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Abstract: 

This study investigates the usefulness of exponential random graph models (ERGM) 
to analyze the determinants of cross-regional R&D collaboration networks. Using 
spatial interaction models, most research on R&D collaboration between regions is 
constrained to focus on determinants at the node level (e.g. R&D activity of a re-
gion) and dyad level (e.g. geographical distance between regions). ERGMs repre-
sent a new set of network analysis techniques that have been developed in recent 
years in mathematical sociology. In contrast to spatial interaction models, ERGMs 
additionally allow considering determinants at the structural network level while 
still only requiring cross-sectional network data.  

The usefulness of ERGMs is illustrated by an empirical study on the structure of the 
cross-regional R&D collaboration network of the German chemical industry. The 
empirical results confirm the importance of determinants at all three levels. It is 
shown that in addition to determinants at the node and dyad level, the structural 
network level determinant “triadic closure” helps in explaining the structure of the 
network. That is, regions that are indirectly linked to each other are more likely to 
be directly linked as well. 
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1 Introduction 
 

There is growing scientific interest in the creation of knowledge and its diffusion 
among organizations. In the new growth theory, new knowledge is regarded as being pivotal 
to economic growth by generating increasing returns (Romer, 1990). In evolutionary 
economics, the re-combination of existing knowledge from different sources is argued to be 
crucial for new innovations to occur (Nelson and Winter, 1982). These theories and the 
according empirical evidence also impacted the policy level. For instances, one of the most 
well known policy instruments to stimulate knowledge diffusion and innovation are the 
Framework Programmes of the European Union. These programs have been in existence since 
1984 and are used to fund thousands of collaborative research projects between organizations 
in the EU. 
 Such R&D collaboration networks, which are induced by policy, alter the spatial 
diffusion of knowledge. This put the investigation of their spatial structures on the agenda of 
regional economists and economic geographers (Autant-Bernard et al., 2007). While the 
geographical structures of inter-organizational collaboration networks are frequently analyzed 
from an organizational perspective (cf. Giuliani and Bell, 2005), these researchers rather 
employ a regional perspective and focus on cross-regional R&D collaboration networks (cf. 
Scherngell and Barber, 2009; 2011; Hoekman, et al., 2010). In order to investigate factors 
explaining the structure of cross-regional networks, most commonly spatial interaction 
models are used, which allow for considering factors at the node and dyad level. An example 
of a factor at the node level is the size of a region that matters as regions with more 
organizations are also more likely to have links to regions elsewhere. At the dyad level, most 
attention has been paid to the effect of increasing geographical distance that decreases the 
chances of research collaboration (cf. Ponds et al., 2007; Scherngell and Barber, 2009; 
Hoekman et al., 2009; 2010). 
 In addition to the node and dyad level, factors at the structural network level may also 
be important, though. That is, the creation of new links might not only depend on attributes of 
regions or region pairs. It may also be influenced by the existing structure of the cross-
regional network. For instance, a key hypothesis in organizational network science is the 
tendency towards triadic closure (or transitivity), which implies in this context that regions, 
which are indirectly linked, are more likely to link themselves as well. However, factors at the 
structural network level cannot be included in spatial interaction models. 
 The paper presents exponential random graph models (ERGM) as an alternative 
empirical tool. These models have been developed in mathematical sociology in recent years 
(Snijders et al., 2006; Robins et al., 2006, 2007; Wang et al., 2012) and are increasingly used 
across scientific disciplines, for example in bioscience (Saul and Filkov, 2007), political 
science (Desmarais and Cranmer, 2012) and organization science (Uddin et al., 2012). The 
advantage of these models is that they allow for simultaneously estimating the effect of 
factors at the node, dyad, and structural network level for networks that are observed at one 
point in time. 
 We illustrate the usefulness of ERGMs by exemplarily investigating the structure and 
its determinants of the cross-regional R&D collaboration network in the German chemical 
industry between 2005 and 2010. 

The study is structured as follows. The second section gives an overview of the 
literature on spatial structures of R&D collaboration networks and their determinants. This 
includes a brief discussion of factors at the node, dyad, and structural network level that may 
impact network structures. The third section elaborates on the exponential random graph 
model that we subsequently use to investigate the structure of the cross-regional network. We 
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present the empirical data in the fourth section. It is followed by the discussion of the results 
in the fifth section and some concluding remarks in the sixth section. 
 
 
2 Determinants of cross-regional R&D collaboration  
 
The structural determinants of cross-regional R&D collaboration networks can be 
distinguished at three different levels. These are the node level, the dyad level, and the 
structural network level. In the following, we elaborate about factors that become effective at 
these three different levels.  

Node level factors are properties of network entities themselves. With respect to 
regional R&D collaboration networks, regions’ size and their research intensity are 
particularly important. Firstly, large organizations are likely to have more ties than small 
organizations because their position in the industry is more prominent. They also have more 
resources at their disposal to create and maintain ties. For instance, Boschma and Ter Wal 
(2007) find that larger organizations are more central in the knowledge network of footwear 
producers in Barletta. At the regional level in general, regions with more organizations can be 
expected to have more ties because they have more collaboration opportunities. Secondly, 
research intensity may matter. Giuliani and Bell (2005) show that organizations with a more 
advanced knowledge base are more often approached by other organizations to exchange 
knowledge because they are perceived to be ‘technological leaders’. The research intensity of 
a region is generally characterized by large numbers of R&D employees, many organizations 
being engaged in R&D-intensive activities, and by the presence of universities or other 
research institutes. All these characteristics are likely to increase the number of links a region 
has to other regions, i.e. a region’s (degree) centrality in the cross-regional collaboration 
network. 

Factors at the dyad level are characteristics of relationships between two entities 
(nodes) in a network. In the context of the paper it refers to the relation between two regions. 
A key idea in sociology is that entities are more likely to link when they have similar 
attributes, known as homophily effect (McPherson et al., 2001). For instance, regions with 
organizations that operate with similar routines and under comparable incentive mechanisms 
are more likely to be linked in R&D collaboration. Another example are universities, which 
are subject to different incentive frameworks than firms when it comes to knowledge creation 
and diffusion as they aim to publish new knowledge, whereas firms have an incentive to keep 
new knowledge secret. Hence, because of their institutional proximity (Metcalfe, 1995), 
universities are more likely to collaborate with others and especially with other universities 
(cf. Broekel and Boschma 2012; Broekel and Hartog, 2013). This is likely to translate to the 
regional level as regions rarely house more than one university. Accordingly, university 
regions have a higher likelihood of being linked to each other. 

In addition to institutional proximity, other forms of proximity may also be 
particularly relevant: geographical proximity, technological proximity, and social proximity. 
Many studies confirm that cross-regional R&D collaboration is more likely when regions are 
located close to one another in space (e.g. Magionni et al., 2007; Scherngell and Barber, 2009; 
Hoekman et al., 2009, 2010). This may be due to a variety of reasons, for instance 
geographical proximity facilitates face-to-face contact, which stimulates the diffusion of 
information about potential collaboration partners. The likelihood of cross-regional R&D 
collaboration is shown to increase when regions have similar technological profiles and 
specializations (Fischer et al., 2006; LeSage et al., 2007; Scherngell and Barber, 2009). A 
potential explanation is that organizations are more prone to collaborate with organizations 
with related knowledge assets. Similar technological profiles (technological proximity) ensure 
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that two organizations can easily communicate and learn from each other (Cohen and 
Levinthal, 1990; Nooteboom, 2000). Social proximity may also increase the likelihood of 
R&D collaboration (cf. Autant-Bernard et al., 2007). People already knowing each other find 
it easier to develop trust-based relations, which in turn facilitate knowledge exchange and 
ease interactions across regional boundaries (Maskell and Malmberg, 1999; Sobrero and 
Roberts, 2001; Breschi and Lissoni, 2009). 

In addition to these factors at the node and dyad level, factors at the structural network 
level may also matter for the structure of cross-regional R&D collaboration. Such factors 
relate to properties of the entire network. Three factors are commonly put forward in this 
context: triadic closure (transitivity), multi-connectivity, and preferential attachment (cf. 
Glückler, 2010; Ter Wal and Boschma, 2009).  
Triadic closure predicts that partners of organizations are likely to become partners 
themselves as well. As a result, a network will consist of many triangles, i.e. dense cliques of 
strongly interconnected organizations (Ter Wal, 2011). Such cliques can be regarded as a sign 
of social capital (Coleman, 1988) that may enhance trust and willingness among actors to 
invest in mutual goals, such as research collaboration. In contrast, multi-connectivity suggests 
that organizations will connect to others in multiple ways to decrease the dependency on a 
single link. It implies that multiple paths are formed amongst organizations leading to 
multiple reachability. Evidence for this is found in the creation of inter-firm alliances between 
US biotech firms (Powell et al., 2005). Preferential attachment means that organizations with 
many links are more likely to create or attract new links in the future. If a network is shaped 
by this factor, its degree distribution follows a power law (Barabasi and Albert, 1999). Gulati 
(1999) shows that in the case of multinational firms, the likelihood of creating new alliances 
increases the better organizations are connected in the network. Hence, the network of 
alliances among multinational firms is subject to preferential attachment processes. 
 If these processes involve organizations located in different regions their effects will 
naturally be translated to the regional level. This implies that multi-connectivity, preferential 
attachment, and triadic closure may also characterize cross-regional networks. Consequently, 
these factors at the structural network level need to be considered when analyzing such 
networks’ structures. 

To estimate the relative impact of the above factors on the structure of a network, they 
need to be simultaneously incorporated in the empirical model. This is not possible with the 
models most frequently used to investigate cross-regional collaboration: spatial interaction 
models in general and gravity models in particular (cf. Scherngell and Barber, 2009). These 
models can account for factors at the node and dyad level. However, they cannot be used to 
evaluate factors at the structural network level. In light of the theoretical relevance of factors 
at the structural network level, we therefore argue that network analysis modeling techniques 
represent a powerful alternative because they are able to simultaneously incorporate factors at 
all three levels. 

When longitudinal data is available, a stochastic actor-based network approach can be 
used. It models the change of a network from one point in time to another as part of an 
iterative Markov chain process (see for technical details: Snijders et al., 2010). When it comes 
to the analysis of research collaboration networks of regions, however, such an approach is 
less useful. By aggregating collaboration data to the regional level and creating cross-regional 
networks, researchers generally are interested in approximating the relational interaction 
structures of regions and investigate their structures and determinants. Such networks are 
unlikely to drastically change within short time periods, though, as they are results of long-
term social, regional, and industrial evolution processes. Hence, even when longitudinal data 
on these cross-regional networks structures are available, it is unlikely to cover a sufficiently 
long time period. It may include multiple time periods (years) and thereby principally allow 
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for employing longitudinal network analysis to study changes in the underlying cross-regional 
interaction structures.1

We therefore argue that exponential random graph models are the preferred option 
when investigating the structure of cross-regional interaction on the basis of data with a cross-
sectional nature and factors at the structural network are to be considered. We elaborate on 
these models in the next section. 

 However, the results generated with stochastic actor-based network 
approaches are unlikely to yield meaningful insights because the empirically observed 
changes in the network structures are dominated by short-term fluctuations that are of little 
interest to the researcher.  

 
 

3 Exponential random graph models  
 

Exponential random graph models are stochastic models that approach link creation as 
a time-continuous process. They regard a network observed at one point in time as one 
particular realization out of a set of multiple hypothetical networks with similar properties. 
This allows applying these models to purely cross-sectional network data. 

The aim of exponential random graph models is to identify factors that maximize the 
probability of the emergence of a network with similar properties as the structure of the 
observed network. The general form of exponential random graph models is defined as 
follows (Robins et al., 2007): 

 (eq. 1) 
 

where Pr(Y=y) is the probability that the network (Y) generated by an exponential random 
graph is identical to the observed network (y), κ is a normalizing constant to ensure that the 
equation is a proper probability distribution (summing up to 1), is the parameter 
corresponding to network configuration A, and (y) represents the network statistic. 
Network configurations can be factors at the node level, dyad level, and structural network 
level. 

Estimation of the parameters is done with maximum pseudo likelihood or a Markov 
Chain Monte Carlo Maximum Likelihood Estimation procedure. The latter has been 
developed most recently and is regarded as the preferred procedure as it is often most accurate 
(Snijders, 2002; Van Duin et al., 2009). It is based on the generation of a distribution of 
random graphs by stochastic simulation from a starting set of parameter values, and 
subsequent refinement of those parameter values by comparing the obtained random graphs 
against the observed graph. This process is repeated until the parameter estimates stabilize. If 
they do not, the model might fail to converge and hence becomes unstable (see for technical 
details, Handcock 2003, and Hunter et al. 2008).  
 Checking whether the parameters predict the observed network well, i.e. evaluating a 
model’s goodness of fit, is done by comparing the structure of the simulated networks to the 
structure of the observed network. According to Hunter et al. (2008), the comparison consists 
of the degree distribution, the distribution of edgewise shared partners (the number of links in 
which two organizations have exactly k partners in common, for each value of k), and the 

                                                 
1 The relational data derived from the 5th, 6th, and 7th EU-Framework Programmes are (currently) a good example 
in this respect. While they represent longitudinal data, it covers only a limited time-period (1998-2013). Of 
course, this may change when data on future programs will become available. 
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geodesic distribution (the number of pairs for which the shortest path between them is of 
length k, for each value of k). The more the distributions of the simulated networks are in line 
with those of the observed network, the more accurate are the parameters of the exponential 
random graph model. In the next section, we construct an exponential random graph model to 
investigate the structure of the network of subsidized R&D collaboration in the German 
chemical industry. 
 
 
4 Determinants of cross-regional R&D collaboration in the German 
chemical industry 
 
4.1 Data  
 
We analyze R&D collaboration that has been funded by the German federal government. As 
in most other advanced countries, the government actively supports public and private R&D 
activities with subsidies. While the Federal Ministry of Education and Research (BMBF) is 
the prime source of subsidies, the Federal Ministry of Economics and Technology (BMWi) 
and the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety 
(BMU) contribute as well. The federal ministries publish comprehensive information about 
subsidized projects in the so-called “Fo�rderkatalog” (subsidies catalog). This catalog 
contains detailed information on more than 150,000 individual subsidies that have been 
granted between 1960 and 2012. The catalog also includes information on the cooperative 
nature of projects. It specifically indicates if projects are joint projects realized by consortia of 
organizations. Participants in joint projects agree to a number of regulations that guarantee 
significant knowledge exchange between the partners. Accordingly, two organizations are 
defined to cooperate if they participate in the same joint project.  Hence, the original network 
is a two-mode network (project-organizations links), which we transform into a one-mode 
projection of the network (organization-organization links). All organizations can be assigned 
to labor market regions allowing for regionalizing the network (see for more details on the 
data Broekel and Graf, 2012). The data is comparable to the EU Framework Programmes 
(EU-FP) data by and large, which is extensively used to model research collaboration 
networks (cf. Scherngell and Barber, 2009). In contrast to the EU-FP data, the data at hand 
exclusively covers collaboration between German organizations. 

To construct the network of subsidized R&D collaboration in the German chemical 
industry, we first identify all firms in the data that are classified as being involved in the 2-
digit NACE code C20 ‘Manufacture of chemicals and chemical products’. Subsequently, all 
cooperative projects are extracted in which at least one of these firms participates. On the 
basis of the joint appearance in a project, we construct the inter-organizational network 
among all chemical firms participating in these projects. We only consider links among firms: 
links to universities, research organizations, associations, and to firms belonging to other 
industries are excluded. We believe that this approach provides the most conservative picture 
of the (subsidized) R&D collaboration network in the chemical industry.2

                                                 
2 Alternatively one may consider all organizations active in joint projects in which at least one firm of the 
chemical industry is participating. However, such seems to be a very broad definition of an industry-specific 
network, which makes the definition of appropriate empirical variables more difficult. 

 The corresponding 
inter-organizational undirected network is subsequently aggregated to the regional level using 
information on organizations’ location in the 270 German labor market regions. The 270 labor 
market regions are defined by the German Institute for Labor and Employment (e.g. Greif and 
Schmiedl, 2002). We construct the network that existed between 1 January 2005 and 31 
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December 2010. In this period, 775 projects were subsidized in which at least one firm of the 
chemical industry was involved. These projects are split into 975 individual funds allocated to 
557 German firms belonging to the chemical industry.3

 

 133 of the 775 projects are joint 
projects, which involve on average 2.8 firms. The resulting cross-regional R&D collaboration 
network is shown in Figure 1.  

Figure 1: Network of subsidized R&D collaboration among firms in the German chemical 
industry (2005-2010)  

 
 
The network is dichotomized, as we are only interested in whether or not a link exists 

between regions. The figure shows that the large agglomerations of the Ruhr Area, Frankfurt 
am Main, and Munich are important nodes in the network. In addition, a number of central 
regions are located along the Rhine River in the west. The region of Dresden is a central node 
in East Germany. All these regions are well-known centers of the chemical industry in 
                                                 
3 This figure is based on the number of executing organizations („Ausführende Stelle“) as given in the data. 
Many of these organizations are part of larger organizations. This has however little relevance for the results as 
all data are aggregated to the regional level. 
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Germany. Some additional descriptive statistics of the network are presented in Table 1 in the 
Appendix. 
 
4.2 Construction of empirical variables 
 
4.2.1 Node level variables 

The most important node-level factors are probably the intensity of regional R&D and 
innovation activities in the field of chemistry. Foremost, this is because undertaking R&D 
activities is necessary to receive R&D subsidies. Regions with large R&D activities are likely 
to host more organizations that are involved in R&D collaboration. Moreover, such regions 
may also be the location of the most successful innovators, which are preferred collaboration 
partners. We therefore consider the number of applied patents in chemistry by regional 
organizations as proxy for the intensity of regional R&D activities in this field. The 
regionalized data on patent applications are published in Greif and Schmiedl (2002) and Greif 
et al. (2006), which include applications to the German as well as to the European Patent 
Office, with a correction for double counts. The patents are assigned to labor market regions 
according to the inventor principle. The patent data is organized according to IPC-classes, 
which is matched to the 2-digit NACE industry using the concordance of Broekel (2007). 
Lacking the data for the years 2005-2010, we construct the first node-level variable as the 
summed number of patents of regional firms in the field of chemistry in the years 2001-2005.4

We take into account the effect of urbanization by including population density (POP) 
and the gross-domestic product (GDP) of a region in the year 2005. The corresponding data 
are obtained from the German Federal Institute for Research on Building.  

 
The variable is denoted as PATS.  

Firms located in regions with strong public research infrastructure may also be more 
likely to link across regions. For instance, being co-located with public research institutes may 
induce knowledge spillovers and give better access to highly qualified personnel (e.g. Fritsch 
and Slavtchev, 2007). Accordingly, firms in these regions may be more prone to conduct 
R&D, engage in R&D collaboration, and be more successful in terms of innovation. In order 
to approximate this, we measure regions’ public R&D infrastructure with three variables. The 
presence of universities in a region is modeled by counting their numbers of graduates in 
natural sciences in 2005 (UNI). Similarly, the analysis includes the number of employees 
working in regional research institutes of the Max Planck Society (MPG) and the Fraunhofer 
Society (FHG). More precise, only the numbers of employees working in the institutes’ 
technological or natural science institutes in the year 2005 enter the analysis.5

 
 

4.2.1 Dyad level variables 
 We construct three variables at the dyad level. We measure geographical proximity with 
the physical distance between two regions’ geographic centers. The variable is denoted as 
(GEO_DIST). The chance of two regions being linked is expected to decrease with 
geographical distance. Geographical proximity frequently correlates with social proximity 
(Boschma, 2005), which needs to be considered in the interpretation.  
 We also include the variable SAME_REG that has a value of 1 if both regions are 
located in the same federal state (i.e. NUTS 1 region), and 0 if not. SAME_REG not only 
accounts for geographical proximity. It is likely to represent institutional proximity as well, as 
regions in the same federal state are probably similar in their R&D-related institutional 
                                                 
4 The latest version of the „Patentatlas“ was published in 2006 and includes the patent data up to 2005. We use 
the aggregated numbers for 2001-2005 to minimize annual fluctuation. 
5 The employment numbers are relatively stable over time. Using data for a single year is therefore considered 
appropriate. 
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framework. The reason for this is the significant role the federal level is playing in the 
German R&D landscape. For instance, each federal state (“Bundesland”) is responsible for its 
own resource endowment of universities and has its own R&D policies. 
 We also take into account that two regions with universities may be more likely to be 
linked. Firms in such regions are probably structurally more similar than two firms of which 
one is not located in a university region. It can be expected that firms in university regions are 
more R&D intensive and technologically more advanced as are more probable to benefit from 
knowledge spillovers  (cf. Jaffe, 1998). To take this into account, we include the variable 
UNI_1, which has a value of one if both regions have a university and zero otherwise. 
 Notably, we do not construct a measure of technological similarity, which has been 
shown to make regions more likely to be linked (Scherngell and Barber, 2009). This is 
primarily motivated by data constraints. We analyze a network among firms of the same 
industry aggregated at the regional level. Hence, for the construction of a meaningful 
technological similarity measure we need information about the technological profiles of all 
regional firms in the chemical industry. Unfortunately, we miss such information and have to 
leave this issue to future research. 
 
4.2.3 Structural network level variables 
We include five variables at the structural network level. Triadic closure (or transitivity) is 
captured by the geometrically weighted edgewise-shared partner statistic (GWESP-statistic: 
Snijders et al., 2006; Hunter et al., 2008). It measures the number of triangles in the network 
whilst taking into account the number of links that are involved in multiple triangles 
(multimodality) (see for details: Hunter et al., 2008). It thereby captures how frequently two 
nodes are connected by a direct link as well as by an indirect connection of length 2 (i.e. 
„two-path“) through another node (e.g. Hunter, 2007). If a positive coefficient is found for 
this statistic, there is a tendency towards triadic closure in the network.  
 We consider the geometrically weighted dyad shared partner statistic (GWDSP), which 
is an advanced version of the alternating k-two-path statistic put forward by Snijders et al. 
(2006). It measures the extent to which a network shows a tendency of nodes not directly 
linked to each other being at least indirectly linked. In other words, the statistic approximates 
whether multiple paths exist between such nodes. Accordingly, it captures multi-connectivity 
for nodes that are not tied directly. 
 Another variable at the network level is EDGES. It equals the number of links in the 
network and should always be included in exponential random graph models. Moreover, 
EDGES represents a so-called k-star(1) parameter. K-stars are essential configurations in 
networks. For instance, a k-star(2), or 2-star, corresponds to three nodes of which one is 
linked to each of the other two. Accordingly, a k-star(3) shows as four nodes with one node 
being linked to the other three. A triangle, i.e. three mutually connected nodes, logically 
includes three k-stars(2). This means that these configurations are hierarchically related (cf. 
Snijders et al., 2006, Hunter, 2007). While the EDGES parameter corresponds to a type of 
intercept parameter in the model, it is especially useful when considering the GWDEGREE 
statistic as well.  
 GWDEGREE is the geometrically weighted degree statistic, which helps modeling the 
observed network’s degree distribution. Notably, the statistic can also be seen as an equivalent 
to the more traditional k-star statistic (Hunter, 2007). When being considered alongside the 
EDGES statistic, GWDEGREE (broadly) allows modeling preferential-attachment processes. 
More precise, if this statistic obtains a negative coefficient it signals the presence of 
preferential-attachment and a negative coefficient indicates anti-preferential attachment 
(Hunter, 2007).  
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 For all three statistics, GWESP, GWDSP, and GWD, decay parameters have to be 
specified. Because few attempts have been made to systematically identify the best fitting 
parameter combinations (cf. Wright, 2010), researchers commonly rely on a manual iterative 
trail-and-error process of estimating varying model specifications. These specifications differ 
in terms of included variables as well as decay parameters of the GWDSP, GWESP and 
GWDEGREE statistics. This process ends when the best fitting model is identified. The best 
fitting model is a model that is stable and converges (when the Markov Chain Monte Carlo 
approach is used, the parameter traces should be horizontal) and provides the most 
appropriate goodness-of-fit statistics (matching degree, edgewise shared partners, and 
geodesic distributions) given the empirical data (observed network). In other words, the best 
fitting model most accurately predicts the structure of the observed network. 

Once this model is identified the final goodness-of-fit statistics and MCMC trace plots 
are generated exclude all variables that are not significant at the 0.05 level in the original 
model. These variables are excluded because they represent noise that may distort the model 
and thereby bias the according statistics (cf. Wright, 2010). This “refined” model is used to 
generate all goodness-of-fit related statistics. We present the best fitting ERG-model for the 
cross-regional R&D collaboration network in the next section. 
 
 
5 Results  
 

Table 2 presents the results of the final, i.e. best fitting, model and those of its refined 
variant. Included are factors at the node, dyad, and structural network level. The model is 
stable and converges. Moreover, it is characterized by appropriate goodness-of-fit statistics 
(matching degree, edgewise shared partners, and geodesic distributions (Figure 2 in the 
Appendix) and horizontal parameter traces (Figure 3a-d in the Appendix). 

Before we will discuss the variables with significant coefficients, it is also worthwhile 
to take a brief look at the insignificant ones. The insignificance of GDP implies that the 
economic prosperity of regions does not impact the structure of the cross-regional R&D 
collaboration network in the German chemical industry. The measure of the absolute physical 
distance (GEO_DIST) between regions better captures the effect of geographic distance than 
when considering whether two regions are part of the same federal state (SAME_REG), as the 
latter’s coefficient is insignificant while that of the first is not. The finding moreover 
questions the role of institutional proximity, which we argued to be reflected by SAME_REG. 

The measure of the network’s degree distribution (GWDEGREE) does not help in 
explaining the structure of the network. This means that we do not find evidence for 
preferential attachment processes, i.e. well-connected regions are not more prone to gain 
additional links than sparsely connected regions. The same applies to the GWDSP-statistic 
suggesting that two regions without a direct link are unlikely to be indirectly connected. 
Accordingly, we observe insignificant coefficients for variables at all three levels (node, dyad, 
and structural network level). 
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Table 2: Results of exponential random graph model with dyad level, node level and 
structural network level variables 
 Main model Refined model 

Variable  Estimate Std. Error p-value 
Significa
nce Estimate Std. Error 

Signifi
cance 

Node level 
PATS 0.00056 0.00013 < 1e-04 *** 0.00028 0.00008 *** 
UNI -0.00069 0.00017 < 1e-04 *** -0.00119 0.00015 *** 
POP_DEN 0.00009 0.00004 0.022735 * 0.00022 0.00001 *** 
GDP -0.00113 0.00159 0.478296     
MPG 0.00037 0.00011 0.000882 *** 0.00071 0.00009 *** 
FHG 0.00064 0.00026 0.013101 * 0.00135 0.00016 *** 
Dyad level  
GEO_DIST -0.00164 0.00021 < 1e-04 *** -0.00072 0.00018 *** 
SAME_REG 0.07019 0.10950 0.521505     
Nodematch.UNI_1 0.30200 0.07094 < 1e-04 *** 0.14760 0.07873 * 
Structural network level 
EDGES -4.36800 0.17230 < 1e-04 *** -7.24000 0.20440 *** 
GWESP, 0.69, fix 1.04400 0.06772 < 1e-04 *** 2.02 0.00902 *** 
GWDEGREE -2.86600 14.81000 0.846554     
GWDSP, 0.15, fix 0.02133 0.02736 0.435589     
        

Null Deviance: 50343.3 on 36315 degrees of freedom 
50343.3  on 36315  degrees of 
freedom 

Residual Deviance: 1753.3 on 36302 degrees of freedom 
1619.3  on 36305  degrees of 
freedom 

Deviance: 48589.o on 13 degrees of freedom 
48724.0  on    9  degrees of 
freedom 

 
AIC: 1779.3    1639.3   
BIC: 1889.8    1724.3   
* Significant at 90%; **Significant at 95%; *** Significant at 99% 

 
 Now, we turn towards the significant variables reported in Table 2. As expected, 
regions with R&D intensive firms (PATS) tend to have more links. The same applies to urban 
regions (POP_DEN) and regions in which institutes of the Max-Planck (MPG) and 
Fraunhofer (FHG) societies are located. The according coefficients of PATS, POP_DEN, 
MPG, and FHG are all positive and significant. UNI obtains a negative significant coefficient 
suggesting that university regions tend to have fewer links. While this contradicts our 
expectations, it is essential to also consider the positive significant coefficient of the dyad-
level variable UNI_1 in the explanation. Accordingly, university regions generally have less 
links but they are more likely to link to other university regions. The latter is in line with our 
expectations and signals the presence of a homophily effect. 

The dyad-level variable GEO_DIST is characterized by a negative significant 
coefficient. Hence, geographical distance hampers link creation, which confirms existing 
empirical studies (cf. Magionni et al., 2007; Ponds et al., 2007; Scherngell and Barber, 2009; 
Hoekman et al., 2009; 2010; Broekel and Boschma, 2012).  
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We argued above that the main advantage of exponential random graph models is their 
ability to take into account factors at the structural network level in addition to factors at the 
node and dyad level. The significant coefficients of two variables at the structural network 
level empirically confirm this level’s relevance. The coefficient of EDGES is negative and 
significant. By being similar to an intercept variable, EDGES represents the overall density of 
the network when all other effects are excluded. Its negative coefficient is a common feature 
of networks established by social processes indicating that such networks tend to be less 
dense than exponential random networks (cf. Varas, 2007).  

In addition, we find a positive and significant coefficient of the GWESP-statistic. It 
means that triangles are a common feature of the network, which corresponding to the visual 
inspection of the network (see Figure 1). In other words, regions that are directly linked are 
also more likely to link through indirect connections. Hence, the result suggests that triadic 
closure is a driving force in the network formation processes. There might however be an 
alternative explanation. When constructing the empirical network, we transformed a bipartite 
network into a one-mode type. Such transformation more or less automatically increases the 
likelihood of triplets in the final one-mode network. Accordingly, the positive GEWSP-
statistic might pick up this effect and act as a kind of control parameter for the one-mode 
projection procedure. However, we pointed out in Section 4.1 that on average less than three 
firms (2.8) are jointly participating in a cooperative project. Hence, it is most likely a 
combination of both effects that explains the statistic’s significance. In any case, this 
structural network factors significantly helps in modeling the structure of the network.  

In sum, we find that the structure of the network is best explained by factors at the 
node level, dyad level, and structural network level. This highlights the usefulness of 
exponential random graph models as a tool for analyzing structures of cross-regional 
collaboration networks. 
 
 
6 Conclusion 
 

The aim of this study was to discuss exponential random graph models (ERGM) as 
promising tools for the investigation of cross-regional collaboration networks. We pointed out 
that most existing studies focus on the evaluation of factors at the node and dyad level. 
However, network science suggests that factors at the structural network level may also be 
relevant in this respect. Such factors cannot be considered in methods commonly applied in 
this context. For instance, spatial interaction models allow only for factors at the node and 
dyad level. We argued that ERG-models represent a powerful alternative as they take into 
account factors at all three levels and require only cross-sectional network data. 

We illustrated the application of ERGMs by analyzing the structure of the cross-
regional R&D collaboration network in the German chemical industry between 2005 and 
2010. By using an exponential random graph model, we considered factors at all three levels 
that might influence the network’s structure. At the node level, it was shown that urban 
regions (reflected by population density) and regions with high research intensities are more 
likely to be linked to other regions. At the dyad level, we found regions to be more likely 
being linked when they have a university. Moreover, our results confirmed the negative 
impact of geographical distance on the likelihood of research collaboration. Finally, at the 
structural network level, evidence was provided for the existence of a triadic closure 
(transitivity) effect: regions that are indirectly linked to each other are likely to be directly 
linked as well.  

Clearly, the study is only a first step towards understanding the role factors at the 
structural network level play for the formation of cross-regional collaboration networks. It 
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nevertheless underlines the usefulness of exponential random graph models for future 
research endeavors on this subject. 
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APPENDIX 
 
Table 1: Descriptives of empirical variables 
Variables n mean st. deviation median min max skew kurtosis 
PATS 270 69.55 199.12 12.48 0 1691.31 5.34 32.55 
POP_DEN 270 825.35 1265.19 244.5 40 8523 3.06 11.44 
GDP 270 40.46 33.58 26.75 14.1 296.9 3.66 19.83 
UNI 270 101.51 244.73 0 0 1812 3.46 15.55 
MPG 270 49.12 248.08 0 0 3438 10.20 128.50 
FHG 270 30.81 123.52 0 0 978 5.22 29.24 
GEO_DIST 72900 379.81 186.03 368.54 0 977.45 0.29 -0.52 
SAME_REG 72900 0.11 0.31 0 0 1 2.49 4.22 
UNI_1 72900 0.62 0.49 1 0 1 -0.47 -1.77 
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Figure 2: Goodness of fit of exponential random graph model with dyad level, node level + 
structural network level variables  
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Figure 3 (a): MCMC-Statistics of exponential random graph model with dyad level, node 
level and structural network level variables 
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Figure 3 (b): MCMC-Statistics of exponential random graph model with dyad level, node 
level and structural network level variables  
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Figure 3 (c): MCMC-Statistics of exponential random graph model with dyad level, node 
level and structural network level variables 
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Figure 3 (d): MCMC-Statistics of exponential random graph model with dyad level, node 
level and structural network level variables 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


