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SUMMARY
We evaluate therapy-induced molecular heterogeneity in longitudinal samples from high-risk, hormone-re-
ceptor positive/HER2-negative breast cancer patients with residual tumor after neoadjuvant chemotherapy
from the Penelope-B trial (NCT01864746; EudraCT 2013-001040-62). Intrinsic subtypes are prognostic in pre-
therapeutic (Tx) samples (n = 629, p < 0.0001) and post-Tx residual tumors (n = 782, p < 0.0001). After neo-
adjuvant chemotherapy, a shift of intrinsic subtypes is observed from pre-Tx luminal (Lum) B to post-Tx
LumA, with reverse transition back to LumB in metastases. In a combined analysis of 540 paired pre-Tx
and post-Tx samples, we identify five adaptive clusters (AC-1–5) based on transcriptomic changes before
and after neoadjuvant chemotherapy. These AC-subtypes are prognostic beyond classical intrinsic subtyp-
ing, categorizing patients into groups with excellent prognosis (AC-1 and AC-2), poor prognosis (AC-3 and
AC-4), and very poor prognosis (AC-5, enriched for basal-like subtype). Our analysis provides a basis for
an extended molecular classification of breast cancer patients and improved identification of high-risk pa-
tient populations.
INTRODUCTION

Molecular subtyping of tumor biopsies1,2 revealed that breast

cancer constitutes a heterogeneous set of diseases with different

biological features, requiring tailored therapeutic strategies.3 In

addition, genomic signatures have been developed to predict

the response to neoadjuvant chemotherapy (NACT), with a strong

contribution of immune gene expression.4–6 For luminal breast

cancer, clinical strategies7,8 are based on prognostic assessment

of tumor samples before therapy9–11 to identify those patients

who can be treated with endocrine therapy alone, without addi-

tional chemotherapy. These approaches have led to considerable

advances in the clinical management of breast cancer with ther-

apeutic algorithms in place for the different subtypes. However,

molecular changes in the tumor after neoadjuvant therapy as
232 Cancer Cell 43, 232–247, February 10, 2025 ª 2025 The Author
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well as tumor heterogeneity12 constitute a major clinical prob-

lem,13 and the subsequent treatment of therapy-resistant recur-

rent and metastatic disease remains challenging.

Post-neoadjuvant adaptive treatment has become the stan-

dard for therapy-resistant HER2-positive14 and triple-negative

breast cancer,15 leading to improvement of overall survival.

Response-guided therapy based on clinical assessment of early

response to NACT leads to improved outcome in hormone-re-

ceptor (HR) positive breast cancer.16 The pathological complete

response rate (pCR) of luminal tumors to neoadjuvant chemo-

therapy is generally lower compared to other subtypes.17,18 It

has recently been shown that in high-risk luminal tumors, addi-

tion of immunotherapy to NACT increases the pCR rate,19,20

and it will be important to define the subgroup of patients who

will derive most benefit from this neoadjuvant approach.
s. Published by Elsevier Inc.
eativecommons.org/licenses/by/4.0/).
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Luminal tumors consist of two different subtypes: luminal A

(LumA) tumors have a low proliferation rate and are typically

treated with endocrine therapy alone. In contrast, luminal B

(LumB) tumorsare characterizedby increasedproliferation and tu-

mor aggressiveness and therapeutic strategies for these tumors

often include chemotherapy, followed by endocrine therapy. The

definition of LumA and LumB tumors is based on gene expression

profiling, including the PAM5021 approach as well as absolute

intrinsic molecular subtyping (AIMS)-based subtyping.22 In addi-

tion, other molecular assays as well as proliferation markers

such as Ki6723 are used. Adaptive changes of Ki67 can be used

to decide whether patients should receive endocrine therapy or

chemotherapy followed by endocrine therapy.24,25 Due to the

limited availability of paired samples, little is known about the

changes of molecular subtypes during and after therapy. There-

fore, an improved understanding of molecular adaptation to neo-

adjuvant chemotherapy could generate new advanced options

for classification of tumors and tailored therapeutic strategies.

In this study, we evaluated a large clinical trial cohort of hor-

mone HR-positive, HER2-negative tumors from the post-neoad-

juvant trial Penelope-B.26 The trial cohort was selected for pa-

tients with chemotherapy-pretreated high-risk tumors with high

clinical risk after neoadjuvant chemotherapy,27 and all had resid-

ual disease after NACT. We hypothesized that neoadjuvant

chemotherapy could lead to changes in molecular subtypes

and underlying changes in gene expression. Analyzing these al-

terations may improve our understanding of therapy resistance

mechanisms in luminal breast cancer. To achieve this, we
focused on longitudinal gene expression changes in samples

collected at baseline (pre-Tx), after neoadjuvant chemotherapy

(post-Tx) and at relapse in metastatic disease. As a first step,

we evaluated changes in molecular subtypes, particularly the

molecular transition between LumA and LumB tumors, during

therapy and in pairedmetastatic biopsies. For an advanced clas-

sification of these therapy-resistant tumors, we identified genes

that significantly differed in paired pre- and post-therapeutic

biopsies. Our findings indicate that these genes can be used in

the pretherapeutic setting to identify different prognostic groups

of clinically chemotherapy resistant breast cancer.
RESULTS

Study cohort and baseline clinical data
All 1,250 patients randomized (Figure 1A) had HR-positive,

HER2-negative tumors with invasive residual disease after

NACT and a CPS-EG (clinical stage, pathologic stage, ER-status

and tumor grade) score27–29 of R3 or of R2 with positive lymph

nodes. Gene expression data were obtained from 629 pre-ther-

apeutic and 782 post-therapeutic samples (Figure 1B). For 540

patients paired data from both time points were available. In

addition, samples from 43 distant relapses were analyzed; in

29 patients, data from three time points were available. The

Kaplan-Meier plot (Figure 1C) shows that Penelope-B is a

high-risk cohort with no difference between the two post-

NACT therapy arms, as previously reported.26 The baseline char-

acteristics are shown in Table S1.
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Figure 1. The Penelope-B clinical trial

cohort was used for evaluation of longitudi-

nal biomarkers

(A) Study outline. Inclusion parameters were pa-

tients with hormone-receptor positive, HER2-

negative early breast cancer and no pCR after

neoadjuvant chemotherapy and a CPS-EG score

of eitherR 3 or ofR 2 with ypN+. Based on these

inclusion criteria, 1,250 patients were randomized

to post-neoadjuvant palbociclib vs. placebo.

(B) Consort statement for main biomarker cohorts.

Gene expression analysis was performed in 629

pre-Tx core biopsies and 782 post-Tx samples.

For 540 patients, paired pre- and post-Tx gene

expression data were available. These three co-

horts of 629, 782, and 540 patients were used for

the main analyses. In addition, 43 samples from

metastatic tumors were analyzed. For 29 patients,

longitudinal samples pre-Tx, post-Tx, and meta-

static disease were available.

(C) Kaplan-Meier analysis of all patients with

available biomaterial, indicating that the inclusion

criteria for the Penelope-B trial define a high-risk

luminal breast cancer cohort. In the biomarker

cohort, there is no significant therapy effect of

post-NACT palbociclib vs. placebo, similar to the

complete study cohort. See also Table S1.
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Changes in molecular subtypes of breast cancer in pre-
and post-Tx samples
We evaluated the prevalence and prognostic role of AIMS sub-

types in 629 tumor samples before chemotherapy. Figure 2A

shows the distribution of subtypes in pre-Tx biopsies, with

324 (51.51%) LumA, 270 (42.93%) LumB, 22 (3.50%) HER2-

enriched (HER2E), 11 (1.75%) basal-like (BasalL), and 2

(0.32%) normal-like (NormL) tumors. As expected, these sub-

types were highly prognostic (Figure 2B, p < 0.0001, log

rank test).

As shown in Figure 2C, the distribution of the AIMS subtypes

differed significantly in 782 post-Tx samples, with 76.6% LumA

and only 8.2% LumB tumors. The NormL group was increased

to 10%, while still only few tumors were HER2E (3.3%) or BasalL

(1.9%).

In Kaplan-Meier analysis of post-Tx AIMS subtypes (Fig-

ure 2D), we observed a strong prognostic effect (n = 782) with

a better prognosis for NormL and LumA, a worse prognosis for

LumB tumors, and a very poor prognosis for BasalL and

HER2E tumors. Figure S1A shows the tumor content in post-

NACT samples, which was lowest in the NormL subtype. A

paired analysis of 540 tumors with pre- and post-NACT samples

shows the transition from LumB to LumA as main alteration dur-

ing NACT (Figure 2E). Patients whose tumors changed from

LumB to A had a similar prognosis for the first 24 months as

consistently LumA tumors (Figure 2F), with a separation of the

curves after 24 months. In a separate analysis of all 232 pre-Tx

LumB tumors, those tumors with a persistent LumB phenotype

had a poor prognosis compared to tumors that changed to

LumA during NACT (Figure S1B).
234 Cancer Cell 43, 232–247, February 10, 2025
Reverse subtype transition in metastatic disease
We also analyzed 43 metastatic samples, which were mainly

LumB (24 of 43, 55.81%). The second largest group were

HER2E tumors (11 of 43, 25.58%) and only 9.30% were LumA

(Figure 2G). For 29 patients, we evaluated the temporal evolution

of molecular subtypes in three longitudinal samples before and

after NACT and in metastatic disease. We found that the AIMS

subtype transition from LumB to LumA during the NACT was

reversed back to LumB in patients who developed metastatic

disease (Figure 2H).

Adaptive profiling of paired tumor samples
As a next step, we analyzed alterations in gene expression

during NACT. We identified 335 differentially expressed genes

(DEG) comparing pre-Tx and post-Tx samples (false discovery

rate [FDR] < 0.05; logFC ± 0.58, Figures 3A and S2). Hierarchi-

cal clustering of all 1,080 samples (540 pre-Tx and 540

post-Tx) based on expression of these 335 DEGs led to a clear

separation of pre- and post-Tx samples and identified addi-

tional clusters of tumors (Figure 3B). Within the pre-Tx sam-

ples, four main clusters (‘‘adaptive clusters’’ AC-1 to AC-4)

and a small group of BasalL/HER2E (AC-5) tumors could be

separated. Interestingly, Kaplan-Meier analysis showed major

differences in prognosis for the five AC-groups (p = 0.0001,

Figure 3C), indicating that DEGs before and after therapy

could be the basis for new prognostic groups of breast cancer.

Patients in two large groups of tumors (AC-1 and AC-2) dis-

played an excellent prognosis, while those in cluster AC-3

and AC-4 had a poor prognosis. In addition, the small group

of BasalL/HER2E tumors (AC-5) was characterized by a very
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Figure 2. Molecular breast cancer subtypes

are changed during neoadjuvant therapy

and in metastatic disease

(A) Prevalence of AIMS subtypes in pretherapeutic

core biopsies (pre-Tx, n = 629).

(B) Prognostic relevance of AIMS subtypes in pre-

Tx core biopsies (p < 0.0001, log rank test).

(C) Distribution of AIMS subtypes in post-thera-

peutic residual tumors (post-Tx, n = 782).

(D) Prognostic relevance of AIMS subtypes after

neoadjuvant chemotherapy (p < 0.0001).

(E) Sankey diagram. Paired analysis of 540 tumors

before and after therapy showing the transition

from LumB to LumA as the main alteration during

neoadjuvant therapy.

(F) Survival analysis comparing tumors with sub-

type transition and tumors with constant AIMS

subtypes.

(G) Analysis of AIMS subtypes in metastatic

tumors. Also see Figures S1 and S6.

(H) Sankey diagram of longitudinal AIMS-subtypes

in n = 29 patients with no response to chemo-

therapy and three longitudinal tumor samples

indicating a transition from LumB to LumA in the

chemotherapy phase that is reversed inmetastatic

disease.
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poor prognosis. The patient clusters AC-6 to AC-9 in the post-

Tx samples were not prognostic (Figure 3D). A standardized

centroid-based classifier for the AC-1 to AC-5 subgroups re-

sulted in a similar prognostic performance in the cohort of

540 pre-Tx samples alone, without integration of paired

post-Tx samples (Figure S2).

Evaluation of prognostic genes and gene sets in pre-Tx
and post-Tx samples
We evaluated the prognostic role of the 335 DEGs in pre-Tx and

post-Tx samples. The results are shown in Figures 4A–4D as a

scatterplot based on the prognostic values of all individual genes

that are differentially expressed between pre-Tx and post-Tx

and are also prognostic in either the pre-Tx or the post-Tx

cohort. The individual genes are distributed into four quadrants

based on their concordant or discordant prognostic impact in

the pre-Tx and the post-Tx cohort. Figure 4E shows the expres-

sion of selected genes in pre-Tx and post-Tx samples; the prog-

nostic impact of these genes pre-Tx and post-Tx is shown in Fig-

ure 4F. Interestingly, the genes OGG1, DNAJC14, POLR2D,
Cance
LIG4, NME1, and NTHL1 show a very

strong positive prognostic impact in pre-

Tx biopsies, but this positive prognostic

effect is not observed in post-Tx sam-

ples. In contrast, the genes TEK,

TNFRSF1B, TIPARP, and VCAM1 are sig-

nificant for good prognosis in the resec-

tion specimen and for poor prognosis in

the biopsy.

Gene set enrichment analysis (GSEA)

revealed differences in molecular path-

ways regulating cellular processes such

as proliferation, DNA repair and EGF/
PDGF signaling before and after NACT (Figure S3A). In addition,

we performed a GSEA analysis for prognostic gene sets indepen-

dently in the pre-Tx and the post-Tx samples (Figure S3B). Im-

mune gene sets had a positive impact on prognosis both in pre-

Tx and post-Tx samples, and proliferation-related gene sets had

a negative impact on prognosis in pre-Tx and post-Tx tumors.

Interestingly, some gene sets displayed an opposite prog-

nostic value in the pre-Tx and post-Tx cohorts (Figure S3B, lower

right and upper left quadrant). For example, DNA-repair showed

a positive prognostic association in pre-Tx, but a negative asso-

ciation in post-Tx samples and IL6-Jak-Stat-signaling showed a

negative prognostic association in pre-Tx but a positive associ-

ation in post-Tx biopsies.

The contribution of different gene clusters to the five AC-sub-

types is shown in Figure S4. Gene cluster 1 is the most important

gene cluster for distinction between the good prognosis groups

AC-1 and AC-2 vs. the poor prognosis groups AC-3 and AC-4.

This gene cluster contains genes involved in interferon (IFN)-

response, estrogen-signaling, and DNA repair/stress response.

Gene cluster 2 contains proliferation markers and distinguishes
r Cell 43, 232–247, February 10, 2025 235



Figure 3. Analysis of molecular alterations

induced by neoadjuvant chemotherapy

leads to identification of adaptive clusters

as new prognostic subgroups of breast

cancer

(A) Comparison of pre-Tx and post-Tx tumors

samples with 320 of 335 differentially expressed

genes shown. 15 genes known to be highly

inducible by preanalytical factors in surgical

samples are removed from this figure, they are

included in Figure S2.

(B) Heatmap containing 1,080 tumor samples

(540 pre-Tx and 540 post-Tx) as well as 335

differentially expressed genes. Pre-Tx samples

are divided into 5 distinct groups (adaptive clus-

ters AC-1 to AC-5), post-Tx samples are divided

into four different clusters. Genes are divided into

four main gene clusters, reflecting the differences

between pre- and post NACT samples as well as

between different AC sample clusters.

(C) Kaplan-Meier analysis of the five different

adaptive clusters AC-1 to AC-5 in 516 pre-Tx tu-

mors (log rank p value < 0.0001). Pre-Tx tumors

that cluster into AC-6 to AC-9 (n = 24) are not

included; a complete clustering of all 540 pre-Tx

tumors based on centroids is shown in Figure S2.

(D) Kaplan-Meier analysis of the four different

adaptive clusters AC-6 to AC-9 in 445 post-Tx

tumors (log rank p value 0.27, not significant).

Post-Tx tumors that cluster into AC-1-5 (n = 90)

are not included. Also see Figures S2, S6 and

Video S1.
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between LumA and LumB tumors. Gene clusters 3 and 4 contain

genes that are typical for stromal tissue, normal breast tissue,

and immune cells, these clusters show mainly differences

between pre-Tx and post-Tx samples. For a more extensive

analysis of the four main gene clusters, we performed a parallel

evaluation of the genes included in these clusters in the TCGA

(The Cancer Genome Atlas) cohort (Figure S5), showing the

contribution of stromal genes typical for normal breast tissue

to gene clusters 3 and 4.

Contribution of intrinsic subtypes to the adaptive
subtypes
As a next step, we combined information about pre-Tx and

post-Tx AIMS groups with the adaptive clustering. There was

a defined pattern of pre-Tx AIMS subtypes in the different

AC-groups (Figures 5A–5F): AC-1 consisted mainly of LumB-

to-A tumors that had a LumB phenotype before therapy and

switched to LumA in residual tumors (Figures 5A and 5B).

This pattern was also observed in the AC-3 group (Figures 5A

and 5D)—with the important difference that AC-1 had an excel-
236 Cancer Cell 43, 232–247, February 10, 2025
lent prognosis and AC-3 had a poor

prognosis (as shown in Figure 3C).

Similarly, AC-2 consisted of LumA-to-A

tumors (pre-Tx LumA tumors that re-

mained LumA in residual tumors,

Figures 5A and 5C), and was very similar

to AC-4 (Figures 5A and 5E), but also

with a highly significant difference in

prognosis with a poor prognosis for
AC-4 (Figure 3C). The AC-2 tumors had a good prognosis, sug-

gesting a less aggressive biological phenotype prior to therapy.

In contrast, AC-4 tumors express markers of a LumA pheno-

type before and after chemotherapy but have a poor prognosis

(Figure 3C). The aggressive biology of the AC-4 tumors is not

reflected in the LumA subtype of these tumors. The AC-5 group

was enriched for aggressive subtypes BasalL, HER2E, or LumB

in the post-NACT sample (Figures 5A and 5F), suggesting a pri-

mary resistant phenotype not affected by chemotherapy. Fig-

ure 5G summarizes the relationship between AC-subtypes

and the corresponding pre-Tx and post-Tx AIMS subtypes.

To further characterize the difference between AIMS-subtyp-

ing and adaptive subtyping, we focused our analysis on those

tumors with a defined AIMS subtype (LumA or LumB) as well as

a defined subtype transition (LumA-to-A or LumB-to-A). As

shown in Figures 6A–6D, all four subgroups defined by AIMS

subtype or AIMS changes consisted of different AC-subtypes

with prognostic relevance. These subtypes could not be identi-

fied by traditional intrinsic subtyping, indicating that AC-clus-

ters provide additional prognostic information beyond pre-Tx



Figure 4. Differences in prognostic genes

are observed in pre-Tx biopsies and post-

Tx residual tumors

(A–D) Comparison of genes relevant for prognosis

in pre-Tx and post-Tx samples. All 335 differen-

tially regulated genes are displayed in a scatter-

plot according to their impact on disease free

survival in either pre-Tx biopsies (x axis) or post-Tx

resections (y axis). The inverse hazard ratio (1/HR)

is shown, so that genes that are linked to improved

survival in both pre-Tx and post-Tx tumors are

located in the upper right quadrant. In panels A

and D, the genes are color coded according to

both the main gene clusters 1–4 and the sub-

clusters (1A–1D) from the gene clustering shown in

Figure 3 (withmore details in Figures S4 and S5). In

(B), genes are color coded only according to main

gene clusters 1–4, while in (C) information from

functionals pathways has been applied for color

coding (complete details are given in the supple-

mental information).

(E) Differential expression of selected genes in

pre-Tx (biopsy; orange) and post-Tx (resect; blue)

samples (bars: standard error).

(F) Cox regression analysis of selected genes

measured in pre-Tx (orange) and post-Tx (blue)

samples, with a focus on those genes with

different prognostic effects before and after neo-

adjuvant chemotherapy (bars: 95% CI). Also see

Figures S3–S5.
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AIMS subtypes and also beyond combined pre- and post-Tx

subtypes.

Figures 6E–6J shows a comparison of adaptive subtyping and

AIMS-based intrinsic subtyping (for pre-Tx and post-Tx sam-

ples). Important parameters for a prognostic factor are a large

size of the low-risk group (Figures 6E–6G) in combination with

a low event rate in this low-risk group (Figures 6H–6J). For

both parameters, adaptive subtyping is superior to intrinsic sub-

typing: The low-risk adaptive clusters AC-1 and AC-2 cover a to-

tal of 52.77% of patients (285 of 540 patients) with a combined

event rate of 2.1% (6 events in 285 patients). In contrast, the

best subtype of classical intrinsic subtyping, pre-Tx LumA,

covers 51% of patients but still has an event rate of 15.4%.

For post-Tx subtyping, the LumA group covers 76.59% of pa-

tients, with an event rate of 22.87%. The 3-year event rates for

the different subgroups are shown in Table S4.

Interaction with post-neoadjuvant palbociclib therapy
The Penelope-B trial has evaluated palbociclib compared to pla-

cebo as a post-neoadjuvant therapy. The complete trial cohort
Cance
and the biomarker cohort (Figure 1C),

showed no invasive disease-free survival

(iDFS) survival difference between

the two therapy arms. As shown in

Figures S6A and S6B, the difference in

prognosis of pre-Tx LumA and LumB

was observed similarly in the placebo

(n = 287) and the palbociclib arms (n =

307). For the post-Tx subtyping (n =

782) the prognostic difference between
post-Tx LumA and B was larger in the placebo arm (Figure S6C),

compared to the difference observed in the palbociclib arm (Fig-

ure S6D). However, the test for interaction was not significant in

the entire cohort of post-Tx tumors.We further evaluated the four

main groups of AIMS subtype changes between pre-Tx and

post-Tx tumors (Figures S6E–S6I). No significant difference be-

tween treatment arms was detected for pre-Tx LumB tumors,

pre-Tx LumA tumors, and post-Tx LumA tumors (Figures S6E–

S6I). A significant difference (p = 0.04) between the placebo

arm and the palbociclib arm was observed only in the small

group of tumors (n = 48) that were LumB after NACT (post-Tx

LumB tumors, Figure S6G). The prognostic relevance of the

AC-subtypes was similar in the palbociclib and the placebo

arm (Figures S6J and S6K), and the test for interaction between

therapy arm and AC-subtypes was not significant.

Comparison of AC-subtypes with three established
gene expression signatures
We compared the AC-subtypes with the three established prog-

nostic signatures recurrence score (RS),30 Genomic Grade Index
r Cell 43, 232–247, February 10, 2025 237
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Figure 5. A systematic comparison shows that defined patterns of AIMS subtype adaptation during neoadjuvant chemotherapy are reflected
in the different AC subtypes

(A) Distribution of AIMS subtypes for individual tumors based on the combined heatmap (as shown in Figure 3) AIMS1: Aims subtype of the primary sample (either

biopsy or resection), AIMS2: subtype of paired corresponding sample.

(B–F) Different patterns of subtype transition and adaptation during neoadjuvant chemotherapy in the five different adaptive clusters, AC-1 (B), AC-2 (C), AC-3 (D),

AC-4 (E), and AC-5 (F); with very similar patterns in AC-1 and AC-3 (both mainly LumB-to-A) as well as in AC-2 and AC-4 (both mainly LumA-to-A). AC-5 consists

mainly of highly aggressive HER2E and BasalL subtypes. (abbreviations: A = LumA; B=LumB; BHBL = LumB+HER2E + BasalL; NoL = NormL).

(G) Sankey diagram showing the grouped pre- and post-Tx AIMS subtypes of 540 patients with the corresponding AC-groups.
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(GGI),31 and the Sensitivity to Endocrine Therapy Index (SET).32

These signatures were selected because RS is an established

molecular diagnostic test, GGI is a prototype of a proliferation-

related signature and SET is an important endocrine-response

related signature.

We have transferred the genes of the three signatures to the

HTG system (Figure S7), defined three Penelope-B patient

groups for each signature based on tertiles, and evaluated the

performance of the AC-subtypes from Figure 3C in these tertiles.

The three gene expression signatures itself are prognostic in the
238 Cancer Cell 43, 232–247, February 10, 2025
Penelope-B cohort (Figures 7A–7C). As expected, RS and GGI

showed a high correlation with the proliferation gene cluster 2

and SETwith the estrogen-response gene cluster 1C (Figure 7D).

The correlation of the three signatures with gene cluster 1, in

particular with subcluster 1D, that provides the most prognostic

information in the Penelope-B cohort is very limited (Figure 7D). If

we focus on patient groups defined by high, low, or intermediate

RS, GGI, or SET, we could show that in each of these groups, the

AC-clusters provide highly significant prognostic information (all

p values < 0.0001; Figures 7E–7G).
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Figure 6. AC-clusters provide additional prognostic information beyond pre-Tx AIMS subtypes and also beyond combined pre- and post-Tx

subtypes

(A–D) Prognostic relevance of AC clusters in homogeneous AIMS subtypes (A) AC-subtypes in 255 baseline LumA tumors; (B) AC-subtypes in 224 LumA-to-A

tumors; (C) AC-subtypes in 232 baseline LumB tumors; (D) AC-subtypes in 159 LumB-to-A tumors. AC-clusters are shown based on the clustering in Figure 3.

(E–G) Prevalence of the different subtypes for (E) pre-Tx AIMS (n = 629), (F) post-Tx AIMS (n = 782) as well as (G) adaptive subtyping (n = 540).

(H–J) Event rate for iDFS in the different subtypes for (H) pre-Tx AIMS, (I) post-Tx AIMS as well as (J) adaptive subtyping. See also Table S4.
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UMAP as an additional statistical approach
From a bioinformatical point of view, one of the most interesting

findings of our study was that the focus on 335 DEGs in pre-Tx

vs. post-Tx tumor samples allowed the identification of highly

significant prognostic groups by a comparably simple clustering

analysis (Figure 3). To reconfirm and validate that this prognostic

information can be generated based on gene expression infor-

mation, we repeated the analysis using uniformmanifold approx-

imation and projection (UMAP)33,34 as an independent method

for dimension-reduction. As shown in Figure 8, a UMAP of
1,080 patient samples resulted in a separation of pre-Tx and

post-Tx samples as well as in the separation of three UMAP

clusters within the pre-Tx sample cohort (Figure 8A). The

UMAP clusters are distinct from the classical LumA vs. LumB

subtypes (color coding in Figure 8A), but they show a consider-

able overlap with the AC-Subtypes (color coding in Figure 8B),

with a clear separation of the good prognosis AC-1 and AC-2

subtypes in the UMAP analysis. The three UMAP clusters (Fig-

ure 8C) show differences in patient prognosis (Figure 8D), with

an excellent prognosis of UMAP-cluster 1.
Cancer Cell 43, 232–247, February 10, 2025 239



Figure 7. AC-subtypes provide significant prognostic information in comparison with three established gene signatures in breast cancer

(recurrence score (RS), Genomic Grade Index (GGI) and Sensitivity to Endocrine Therapy Index (SET)

(A–C) Prognostic relevance of RS (A), GGI (B), and SET (C) in the Penelope-B cohort (n = 540). Each gene expression signature is divided into three tertiles (high,

intermediate and low risk), these groups are prognostic in the Penelope-B cohort, with high significance for RS and SET (p < 0.001) andmoderate significance for

GGI (p = 0.02).

(D) Comparison of the main Penelope-derived gene clusters with the three established gene signatures RS, GGI and SET. The gene clusters from the Penelope-B

analysis (as shown in Figure 3) were analyzed in RNA-seq data of 812 ER positive breast cancer samples from TCGA for their correlation to established gene

signatures (recurrence score, GGI, and SET-index) as shown in the scatterplots. Scatterplots with Pearson correlation values R > 0.5 are highlighted: Both

recurrence score (R = 0.827) and GGI (R = 0.991) display strong correlation with gene cluster 2 (cell cycle/proliferation) from the Penelope-B analysis. Subcluster

(legend continued on next page)

ll
OPEN ACCESS Article

240 Cancer Cell 43, 232–247, February 10, 2025



ll
OPEN ACCESSArticle
Evaluation in independent biopsies from Penelope-B as
well as the SCAN-B cohort
A total of 89 pre-Tx samples fromPenelope-B had not been used

in the analysis that identified the AC-1 to AC-5 subgroups,

because these samples did not have a paired post-Tx tumor

sample. We used these independent 89 pre-Tx samples as an

additional cohort to evaluate the prognostic relevance of the

centroid-based AC-subgroups. This small independent cohort

showed a similar prognostic result as the training cohort (Fig-

ure S8A), the analysis of the complete cohort of 629 pre-Tx sam-

ples is shown for comparison in Figure S8B.

In addition, we performed a survival analysis of centroid-

based AC-clusters in a cohort of 3,764 ER+ Her2- tumors from

the SCAN-B cohort35 (Figures S8C and S8D, with an enlarged

y axis in D to show minor differences between AC-subtypes).

The main limitation of the SCAN-B analysis is the low event

rate of only 222 events in 3,764 patients (5.9%), which is much

lower compared to the high-risk Penelope-B cohort. The AC-5

subgroup shows a poor prognosis also in SCAN-B. There aremi-

nor prognostic differences between AC-2 and AC-4, with an

improved prognosis for AC-2, similar to Penelope-B. The AC-3

subtype, which shows a LumB to A transition during neoadjuvant

therapy in the Penelope-B cohort, is not observed in SCAN-B.

DISCUSSION

Themain findings of our investigation are that (1) classical breast

cancer subtypes are not stable under therapeutic pressure, (2)

that therapy-induced molecular adaptation provides new op-

tions for classification of breast cancer using the adaptive clus-

ters (AC-1-5), and (3) that a subset of genes, particularly genes

from DNA repair related pathways, have a strong positive prog-

nostic role predominantly in the pre-Tx biopsies.

Intrinsic subtyping of breast cancer is the state-of-the-art

approach to identify different subtypes.36 Previous prognostic

and predictive approaches have mainly evaluated biomarkers

in pretherapeutic biopsies.8,37 In research, serial biopsies before

and after treatment have been used both in breast cancer38–40 as

well as other cancer types.41–44 In breast cancer this approach

has been especially useful in the context of neoadjuvant trials

of both endocrine therapy24,45–48 and adaptive neoadjuvant

chemotherapy regimens.25,49,50

For interpretation of our results, it is important to appreciate

that the post-neoadjuvant Penelope-B cohort is a highly

selected patient cohort comprised of tumors with an aggressive

biology and a high tumor stage before and after NACT (measured

as part of the CPS-EG score). All tumors were treated with neo-

adjuvant chemotherapy regimens, and all had residual disease

after NACT. This cohort allows us to focus on high-risk patients

with a need for improved clinical strategies, but it is also a limita-

tion for validation in other clinical cohorts.
1C from the Penelope-analysis whichwas characterized by estrogen responsive g

RS30 and GGI31 were adapted from genefu package67, and SET32 from Sinn 201

(E–G) The AC-subtyping derived from Figure 3C (n = 516) was tested in three grou

RS, GGI, and SET). The AC-clusters were highly significant in all 9 subgroups (p <

middle: intermediate risk tertile, low: high risk tertile). (F) AC-subtypes in three risk

high risk tertile). (G) AC-subtypes in three risk groups based on SET (top: high risk

the high-risk patient group is included in the SET low tertile, because SET has a
An important result is the finding that a therapy-induced tran-

sition between LumA and LumB subtypes is common in breast

cancer treated with neoadjuvant therapy. For subclonal muta-

tions, it has been shown that they are present already before

NACT,51 suggesting that the potential to adjust the subtype dur-

ing chemotherapy and in metastatic disease is present in the

primary biopsy. Aggressive subclones in a tumor are reduced

during NACT, which is observed as a LumB-to-A transition.

But in some tumors, the aggressive subclones may regrow as

LumB metastatic disease. However, it should be emphasized

that the positive prognostic impact of the post-NACT LumA

phenotype as well as the LumB-to-A transition suggests that

the reverse transition to LumB is only relevant in the small subset

of patients with metastatic disease. The presence and absence

of aggressive subclones could also explain the different prog-

nostic value of the identified genes in pre- and post-Tx tumors.

As a result of this clonal selection process induced by thera-

peutic pressure, a metastatic breast cancer cohort could be

very different from an early breast cancer cohort. Interestingly,

we observed an effect of palbociclib in the small group of tumors

that remained LumB after NACT, the subtype that is enriched in

metastatic biopsies. This observation could contribute to the

explanation why a metastatic cohort, as treated in the

Paloma-3 study,52 might respond differently to CDK4/6 inhibi-

tors, compared to a post-NACT or adjuvant cohort, as treated

in Penelope-B26 and Pallas.53,54

While most of the tumors in the HR+/HER2- Penelope-B

cohort were LumA or LumB, our study has also identified a small

group of BasalL or HER2E tumors with particularly poor out-

comes, which is clinically relevant to identify patients for more

aggressive therapy approaches, including combinations of

immunotherapy and chemotherapy, as investigated in the KN-

75619 and the Checkmate7FL.20 In a previous study of 16 pairs

of primary tumor and metastasis, all metastases had the iden-

tical subtype as the primary tumor, but in this cohort, themajority

of samples were non-luminal and there was only one pair of

luminal tumors.55

In our study, we used paired biopsies to identify the genes that

are relevant for adaptive clustering. Once these genes were

identified, however, the prediction for new samples could be

done using a centroid-based classifier on the pretherapeutic bi-

opsy, suggesting that the prognostic biological program is

already present in the pre-Tx samples.

We focused on intra-tumoral, therapy-induced longitudinal

heterogeneity by identifying those genes that are differentially

expressed before and after therapy in paired samples. Clustering

of tumors based on these genes improved information about

long-term outcome after neoadjuvant chemotherapy. The results

were very similar using the cluster analysis that was themain bio-

informatical approach as well as the additional UMAP analysis,

indicating that different methods for dimension-reduction lead
enes displays a strong correlation (R = 0.805) with the SET-index. Calculation of

9.68 Detailed code is provided in the supplemental information.

ps for each established signature (high, intermediate, low; based on tertiles for

0 .0001). (E) AC-subtypes in three risk groups based on RS (top: low risk tertile,

groups based on GGI (top: low risk tertile, middle: intermediate risk tertile, low:

tertile, middle: intermediate risk tertile, low: low risk tertile). For the SET index,

n inverse scale. See also Figure S7.
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Figure 8. An independent dimension reduc-

tion by UMAP analysis based on 335 differ-

entially expressed genes identifies similar

prognostic subgroups as the adaptive clus-

ter analysis

(A) A UMAP was generated for 1080 tumor sam-

ples (540 paired pre- and post-Tx samples) with

euclidean metric for the set of 335 DEGs between

pre-Tx and post-TX samples. As shown in (A),

post-Tx samples (gray triangles) are separated

from the pre-Tx samples (dots). Within the pre-Tx

samples, there are three clearly separated groups:

one small group of BasalL tumors (red) and two

larger groups, each of them consisting of amixture

of LumA (dark blue) but also LumB (light blue) tu-

mors. Therefore, this UMAP based classification is

different from the traditional intrinsic subtypes.

(B) Identical UMAP as in (A) with different color-

coding representing the 5 AC-subtypes. The good

prognosis AC-subtypes AC-1 and AC-2 are

combined in one cluster, while the poor prognosis

subtypes AC-3 and AC-4 are combined in the

second main cluster.

(C and D) Kaplan-Meier analysis of 526 pre-Tx

tumors included in the UMAP clusters 1, 2, and 3

(C), with very good prognosis for tumors in cluster

1. The UMAP analysis shows that once the 335

differentially expressed genes are identified,

prognostic groups become evident that are not

covered by the LumA and LumB classification.

See also Figure S8.
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to similar results, if the analysis is based on differentially ex-

pressed genes. The adaptive subtypes have an additional prog-

nostic value that goes beyond AIMS subtyping. They are also

different from the established gene expression signatures RS,

GGI, and SET. These three gene expression signatures are prog-

nostic in the Penelope-B cohort, but the AC-clusters add addi-

tional prognostic information in patient subgroups within three

tertiles defined by RS, GGI, or SET.

Using this approach, we defined five adaptive clusters in the

Penelope-B cohort: Two clusters (AC-1 and AC-2), containing

more than half of the patients within the cohort, have an excellent

prognosis. In contrast, tumors within the AC-3, AC-4, and AC-5

subgroups have high event rates of 55%, 39%, and 75%, respec-

tively, suggesting that the AC clustering is able to identify those

tumors with an aggressive biology. Of the five AC-subtypes,

only the AC-5 group has a high overlap with already known

BasalL/HER2E subtype. For the other four subtypes AC-1 to

AC-4, the prognostic effects cannot be explained by an associa-

tion with LumA or LumB phenotypes. The AC-2 vs. AC-4 sub-

groups are very similar regarding the classical intrinsic subtypes;

the majority of these tumors have a LumA subtype that remains

LumA after chemotherapy (LumA-to-A). However, AC-2 has an

excellent prognosis and AC-4 has a poor prognosis. This sug-

gests that even in consistently LumA tumors there are aggressive

subsets that contribute to poor outcome. Likewise, the AC-1 vs.

AC-3 subtypes have major differences in patient prognosis but

a very similar LumB-to-A phenotype. The prognostic differences

within this LumB-to-A subgroup can only be identified by AC-

clustering and may be relevant for patient therapy strategies.

The most relevant prognostic differences between AC-1/AC1

vs. AC3/AC-4 are mainly driven by the genes in gene cluster 1,
242 Cancer Cell 43, 232–247, February 10, 2025
which includes highly prognostic genes involved in DNA-repair

and chemotherapy response, including OGG1,56 DNAJC14,57

POLR2D,58 LIG4,59 NME1,60 and NTHL1.61 Interestingly, these

genes are among the genes with the highest positive prognostic

impact of all genes investigated in pre-Tx biopsies, suggesting

that a pre-Tx activation of DNA-repair genes (indicating genomic

instability) might be a good basis for reduction of aggressive cell

clones by neoadjuvant chemotherapy, even in the setting of a

non-pCR.

Limitations of the study
Limitations of our study include the ongoing follow-up, the

restricted biomaterial in pre-Tx samples and the inclusion of

only no-pCR patients. The pCR rate in HR+/Her2- tumors is typi-

cally comparably low, but this limitation needs to be considered

for future validation approaches. Penelope-B has used the CPS-

EG system27,62 and data on residual cancer burden (RCB)18 is

not available. For comparison of pre-Tx and post-Tx samples,

it is important to realize that that some genes are known to be ar-

tificially induced by surgery.63,64 An additional validation of the

AC-subtypes is currently challenging, because there are no

similar cohorts available for high-risk HR-positive breast cancers

non-responding to NACT. This is evident from the analysis of AC-

subtypes in the SCAN-B cohort, which showed a poor prognosis

of AC-5 as well as some prognostic differences between AC-2

and AC-4 but could not address the difference between AC-1

and AC-3, suggesting that a prior neoadjuvant therapy inducing

a LumB-to-A phenotypic switch might be relevant for those sub-

types. SCAN-B is predominantly a cohort of tumors treated with

adjuvant therapy, which excludes an adaptation of tumors from

LumB-to-LumA during the neoadjuvant phase. Penelope-B did
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not show a statistically significant benefit of post-neoadjuvant

palbociclib, in contrast to the high efficacy in the metastatic

setting.52,65 However, the small group of patients with LumB tu-

mors after NACT (n = 48) potentially derived benefit from palbo-

ciclib, which needs to be validated in additional cohorts.49

In summary, we have shown that classical breast cancer sub-

types can change during neoadjuvant chemotherapy, predomi-

nantly from LumB to LumA. While post-Tx LumA tumors have

an improved prognosis as a group, a change back to LumB is

observed in metastatic disease, which could be explained by

re-expansion of aggressive and resistant cell clones. Based on

a systematic comparison of longitudinal samples before and af-

ter chemotherapy, we have identified additional adaptive clus-

ters (AC-1 to AC-5) of breast cancer. The AC-subtypes could

be a basis for new therapeutic strategies and for more

precise assessment of patient prognosis. These therapeutic

strategies might include additional post-neoadjuvant treatment

options (e.g., with antibody-drug conjugates or post-neoadju-

vant chemotherapy), intensified neoadjuvant treatment (e.g.,

with addition of neoadjuvant immunotherapy) aswell asmodified

neoadjuvant and post-neoadjuvant concepts involving agents

that specifically target DNA repair, including PARP inhibitors.

These results need to be validated in additional high-risk

cohorts, for example in ongoing post-neoadjuvant trials.
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J.S., Prat, A., and Haibe-Kains, B. (2016). Genefu: an R/Bioconductor

package for computation of gene expression-based signatures in breast

cancer. Bioinformatics 32, 1097–1099. https://doi.org/10.1093/bioinfor-

matics/btv693.

68. Sinn, B.V., Fu, C., Lau, R., Litton, J., Tsai, T.H., Murthy, R., Tam, A.,

Andreopoulou, E., Gong, Y., Murthy, R., et al. (2019). SET ER/PR: a robust

18-gene predictor for sensitivity to endocrine therapy for metastatic breast

cancer. NPJ Breast Cancer 5, 16. https://doi.org/10.1038/s41523-019-

0111-0.
69. Vallon-Christersson, J. (2023). RNA Sequencing-Based Single Sample

Predictors of Molecular Subtype and Risk of Recurrence for Clinical

Assessment of Early-Stage Breast Cancer. Mendeley Data V3. https://

doi.org/10.17632/yzxtxn4nmd.3.

70. Cancer GenomeAtlas Network (2012). Comprehensivemolecular portraits

of human breast tumours. Nature 490, 61–70. https://doi.org/10.1038/

nature11412.

71. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L.,

Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S.,

and Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-

based approach for interpreting genome-wide expression profiles. Proc.

Natl. Acad. Sci. USA 102, 15545–15550.

72. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Tumor biopsies and data from the

Penelope clinical trial

Loibl et al.26 NCT01864746; EudraCT 2013-001040-62

Data generated from tumor biopsies from

the Sweden Cancerome Analysis

Network-Breast (SCAN-B;) population-based

cohort (NCT02306096)

Vallon-Christersson J.69 https://data.mendeley.com/datasets/
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Gene expression data generated as part of

the TCGA consortium for validation

of AIMS algorithm
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stddata__2016_01_28/data/BRCA/
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Critical commercial assays

Oncology Biomarker mRNA Panel, ILM Kit, 1x96 HTG Molecular Diagnostics,

Tucson, Arizona, US

916-002-096

Deposited data

Data for this study GitHub https://github.com/tkarn/Penelope-HTG

R script with analysis code GitHub https://github.com/tkarn/Penelope-HTG

Output files GitHub https://github.com/tkarn/Penelope-HTG

Data, output and analysis code Zenodo https://doi.org/10.5281/zenodo.14192594

Software and algorithms

R version 4.2.1 The R Project for Statistical

Computing

https://www.r-project.org

Package for AIMS R/Bioconductor https://bioconductor.org/packages/

release/bioc/html/AIMS.html

ggsankey package (v 0.0.99999) GitHub https://github.com/davidsjoberg/ggsankey

LIMMA (v3.50.3) in R for analysis of

differential gene expression

R/Bioconductor https://bioconductor.org/packages/

release/bioc/html/limma.html

ComplexHeatmap package (v2.13.1) R/Bioconductor https://bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

GSEA software, version 4.2.3 Subramanian et al.71 https://www.gsea-msigdb.org/gsea/

index.jspMSigDB

The Molecular Signatures Database (MSigDB Liberzon et al.72 https://www.gsea-msigdb.org/gsea/msigdb

Statistical analysis software SAS version 9.4 (SAS Institute Inc., Cary, NC)
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study design and clinical cohorts
The Penelope-B trial (NCT01864746; EudraCT 2013-001040-62) is a prospective, multicenter, multinational, randomized, double-

blind, placebo-controlled phase 3 clinical trial in patients with hormone-receptor positive breast cancer without complete response

to taxane-containing neoadjuvant chemotherapy with high-risk residual disease.26 An overview on the complete study setup is

shown in Figure 1. The aim of the trial was to investigate the addition of the CDK4/6 inhibitor Palbociclib after the neoadjuvant therapy

for one year to standard adjuvant endocrine therapy. High-risk residual disease was predefined based on CPS-EG score, a combi-

nation of the pre-treatment clinical stage and post-treatment pathologic stage (CPS) aswell as estrogen receptor status (E) and tumor

grade (G). Tumors with a CPS-EG scoreR3 or with a score of 2 and ypN1-stage were defined as high-risk residual disease. Patients

must have receivedNACT for at least 16weeks (including 6weeks of a taxane) followed by definitive surgery (including resection of all

clinically evident invasive disease and ipsilateral axillary lymph node dissection or sentinel node biopsy) and radiation as indicated

according to local guidelines. Further details of patient recruitment have been published.26
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After the completion of neoadjuvant therapy, patients were randomly assigned (1:1) to receive 13 cycles of Palbociclib 125 mg

once daily or placebo on days 1-21 in a 28-day cycle in addition to endocrine therapy (ET) for a total duration of 1 year (corresponding

to 13 4-week cycles). Standard adjuvant ET was given at the discretion of the investigator for at least 5 years.

Primary end point is invasive disease-free survival (iDFS). The Penelope-B trial was sponsored by GBG Forschungs GmbH in

collaboration with NSABP Foundation (plus I-SPY and CCTR), ABCSG, AGO-B, ANBCSG, BIG, Geicam, ICR-CTSU, JBCSG, and

KCSG. Pfizer Inc funded the trial and provided drug. The trial was conducted according to ICH-GCP guidelines and the Declaration

of Helsinki. All patients provided written informed consent for trial participation, data transfer, and biomaterial collection. The trans-

lational investigations were approved by the Ethics Committee of the Philipps-University Marburg (Project 38/20).

As validation cohort, the Sweden Cancerome Analysis Network-Breast (SCAN-B; NCT02306096) population-based cohort was

used.35,66

METHOD DETAILS

Endpoints
The primary endpoint was invasive disease-free survival (iDFS), defined as the time between randomization and the first event (ipsi-

lateral invasive in-breast or locoregional recurrence, distant recurrence, invasive contralateral breast cancer, second primary inva-

sive cancer [nonbreast], or death because of any cause).

Biobanking and central pathology
Central histopathological assessment of formalin-fixed paraffin-embedded tumor biopsies was required before randomization, pref-

erably on post-neoadjuvant residual invasive disease of the breast, or if not possible, of residual nodal invasion or core biopsy.

Expression of estrogen receptors, progesterone receptors, HER2 and Ki-67 was evaluated by immunohistochemistry. Estrogene

(ER) and progesterone receptor (PR) positivity were defined as R1% stained cells, and HER2 negativity as immunohistochemistry

score 0-1 or HER2 in-situ hybridization test ratio <2.0. The tumor samples, including residual tumor after NACT as well as core

biopsies before NACT were stored in a central biobank for translational research projects, including gene-expression profiling.

Gene expression analysis in pre-therapeutic and post-therapeutic samples
Gene expression in pre-Tx (n=629) biopsies and post-Tx (n=782) surgical resections and metastatic (n=43) FFPE tumor tissues was

profiled using the HTG EdgeSeq Oncology Biomarker Panel (HTG OBP) that measures expression of 2549 genes associated with

tumor biology (https://www.htgmolecular.com/assays/obp/genes). Paired gene expression data (pre-Tx and post-Tx) from the

same patient was available for 540 tumors. Similarly, 29 tumors had gene expression data for all the three tissues (pre-Tx biopsy,

post-Tx resections and metastatic disease).

For quality control of HTG measurements, the mean of four negative and four positive internal controls was calculated for each

sample. The measurement was repeated for a sample if the mean of its positive controls was below two standard deviations

(SDs) of the grand mean across all samples or if the mean of its negative controls was above two SDs from the grand mean. As

an additional quality control, samples with less than 1.5 million total counts were excluded from further analysis. The quality-

controlled data was normalized using the counts per million (CPM) method and log2-transformation. Finally, to improve reproduc-

ibility a modification of the CPM method was applied by introducing a lower bound of 3. The normalized log2-transformed values

were used for all the analyses involving HTG genes except for the AIMS subtype.

Molecular analyses – AIMS subtypes
Absolute Intrinsic Molecular Subtyping (AIMS) algorithm was used to assign the molecular subtypes in the Penelope-B cohort. Gene

expression data on 91 of the 151 genes processed by AIMS are available in the HTG assay. To assess the accuracy of the AIMS

method based on this reduced number of genes, we have evaluated the original AIMS method as well as the adaptation to 91 genes

in the TCGA cohort. The concordance of the AIMS subtypes are shown in Tables S2 and S3 for the complete TCGA cohort and the

HRpositive/HER2negative samples, respectively. Detailed analysis code and output is available on GitHub resource.

Based on these 91 genes, the AIMS subtype was calculated individually for pre-Tx, post-Tx and metastatic tumors from the HTG

count data. Sankey plots were generated using ggsankey package (v 0.0.99999) for AIMS data for pre-Tx, post-Tx and metastatic

tumors as well as AC-subtypes.

Differential gene expression analysis, clustering and UMAP analysis
The normalized counts for pre- and post-Tx in paired sampleswere analysed for differential gene expression using LIMMA (v3.50.3) in

R, and volcano plots were drawn for genes that were statistically significant for FDR adjusted p-value < 0.05.

Briefly, for differential gene expression analysis the pre- and post-Tx data was quantile normalized followed by estimation of the

correlation between duplicate or repeated samples using duplicateCorrelation function. This correlation was incorporated into the

linear model fitting process using the lmFit function. Contrast matrices were then applied to define the comparisons of interest,

and the data were analyzed to identify differentially expressed genes. The eBayes function was used to compute moderated t-sta-

tistics, log-odds, and adjusted p-values. All analyses were performed using default parameters unless otherwise specified.
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Among the differentially expressed genes between biopsy and surgical samples 15 were known to be highly inducible by pre-

analytical factors.63,64 These 15 genes were removed from the volcano plot in Figure 2 for clarity but were included in Figure S2

as well as in the clustering and the UMAP analysis. The reason was not to alter the primary dataset by removal of a small number

of genes, which might result in bias and overfitting and lead to problems in follow-up studies. Furthermore, the degree of association

between individual genes and pre-analytical factors is a continuous parameter and no clear cutoff is available to decide how many

genes should be excluded. In the subsequent cluster analysis (see below), all 15 genes are in gene cluster-4, and 9 of these 15 genes

showed statistically significantly improved iDFS. Therefore, our strategy was to state clearly that these genes are regulated by factors

related to cellular stress during surgery, but to leave these genes in the analysis dataset.

Unsupervised hierarchical clustering was performed on genes with a differential expression of ±0.58 log2FC (1.5-fold change) us-

ing Euclidean distance and the ward.D2 method via the ComplexHeatmap package in R. Additionally, K-means clustering was

applied at specific levels of the dendrogram to identify clusters of similar data points for both genes and samples. To ensure robust

clustering results, km_repeats were set to 100, repeating the K-means clustering processmultiple times. The choice of 4 row clusters

and 10 sample clusters (eventually clustering showed 9) was based on the expected number of distinct groups or patterns in AIMS

subtypes pre- and post-Tx.

In addition, UMAP was generated with euclidean metric for the same set of 335 genes from the hierarchical clustering heatmap.

A ggplot visualization was created in R, with points colored by Adaptive clusters or pre.AIMS subtypes and shaped by pre.Tx or

post.Tx.

Definition of gene groups for analysis of prognostic markers

Gene clustering was derived from the heatmap based on the cluster analysis of the paired samples. From this analysis, four main

gene clusters were derived, cluster-1 was analyzed in more detail with a focus on the four subclusters 1A to 1D. The main charac-

teristics of each gene cluster was used for labelling and color coding.

For some prognostic analyses, the samples were grouped into tertiles based on the mean expression of all genes in the cluster, it

should be recognized that these tertiles might not reflect the optimal cutpoint for each gene cluster.

For comparison of the gene clusters with TCGA samples, RNA-Seq data for 1215 BRCA samples from TCGA were downloaded

fromUCSCcancer browser (https://genome-cancer.ucsc.edu/); dataset ID TCGA_BRCA_exp_HiSeqV2, version "2015-01-28"). This

dataset contains 1095 primary tumors, 7 metastasis, 113 normal tissue samples. Median centered gene expression data of the 335

differentially expressed genes (DEG) from the Penelope analysis were used for hierarchical clustering of TCGA samples.

Evaluation of prognostic markers in pre-Tx and post-Tx samples

For comparison of genes relevant for prognosis in either pre-Tx biopsies or post-Tx tumor resections all 335 differentially regulated

genes were displayed in a scatter plot according to their impact on disease free survival in either pre-Tx biopsies (x-axis) or post-Tx

resections (y-axis). The inverse hazard ratio (1/HR) was shown, so that genes that are linked to improved survival in both pre-Tx and

post-Tx tumors are located in the upper right quadrant, and colored according to the gene clusters and their functional annotation

(detailed code available on GitHub resource).

Gene set enrichment analysis
Gene Set Enrichment Analysis (GSEA) determines whether a priori defined set of genes shows statistically significant, concordant

differences between two phenotypes. For GSEA, the 2549 genes of the HTG OBP panel were mapped to 25 gene groups and path-

ways predefined by HTG (HTG gene sets), as well as to the established 50 hallmark (HM) gene sets of the Human Molecular Signa-

tures Database (v2023.2) representing well-defined biological states and processes. GSEA was performed on 540 paired pre- and

post-Tx samples using two methods: phenotype-based and pre-ranked. For the phenotype-based method, normalized expression

data for 2,549 genes across 1,080 samples was analyzed. The analysis utilized 2,500 permutations, a weighted enrichment statistic,

and the Signal2Noise metric, with all other parameters set to default. For the pre-ranked method, GSEA was conducted using the

regression parameters derived from univariate Cox regression analysis for both pre- and post-Tx conditions. This analysis employed

the GSEAPreranked tool, using a rank metric based on the p-values and the sign of the test statistic from regression analyses, calcu-

lated as -log10(p-value) * sign(test statistic). Positive values of the rank metric indicate genesets more likely to be upregulated in pa-

tients with longer survival, while negative values indicate the opposite.The key metrics of GSEA enriched score and normalized

enrichment scores were scored using default conditions with few modifications (max size to exclude larger sets=750, min size to

exclude smaller sets=10) to include all the gene sets for the analysis. The threshold for significant enrichment were defined as a

p-value of <0.05 and an FDR of <0.25. The statistically significant gene sets were displayed as dot plots generated in R. The

GSEA was carried out using Microsoft Windows-based software v.4.3.2.

Generation of centroids
The sample groups identified by K-means clustering were designated as Adaptive clusters (AC-1 to AC-9). For each of the Adaptive

cluster, centroids were calculated, representing themean position of all the points within a cluster and serving as a reference for clus-

ter characterization. Finally, sample clusters and corresponding data were extracted, and the data was scaled columnwise and

centered before calculating the centroids.

The centroids obtained from the clustering process were then used to classify test samples. This involved, scaling and centering

the data, measuring the distance of each sample to the cluster centroids and assigning the sample to the nearest cluster. This step

ensured that the clustering model was robust and generalizable to new, unseen data.
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Evaluation of the existing gene signatures recurrence score, GGI, SET index
Signature scores for ‘‘Recurrence Score’’ (RS), ‘‘Genomic Grade Index’’ (GGI), and ‘‘Sensitivity to Endocrine Therapy Index’’ (SET),

were calculated for 812 ER positive breast cancer samples from TCGA, by using either all genes from the signatures or only the sub-

set of genes available in the HTG oncobiology panel. Scatter plots show the correlation (Pearson R value) and the distribution of the

respective signature scores. Calculation of RS30 and GGI31 were adapted from genefu package,67 and SET32 from Sinn 2019.68

Detailed code is provided in the online resources on GitHub.

Evaluation of SCAN-B cohort
For validation of our AC classification model, we obtained RNA-seq data and corresponding clinical data for the SCAN-B cohort, the

link is given in the key resource table. A total of 3764 patients diagnosed with hormone receptor positive, HER2 negative, primary

invasive breast cancer were included in the present analysis. These comprise 57% of the 6660-sample early-stage follow-up cohort

(one patient – one tumor RNA sequencing profile) from the total set of 9206 RNA sequencing profiles. The gene expression data for

the 335 genes identified fromPenelope analysis was extracted and log2 transformedwith an offset of 0.1 before scaled and centered.

Finally, the data was cluster classified using the centroid algorithm developed based on the Penelope data. The resultant Adaptive

clusters were cross-tabulated with NCN.PAM50 subtypes and subsequently checked for their association with Distant Recurrence-

Free Interval (DRFi) using Kaplan-Meier analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Differences between the patient groups with and without HTG gene expression data in Peneleope cohort were assessed using chi-

square for categorical variables and paired- t test or Wilcoxon signed-rank test for continuous variables. All the statistical tests were

performed as 2-sided at significance level P<0.05. The association of the clinical variables and HTG genes on iDFS was assessed

using univariate Cox regression models and represented as hazard ratios (HRs) with 95% confidence intervals (95% CI). Statistical

significancewas assessed by usingWald tests. The patients without iDFS at the end of the follow-up timewere censored. In addition,

a Cox regression model with interaction termwas carried out to determine an interaction of luminal types and treatment arm on iDFS.

Kaplan-Meier cumulative curves for the iDFS as outcomewere drawn for patients with and without treatment arm, for AIMS subtypes

in pre- and post-Tx groups and for the Adaptive clusters. Differences between the groups were analyzed by the log-rank test. Simi-

larly, survival curves based on Adaptive clusters were also drawn for SCAN-B cohort with DRFi as endpoint. All statistical analyses

were carried out by using SAS version 9.4 (SAS Institute Inc., Cary, NC).
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