

NaDiMa Dialogue 8

Developing Scenarios for Disaster Risk Reduction Day I

Dawud Ansari, PhD DIW Berlin, EADP, Ansari New Economics Consulting @dawud_ansari

23 April 2021

DAAD

Schedule

Day 1 (23 April) Introducing scenarios (10am CET)

- Foresight analysis and disaster risk
- Systematic thinking and cognitive biases

Understanding Scenarios

- Definition and concept
- The cone of plausibility
- Towards a taxonomy
- What makes a scenario good?
- Scenarios in natural disaster management
- Scenarios in business, energy, and security

Developing scenarios

- A framework for scenario development
- Key assumptions, truisms, drivers
- Setting the scope
- Developing a narrative
- Supervised group work

Day 2 (24 April) Independent group work (9am CET)

Break (12pm CET)

Using scenarios (1pm CET)

- Monitoring progress through indicators
- Impact assessment
- Deriving policies and actions from scenarios
- Scenario communication

Presenting and discussing scenarios

- Supervised group work
- Group work presentations

Discussion / Q&A

Yes, we'll even do some breaks...

Expected outcomes

After the successful completion of the workshop, participants ...

understand the notion and nature of strategic foresight and scenarios	can decide which situations require strategic foresight tools	can assess and classify given scenarios	can choose the appropriate scenario type for individual situations
know best-practise (and worst-practise) examples for the use of scenarios	can define the scope of scenarios	can identify key assumptions, drivers, and risks	can develop scenario narratives
can derive indicators for early-warning systems	can assess the impact of a scenario	can derive policies (including risk mitigation, resource plans) from scenarios	know about the importance of communicating scenarios to decision- makers

What we will not do in this workshop...

- Look at quantitative scenario development
- Discuss the variety of methods to establish scenarios
- Establish a firm understanding of the various nuances of different kinds of scenarios specific to disaster management
- How to identify or compare between different risks
- Cover how risk arises from various disasters, how emergency response is conducted, or the underlying decision-making process

 \rightarrow Please consult advanced courses/literature to gain a deeper understanding of these issues

Let's get to know our participants a little more...

Where are you at the moment?

- dermany
- 😌 Somewhere else

Let's get to know our participants a little more...

What is your academic background?

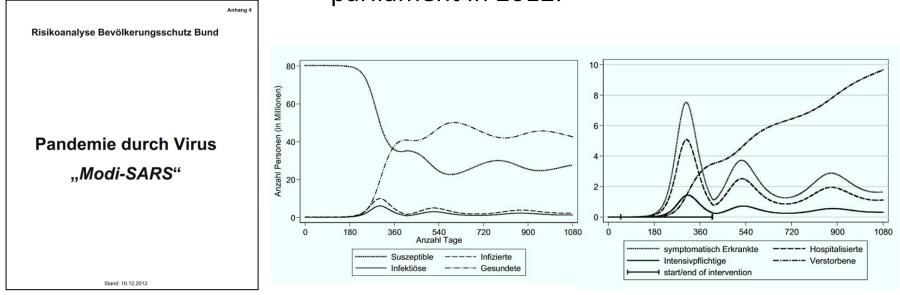
- Economics
- 1 Disaster management
- Engineering
- 😂 Geography / urban studies & engineering etc.
- Another background

Let's get to know our participants a little more...

How much do you know about scenarios?

- I'm basically an expert
- 👍 Quite well
- I have some background
- 😊 🛛 Only a little
- Mothing so far

Introducing scenarios


- A mutated SARS virus emerges in East Asia over the winter.
- Travellers spread the virus worldwide, with first cases appearing in Europe and North America around April.
- Governments exercise different containment policies, including various forms of lockdowns and travel bans.
- The virus shows a high number of asymptomatic patients and has a significant incubation time, making containment virtually impossible.
- The virus advances and becomes increasingly endemic with society making drastic turns towards social distancing and hygiene policies.

You might think these lines are a brief history of the Covid-19 pandemic.

They are not.

These are excerpts from *MODI SARS* – the very result of a Robert Koch Institute scenario exercise undertaken and present to the German parliament in 2012.

Why foresight analysis?

theguardian

Arab spring took British intelligence by surprise, report says

Committee says there are questions about whether agencies should have been able to anticipate how events might unfold

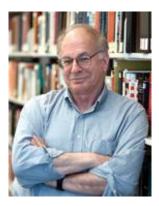
Strategic Surprise in the Ukraine Crisis

Swedish National Defence College

Agendas, expectations and organizational dynamics in the EU Eastern Partnership until the annexation of Crimea 2014

Why foresight analysis?

- Can we anticipate disruptive change?
- Foresight is a reframing process that involves "the exploitation of insight(s) to create a state of being prepared for thinking, seeing, and acting in the future." (Peppler, 2015)
- Foresight is neither forecasting nor prediction.
- Foresight: What if... ?
- Discovering and mangling of unknown unknowns
- Scenarios as an instrument to navigate in a volatile, uncertain, complex, and ambiguous (vuca) world.



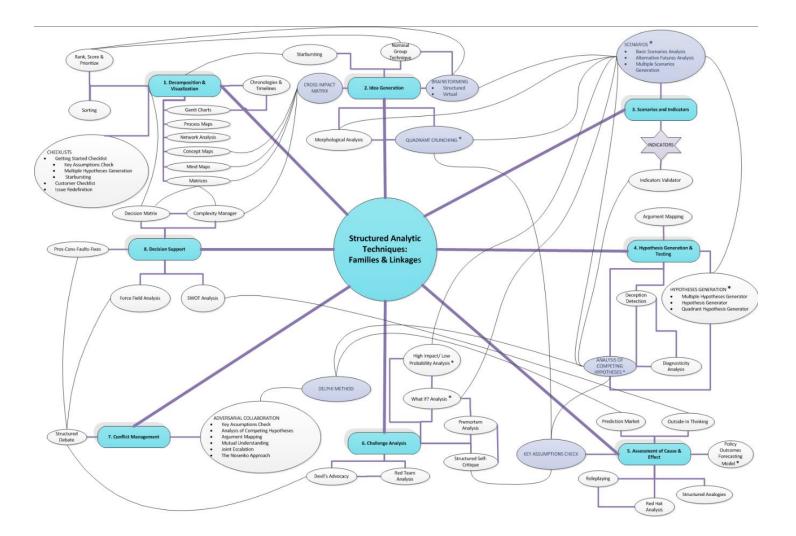
Kahneman: Thinking, Fast and Slow

System-1 Fast Thinking

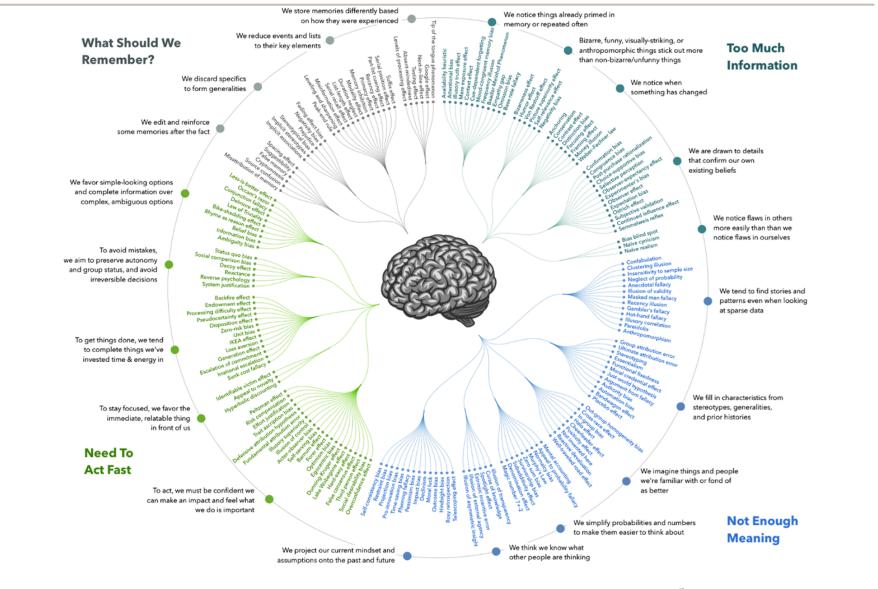
- Intuitive, unconscious
- Fast & efficient
- Draws on available knowledge, past experience, longestablished mental models
- Source of cognitive biases

The world of heuristics.

System-2 Slow Thinking


- Analytical, deliberate
- Slow
- Critical thinking, structured analytic techniques
- Mathematics and quantitative reasoning

The world of analytics.


Structured analytic techniques

Tools to enable system II thinking for intelligence but also business and engineering

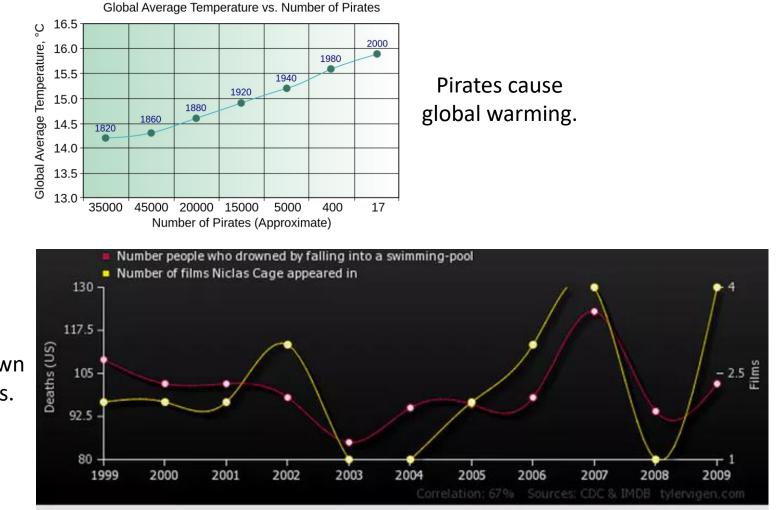
Cognitive biases

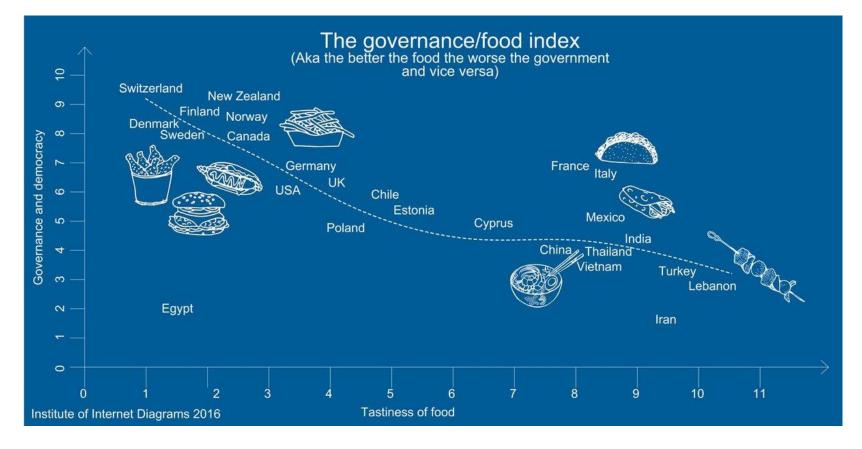
DESIGNHACKS.CO · CATEGORIZATION BY BUSTER BENSON · ALGORITHMIC DESIGN BY JOHN MANOOGIAN III (JM3) · DATA BY WIKIPEDIA

Anchoring effect

Have a guess – what's the population of Latvia. Is it a) above ten million or b) below that?

Anchoring leaves us to identify the first piece of information we obtain as a reference point.


Often used in advertising ... but can also bias a political analyst.

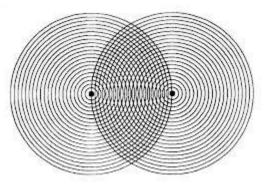

Causality and correlation

Nicholas cage makes people drown in swimming pools.

Causality and correlation

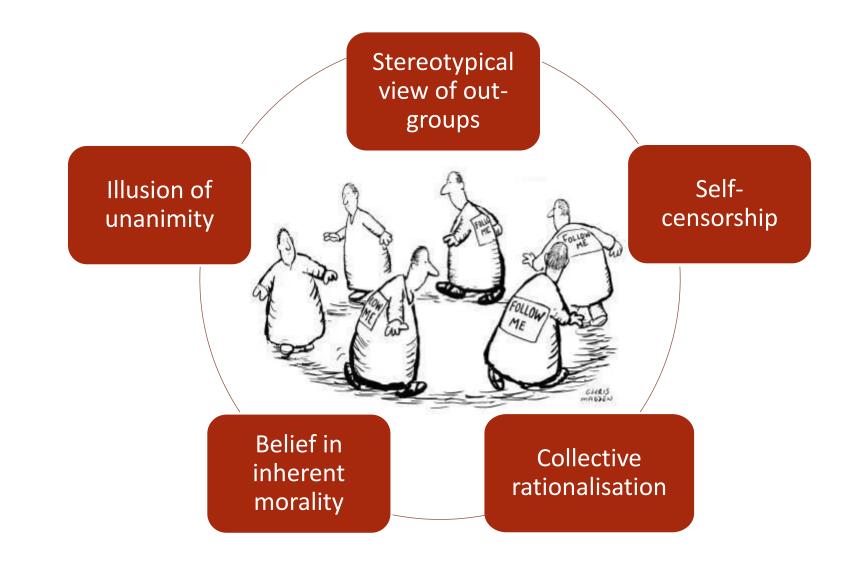
Karl Sharro: "The better the food the worse the government and vice versa"

Consider the following statements.


- a) The EU breaks ties with the US.
- b) Iran and Saudi Arabia enter a military conflict.
- c) The EU and Iran broker a free-trade agreement.
- d) The US issue sanctions against the EU, which is why the EU breaks ties with the US.
- e) The US join the Iranian nuclear deal again.

Which one is more likely? b) or e) ? a) or d) ? U

Conjunction fallacy


 $P(A \cap B) \le P(A)$

- Two things happening can never be more likely than only one of them happening.
- Framing makes us forget about basic logic concepts

> We tend to assess probabilities incorrectly!

Groupthink

Imagine you toss a coin five times. Which of these outcomes is more likely?

- a) Head, Head, Head, Head, Head
- b) Head, Tail, Tail, Head, Tail

Solution: Both have an equal probability of $0.5^5 = 3.125$ %

Randomness & the Law of Small Numbers

Let's change the framing:

Imagine, there is a village with 150 inhabitants. Suddenly, 10 are diagnosed with cancer. What is the population going to believe has happened?

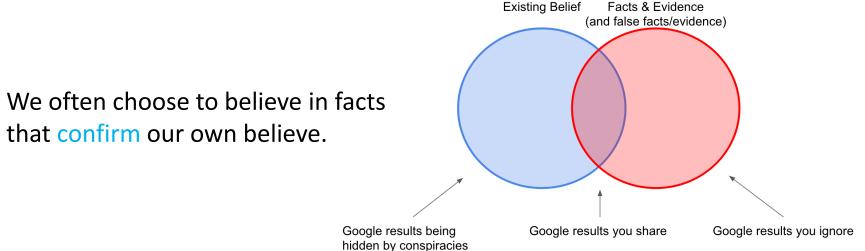
The Law of Large Numbers: Large samples produce representative results

The Law of **Small** Numbers: Biased believe that population statements can be made from small samples.

Randomness & the Law of Small Numbers

- Gambler's fallacy or cancer cluster?
- Just-world belief
- Illusion of control

Most individuals have no sense of randomness or probabilities



Availability bias & confirmatory bias

Recent experience, the personal environment, and often-cited issues dominate our thinking.

What will most Europeans be more afraid of? Terrorist attacks or car accidents?

Developing Scenarios for Disaster Risk Reduction - Day I NaDiMa Dialogue #8 | Dawud Ansari

- 25 -

Monocausality (Fallacy of the single cause)

Forbes	Billionaires	Innovation	Leadership	Money	Consumer	In
Alom Shaha @alomshaha	Follow ~					
nequality' is behind the rise of Is uthor Thomas Piketty	is, says					

There's a new theory behind the rise of Isis. And it's very controve... A year after his 700-page opus "Capital in the Twenty-First Century" stormed to the top of America's best-seller lists, Thomas Piketty is out with a new argument about independent.co.uk

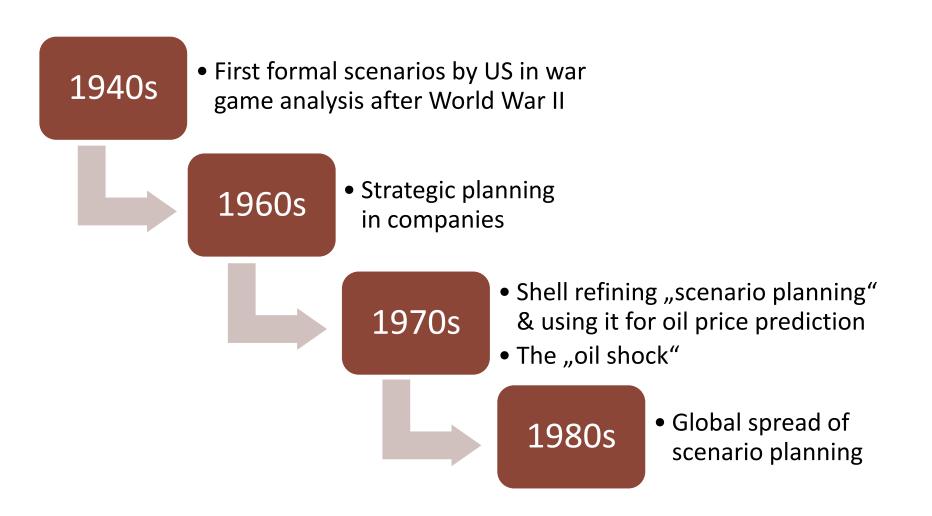
11:33 PM - 30 Nov 2015

а

3,975 views | Dec 10, 2015, 08:54am

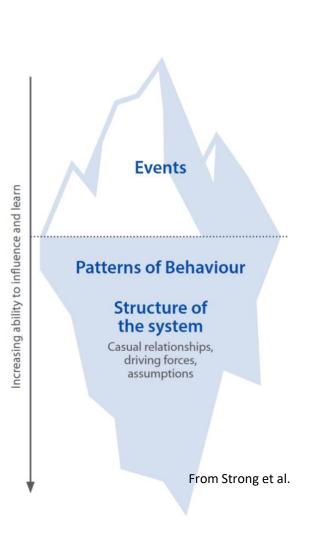
Is Climate Change To Blame For ISIS?

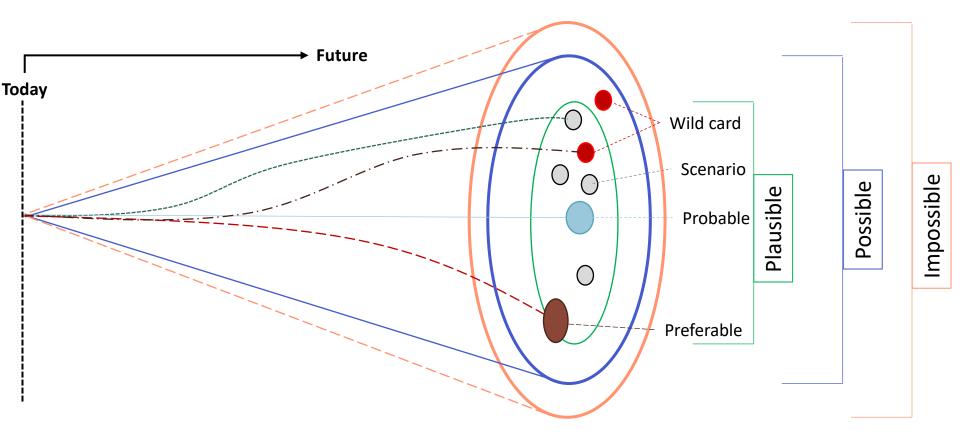
Bjorn Lomborg Contributor ① Energy & Environment Getting the facts straight on how to make the world a better place.



Understanding scenarios

- Scenarios date back to ancient Greece, turned into a decision-making tool in the 20th century
- Two important reference points:
 - Herman Kahn's "intuitive logics"
 - Gaston Berger's "la prospective"
- No universal definition or approach towards scenarios
- Kahn and Wiener (1967, p. 6): scenarios are "hypothetical sequences of events constructed for the purpose of focusing attention on causal processes and decision-points. They answer two kinds of questions:
 1) Precisely how might some hypothetical situation come about, step by step? and 2) What alternatives exist, for each actor, at each step, for preventing, diverting, or facilitating the process?"


History of scenario planning


Scenarios - how to define them?

- Scenarios are <u>plausible</u> imaginaries capturing counterfactual futures
- They aim at foreseeing the range of different futures
- They are no predictions of the future
 - If you don't remember anything else from this workshop, please keep at least this one as a takeaway.
 - Offering point predictions to highlyuncertain events can be misleading and a disservice to decision-makers
 - Consider the role of confidence intervals in inductive statistics
 - Other approaches can do predictions far better than scenarios

The scenario cone

Why scenarios?

- Use scenarios for
 - Complex situations, too uncertain outcomes to trust a single prediction
 - Policies or corporate strategies are in the initial stages
 - Bounding the range of possible futures
 - Bring decision-makers, experts and stakeholders together to envisage the alternative futures for which they must plan
- Goals
 - Providing a framework for considering multiple plausible futures
 - Raising awareness by involving decision-makers and stakeholders in the process
 - Obtaining indicators
 - Anticipating otherwise surprising developments
 - Think about how opportunities can be exploited

Different forms of scenarios

On what timescale does the risk materialise?

Trend Risk Scenario	Shock Risk Scenario
Slow-onset, trend phenomena that emerge gradually over time	Sudden-onset, shock events that occur quickly or unexpectedly

Which is the more important scenario outcome?

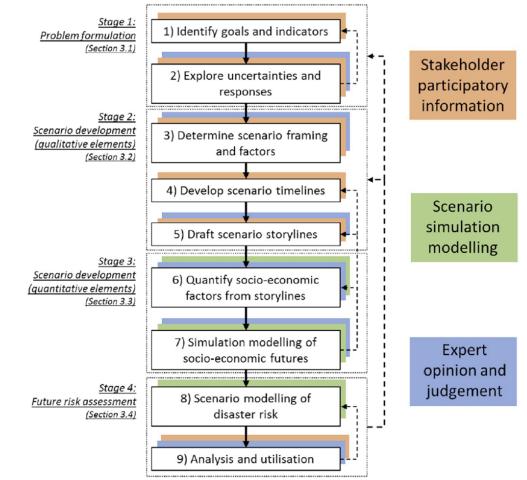
Exploratory - To ask 'what if?'	Normative - To ask 'what for?'	
To stimulate imaginative thinking about the future and widen understanding of available options	To better understand the path to desirable futures and evaluate the impact of decisions	

Who owns and contributes to the scenario process?

Participatory - Bottom-up, co-production of knowledge	Expert-Driven - Top-down, analytical
To incorporate stakeholder culture, knowledge, and experience in the process and end product	To deliver rigorous scientific descriptions of plausible futures to decision makers

Is the scenario required to define the likelihood of an outcome?

Probabilistic	Deterministic
To estimate the likelihood of occurrence based on the variance of quantified causal parameters	To speculatively explore phenomena that involve a high degree of uncertainty From Stron



Developing Scenarios for Disaster Risk Reduction - Day I

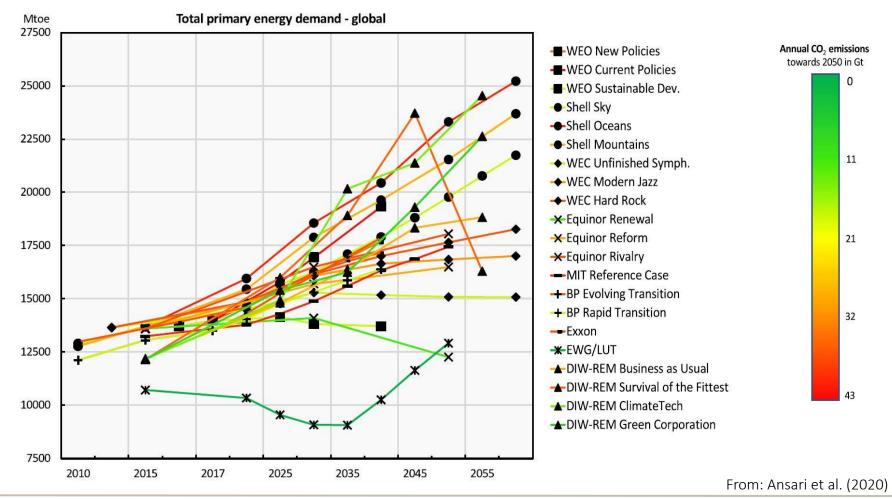
NaDiMa Dialogue #8 | Dawud Ansari

Qualitative and quantitative scenarios

- Scenarios are originally designed to capture highly complex uncertainties and nonlinear disruptions – something quantitative models have trouble with
- Disaster scenarios typically use quantitative models to capture specific aspects of their scenarios (e.g. to capture how a fire will spread)
- Outside of disasters: Qualitative-quantitative don't really get along

Riddell, G. A., van Delden, H., Maier, H. R., & Zecchin, A. C. (2019). Exploratory scenario analysis for disaster risk reduction: Considering alternative pathways in disaster risk assessment. *International journal of disaster risk reduction*, *39*, 101230.

Scenarios in the energy industry

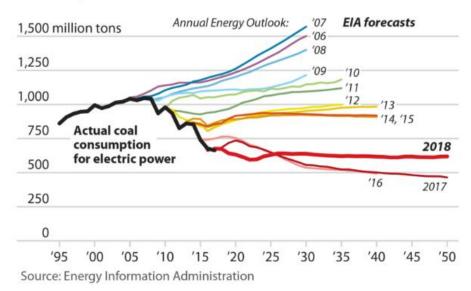


Energy corporations

Scenarios in the energy industry...

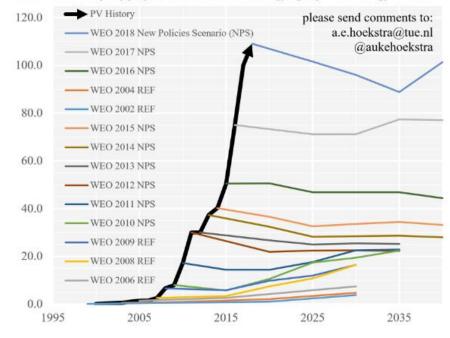
... help to allocate investments and monitor climate/energy developments by assessing the future energy system.

Developing Scenarios for Disaster Risk Reduction - Day I


NaDiMa Dialogue #8 | Dawud Ansari

Scenarios in the energy industry...

... aren't always right. But should they?


EIA Coal Consumption Forecasts, 2006-2018

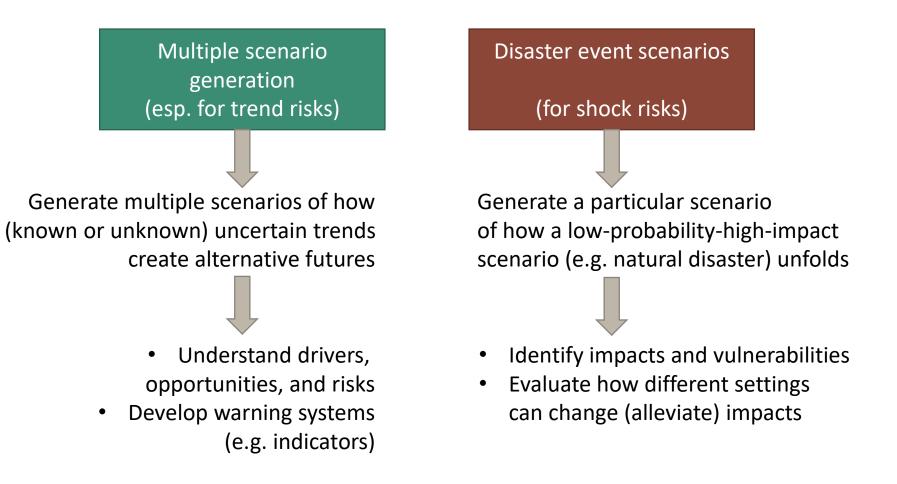
Each year, the Energy Information Administration releases its Annual Energy Outlook, which includes a long-term forecast for U.S. coal consumption for electric power generation. However, the forecasts have been wildly inaccurate, even in the near term.

Annual PV additions: historic data vs IEA WEO predictions

In GW of added capacity per year - source International Energy Agency - World Energy Outlook

- The SPARS pandemic: <u>https://jhsphcenterforhealthsecurity.s3.amazonaws.com/spars-pandemic-scenario.pdf</u>
- Lloyds' food system shock analysis: <u>https://assets.lloyds.com/assets/pdf-food-system-shock-june-2015/1/pdf-food-system-shock-june-2015.pdf</u>
- DIW-REM:

https://www.diw.de/documents/publikationen/73/diw 01.c.676049.d e/diwkompakt 2019-139.pdf

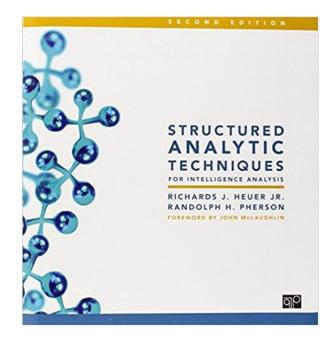


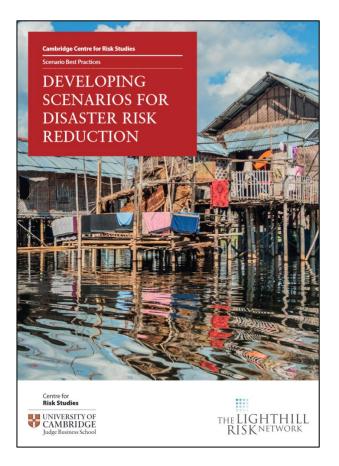
Developing scenarios

Today's taxonomy

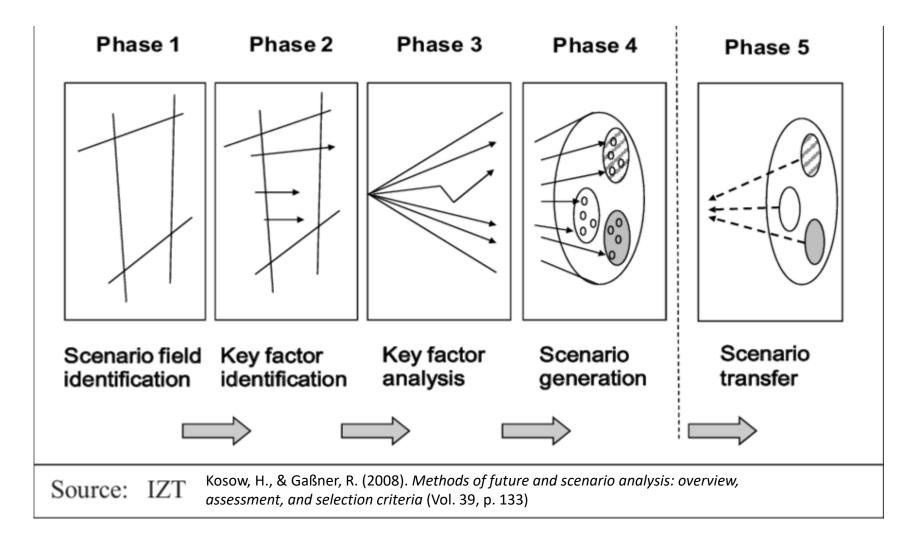
In this workshop, we will look at two approaches:

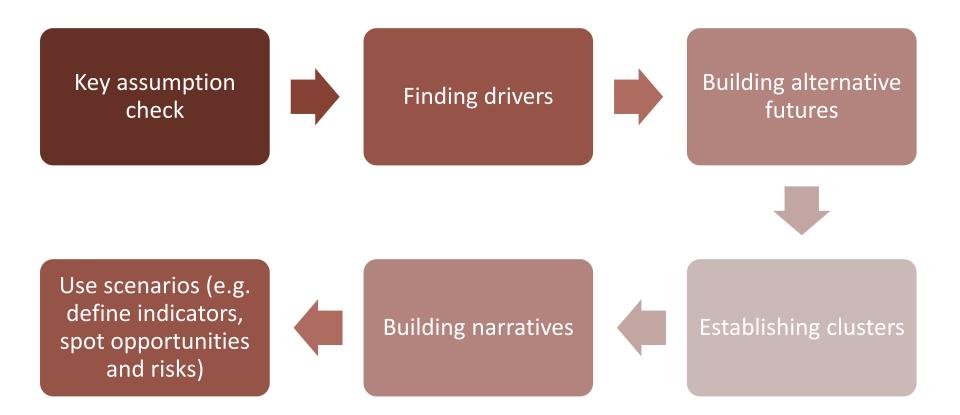
Challenges when using scenario approaches


- Scenarios are typically made in group exercises with a skilled facilitator
- Groups need to be highly diverse and/or require methods to avoid groupthink
- Participants often have issues when thinking beyond their fields
- Participants need to have the conceptual skills to select drivers and assumptions
- Participants need to be knowledgeable enough to provide accurate information but humble enough to challenge own beliefs
- Facilitators have a determining role (towards the better or the worse)
- Scenario exercises can be very time intensive



Foresight: Our techniques


Pherson, R. H., & Heuer Jr, R. J. (2020). *Structured analytic techniques for intelligence analysis*. Cq Press.


Strong, K., Carpenter, O., Ralph, D. 2020. Scenario Best Practices: Developing Scenarios for Disaster Risk Reduction. Cambridge Centre for Risk Studies at the University of Cambridge Judge Business School and Lighthill Risk Network

Developing (multiple) scenarios

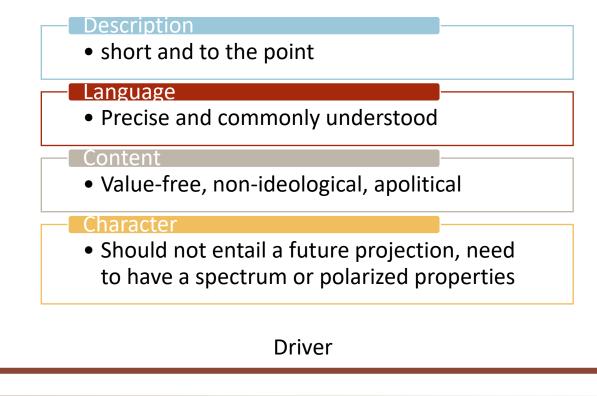
Key Assumptions Check

- Many foresight analyses should include a solid key assumptions check
- Key assumptions are the 'rules of the game'
 - Key assumptions define much of the analysis's scope
 - They give bounds to our analysis and explain which trends/mechanisms appear regardless of uncertainties
- Wrong key assumptions will conceal plausible disruptive change and make it appear 'unexpected' – foreseeable events become so-called *black swans*
- Strategy: Gather key assumptions (online, in-class, etc...) and have a panel of experts and non-experts evaluate whether the assumptions are <u>solid /</u> <u>caveated / unsupported</u>
- Challenge: Straightforward method, but participants need to be able to accept that they could be wrong
- Rule of thumb: 25% of key assumptions collapse

Key Assumptions Check

- Basically solid (we can expect this to be true)
- *Correct with caveats (generally true but there are relevant exceptions)*
- Unsupported (this is not necessarily true)

How will transport in Berlin develop over the coming 15 years?


- Bicycles will be part of the modal split.
- The share of bicycles will constantly increase.
- The government will always provide bicycle infrastructure (e.g. bike paths).
- Flying cars will never become a widespread mode of travel.
- There will always be a need for individual modes of traffic.

The art of creating a driver

- Drivers are the (uncertain) forces that affect and change a system.
- Generating (multiple) scenarios is built around the realisation of drivers
 - Scenarios result from combinations of driver realisations
- How to get drivers?
 - Key assumption check \rightarrow Unsupported assumptions can be key drivers
 - Structured brainstorming

The art of creating a driver

Title: Short and to the point

igodow Overall security situation in Europe w/special emphasis on Islamist radicalism

Status of security in France

Characteristic: Not comprising a future projection

 $igodoldsymbol{ o}$ Economic boom (projection / property already included)

Economic development

Language: Precise and commonly understood:

- Regional cooperation (reference is missing, property already included)

Relation of stakeholders in region

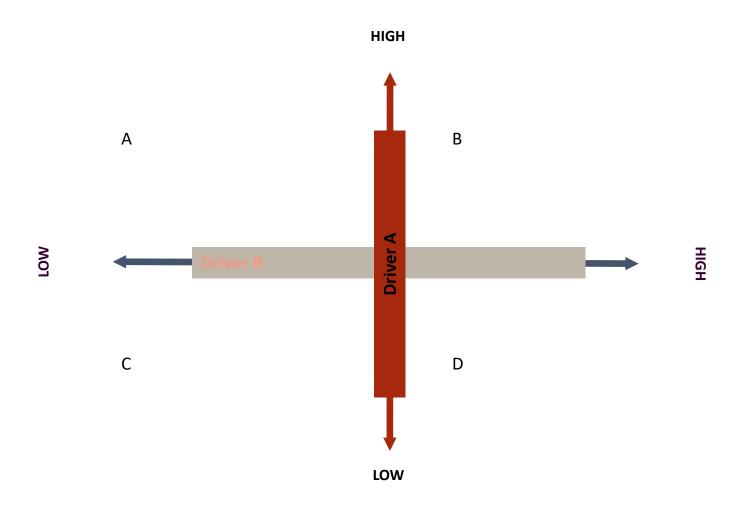
Example for a driver projection (driver: 'Status of ethnical minorities in Germany')

🔵 Good – Bad

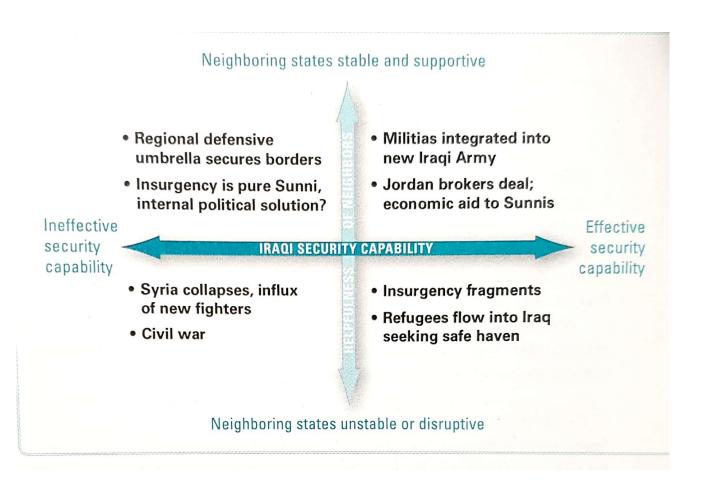
Marginalized – integrated

Example by Oliver Gnad, Bureau fuer Zeitgescehen

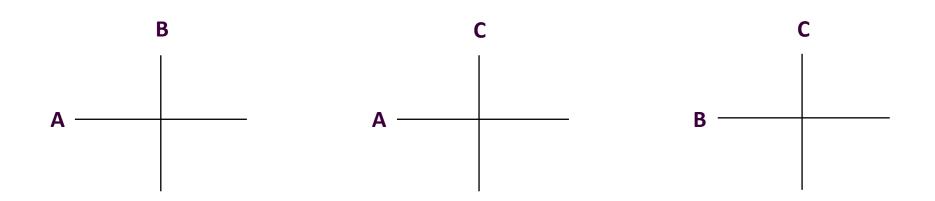
BUREAU 7 FITGESCHEHEN


Drivers

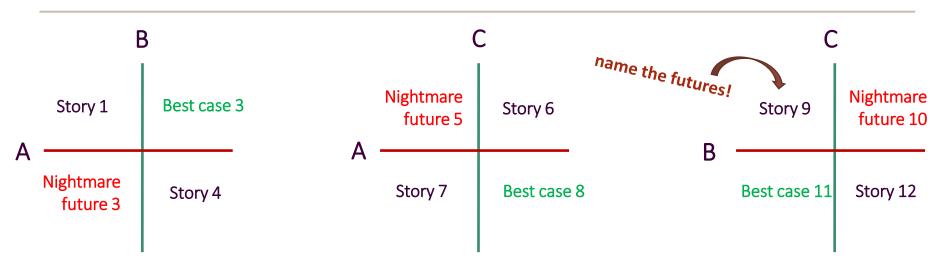
• Which drivers will affect how transport in Berlin develops over the coming 15 years?


Building alternative futures

Alternative futures the basis for scenarios - the result specific driver combinations.


Building alternative futures

Example from Richards Heuer & Randolph Pherson



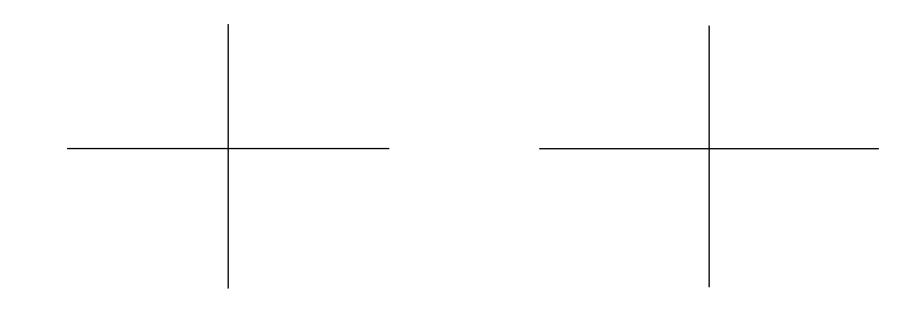
Building alternative futures

Clustering

Combine futures that are

- Not mutually exclusive (!)
- Reflect new, previously unexamined trends or reframe the issue
- Represent best or worst cases

Some interesting scenario: Futures 1, 7, 12 Best-case scenario: Futures 3, 8, 11 Worst-case scenario: Futures 3, 5, 10



- Give your scenario a sticky title, something to remember
- Develop a chronology of events
- Describe factors, actors, trends and events which steer your scenario
- Define an end-state for your scenario

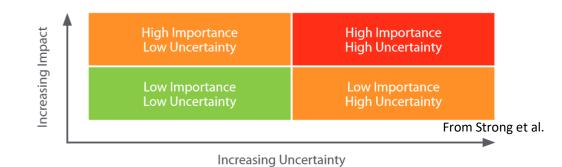
Multiple scenario generation

• How will transport in Berlin develops over the coming 15 years?

- Scenarios covering the consequences of disaster events typically follow a less stringent qualitative process
- Strong reliance on background research
- Disaster scenarios may include stakeholder formats at various stages throughout the process
- Several of the techniques discussed before e.g. the key assumption check – can be very valuable too

Scenarios for disaster events

Contextualise Specify questi	objective	 Consult literature and stakeholders 	 Determine the exactly be of scenario to developed 	o be • Qualitative scenario p	e exploration of arameters certainty and impact
	Step 1	Step 2	Step 3	Step 4	
	0				
	Scope the Risk	Conduct Background Research	Frame the Scenario(s)	Develop Candidate Scenarios	
-		Background Research	Scenario(3)		More on the coming slides
	Step 8	Step 7	Step 6	Step 5	
	9				
	Evaluate and Update	Communicate and Act	Assess Impacts and Materiality	Develop a Narrative	
Consider if the intended goal of the exercise was achieved Update scenarios with new developments/data		 Transfer results to decision-makers 	 Investigate what the scenario means to various systems 		


٠

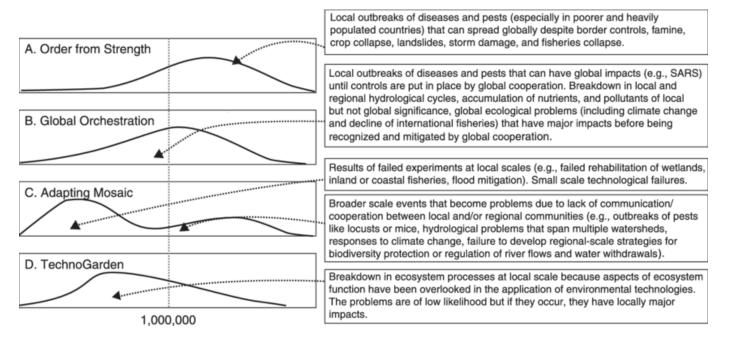
Developing Scenarios for Disaster Risk Reduction - Day I

NaDiMa Dialogue #8 | Dawud Ansari

Develop candidate scenarios

- A (mostly qualitative) exploration of scenario parameters and sequence of events
- After defining the framework, several scenarios are possible?
 - What exactly is the disaster considered
 - How does it manifest?
 - Where and when does it occur?
- How to choose a scenario candidate?
 - Option A: Impact-uncertainty risk matrix (Highest risk)
 - Option B: Uncertainty breadth (Largest range of outcomes)

Philipps Universität Marburg


Develop a narrative

Trigger	What and how is the event triggered?			
Location	Where exactly does it occur, and how far is its reach? make sure to include indirect impacts			
Timing	iming When does what occur? specify lengths and durations			
Impact	Who exactly is impacted in which way? make sure to consider delayed impacts			
Recovery	How does the recovery process work? Which resources can be recovered?			

- Create a detailed storyline of how your event unfolds from disaster to recovery
- This process may involve (or iterate) quantitative modelling
- Having at least an implicit understanding of key assumptions and drivers in the situation is valuable

Variations of the narrative

- After completing the "baseline", variations of the narrative show the impact of further uncertainties or decisions
- Counterfactual experiment: How does the scenario change ...
 - ... if certain action is taken? (decision-support)
 - ... if exogenous parameters were different? (robustness)

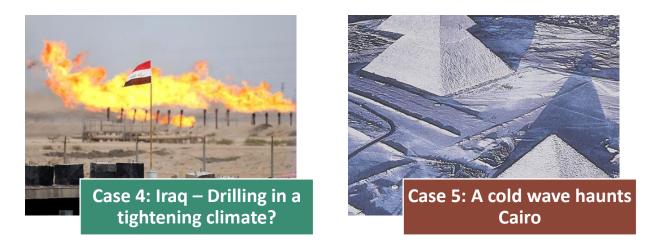
Cork, S., Peterson, G., Petschel-Held, G., Alcamo, J., Alder, J., Bennett, E., . Zurek, M. (2005). Four scenarios. *Ecosystems and human well-being: Scenarios*, 2.

Assessing impacts & making your scenario vivid

- The scenario will have mostly focussed on a tight scope
- Consider further cascade effects and spillovers/feedbacks from other systems (e.g. economy, society)
 - STEMPLE+ (social, technological, economic, military (security), political, environmental, and cultural systems)
- Look at the scenario again: Are there feedbacks changing the storyline?
- Make your scenario vivid, e.g.
 - explain the story from different PoVs
 - Imagine societal and cultural responses
 - draw imaginary

- For the remainder of the workshop, you will work in one of five groups.
- Each group has a unique case and will prepare scenario-based research, to presented during the competition at the end of the workshop.
- Each member of the group that wins the competition will receive a special certificate.

Group assignments



Case 2: Jordan's socioeconomic challenges – Covid-19 and beyond

threatening Antalya

