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Abstract: 

This paper analyses the causal relationships in regional technological systems 
within a structural vector autoregression (SVAR) framework. Applying a data-
driven identification strategy based on Independent Component Analysis, it shows 
how the regional growth dynamics of economic, research, innovation and educa-
tional activities affect each other instantaneously and over time in five different 
industries. Referring to the type of industry and its knowledge base, expectations 
are derived on how industry-specific growth processes unfold. Knowledge on the 
causal relations among the various activities in such regional technological systems 
is of utmost relevance to the design and implementation of efficient policy instru-
ments. 
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1 Introduction 

The development of regional economies is closely related to the various technological 

activities taking place, such as economic, research, innovation, or educational activities. 

These activities, which compose a regional technological system, evolve and unfold in an 

endogenous and interdependent way. The interrelated dynamics are of utmost interest for 

regional scientists and policy makers who aim to foster regional development and to spur 

economic growth. Since policy instruments are usually tailored to specifically support one 

of the above activities, knowledge about the causal structure of the dynamic 

interdependencies in regional technological systems is essential to efficiently design, focus 

and implement policies. Does an increase in research automatically lead to more innovations 

and economic growth, as the traditional linear thinking would suggest, or do successful 

innovations generate economic opportunities and set incentives to perform further research? 

Are educational and innovation activities direct generators of economic growth? Are there 

industries in which economic growth (for instance, due to the expansion into export 

markets) lead to further innovation and workforce skilling? By ignoring questions like these 

policies often fail to reach their goal of contributing to regional development.  

In the literature, the relationships between the activities are mostly studied in isolation. For 

instance, a huge bulk of literature exists that investigates the link between regional 

innovation and economic growth (e.g., RODRÍGUEZ-POSE and CRESCENZI, 2008). However, 

the simultaneous and endogenous development with other interdependent activities, such as 

research efforts or university education, tends to remain unaddressed. They cannot be 

neglected if the causal structure in the growth dynamics of regional economies as coherent, 

multi-dimensional systems should be uncovered. Besides, only few studies exist which take 

an explicit industry-specific perspective (e.g., BUERGER et al., 2012). Therefore, the study at 

hand uses a structural vector autoregressive (SVAR) framework to address the issue of 

causality in systems of endogenous and interdependent variables. The models, which are 

estimated separately for five industries, go beyond simple temporal associations by 

recovering the instantaneous causal effects, which would be missed if only the lagged 

effects are considered (COAD et al., 2012).  

For identifying SVAR models, the literature usually refers to theory to derive the necessary 

identification restrictions. Because theory is not always unambiguous and assumptions like 

market clearance or perfect factor mobility are rather controversial, the insights from the 

results are often put into question. Only recently, data-driven identification techniques, 
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which do not rely on any a priori theoretical assumptions, have been developed in the 

machine-learning community (HYVÄRINEN et al., 2010). This paper uses a strategy based on 

Independent Component Analysis (ICA), as introduced by MONETA et al. (2012) into the 

economic literature. By exploiting the non-normality of residuals’ distributions to establish 

causal relationships, this strategy is particularly suited for the analysis of systems governed 

by economic shocks – the existence of fat tails in economic growth rate distributions has 

emerged as a stylized fact from a huge body of literature (see COAD, 2013 for an overview).   

The paper is structured as follows. The first part of Section 2 describes the vector 

autoregression methodology and discusses identification issues of the structural version. 

Furthermore, related empirical applications in the literature are summarized. The second 

part of Section 2 sketches a conceptual model of regional systems of technological activities 

and derives hypothesis on the industry-specific causal linkages among these activities. 

Section 3 presents the identification algorithm based on ICA in detail and discusses further 

empirical aspects concerning the estimation. Having provided an overview on the data in 

Section 4, in the subsequent Section 5 the results on the causal relationships are presented 

and discussed. Section 6 concludes by drawing policy recommendations. 

2 Literature 

2.1 Vector autoregression and related empirical applications 

A brief introduction into vector autoregression 

Vector autoregression (VAR) was advocated by Nobel-laureate Christopher SIMS (1990) to 

analyse fluctuations of interrelated variables in macroeconomic systems. Meanwhile, this 

multiple equation approach is widely used in empirical economics to investigate co-

evolutionary dynamics of systems of variables (MONETA et al., 2012; BUERGER et al., 

2012). By treating all variables as endogenous (LÜTKEPOHL, 2003), it is especially suited to 

analyse how (regional) economic systems adjust to exogenous shocks (ALECKE et al., 2010; 

PATRIDGE and RICKMAN, 2003). 

In the basic model, a system of K variables         is driven by a linear combination of 

the contemporaneous values of the other variables at time t, the past values (up to lag p) of 

all variables, and a vector of random disturbances: 

with B and    (       ) being K*K coefficient matrices and    a K*1 vector representing 

a zero-mean white noise error process (MONETA et al., 2012). By definition, the diagonal of 

B is set to zero. In the structural setup,    contain the autoregressive effects, while B 

                          (1) 
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contains the contemporaneous effects which occur within one time period t. Equation 1 is 

often transformed, by denoting       , into the standard SVAR form: 

Because equation 1 and 2 are endogenous, and hence, the direct estimation of the model 

biased, a reduced-form VAR model is often derived (MONETA et al., 2012): 

Equation 3 corresponds to K individual regressions of the variables    on the past values of 

their own and the other variables (STOCK and WATSON, 2001; GOTTSCHALK, 2001). 

     
     denotes a vector of random disturbances. In contrast to the structural version, 

this system of equations, which simply describes inter-temporal relations, can be directly 

estimated. Hereby, usually a constant term or further control variables are included. 

However, the reduced-from does not provide any information on the instantaneous effects. 

Rather,    mixes up B with the lagged effects   . This implies that only the temporal co-

evolution of a system can be observed (i.e. correlation), but not which variable directly 

drives the others within-the-period (i.e. causality) (COAD et al., 2012). 

Therefore, the reduced-form is an explorative tool, which is useful for time-series 

forecasting but not for policy analysis (PARTRIDGE and RICKMAN, 2003). Knowledge on the 

causal relationships is required to assess the expected effects of an exogenous policy 

stimulus to one variable on the other variables (MONETA et al., 2012; BUERGER et al., 

2012). Compared to the reduced-form VAR model, the structural equivalent allows to 

observe how random shocks unfold and propagate throughout the system (GOTTSCHALK, 

2001; MONETA et al., 2012). This is achieved by disentangling the contemporaneous effects, 

which occur when measurements have a lower time resolution than the causal mechanisms, 

from the lagged effects, which occur when the time resolution is higher (HYVÄRINEN et al., 

2010). Reversed causality, which often is prevalent in dynamic and endogenous systems, is 

not an issue, “because by tracing out the dynamics of the system to an unexpected shock the 

causality is pinned down and runs unambiguously from the shock to the other variables in 

the model” (GOTTSCHALK, 2001, 27). Thus, GOTTSCHALK (2001) and KUERSTEINER (2008) 

conclude that the shock analysis of the SVAR is the best alternative for situations where the 

variables are endogenously determined and where controlled experiments are not feasible.      

The main challenge lies in the identification of the SVAR model. The VAR parameters, 

which are directly estimable, are not sufficient to recover the parameters in B and   , which 

are much more in numbers (MONETA et al., 2012). Without any further assumptions, the 

same reduced-form model could support infinitely different SVAR models (GOTTSCHALK, 

2001). In the literature, two general approaches exist to identify the structural information. 

On the one hand, economic theory provides non-sample information that can be used as 

                        (2) 

     
             

           
     

                    
(3) 
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external identifying restrictions (STOCK and WATSON, 2001; LÜTKEPOHL, 2003). However, 

this approach faces several problems. Already SIMS (1980) noted that only few powerful a 

priori restrictions can be derived from theory. Often, competing theories exist, or one theory 

even allows alternative causal orderings of the variables (DEMIRALP and HOOVER, 2003; 

MONETA et al., 2012). This problem becomes aggravated in larger systems of variables, as 

the number of necessary restrictions grows exponentially with K. On the other hand, data-

driven approaches try to overcome the difficult search for credible restrictions by letting 

data speak (DEMIRALP and HOOVER, 2003). The approach used here is based on a Linear 

Non-Gaussian Acyclic Model (LiNGAM), which was introduced in the machine-learning 

community by SHIMIZU et al. (2006) and extended by HYVÄRINEN et al. (2010) to the 

SVAR framework. The identification becomes possible by making three basic assumptions 

(MONETA et al., 2012). First, the model is acyclical, i.e. there are no cycles or feedback 

loops in the causal relations within one time period. Second, the SVAR errors    are 

independent. Finally,    are not normally distributed. Taken together, the three assumptions 

suffice to fully recover the contemporaneous causal relations by using Independent 

Component Analysis. More precisely, the information of non-normality helps to identify a 

set of independent latent shocks. Subsequently, the estimates of B and    are recovered by 

searching for an acyclical causal ordering of the variables (MONETA et al., 2012). The 

exploitation of the information on the distributional characteristics of the error terms makes 

this approach particularly attractive for the analysis of economic systems. From a huge body 

of literature it has emerged as a stylized fact that their growth dynamics, independent of the 

level of aggregation, are not normally distributed but can be characterized by fat tails (see, 

for example, BOTTAZZI et al., 2011 for firms; DUSCHL and BRENNER, 2013 for regions; or 

FAGIOLO et al., 2008 for countries).  

 

Empirical applications of VAR/SVAR methodology in related fields 

The reduced-form VAR methodology has been introduced in regional science by 

BLANCHARD and KATZ (1992), who analyse the effects of demand shocks on employment, 

unemployment and wages. With ALECKE et al. (2010) and VEGA and ELHORST (2013) we 

highlight two recent studies which were inspired by this seminal contribution. Whereas the 

former investigates the linkages between regional labour market variables and internal 

migration flows among German states within a panel VAR setup, the latter extends the 

BLANCHARD and KATZ model using a dynamic spatial panel data approach to assess both 

the temporal and spatial propagation of labour demand shocks. Focusing more on the 

innovation aspects of regional development, BUERGER et al. (2012) analyse the co-evolution 

of patents, R&D and employment of German labour market regions separately for different 

industries.    

To fully grasp the causal relations among the variables, soon the structural version has 

become popular. For example, FRITSCHE and LOGEAY (2002) study unemployment 
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dynamics of the German national economy, while PATRIDGE and RICKMAN (2003) tackle 

the famous question in urban economics whether people follow jobs or jobs follow people. 

Both studies are based on simple labour-market models to deduce identification restrictions. 

The latter, for instance, assumes the equality of labour-demand supply, constant returns to 

scale, perfect labour and capital mobility in the long run.   

To provide an alternative to the theory-guided view, MONETA et al. (2012) has recently 

introduced a data-driven identification strategy, named VAR-LiNGAM, into the empirical 

economic literature. In two cases studies, the authors apply this methodology to understand 

the dynamics and causal relationships of different aspects of firm growth and the impacts of 

changes in monetary policy on macroeconomic variables. COAD et al. (2012) confirm the 

usefulness of this approach in a more comprehensive empirical contribution which seeks to 

understand how growth processes of high growth firms unfold.  

However, a data-driven identification strategy, which does not rely on often untenable 

theoretical assumptions, has not yet been applied at the level of regional economies. Hence, 

we position the present study within the existing body of literature as an advancement of 

BUERGER et al. (2012) by introducing the VAR-LiNGAM identification strategy of a 

structural VAR model into the literature of regional science and economic geography.    

2.2 Causal relations in the dynamics of regional systems of 

technological activities 

The framework of regional system of technological activities 

We conceptualize a regional technological system as consisting of four activity categories: 

economic, research, innovation and educational activities. The dynamics in economic 

activities are generated by the growth, exit or entry of firms. Research is measured by R&D 

conducted in firms, which expand or reduce their engagement in (private) research 

activities. Furthermore, a regional economy is often assessed by its innovative capacity or 

the innovation activities taking place in firms or the public research institutes. Finally, 

education assumes a key role in the modern knowledge-based economy.  

These activities are strongly interrelated and their dynamics evolve highly endogenously. 

The growth of one activity impacts on the growth of the others, which in turn propagates 

further throughout the system.
1
 Therefore, this section aims to derive hypotheses on the 

expected causal linkages among the four interdependent activities of a regional 

technological system by elucidating the underlying mechanisms. Besides, these linkages 

                                                      

1
 Because of this endogeneity, STORPER and SCOTT (2009, 157) note that the cross-section regression analysis of 

regional growth is problematic: “causalities are in practice both multidirectional and diachronic”. For a more 

extensive discussion on the use of structural models in the light of endogeneity to analyze regional growth, see 

BREINLICH et al. (2013). 
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depend on the industries under consideration. Already PAVITT (1984) observed that 

industries differ in their innovation patterns. Likewise, the literature on technological 

regimes (WINTER, 1984) and subsequent work on sectoral innovation systems (BRESCHI et 

al., 2000; MALERBA, 2002) have highlighted several dimensions along which industries 

systematically differ. More recently, the literature stresses industry-specific knowledge 

bases, which impact on innovation and learning processes. Here, ASHEIM and co-authors 

(e.g., ASHEIM and GERTLER, 2005) mainly distinguish between the analytical and synthetic 

knowledge base. Industries, in which the analytical knowledge base predominates, tend to 

rely more on scientific knowledge generated both internally and externally. Compared 

hereto, industries that are characterized by a synthetic knowledge base generate innovation 

through application and novel combinations of existing knowledge in the context of daily 

problem-solving situations (ASHEIM, 2007).   

This paper analyses and compares five industries. First, the chemical industry (CHEM) is a 

typical representative of science-based manufacturing. Mainly based on analytical 

knowledge, it strongly relies on systematic R&D for generating innovations (ASHEIM, 

2007). Additionally, patents play an important role to appropriate returns from innovations 

(BRESCHI et al., 2000). Secondly, the machine tool industry (MACH) can be classified as 

specialised supplier manufacturing (see PAVITT, 1984, or revised taxonomies such as 

BOGLIACINO and PIANTA, 2010). Foremost in Germany this industry consists of rather small 

and relatively specialized firms, which tend to rely on a synthetic knowledge base. Here, 

other appropriation methods than patents play a more important role. The electronics 

industry (ELEC) can be regarded as an industry that shares both the properties of science-

based and specialised supplier manufacturing and that combines elements from a synthetic 

and analytic knowledge base. In contrast hereto, scale-intensive manufacturing, like in the 

metal (META) or transportation (TRAN) industry, is characterized by a high concentration 

of rather large firms (BOGLIACINO and PIANTA, 2010). Yet the two mentioned industries 

differ in their knowledge base. Whereas synthetic knowledge prevails in TRAN (ASHEIM, 

2007), META is considered to share many characteristics of the analytical knowledge base 

of CHEM.  

Implications of the industries’ properties are considered in the subsequent discussion of the 

expected causal linkages among the different activities in regional technological systems. 

 

Expectations on the causal relations in the dynamics of the activities  

From the literature, expectations on bivariate causal linkages among the four different 

activities can be derived. Figure 1 summarizes the causal relations that below are discussed 

in detail.   
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Figure 1 Expected causal relations in the dynamics of the activities of regional 

technological systems (if the causal relations are expected especially in some industries, 

these industries are given in brackets) 

 

The link between research and innovation activities seems to be clear at a first glance. 

Private R&D is usually regarded as an important innovation generator both at the 

organisational and regional level (BRENNER and BRÖKEL, 2011; or COOKE et al., 1997 in 

the context of innovation systems). Hence, we expect that an increase in research activities 

leads to more innovations, especially so in science-based industries. However, the linear 

thinking has recently been challenged. Instead, a success-breeds-success phenomenon often 

is observed empirically (BUERGER et al., 2012). We argue that this is mainly an 

“engineering phenomenon” and can be observed in industries based on synthetic knowledge, 

such as MACH and TRAN. Here, innovations are often generated through learning-by-

doing and interactively with suppliers or customers. Once innovations promise economic 

success, investments in systematic R&D are intensified. In short, a positive causal effect can 

be inferred from theory into both directions, probably depending on the industry.    

The link between innovation and economic activities is less unambiguous. Extending the 

linear model, innovations which result from research are often seen as an important driver of 

economic growth. Focusing on the effects of employment, which is the preferred indicator 

of economic activities in this paper, an additional distinction between product and process 

innovation becomes necessary. Whereas positive employment effects are expected due to 

growth opportunities as a result of new products, negative effects may arise from 

rationalisation measures as a result of process innovations (see BUERGER et al., 2012 for a 

literature overview). Hence, the net effect remains an empirical question.  

A direct link is also expected for research and economic activities. In the empirical literature 

on firm growth strong evidence exists that growth in employment is associated with 

subsequent growth in R&D (COAD and RAO, 2010). As firms expand, they also tend to 

reinforce investments in R&D. We argue that the same rationale holds at the aggregate level 
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of regions. This stands in contrast to the main idea of endogenous growth theories which 

assume that economic growth is driven by accumulation of new knowledge through 

intentional R&D (e.g., ROMER, 1990). This link rather works indirectly (via innovations) 

and with some time lag.  

Considering educational activities, a clear relationship seems to exist with innovation 

activities. “Man- (or, better, brain-) power […] are needed for creating innovations” 

(BRENNER and BROEKEL, 2011, 12). For instance, graduates from higher educational 

institutes bring up-to-date knowledge into firms to enable innovation processes (BRENNER 

and SCHLUMP, 2013). Although being the most mobile group in society, a large fraction of 

graduates stay in their region of education after graduation (MOHR, 2002). We expect that 

the impact of higher education on innovations is strongest in industries which rely on new 

scientific knowledge, such as CHEM and ELEC.  

Furthermore, educational activities can be assumed to directly impact economic activities. 

The role of human capital as a main driver of economic growth (LUCAS, 1998) is widely 

acknowledged at the regional level (e.g., CRESCENZI, 2005). In this context it has been 

shown empirically that especially strongly expanding firms rely on the local presence of 

qualified graduates (DUSCHL et al., 2012). Brenner and SCHLUMP (2013) argue that regional 

growth is fostered by universities only if regional labour markets offer job opportunities. 

Otherwise, graduates tend to leave their region of education. Hence, we expect that the 

impact of educational activities on economic activities is strongest in industries where the 

supply of qualified labour is relatively scarce, which foremost should be the case in MACH.  

No direct link in either ways is expected to be found between educational activities and 

research activities. 

3 Empirical method 

 

This section introduces the VAR-LiNGAM identification algorithm using ICA. Both the 

ICA and the underlying assumptions for identification are described in more details. Finally, 

further aspects concerning the empirical implementation are discussed. 

 

The VAR-LiNGAM identification algorithm using ICA 

Once having estimated the reduced-form VAR regressions of equation 3, the goal is to 

recover    and thus B, which contains the contemporaneous causal relations. The strategy 

chosen here is to relate the VAR errors to the SVAR shocks by the expression      
     

(MONETA et al., 2012).    can be uniquely identified using ICA given three general 
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assumptions: the shocks    are independent and not normally distributed and the 

contemporaneous causal structure among    is acyclic. With the help of ICA, latent 

components, which are not directly observable, can be recovered from the observed random 

variables, provided that these components are statistically independent and not normally 

distributed (HYVÄRINEN and OJA, 2000). In other terms, the original independent 

components, representing economic shocks, are recovered by exploiting the information of 

non-normality in the error terms. However, the components are only found up to 

permutation, sign and scaling, meaning that they still allow various specifications of    

(MONETA et al., 2012). To finally establish a unique correspondence between the identified 

components and the variables, an acyclical causal structure is assumed. This implies that 

        should be lower triangular if the variables are ordered accordingly, i.e. the 

entries above the diagonal become zero (HYVÄRINEN et al., 2010). Hence, by arranging the 

variables and by finding a permutation of B for which the elements in the upper triangle are 

as close to zero as possible, the unique contemporaneous causal structure is identified. In the 

following section, we want to provide the intuition behind ICA and to discuss the three 

assumptions underlying the identification strategy.  

 

Independent Component Analysis 

ICA represents the basic building block of the SVAR identification strategy. As a 

probabilistic method it seeks to recover the original signals or processes, which cannot be 

directly observed, from measured signal mixtures. Because the latent, unobservable signals, 

also called independent components, usually contain important information, this method has 

become popular in various fields like digital image processing, biomedical signal 

processing, telecommunication, neurology, or finance (HYVÄRINEN and OJA, 2000; 

HYVÄRINEN, 2013). The most prominent example is the cocktail-party problem, which 

assumes two simultaneously speaking individuals and two microphones. The microphones 

can only record mixtures (the observed random variables) of both voices (the independent 

components). Because the microphones are located in different parts of the room, the voices 

are present with different weights in the recorded signal mixtures. By linearly transforming 

the random variables, ICA aims to find those components that are as statistically 

independent as possible. The central limit theorem implies that the sum of independent 

random variables moves closer to normality than any of its original variables (HYVÄRINEN 

and OJA, 2000). In other words, the additive mixture distribution is closer to normality than 

any of its independent components, which, consequently, can be found by maximizing some 

measure of non-normality. Various measures like kurtosis or negentropy exist which can 

handle both leptokurtic and platykurtic distributions, that means distributions with tails 

fatter or thinner than the normal one. Negentropy is more robust than kurtosis-based 

measures and from statistical theory the optimal estimator for non-normality, however it is 

difficult to compute as the densities of the independent components must be known 
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(HYVÄRINEN and OJA, 2000). With FastICA, a fixed point, semi-parametric ICA algorithm, 

the negentropy can be efficiently approximated (HYVÄRINEN, 1999).  

 

The three assumptions for full identification 

As mentioned above, the SVAR model can be uniquely identified given three general 

assumptions: the shocks    are independent and not normally distributed and the 

contemporaneous causal structure among    is acyclical.     

Statistical independence means that information of a value of one variable does not give any 

information on the value of the other variable.
2
 In economic terms,    are regarded as 

structural innovations or “primitive” exogenous forces, which affect the system at each time 

period and cause its dynamics and oscillations, but do not depend on the shocks before 

(GOTTSCHALK, 2001; MONETA et al., 2012). However, only mixtures of the structural 

economic shocks are observed. Therefore, testing for statistical independence only provides 

information on the independence structure of the decomposed components by ICA. Whether 

or not the true economic shocks are independent ultimately has to be judged on background 

knowledge on economic processes (MONETA et al., 2012). Thus, it is not clear whether this 

assumption is satisfied and we will empirically check it below. 

The independent components are recovered by maximizing their non-normality. However, 

this does not work if the components, here the economic shocks   , are normally distributed. 

In that case, their joint density would be completely symmetric, thus providing insufficient 

information for the decomposition of the observed signal mixtures (HYVÄRINEN and OJA, 

2000). This assumption, fundamentally empirical in nature (HYVÄRINEN et al. 2010), is 

supported by a huge body of literature which argues that economic shocks tend to deviate 

from normality (e.g., MCKELVEY and ANDRIANI, 2005). Non-normality usually remains 

even after controlling for other variables (MAASOUMI et al., 2007) or the lag structure 

(BOTTAZZI et al., 2012). Nevertheless, it is suggested to test for non-normality. Any form of 

non-normality is allowed (MONETA et al., 2012) and if only one independent component is 

normally distributed, ICA still is possible (HYVÄRINEN and OJA, 2000). To sum up, if the 

independent components deviate from normality, the information on their distribution can 

be exploited to identify the SVAR model using ICA (MONETA et al., 2012). The assumption 

of non-normality of economic shocks is supported by and will be additionally tested for our 

case. 

The full identification in form of a unique contemporaneous causal ordering of the variables 

in   , however, becomes only possible if acyclicity is assumed. The implied recursive 

structure restricts two variables from being their mutual cause in one time period, giving rise 

                                                      

2 In case of non-normal distributed random variables, this requirement is stronger than linear uncorrelatedness 

(MONETA et al., 2012).  
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to self-reinforcing feedback loops (COAD et al., 2012; MONETA et al., 2012): if a causes b, 

then b cannot cause a (HYVÄRINEN, 2013). With this additional assumption the permutation, 

sign and scaling indeterminacies of ICA can be fixed and the SVAR shocks    uniquely 

connected to the components of    in a one-to-one relationship. Therefore, B is arranged 

and permuted in such a way that the major causal directions receive more weight, whereas 

the relatively minor causal directions are minimized towards zero (MONETA et al., 2012; 

COAD et al., 2012). This leads to a causal ordering of the variables so that the shock to    

feeds into         within the same time period, the shock to    into        , and so forth 

(DEMIRALP and HOOVER, 2003). Even though acyclicity is a common assumption in the 

literature (MONETA et al., 2012), a cyclical alternative was proposed by LACERDA et al. 

(2008), which might be of interest in future research. Our theoretical discussion above has 

shown that only in the case of one pair of variables (research and innovation) we have 

theoretical arguments that lead us to expect a mutual causal relationship. Hence, this 

assumption seems to be not far from reality.  

 

Summary of the algorithm 

Before we highlight further aspects concerning its empirical implementation in the context 

of regional economic growth, Figure 2 summarizes the algorithm for identifying a structural 

VAR model. For a detailed mathematical description we refer to MONETA et al. (2012), 

SHIMIZU et al. (2006) or HYVÄRINEN et al. (2010).
3
 

 

                                                      

3
 The named authors also provide an implementation of the algorithm for R, which was adapted for the use in 

this paper (http://www.cs.helsinki.fi/u/entner/VARLiNGAM).  
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Figure 2 Summary of the identification algorithm 

 

Further empirical aspects concerning the implementation 

To remove the time-invariant region-specific effects (MONETA et al., 2012), growth rates 

     instead of levels      are used for the variables     : 

with r denoting the region. Next, the growth rates are rescaled to control for the inverse 

relationship between their size and variance, a universal feature in the growth of complex 

economic organisations (AMARAL et al., 2001). BOTTAZZI et al. (2012) model the scaling 

relationship directly by introducing a heteroskedasticity term into the stochastic growth 

process:  

                 (5) 

where    is a constant term that converges to the average growth rate. The error term can be 

written as            (  (        ̅ ))       , with           (      ) and  ̅  is the 

corresponding industry-specific arithmetic mean over regions and time. This expression 

takes into account that the functional form of heteroskedasticity might be non-linear, as 

recently observed in the firm growth literature (e.g., BOTTAZZI et al., 2011). Replacing the 

heteroskedastic error term and solving for       , we get: 

           (        )      (      ) (4) 
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    (  (        ̅ ))
 

(6) 

The last equation yields the rescaled and normalized growth rates  ̃             . Rescaling 

cleans the data from heteroskedasticity and normalization from the average growth trend. 

The latter controls for common macroeconomic shocks and cyclical effects (PARTRIDGE and 

RICKMAN 2003) and shifts the focus on the stochastic part, which usually contains the 

“behavioural relations” (LÜTKEPOHL, 2003). Anticipating non-normality, equation 7 with 

two unknown parameters is estimated by minimizing the absolute deviations (LAD): 

{         }           ∑|
         

    (  (        ̅ ))
|

 

 
(7) 

The rescaling step is performed for each industry, year and variable separately to account 

for possible differences in the variance-size relationship. 

Being more than a pre-requisite for the VAR-LiNGAM identification strategy, non-

normality also concerns the estimation of the single VAR equations. In this case, OLS may 

provide unreliable results. When errors follow a double exponential distribution, minimizing 

the absolute deviations is equivalent to the log-likelihood function. In all other cases, tail 

events affect less the estimators compared to OLS, in which the residuals are squared. 

Hence, LAD provides more reliable results than OLS in particular for fat-tailed error 

distributions (DASGUPTA and MISHRA, 2004; MAASOUMI et al., 2007).   

The selection of the number of lags p is based on various statistics, like the Akaike 

Information, the Hannan-Quinn or the Schwarz Criterion (LÜTKEPOHL, 2003). Here, all 

criteria advocate a 1-lag model. Because the selection of lag lengths might statistically 

collide with the determination of the causal ordering (DEMIRALP and HOOVER, 2003), we 

checked whether the latter stays robust when increasing the number of lags. No changes in 

the causal ordering are observed and the estimates remain very similar in a 2-lag model. 

Finally, p-values are estimated by bootstrapping with 500 replications. The bootstrap 

analysis is also used to assess the stability of the causal ordering of the variables. This is 

important because the effects of a shock might depend on the way the variables are arranged 

(LÜTKEPOHL, 2003). 

4 Data 

To measure the co-evolving activities of a regional technological system, namely economic, 

research, innovation, and educational activities, the following variables are constructed.  

Regional economic activities can be measured by the number of employees (Empl). The 

German Institute for Employment Research (IAB) provides industry-specific employment 
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data. Private research activities are approximated by R&D employees (BRENNER and 

BRÖKEL, 2011). These are defined as the occupational groups of engineers, chemists and 

natural scientists (BADE, 1987) and retrieved from the same database as Empl.
 4

 Education 

activities can be measured by the number of graduates from higher educational institutes 

(Grad). Data on graduates stems from the German Federal Statistical Office (destatis) and 

encompasses universities in a narrower sense as well as universities of applied science, that 

is, all graduates with a technical, diploma, bachelor and master degree. Innovation activities 

are reflected by patents (Pat). Although this indicator is not without problems, it is the most 

widely used in the literature (see SMITH, 2005 for an extensive discussion). All patents with 

at least one inventor address in Germany are taken from the European Patent Organization’s 

(EPO) Worldwide Statistical Patent Database, the so-called PATSTAT database. To assign 

the patents to the regions, the inventor’s addresses are used as they most closely represent 

the places where the innovations took place (BRENNER and SCHLUMP, 2013).  

Further control variables can be included into the reduced-form VAR model (equation 3). 

Here, two variables are chosen that account for the general regional socio-economic 

environment. First, the population density (Pop) represents a catch-up variable of several 

unobserved region-specific factors (FRITSCH and SLAVTCHEV, 2011). For instance, it 

measures urbanization economies, which are rather independent from the surrounding 

industrial structure (BUERGER et al., 2012). Second, the unemployment rate (UR) reflects 

the vitality of the regions’ socio-economic conditions. In the special case of Germany it also 

accounts for structural differences along the east-west and north-south divide. Data on both 

variables is obtained from destatis. Because of their asymmetry, they were first normalized 

by division through the mean value and then made symmetric by the transformation 

 ̃  (   ) (   ). 

The spatial unit of analysis are 270 labour market regions as defined by the IAB (BINDER 

and SCHWENGLER, 2006), which have been also used in the related study of BUERGER et al. 

(2012).
5
 All variables span the years 1999 to 2008. Furthermore, the four main variables are 

measured separately for various industries. The industries are represented by five broad 

groups, which result from aggregating up 19 distinct technological fields (BROEKEL 2007). 

The technological fields are used as an intermediary to match both data based on the 

International Patent Classification (IPC), like Pat, and data based on the standard industry 

classification (NACE Rev. 1.1), like Empl and RD, according to a current version of the 

concordance developed by SCHMOCH et al. (2003).
6
 Grad, distinguishable by their field of 

study, is assigned to IPC based on a professor-patent matching. Therefore, all German 

                                                      

4
 For statistical reasons, the number of R&D employees is subtracted from Empl, because they build their own 

variable (RD). 
5
 Using Moran’s I test statistics, spatial autocorrelation in the growth rates variables were not found to be 

present. 
6 The current version is an update of the concordance originally published by SCHMOCH et al. (2003) and was 

obtained directly from the author. For a full list see BRENNER and SCHLUMP (2013).  
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patent applicants with a professor title are identified and, if possible, affiliated to a 

university faculty. From this, the graduates can be assigned to the technologies according to 

the resulting contribution shares for each study field to the patents classes (BRENNER and 

SCHLUMP 2013). Figure 3 summarizes the matching and aggregation procedure of 

differently classified data, resulting in a unique database, which embraces multi-dimensional 

aspects for five clearly separated industries.
7
 

 

 

Figure 3 Data matching and aggregation 

 

Hence, industry-specific growth rates are constructed for all activity variables.
8
 In the 

previous section it is argued that the growth rates should be corrected for the general growth 

trend and heteroskedasticity. Optimizing equation 7 yields an industry- and year-specific 

normalization      and rescaling      parameter. Whereas the general growth trend varies for 

the variables and years, the rescaling parameter mostly ranges between the values of -0.2 

and -0.3, which confirms the literature (AMARAL et al., 2001; DUSCHL and BRENNER, 

2013). 

5 Results 

Testing the three identifying assumptions 

The non-normality assumption of    is assessed by three test statistics: the Shapiro-Wilk 

(SW) normality test, which is generally known to have a high test power; the Kolmogorov-

Smirnov (KS) test against normality, which is more robust against outliers; and the Jarque-

                                                      

7 The bivariate correlation coefficients between the growth variables  ̃      are all below the threshold of 0.70 

and, except for the pair Empl and RD, tend to be rather small. Hence, multicollinearity is not an issue and the 

variables seem to reflect different facets of regional economic development. 
8
 To ensure statistical reliability, growth events which are based on less than five units of their corresponding 

level variable are excluded from the analysis. An unbalanced panel is possible, unless in one single region-year 

the values for all variables are available (COAD et al., 2012). 
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Bera (JB) test, which focuses on the skewness and kurtosis. Finally, the flexible 5-parameter 

Asymmetric Exponential Power (AEP) distribution (BOTTAZZI and SECCHI, 2011), often 

used in the literature to describe fat-tailed economic growth processes, is fitted to the four 

recovered components. Because the normal distribution is a special case of the AEP-density 

family, the likelihood-ratio (LR) test can be used to assess whether the normal distribution is 

significantly outperformed in terms of asymmetry and/or tail behaviour. Table 1 shows the 

number of components for which the normality tests do not reject the null hypothesis. 

Above it is noted that ICA is still possible if only one independent component is normally 

distributed (HYVÄRINEN and OJA, 2000). This condition holds consistently for each industry 

except for META if the KS-test is used. Hence, our theoretical expectation that non-

normality is prevalent in most cases is confirmed empirically.   

 

Table 1 Validity of the three identifying conditions  

Condition Non-Normality Independence Acyclicity 

Test SW-test KS-test JB-test LR-test GG-test Bootstrapping 

n 4 4 4 4 6 500 

CHEM 1 (25%) 1 (25%) 1 (25%) 1 (25%) 1 (17%)  194 (39%) 

ELEC 0 (0%) 1 (25%) 0 (0%) 0 (0%) 1 (17%) 232 (47%) 

MACH 1 (25%) 1 (25%) 0 (0%) 1(25%) 1 (17%)  218 (44%) 

META 0 (0%) 2 (50%) 0 (0%) 1 (25%) 0 (0%) 253 (51%) 

TRAN 0 (0%) 1 (25%) 1 (25%) 0 (0%) 0 (0%) 264 (53%) 

 

The independence assumption is assessed by a test statistic, as recently developed by 

GRETTON and GYÖRFI (2010), which is based on kernel estimates of the distance between 

the joint densities and the product of the marginal densities. Here, each of the six possible 

pairings of the recovered components is tested. In none of the industries more than one pair 

of components is identified to be statistically dependent at a 5%-significance level (see 

Table 1). Because ICA has proven to be robust against some degree of dependence 

(HYVÄRINEN, 2013), this condition can be said to hold.  

The acyclicity assumption cannot be tested directly. Therefore, its validity is assessed by 

bootstrapping in order to see whether the causal ordering of the variables remain robust. The 

analysis reveals that in around half of the 500 replications the same causal ordering of the 

variables results. Considering that the probability that one specific ordering occurs by 

chance is    ⁄     ⁄        , the results provide some evidence against randomness 

in the ordering.
9
 The frequency distribution of all causal orderings (see Fig. X1 in the 

appendix), resulting from the bootstrapping analysis, shows that there exist at maximum one 

                                                      

9
 We thank Alex Coad for pointing this out. 
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or two alternative orderings. Hence, as expected, cyclicity plays a minor role but cannot be 

excluded completely. 

 

Results 

All assumed conditions being validated, the SVAR model can be recovered from the 

reduced-form VAR model. The estimated coefficients for the five industries are depicted in 

Table 2, while the contemporaneous and lagged effects among the variables are visualised in 

Figure 4. Significant relationships at the 5%-level are connected by an arrow indicating the 

causal direction of the impact.  

 

Table 2 Estimation results from SVAR model 

  B     

  Empl RD Pat Grad Empl RD Pat Grad N 

CHEM Empl -    .080 -.054 .015 -.015 511 

 RD .695* -  -.065 -.054 .083 .004 .024  

 Pat -.049 .114* - .172* -.016 -.022 -.308* .413*  

 Grad .021   - -.012 .032 .003 -.230*  

ELEC Empl -   .021 .016 .040* .003 -.008 1352 

 RD .989* -  -.018 .042 .059* .012 .023  

 Pat .109 .024 - .117* -.060 .038 -.212* .117  

 Grad    - .017 -.025 -.009 -.134*  

MACH Empl -    .075* -.003 .018* .019 913 

 RD 1.128* -  .001 .016 -.006 -.007 -.014  

 Pat .091 -.039 - .016 .032 -.042 -.251* -.080  

 Grad .093*   - .015 -.015 .015 -.186*  

META Empl -    .048 .019 -.011 -.027 266 

 RD .939* -  .009 .131 .003 .029 .025  

 Pat -.418 .197* - .187 -.157 -.011 -.238* -.095  

 Grad .015   - .108 -.029 .029 -.268*  

TRAN Empl - .460*  .060 .014 .019 -.001 -.019 425 

 RD  -  -.089 -.052 .069 .052* -.008  

 Pat .050 -.043 - .127 .338* -.146 -.168* .143  

 Grad    - .020 -.018 -.005 -.249*  

p-values: * < 0.05 
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Figure 4 The contemporaneous causal and the lagged effects. Positive relationships are 

indicated by a solid line, negative ones by a dashed line. 

 

The purely horizontal connections from t-1 to t (or the diagonal entries for    in Table 2) 

represent the temporal autocorrelations of the variables. Whilst Grad and Pat show a 

negative autocorrelation, Empl and RD tend to show a positive, however, less often 

significant autocorrelation. This reflects the different nature of the variables. Growth of the 

latter means changes in the regular and research-related stock of employees. The positive 

autocorrelations indicate the existence of some sort of self-reinforcing mechanisms. In 

contrast hereto, growth in patents and graduates stems from differences in the yearly 

realizations of stochastic outcome variables. The negative autocorrelations indicate the 

existence of year-to-year fluctuations that are much larger than the year-to-year changes due 

to the overall development. Although the temporal autocorrelation patterns provide 
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interesting insights, the focus of this research is on the causal relationships in the dynamics 

among the variables. Here, differences between the industries immediately become evident.  

Increasing RD leads to more Pat in CHEM and META. For both industries, a traditional 

linear thinking seems to apply, which argues that systematic research leads to innovations. 

For ELEC, the link is still positive, yet insignificant. In contrast hereto, no positive 

contribution of RD on Pat is found within-the-period for MACH and TRAN. Rather, more 

Pat leads to more RD in the next period for TRAN, and indirectly via Empl for MACH. 

Hence, the more engineering-oriented industries seem to be driven by success: innovations, 

not necessarily resulting from systematic R&D, provide incentives to increase subsequent 

research efforts. 

In MACH, innovations are also found to be an important driver of economic growth. Pat 

translates into more Empl in the subsequent time period. Here, the positive effects of new 

growth opportunities due to product innovations clearly surpass the negative ones of 

rationalization endeavours as a result of process innovations. An indirect contribution of Pat 

to Empl is observed in TRAN via RD. The negative forces tend to prevail in META, 

however, not significantly. In the remaining industries, the two opposite forces seem to be 

neutralized.  

The growth of research and economic activities goes strongly hand in hand. In most 

industries, first the stock of regular employees grows (Empl), followed by a change into the 

same direction of research-related employees (RD). This result reproduces findings from the 

empirical literature on firm growth. Only for TRAN, a reversed relationship is observed, 

resembling the traditional assumption from the endogenous growth theories that economic 

growth is driven by accumulating new knowledge through intentional research activities.  

The instantaneous causal effect of Grad on Pat is positive for all industries, however 

significantly only for CHEM and ELEC. This confirms our expectations that educational 

activities are an important factor for innovation activities, especially so in industries which 

rely on new scientific knowledge. In CHEM, the link even remains significant over time. 

We have to highlight in this context that Grad is our only variable that is connected to 

university activities. Hence, we cannot be sure whether this variable works (only) as a direct 

operationalization of university education or (also) as an indirect operationalization of 

university research (which is highly correlated with university education in space). The 

strong link to the patent activity suggests that university research is the more important part 

in our analysis. 

This is further supported by the fact that Grad is found to influence neither Empl nor RD. 

Whilst the lack of a significant relationship with RD is not surprising, the lack of a 

significant relationship with Empl is unable to support our expectation that expanding firms 

rely on the local presence of qualified graduates. Hence, firms either source their highly-

qualified employees supra-regionally, or employment growth generally depend less on 
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university graduates (see, for example, DUTZ et al. (2011), who find that even innovation-

driven employment growth mainly depends on the unskilled workforce). For MACH, even a 

reversed causal link is observed. Here, fluctuations in economic activities and demand in 

labour might send signals both to students for timing their graduation and to universities for 

aligning their study and course program. 

To summarize, the following general model of how regional technological systems develop 

can be sketched for CHEM and META: increasing economic activities (Empl) imply 

expanding research activities (RD), which then translate into more innovations (Pat). For the 

science-based industry CHEM, educational activities (Grad) become an additional factor 

regarding innovations. A different, rather success-driven pattern is observed for MACH and 

TRAN: past innovations generate opportunities to expand economic activities, which also 

facilitate the widening of research activities (MACH), or they set incentives to perform 

further research, which also demands hiring more regular employees (TRAN). The new 

employees, in turn, increase research activities in the following time period. ELEC, finally, 

stands in-between. On the one hand, the expansion of innovation activities relies on 

educational activities. On the other hand, more research activities in the past increase both 

research and economic activities in the present. Because economic activities also increase 

research activities within-the-period, a highly dynamic process, similar to the notion of 

circular and cumulative causation (MYRDAL, 1959), might unfold in this industry. 

 

6 Conclusions 

This paper applies a new identification strategy for SVAR models to the analysis of regional 

systems of technological activities. In contrast to the approaches used so far, which often 

make untenable prior theoretical assumptions on the existence of causal effects, the 

identification of causal relationships is achieved empirically by exploiting the information 

of non-normality (HYVÄRINEN et al., 2010). This data-driven approach is particularly useful 

for analysing dynamics in systems like regional economies, which are well-known to show 

fat-tailed growth rate distributions. More precisely, non-normality enables the recovering of 

the independent components by ICA from the errors of a reduced-form VAR model. 

Assuming acyclicity in the contemporaneous effects, a causal ordering of the variables is 

possible. Finally, the lagged effects are corrected by taking into account the 

contemporaneous effects (HYVÄRINEN et al., 2010; MONETA et al., 2012).    

The literature agrees upon the usefulness of SVAR models as a tool for policy analysis in 

situations where controlled experiments are not feasible (GOTTSCHALK, 2001; PARTRIDGE 

and RICKMAN, 2003; MONETA et al., 2012). COAD et al. (2012) suggest that policy 

interventions to be efficient need to focus on the causal mechanisms: “a well-placed 
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intervention will target one particular variable to have predictable effects on other variables 

as the shock propagates throughout the system. Without knowledge on causal relations, a 

misplaced intervention might have no effect (or even perverse effects) if the variable 

targeted has no causal effect or unexpected effects) on the other variables”. Curing the 

symptoms does not necessarily cure the diseases (PEARL, 2009). Analysing the dynamics in 

a regional system of technological activities, this papers draws the following policy 

conclusions.   

Our variable Grad is found to foster patenting especially in science-based industries, like 

CHEM or ELEC. Hence, in these industries policy makers that seek to increase innovation 

activities should stimulate higher university activities. It can be assumed that fitting research 

activities at universities are especially relevant. If innovation, and ultimately structural 

change (e.g., DOSI, 1988), is the aim, one should facilitate economic and research activities. 

This, however, is only true in industries which follow a linear model, like META or CHEM. 

In the rather engineering-oriented and success-driven industries like TRAN or MACH, 

policy makers are advised to directly stimulate innovation activities and the transfer of 

innovations, which then would lead to economic growth. Finally, by stimulating research 

activities in ELEC, a highly dynamic economic growth process is expected to unfold. 

Briefly stated, this paper suggests that sound policies should be based on the industry-

specific causal relationships among the regional technological activities. 

Besides helping to specify industry-specific policy instruments, the results might also have 

implications for national industrial policies. Which industries are most suitable to pick to 

become large export-oriented national champions? This strongly depends on how much a 

policy stimulus, which propagates throughout the whole system of technological activities, 

translates into longer-term success. For ELEC, the highly dynamic feedback loop between 

research and economic activities was already highlighted. But also MACH and TRAN seem 

to be promising candidates. In MACH, innovations lead to subsequent economic growth, 

which in turn instantaneously contributes to the skilling of the workforce and to increase 

research activities, while economic growth by itself shows a self-reinforcing dynamic. In 

TRAN, innovations set incentives to further research, instantaneously translating into 

economic growth, which in the next period feeds back to more innovations. Policy stimuli 

for innovations might contribute that these industries to become large export-oriented 

national champions. 

To yield the desired outcomes, (regional) policies need to be designed and implemented on 

basis of a profound understanding of the underlying mechanisms. This paper might guide 

further research in uncovering the mechanisms that led to the observed causal effects. 
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Appendix 

 

  

 
 

 

 

Figure X1 Frequency distribution of alternative causal orderings resulting from the 

bootstrapping analysis (n=500). The number indicate the ordering of the variables, with 

1=Empl, 2=RD, 3=Pat and 4=Grad. 
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