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Abstract: 

The paper contributes to the debate on how to measure regions’ innovation per-
formance. On the basis of the concept of regional innovation efficiency, we propose 
a new measure that eases the issue of choosing between industry-specific or global 
measures. We argue for the use of a robust shared-input DEA-model to estimate 
regions’ innovation efficiency in a global manner, while it can be disaggregated into 
industry-specific innovation efficiency measures. The latter is particularly useful 
when relating the innovative output to the R&D input involves the use of blurry 
matching procedures.  

We illustrate the use of the method by investigating the innovation efficiency as 
well as its change in time of German labor market regions. It is shown that the 
method treats regions that have industry structures skewed towards industries 
with high and low innovation intensities more fairly than traditional approaches.  
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1 Introduction 

 

The innovation performance of spatial units, e.g. regions, is frequently measured 

quantitatively and empirically (Jaffe, 1989; Audretsch 1998; Autant-Bernard & LeSage, 

2011). Simply stated, the absolute count of innovations generated by regional organizations 

within a certain time period can be used as an indicator of regions’ innovative success. While 

characterized by severe uncertainty, innovation generation processes involve the utilization of 

valuable resources such as human and financial capital. Hence, from an economic standpoint 

it is commonly more interesting to evaluate innovation success in light of the invested 

resources (cf. Chen and Guan, 2010; Fritsch and Slavtchev, 2011; Brenner and Broekel, 

2012). 

A raft of empirical approaches has been put forward aiming at capturing this relation 

between invested resources and innovative outcomes. Popular approaches are, for instance,  

patents per capita (Audretsch, 1998) or  patent intensity, e.g. the number of patents per 

employee (Deyle & Grupp, 2005). Fritsch (2000) refines these approaches arguing in favor of 

measuring regional innovation efficiency whereby regions are compared with respect to their 

organizations’ abilities to transform knowledge input factors into innovative output.  

While the efficiency approach can be seen as a logical extension of the widely 

accepted knowledge production function approach by Griliches (1979), Brenner & Broekel 

(2011) argue that the empirical estimation of meaningful regional innovation efficiency 

measures is far from being easy. Amongst other things, there is the choice between global 

innovation efficiency measures (a measure reflecting the innovation efficiency of regions) and 

industry-specific approaches (a measure considering only one specific industry in a region). 

While both measures have their merits and problems, the first is more desirable in many 

instances. By way of contrast, the second might be more informative for industry 

representatives. 

The paper has three objectives. First, it discusses differences between global and 

industry-specific innovation efficiency measures. Second, we propose the robust shared-input 

DEA-model as a new method to construct a global regional innovation efficiency measure 

that explicitly takes into account inter-regional variations in regions’ industrial structure. An 

additional feature of this model is the computation of industry-specific innovation efficiency 

measures within the assessed regions. Third, we apply this method to the 150 German labor 

market regions for which we estimate innovation efficiency measures for multiple years. 
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The paper is structured as follows. The subsequent section discusses the empirical 

measurement of regional innovation efficiency with a particular focus on global and industry-

specific approaches. The third section presents empirical data on German labor market 

regions, which represents data commonly used in such approaches. Section four introduces 

the robust shared-input DEA-model as a new method to estimate regions’ innovation 

efficiency. The empirical results of its illustrative application to German labor market regions 

are presented and discussed in section five. The sixth section concludes the paper. 

 

2 Towards regional innovation efficiency 

2.1 The production allegory 

Regional innovation performance has been investigated in the literature for some time 

(Jaffe, 1989; Audretsch, 1998; Autant-Bernard & LeSage, 2011). Nevertheless, there is no 

common definition of what regional innovation performance means and how it should be 

measured empirically. Recently, a number of papers have systematically discussed this issue 

(Carlsson, et al. 2002; Bonaccorsi & Daraio, 2006; Zabala-Iturriagagoitia et al., 2007; 

Brenner & Broekel, 2011). In particular, Brenner & Broekel (2011) discuss a number of 

approaches to the measurement of regional innovation performance from a theoretical 

perspective. The present paper particularly builds upon this work. 

 Despite the many different measures used in the literature, conceptualizing regional 

innovation performance as regional innovation efficiency has gained in popularity in recent 

years (Broekel, 2012; Chen and Guan, 2011; Fritsch, 2003; Fritsch & Slavtchev, 2011; 

Fritsch, 2000). This approach originates from production theory and implies that performance 

is defined as the achievements (output) in comparison to the involved costs (input). 

 While this idea is unchallenged in a production context it is not so easily translated to 

(regional) innovation processes. On the one hand this is because maximizing innovation 

(while ignorant of the costs) can be desirable from a normative perspective when speeding up 

technological progress is perceived as something positive. On the other hand, it is less clear 

what constitute inputs, throughputs, and outputs in innovation processes (see Brenner & 

Broekel, 2011 for a discussion). 

 Nevertheless, it is well accepted that innovations do not “fall from heaven”. On the 

contrary, creative actors and a wide range of resources are needed for their creation (Nelson, 

1959). Accordingly, there is agreement on the allegory of production processes being 
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applicable in this context. This allegory became famous with the knowledge production 

function approach by Griliches (1979), which became particularly popular in economic 

geography with the work of Jaffe (1989). Nevertheless, it is essential to point out that this 

allegory has its limitations, which are pointed out by Brenner & Broekel (2011): “there is at 

least one fundamental difference between innovation and production processes: innovation 

processes are by their very nature non-deterministic while production processes are largely 

deterministic” (p. 11). To highlight this difference we follow these authors and rather speak of 

input factors instead of inputs and innovative output instead of output. In the remainder of the 

paper we assume this allegory to be appropriate.1

 Setting innovative output and input factors into a relation on the regional level implies 

that both are known and can be meaningfully measured in the context of regions. Again, a 

wide range of approaches and definitions is applied in the literature. The variation on the 

output side thereby is relatively small as data availability leaves patents and patent 

applications as the dominant approximation of the innovative output.

 

2

 While there’s no consensus about which of these input factor set definitions is the 

most appropriate (Brenner and Broekel, 2011), using the number of R&D employees as input 

factor has become the most frequent approach when such data is available. The rationale is 

that R&D employees provide the most accurate approximation (given the availability of data) 

to the true level of resources invested by organizations in innovation processes, which clearly 

are the most important driver of innovation processes.  

 The input side is a 

different story. A wide range of input factors have been considered, including the number of 

inhabitants (Greif & Schmiedl, 2002; Greif et al., 2006; Stern et al., 2002), the number of 

regional employees (Deyle & Grupp, 2005), the number of R&D employees (Fritsch, 2003), 

R&D employees in combination with the level of highly qualified employees in a region 

(Broekel, 2012), and a wide set of regional factors including R&D employees (Chen & Guan, 

2011). 

For this reason we follow this approach labeled by Brenner & Broekel (2011) as the 

“R&D employees’ innovation efficiency” approach. ``In such an approach [regional 

innovation efficiency], we define the innovation performance of a spatial unit by the 

contribution of this unit to the innovation efficiency of the innovation generators present in 

the unit. Empirically we would have to measure the number of innovation generators, mainly 

                                                        
1 Brenner & Broekel (2011) discuss a number of additional differences, which we refrain from discussing to 
economize on space. 
2 However, there are also alternative measures based on the community innovation survey. 
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the R&D employees or activities in firms …, and relate this to the innovation output'' (Brenner 

& Broekel, 2011, p. 24-25).3

The resulting measure can ``be regarded as an indication of the quality, particularly 

the efficiency and workability of the … regional, or industry-specific innovation system'' 

(Fritsch, 2003, p. 85). Of course, regions are not innovative - the R&D generators located 

within a region are the creative actors. Their aggregated productivity/efficiency constitutes a 

region’s innovation efficiency. This efficiency may be impacted by a wide range of regional 

factors such as urbanization economies, knowledge spillover, the presence of universities, 

regional cooperation intensity, etc. (Fritsch & Slavtchev, 2011; Broekel, 2012). 

 

 

2.2 Global vs. industry-specific measures 

 Straightforward as the estimation of R&D employees’ innovation efficiency approach 

appears to be, there are still different ways in which this efficiency can be measured. Most 

importantly, this concerns the choice of the measure’s industrial dimension: shall it cover the 

entire regional economy (global approach) or is it to be estimated with respect to a specific 

sector/industry (industry-specific approach)? This is not just a theoretical question but also 

matters in terms of empirical results and potential political conclusions. 

Differences between the two approaches are caused by industries varying to a 

considerable extent in terms of their innovation intensity (Pavitt, 1984; Arundel & Kabla, 

1998; Malerba et al., 2000). Industry-specific regional innovation efficiency measures take 

this explicitly into account by establishing the relation between input factors and innovative 

output separately for each industry (see Broekel, 2012 for such an approach). Since inter-

industrial variations in innovation activities also tend to correlate with the reliability of 

common approximations for innovations (e.g. patents), industry-specific measures will yield 

more precise and informative results than approaches that do not model such differences 

explicitly. For example, a region might show low regional innovation efficiency when 

estimated in a global approach only because the structure of its industry is dominated by 

industries with comparatively low innovation efficiencies. 

 However, industry-specific measures have their flaws as well. First of all, they usually 

require a higher quality of data, in particular with respect to the matching of innovative output 

to considered input factors that are frequently differently organized (e.g., NACE for 

employment and IPC for patents).  

                                                        
3A similar definition is put forward by Fritsch (2000) on page 415. 
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 Secondly, the researcher has to decide about what the appropriate level of industrial 

aggregation is, i.e. how can industries be defined in a meaningful way? The decision usually 

involves many trade-offs implying that this question can seldom be answered in a completely 

satisfactory way. 

Thirdly, estimating innovation efficiency in an industry-specific manner naturally 

results in an innovation efficiency index that applies only to one industry. However, interest 

will commonly be focused upon the performance of the entire region. Accordingly, to get a 

picture of an entire region’s situation when using industry-specific measures one has to look 

at multiple measures, with the number of measures being determined by the number of 

industries separately investigated. To evaluate the global innovation efficiency of a region, 

these would need to be aggregated into a single index, which again involves trade-offs and 

information losses. 

 Despite these theoretical and practical differences, it is often data availability that 

determines what measure is being used. This implies that if industry-specific data are 

available, an industry-specific approach is chosen because of its higher scientific precision 

(cf. Brenner & Broekel, 2011).  

This paper aims at presenting a methodology that provides a convenient and 

scientifically sound way of estimating a global regional innovation efficiency measure and 

minimizes the potential bias induced by variations in a region’s industrial structure. At the 

same time, it is decomposable into industry-specific measures that are little influenced by 

matching procedures between input factors and innovative output data. Accordingly, this 

methodology combines the advantages of both approaches. 

 

2.3 An empirical challenge and shared-inputs 

When constructing industry-specific innovation efficiency measures, the industry-

specific input factors are matched to the industry-specific innovative output. The level to 

which the quantities of input factors dedicated to the generation of a particular innovation are 

unknown determines the extent to which this is problematic. Frequently, even firms 

themselves do not exactly know how many R&D resources, e.g. laboratories, R&D staff, etc., 

are utilized in R&D activities related to a particular innovation. In the context of regional 

innovation efficiency this implies that even if data are available for industry-specific input-

factors (R&D employment) and innovative output (patents) these numbers are (even at the 

firm and plant level) rough approximations. Moreover, at the regional level usually only 
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regions’ (aggregated) patent and R&D employment portfolios are observed. While the former 

is organized according to technologies, i.e. patents are classified by the international patent 

classification (IPC), some sort of economic sector classification organizes employment data 

(in Europe this is the NACE).4

Hence, we are dealing with two empirical problems. The first is the unobserved 

resource allocation: it is unknown to what extent regional innovation generators of a 

particular industry (NACE-code) dedicate their resources to R&D in a particular technology 

(patent IPC-code). Second, and this is what we are interested in, the efficiency with which 

these resources are then transformed into innovative output is not observed (unknown 

efficiency). Accordingly, the unobserved resource allocation blurs the efficiency estimate. 

 For this reason, approximated matching concordances are 

employed, such as the one proposed by Schmoch et al. (2003). This additionally introduces 

severe (and unknown) biases into the estimation. 

As we pointed out above, innovations (and patents for that matter) in different 

technologies vary considerably in their structure and in the resources needed for their 

realization (cf. Malerba & Orsenigo, 1993). When this differentiation is applied to the 

innovative output (e.g., patents per IPC-code), we are facing a so-called shared-resource, or 

shared-input factor problem because we do not know the exact allocation of R&D employees 

in the various industries among technologies. In the following section we will propose an 

empirical approach designed to overcome this problem. 

 

3 Empirical approach 

3.1 Data Envelopment Analysis 

The suggested approach builds upon the Data Envelopment Analysis (DEA) methodology, 

which is very popular in the Operations Research and Management Science literature where it 

was originally developed by Farrell (1957) and further popularized by Charnes et al. (1978). 

In essence, DEA is a non-parametric efficiency measurement technique that estimates the 

efficiency of n  (j=1,…,n) units, which use certain levels of p  different inputs j ,ix   
(i =1,…,p) to produce q  different outputs j ,ry  (r =1,…,q) outputs typically characterized by 

no reliable information on the prices (weights) of inputs and outputs and/or no (exact) 

knowledge about the ‘functional form’ of the production function. The DEA-model computes 

                                                        
4 Nomenclature Generale des Activites Economiques dans I`Union Europeenne (NACE). 
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for each unit the efficiency measure a
ke  as a ratio of a weighted sum of outputs over a 

weighted sum of inputs. DEA estimates this efficiency score in relation to the efficiencies of 

the other activity units in the sample. The estimation of the innovation efficiency for the 

evaluated region k can be made with linear programming:5
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Whereby, the input weights and output weights are ( ), 1,...,k iv i p=  and ( ), 1,...,k rw r q= , 

respectively. The key feature of the DEA-model is that the input and output weights are 

endogenously estimated (hence, the non-parametric nature of DEA). As information on the 

true values of the input and output weights is usually lacking, DEA looks for plausible 

weights by letting the data speak for themselves. In the context of our paper, this means that 

in the evaluation of regions’ innovation efficiencies DEA looks (for each region) for the input 

factor and innovative output weights such that the region is evaluated optimally relative to the 

other regions in the sample set (i.e., with the highest possible global innovation efficiency 

score a
ke ). 

By the normalization constraint, it holds that the global efficiency score a
ke  is situated 

between 0 and 1. An efficiency score for the evaluated region k  below one implies that there 

is at least one region (but very probably multiple regions) in the dataset, which realize a better 

level of global innovation efficiency. Moreover, in the interpretation of this global innovation 

efficiency score a
ke , note that the difference 1 a

ke−  can be perceived as a measure of the 

overall inefficiency in a region’s innovation performance, which quantifies its room for 

innovation efficiency improvements. 

Before concluding this section, note that we argued for disaggregating the innovative output 

into multiple technologies to take the technology-specificity of regional innovation efficiency 

into account. By way of contrast, there is only a single, but shared, input ‘R&D employment’’ 

because we don’t know its exact distribution across the technologies. This implies that in this 

                                                        
5 For a more elaborate introduction see Daraio & Simar (2007). 
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set-up the traditional DEA-estimate will mix the unknown allocation of R&D employment 

with the unknown efficiency distribution. 

 

3.2 Shared input DEA-analysis 

The standard DEA-model can be adapted so that the focus will be on the estimation of partial 

innovation efficiency scores. The basic question to be addressed is: “how should one split the 

shared input factor ‘R&D employment‘ between the several technologies in the DEA 

model?”. 

The solution proposed is to determine the distribution of the shared factor input among the 

different technologies (output dimensions) endogenously, which is similar to the definition of 

the input factor and innovative output weights in the traditional DEA-model. For this we 

make use of the shared input DEA-model, which is based on the contributions of, among 

others, Beasley (1995) and Cook et al. (2000, 2004). In essence, it adapts the basic DEA-

model so that the key DEA-feature of endogenously determining the unknowns is not only 

applied in the definition of the input and output weights but also in the definition of the 

distribution of the shared-input. The shared input DEA-model thus determines for each 

evaluated unit the input and output weights as well as the distribution of the shared input from 

a relative perspective to the other regions in the sample. Formally, 
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In the context of the paper, a
ke  is the global innovation efficiency score for the evaluated 

region k; k ,rα  the DEA-estimated input factor shares, that is to say, the DEA-estimated shares 

of R&D employment across all technologies for the evaluated region k . The assumption is 
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that all R&D employment is accounted for by the considered technologies: 
1

1q
k ,rr

α
=

=∑  

(constraint ( )2 f ). As with the input factor and innovative output weights, the shared input 

DEA-model determines the R&D employment shares for the evaluated region such that the 

global innovation efficiency score a
ke  is optimal. As noted by Beasley (1995) in a different 

context, the advantage of letting the DEA-model decide on the input factor shares is that there 

is no need to determine an a priori distribution of the shared-input factor across the 

technologies. Clearly, in the context of ambiguity concerning the true R&D employment 

distribution, this feature is an advantage (or at least, an appealing second-best route).  

 

3.3 Restricting the employment shares 

The shared input DEA-model as in ( ) ( )2 2 f−  is very flexible in the definition of the optimal 

employment shares. As with the input and output weights, only a normalization and non-

negativity constraint applies to the optimal k ,rα -values (i.e., k ,rα ε≥ ). The non-negativity 

constraint ( )2e  imposes that at least a very small fraction ( 0 001.ε =  or 0.1%) of the shared-

input should be allocated to each technology in each region. The advantage of this flexibility 

is that the employment shares are optimally chosen for each evaluated region. This implies 

that eventual poor innovation efficiency scores cannot be blamed on the estimated k ,rα -values 

because any other shares than the ones estimated will by definition lower a region’s 

innovation efficiency. However, this flexibility also has disadvantages: in the attempt to 

maximize the region’s innovation efficiency, it is perfectly allowable for the model to assign 

employment shares that are unrealistically low or high as the non-negativity constraint only 

imposes that 0 1k ,r . %α ≥ .  

This potential problem can be overcome by fine-tuning the model so that the probability of 

the model selecting improper employment shares is lowered. More precisely, restrictions of 

the type r k ,r ra bα≤ ≤  can be added to the model, which ensure that the optimal employment 

shares are fitted with the boundary values ra  and rb . This requires information about the 

potential magnitude and range of those shares. Fortunately, as will be shown later on, such 

information is available in our case. 
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3.4 Measuring innovation efficiency change 

To measure the change in innovation efficiency, we employ the Malmquist Productivity Index 

(MPI, hereafter). This frontier method was originally introduced by Malmquist (1953) and 

further popularized by, among others, Färe et al. (1994, 1998). The MPI measures the change 

in innovation efficiency between a period t and a subsequent t+1, denoted as kIC , by 

calculating the ratio of innovation efficiency scores computed at each time relative to a 

common transformation technology.  

 

Each of the innovation efficiency scores6 in  is measured by the shared input version of 

the DEA-model as described above. In the interpretation of the MPI-scores, kIC -values above 

one indicate an improvement, and kIC -values below one show a decrease, in the global 

innovation efficiency of the assessed region k during the observed period. 

 

The MPI can be disaggregated into an “environmental change“-component ( kEC ) and a 

“catching-up“-component ( kCU ). The catching-up component reflects a region‘s 

idiosyncratic improvement and helps answering the question of how much closer it got to its 

‘contemporaneous’ benchmark region(s). The environmental change component represents 

the change in the general innovation environment in which a region operates. This component 

focuses on the conduct of the benchmark region(s) (i.e., the change of the best practice 

region(s) between two periods). Mathematically, this disaggregation boils down to the 

following (for more on the decomposition, see Färe et al., 1994): 

 

                                                        
6 Note that, for instance, 1t t

k ,r k ,rw y+  represents the efficiency estimate of region k in t benchmarked against the 
transformation technology (best-practice) in t+1. 
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A CU-value above one indicates progress in a region’s innovation efficiency relative to the 

benchmark regions between the two periods due to own effort, while the opposite 

interpretation holds for kCU -values below one. In the same vein, values for the 

environmental change-component above (below) one imply that the general innovation 

environment has improved (worsened), i.e. it generally takes fewer input factors to create the 

same quantity of innovative output.  

Two components of the innovation efficiency change may move in opposite directions. For 

instance, an increase (decrease) in innovation efficiency may be observed because of an 

improvement in a region’s own efforts even if there is simultaneously a less (more) favorable 

general innovation environment than in the original period. 

 

3.5 Robust efficiency analysis 

An important drawback of the non-parametric DEA-model and MPI-approach is their 

sensitivity to the influences of outliers and measurement errors (or other data irregularities). 

This dependency results from two features: the deterministic nature of the DEA-model by 

which efficiency scores are taken to be perfect reflections of actual efficiency without 

considering the potential for any noise or other irregularities in the data. In addition, the input-

output combinations of all regions are considered in the computation of each region’s 

efficiency. 

To overcome this drawback, the DEA-model and the MPI-analysis are adjusted to the insights 

of the robust order-m efficiency model of Cazals et al. (2002). Without going into detail, this 

approach models the transformation of inputs into outputs as a stochastic process and 

evaluates a region’s output level (output-orientation) against the expected maximal value of 

output achieved by regions with equal or lower input levels. This considerably minimizes a 

single region’s impact on the evaluations of other regions and hence the potential influence of 

statistical noise. In practice, Cazals et al. (2002) propose a Monte Carlo simulation approach 

in which each region’s efficiency is estimated in a large number of DEA-based computation 

rounds (in casu, 1,000 rounds) in each of which its innovation efficiency is evaluated relative 
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to a subsample of m  randomly selected regions with equal or fewer inputs levels.7

3.6 Data on regional input factors and innovative output 

 The robust 

innovation efficiency estimate is then computed as the average innovation efficiency score 

defined over the rounds (see Daraio & Simar (2007) for a detailed discussion on robust 

efficiency analyses and the role of the parameter m). 

The 150 German labor market regions as defined by Eckey et al. (2006) are chosen as 

units of analysis because they seem to fit best the theoretical arguments for a regional 

dimension of innovation processes (Broekel & Binder, 2007). 

As is common in this type of research, regions’ innovative output is approximated by 

patent applications. 8

We obtain data on R&D employees from the German labor market statistics. 

Following Bade (1987) the R&D personnel are defined as the sum of the occupational groups: 

agrarian engineers (032), engineers (60), physicists, chemists, mathematicians (61), and other 

natural scientists (883). In addition, the employees are available on an industry-specific basis 

as they are classified according to the NACE-classification. 

 The data are taken from the German Patent and Trademark Office 

(DPMA) within the period from 1999 to 2008. Patents are organized into a multi-digit 

classification, the International Patent Classification (IPC). The inventor principle is applied 

to regionalize the patent data, i.e. each patent is assigned to the labor market region where its 

inventor is located. In the event that a patent is developed by multiple inventors located in 

different regions, it is equally assigned to each region. 

The shared-input DEA implies that it is sufficient to consider the technology-

specificity exclusively in the definition of the innovative output. On the input side we treat 

total R&D employment as shared-input, i.e. a single variable. We nevertheless make the two 

data sources comparable for three reasons. Firstly, the IPC captures the technological 

dimension of patented inventions while we are actually more interested in industry-

specificities (i.e. the differentiation on the input side). Secondly, in order to evaluate the 

shared-input DEA-model it is useful to construct some industry-specific measures that require 

a matching of patent and employment data. Thirdly, we argued above that the quality of the 

shared-input DEA results greatly improves when upper and lower bounds for R&D 

                                                        
7 We use 50m = . Sensitivity analysis points out that the results are relatively robust with respect to alternative 
choices of value of m  (i.e., we also considered m -values of 20, 30, 40, 60, 70, 80, 90, and 100). The outcomes 
of the DEA-models and the MPI-analysis based on other values of m  are available upon request. 
8 We acknowledge that patents capture inventions rather than innovation. However, in order to stay consistent 
with the literature we will use the term “innovation”. 



16 
 

employment shares (respectively the ra - and rb -values as described in Section 3.3) for each 

technology (i.e. each dimension of the output variable) are specified. This is easily possible 

when total R&D employment is disaggregated according to the same dimensions as the 

innovative output.  

For these three reasons, we employ the “standard” concordance developed by 

Schmoch et al. (2003) that relates the 3-digit NACE-classification of the R&D employees and 

the patents organized by IPC codes. Note that by making the input and output dimensions 

comparable in this way, we actually transform our original technology-specific innovation 

efficiency measure into an industry-specific measure. We therefore use the latter in the 

remainder of the paper.  

The conversion results in 43 industries9

 

 for which corresponding R&D employment 

and patent data are estimated for each of the 150 German labor market regions. This means 

that we have 43 different innovative outputs, which correspond to the patent counts of 

regional organizations in the 43 industries. These are related to the total R&D employment 

numbers in the shared input data. However, in order to specify the upper and lower bounds for 

R&D employment shares in each of the 43 industries, we estimated for each region the 43 

shares of industry-specific R&D employment. Subsequently, the minimum level of  

(maximum) employment shares across all regions for each industry is used as global lower 

(upper) bound for the respective industry in the shared-input DEA-estimations. For example, 

for the industry I9 (basic chemicals), the estimated minimum and maximum shares suggest 

that the optimal R&D employment share should be situated between 0.1% and 46.18%.    

4 Empirical results 

4.1 Evaluating the efficiency measure 

4.1.1 Correlation with ratio measure 
 

In order to put the results of the shared-input DEA-model, which are denoted with EFF 

in the following, into perspective, they are compared to the simplest type of “innovation 

efficiency measure”, namely the ratio between a region’s total patent output and the total 

number of regional R&D employees. The ratio measure represents the weighted average of 

                                                        
9 Schmoch et al. (2003) identify 44 sectors, however, no patents are recorded for one sector. 
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the 43 industry-specific ratios of patent counts and R&D employment numbers.10

EFF and the ratio measure strongly correlate at R=0.847*** (1999-2003) and 

R=0.837*** (2004-2008), as visualized in 

 The implicit 

weights correspond to industries’ employment shares of total employment (relative input). 

The ratio is chosen as a benchmark as it strongly relates to the industrial structure of a region. 

Figure 1.11

 

 Accordingly, the two measures are 

relatively similar, which seemingly signals a relatively weak impact of regions’ industry 

structures on their global innovation efficiency. It is, however, important to keep in mind that 

there are just two scenarios in which the two measures can be expected to yield very large 

differences. In the first one, the ratio measure will underestimate regions’ global innovation 

efficiency if they are dominated by industries with low patent intensities, but which are 

(relatively) highly innovation efficient (underestimation scenario). In the second scenario, 

regions’ innovation efficiency will be overestimated by the ratio if they are dominated by 

patent intensive industries that are (relatively) innovation inefficient in comparison to other 

regions (overestimation scenario). 

Figure 1: Ratio measure vs. efficiency 

 

                                                        
10 The ratio measure strongly rank correlates to the residuals of a linear regression of logarithmized R&D 
employment and logarithmized innovation output (Rs = 0.99***). This method is frequently used when assessing 
the impact of regional factors’ on regions’ innovation performance. 
11 The rank correlations are similar in magnitude: 0.866*** (1999-2003) and 0.848*** (2004-2008). 
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In any other than these two scenarios, the two measures are likely to produce similar 

efficiency rankings of regions. While these two scenarios are not very common, they 

represent a considerable number of cases, which is indicated by the two measures’ correlation 

remaining well below one. In this respect, it is also important to point out that the likelihood 

of observing one of the two scenarios is subject to the disaggregation of the input and output 

dimension. It is generally less likely that one will observe regions being dominated by an 

industry when the industrial dimension is strongly disaggregated, i.e. when the average 

relative size of industries is smaller. Reducing the dimensionality on the innovative output 

side, i.e. disaggregating the patents into fewer industries, tends to decreases the correlation 

between ratio and efficiency measure. This is related to the general tendency of weighting 

schemes to lose their importance when the number of weighted items increases (Wang & 

Stanley, 1970). 

The disaggregation of the innovative output (and innovation input) also relates to a 

problem, which in its extreme is known as “sparsity bias” (Pedraja-Chaparro et al., 1999, p. 

638). A growing dimensionality of the input-output space tends to decrease the number of 

regions that are comparable with another particular region, i.e. that may serve as benchmarks. 

This in turn will increase the regions’ efficiency levels. A lower input-output dimensionality 

will accordingly allow the efficiency analysis to be more discriminating, which is likely to 

further reduce the correlation with the ratio measure. When applying the presented method, 

researchers therefore face a trade-off between the degree of industrial disaggregation and the 

extent with which the industrial structure influences the empirical results.  

In summary, the relatively large correlation between the efficiency estimates and the 

ratio measure are explained by the chosen disaggregation of the innovative output (43 

industries), the comparatively small sample size (150 regions), and the relative rareness of 

regions being highly specialized in industries with high (low) patent intensities but regionally 

low (high) innovation efficiencies.  

The correlation in the levels of innovation efficiency translates into a significant, 

however comparatively smaller, correlation in their rates of change. The rank-correlation 

between the relative change in the ratio measure and the change of EFF between the two 

periods is RS=0.71***.12

                                                        
12 Here, we only consider the catching-up component of this change, denoted as CU. 

 Hence, the average difference between the two approaches’ results is 

more severe in the dynamic perspective than when looking at one particular time period. 
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4.1.2 Comparison of individual cases 
While being strong, the correlation between the two measures is far from the maximum 

value of one and hence there are considerable differences between the two. These are 

highlighted in the following on the basis of particular illustrative cases. 

Take for instance the region Rottweil in the period 1999-2003. The region is located in 

the far southwest of Germany close to Freiburg im Breisgau. In terms of R&D employment 

and patent output Rottweil is of average size. It ranks 72th in patent output (1046.34 patents) 

and 60th in R&D employment (18,690 employees). According to the ratio of patent output and 

R&D employment (0.056) it has the 105th highest ratio among the 150 regions. However, its 

innovation efficiency value is 177.7%, which ranks 10th. In other words, we find a 

discrepancy of 95 ranks between the two measures.  

Hence, Rottweil seems be characterized by an unfavorable industrial structure. This is 

confirmed by the data. The three industries with the largest patent output in Rottweil are I19 

(fabricated metal products), I23 (machine tools), and I25 (weapons and ammunition). They 

account for about 81% of the region’s total patent output. The three industries’ industry-

specific ratios of patent output to R&D employees are 0.057 (I19), 0.067 (I23), and 0.006 

(I25). They rank 25th, 21st, and 42th among the 43 industries (see Table 3). Hence, Rottweil is 

strongly specialized in industries with low patent to R&D employment ratios. It is therefore 

strongly discriminated against when measured according to the simple ratio analysis. Our 

innovation efficiency measure reveals, moreover, that the region does outstandingly well in 

industry I25 (efficiency of 469%), while it is relatively inefficient in industries I19 (35%) and 

I23 (33%). 

Another illustrative example is Darmstadt, a region in the south of Hessia, in the period 

2004-2008. The region ranks much higher than Rottweil in terms of patent output (17th) and 

R&D employment (50th) with values of 3,833.4 patents and about 22,644 R&D employees. 

With a ratio of 0.169 it is among the top-ten German regions (rank 8). However, when taking 

its industrial structure into account it drops to rank 30 in the innovation efficiency ranking 

with a value of 97.04%. Hence, the difference is again marked with 22 ranks. However, in 

contrast to Rottweil, Darmstadt benefits from its industrial structure in the ratio estimation. 

About 43% of its patent outputs are attributed to industries I12 (pharmaceuticals) with 29% 

and I9 (basic chemicals) with 13%. These are the top-two industries in terms of patents to 

R&D employment ratios (I12: 0.545 and I9: 0.326).  

Besides these two regions a great number of similar examples exist in the period 1999-

2003. For instance, Wiesbaden is 7th when considering the ratio while it ranks at 25th in the 
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DEA-based innovation efficiency analysis in 1999-2003. Prignitz has the 66th highest ratio but 

ranks 3rd in terms of innovation efficiency. Trier is 62nd with respect to the ratio but 105th in 

the innovation efficiency value. Munich and Hannover both profit from their favorable 

industrial structures: Munich ranks 21st and Hannover 48th when looking at the ratio, while the 

corresponding values in the innovation efficiency analysis are 39th and 96th, respectively. 

Comparable patterns are also found in 2004-2008. A notable additional example is Stuttgart 

dropping from 83rd place in the ratio to the 121st place in the innovation efficiency analysis, 

highlighting its comparatively favorable industrial structure. 

These examples and the mean difference between regions’ ranks according to the two 

measures, which amounts to approximately 16 positions in both periods, highlight the fact 

that ignoring the industrial structure can be very misleading when measuring regions’ 

innovation efficiency.  

4.1.3 Regions’ size and innovation efficiency 
Another important quality aspect of a measure of regional innovation efficiency is its 

uncorrelatedness to regions’ size. Table 1 reports the rank of a region in terms of total patent 

output. The innovative output is chosen over the input factor because it can be interpreted as a 

measure of a region’s strength in innovation activities inasmuch as it combines the magnitude 

of R&D efforts and a region’s efficiency in generating patentable innovation. The table shows 

that the top spots of the efficiency ranks are regions with relatively small innovation outputs. 

However, the fourth (1999-2003) and fifth (20034-2008) spots are regions (Jena and Aachen) 

already rank fairly high in terms of innovative output. The consecutive spots are also 

inhabited by regions with medium to large innovation output. Stuttgart in 2004-2008 is also 

an illustrative example for the difference between regions being innovative in terms of total 

number of innovations, and regions being able to efficiently transform their inputs into 

innovation. While it holds the top spot in patented innovations, it ranks 121st in innovation 

efficiency with a value of EFF = 29.58.  

This underlines the size-independence of the efficiency measure. The rank correlations 

between the output and efficiency measure confirm this with values of RS = 0.33*** (1999-

2003) and RS = 0.30*** (2004-2008). The efficiency measure is also doing a much better job 

of controlling for regions’ size than the ratio measure for which the corresponding 

correlations amount to RS = 0.52*** in 1999-2003 and 2004-2008. 
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1999-2003 2004-2008 

Region Efficiency Patents 

Output 

rank Region Efficiency Patents 

Output 

rank 

Garmisch-

Patenkirchen 527.22 326.3 112 

Garmisch-

Patenkirchen 643.55 230.8 113 

Nordfriesland 237.36 83.6 137 Prignitz 312.87 18.5 146 

Saalfeld 221.39 208.6 123 Nordfriesland 279.43 55.9 137 

Rügen 214.1 10.5 150 Aachen 263.3 7783.5 8 

Jena 203.92 1967.9 51 Jena 221.83 1491.5 49 

Lörrach 198.42 2690.5 38 Altötting 198.39 1374.1 53 

Kempten 189.58 748.072 87 Bodensee 183.5 2348.3 29 

Aachen 187.2 9313.1 10 Osterode 169.76 151.2 123 

Mainz 184.38 5582.3 17 Rügen 169.68 18.3 147 

Rottweil 177.71 1046.3 72 Bremerhaven 166.16 189.2 115 

Altötting 177.34 1664.3 57 Traunstein 152.92 1296.6 55 

Pirmasens 164.22 554.7 98 Kempten 151.05 642.1 82 

Traunstein 150.38 1800.5 54 Saalfeld 142.41 137.2 127 

Würzburg 147.81 3268.4 29 Mainz 141.89 3576.5 18 

Regensburg 146.7 5013.4 19 Amberg 139.76 656.3 80 

Table 1: Top fifteen innovation efficient region 

 

In summary, we find that the proposed efficiency measures yield results of 

significantly higher quality than a simple ratio approach. This is shown particularly when 

evaluated regions are highly specialized in industries with very low or very high patent 

intensities. Accordingly, it is superior to most existing measures and allows for a scientifically 

reliable evaluation of regions’ innovation efficiency. 

4.2 The innovation efficiency of German regions 

The mean efficiency is 71.43% in 1999-2003 and 70.89% in 2004-2008. The median is 

52.9% and 51.09% in 1999-2003 and 2004-2008, respectively, illustrating a left-skewed 

distribution, which is visualized in Figure 2. The obtained mean values are substantially larger 

than comparable scores reported in Broekel (2010) that range between 15 and 50.5. 13

                                                        
13 The mean values of regional innovation efficiency reported in Broekel (2010) for different industries are 
actually 1.98, 2.34, 3.72, and 6.7. They need to be converted with 1/x*100% to become comparable to the values 
reported in the present paper.  

 

Accordingly, regions’ overall efficiency is higher than comparable estimates of Broekel 

(2010). The difference may in part be explained by the inflation of Broekel’s efficiency scores 
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due to some very extreme input / output combinations in his data that are caused by his purely 

industry-specific estimation approach. 

 
Figure 2: Distribution of efficiency values 

 

Our analysis identifies 29 regions (19% of regions) as significant in generating 

patentable innovation in the period 1999-2003, and 27 (18% of regions) in 2004-2008. Their 

median efficiency score is 146.7% (1999-2003) and 141.89% (2004-2008) indicating a highly 

efficient innovation performance. The comparison with the median scores of the inefficient 

regions (1999-2003: 48.61%; 2003-2008: 46.44%) highlights that there is substantial potential 

for increasing regions’ innovation efficiency in Germany. 

We report the top fifteen innovation efficient regions in Table 1. Garmisch-

Partenkirchen holds the top spot in both periods. Garmisch-Partenkirchen is highly efficient in 

a number of industries (11) with industries I4 (wearing apparel) and I6 (wood production) 

particularly obtaining dominating weights in the estimation. The region’s outstanding 

performance is, however, explained by the fact that it has the largest number of efficient 

industries (EFF >= 100) in both periods (1999-2003: 9; 2004-2008: 16).  

In 1999-2003, just 24 regions (23 in 2004-2008) are characterized by more than one 

innovation efficient industry, with the mean number of efficient industries per region being 

3.5 (3.8 in 2004-2008). These figures underline the fact that outstanding innovation efficiency 

is by and large related to regions being highly efficient in a small number of industries. 
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 Aachen and Jena, which hold the top spots for the most innovation efficient regions 

among regions with more than average patent output, are interesting cases. Both regions’ 

good innovation efficiencies come from being efficient in multiple industries. Aachen 

particularly profits from excellent innovation efficiencies in industry I27 (office machinery 

and computers), I30 (accumulators, battery), I34 (signal transmission, telecommunications). 

In Jena, industries I36 (medical equipment), I37 (measuring instruments), and particularly I39 

(optical instruments) explain its outstanding performance. All these industries represent well-

known strengths of the particular regions, as exemplified by the relevance of the optical 

instruments industry in Jena with the headquarters of ZEISS and Jenoptik being located there.   

The three cases of Garmisch-Partenkirchen, Aachen, and Jena confirm the idea that 

excellence in just one industry is not enough to achieve outstanding innovation efficiency. It 

takes a number of (potentially related) industries to boost a regions’ performance (cf. Cooke 

et al., 1997; Frenken et al., 2007). 

  
Figure 3: Geographic distribution of regional innovation efficiency 

 

The maps in Figure 3 show the spatial distribution of regional innovation efficiency. 

While the visual inspection does not suggest the generally lower innovation efficiency of East 

German regions as reported in Fritsch & Slavtchev (2008) and Broekel (2012), East German 

regions have a mean efficiency of 56.2% in contrast to West German regions’ 76.4% in 1999-

2003. The difference drops somewhat in the following period (West: 74.7%, East: 59.34%). 

Both differences are significant at the 0.01 level.14

                                                        
14 Wilcoxon rank sum test 1999-2003: W = 2788, p-value = 0.002376; Wilcoxon rank sum test 2004-2008:  
W = 2696, p-value = 0.008348. 

 We therefore confirm previous findings in 

the literature concerning the existence of an innovativeness gap between the two parts of 
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Germany, which not only shows in absolute patent numbers but also in terms of efficient 

innovation generation. We also show that the inefficiency of East German regions cannot be 

attributed solely to the presence of unfavorable industrial structures. 

The second impression derived from the maps in Figure 3 is that regional innovation 

efficiency appears to be geographically clustered. While the Moran’s I test on the efficiency 

scores (1999-2003 I = 0.064*; 2004-2008 I = 0.025) provides only little support, the same test 

applied to the ranks of the efficiency values is confirmative (1999-2003 I = 0.18***; 2004-

2008 I = 0.22***).15

4.3 Temporal dynamics of regional innovation efficiency 

 We thus find regional innovation efficiency to be significantly spatially 

(rank-) autocorrelated. 

The two innovation efficiency measures computed for the regions for the periods  

1999-2003 and 2004-2008 show similar patterns. Their correlation is, however, just 0.87***, 

which suggests that some regions improved and others declined in innovation efficiency.  

We argued above that temporal change in innovation efficiency can be disaggregated 

into two components representing different types of change. The first type of dynamic 

concerns the “environmental change“-component (EC), i.e. how does the overall (region 

external) environment for generating innovations develop between two time periods. The 

mean value of the EC-component is just 0.76 and thereby well below one. Accordingly, the 

overall conditions for innovation generation deteriorated between the two periods. In other 

words, in 2004-2008 it takes on average significantly more R&D workers to generate the 

same number of patentable innovation than in 1999-2003. A possible explanation might be 

the “.com” bubble in 2000-2001 that boosted patent numbers in the earlier period but by its 

bursting led to strong decline in patenting in the second period. This clearly deserves more 

attention in future research. 

The second component of innovation efficiency change reflects whether a region is able 

to catch up to its contemporaneous comparison regions. Table 2 lists the top fifteen regions 

that were able to catch up. The region of Prignitz holds the top spot with a CU-value of 23.67. 

It clearly represents an extreme value caused by its very low level of output making extreme 

growth rates more likely (output rank: 148 in 1999-2003). This pattern of regions with low 

levels of output growing more in terms of efficiency than regions with large output values 

dominates Table 2. However, it is surprisingly more or less restricted to the listed regions. 

The correlation between patent output in 1999-2003 and efficiency growth is just about  

                                                        
15 For the estimation of Moran’s I we used direct neighborhood as basis for the spatial weight matrix. 
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R = -0.05 (rank correlation: RS = 0.01). Stuttgart, the number one region in terms of patent 

output in both periods, is an example in this respect. While it ranks average at place 82 in 

1999-2003, its rank in 2004-2008 is 121. Its efficiency dropped from 50.93% to 29.58%, 

which corresponds to a decline in the CU-component efficiency of 0.58%. The decline is 

caused by a decrease in patentable output of -28% from 35,871 patents to 25,713. The input, 

i.e. the number of R&D employees, remained more or less the same.  

In addition to the regions’ level of innovative output, the level of innovation efficiency 

is another factor that does not predict growth in innovation efficiency well. The relevant 

correlation is R = -0.09 (rank correlation: RS = -0.14*). Other factors than regions’ initial 

output and innovation efficiency level are accordingly driving the development of regional 

innovation efficiency. 

Region 

Efficiency 
change 
(CU) 

Efficiency rank 
1999-2003 

Efficiency rank 
2004-2008 

Output rank 
1999-2003 

Output rank 
2004-2008 

Prignitz 23.67 145 2 148 146 
Greifswald 2.62 133 58 124 114 
Cham 2.07 148 134 127 117 
Uckermark 1.98 111 46 143 130 
Amberg 1.79 45 15 82 80 
Osterode 1.75 32 8 128 123 
Birkenfeld 1.71 139 118 131 133 
Ostprignitz 1.64 119 69 149 148 
Stralsund 1.63 68 28 142 139 
Bodensee 1.62 21 7 35 29 
Annaberg 1.47 141 136 140 143 
Neubrandenburg 1.45 61 31 138 129 
Suhl 1.45 140 130 118 111 
Osnabrück 1.43 71 39 59 52 
Flensburg 1.42 138 124 119 121 

Table 2: Change in regional innovation efficiency from 1999-2003 to 2004-2008 

 

In Figure 4 we show the geographic distribution of innovation efficiency change (i.e. 

the extent to which regions are catching up). No particular neighborhood patterns are visible, 

something that is confirmed by a very small Moran’s I: 0.01 (Moran’s I of ranks: 0.03). This 

is about the same magnitude of spatial autocorrelation as Broekel (2010) reports for the 

change in industry-specific innovation efficiency measures. Innovation efficiency growth 

processes of neighboring labor market regions are more or less unrelated, a fact that can be 

interpreted to mean that the chosen delineation of the spatial units captures the (outer) spatial 
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dimension of innovation processes well. This absence of spatial autocorrelation indicates non-

spatially structured innovation efficiency growth processes.  

Lastly, we look at the development of innovation efficiency in the two parts of 

Germany. It appears to be the case that the average level of innovation efficiency has 

decreased: The mean innovation efficiency of East German is 56.2% in 1999-2003 and 

increases to 59.34% in 2004-2008. The relevant levels are 76.4% in 1999-2003 and 74.7% in 

2004-2008 for West German regions. However, a shrinking difference between the two parts 

of Germany cannot be statistically backed. While there is a difference in mean innovation 

efficiency growth of West and East German regions (West: 0.99%; East: 1.58%) it is not 

significant in any test set-up (t-Test, Wilcoxon test, log-transformed growth rates). 

Accordingly, we do not find statistically robust signs for a convergence between the two parts 

of Germany in terms of regional innovation efficiency. 

 

 
Figure 4: Geographic distribution of innovation efficiency change 
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5. Conclusion  
In the paper we proposed the use of a recently developed method to estimate regions’ 

innovation efficiency: namely the robust shared-input Data Envelopment Analysis. We 

argued that this method is particularly advantageous when analyzing regional innovation 

efficiency using employment data to approximate input factors and patent numbers as proxies 

for innovative output, i.e. in the scenario most common in this type of literature. 

Amongst the more obvious advantages of the method are the sparsity of theoretical 

and empirical assumptions and the requirement of using only publicly available data, while it 

still allows for considering differences in regions’ industrial structures in the estimation. As 

shown in the paper, the latter are biasing traditional measures leading to the overestimation or 

underestimation of regions’ innovation efficiency when regions are dominated by industries 

with very low or very high patent intensities. By means of a comparison with the number of 

patented innovations per R&D employee, it has been shown that the new measure yields 

similar ranking structures but significantly reduces the bias induced by these over- and 

underestimation scenarios. Other advantages of the proposed method include differentiating 

between innovation efficient and innovation inefficient regions, its clear indications 

concerning the level of inefficiency in regions, and the possibility of disaggregating the 

obtained global measure of regional innovation efficiency into industry-specific innovation 

efficiency scores with limited use of matching concordances between employment and patent 

data. Moreover, when studying the dynamics of the measure by means of a Malmquist-index 

approach, different components of innovation efficiency changes can be identified.   

We illustrated the usefulness of the method by investigating the innovation efficiency 

of German labor market regions in two periods, 1999-2003 and 2004-2008. Summarizing the 

empirical findings of our analysis, we firstly showed that there is considerable variance in 

regional innovation efficiencies among German regions, which cannot exclusively be 

explained by the location of innovation intensive industries. Garmisch-Partenkirchen was 

identified as Germany’s most innovation efficient region. Aachen and Jena represent the top 

performers among regions with more than average absolute patent output. All these regions 

are characterized by being innovation efficient in multiple industries. We moreover confirmed 

the existence of a gap in innovation efficiency between East and West German regions in both 

periods. The comparison of the two time periods reveals that this gap persists and that on 

average no significant signs of convergence in terms of innovation efficiency are observable. 

Despite the method’s advantages and interesting empirical findings, a number of 

issues need to be put into perspective. Most importantly, in order to construct an innovation 
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efficiency measure that takes into account regions’ industrial structures, the method 

principally is applicable when information on industry (or technology) structures is 

exclusively available for the innovative output and not for the input factors. In the case of 

patent data, such information is publicly available. It is the matching of these 

industry/technology-specific patent numbers to the relevant industry/technology-specific 

employment numbers that is either unavailable or comes in the form of approximate 

associations. In both cases, the matching introduces significant inaccuracies into the empirical 

results obtained by traditional approaches designed to assess regions’ innovation 

performance.  

We showed that such matching procedures become almost obsolete when using the 

shared-input DEA-model. However, while the method requires very limited information on 

the matching of patents and employment, it cannot do entirely without it. In order to obtain 

useful results, we employed information on the maximum and minimum regional share of 

R&D employees in each industry observed across all regions in order to specify restrictions 

on the employment shares in the DEA-computations. Alternative approaches designed to 

define restrictions when lacking such information are yet to be explored. 

The employed method can also be extended by means of using conditional efficiency 

approaches (cf., Daraio & Simar, 2007). These allow for nonparametrical consideration of 

external factors that may additionally alter regions’ innovation efficiency (e.g., regional 

degrees of urbanization or specialization). 

In addition to further methodological advances, the empirical specification of regional 

innovation efficiency remains an issue deserving more research. So far, the innovative output 

has been exclusively calculated by using patent data, which gives a restricted picture of 

organizations’ innovative output. In the future, other forms of quantifiable innovation 

indicators should be considered. Academic publications are obvious candidates, although 

information on industry-specific shares of new and improved products is also desirable. A 

similar approach applies to the input side. While the argument has been made that R&D 

employees are the most important input into innovation processes, other inputs cannot be 

easily ignored. Financial and non-employment related assets (laboratories, equipment, etc.) 

are most important in this respect. Due to missing data they are widely ignored. Accordingly, 

the present study is just one further step in the direction of an academically sound and 

practically meaningful measure of regional innovation efficiency. 

 

 



29 
 

References  

Arundel, A., & Kabla, I. (1998). What Percentage of Innovations are Patented? Empirical 

Estimates for European Firms. Research Policy. 

Audretsch, D. (1998). Agglomeration and the Location of Innovative Activity. Oxford 

Review of Economic Policy, 14(2): 18-29. 

Autant-Bernard, C. and LeSage, J. P. (2011). Quantifying knowledge spillovers using spatial 

econometric models. Journal of Regional Science, 51(3):471-496. 

Bade, F.-J. (1987). Regionale Beschäftigungsentwicklung und produktionsorientierte 

Dienstleistungen. Sonderheft 143. Deutsches Institut für Wirtschaftsforschung, Berlin. 

Beasley, J.E. (1995). Determining teaching and research efficiencies. Journal of the 

Operational Research Society, 46, 441–452. 

Bonaccorsi, A., & Daraio, C. (2006). Econometric Approaches to the Analysis of Productivity 

of R{&}D Systems. Handbook of Quantitative Science and Technology Research 

Handbook of Quantitative Science and Technology Research - The Use of Publication 

and Patent Statistics in Studies of S&T Systems (pp. 51–74). Springer Netherland. 

Brenner, T, & Broekel, T. (2011). Methodological issues in measuring innovation 

performance of spatial units. Industry and Innovation, 18(1), 7–37. 

Brenner, Thomas, & Broekel, T. (2011). Methodological Issues in Measuring Innovation 

Performance of Spatial Units. Industry & Innovation, 18(1), 7–37. 

doi:10.1080/13662716.2010.528927 

Broekel, T. (2007). A Concordance between Industries and Technologies - Matching the 

Technological Fields of the Patentatlas to the German Industry Classification. Jenaer 

Economic Research Papers. 

Broekel, T. (2012). Collaboration intensity and regional innovation efficiency in Germany - A 

conditional efficiency approach. Industry and Innovation, 19(3), 155–179. 

Broekel, T, & Brenner, T. (2007). Measuring Regional Innovativeness - A Methodological 

Discussion and an Application to One German Industry. DIME Working Paper, 2007-

13. 

Broekel, Tom, & Binder, M. (2007). The Regional Dimension of Knowledge Transfers—A 

Behavioral Approach. Industry & Innovation, 14(2), 151–175. 

doi:10.1080/13662710701252500 

Carlsson, B., Jacobsson, S., Holmen, M., & Rickne, A. (2002). Innovation Systems: 

Analytical and Methodological Issues. Research Policy. 



30 
 

Cazals, C., Florens, J.P., & Simar, L. (2002). Nonparametric Frontier Estimation: A Robust 

Approach. Journal of Econometrics, 106, 1-25. 

Charnes, A. Cooper, W.W., & Rhodes, E. (1978). Measuring the efficiency of decision 

making units. European Journal of Operational Research, 2, 429-444. 

Chen, K., & Guan, J. (2011). Measuring the Efficiency of China’s Regional Innovation 

Systems: Application of Network Data Envelopment Analysis (DEA). Regional 

Studies, (907217954), 1–23. doi:10.1080/00343404.2010.497479 

Cohen, W., & Levinthal, D. (1989). Innovation and Learning: The two Faces of R&D. 

Economic Journal, 99, 569–596. 

Cohen, W., & Levinthal, D. (1990). Absorptive Capacity: A New Perspective on Learning 

and Innovation. Administrative Science Quarterly, 35(1), 128–152. 

Cook, W.D., and Green, R.H. (2004). Multicomponent efficiency measurement and core 

business identification in multiplant forms: A DEA model. European Journal of 

Operational Research, 157, 540–551. 

Cook, W.D., Hababou, M., & Tuenter, H.J.H. (2000). Multicomponent efficiency 

measurement and shared inputs in Data Envelopment Analysis: An application to sales 

and service performance in bank branches. Journal of Productivity Analysis, 14, 209–

224. 

Cooke, P. (1998). Introduction: Origins of the Concept. In H.-J. Braczyk, P. Cooke, & M. 

Heidenreich (Eds.), Regional Innovation Systems - The Role of Governances in a 

Globalized World (pp. 2–25). UCL Press, London. 

Cooke, P., Uranga, M. G., and Etxebarria, G. (1997). Regional innovation systems: 

Institutional and organisational dimensions. Research Policy, 26(4-5):475–491. 

Daraio, C., & Simar, L. 2007. Advanced robust and nonparametric methods in efficiency 

analysis: Methodology and applications. Series: Studies in Productivity and 

Efficiency. Springer, New york. 

Deyle, H., & Grupp, H. (2005). Commuters and the Regional Assignment of Innovative 

Activities: A Methodological Patent Study of German Districts. Research Policy. 

Eckey, H.F., Kosfeld, R., and Türck, M. (2006). Abgrenzung deutscher 

Arbeitsmarktregionen. Volkswirtschaftliche Diskussionsbeiträge Universität Kassel. 

Färe, R., Grosskopf, S., Norris, M., and Zhang, Z. (1994), Productivity growth, technical 

progress, and efficiency change in industrialized countries, American Economic 

Review, 81(1), pp. 66-83. 



31 
 

Färe, R., Grosskopf, S., and Roos, P. (1998). Malmquist productivity indexes: a survey of 

theory and practice, In: Färe, R., Grosskopf, S., Russell, R.R. (Eds.), Index Numbers: 

Essays in Honour of Sten Malmquist. Kluwer Academic Publishers, Boston. 

Farrell, M.J., 1957. The measurement of productive efficiency. Journal of the Royal Statistical 

Society, Series A, CXX, Part 3, 253-290. 

Frenken, K., van Oort, F. G., and Verburg, T. (2007). Related variety, unrelated variety and 

regional economic growth. Regional Studies, 41(5):685–697. 

Fritsch, M. (2003). How and Why Does the Efficiency of Regional Innovation Systems 

Differ. In J. Br"ocker, D. Dohse, & R. Soltwedel (Eds.), Innovation Clusters and 

Interregional Competition. Springer, Berlin. 

Fritsch, M, & Slavtchev, V. (2011). Determinants of the Efficiency of Regional Innovation 

Systems. Regional Studies, 45(7), 905–918. 

Fritsch, Michael. (2000). Interregional Differences in R&D Activities—An Empirical 

Investigation. European Planning Studies, 8(4), 409–427. doi:10.1080/713666416 

Greif, S., & Schmiedl, D. (2002). Patentatlas 2002 Dynamik und Strukturen der 

Erfindungstätigkeit. Deutsches Patent- und Markenamt, München. 

Greif, S., Schmiedl, D., & Niedermeyer, G. (2006). Patentatlas 2006. Regionaldaten der 

Erfindungstätigkeit. Deutsches Patent- und Markenamt, München. 

Griliches, Z. (1979). Issues in Assessing the Contribution of Research and Development to 

Productivity Growth. The Bell Journal of Economics, 10(1), 92. doi:10.2307/3003321 

Jaffe, A. (1989). Real Effects of Academic Research. American Economic Review, 79(5), 

957–970. 

Malerba, F., & Orsenigo, L. (1993). Technological Regimes and Firm Behavior. Industrial 

and Corporate Change, 2(1), 45–74. 

Malerba, F., Orsenigo, L., & Breschi, S. (2000). Technological Regimes and Schumpeterian 

Patterns of Innovation. Economic Journal, 110(463), 388–410. 

Nelson, R. R. (1959). The Simple Economics of Basic Scientific Research. The Journal of 

Political Economy, 67(5), 297–306. 

Pedraja-Chaparro, F., Salinas-Jiménez, J, and Smith, P. (1999). On the Quality of the Data 

Envelopment Analysis Model. The Journal of the Operational Research Society, 

50(6): 636- 644 

Pavitt, K. (1984). Sectoral Patterns of Technical Change: Towards a Taxonomy and a Theory. 

Research Policy, 13(6), 343–373. 



32 
 

Schmoch, U., Laville, F., Patel, P., & Frietsch, R. (2003). Linking Technology Areas to 

Industrial Sectors. Final Report to the European Commission, DG Research, 

Karlsruhe, Paris, Brighton. 

Stern, S., Porter, M. E., & Furman, J. L. (2002). The Determinants of National Innovative 

Capacity. Research Policy. 

Wang, M.W., & Stanley, J.C. (1970). Differential weighting: A review of methods and 

empirical studies. Review of Educational Research, 40, 663–705. 

Zabala-Iturriagagoitia, J. M., Voigt, P., Gutiérrez-Gracia, A., & Jiménez-Sáez, F. (2007). 

Regional Innovation Systems: How to Assess Performance. Regional Studies, 41(5), 

661–672. doi:10.1080/00343400601120270 

  

  



33 
 

Industry Short 
Ratio 

2004.2008 
Rank 

2004.2008 
Pharmaceuticals IO12 0.545 1 
Basic chemicals IO9 0.326 2 
Medical equipment IO36 0.286 3 
Office machinery and computers IO27 0.218 4 
Signal transmission, telecommunications IO34 0.179 5 
Special purpose machinery IO24 0.172 6 
Measuring instruments IO37 0.107 7 
Electronic components IO33 0.1 8 
Domestic appliances IO26 0.083 9 
Rubber and plastics products IO16 0.082 10 
Motor vehicles IO41 0.078 11 
Soaps, detergents, toilet preparations IO13 0.072 12 
Optical instruments IO39 0.068 13 
Non-metallic mineral products IO17 0.065 14 
Non-specific purpose machinery IO21 0.063 15 
Food, beverages IO1 0.063 16 
Agricultural and forestry machinery IO22 0.053 17 
Energy machinery IO20 0.052 18 
Pesticides, agro-chemical products IO10 0.051 19 
Paper IO7 0.048 20 
Television and radio receivers, audiovisual electronics IO35 0.047 21 
Machine tools IO23 0.047 22 
Furniture, consumer goods IO43 0.044 23 
Other chemicals IO14 0.043 24 
Fabricated metal products IO19 0.041 25 
Electric distribution, control, wire, cable IO29 0.028 26 
Basic metals IO18 0.026 27 
Other transport equipment IO42 0.024 28 
Other electrical equipment IO32 0.02 29 
Industrial process control equipment IO38 0.018 30 
Accumulators, battery IO30 0.017 31 
Lighting equipment IO31 0.017 32 
Textiles IO3 0.017 33 
Electric motors, generators, transformers IO28 0.016 34 
Petroleum products, nuclear fuel IO8 0.016 35 
Wearing apparel IO4 0.015 36 
Tobacco products IO2 0.011 37 
Wood products IO6 0.008 38 
Leather articles IO5 0.007 39 
Weapons and ammunition IO25 0.005 40 
Watches, clocks IO40 0.005 41 
Man-made fibers IO15 0.003 42 
Paints, varnishes IO11 0.002 43 

Table 3: Ratio.2004.2008 for industries 
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