel models pointing 

out that least-squares models including individual fixed effects and lagged 

dependent variables (OLS-FE) are biased due to the known Nickell-Bias, 

especially if t is rather small (<10) (Nickell, 1981). Generalized methods of 

moments (GMM) estimators have become the most popular alternative, 

providing consistent estimators under the assumption of strong instrumental 

variables. However, Kiviet (1995), Hsiao et al. (2002) and Binder et al. (2005) 

show that GMMs produce noteworthy biases if instruments are weak. 

Alternatively, transformed likelihood based estimators such as the quasi-

maximum likelihood estimator including fixed effects (QML-FE) proposed by 

Hsiao et al. (2002), and the orthogonal reparametrization approach (OPM) by 

Lancaster (2002) have been developed considering the incidental parameter 

problem resulting from maximum-likelihood estimations in dynamic panel 

models (see Neyman & Scott, 1948). Binder et al. (2005) and Pickup & 

Hopkins (2020) show, that this estimator outperforms classic OLS-FE, GMMs 

and the QML-FE estimators especially for small t. However, we find that these 

estimators face serious problems, if independent variables are not completely 

exogenous to the lagged dependent variables, what automatically is the case 

for time-lagged spatial lags of the dependent variable and if partially 

multicollinearity among independent variables is present. For the sake of 

simplicity in our application example we use OLS-FE techniques, arguing that 

the known bias is small with t=17, which is rather preferable against the 

unknown biases of the other techniques. Furthermore, our focus is not on the 

estimation technique but on the way in which push-in and push-out spillover 
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can be considered. Our approach for dealing with spillover - presented in 

Section 3 - can be combined with all kinds of estimators. 

 

2.5 Impulse-Response functions 

Based on the coefficients of A𝑦𝑖𝑡−1 from (5) it is now possible to model impulse-

response-functions (IRFs) that illustrate the response of a particular variable 

to an isolated uncorrelated shock in another variable in the system that 

includes indirect effects between variables in the system over time. In a non-

spatial VAR this is expressed by transforming A𝑦𝑖𝑡−1 to its moving-average 

form, in which 𝐴𝑇 represents the dependence on the variable values T time 

steps before, considering p past time steps (Lütkepohl 2005):  

(6)  𝑦𝑡 = 𝐴1𝑦𝑡−1 + ⋯ + 𝐴𝑝𝑦𝑡−𝑝 + 𝑢𝑡 . 

Considering the above-mentioned problems with over-parametrization a 

Choleski decomposition of the covariance matrix is performed following 

Lütkepohl (2005). This decomposition leads to a matrix A that is premultiplied 

to eq. (6): 

(7)  𝐴𝑦𝑡 = 𝐴1
∗ 𝑦𝑡−1 + ⋯ + 𝐴𝑝

∗ 𝑦𝑡−𝑝 + ε𝑡. 

Considering now the shock element 𝐼𝑘 which is a diagonal matrix with unit 

variance of the input variables, adding (𝐼𝑘 – A)𝑦𝑡 to (4) gives  

(8)  𝑦𝑡 =  𝐴0
∗ 𝑦𝑡 +  𝐴1

∗𝑦𝑡−1+…+𝐴𝑝
∗ 𝑦𝑡−𝑝 + ε𝑡, 
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where 𝐴0
∗  equals 𝐼𝑘 – A and is a lower triangular matrix (Lütkepohl, 2005). 

Thus, this estimation is recursive and does not allow for instantaneous circular 

effects, but may contains mutual effects beginning from 𝑦𝑡+1. 

 

3 ECONOMETRIC ADVANCEMENT 

In this section we present our technique for extending the presented SpVAR 

models to a flexible recursive SptpVAR that enables to estimate push-in and 

push-out spillover corrected impulse-responses for a specific location and its 

economically connected neighbours over time.  

Taking equation (5) as a starting point, we follow the reasoning of 

Wardenburg & Brenner (2020) that inward spillover intensity per time step is 

given by the matrix of spatial lag coefficients (𝐻𝑊𝑦𝑖𝑡−1). This enables to 

calculate spatial spillover into a region i by assuming a shock within a 

neighbouring region 𝑖𝑤  and multiplying it with the spatial lag matrix to get 

inward effects from an external shock into the calculated region at the next 

time step of the IRF estimation. In case of two identical economies in terms 

of size and structure, one could argue, that inward spillover effects from 𝑖𝑤 to 

i equal the outward spillover from i to 𝑖𝑤, which would allow to use the spatial 

lag matrix to also estimate outward spillover effects. However, allowing for 

differences in size, the inward spillover effect into i is a multiple of the outward 

spillover to 𝑖𝑤, where the multiplier is not known. It could be argued that the 

multiplier is equal to the size ratio of both economies. However, this relies on 

the assumption that spillover depend linearly on size. Moreover, the 
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assumption of structural homogeneity in space would be necessary, which is 

rather unlikely to hold in reality. Economic and geographical characteristics 

bring strong heterogeneity in the ability to produce and absorb spatial 

externalities. For example, the more a country’s or region’s firms and 

institutions are integrated in cross-border cooperation, innovation systems, 

commuting and trade, the more is its economic development influenced by 

the development of other regions. Thus, for example, landlocked regions 

experience more spatial spillover than coastal regions or islands (Roberts & 

Deichmann, 2009).  Moreover, the infrastructure and accessibility of other 

regions determine the ability to absorb economic growth and defines the 

amount of spillover (Durlauf & Johnson, 1995). For example, central regions 

usually possess a strong linkage to their neighbouring regions. In 

consequence, the spatial dissemination of shocks strongly depends on the 

spatial and economic structure of the neighbours and is strongly 

heterogeneous in space, meaning that a region might be more affected by a 

shock in a neighbouring region than the other way round, even if both regions 

are of same size. As a consequence, we argue that calculating outward 

spillover from a region as equal to inward spillover using spatial lag 

coefficients from (5) is not correct, although it provides a way to calculate a 

rough estimation.   

To explicitly take into account spatial heterogeneity, we model push-in and 

push-out spillover effects over time, not only for the regional unit in which the 

computed shock occurs, but also for spatio-economically linked regions. In 

order to keep the following calculable, we assume that the spatial weight 
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matrix W contains only values of 0 and 1, meaning that we only distinguish 

between neighbours and non-neighbours, as done in most studies. 

Furthermore, it is too complicated to consider the exact structure of the 

neighbours of one region, so that we treat all direct neighbour regions as a 

hypothetical single region iw, which influences the developments in the 

considered region i and is influenced by the shock in region i due to economic 

spillover. Assuming that this neighbourhood region iw surrounds region i, we 

can define a second neighbourhood region 𝑖𝑤𝑤 (with i ⊈ 𝑖𝑤𝑤) consisting of all 

neighbours to region 𝑖𝑤 (with i ⊈ 𝑖𝑤𝑤). So, 𝑖𝑤𝑤 can be called the second order 

neighbourhood of i. In the same way further orders of neighbourhood could 

be build, but in our application further orders do not matter. That might be 

different in other applications. Figure 1 shows an exemplary neighbourhood 

structure and the theoretical dissemination of economic shocks in space. 

The neighbourhoods 𝑖𝑤 and 𝑖𝑤𝑤 of each region i are combinations of original 

regions and have to be constructed in the dataset. The number of these units 

equals the number of regions in the dataset for each neighbourhood , 𝑖𝑤, 

Figure 1: Dissemination of economic shocks from region I to neighbouring region and higher order neighbours over time. 
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𝑖𝑤𝑤,(…) since every region has one neighbourhood region at each order of 

neighbouring. The identification of spatially and economically linked regions 

is presented in section 3.2. As mentioned above, using summed 

neighbourhood regions represents a simplification. However, the only more 

exact version would require to treat all regions separately, implying single 

regressions for each of them. Using summed neighbourhood regions allows 

distinguishing regions with different surrounding settlement structure, e.g. 

big cities with their surrounding and rural regions in the periphery. By this 

part of the spatial structure and type of neighbouring regions is considered. 

However, it means that some information on individual regional spillover get 

lost in summing up neighbourhood regions. 

By calculating accurate neighbourhoods instead of calculating spatially 

weighted lags, we can rewrite equation (5) to: 

(9) 𝑦𝑖𝑡 =  μ𝑖 + 𝜏𝑡 +  𝐴1𝑦𝑖𝑡−1 + 𝐻1𝑦𝑖𝑤𝑡−1 + εit ,  

Where the coefficient matrix 𝐻 defines the spillover intensity from the 

combined neighbourhood region 𝑖𝑤 into i. Again, as in the following, we include 

only the dependence on the former time step. Of course, further past times 

could be included in the same way. 

We now extend the approach and estimate the autoregressive dynamic effects 

within the combined regions 𝑖𝑤 by formulating an additional M*M 

autoregressive process congruent to equation (9): 

    (10) 𝑦𝑖𝑤𝑡 =  𝜇𝑖𝑤
+ 𝜏𝑡 + 𝐶1𝑦𝑖𝑤𝑡−1 + 𝐺1𝑦𝑖𝑡−1, + 𝐽1𝑦𝑖𝑤𝑤𝑡−1 + ε𝑖𝑤t , 
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where C is a M*M matrix of coefficients representing the autoregressive 

dependence within 𝑖𝑤, 𝐺, is an additional same-size matrix with spatial 

coefficients representing that the values of 𝑦𝑖𝑤𝑡  depend on time-lagged push-

out spillover from region i, while the matrix J represents analogously push-in 

spillover from the remaining neighbours 𝑖𝑤𝑤. A regression equation for 𝑦𝑖𝑤𝑤𝑡  

and even more distant neighbours can be set up similar to (10), dependent 

on their own lagged values and lagged values of inner and outer neighbours, 

with corresponding coefficient matrices. The resulting coefficient matrices can 

be used to calculate spillover corrected IRFs for i, 𝑖𝑤  and 𝑖𝑤𝑤. This system 

can, in theory, be extended without spatial limits. The number of observations 

is constant over the estimation systems. 

Of course, this technique has some difficulties. The most obvious is that 

individual regions are represented multiple times in the calculated dependent 

variables of (10), although in different combinations. Thus, regions that have 

identified neighbourhood relations to many regions have a stronger impact on 

the calculated dependent variables than those that have only one identified 

neighbour, which affects the estimation results. Of course, this depends 

strongly on the chosen definition of neighbourhood. If, e.g., neighbourhood is 

defined based on commuting, metropolitan cities are linked to many regions, 

due to size effects and due to the higher amount of weekend-commuter, which 

means that large cities impact the results of the new developed estimation 

systems stronger than other regions. However, we believe that this 

representation of highly connected regions reflects the real spatial spillover 
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structure, because, as argued above, these are drivers of spatial 

interdependent growth due their high economic integration. 

3.1 Spatio-temporal IRFs 

The information provided by the coefficient matrices from the additional 

regression systems is used to extend the moving average calculation by 

including spatial spillover, considering that an initial shock at time 𝑡0 leads to 

spatial spillover not only once, but at every time step in which the effect 

persists. In principle the IRF values 𝑦𝑡0 to 𝑦𝑡∞ can be calculated by using the 

moving-average representation as described above in Equation (8), but 

including the additional spillover terms from Equation (9) and adding similar 

calculations for the neighbouring regions. For simplicity, we again only 

consider one past time step (p=1) and obtain after the Choleski decomposition 

analogous to Equation (8) for the considered region: 

(11) 𝑦𝑖𝑡 =  𝐴0
∗ 𝑦𝑖𝑡 +  𝐴1

∗ 𝑦𝑖𝑡−1 + 𝐻1𝑦𝑖𝑤𝑡−1 + ε𝑡. 

The IRFs for the neighbouring regions are given by 

(12)𝑦𝑖𝑤𝑡 ==  𝐶0
∗𝑦𝑖𝑤𝑡 +  𝐶1

∗𝑦𝑖𝑤𝑡−1 + 𝐺1𝑦𝑖𝑡−1 + 𝐽1𝑦𝑖𝑤𝑤𝑡−1 + ε𝑡 

and 

(13) 𝑦𝑖𝑤𝑤𝑡 =  𝐷0
∗𝑦𝑖𝑤𝑤𝑡 +  𝐷1

∗𝑦𝑖𝑤𝑤𝑡−1 + 𝐾1𝑦𝑖𝑤𝑡−1 + 𝐿1𝑦𝑖𝑤𝑤𝑤𝑡−1 + ε𝑡. 

Further neighbourhoods could be considered in a similar way. 

 As each IRF needs the estimation results of the next neighbours, all IRFs 

must be calculated simultaneously. Thus, we practically need to limit the 

spatial expansion, because otherwise an infinite dimension of estimations 
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would result. Since effect strength will decrease while fuzziness increases with 

distance, we decided to consider complete estimations up to 𝑦𝑖𝑤𝑤𝑡, including 

simplified spatial spillover from 𝑖𝑤𝑤𝑤, that are restricted to spatially depend 

on its inner neighbours, but not its outer neighbours. 

In order to show how this effects the IRFs of the considered region i, let us 

consider a shock (change) 𝑦𝑖0 in this region at time t=0 and check how this 

spreads through the equations (assuming all other values to be zero at time 

t=0, as done in IRF calculation). Then, at time t=1 the values are given by 

(only presenting the deterministic part, to each value a stochastically 

determined value has to be added): 

 

 𝑦𝑖1 =  𝐴1𝐴0
∗ 𝑦𝑖0  ,          𝑦𝑖𝑤1 =  𝐺1𝐴0

∗ 𝑦𝑖0        and   𝑦𝑖𝑤𝑤1 =  0. 

At time t=2 spillovers come back from the neighbouring regions: 

 𝑦𝑖2 = (𝐴1
2 + 𝐻1𝐺1)𝐴0

∗ 𝑦𝑖0, 

   𝑦𝑖𝑤2 = (𝐶1𝐺1 + 𝐺1𝐴1)𝐴0
∗ 𝑦𝑖0     and      𝑦𝑖𝑤𝑤2 =  𝐾1𝐺1𝐴0

∗ 𝑦𝑖0. 

While after two time steps the development in region i is only influence by 

spillover that come back from the neighbouring regions, after four time steps 

additional spillover coming back from second-order neighbours as well as 

spillover from the developments that have been triggered in the neighbouring 

regions add to the developments within the region. The effects of the original 

shock on region i are then given by:  
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 𝑦𝑖4 = (𝐴1
4 + 𝐻1𝐺1𝐴1

2 +  𝐻1𝐶1𝐺1𝐴1 + 𝐴1𝐻1𝐺1𝐴1 + 𝐴1
2𝐻1𝐺1 +  𝐴1𝐻1𝐶1𝐺1 + 𝐻1𝐶1

2𝐺1 +

 𝐻1𝐺1𝐻1𝐺1 +  𝐻1𝐽1𝐾1𝐺1) ∗ 𝐴0
∗ 𝑦𝑖0, 

This shows that multiple spillover effects occur that play a role for the 

reaction of a region to shocks (changes) especially in the medium run. All 

these effects are ignored in the approach that is so far used in the literature.  

In order to assess the statistical significance of the estimation results, we 

conduct a Monte Carlo simulation, in which we draw regions with all their 

attributed regional and neighbourhood values over years from the original 

data set until the dataset reaches the same size. Regions can be drawn 

multiple times. We then estimate the developments after the shock for 500 

randomly drawn datasets while holding the initial shock constant and calculate 

95% confidence of the IRF values.  

We should mention that, despite being sensitive for regional heterogeneity, 

size effects limit the comparability of effects between the IRFs for i,  𝑖𝑤 and 

𝑖𝑤𝑤. IRFs indicate responses in %. Thus, the total effects depend on the size 

and can be approximated by comparing the mean size of the accumulated 

economies.  

 3.2 Neighbourhood and Spatial Lags 

By explicitly modelling also the neighbouring regions, the definitions of 

regional units and economically linked neighbourhood regions become crucial 

for the estimation results and the identification of spillover. Like most regional 

data analysis, we are limited to the use of administrative regions due to data 
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availability. These are mere containers and the spatial expansion of local 

shocks does not follow local boundaries.  

The first problem is the identification of relevant neighbours. Most spatial 

VARs use a binary Spatial-Durbin model, identifying physically bordering 

regions as neighbours to calculate spatial-lag variables (e.g. Eberle et al, 

2019). As mentioned before, economic interactions are not necessarily based 

on geographic proximity. However, based on the identified transmission 

channels, proximity seems to be an important condition for strong market 

relatedness and spatial connectivity. Moreover, it is important to identify 

economic linkages that lead to spatial spillover without immediate geographic 

proximity. In a metropolitan area, for example, regions share economic 

interactions with the regions core city, even without sharing an administrative 

border. Furthermore, it must be considered that economic interactions are not 

evenly distributed across neighbours and not necessarily symmetric. A shock 

in a large city like Berlin may generate larger impacts on a smaller 

surrounding city or region than vice versa due to size effects and the 

accompanying commuting and trade patterns. However, asymmetric spillover 

are imaginable even for regions of equal size. To identify economic linkages, 

the economic distance seems to be as relevant as the physical distance.  

In order to develop appropriate spatial-weights, we generate a binary spatial 

weight matrix W in two steps. The first step is to identify spatial proximity 

using a binary spatial contiguity matrix with 𝑊𝑖𝑗 = 1 if regions share a border, 

assuming that physical neighbours automatically share economic 

externalities. Various instruments can be used to identify further economic 
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linkages. Ramajo et al. (2017) identify economic distance via cross-regional 

trade linkages. Since we do not have the corresponding data, we consider 

commuting patterns. We focus on outward-bound commuters, since 𝑦𝑖𝑡 

depends on the economic situation at the person’s workplace (job-losses, 

wage gains), whereas economic shocks at the place of residence should not 

have impact on the workplace. To identify cross-region commuters, we use 

federal data, that display individuals that are not registered in the regions 

they life in. These are not necessarily daily commuters, but may be weekend-

commuters or people that are registered and work in different places for other 

reasons. In order to take into account linkages between regions due to 

commuting, we assign to every region the commuters’ target regions, and 

order these by the share of commuters. Then, we regard all regions at the top 

of this list as linked regions until a share of more than 80% of the commuters 

is considered. These regions are added to the neighbourhood matrix, whereby 

double-counts are excluded to maintain the binary matrix structure. 

To limit the before mentioned overrepresentation of metropolitan cities and 

restrict the number of neighbours, we use another neighbourhood matrix that 

represents the population-weighted travel distance by car. If this is higher 

than 90 minutes, regions are not counted as economic neighbours.  Obviously 

substantial economic spillover with greater distance cannot be ruled out, but 

are, in our opinion, negligible.  

The 2nd order neighbourhood matrix V is identified by identifying all regions 

which are connected to a direct neighbour but are not neighbours of the region 

itself. A M*M matrix results that contains values of 1 for all 2nd order 
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neighbours and values of 0 for all other pairs of regions. The same procedure 

is done for the 3rd order spatial weights. We further encounter problems with 

the spatial limitation of datasets here, for example country borders or coasts. 

In our analysis, non-German regions are not included as neighbours in the 

dataset due to different information bases and administrative region 

definition. This limits the number of neighbours (and higher order 

neighbours), but is not an essential problem for the estimation.  

Another issue is the choice of a suitable spatial scale. The smaller the chosen 

regional unit, the larger the spillover should be compared to the region size. 

The smaller the economy, the higher the need to import production factors 

from other regions which extends the need for spatial externalities. While a 

main concern of former studies was to lose spillover information by using a 

small regional scale, this is solved by our new approach. Furthermore, in 

larger regional scales, such as country level analysis, the within-country 

externalities are not recognized as such. In the case of negative cross-regional 

(but not cross-country) externalities, these would decrease the estimated 

responses and would cancel each other out on country level. Hence, choosing 

rather small regions seems to be advantageous for this method. 

3.3 Exemplary Data and Variables 

The paper’s exemplary empirical analysis is based on a balanced panel dataset 

set including annual data in the spatial unit of all 361 German administrative 

county regions in the time period 2000 to 2017. County regions are identical 

o the 401 administrative counties and cities, but district-free cities with a 

population <100.000 are combined with a neighbourhood region. With few 
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exceptions, these cities are surrounded by just one region with which they are 

strongly connected, which could distort the results.  

The variables utilized in the SptpVAR model are based on the theoretical 

frameworks in Section 2. Hence, we use the private sector investment rate as 

a measure of physical capital investments and higher education as measure 

for human capital. Moreover, we integrate the employment rate and GDP as 

proxy for the output (labour productivity). As in all similar studies, measuring 

the technology rate is an essential problem for adequately considering growth 

models in econometric analysis. We argue, that there is no well-suited 

measure, since patents – the commonly used indicator with its known 

advantages and disadvantages – do not have adequate autoregressive 

characteristics due to high fluctuations and time delays in patent recognition. 

We argue that regional technology growth should be included in the GDP 

measure by directly influencing labour productivity. Additionally, the 

migration rate is included as well as the household income to control for 

income as the main reason for migration. Spatial lags for every variable are 

computed as given in Section 3.  All variables are used in their natural 

logarithm form. Table 1 outlines the use of variables and data sources.  
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TABLE 1: Variable descriptions and Data sources 

Remarks: *Only investments of firms with >=20 working persons are gathered. The missing investments in 
relation to measured values should not be correlated in space and time, and therefore not produce structural 
errors. 

 

To verify the actual presence of spatial autocorrelation, we perform a Morans-

I test on our database given the spatial weight matrix presented in section 

3.2. The results confirm the existence of spatial autocorrelation among all six 

variables. Another necessary check for pVAR estimation is testing the 

Acronym Variable Description Data Source 

1) INVQ Private sector physical capital industry 

investment rate in the manufacturing, mining 

and quarrying sector as share of the GDP* 

[Industry Investments in € / GDP in €] 

 

 

German Federal Statistical Office. 

 

GDP: Working Group ‘National 

Accounts of the Federal States. - 

‘Arbeitskreis Volkswirtschaftliche 

Gesamtrechnungen der Länder 

2) EMP Gross employment rate 

[Employed persons/Population aged 15 to 64 

years ] 

Institute for Employment Research 

(IAB) 

Population data: German Federal 

Statistic Office 

3) EMP_UNI Higher education – Workers with a university 

degree per economically active working 

population 

[Employed persons with university 

degree/Population aged 15 to 64 years ] 

German Federal Statistical Office 

Population data: German Federal 

Statistic Office 

4) INC Mean disposable household income 

[Disposable income of private 

households/population] 

National Accounts of the Federal 

States (‘Volkswirtschaftliche 

Gesamtrechnungen der Länder’) 

Population data: German Federal 

Statistic Office 

5) MIG Regional net migration rate 

[(net migration – populationt-1)/populationt-1] 

Migration statistic of the federal 

government and the federal states 

Population data: German Federal 

Statistic Office 

6) GDP Nominal GDP per economically active working 

population 

[GDP in €/population aged 15 to 64 years ] 

Working Group ‘National Accounts 

of the Federal States. - 

‘Arbeitskreis Volkswirtschaftliche 

Gesamtrechnungen der Länder’ 

Population data: German Federal 

Statistic Office 
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stationarity condition. The results suggest that unit roots are present in four 

of six variables, namely employment rate, higher education rate, GDP and 

income. Hence, we follow Ellhorst (2012) and subtract a time trend from each 

individual unit in the panel data for the concerned variables. Morans I and IPS 

test results are given in the Appendix (A1 and A2). The summary of the used 

variables is given in table 2. 

TABLE 2: Variable summary statistics 

Nr Acronym Observations Min 1.Quarter Mean 3. 

Quarter 

Max Std. 

Dev. 

1 INVQ 3610 -

8.194 

-4.335 -3.967 -3.560 -1.496 0.651 

2 EMP 3610 -

1.464 

-0.8845 -0.723 -0.587 0.411 0.256 

2.2 EMP_DET 3610 -

1.485 

-0.987 -0.830 -0.703 0.095 0.262 

3 EMP_UNI 3610 -

4.710 

-3.521 -3.116 -2.813 -0.948 0.595 

3.2 EMP_UNI_DET 3610 -

4.773 

-3.866 -3.442 -3.127 -1.253 0.595 

4 INC 3610 6.903 7.230 7.345 7.460 8.090 0.163 

4.2 INC_DET 3610 6.884 7.080 7.167 7.253 7.792 0.134 

5 MIG 3610 -

.0405 -.0011 .0026 .0061 .0592 

.0060 

6 GDP 3610 9.762 10.394 10.619 10.807 12.545 0.354 

6.2 GDP_DET 3610 9.656 10.164 10.372 10.535 11.784 0.352 

Note: _DET denotes detrended version of the variable. 

 

As outlined above we need some a priori restrictions towards the causal 

variable ordering to be able to perform the choleski decomposition of the 

variance-covariance matrix. The chosen order is as presented in Table 1, 

based on a Granger-Causality test and additional theoretical assumptions. 

Test results are given in Appendix-Table A3. It is assumed that the investment 
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rate is the most exogenous variable and cannot be affected by other variables 

in the same year (but in the following years), while GDP is most endogenous 

and is contemporaneously affected by all other variables.  

  

4 EMPIRICAL RESULTS 

The empirical results demonstrate the functioning of our SptpVAR approach 

and bring some new empirical insights. In this section we present a brief 

selection of results. The approach provides individual impulse response 

functions for every pair of variables and regional neighbourhood level (i,  iw 

and iww). All resulting IRFs are listed in the appendix (A4).  

Focussing on effects of shocks in the local employment rate, we find that a 

single shock in the number of jobs within a region has significant positive 

effects on the local net migration rates in the following years (Figure 2). This 

suggests that at least some of this additional jobs are filled by external 

workers that move to the region. The results for 1st order and 2nd order 

neighbours indicate a significant negative development of net migration rates. 

We therefore see that these neighbours’ loose a share of their population to 

region i. Assuming that these were already gainfully employed before or are 

at least qualified enough to take on a job, these regions forfeit potential 

growth capital. This finding supports the theoretical assumptions of equation 

(3), that personal income is a main driver of migration. Furthermore, spatial 

proximity has an effect, most immigrants into i seem to move from 
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neighbouring or economically linked regions. This is an important finding for 

the assessment of economic policies.   

 

Figure 2: Responses of Migration to GDP shock. Note: Estimated impulse response functions are solid lines. 
Dashed lines represent 95% coefficient intervals from Monte Carlo simulations with 500 repetitions. IRFs 
display responses to orthogonal shocks in the amount of the standard deviations of the impulse variables. 
Responses are given in %. 

Secondly, we focus on output (GDP) responses to employment shocks, 

examining the validity of the spatial growth theories presented. In support of 

the Mankiw growth model (Equation (1)), we find that local labour growth has 

significant positive effects on the total output within the same region. 

However, this local shock has no significant effect on neighbouring regions 

(Figure 3). Thus, based on our results, labour growth does not cause spatial 

externalities that impacts the neighbours total output in a significant way. The 

same applies for other variables’ responses to employment shocks, were we 

do not find significant spatial effects. 
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Figure 3: Responses of GDP to Employment shock. Specifications equal Figure 2. 

We also note that output per working-age population is negatively affected by 

migration within the same region (Figure 4). This indicates that population 

growth has negative effects on the regions productivity. Based on the 

presented considerations by Pfaffermayr & Fischer (2018), it means that the 

average migrant is not as productive as the existing population one year after 

moving. This explains negative effects on productivity, at least in short term. 

In consequence, the effects shown in Figure 4 should lead to convergence in 

productivity across regions. We do not find spatial output effects on local GDP 

growth. 
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Figure 4: Responses of GDP to Migration shock. Specifications equal Figure 2. 

 

Additionally, we are interested in the spatial dissemination of output shocks. 

We find that GDP growth has on average positive, but not significant effects 

on its neighbours and no clear impact on 2nd order neighbours (Figure 5). 

Thus, we do not find clear evidence for spatial economic externalities within 

the economic output, against the hypothesis that knowledge driven output 

growth should spillover into its neighbouring regions causing output growth. 

It appears that the spatial effects of output growth depend on the nature of 

the shocks. Assuming that knowledge or technology level spillover cause 

growth in neighbouring regions, this may not be the case for other growth 

sources, explaining average positive but not significant growth spillover. 

Further research using the SptpVAR approach concentrating on this issue 

could clarify this.  

Secondly, we find significant employment growth as a result of GDP shocks 

(Figure 5). The effects are not causing employment growth in neighbouring 

regions. 
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Figure 5:  Responses of GDP to GDP and Employment shocks. Specifications equal Figure 2. 

Nevertheless, GDP growth shows spatial impact in the form of significantly 

positive migration responses within the region and in both types of 

neighbouring regions (Figure 6). While it is obvious that economically growing 

regions are attractive for immigrants from other regions, the spatial results 

somehow seem to contradict the findings from Figure 2. We detect a clear 

difference between spillover from employment and from GDP growth. 

Employment growth in a region seems to attract people from surrounding 

regions into the region, meaning that it leads to quite local migration. In 
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contrast, GDP growth seems to attract people from outside the wider 

neighbourhood (including second order neighbouring regions) into this 

neighbourhood, implying long-distance migration. Both effects seem to be 

connected to suburbanism dynamics, but the latter effect (including second-

order neighbours) even goes beyond that.  

 

Figure 6:  Responses of Migration to GDP and Employment shock. Specifications equal Figure 2. 

Finally, our estimation reveals that significant effects in neighbouring regions 

are possible, even if there are no significant local effects. Figure 7 illustrates 

that there is no within region reaction of the local employment rate to 

migration. However, in the direct neighbourhood, the employment rate 

increases per working age population, although there is no local shock. We 

believe, that the effect is provoked by emigrants into i. If their average 

employment rate before migration was lower than those of the remaining 

population in 𝑖𝑤, the employment rate within the region increases without new 

jobs being created. 
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Figure 7: Responses of Employment to Migration shock. Specifications equal Figure 2. 

 

5 CONCLUSION  

The paper aimed to develop a theoretical SpVAR model that extends former 

approaches by integrating spatial externalities of local economic shocks into 

the analysis and overcome problems in dealing with spatial effects in regional 

panel data. We presented an SptpVAR model that does this in a rather general 

approach that allows to track the spatio-temporal diffusion of local economic 

change in space as well as in time and incorporates indirect effects not only 

between variables, but also in space in the resulting IRFs. Furthermore, the 

proposed approach allows to examine spatial heterogeneity by building 

subsamples: e.g. studying the subsample of larger cities would imply that the 

spillover between these cities and their surrounding regions is examined. The 

functioning of the approach is shown by applying it to a spatial dataset for 

361 German regions. 
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The main advantages of the new approach are that spatial spillover effects 

resulting from a shock in one region on the surrounding or connected regions 

and indirect feedback spillover from these regions to the origin region are no 

longer neglected. Hence, the new approach also provides additional 

information on spatial spillover structures that are very interesting, for 

example for the evaluation of regional policy measures. 

However, the approach brings some limitations. It still relies on the use of 

administrative regions as spatial containers, faces problems at the spatial end 

of the data set (e.g. country borders) and generates rather large regions when 

calculating higher order neighbourhoods. 

Nevertheless, the approach allows for some new interesting empirical insights. 

We find that positive effects in one region can cause positive or negative 

spillover in neighbours and linked regions and therefore increase or mitigate 

the total effects. Our exemplary application shows that spatial spillover are 

most relevant if migration dynamics are included in the analysis.  

We conclude that the SptpVAR has versatile application possibilities in the 

empirical analysis of dynamic economic systems.  
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Appendix 

TABLE A1: Moran’s I test of spatial autocorrelation 

Variable INVQ EMP EMP_UNI INC MIG GDP 

Year Morans-

I 

p-val Morans-

I 

p-val Morans-

I 

p-val Morans-

I 

p-val Morans-

I 

p-val Morans-

I 

p-val 

2000 0.099 0.000 0.055 0.011 0.232 0.000 0.659 0.000 0.432 0.000 0.329 0.000 

2001 0.108 0.000 0.066 0.003 0.228 0.000 0.665 0.000 0.560 0.000 0.334 0.000 

2002 0.119 0.000 0.072 0.002 0.224 0.000 0.661 0.000 0.502 0.000 0.335 0.000 

2003 0.137 0.000 0.075 0.001 0.217 0.000 0.660 0.000 0.283 0.000 0.338 0.000 

2004 0.134 0.000 0.077 0.001 0.216 0.000 0.656 0.000 0.316 0.000 0.336 0.000 

2005 0.122 0.000 0.085 0.000 0.213 0.000 0.651 0.000 0.231 0.000 0.348 0.000 

2006 0.143 0.000 0.077 0.000 0.216 0.000 0.635 0.000 0.251 0.000 0.339 0.000 

2007 0.151 0.000 0.074 0.001 0.216 0.000 0.633 0.000 0.422 0.000 0.338 0.000 

2008 0.173 0.000 0.069 0.002 0.217 0.000 0.635 0.000 0.315 0.000 0.345 0.000 

2009 0.142 0.000 0.063 0.005 0.219 0.000 0.593 0.000 0.232 0.000 0.335 0.000 

2010 0.164 0.000 0.060 0.007 0.220 0.000 0.620 0.000 0.290 0.000 0.328 0.000 

2011 0.196 0.000 0.062 0.005 0.213 0.000 0.629 0.000 0.277 0.000 0.332 0.000 

2012 0.220 0.000 0.064 0.004 0.219 0.000 0.652 0.000 0.380 0.000 0.331 0.000 

2013 0.149 0.000 0.063 0.005 0.225 0.000 0.652 0.000 0.410 0.000 0.332 0.000 

2014 0.128 0.000 0.065 0.004 0.225 0.000 0.672 0.000 0.257 0.000 0.335 0.000 

2015 0.130 0.000 0.069 0.002 0.224 0.000 0.668 0.000 0.091 0.000 0.345 0.000 

2016 0.133 0.000 0.072 0.002 0.223 0.000 0.660 0.000 0.162 0.000 0.335 0.000 

2017 0.143 0.000 0.076 0.001 0.225 0.000 0.649 0.000 0.223 0.000 0.340 0.000 
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TABLE A2:  IPS unit-root test statistics 

Variable IPS-test statistic p-vale 

INVQ -31.711 0.000 

EMP 39.812 1 

EMP_DET -17.622 0.000 

EMP_UNI 24.398 1 

EMP_UNI_DET -25.224 0.000 

INC 27.116 1 

INC_DET -31.393 0.000 

MIG -13.440 0.000 

GDP 32.813 1 

GDP_DET -33.162 0.000 

Note: Number of regions = 361, t= 10, test based on Im Pesaran & Shin  (2003): H0: presence of unit roots. _DET 
donates detrended version of the variable.  

 

 
TABLE A3: Panel Granger Causality Test (lag=1) 

Note: Test as given in Dumitrescu/Hurlin (2012). 
Granger Causality Test is performed for every region; Alternative hypothesis = Granger causality given for at least 
one reg

 
 
GRANGER         
CAUSES 

INVQ EMP_DET EMP_UNI_DET INC_DET MIG GDP_DET 

value 
p-

value value 
p-

value value 
p-

value value 
p-

value value 
p-

value value 
p-

value 

INVQ x x 9.94 0.00 4.03 0.00 0.09 0.926 1.23 0.219 1.66 0.097 

EMP_DET 1.08 0.284 x x 9.29 0.00 18.43 0.000 8.29 0.000 8.48 0.000 

EMP_UNI_DET 1.06 0.288 -1.17 0.243 x x 7.76 0.000 4.00 0.000 2.95 0.003 

INC_DET 0.39 0.696 3.76 0.000 22.90 0.000 x x 2.74 0.006 2.819 0.005 

MIG 1.11 0.266 9.04 0.000 -1.21 0.225 1.77 0.075 x x 6.04 0.000 

GDP_DET 4.12 0.000 0.57 0.568 3.89 0.000 6.71 0.000 -3.11 0.756 x x 
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Figure A4: Complete set of IRFs in the estimated SptpVAR System. Specifications equal Figure 
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TABLE A5: Core-Models - i is dependent variable 

        
Dependent variable: 

                            --------------------------------------------------------------- 

                                                                                          

                               (invq)   (emp)    (empl_uni)    (inc)      (mig)    (gdp)     

------------------------------------------------------------------------------------------- 

plm::lag(invq, 1)            0.412***   0.003***   0.007***    -0.001   -0.00003    0.002    

                             (0.012)    (0.001)    (0.001)    (0.001)   (0.0001)   (0.001)   

                                                                                             

plm::lag(emp, 1)            -0.864***   0.565***   -0.049*     -0.011   0.014***   0.128***  

                             (0.255)    (0.012)    (0.026)    (0.011)    (0.003)   (0.027)   

                                                                                             

plm::lag(empl_uni, 1)         -0.111   -0.015***   0.664***   -0.011**   -0.001     0.020*   

                             (0.109)    (0.005)    (0.011)    (0.005)    (0.001)   (0.012)   

                                                                                             

plm::lag(inc, 1)             0.469**    0.047***   0.070***   0.701***  0.021***    0.008    

                             (0.224)    (0.010)    (0.023)    (0.010)    (0.003)   (0.024)   

                                                                                             

plm::lag(mig, 1)              -0.832     0.085*     0.034      -0.005   0.153***    -0.164   

                             (1.050)    (0.048)    (0.105)    (0.047)    (0.013)   (0.113)   

                                                                                             

plm::lag(gdp, 1)              0.124     0.030***    0.019*     -0.006   0.005***   0.462***  

                             (0.111)    (0.005)    (0.011)    (0.005)    (0.001)   (0.012)   

                                                                                             

plm::lag(spinvq, 1)           0.048*    -0.0004     0.004      -0.001    0.0001    -0.005**  

                             (0.025)    (0.001)    (0.002)    (0.001)   (0.0003)   (0.003)   

                                                                                             

plm::lag(spemp, 1)           1.121**    0.097***   0.199***    0.010    -0.024*** -0.198***  

                             (0.498)    (0.023)    (0.050)    (0.022)    (0.006)   (0.053)   

                                                                                             

plm::lag(spempl_uni, 1)     -1.036***  -0.106***  -0.111***   0.036***   -0.003     0.046*   

                             (0.242)    (0.011)    (0.024)    (0.011)    (0.003)   (0.026)   

                                                                                             

plm::lag(spinc, 1)            0.411      0.024    -0.108***  -0.143***  -0.010**  -0.124***  

                             (0.381)    (0.018)    (0.038)    (0.017)    (0.005)   (0.041)   

                                                                                             

plm::lag(spmig, 1)           -3.801**   0.420***   0.917***    0.013    0.189***    -0.156   

                             (1.762)    (0.081)    (0.177)    (0.079)    (0.022)   (0.189)   

                                                                                             

plm::lag(spgdp, 1)            0.110      0.014      0.012      -0.003   0.010***   0.059**   

                             (0.230)    (0.011)    (0.023)    (0.010)    (0.003)   (0.025)   

                                                                                             

-------------------------------------------------------------------------------------------- 

Observations                  6,137      6,137      6,137      6,137      6,137     6,137    

R2                            0.181      0.432      0.468      0.469      0.073     0.254    

Adjusted R2                   0.125      0.394      0.432      0.433      0.011     0.204    

F Statistic (df = 12; 5748) 105.676*** 364.648*** 421.142*** 423.546*** 37.761*** 163.402***                                                                                            

------------------------------------------------------------------------------------------- 

Note:                                                           *p<0.1; **p<0.05; ***p<0.01 
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TABLE A6: 1st neighbor models - 𝒊𝒘 is dependent variable 
 

                                                  Dependent variable:                       

                            --------------------------------------------------------------- 

                                                                                          

                              spinvq)   (spemp)  (spempl_uni) (spinc)   (spmig)   (spgdp)     

------------------------------------------------------------------------------------------ 

plm::lag(invq, 1)            0.017***   0.001**    0.002***   -0.0001    0.00003   0.002**   

                             (0.006)    (0.0003)   (0.001)    (0.0004)  (0.0001)   (0.001)   

                                                                                             

plm::lag(emp, 1)              -0.164     0.001     0.031**    -0.018**  -0.007***   0.009    

                             (0.124)    (0.006)    (0.012)    (0.008)    (0.002)   (0.014)   

                                                                                             

plm::lag(empl_uni, 1)         -0.058   -0.008***   -0.009*     0.002    0.003***    -0.004   

                             (0.052)    (0.003)    (0.005)    (0.003)    (0.001)   (0.006)   

                                                                                             

plm::lag(inc, 1)              -0.025    -0.011**   -0.023**    0.010      0.001    0.00001   

                             (0.107)    (0.005)    (0.011)    (0.007)    (0.002)   (0.012)   

                                                                                             

plm::lag(mig, 1)              0.167     0.066**    0.099**    0.070**   0.038***    -0.012   

                             (0.503)    (0.026)    (0.049)    (0.034)    (0.008)   (0.058)   

                                                                                             

plm::lag(gdp, 1)              -0.014    -0.007**   -0.010**   -0.008**  0.002***    0.009    

                             (0.053)    (0.003)    (0.005)    (0.004)    (0.001)   (0.006)   

                                                                                             

plm::lag(spinvq, 1)          0.496***   0.001**    0.003**     -0.001   -0.00002    -0.001   

                             (0.012)    (0.001)    (0.001)    (0.001)   (0.0002)   (0.001)   

                                                                                             

plm::lag(spemp, 1)          -1.480***   0.532***  -0.150***  -0.059***  0.049***  -0.123***  

                             (0.313)    (0.016)    (0.031)    (0.021)    (0.005)   (0.036)   

                                                                                             

plm::lag(spempl_uni, 1)       0.155     0.024***   0.769***   0.041***  -0.036***  0.116***  

                             (0.145)    (0.007)    (0.014)    (0.010)    (0.002)   (0.017)   

                                                                                             

plm::lag(spinc, 1)           0.611***   0.032***    0.017     0.456***   -0.001     0.010    

                             (0.185)    (0.009)    (0.018)    (0.012)    (0.003)   (0.021)   

                                                                                             

plm::lag(spmig, 1)            -1.405     0.047      0.155*     0.034    0.311***    0.066    

                             (0.860)    (0.044)    (0.084)    (0.058)    (0.014)   (0.099)   

                                                                                             

plm::lag(spgdp, 1)           0.437***   0.058***   0.087***   0.063***  0.016***   0.459***  

                             (0.112)    (0.006)    (0.011)    (0.008)    (0.002)   (0.013)   

                                                                                             

plm::lag(sp2invq, 1)         0.113***    -0.001     0.003      -0.002    0.0005*    0.0005   

                             (0.016)    (0.001)    (0.002)    (0.001)   (0.0003)   (0.002)   

                                                                                             

plm::lag(sp2emp, 1)          1.452***   0.175***   0.254***   0.133***  -0.048***  0.098**   

                             (0.344)    (0.018)    (0.034)    (0.023)    (0.005)   (0.040)   

                                                                                             

plm::lag(sp2empl_uni, 1)    -0.987***  -0.094***  -0.100***    -0.015   0.019***  -0.069***  

                             (0.167)    (0.009)    (0.016)    (0.011)    (0.003)   (0.019)   
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plm::lag(sp2inc, 1)          0.909***  -0.100***  -0.149***  -0.170***  -0.020*** -0.153***  

                             (0.280)    (0.014)    (0.028)    (0.019)    (0.004)   (0.032)   

                                                                                             

plm::lag(sp2mig, 1)         -7.109***   0.861***   1.352***   0.523***  0.144***   0.327**   

                             (1.263)    (0.064)    (0.124)    (0.085)    (0.020)   (0.146)   

                                                                                             

plm::lag(sp2gdp, 1)           -0.058     0.014*    0.060***    -0.015   0.015***    -0.015   

                             (0.163)    (0.008)    (0.016)    (0.011)    (0.003)   (0.019)   

                                                                                             

-------------------------------------------------------------------------------------------- 

Observations                  6,137      6,137      6,137      6,137      6,137     6,137    

R2                            0.281      0.541      0.597      0.280      0.200     0.251    

Adjusted R2                   0.232      0.509      0.569      0.230      0.145     0.200    

F Statistic (df = 18; 5742) 124.603*** 375.713*** 472.683*** 123.753*** 79.716*** 107.142*** 

============================================================================================ 

Note:                                                            *p<0.1; **p<0.05; ***p<0.01 
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TABLE A7: 2nd neighbor models - 𝒊𝒘𝒘 is dependent variable 

 
                                                  Dependent variable:                       

                            --------------------------------------------------------------- 

                                                                                          

                             (Sp2invq)  (sp2emp) (sp2empl_uni)(sp2inc)  (sp2mig)   (sp2gdp)     

-------------------------------------------------------------------------------------------- 

plm::lag(spinvq, 1)          0.066***  -0.001***   -0.0003   -0.002*** -0.0005***   0.001    

                             (0.008)    (0.0004)   (0.001)    (0.001)   (0.0001)   (0.001)   

                                                                                             

plm::lag(spemp, 1)            0.371*     0.012      -0.010    -0.013   -0.013***   0.068***  

                             (0.216)    (0.011)    (0.024)    (0.014)   (0.003)    (0.024)   

                                                                                             

plm::lag(spempl_uni, 1)      -0.212**  -0.047***    -0.006    -0.003    0.003**   -0.044***  

                             (0.101)    (0.005)    (0.011)    (0.007)   (0.001)    (0.011)   

                                                                                             

plm::lag(spinc, 1)            -0.076     -0.007   -0.051***  -0.045*** -0.006***    -0.016   

                             (0.126)    (0.007)    (0.014)    (0.008)   (0.002)    (0.014)   

                                                                                             

plm::lag(spmig, 1)          -2.882***   0.179***   0.318***  0.276***   0.076***   0.152**   

                             (0.595)    (0.031)    (0.066)    (0.039)   (0.008)    (0.066)   

                                                                                             

plm::lag(spgdp, 1)           0.253***   0.009**    0.025***  0.014***    0.001      0.014    

                             (0.078)    (0.004)    (0.009)    (0.005)   (0.001)    (0.009)   

                                                                                             

plm::lag(sp2invq, 1)         0.475***   0.003***   0.008***  -0.002**   0.0004**    0.002    

                             (0.011)    (0.001)    (0.001)    (0.001)   (0.0002)   (0.001)   

                                                                                             

plm::lag(sp2emp, 1)         -1.117***   0.606***    0.016     0.046**    0.005     -0.059*   

                             (0.284)    (0.015)    (0.032)    (0.019)   (0.004)    (0.032)   

                                                                                             

plm::lag(sp2empl_uni, 1)    -0.660***   -0.011*    0.674***   0.017**  -0.018***   0.118***  

                             (0.125)    (0.007)    (0.014)    (0.008)   (0.002)    (0.014)   

                                                                                             

plm::lag(sp2inc, 1)          0.424**    -0.018*    -0.054**  0.344***   0.018***  -0.126***  

                             (0.204)    (0.011)    (0.023)    (0.014)   (0.003)    (0.023)   

                                                                                             

plm::lag(sp2mig, 1)           -0.022    0.310***   0.264**    -0.090    0.357***    -0.120   

                             (0.924)    (0.048)    (0.103)    (0.061)   (0.013)    (0.103)   

                                                                                             

plm::lag(sp2gdp, 1)          0.424***   0.060***   0.128***  0.078***   0.013***   0.425***  

                             (0.120)    (0.006)    (0.013)    (0.008)   (0.002)    (0.013)   

                                                                                             

plm::lag(sp3invq, 1)         0.049***   -0.0004    0.005***  -0.002**   -0.0004*    -0.002   

                             (0.014)    (0.001)    (0.002)    (0.001)   (0.0002)   (0.002)   

                                                                                             

plm::lag(sp3emp, 1)          1.674***   0.132***   0.197***  0.114***  -0.019***   -0.066**  

                             (0.302)    (0.016)    (0.034)    (0.020)   (0.004)    (0.034)   

                                                                                             

plm::lag(sp3empl_uni, 1)    -0.870***  -0.066***  -0.074***  -0.028***  0.011***    0.017    

                             (0.130)    (0.007)    (0.014)    (0.009)   (0.002)    (0.014)   
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plm::lag(sp3inc, 1)          -0.447*   -0.083***  -0.124***  -0.197*** -0.026***  -0.145***  

                             (0.246)    (0.013)    (0.027)    (0.016)   (0.003)    (0.027)   

                                                                                             

plm::lag(sp3mig, 1)         -4.735***   0.796***   1.003***   -0.110    0.146***    0.155    

                             (1.105)    (0.058)    (0.123)    (0.073)   (0.015)    (0.123)   

                                                                                             

plm::lag(sp3gdp, 1)           0.029     0.017**    0.061***  0.042***    0.001     0.076***  

                             (0.133)    (0.007)    (0.015)    (0.009)   (0.002)    (0.015)   

                                                                                             

-------------------------------------------------------------------------------------------- 

Observations                  6,137      6,137      6,137      6,137     6,137      6,137    

R2                            0.318      0.610      0.558      0.227     0.302      0.245    

Adjusted R2                   0.271      0.584      0.527      0.174     0.255      0.193    

F Statistic (df = 18; 5742) 148.668*** 499.556*** 402.046*** 93.532*** 138.280*** 103.239*** 

============================================================================================ 

Note:                                                            *p<0.1; **p<0.05; ***p<0.01 

 

 


