Using the MaRC2 HPC Cluster

Manuel Haim, 06/2013
Using MaRC2???
Using MaRC2 – Overview

• Get access rights and permissions
• Starting a terminal session (Linux, Windows, Mac)
• Intro to the BASH Shell (and available directories)
• Using the Environment Modules package
• Compiling your programs
• Submitting jobs to the SUN Grid Engine (SGE)
Get access rights and permissions
Get access rights and permissions

• Students / Staff account needed

• Ask your workgroup leader if MaRC2 is already being used
 → he/she must accept the terms of use
 → he/she nominates people who may tell us to grant you access

• Ask the nominated people at your workgroup to get access

• For further questions, terms of use etc., send us an email:
 → marc@hrz.uni-marburg.de
Starting a terminal session (Linux, Windows, Mac)
Starting a terminal session (Linux, Mac)

- Start your favourite Terminal application
- Connect to MaRC2 via SSH (Secure Shell) by entering:
 \[\text{ssh -p223 username@marc2.hrz.uni-marburg.de} \]
 → replace \textit{username} with your Students / Staff account name
 → remember that your account name is case-sensitive!
- You are then prompted for your account's password:
 \[\text{username@marc2.hrz.uni-marburg.de's password:} \]
Starting a terminal session (Linux) – Example

```bash
haimm@pcrz718:~$ ssh -p223 haimm@marc2.hrz.uni-marburg.de
haimm@marc2.hrz.uni-marburg.de's password:
Last login: Tue Jun 18 12:03:56 2013 from pcrz718.hrz.uni-marburg.de

# WELCOME TO THE MARC2 SYSTEM.
# See http://marc2-doc.hrz.uni-marburg.de for further information.
[haimm@marc2-h1 ~]$ 
```
Starting a terminal session (Windows)

- Start an SSH client, e.g. PuTTY (www.putty.org)
- Select “SSH”, then insert host name and port number
- Finally, click “open”
- A terminal window opens where you will be prompted for username (case-sensitive!) and password
Some hints

• To exit the terminal session, just enter `exit` or press Ctrl+D

• By default, your login shell is set to `/bin/bash`. You may change this setting globally (and choose another login shell like `csh`, `ksh` or `tcsh`) for your account here:

 Staff account:
 https://admin.staff.uni-marburg.de/aendshell.html

 Students account:
 https://admin.students.uni-marburg.de/login_shell.html
Introduction to the BASH Shell (and available directories)
Introduction to the BASH Shell (Bourne-again shell)

• Right after login, the BASH Shell is started by default and shows a command prompt like this:

```
[username@marc2-h1 ~]$  
```

• To exit, simply enter the command `exit` or press Ctrl+D
First steps with BASH-builtin commands

- **pwd** – print current (working) directory:

  ```
  [username@marc2-h1 ~]$ pwd
  /home/username
  ```

- **cd** – change current directory:
 - `cd ..` – go to parent directory
 - `cd <dirname>` – go to subdirectory

  ```
  [username@marc2-h1 ~]$ cd ..
  [username@marc2-h1 home]$ pwd
  /home
  [username@marc2-h1 home]$ cd username
  [username@marc2-h1 ~]$ pwd
  /home/username
  ```
Additional commands

- `ls` – list directory contents:

  ```
  [username@marc2-h1 ~]$ ls
  mydata  readme  script.sh
  ```

- `ls -l` – list contents in long format

  ```
  [username@marc2-h1 ~]$ ls -l
  drwxrwxr-x 2 username username 4096 18. Jun 11:12 mydata
  -rw-rw-r-- 1 username username  915 18. Jun 11:37 readme
  -rwxr-xr-x 1 username username   26 18. Jun 11:35 script.sh
  ```

 - permissions (see later)
 - user
 - group
 - last change
 - file name
 - file type (d=directory)
 - file size (bytes)
Additional commands (2)

• `ls -a` – show all files (even hidden ones):

```
[username@marc2-h1 ~]$ ls -a
.  .bash_history  .bash_profile  mydata  script.sh
.. .bash_logout  .bashrc  readme
```

(files starting with “.” are usually not shown)
Additional commands (3)

• **mkdir `<dirname>`** – make subdirectory:

```bash
[username@marc2-h1 ~]$ mkdir temp
[username@marc2-h1 ~]$ cd temp
[username@marc2-h1 temp]$ pwd
/home/username/temp
```

• **rmdir `<dirname>`** – remove directory (must be empty):

```bash
[username@marc2-h1 temp]$ cd ..
[username@marc2-h1 ~]$ rmdir temp
```

• **rm `<filename>`** – remove (delete) file
  ```bash
  rm -R `<dirname>`  
  Rm -Rf `<dirname>` – just as above, but “force”, don't ask ;-
  ```
Available directories on a typical Linux system

- The Unix/Linux filesystem is organized in a tree-like structure
- The top-most directory “/” is called the root directory
- All filesystem entries (including mounted filesystems) are branches of this root.
Some special directories on MaRC2

- **/local**
 - Local storage (1.8TB) on node001 – node088, available to local processes (not shared via network)
 - `mkdir /local/username`

- **/home/username**
 - Personal home directory “~”

- **/home/groupname**
 - Shared group directory

- **/home/software**
 - Shared software

- **/home**
 - Shared home dirs (33TB), optimized for integrity

- **/scratch**
 - Shared directory (33TB), optimized for speed
 - `mkdir /scratch/username`
Getting help

• `man <command>` — Show man(ual) page for command:

  ```bash
  $ man ls
  ```

 → Press space for next page, b for previous page
 → Arrow keys and PgUp/PgDn will also work nowadays
 → Press q to quit

• `<command> --help` or `<command> -h` — Show help
 (not supported by all commands)
Change file owner and permissions

• This is what `ls -l` shows:

```
-rwxr-xr-x 1 username username   26 18. Jun 11:35 script.sh
```

user user permissions
other group

r = read
w = write
x = execute

• `chmod <permissions> <file>` – Change permissions
 example: `chmod u=rwx,g=rx,o=rx script.sh`

• `chown <user>:<group> <file>` – Change owner and group
Some tips and tricks

• Select text to copy, then paste with middlemouse button (PuTTY: Use right mouse button)

• Tab auto-completes your input

• Shift+PgUp/PgDn scrolls the screen buffer up and down (maximum scrollback buffer size can be set in your terminal options)

• ArrowUp and ArrowDown allows you to navigate through your former input

• Ctrl-R allows you to reverse-i-search in your former input

• Edit your .bashrc and .bash_profile for personal settings
Using the Environment Modules package
Using the Environment Modules package – why?

• Each piece of software typically needs a set of environment variables to be set, in order to run properly
 → e.g. the $PATH variable which points to the bin directories

• On a HPC cluster like MaRC2, there may be many different toolsets and toolset versions with the same purpose and/or the same command names → Conflict!

• With the Environment Modules package, you can dynamically modify your environment by loading so-called “modulefiles”
 → Use our predefined modulefiles, no need to create your own :-)

Using the Environment Modules package – how?

• **module avail** – show available modules

```
[haimm@marc2-h1 ~]$ module avail

------------------------ /usr/share/Modules/modulefiles ------------------------
dot         module-cvs  module-info modules     null        use.own

--------------------------- /usr/share/ModulesLocal ----------------------------
acml/gfortran-5.1.0(default)           openmpi/pgi/1.4.3-qlc
acml/gfortran-5.2.0                    openmpi-1.6.3/gcc/1.6.3
acml/ifort-5.1.0                       openmpi-1.6.3/icc/1.6.3
acml/pgi-5.1.0                         openmpi-1.6.3/pgi/1.6.3
gcc/4.4.6                              parastation/mpi2-gcc-5.0.27-1(default)
gcc/4.6.2(default)                     parastation/mpi2-gcc-mt-5.0.27-1
gcc/4.7.2                              parastation/mpi2-intel-5.0.27-1
intel/intelPSXE2011SP1-32              parastation/mpi2-intel-mt-5.0.27-1
intel/intelPSXE2011SP1-64              parastation/mpi2-pgi-5.0.27-1
intel/intelPSXE2013SP1-64              parastation/mpi2-pgi-mt-5.0.27-1
openmpi/gcc/1.4.3-qlc                  pgi/12.2(default)
openmpi/intel/1.4.3-qlc                pgi/13.2
```

• **module load** `<modulefile>` – load module

→ You do not need to specify the full path in order to load the default, e.g.:

```
[haimm@marc2-h1 ~]$ module load gcc
```
Using the Environment Modules package – how (2)

• module list – show loaded modules

[heimm@marc2-h1 ~]$ module list
Currently Loaded Modulefiles:
 1) acml/gfortran-5.1.0
 2) gcc/4.6.2
 3) parastation/mpi2-gcc-5.0.27-1

• module unload <modulefile> – unload module
 → Again, you do not need to specify the full path:

[heimm@marc2-h1 ~]$ module unload gcc

• More information: man module
Compiling your programs
Compiling your programs – Choose a compiler

• Several compilers available:
 → gcc – GNU C Compiler
 → gfortran – GNU Fortran Compiler
 → icc – Intel C Compiler
 → ifort – Intel Fortran Compiler
 → pgcc – Portland Group Inc. (PGI) C Compiler
 → pgfortran – Portland Group Inc. (PGI) Fortran Compiler

• MPI Compilers (OpenMPI or Parastation MPI, GNU/Intel/PGI):
 → mpicc – MPI C Compiler
 → mpicxx – MPI C++ Compiler
 → mpif77 – MPI Fortran77 Compiler
A simple C program

- **Create a file** `hello-world.c` **with the following content:**

```c
#include <stdio.h>
#include <stdlib.h>

int main() {
    printf("Hello World!\n");
    exit(0);
}
```

- **Compile using** `gcc`: (remember to have the module loaded first!)

```
[haimm@marc2-h1 ~]$ gcc hello-world.c -o hello-world
```

- **Then test locally**: (don't do this with huge complex programs!)

```
[haimm@marc2-h1 ~]$ ./hello-world
Hello World!
```
We could also use a Makefile

- Create a file `Makefile` with the following content:

```bash
PROG=hello-world
SRC=hello-world.c
CC=gcc

all: clean build

clean:
rm -f $(PROG)

build:
$(CC) $(SRC) -o $(PROG)

run: all
./$(PROG)
```

- Now just enter `make` or `make run` to compile/run your code.
Submitting jobs to the SUN Grid Engine (SGE)
SUN Grid Engine???

• The SUN Grid Engine (SGE) implements a queueing system

• Users can submit jobs to the SGE queues and define boundary conditions (like runtime, memory etc.)

• The SGE permanently reviews the available resources, evaluates pending jobs and executes them on the compute nodes

• The SGE is open source software with a free-to-use license → Its successor, the Oracle Grid Engine, is only available commercially
How to submit a new job to the SGE

• First, write a start script for your software: (e.g. hello-world.sh)

```
#!/bin/bash
#$ -S /bin/bash
#$ -e ./stderr-file
#$ -o ./stdout-file
#$ -l h_rt=10

echo "hello-world running on host $(hostname)"

./hello-world

exit 0
```

• Then submit your start script: (-cwd: execute from current working dir)

```
$ qsub -cwd hello-world.sh
Your job 144406 ("hello-world.sh") has been submitted
```
Get information on your submitted jobs

• `qstat` – List all your jobs

```
$ qstat
job-ID  prior   name       user    state submit/start at     queue    slots ja-task-ID
---------------------------------------------------------------------------------------
 144407 0.00000 start.sh   haimm   qw    06/19/2013 12:43:26              1
```

SGE may take a few seconds to give your job a non-zero priority
q=queued, w=waiting, E=Error, r=running

• `qstat -u "*"` – List all jobs from all users

• `qstat -j <job-id>` – Get information on a single job

```
$ qstat -j 144406
=================================================================================
job_number: 144406
exec_file: job_scripts/144406
owner: haimm
uid: 30376
...
```

1 CPU slot (core)
Get information on your submitted jobs (2)

- `qalter -w v <job-id>` – Get scheduler information for job (may be helpful if your job won't run)

```bash
$ qalter -w v 144406
Job 144406 queue instance "parallel_long@node028.marc2" dropped because it is temporarily not available
Job 144406 queue instance "parallel_long@node032.marc2" dropped because it is temporarily not available
Job 144406 queue instance "parallel_long@node043.marc2" dropped because it is temporarily not available...
```

- `qdel <job-id>` – Delete (terminate) a submitted job
Hint for Java users (memory boundaries)

• Java usually takes more memory than you think it takes

• SGE's `h_vmem` value must be larger than Java's `-Xmx` value, you may test it with a simple “Hello world” program like this:

```bash
#!/bin/bash
#$ -S /bin/bash
#$ -e ./stderr-file
#$ -o ./stdout-file
#$ -l h_vmem=9G, h_rt=60

java -Xms5120m -Xmx5120m -cp ./Hello.jar Hello

exit 0
```
Additional resources

• MaRC2 wiki:
 http://marc2-doc.hrz.uni-marburg.de
 (see Users Guide for information on the SGE, MPI and a usage tutorial)

• MaRC2 info page (German):
 http://www.uni-marburg.de/hrz/infrastruktur/zserv/cluster

• Further questions?
 → Just ask :-)
 → or send us an email: marc@hrz.uni-marburg.de

References:
Several icons within this presentation are taken from “Crystal Project” (GNU LGPL).