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Abstract
Introduction Tumor Treating Fields (TTFields, 200 kHz) therapy is a noninvasive, locoregional cancer treatment approved 
for use in newly diagnosed glioblastoma (GBM), recurrent GBM, and malignant pleural mesothelioma. GBM patients with 
hydrocephalus may require implantation of a ventriculoperitoneal (VP) shunt, however, the current TTFields therapy label 
does not include the use of VP shunts in GBM patients due to insufficient safety data. This analysis evaluates the safety of 
TTFields therapy use in this population.
Methods Unsolicited post-marketing global surveillance data from patients with GBM and a VP shunt (programmable/
non-programmable) who received TTFields therapy between November 2012–April 2021 were retrospectively analyzed. 
Adverse events (AEs) were assessed using the Medical Dictionary for Regulatory Activities version 24.0.
Results Overall, 156 patients with VP shunts were identified and included in this analysis. In total, 77% reported  ≥ 1 AE; the 
most common TTFields therapy-related AEs were non-serious and localized, beneath-array skin AEs (43%). The incidence 
and categories of AEs were comparable between patients with or without VP shunts. Six patients with VP shunts experienced 
seven serious TTFields therapy-related AEs: skin erosion at the shunt site (n = 3); wound dehiscence at the shunt site (n = 2) 
and at the resection scar (n = 2). No shunt malfunctions were deemed related to TTFields therapy.
Conclusions In the real-world setting, TTFields therapy in GBM patients with VP shunts demonstrated good tolerability 
and a favorable safety profile. There was no evidence that TTFields therapy disrupted VP shunt effectiveness. These results 
suggest TTFields therapy may be safely used in patients with VP shunts.
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Introduction

Glioblastoma (GBM) is the most aggressive primary malig-
nant brain tumor in adults, with a high recurrence rate, an 
extremely poor prognosis, and an estimated 5-year survival 
rate of 6–22% [1]. Until recently, the optimal treatment for 
newly diagnosed GBM (ndGBM) has been maximum safe 
resection, followed by radiation with concomitant temozolo-
mide (TMZ) [2]. However, the addition of Tumor Treating 
Fields (TTFields;  Optune®,  Novocure® GmbH, device manu-
facturer) therapy to maintenance TMZ has now been incor-
porated into the ndGBM treatment paradigm, following its 
approval in the European Union (EU), United States (US), 
Japan, and China [3–7]. Furthermore, TTFields therapy has 
a category 1 recommendation for adult patients with ndGBM 
in the National Comprehensive Cancer Network guidelines 
[8, 9]. TTFields therapy is also approved in the US and EU, 

 * Nancy Ann Oberheim-Bush 
 nancyann.oberheimbush@ucsf.edu

1 Division of Neuro-Oncology, UCSF Brain Tumor Center, 
University of California, 400 Parnassus Ave, A808, 
San Francisco, CA 94143, USA

2 Department of Radiation Oncology, Thomas Jefferson 
University, Philadelphia, PA, USA

3 Division of Neurosurgery, Miami Neuroscience Institute, 
Baptist Health South Florida, Miami, FL, USA

4 Department of Neurosurgery, University Hospital 
of Marburg, Marburg, Germany

5 Medical Safety, Novocure GmbH, Munich, Germany
6 Director of Neurooncology Global Medical Affairs, 

Novocure Inc, New York, NY, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s11060-022-04033-4&domain=pdf


 Journal of Neuro-Oncology

1 3

as well as other countries for the treatment of adult patients 
with recurrent GBM (rGBM) [5] and for malignant pleural 
mesothelioma (MPM) [10].

TTFields therapy is a first in class, noninvasive, locore-
gional cancer treatment delivered via a portable medical 
device that is designed to be integrated into daily life, while 
maintaining patients’ quality of life [5, 10–12]. TTFields work 
by exerting electric forces on polar components within cells, 
disrupting their normal localization and function, and selec-
tively act on cancer cells due to their distinct characteristics, 
including rapid proliferation, morphology, and electrical prop-
erties, without significantly affecting healthy cells or tissue 
[13–18].

Approval for use in ndGBM was based on a phase 3 clini-
cal study (EF-14; NCT00916409) that demonstrated signifi-
cantly improved progression-free survival (PFS) for TTFields 
therapy concomitant with TMZ (6.7 months) versus TMZ 
alone (4.0  months) and a significantly improved overall 
survival (OS) for TTFields therapy concomitant with TMZ 
(20.9 months) versus TMZ alone (16.0 months) [19]. Addi-
tionally, 5-year OS rates were more than double that of TMZ 
alone (5% vs. 13%; P = 0.04) [19]. Improvements in outcomes 
were also observed in the EF-11 study, in which TTFields 
therapy was compared to the best standard of care in patients 
with rGBM [20]. Furthermore, clinical efficacy has also been 
demonstrated in a range of other solid tumors, including non-
small cell lung cancer, liver, ovarian, and pancreatic cancer, 
when used concomitantly with systemic therapies and along-
side radiation [21–26]. In terms of safety, clinical and real-
world data demonstrate that TTFields therapy has a favorable 
safety profile, characterized by an increased rate of dermato-
logic adverse events (AEs), but a low rate of systemic AEs 
compared with chemotherapeutic regimens [19, 20, 27, 28].

Up to 10% of patients with GBM may develop hydrocepha-
lus, for which ventriculostomies or ventriculoperitoneal (VP) 
shunts may be needed [29]. There are limited safety data on the 
use of TTFields therapy with devices such as programmable 
VP shunts. Therefore, further investigation of the safety and 
feasibility of TTFields therapy in patients with GBM requiring 
VP shunts may provide rationale to provide access to TTFields 
therapy particularly for those in this vulnerable population.

Here, we report the results of a retrospective analysis of 
unsolicited post-marketing surveillance data to assess the 
safety of TTFields therapy in adult patients with ndGBM or 
rGBM with a VP shunt.

Methods

Design and patient population

Unsolicited, post-marketing surveillance safety data from 
adult patients with brain tumors treated with TTFields 

(200 kHz) therapy in the US, Europe, the Middle East and 
Africa (EMEA), and Japan, between November 2012 and 
April 2021 were analyzed to identify potential implanted 
device-related AEs. Safety reports of 18,471 patients with 
GBM (n = 12,572, ndGBM; n = 5899, rGBM) were screened 
for study eligibility.

Statistical analyses

Differences in occurrence of AEs, with more than twice the 
incidence between the shunt and the non-shunt arms, were 
tested using the Fisher’s exact test (shunt vs. non-shunt, 
ndGBM vs. rGBM arms). The Benjamini–Hochberg Proce-
dure was applied to correct for the inflation of a false discov-
ery rate that is apparent in cases of multiple comparisons. 
This adjusted the P values to control the false discovery rate. 
Additional methodology is available in the supplementary 
information.

Results

Baseline characteristics

Review of available data identified 156 adult patients with 
GBM who received TTFields therapy in the presence of a 
VP shunt. Patient baseline data for the entire population 
(shunt and non-shunt) have been reported previously [28].

Of the 156 identified patients, 47 had programmable 
shunts and 12 had non-programmable shunts, while 97 
were unspecified. Patient age and shunt type were com-
parable between the ndGBM and rGBM groups (Table 1). 
The median (range) of TTFields therapy usage was also 
comparable between the ndGBM and rGBM groups; 62.7% 
(3–96%) and 64.5% (23–92%), respectively. Overall, the 
shunt implantation date was known for 77% (83%, ndGBM; 
69%, rGBM) of patients. At least 79 (51%) patients had 
their VP shunt placed prior to receiving TTFields therapy, 
with a greater proportion in the ndGBM group versus the 
rGBM group (55% vs. 44%, respectively). The date of shunt 
implantation was unknown for 34 (22%) patients.

Safety

Overall, 77% of patients with a VP shunt who received 
TTFields therapy reported at least one AE (83%, ndGBM; 
69%, rGBM). The proportion of patients reporting one or 
more AEs was comparable to that of the non-shunt popula-
tion, in which 70% of patients reported one or more AEs 
(72%, ndGBM; 65%, rGBM).

Non-serious, local skin reactions on the scalp were the 
most commonly reported AEs, including 43% of patients in 
the shunt population (ndGBM, 42%; rGBM, 44%; Table 2). 
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Seizures, hydrocephalus, and pain/discomfort were reported 
more frequently in patients with ndGBM versus rGBM (21% 
vs. 11%, 17% vs. 6%, and 15% vs. 5%, respectively, in the 
shunt population) as expected based on patients’ underlying 
disease, whereas fatigue/malaise was noted predominantly 
for patients with rGBM (16% vs. 9%, respectively; Table 2).

Serious AEs (SAEs) were reported more frequently in 
patients with shunts versus those without; 46% of patients 
with shunts and 20% of patients with no shunts had one 
or more SAEs (Table 2). Within the shunt population, the 

incidence of SAEs was comparable between ndGBM and 
rGBM groups (49% and 42%, respectively). The most com-
monly reported SAE in the patient population requiring a 
shunt was hydrocephalus (n = 19, 12%), with a higher inci-
dence among patients with ndGBM versus rGBM (17% vs. 
5%). Of the patients with hydrocephalus, 15 did not have a 
shunt in place by the time of event occurrence. Two instances 
of hydrocephalus occurred in patients with implanted shunts; 
one was related to shunt mechanical malfunction and in the 
other, an infection reportedly resulted in shunt dysfunction. 

Table 1  Baseline characteristics of patients treated with Tumor Treating Fields therapy in the presence of ventriculoperitoneal shunts (N = 156)

EMEA Europe, the Middle East, and Africa; ndGBM newly diagnosed glioblastoma; rGBM recurrent glioblastoma

Characteristic ndGBM (n = 92) rGBM (n = 64) Total (N = 156)

Age, median years of age (range) 52 (20–77) 51 (20–70) 52 (20–77)
Sex, n (%)
 Male 57 (62) 46 (72) 103 (66)
 Female 35 (38) 18 (28) 53 (34)

Region, n (%)
 United States 68 (74) 58 (91) 126 (81)
 EMEA 24 (26) 6 (9) 30 (19)

Shunt type, n (%)
 Programmable 28 (30) 19 (30) 47 (30)
 Non-programmable 7 (8) 5 (8) 12 (8)
 Unspecified 57 (62) 40 (63) 97 (62)

Table 2  Patients reporting ≥ 1 AE or SAE and most common AEs in for shunt vs non-shunt populations treated with Tumor Treating Fields 
therapy (≥ 10% incidence in any group)

AE adverse event, ndGBM newly diagnosed glioblastoma, rGBM recurrent glioblastoma, SAE serious adverse event
a AEs were classified according to the preferred term in the Medical Dictionary for Regulatory Activities version 24.0
b Described as a tingling sensation
c Described as warm sensation

Shunt, n (%) Non-shunt, n (%)

ndGBM (n = 92) rGBM (n = 64) Total (N = 156) ndGBM (n = 12,572) rGBM (n = 5899) Total (N = 18,471)

Patients with ≥ 1 AE, n (%) 76 (83) 44 (69) 120 (77) 9067 (72) 3806 (65) 12,873 (70)
Patients with ≥ 1 SAE, n (%) 45 (49) 27 (42) 72 (46) 2554 (20) 1207 (20) 3761 (20)
AEa

 Skin reaction 39 (42) 28 (44) 67 (43) 5490 (44) 1892 (32) 7382 (40)
 Seizure 19 (21) 7 (11) 26 (17) 1374 (11) 719 (12) 2093 (11)
 Electric  sensationb 12 (13) 9 (14) 21 (13) 1824 (15) 647 (11) 2471 (13)
 Headache 12 (13) 8 (13) 20 (13) 1079 (9) 520 (9) 1599 (9)
 Hydrocephalus 16 (17) 4 (6) 20 (13) 52 (< 1) 15 (< 1) 67 (< 1)
 Fatigue/malaise 8 (9) 10 (16) 18 (12) 823 (7) 329 (6) 1152 (6)
 Heat  sensationc 11 (12) 6 (9) 17 (11) 1458 (12) 625 (11) 2083 (11)
 Pain/discomfort 14 (15) 3 (5) 17 (11) 1174 (9) 413 (7) 1587 (9)
 Nausea/vomiting 9 (10) 6 (9) 15 (10) 419 (3) 156 (3) 575 (3)
 Brain edema 3 (3) 7 (11) 10 (6) 468 (4) 145 (2) 613 (3)
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One patient developed progression of intraventricular glioma 
(data not shown).

Correcting for multiple tests by the Benjamin–Hochberg 
procedure revealed that in the case of hydrocephalus, hyper-
tension, fatigue, nausea/vomiting AEs, and urinary tract dis-
order, differences between the patient population requiring 
a shunt and the non-shunt population were statistically sig-
nificant (Table 3).

Overall, 23 AEs (reported by 18 unique patients) were 
assessed as being associated with the presence of a VP 
shunt, of which 15 AEs (reported by 12 unique patients) 
were deemed to also be potentially related to TTFields ther-
apy (Table 4). The most common shunt-associated AEs were 
non-serious cases of pain or discomfort due to placement 
of the array at the shunt site (3%) and shunt malfunction 

(3%), of which all were considered unrelated to TTFields 
therapy (Table 4). There was one non-serious case of sus-
pected medical device interference with TTFields (Table 4), 
however, no further details were available.

Of the 156 patients, only six (ndGBM, n = 5; rGBM, 
n = 1) reported seven SAEs that were deemed potentially 
related to TTFields therapy. Five of these were localized to 
the shunt site (two cases of wound dehiscence, two cases of 
skin erosion, one case of combined wound dehiscence and 
skin erosion; Table 5). Shunt removal was required in three 
cases, and one case had an unknown outcome.

Illustrative case

A 53-year-old male presented with headache and impaired 
vision in October 2020 and was subsequently diagnosed with 
World Health Organization grade IV GBM (per 2016 guide-
lines), after undergoing a head magnetic resonance imaging 
scan (Suppl Fig. 1A). A programmable VP shunt (Codman 
 Hakim®, set to 120 mm  H2O) was implanted on his right 
frontal side following diagnosis of hydrocephalus. A follow-
up computed tomography (CT) scan confirmed the posi-
tioning of the ventricular catheter and excluded any major 
complication (Suppl Fig. 1B); the shunt settings continued 

Table 3  Statistical analysis of AEs with an effect size of two-times 
the difference in incidence between groups

AE adverse event, TTFields Tumor Treating Fields
a This used the Benjamini–Hochberg P value that corrected the P 
value for multiple comparisons

AE Benjamini–Hoch-
berg  significancea

Incidence, n (%)

TTFields  
therapy/
shunt,  
n (%)

TTFields  
therapy/ 
non-shunt, 
n (%)

Hydrocephalus Significant 20 (13) 67 (< 1)
Fatigue/malaise Significant 18 (12) 1152 (6)
Hypertension Significant 5 (3) 95 (1)
Nausea/vomiting Significant 15 (10) 575 (3)
Urinary tract disorder Significant 6 (4) 258 (1)
Cognitive disorder Not significant 12 (8) 766 (4)
Brain edema Not significant 10 (6) 613 (3)
Seizure Not significant 26 (17) 2093 (11)
Headache Not significant 20 (13) 1599 (9)
Cerebral hemorrhage Not significant 3 (2) 169 (1)

Table 4  AEs associated with ventriculoperitoneal shunt usage and/or Tumor Treating Fields therapy

Data displayed as number of unique patients with AE (incidence). An individual patient may be counted more than once if they experienced 
more than one AE
AE adverse event, TTFields Tumor Treating Fields

Preferred term, n (%) Shunt-associated 
AEs

Shunt- and TTFields therapy-
associated AEs

Serious shunt- or TTFields  
therapy-associated AEs

Medical device interference 2 (1) 1 (1) 0
Pain or discomfort (arrays associated) 5 (3) 5 (2) 0
Shunt infection 2 (1) 0 0
Shunt malfunction 5 (3) 0 0
Skin erosion (shunt site) 3 (2) 3 (2) 3 (2)
Skin reaction (shunt site) 3 (2) 3 (2) 0
Wound dehiscence (shunt site) 2 (1) 2 (1) 2 (1)

Table 5  AEs related to Tumor Treating Fields therapy use and 
reported as SADEs in the shunt population

AE adverse event, ndGBM newly diagnosed glioblastoma, rGBM 
recurrent glioblastoma, SADE serious adverse device event

AE Patients, n

SADEs
7 events

Total
(n = 6)

ndGBM
(n = 5)

rGBM
(n = 1)

Skin erosion (shunt site) 3 3 2 1
Wound dehiscence (resection 

scar)
2 2 2 0

Wound dehiscence (shunt site) 2 2 2 0
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to be checked on a regular basis. The patent received com-
bined adjuvant radiation therapy (60 Gy focal brain) and 
TMZ after which, another CT scan was performed (Suppl 
Fig. 1C). The patient then received a full course of mainte-
nance TMZ concomitant with TTFields (200 kHz) therapy 
for 10 months. A further CT scan conducted 1 year after 
diagnosis revealed at least stable disease or mild regres-
sion of the tumor, with the VP shunt remaining in place and 
showing no signs of malfunction (Suppl Fig. 1D). TTFields 
therapy usage was monitored and showed high average dura-
tion of usage of > 90% (Suppl Fig. 1E).

Discussion

This global post-marketing surveillance study provides the 
first real-world safety data for TTFields (200 kHz) therapy 
in highly burdened patients with GBM, hydrocephalus, and a 
surgically implanted VP shunt. The VP shunt population was 
representative of the real-world GBM population in terms of 
male:female ratio and average age [30, 31].

The Stupp protocol was published in 2005, making maxi-
mal safe surgical resection, radiation therapy, and TMZ the 
cornerstone of ndGBM treatment. [2]. In 2017, Stupp et al. 
reported on the outcomes of the EF-14 study, demonstrating 
that the addition of TTFields therapy to the Stupp protocol 
led to significantly improved outcomes (OS and PFS) [32]; 
as a result, TTFields therapy became part of the treatment 
regime in ndGBM and rGBM. Alternative treatment options, 
in particular in rGBM include chemotherapeutic agents such 
as bevacizumab, and radiotherapy. Treatment options in the 
experimental spectrum include immunotherapy and tar-
geted therapies, which are used in conjunction with surgery 
and/or radiotherapy. As a result of such advances, patients 
are now living longer, which has led to the emergence of 
long-term complications of the disease and treatment [33], 
such as disturbances to the cerebrospinal fluid circulation, 
leading to clinical and symptomatic hydrocephalus. Neu-
rological deterioration associated with the development 
of hydrocephalus has been observed in 3–15% of patients 
with GBM [29, 34–36]. Such complications significantly 
reduce a patient’s quality of life [29, 34–36]. By the time 
hydrocephalus develops, patients have generally already 
undergone surgery, radiation therapy, chemotherapy, long-
term steroid treatment, immunotherapy, etc., increasing their 
vulnerability to treatment-related AEs and further complica-
tions. Although surgical shunts are often recommended to 
restore and maintain cerebrospinal fluid levels, significantly 
improving symptoms, functional performance, and quality of 
life, they rarely impact survival rates, therefore, treatment is 
needed to combat neurological deterioration [37–39]. Many 
of the approved treatments for GBM are associated with 
significant systemic side effects that can have a detrimental 

impact on patient quality of life and may be of limited ben-
efit in patients with multiple comorbidities, such as those 
with VP shunts [40]. VP shunts are foreign bodies, that carry 
an inherent risk of infection and as such, patients harboring 
VP shunts are more susceptible to shunt site infections [41]. 
Safety data on appropriate GBM treatments for patients with 
VP shunts are currently lacking. Therefore, it is important 
that the safety and tolerability of GBM treatments in patients 
with implanted shunts should be thoroughly assessed.

To assess the overall safety profile of TTFields therapy 
in patients with VP shunts, it is important to distinguish 
between AEs that are associated with the shunt rather than 
with TTFields therapy.

No TTFields therapy-related systemic AEs or TTFields 
therapy-related shunt dysfunctions were reported.

In fact, the incidence, nature, and severity of AEs in this 
population, regardless of GBM disease status (ndGBM or 
rGBM), were very similar to those observed in a non-shunt 
GBM population. Furthermore, the number of seizures and 
reports of hydrocephalus were in line with that expected for 
patients with GBM.

Results presented here are in line with those reported 
in prior TTFields therapy studies in GBM patients with-
out shunts, including the phase 3 EF-14 (ndGBM) [19] and 
EF-11 (rGBM) [20] clinical studies, PRIDE registry (rGBM) 
[27], and the global post-marketing surveillance data analy-
sis (> 10,000 patients with GBM) [28]. The lack of any new 
safety signals is encouraging given the vulnerable nature 
of patients with GBM and surgically implanted VP shunts. 
The safety profile of TTFields therapy is further supported 
by data from a recent subgroup analysis of elderly patients 
from the EF-14 study, another vulnerable population [42].

Indeed, skin AEs associated with TTFields therapy were 
mild-to-moderate skin irritation and can typically be man-
aged by early prophylactic interventions and good patient 
management strategies, including optimal shaving and shift-
ing the array position (~ 2 cm) or by the use of topical corti-
costeroids or antibiotics [5, 43]. The irritation reported here 
generally resolved after a brief pause and did not require 
any substantial break in treatment. Although, 22 patients 
described experiencing a warm/heat sensation, these events 
were typically attributed to inadequate adherence of the 
array to a patient’s scalp. It is important to note that the 
device delivers TTFields has a protective sensor-based shut-
off feature if the temperature rises.

Although data on shunt complications in patients with 
GBM treated with TTFields therapy in the presence of 
VP shunts are limited, there is one publication reporting 
on the case of a patient with a programmable shunt who 
received TTFields therapy, which showed that shunt valve 
settings were stable over the five days during which the 
patient received TTFields therapy [44]. In addition, there 
are some studies that have reported a much higher incidence 
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of shunt-complications than those identified in the present 
analysis. One study analyzed data from 62 patients with 
supratentorial glioma and VP shunts, of whom 41 had GBM. 
Among these patients, 27% had complications related to VP 
shunts [39]. Another study showed that eight of 16 patients 
(50%) with GBM and a VP shunt had experienced shunt-
related complications, with three patients dying as a result 
[38]. A further study reported that shunt complications 
required surgical revision in four of 12 patients (33%) with 
high-grade glioma who had either VP or cystoperitoneal 
shunts [45]. These data provide a baseline for expected AEs 
in patients with GBM and a VP shunt. Considering this, our 
analysis identified 15 AEs from 14 patients (9%) that were 
VP shunt-associated and TTFields therapy-related AEs. 
Furthermore, only five (3.2%) shunt-associated, TTFields 
therapy-related events were identified in this patient popula-
tion, all of which were dermatological complications at the 
scar site, associated with array placement. These findings are 
in line with previous clinical data that show an association 
between TTFields therapy and skin AEs.

The retrospective nature of this study represents a limi-
tation as the analyses could not be statistically powered 
meaning that comparative statements should be regarded as 
observational only. As analyses were retrospective and not 
actively solicited, a full medical history and details related 
to AEs were not available for all patients – missing informa-
tion could potentially have an impact on interpretation of the 
study results. Furthermore, an inherent limitation of obser-
vational and retrospective studies is that there is no control 
over prior therapies received. In this case, information on 
treatments used prior to and concomitantly with TTFields 
therapy (for example, steroids or anti-cancer treatments such 
as bevacizumab), were not included as this information was 
not available for all of the patients. The impact of these treat-
ments on safety outcomes cannot be adjusted for and should 
also be considered when evaluating findings reported here, 
since some therapies may have affected the incidence of 
reported AEs; for example, steroid use and bevacizumab can 
increase skin fragility. Without information on prior thera-
pies received, it is difficult to accurately assess the related-
ness of AEs to TTFields therapy. Furthermore, AEs were not 
graded for severity as per the protocol, unlike data collected 
in a controlled clinical trial setting, which may have also 
impacted the occurrence of TTFields therapy-related AEs. 
Finally, as the study was retrospective, patients could not be 
followed up for subsequent safety outcomes.

TTFields therapy employs electric fields in a frequency 
range of 100 kHz to 500 kHz, which is too high to stimulate 
tissue and too low to have ionizing or significant heating 
effects [13, 46]. TTFields therapy is delivered at a specific 
frequency based on the cancer cell type being targeted, 
allowing TTFields to enter cells more effectively [47]. Of 
note, TTFields are not electro-magnetic fields but electric 

fields and, although there is a magnetic field that results from 
applying TTFields, it is low-level and not expected to have 
any relevant impact on magnetic adjustable (programma-
ble) valves. Given that some VP shunts operate based on a 
magnetic system [48], there has been concern that concomi-
tant use of TTFields therapy would impact normal function. 
Nevertheless, in the interests of safety, as it is not possible 
to control all conditions that could theoretically impact the 
function of a particular shunt, patients with programmable 
shunts have typically been excluded from previous studies. 
The findings reported here suggest that the use of TTFields 
therapy in patients with VP shunts is feasible; prospective 
data would be of additional value in this patient population.

Our analysis of 156 patients with GBM and implanted VP 
shunt for the relief of hydrocephalus provides evidence that 
TTFields therapy is feasible and well-tolerated and does not 
seem to interfere with the normal function or the effective-
ness of the VP shunt. Furthermore, based on the case study 
presented here, high usage can be achieved in this patient 
population, which may improve efficacy. In the absence of 
large-scale randomized controlled trials, these real-world 
observational data, supportive of previous clinical and real-
world evaluations of TTFields therapy in patients with GBM 
and across varied solid tumor types, provide insights into 
the potential role of TTFields therapy in patients with VP 
shunts. These findings, together with further investigations 
and ongoing clinical experience of TTFields therapy use in 
patients with GBM, will hopefully contribute to improved 
decision making and patient counselling in terms of treat-
ment options, with the aim of making TTFields therapy 
available to patients with VP shunts, addressing the need 
in this population.

Conclusion

Based on presented post-marketing safety surveillance data 
spanning almost a decade, the use of TTFields (200 kHz) 
therapy in adult patients with GBM and hydrocephalus 
requiring a VP shunt demonstrated feasibility with a tol-
erable safety profile. Overall, these data provide further 
evidence of the broad applicability of TTFields therapy. 
Commonly reported AEs were localized, manageable, 
beneath-array skin AEs. The data are supportive of previ-
ous phase 3, registry, and post-marketing studies of TTFields 
therapy in GBM and across varied solid tumor types, with 
no new safety signals or added safety concerns observed in 
this equitable patient sample size (> 150 patients). Moreo-
ver, the lack of observed effect of TTFields therapy on shunt 
effectiveness indicates sustained shunt functionality in the 
management of hydrocephalus symptomatology.

The safety evidence presented here suggests that the use 
of TTFields (200 kHz) therapy in the presence of VP shunts 
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is an efficacious and viable treatment method in patients 
with GBM and may help address an important unmet medi-
cal need in this heavily burdened patient population with 
limited treatment options.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11060- 022- 04033-4.
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