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Abstract: 

Distance-based methods for measuring spatial concentration such as the Duranton-

Overman index undergo an increasing popularity in the spatial econometrics com-
munity. However, a limiting factor for their usage is their computational complexity 

since both their memory requirements and running-time are in O(n2). In this pa-
per, we present an algorithm with constant memory requirements and an improved 
running time, enabling the Duranton-Overman index and related distance-based 

methods to run big data analysis. Furthermore, we discuss the index by Scholl & 
Brenner (2012) whose mathematical concept allows an even faster computation for 

large datasets than the improved algorithm does. 
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Section 1: Introduction 

 

1 Introduction 

In a recent article, Harvey Miller sees spatial science being trapped in an avalanche of an 

“unprecedented amount of fine-grained data on cities, transportation, economies, and socie-

ties, much of these data referenced in geo-space and time” (Miller (2010): 181). Indeed, new 

data sources such as location-aware technologies or point-of-sale data in combination with 

easy access to computational power enable new insights into spatial science. However, as 

Miller points out, two aspects limit our ability to dig ourselves out of this data avalanche: 

First, there is a lack of suitable computational methods for many research designs and se-

cond, some of the existing methods are affected by high computational requirements. 

One example for the latter case is the growing interests of spatial econometrics in distance-

based methods for measuring spatial concentration. While these metrics have a more 

longstanding tradition in disciplines such as forestry or astronomy, the work of Duranton 

Overman (2005) has successfully established distance-based methods in spatial economet-

rics. Distance-based methods circumvent the Modifiable Areal Unit Problem, a fundamental 

problem in spatial science (see Openshaw 1984), and thus allow for a more realistic obser-

vation of spatial concentration without an ex-ante discretization of space.  

Despite the clear methodological progress of the Duranton-Overman index (DO-index 

henceforth), the method and similar methods such as the M-Index (Marcon & Puech 2010) 

since then have rarely been used in comparison to MAUP affected indices such as the El-

lison-Glaeser, or the Gini index. Three points can explain this paradox: First, availability of 

fine-grid data is still a problem. Second, until recently, there was no statistical program 

available for the DO-index, so that applying it always required own programming. Third, 

the index shows high computational requirements that hamper or even prevent its usage for 

large datasets. Since point one should become more and more obsolete and two R packages 

haven been developed for the DO-index recently, it is worth looking at the latter point. 

With respect to the existing literature, the high computational requirements of the DO-index 

turn out to be a crucial issue: Despite applicable data, Vitali et.al (2009) partially abandon 

the DO-index due to its “tremendous computational requirements” (Vitali et.al 2009: 20). 

Ellison et al. (2010) simplify the DO-index in several aspects in order to apply it on the 

whole population of manufacturing firms in the USA. Nevertheless, they state that the index 

“is much more computationally intensive vis-a-vis simpler discrete indices” and amount its 

computing time to three months for their research (Ellison et al. 2009: 5). This computation-

al problem is also confirmed by Kosfeld et al. (2011) who summarize that the computation 

of some distance based methods is “not a question of hours but of days” (Kosfeld et al. 

2011: 312). The computational complexity of distance-based methods arises from the simple 

fact that measuring spatial concentration bases on the observation of bilateral distances be-

http://dict.leo.org/ende?lp=ende&p=Ci4HO3kMAA&search=applicable&trestr=0x8004
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tween single points or firms, respectively. Thus, both their running time and their memory 

requirements are in O(n
2
) where n is the number of firms.  

In this paper, we show that the quadratic RAM requirements are the most problematic point 

when running the DO-index and similar distance-based methods on huge data sets and pre-

sent an improved algorithm with constant memory requirements and an improved running 

time. Beside the DO-index we discuss the index of Scholl & Brenner (2012) whose mathe-

matical concept deviates from other distance-based methods in such way that it is even more 

suitable for large datasets than the improved algorithm of the DO-index. 

The paper is structured as follows: After a short description of the general computation of 

distance-based methods, section 2 outlines the DO-index and its computational complexity 

in more details. A new algorithm for the DO-index with an enhanced running time and con-

stant memory requirements is presented afterwards. In section 4, the index by Scholl & 

Brenner (2012) is discussed and benchmarked with the DO-index when running big-data 

analysis. The last section concludes.  

2 Existing Algorithms 

Although the existing distance-based indices differ in their calculation to some degree, the 

majority bases on two fundamental principles
1
: First, bilateral distances between each point 

pair of the observed industry are computed and the occurrence of neighborhoods at or within 

a distance is counted. Second, the observed distances are tested against the null hypothesis 

that they are the outcome of a random distribution of points, which is done by applying 

Monte-Carlo simulations. These two principles, computing bilateral distances and running 

Monte-Carlo simulations, give an intuitive classification of the computational complexity of 

distance-based methods: Both, the running-time and the memory requirements are quadratic 

due to the computation of bilateral distances and each computation is repeated a lot of times 

for the Monte-Carlo simulations. 

Scholl & Brenner (2012) propose a rather different index that deviates from the above men-

tioned two principles. Their metric also bases on bilateral distances but instead of counting 

neighborhoods at or within a certain distance, they compute cluster values for each firm and 

use non-parametric methods instead of Monte-Carlo simulations in order to tests for the null 

hypothesis of a random distribution. Despite these differences, their index meets all five 

criteria for a spatial statistical test of localization, proposed by Duranton and Overman 

(2005) and leads to similar global outcomes (see Scholl & Brenner 2012).  

Given the fact that up to now the DO-index is the most established distance-based method in 

                                                      

1
 See Marcon & Puech (2012) for a detailed discussion and a synopsis of the existing dis-

tance-based indices.  
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spatial econometrics, we will discuss its mathematical concept and its computational re-

quirements in more details in the following sections. In section 2.2, an improved algorithm 

with constant memory requirements is presented whose core concept however is not limited 

to the DO-index but is applicable to the majority of distance-based metrics. Due to its dif-

ferent computation, the index by Scholl & Brenner is discussed separately afterwards.  

Before we present the algorithms, we briefly explain the notations and concepts that we use: 

 The time complexity of an algorithm is simply the time that it needs to execute and 

can be described by the O notation. 

 The space complexity of an algorithm stands for the needed amount of memory 

space, also represented by the O notation. In the paper, all statements on the space 

complexity apply for the computation only, i.e. we use a model of a 3-tape Turing 

machine with a read-only-, write-only- and a work tape. 

 O (Big Oh) represents the upper bound of an algorithm. For instance, if the time 

complexity of an algorithm is O(n
2
) its running time grows asymptotically no faster 

than n
2 
where n stands for the size of the input. 

2.1 The DO-index 

The basic idea of the DO-index is to check whether the number of neighborhoods at a spe-

cific distance between firms is significantly higher or lower than expected by random. To 

this end, a smoothed density over all observed distances, expressed by the term K(d), is 

used. The first step to compute K(d)-values is to build the geographical distances between 

all possible pairs of firms and compute a kernel density estimation of the observed values at 

a given number of distance intervals. Duranton & Overman (2005) use a distance interval of 

1km and consider only those distances that are below the median distance between firms in 

the area under investigation. Hence the formula is:  

      
 

       
     

 

     

   

   

 
      

 
   

 

(1) 

where h is the optimal bandwidth
2
 and f stand for the kernel function (Duranton & Overman 

2005:1083). 

The solid line in Figure 1 plots the K(d)-values for an illustrative industry. The dashed and 

dotted lines refer to the local and global confidence intervals that will be explained now. 

 

                                                      

2
 Optimal bandwidth: 1.06sn

-0,2
, where n is the observed number and s is the standard devia-

tion (Klier & McMillen 2006: 12). 
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To control whether the K(d)-values of an observed industry show significant spatial concen-

tration or dispersion at specific distances, confidence bands are needed that are constructed 

by a Monte-Carlo approach: Let N be the number of firms in the industry under investiga-

tion. We draw N firms out of the population of all firms in the area of investigation. These 

drawn firms represent a random industry localization, whose bilateral distances are comput-

ed and kernel smoothed. The step of drawing random firms and computing their bilateral 

distances is done 1000 times. For the 1000 benchmark simulations the values of the kernel 

density estimation are sorted in ascending order for each distance interval. The 5-th and 95-

th percentile are selected , whereby we obtain a lower 5% and an upper 5% confidence in-

terval that Duranton and Overman call local confidence intervals or       and       re-

spectively, (dotted lines in Figure 1) (Duranton & Overman 2005:1086). The industry in 

Figure 1 exceeds the upper local confidence interval between 0 and 90 km, stating that this 

industry shows significantly more neighborhoods at small distances. 

Due to the fact that the K(d)-function is built separately for each km, an industry will proba-

bly hit the local bands once. In order to test whether an industry is generally more concen-

trated, Duranton and Overman propose the computation of global confidence intervals. By 

means of the 1000 simulations, the upper global confidence interval       is computed in 

such way that only 5 % of the thousand simulations hit the global confidence interval; the 

same is performed for the lower interval (Duranton & Overman 2005:1087).  

 

 

Figure 1: K-density, local confidence intervals and global confidence bands for an illustra-

tive industry. Source: Duranton & Overman 2005. 
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/* INPUT */ 

1: double[] lat; //array with the latitude of each firm 

2:  double[] long; // array with the longitude of each firm 

3:  stepInterval =1 //discretizise distances in 1 km distance intervals 

4:  medianDistance=180; //define the median of bilateral distance 

/* CALCULATION */ 

5:  mat = square_matrix(lat, long) // function that computes the square matrix of bilateral distances 

6:  mat = lower.tri(mat) // get lower triangle of the distance matrix 

7:  smooth=kde(mat, stepInterval, medianDistance) // kernel smoothing the observed distances  

2.2 Analysis of the computational complexity 

Listing 1: Existing algorithm of the DO-index 

In the following, we will discuss the computational complexity of the DO-index by means 

of the recently published R-packages McSpatial by Daniel McMillen (2012) and dbmss by 

Marcon et al. (2012). In order to focus on complexity aspects, only the core steps of the 

algorithms, computing bilateral distances and kernel density estimation, are presented. 

We start with the position of all firms, given by two arrays with the firms’ latitude and lon-

gitude; the median distance and the distance interval are set to 180 km and 1 km. In line 5, 

the square matrix of bilateral distances is built by vector multiplication of the latitude and 

longitude array. This is the crucial step in the algorithm that leads to its quadratic space and 

time complexity. We can specify the space and time complexity of computing a matrix of 

bilateral distances to (n*(n-1)/2) as there are only n*(n-1)/2 unique bilateral distances since 

di,j= dj,i. However, concerning the implementation of the code in R, both time and space 

complexity are quadratic since the full square matrix is computed in step 5 first before cut-

ting off the lower triangle in step 6. This intermediate step can be explained by the fast ma-

trices algorithms in R that are actually more efficient than computing the distances in loops 

when relying on internal R computation only. The last point of the algorithm is kernel 

smoothing the observed distances at the given number of distance intervals in step 7. 

Given the fact that the time complexity of computing bilateral distances cannot be lower 

than (n*(n-1)/2), it is worth to look at the space complexity. Concerning the index’ practical 

applicability, this is even the more crucial point, since each distance is a double value and is 

stored in the RAM. Additionally, R internally treats all variables as a vector object with a 

total size of 48 bytes what leads to an enormous demand for RAM when observing large 

industries (Table 1).  
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Industry Number of firms Required RAM in GB 

French Chemical, rubber and plastic indus-

try
3
 

2,158 0.20 

German Automobile Industry
4
   82,637 305.27 

European Logistics Industry
5
 ~700,000 21,904.70 

Table 1: RAM requirements of bilateral distance square-matrices of illustrative industries in 

R.  

3 An algorithm with constant memory re-

quirements 

To start with the basic idea of our algorithm it is important to remember that the actual focus 

of the DO-index is giving information about dispersion or concentration at specific distance 

intervals. Thus we are actually not interested in the bilateral distances but in their occur-

rence at these intervals. This suggests that condensing the storage of data to the distance 

intervals should be a good strategy for reducing computational complexity. This is actually 

the way our algorithm operates and this also leads to its constant memory requirements as 

they are limited by the number of intervals.  

Using the data of Duranton and Overman as an example, we initialize an array with the 

length of 180 (mean distance in UK: 180 km, step-interval si=1km). We loop over all firms 

and compute bilateral distances to all other firms in a second loop. But instead of storing the 

distance, we can directly update the distance-interval array, given the information of the 

distance. For the simple case of si=1, we just have to round the distance and get its integer 

value. This value represents the position of the distance in the distance interval, so we can 

increment the array at that position. By not storing the distances, we can reduce the space 

complexity from O(n
2
) to O(di) where di stands for the number of distance intervals. The 

time complexity of the algorithm is (n*(n-1)/2) since the two loops compute only unique 

bilateral distances. Since R is slow concerning loops, we use the R-package inline to run the 

loops directly in C what notably enhances the computational performance in practice.  

For testing the algorithms, we use a dual-core PC with 2x2 GH, 4 GB RAM and Ubuntu as 

operating system. Table 2 shows that for a set of 2000 firms, both algorithms show similar  

                                                      

3
 Source: Marcon & Puech (2003): 422. 

4
 Source: German Federal Ministry of Economics and Technology (2010). 

5
 Own calculations based on the number of firms listed in Bureau van Dijk’s Amadeus data-

base that belong to the logistics industry as defined by the European Cluster Observatory. 
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/* INPUT */ 

1: double[] lat; //array with the latitude position of each firm 

2:   double[] long; // array with the longitude position of each firm 

3: stepInterval =1; //discretizise distances in 1 km distance intervals 

4:   medianDistance=180; //define the median of bilateral distances 

5:  intervals= medianDistance/stepInterval; 

6:   double[] distArray=array(intervals) // initialize array with constant length 

/* CALCULATION */ 

7:  for (i=0 to length(lat)) do // interate over all entries 

8:  lat1 = lat[i]; // get latitude and longitude of the firm i 

9:  long1=long[i]; 

10:  j=i+1; 

11:  for (j=0 to length(lat)) do // concern only unique bilateral distances 

12:   lat1 = lat[j]; // get latitude and longitude of the firm j 

13:   long1=long[j]; 

14:   distance= getDistance (lat1, long1, lat2, long2); // compute the orthodromic distance 

15:   if (distance <= medianDistance) do  

16:    pos= (int) round(distance/stepInterval,0); // get the position of the array bin to be updated 

17:    distanceArray[pos]++; // Increment the array  

18:   end if 

19:   end for 

20:  end for 

21: smoothDistance =kde(distanceArray) //kernel-smooth the distance array 

Listing 2: Improved algorithm with constant memory requirements  

running times while the improved index is up to three times faster for larger sets. The short-

er running time arises from two points: First, the calculation of bilateral distances is not 

quadratic but reduced to (n*(n-1)/2) and second, the kernel density estimation is more effi-

cient since we directly start with a sorted array of occurrence at specific intervals. While the 

running time of the of the kernel density estimation for the standard algorithm is in O(n
2
) it 

is in O(di) for the improved algorithm, where di stands for the number of distance intervals.  

More obvious are however the differences in the RAM requirement that are constant for the 

improved algorithm (8640 byte) while they increase squarely for the standard algorithm. For 

a PC with 4 GB RAM, 7000 firms are the actual maximum.  

In comparison to other attemps that try to fit the DO-index for large data sets, such as 

reported in Elison et al. (2012), our proposed algorithm does not calculate an approximation 

of the index. Nonetheless, there is a slight deviation from the original computation since we 

round the bilateral distance between two firms at the kilometer level in line 16 of our code 

what affects the results of the kernel density estimation. However, the step of increasing the 

precision to meter or even centimeter level is trivial and does not influence the time or space 

complexity of our index. To calculate the index at a meter precision for instance, distArray 

is simply initialized as a two dimensional array, where the second dimension ranges from 0 
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to 1000. While this increases RAM requirements by a factor of 1000, the space complexity 

is still in O(di) and thus independent from the number of investigated firms. 

 

 2000 firms 5000 firms 7000 firms 

Standard Algorithm 
0.716 sec. 

0.18 GB 

5.357 sec.  

1.12 GB 

11.82 sec.  

2.19 GB 

Improved Algorithm 
0.572 sec.  

8640 byte 

2.513 sec. 

8640 byte 

4.856 sec. 

8640 byte 

Table 2: Runnig time and RAM requirements of calculating the DO-index for different firm 

populations.  

4 Cluster Index by Scholl & Brenner 

After having presented an efficient implementation of the DO-index we want to discuss a 

further computationally very efficient index for measuring spatial concentration that has 

been developed by Scholl & Brenner (2012).  

As mentioned in section 2, their index differs from the other distance based measures as it 

does not consider the occurrence of bilateral distances at or up to a distance but computes 

firm specific cluster values, called Di values, by summing up inverted distances: 

   
 

   
          

  
 

 

       

 

 

(2) 

 

The term          
  

 stands for all possible functions that compute the inverted orthodromic 

distance between two points so that close neighborhoods have a high influence on a Di value 

while the weight of large distances converges to zero. In the simplest case, this is the hyper-

bola function. Because Di values are normalized by the term 
 

   
 , the index is independent of 

the number of firms. 

Concerning the computational requirements, the DO-index and the index by Scholl & Bren-

ner seem to be rather similar: The running time of both indices is bounded by O(n
2
) while 

the RAM requirements of the index by Scholl & Brenner are not constant but are linear, 

bounded by O(n), where n stands for the number of observed firms (see listing 3). 
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/* INPUT */ 

1: double[] lat; //array with the latitude position of each firm 

2:   double[] long; // array with the longitude position of each firm 

3:  double[] clusterValueArray=array(lat.length()) // initialize array with linear length 

/* CALCULATION */   

4: for (i<lat.length()) do // interate over all entries 

5:  lat1 = lat[i]; // get latitude and longitude of firm i 

6:  long1=long[i]; 

7:  j=i+1; 

8:  for(j<lat.length()) do // concern only unique bilateral distances 

9:   lat2 = lat[j]; // get latitude and longitude of firm j 

10:   long2=long[j]; 

11:   distance= getDistance (lat1, long1, lat2, long2); // compute the orthodromic distance 

12:   distance = invertDistance(distance)/( lat.length()-1); // invert the distance and normalize value 

13:   clusterValueArray[i]+=distance; // update the cluster index array for firm i and j 

14:   clusterValueArray[j]+=distance; 

15:  end for 

16: end for 

17: smoothedValues =kde(clusterValueArray) //kernel-smooth the cluster-values array 

 

Listing 3: Cluster index by Scholl & Brenner (2012)  

 

However, the absence of Monte-Carlo simulations notably enhance the actual running time 

of the index for large data sets. The option of circumventing simulations is possible here 

since the index by Scholl & Brenner can compute independent random values of their index 

in the following way
6
:   

First, a large sample of random firms (or points), denoted by I is drawn. For each firm i   I 

an independent randomly drawn set Ji containing |I|-1 firms is built. This allows calculating 

for each firm i1 its Di value according to formula (2) using all firms j1…j|N|-1   J1. This pro-

cedure results in a benchmark set of Di values that are independent to each other as the Di 

value of each firm i is built by another set of random firms. Finally, the Kolmogorov-

Smirnov and Mann-U test are applied as a two sample test on the benchmark set and the Di 

values of the observed industry. By this, the index by Scholl & Brenner is able to test for a 

random distribution of firms without Monte-Carlo simulations (Scholl & Brenner (2012): 

14). 

In a nutshell, the computation of the benchmark values is quadratic but in comparison to the 

DO-index, this computation has to be done only once and not 1000 times. Furthermore, 

                                                      

6
 As described in Duranton & Overman (2005), the DO-index (as well as the majority of 

distance based methods) has to rely on Monte Carlo results since their sampling of distances 

is not independent of each other. See Duranton & Overman (2005): 1085 for more details. 
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since Di values are normalized by the number of firms, the same benchmark values can be 

used for different industries in the same area under investigation while the confidence bands 

of the DO-index are both area and industry specific. 

To show the different computational requirements of the DO-index and the index by Scholl 

& Brenner when applying them to big data, we construct a square with the approximate size 

of the United States of America and build different sets of hypothetical industries from a 

spatial Poisson process starting from 20,000 to 110,000 firms. Note, that we can only com-

pare the improved algorithm for DO-index here, since the number of firms is far too big for 

the standard algorithm. Table 3 shows that the RAM requirements are low and within the 

range of standard computers for both indices but the absence of Monte-Carlo simulations 

has a notable influence on the running of the index by Scholl & Brenner. Including the cal-

culation of benchmark values, the running time of the latter one is 4.67 hours while the DO-

index needs more than 24 days. 

 

 20,000 firms 50,000 firms 80,000 firms 110,000 firms 

Improved  

DO-Algorithm
7
 

11.17 h. 

 19,200 byte 

69.40 h.  

 19,200 byte 

176.06 h.  

 19,200 byte 

332.622 h.  

  19,200 byte 

Index by Scholl 

& Brenner
8
 

53.86 sec.  

 960,000 byte 

310.81 sec.  

 2.400,000 byte 

700.41sec.  

3.840,000 byte 

1217.02 sec.  

 5.280,000 byte 

Table 4: Runnig time and RAM requirements of computing the DO-index and the index by 

Scholl&Brenner for different industries.  

 

 

 

 

 

 

                                                      

7
 Running time includes 1000 Monte-Carlo simulations for each industry.  

8
 Number of firms for benchmark calculation: 200,000 (running time: 14516.60 sec.  

RAM requirements: 9.600,000 byte). 
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5 Conclusion 

In this paper, we have introduced an improved algorithm for the DO-index, the most estab-

lished distance based method for measuring concentration in spatial econometrics. The algo-

rithm shows a lower running time and constant space complexity allowing the computation 

of huge-datasets even with standard computational power. Our findings are not limited to 

the DO-index but the basic idea of the algorithm, condensing information to intervals, is 

applicable to most of the other existing distance-based methods as well.  

Furthermore, we have discussed the index of Scholl & Brenner (2012). Testing the im-

proved DO-index against the index by Scholl & Brenner, we have shown that the latter met-

ric is even more suitable for big data analysis since it does not require Monte-Carlo simula-

tions and is therefore much faster. 

The next steps are applying the methods to real world big data analysis such as a pan-

European analysis of spatial concentration. Furthermore, in order to make distance-based 

methods more applicable, R-packages of both indices will be published on the CRAN repos-

itory. 
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