
 

Joint Discussion Paper 
Series in Economics 

by the Universities of 

Aachen · Gießen · Göttingen 
 Kassel · Marburg · Siegen 

ISSN 1867-3678 

 
 
 

No. 31-2009 
 

Christian Groth, Karl-Josef Koch, and Thomas M. Steger 
 
 

When economic growth is less than exponential 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This paper can be downloaded from 
http://www.uni-marburg.de/fb02/makro/forschung/magkspapers/index_html%28magks%29 

 
Coordination: Bernd Hayo • Philipps-University Marburg 

Faculty of Business Administration and Economics • Universitätsstraße 24, D-35032 Marburg 
Tel: +49-6421-2823091, Fax: +49-6421-2823088, e-mail: hayo@wiwi.uni-marburg.de 

 

Gießen 

Marburg 

Kassel 

Siegen 
Aachen 

Göttingen MAGKS 



 

 Fachbereich 5 
 Wirtschaftswissenschaften, 
 Wirtschaftsinformatik und 
 Wirtschaftsrecht 

 

 

 

Volkswirtschaftliche Diskussionsbeiträge 

 Discussion Papers in Economics 

 

 

 

 

 

 

 

 

 

 

No. 129-09 

June 2009 

 
 

Christian Groth . Karl-Josef Koch . Thomas M. Steger 
 
 

 
 
When economic growth is less than exponential 
 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Universität Siegen 
Fachbereich 5 
Wirtschaftswissenschaften, Wirtschaftsinformatik und Wirtschaftsrecht 
Fachgebiet Volkswirtschaftslehre 
Hölderlinstraße 3 
D-57068 Siegen 
Germany 
 
http://www.uni-siegen.de/fb5/vwl/ 
 
ISSN 1433-058x 
 
Available for free from the University of Siegen website at 
http://www.uni-siegen.de/fb5/vwl/research/diskussionsbeitraege/ 
 
Discussion Papers in Economics of the University of Siegen are indexed in RePEc 
and can be downloaded free of charge from the following website: 
http://ideas.repec.org/s/sie/siegen.html 
 



Christian Groth · Karl-Josef Koch · Thomas M. Steger

When economic growth is less than exponential

Received: ( )/revised version: ( )

Abstract This paper argues that growth theory needs a more general notion
of “regularity” than that of exponential growth. We suggest that paths along
which the rate of decline of the growth rate is proportional to the growth rate
itself deserve attention. This opens up for considering a richer set of parameter
combinations than in standard growth models. And it avoids the usual over-
simplistic dichotomy of either exponential growth or stagnation. Allowing zero
population growth in three different growth models (the Jones R&D-based model,
a learning-by-doing model, and an embodied technical change model) serves as
illustrations that a continuum of “regular” growth processes fill the whole range
between exponential growth and complete stagnation.
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1 Introduction

The notion of balanced growth, generally synonymous with exponential growth,
has proved extremely useful in the theory of economic growth. This is not only
because of the historical evidence (Kaldor’s “stylized facts”), but also because of
its convenient simplicity. Yet there may be a deceptive temptation to oversimplify
and ignore other possible growth patterns. We argue there is a need to allow for
a richer set of parameter constellations than in standard growth models and to
look for a more general regularity concept than that of exponential growth. The
motivation is the following:

First, when setting up growth models researchers place severe restrictions
on preferences and technology such that the resulting model is compatible with
balanced growth (as pointed out by Solow, 2000, Chapters 8-9). In addition,
population is either assumed to grow exponentially or to be constant. This paper
demonstrates that regular long-run growth, in a sense specified below, can arise
even when some of the archetype restrictions are left out.

Second, standard R&D-based semi-endogenous growth models imply that the
long-run per-capita growth rate is proportional to the growth rate of the labor
force (Jones, 2005).1 This class of models is frequently used for positive and
normative analysis since it appears empirically plausible in many respects. And
the models are consistent with more than a century of approximately exponen-
tial growth. If we employ this framework to evaluate the prospect of growth in
the future, then we end up with the assertion that the growth rate will converge
to zero. This is simply due to the fact that there must be limits to population
growth, hence also to growth of human capital. The open question is then what
this really implies for economic development in the future and thereby, for exam-
ple, for the warranted discount rate for long-term environmental projects. This
issue has not received much attention so far and the answer is not that clear at
first glance. Of course, there is an alternative to the semi-endogenous growth
framework, namely that of fully endogenous growth as in the first-generation
R&D-based growth models of Romer (1990), Grossman and Helpman (1991), and
Aghion and Howitt (1992). This approach allows of exponential growth with zero
population growth. However, in spite of their path-breaking nature these models
rely on the simplifying knife-edge assumption of constant returns to scale (either
exactly or asymptotically) with respect to producible factors in the invention pro-

1Of course, if one digs a little deeper, it is not growth in population as such that matters.
Rather, as Jones (2005) suggests, it is growth in human capital, but this ultimately depends on
population growth.
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duction function.2 As argued, for instance by McCallum (1996), the knife-edge
assumption of constant returns to scale to producible inputs should be interpreted
as a simplifying approximation to the case of slightly decreasing returns (increas-
ing returns can be ruled out because they have the nonsensical implication of
infinite output in finite time, see Solow 1994). But the case of decreasing returns
to producible inputs is exactly the semi-endogenous growth case.

A third reason for thinking about less than exponential growth is to open up
for a perspective of sustained growth (in the sense of output per capita going to
infinity for time going to infinity) in spite of the growth rate approaching zero.
Everything less than exponential growth often seems interpreted as a fairly bad
outcome and associated with economic stagnation. For instance, in the context
of the Jones (1995) model with constant population, Young (1998, n. 10) states
“Thus, even if there are intertemporal spillovers, if they are not large enough to
allow for constant growth, the development of the economy grinds to a halt.” How-
ever, to our knowledge, the case of zero population growth in the Jones model
has not really been explored yet. We take the opportunity to let an analysis of
this case serve as one of our illustrations that the usual dichotomy between either
exponential growth or complete stagnation is too narrow. The analysis suggests
that paths along which the rate of decline of the growth rate is proportional to the
growth rate itself deserve attention. Indeed, this criterion will define our concept
of regular growth. It turns out that exponential growth is the limiting case where
the factor of proportionality, the “damping coefficient”, is zero. And the “oppo-
site” limiting case is stagnation which occurs when the “damping coefficient” is
infinite.

To show the usefulness of this generalized regularity concept two further ex-
amples are provided. One of these is motivated by what seems to be a gap in
the theoretical learning-by-doing literature. With the perspective of exponential
growth, existing models either assume a very specific value of the learning param-
eter combined with zero population growth in order to avoid growth explosion
(Barro and Sala-i-Martin, 2004, Section 4.3) or allow for a range of values for
the learning parameter below that specific value, but then combined with expo-
nential population growth (Arrow, 1962). There is an intermediate case, which
to our knowledge has not been systematically explored. And this case leads to
less-than-exponential, but sustained regular growth.

Our third example of regular growth is intended to show that the framework
is easily applicable also to more realistic and complex models. As Greenwood et

2By “knife-edge assumption” is meant a condition imposed on a parameter value such that
the set of values satisfying this condition has an empty interior in the space of all possible values
for this parameter (see Growiec, 2007).
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al. (1997) document, since World War II there has been a steady decline in the
relative price of capital equipment and a secular rise in the ratio of new equipment
investment to GNP. On this background we consider a model with investment-
specific learning and embodied technical change, implying a persistent decline in
the relative price of capital. When conditions do not allow of exponential growth,
the same regularity emerges as in the two previous examples. We further sort out
how and why the source of learning − be it gross or net investment − is decisive
for this result.

The paper is structured as follows. Section 2 introduces proportionality of the
rate of decline of the growth rate and the growth rate itself as defining “regular
growth”. It is shown that this regularity concept nests, inter alia, exponential
growth, arithmetic growth, and stagnation as special cases. Sections 3, 4, and 5
present our three economic examples which, by allowing for a richer set of param-
eter constellations than in standard growth models, give rise to growth patterns
satisfying our regularity criterion, yet being non-exponential. Asymptotic stabil-
ity of the regular growth pattern is established in all three examples. Finally,
Section 6 summarizes the findings.

2 Regular Growth

Growth theory explains long-run economic development as some pattern of regular
growth. The most common regularity concept is that of exponential growth. Oc-
casionally another regularity pattern turns up, namely that of arithmetic growth.
Indeed, a Ramsey growth model with AK technology and CARA preferences fea-
tures arithmetic GDP per capita growth (e.g., Blanchard and Fischer, 1989, pp.
44-45). Similarly, under Hartwick’s rule, a model with essential, non-renewable
resources (but without population growth, technical change, and capital depre-
ciation) features arithmetic growth of capital (Solow, 1974; Hartwick, 1977). In
similar settings, Mitra (1983), Pezzey (2004), and Asheim et al. (2007) consider
growth paths of the form x(t) = x(0)(1 + µt)ω, µ, ω > 0, which, by the last-
mentioned authors, is called “quasi-arithmetic growth”. In these analyses the
quasi-arithmetic growth pattern is associated with exogenous quasi-arithmetic
growth in either population or technology. In this way results by Dasgupta and
Heal (1979, pp. 303-308) on optimal growth within a classical utilitarian frame-
work with non-renewable resources, constant population, and constant technology
are extended. Hakenes and Irmen (2007) also study exogenous quasi-arithmetic
growth paths. Their angle is to evaluate the plausibility of equations of motion
for technology on the basis of the ultimate forward-looking as well as backward-
looking behavior of the implied path.
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In our view there is a rationale for a concept of regular growth, subsuming
exponential growth and arithmetic growth as well as the range between these
two. Also some kind of less-than-arithmetic growth should be included. We la-
bel this general concept regular growth, for reasons that will become clear below.
The example we consider in Section 3 illustrates that by varying one parameter
(the elasticity of knowledge creation with respect to the level of existing knowl-
edge), the whole range between complete stagnation and exponential growth of
the knowledge stock is spanned. Furthermore, the example shows how a quasi-
arithmetic growth pattern for knowledge, capital, output, and consumption may
arise endogenously in a two-sector, knowledge-driven growth model. The second
and third example, discussed in Section 4 and 5, respectively, show that also
models of learning by doing and learning by investing may endogenously generate
quasi-arithmetic growth.

To describe our suggested concept of regular growth, a few definitions are
needed. Let the variable x(t) be a positively-valued differentiable function of time
t. Then the growth rate of x(t) at time t is:

g1(t) ≡
ẋ(t)
x(t)

,

where ẋ(t) ≡ dx(t)/dt. We call g1(t) the first-order growth rate. Since we seek a
more general concept of regular growth than exponential growth, we allow g1(t)
to be time-variant. Indeed, the regularity we look for relates precisely to the way
growth rates change over time. Presupposing g1(t) is strictly positive within the
time range considered, let g2(t) denote the second-order growth rate of x(t) at
time t, i.e.,

g2(t) ≡
ġ1(t)
g1(t)

.

We suggest the following criterion as defining regular growth:

g2(t) = −βg1(t) for all t ≥ 0, (1)

where β ≥ 0. That is, the second-order growth rate is proportional to the first-
order growth rate with a non-positive factor of proportionality. The coefficient
β is called the damping coefficient, since it indicates the rate of damping in the
growth process.

Let x0 and α denote the initial values x(0) > 0 and g1(0) > 0, respectively.
The unique solution of the second-order differential equation (1) may then be
expressed as:

x(t) = x0 (1 + αβt)
1
β . (2)
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Note that this solution has at least one well-known special case, namely x(t) =
x0e

αt for β = 0.3 Moreover, it should be observed that, given x0, (2) is also the
unique solution of the first-order equation:

ẋ(t) = αxβ
0x(t)1−β, α > 0, β ≥ 0, (3)

which is an autonomous Bernoulli equation. This gives an alternative and equiva-
lent characterization of regular growth. The feature that x(t) here has a constant
exponent fits well with economists’ preference for constant elasticity functional
forms.

The simple formula (2) describes a family of growth paths, the members of
which are indexed by the damping coefficient β. Figure 1 illustrates this family of
regular growth paths.4 There are three well-known special cases. For β = 0, we
have g1(t) = α, a positive constant. This is the case of exponential growth. At
the other extreme we have complete stagnation, i.e., the constant path x(t) = x0.

This can be interpreted as the limiting case β → ∞.5 Arithmetic growth, i.e.,
ẋ(t) = α, for all t ≥ 0, is the special case β = 1.

0 10 20 30 40 50 60 70
0

5

10

15
β =0

β =1

β = ∞ 

t

x(
t)

Figure 1: A family of growth paths indexed by β.

Table 1 lists these three cases and gives labels also to the intermediate ranges
for the value of the damping coefficient β. Apart from being written in another
(and perhaps less “family-oriented”) way, the “quasi-arithmetic growth” formula
in Asheim et al. (2007) mentioned above, is subsumed under these intermediate
ranges.

3To see this, use L’Hôpital’s rule for “0/0” on ln (x(t)) = ln(x0) + 1
β

ln (1 + αβt).
4Figure 1 is based on α = 0.05 and x0 = 1. In this case, the time paths do not intersect.

Intersections occur for x0 < 1. However, for large t the picture always is as shown in Figure 1.
5Use L’Hôpital’s rule for “∞/∞” on ln x(t). If we allow g1(0) = 0, stagnation can of course

also be seen as the case α = 0.
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Table 1: Regular growth paths: g2(t) = −βg1(t) ∀t ≥ 0, β ≥ 0, g1(0) = α > 0.

Label
Damping

coefficient
Time path

Limiting case 1: exponential growth β = 0 x(t) = x0e
αt, α > 0

More-than-arithmetic growth 0 < β < 1 x(t) = x0(1 + αβt)
1
β , α > 0

Arithmetic growth β = 1 x(t) = x0(1 + αt), α > 0

Less-than-arithmetic growth 1 < β < ∞ x(t) = x0(1 + αβt)
1
β , α > 0

Limiting case 2: stagnation β = ∞ x(t) = x0

As to the case β > 1, notice that though the increase in x per time unit is
falling over time, it remains positive; there is sustained growth in the sense that
x(t) → ∞ for t → ∞.6 Formally, also the case of β < 0 (more-than-exponential
growth) could be included in the family of regular growth paths. However, this
case should be considered as only relevant for a description of possible phases of
transitional dynamics. A growth path (for, say, GDP per capita) with β < 0 is
explosive in a very dramatic sense: it leads to infinite output in finite time (Solow,
1994).

It is clear that with 0 < β < ∞, the solution formula (2) can not be extended,
without bound, backward in time. For t = −(αβ)−1 ≡ t̄, we get x(t) = 0, and
thus, according to (3), x(t) = 0 for all t ≤ t̄. This should not, however, be
considered a necessarily problematic feature. A certain growth regularity need
not be applicable to all periods in history. It may apply only to specific historical
epochs characterized by a particular institutional environment.7

By adding one parameter (the damping coefficient β), we have succeeded span-
ning the whole range of sustained growth patterns between exponential growth
and complete stagnation. Our conjecture is that there are no other one-parameter
extensions of exponential growth with this property (but we have no proof). In
any case, as witnessed by the examples in the next sections, the extension has
relevance for real-world economic problems. It is of course possible − and likely
− that one will come across economic growth problems that will motivate adding
a second parameter or introducing other functional forms. Exploring such exten-
sions is beyond the scope of this paper.8

6Empirical investigation of post-WWII GDP per-capita data of a sample of OECD countries
yields positive damping coefficients between 0.17 (UK) and 1.43 (Germany). The associated
initial (annual) growth rates in 1951 are 2.3% (UK) and 12.4% (Germany), respectively. The
fit of the regular growth formula is remarkable. This is not a claim, of course, that this data is
better described as regular growth with damping than as transition to exponential growth. Yet,
discriminating between the two should be possible in principle.

7Here we disagree with Hakenes and Irmen (2007) who find a growth formula (for technical
knowledge) implausible, if its unbounded extension backward in time implies a point where
knowledge vanishes.

8However, an interesting paper by Growiec (2008) takes steps in this direction. We may

7



Before we discuss our economic examples of regular growth, a word on termi-
nology is appropriate. Our reason for introducing the term “regular growth” for
the described class of growth paths is that we want an inclusive name, whereas for
example “quasi-arithmetic growth” will probably in general be taken to exclude
the limiting cases of exponential growth and complete stagnation.

3 Example 1: R&D-based growth

As our first example of the regularity described above we consider an optimal
growth problem within the Romer (1990)-Jones (1995) framework. The labor
force (= population), L, is governed by L = L0e

nt, where n ≥ 0 is constant (this
is a common assumption in most growth models whether n = 0, as with Romer,
or n > 0, as with Jones). The idea of the example is to follow Jones’ relaxation
regarding Romer’s value of the elasticity of knowledge creation with respect to
existing knowledge, but in contrast to Jones allow n = 0 as well as a vanishing
pure rate of time preference. We believe the case n = 0 is pertinent not only
for theoretical reasons, but also because it is of practical interest in view of the
projected stationarity of the population of developed countries as a whole already
from 2005 (United Nations, 2005).

The technology of the economy is described by constant elasticity functional
forms:9

Y = AσKα(uL)1−α, σ > 0, 0 < α < 1, (4)

K̇ = Y − cL, K(0) = K0 > 0 given, (5)

Ȧ = γAϕ(1− u)L, γ > 0, ϕ ≤ 1, A(0) = A0 > 0 given, (6)

where Y is aggregate manufacturing output (net of capital depreciation), A soci-
ety’s stock of “knowledge”, K society’s capital, u the fraction of the labor force
employed in manufacturing, and c per-capita consumption; σ, α, γ and ϕ are con-
stant parameters. The criterion functional of the social planner is:

U0 =
∫ ∞

0

c1−θ − 1
1− θ

Le−ρtdt,

where θ > 0 and ρ ≥ n. In the spirit of Ramsey (1928) we include the case ρ = 0,

since giving less weight to future than to current generations might be deemed

add that this paper, as well as the constructive comments by its author on the working paper
version of the present article, has taught us that reducing the number of problematic knife-edge
restrictions is not the same as “getting rid of” knife-edge assumptions concerning parameter
values and/or functional forms.

9From now, the explicit timing of the variables is suppressed when not needed for clarity.
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“ethically indefensible”. When ρ = n, there exist feasible paths for which the
integral U0 does not converge. In that case our optimality criterion is the catching-
up criterion, see Case 4 below. The social planner chooses a plan (c(t), u(t))∞t=0,

where c(t) > 0 and u(t) ∈ [0, 1] , to optimize U0 under the constraints (4), (5) and
(6) as well as K ≥ 0 and A ≥ 0, for all t ≥ 0. From now, the (first-order) growth
rate of any positive-valued variable v will be denoted gv.

Case 1: ϕ = 1, ρ > n = 0. This is the fully-endogenous growth case considered
by Romer (1990).10 An interior optimal solution converges to exponential growth
with growth rate gc = (1/θ) [σγL/(1− α)− ρ)] and u = 1− (1− α)gc/(σγL).11

Case 2: ϕ < 1, ρ > n > 0. This is the semi-endogenous growth case considered
by Jones (1995). An interior optimal solution converges to exponential growth
with growth rate gc = n/(1− ϕ) and u = (σ/(1−α))(θ−1)n+(1−ϕ)ρ

(σ/(1−α))θn+(1−ϕ)ρ .12

Case 3: ϕ < 1, ρ > n = 0. In this case the economy ends up in complete
stagnation (constant c) with all labor in the manufacturing sector, as is indicated
by setting n = 0 in the formula for u in Case 2. The explanation is the combination
of a) no population growth to countervail the diminishing marginal returns to
knowledge (∂Ȧ/∂A → 0 for A → ∞), and b) a positive constant rate of time
preference.

Case 4: ϕ < 1, ρ = n = 0. This is the canonical Ramsey case. Depending
on the values of ϕ, σ, α and θ, a continuum of dynamic processes for A,K, Y,

and c emerges which fill the whole range between stagnation and exponential
growth. Since this case does not seem investigated in the literature, we shall spell
it out here. The optimality criterion is the catching-up criterion: a feasible path
(K̂, Â, ĉ, û)∞t=0 is catching-up optimal if

lim
t→∞

inf
(∫ t

0

ĉ1−θ − 1
1− θ

dτ −
∫ t

0

c1−θ − 1
1− θ

dτ

)
≥ 0

for all feasible paths (K, A, c, u)∞t=0.

Let p be the shadow price of knowledge in terms of the capital good. Then,
the value ratio x ≡ pA/K is capable of being stationary in the long run. Indeed,
as shown in Appendix A, the first-order conditions of the problem lead to:

ẋ =
γLAϕ−1

1− α
{(α− s)xu− [σ + (1− α)(1− ϕ)]u + (1− α)(1− ϕ)}x, (7)

10Contrary to Romer (1990), though, we permit σ 6= 1 − α since that still allows stable fully
endogenous growth and, in addition, avoids blurring countervailing effects (see Alvarez-Pelaez
and Groth, 2005).

11With ϕ = 1, an n > 0 would generate an implausible ever-increasing growth rate.
12The Jones (1995) model also includes a negative duplication externality in R&D, which is

not of importance for our discussion. Convergence of this model is shown in Arnold (2006). In
both Case 1 and Case 2 boundedness of the utility integral U0 requires that parameters are such
that (1− θ)gc < ρ− n.
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where s = 1− cL/Y is the saving rate; further,

u̇ =
γLAϕ−1

1− α

[
−(1− s)xu + σu +

1− α

α
σ

]
u, and (8)

ṡ =
γLAϕ−1

1− α

[
−(

1− θ

θ
α + 1− s)xu +

1− α

α
σ

]
(1− s). (9)

Provided θ > 1, this dynamic system has a unique steady state:

x∗ =
σθ

α(θ − 1)
>

σ

α
, u∗ =

(θ − 1) [σ + α(1− ϕ)]
θσ + (θ − 1)α(1− ϕ)

∈ (0, 1), (10)

s∗ =
α(σ + 1− ϕ)

θ [σ + α(1− ϕ)]
∈ (

α

θ
,
1
θ
).

The resulting paths for A,K, Y, and c feature regular growth with positive damp-
ing. This is seen in the following way. First, given u = u∗, the innovation equation
(6) is a Bernoulli equation of form (3) and has the solution

A(t) =
[
A0

1−ϕ + (1− ϕ)γ(1− u∗)Lt
] 1

1−ϕ = A0 (1 + µt)
1

1−ϕ , (11)

where µ ≡ (1− ϕ)γ(1− u∗)LA0
ϕ−1 > 0. Second, the optimality condition saying

that at the margin, time must be equally valuable in its two uses, implies the
same value of the marginal product of labor in the two sectors, that is, pγAϕ

= (1− α)Y/(uL). Substituting (4) into this equation, we see that

x ≡ pA

K
=

(1− α)Aσ+1−ϕ

γK1−α(uL)α
. (12)

Thus, solving for K yields, in the steady state,

K(t) = (u∗L)
−α
1−α

(
1− α

γx∗

) 1
1−α

A0

σ+1−ϕ
1−α (1 + µt)

σ+1−ϕ
(1−α)(1−ϕ) . (13)

The resultant path for Y is

Y (t) = A(t)σK(t)α(u∗L)1−α

= (u∗L)
1−2α
1−α

(
1− α

γx∗

) α
1−α

A0

σ+α(1−ϕ)
1−α (1 + µt)

σ+α(1−ϕ)
(1−α)(1−ϕ) . (14)

Finally, per capita consumption is given by c(t) = (1−s∗)Y (t)/L. The assumption
that θ > 1 (which seems to be consistent with the microeconometric evidence,
see Attanasio and Weber, 1995) is needed to avoid postponement forever of the
consumption return to R&D.13

13The conjectured necessary and sufficient transversality conditions (see Appendix A) require
θ > (σ+1−φ)/ [σ + α(1− φ)], which we assume to be satisfied. This condition is a little stronger
than the requirement θ > 1.

10



When 0 < ϕ < 1 (the “standing on the shoulders” case), the damping coeffi-
cient for knowledge growth equals 1− ϕ < 1, i.e., knowledge features more-than-
arithmetic growth. When ϕ < 0 (the “fishing out” case), the damping coefficient
is 1 − ϕ > 1, and knowledge features less-than-arithmetic growth. In the inter-
mediate case, ϕ = 0, knowledge features arithmetic growth. The coefficient µ,

which equals the initial growth rate times the damping coefficient, could be called
the growth momentum. It is seen to incorporate a scale effect from L. This is as
expected, in view of the non-rival character of technical knowledge.

The time paths of K and Y also feature regular growth, though with a damping
coefficient different from that of technology. The time path of Y, to which the
path of c is proportional, features more-than-arithmetic growth if and only if
σ > (1 − 2α)(1 − ϕ). A sufficient condition for this is that 1

2 ≤ α < 1. It is
interesting that ϕ > 0 is not needed; the reason is that even if knowledge exhibits
less-than-arithmetic growth (ϕ < 0), this may be compensated by high enough
production elasticities with respect to knowledge or capital in the manufacturing
sector. Notice also that the capital-output ratio features exactly arithmetic growth
always along the regular growth path of the economy, i.e., independently of the
size relation between the parameters. Indeed, K/Y = [K(0)/Y (0)] (1 + µt). This
is like in Hartwick’s rule (Solow, 1974). A mirror image of this is that the marginal
product of capital always approaches zero for t → ∞, a property not surprising
in view of ρ = 0.

Is the regular growth path robust to small disturbances in the initial condi-
tions? The answer is yes: the regular growth path is locally saddle-point stable.
That is, if the pre-determined initial value of the ratio, Aσ+1−ϕ/K1−α, is in a
small neighborhood of its steady state value (which is γLαx∗u∗α/(1 − α)), then
the dynamic system (7), (8), and (9) has a unique solution (xt, ut, st)∞t=0 and this
solution converges to the steady state (x∗, u∗, s∗) for t → ∞ (see Appendix A).
Thus, the time paths of A,K, Y, and c approach regular growth in the long run.

Of course, exactly constant population is an abstraction but, for example,
logistic population growth should over time lead to approximately the same pat-
tern. Admittedly, also the nil time-preference rate is a particular case, but in
our opinion not the least interesting one in view of its benchmark character as an
expression of a canonical ethical principle.14

14The entire spectrum of regular growth patterns can also be obtained in an elementary version
of the Jones (1995) model with no capital, but two types of (immobile) labor, i.e., unskilled labor
in final goods production and skilled labor in R&D.
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4 Example 2: Learning by doing

In the first example regular non-exponential growth arose in the Ramsey case with
a zero rate of time preference. Are there examples with a positive rate of time
preference? This question was raised by Chad Jones (private correspondence),
who kindly suggested us to look at learning by doing. The answer to the question
turns out be a yes.

Assume there is learning by doing in the following form:

Ȧ = γAϕL, γ > 0, ϕ < 1, A(0) = A0 > 0 given, (15)

where, as before, A is an index of productivity at time t and L is the labor force
(= population).15 As noted in the introduction, the case ϕ = 1, combined with
constant L, and the case ϕ < 1 combined with exponential growth in L, are well
understood. And the case ϕ > 1 leads to explosive growth. But the remaining
case, ϕ < 1, combined with constant L, has to our knowledge not received much
attention, possibly because of the absence of a conceptual framework for the kind
of regularity which arises in this case. Moreover, this case is also of interest
because its dynamics turn out to reappear as a sub-system of the more elaborate
example with embodied technical change in the next section.

The Bernoulli equation (15) has the solution

A(t) =
[
A1−ϕ

0 + (1− ϕ)γLt
]1/(1−ϕ)

. (16)

Thus, A features regular growth. We wish to see whether, in the problem below,
also Y, K, and c feature regular growth when ρ > 0.16

The social planner chooses a plan (c(t))∞t=0 so as to maximize

U0 =
∫ ∞

0

c1−θ − 1
1− θ

Le−ρtdt s.t.

K̇ = Y − cL− δK, δ ≥ 0, K(0) = K0 > 0 given, (17)

where
Y = AσKαL1−α, σ > 0, 0 < α < 1, (18)

with the time path of A given by (16). Whereas the previous example assumed
that net output was described by a Cobb-Douglas production function, here it

15As an alternative to our “learning-by-doing” interpretation of (15), one might invoke a
“population-breeds-ideas” hypothesis. In his study of the very-long run history of population
Kremer (1993) combines such an interpretation of (15) with a Malthusian story of population
dynamics.

16In order to allow potential scale effects to be visible, we do not normalize L to 1.
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can be gross output as well. The current-value Hamiltonian is

H(K, c, λ, t) =
c1−θ − 1

1− θ
L + λ(AσKαL1−α − cL− δK),

where λ is the co-state variable associated with physical capital. Necessary first-
order conditions for an interior solution are:

∂H

∂c
= c−θL− λL = 0, (19)

∂H

∂K
= λ(α

Y

K
− δ) = −λ̇ + ρλ. (20)

These conditions, combined with the transversality condition,

lim
t→∞

λ(t)e−ρtK(t) = 0, (21)

are sufficient for an optimal solution. Owing to strict concavity of the Hamiltonian
with respect to (K, c) this solution will be unique, if it exists (see Appendix B).

It remains to show existence of such a path. Combining (19) and (20) gives
the Keynes-Ramsey rule

gc =
1
θ
(α

Y

K
− δ − ρ). (22)

Let v ≡ cL/K and log-differentiate v with respect to time to get

gv =
1
θ
(αz − δ − ρ)− (z − v − δ),

where
z ≡ Y

K
= AσKα−1L1−α.

Log-differentiating z with respect to time gives

gz = σγAϕ−1L + (α− 1)(z − v − δ).

Thus we have a system in v and z :

v̇ =
[
1
θ
(αz − δ − ρ)− (z − v − δ)

]
v,

ż =
[
σγAϕ−1L− (1− α)(z − v − δ)

]
z,

where v is a jump variable and z a pre-determined variable. We have σγAϕ−1L →
0 for t →∞. There is an asymptotic steady state, (v∗, z∗), where

v∗ =
ρ

α
+

1− α

α
δ,

z∗ = v∗ + δ =
ρ + δ

α
.
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The investment-capital ratio, (Y −cL)/K ≡ z−v, in this asymptotic steady state
is z∗ − v∗ = δ. The associated Jacobian is

J =
[

v∗ (α
θ − 1)v∗

(1− α)z∗ −(1− α)z∗

]
,

with determinant det J = −(1−α)v∗z∗−(α
θ −1)(1−α)v∗z∗ = −α

θ (1−α)v∗z∗ < 0.

The eigenvalues of J are thus of opposite sign.
Figure 2 contains an illustrating phase diagram. The line marked by “ż = 0”

is the locus for ż = 0 only in the long run. The path (with arrows) through the
point E is the “long-run saddle path”. If the level of Aϕ−1 remained at its initial
value, Aϕ−1

0 , the point E′ would be a steady state and have a saddle path going
through it (as illustrated by the dashed line through E′). But over time, Aϕ−1

decreases and approaches zero. Hence, the point E′ shifts and approaches the
long-run steady state, E.17
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Figure 2: Phase diagram for the learning-by-doing model.
17We shall not here pursue the potentially interesting dynamics going on temporarily, if z0 is

above z∗ but below the value associated with the point E′.
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The following relations must hold asymptotically:

Y

K
=

AσKαL1−α

K
= z∗ so that

K1−α =
AσL1−α

z∗
or

K(t) = z∗−
1

1−α A(t)
σ

1−α L =
(

α

δ + ρ

) 1
1−α

L
[
A1−ϕ

0 + (1− ϕ)γLt
] σ

(1−α)(1−ϕ)

=
(

α

δ + ρ

) 1
1−α

LA
σ

1−α

0 (1 + µt)
σ

(1−α)(1−ϕ) , where µ ≡ (1− ϕ)γAϕ−1
0 L > 0.

Thus, in the long run K features regular growth with positive damping. The
damping coefficient is (1−α)(1−ϕ)

σ , which may be above or below one, depending
on σ. In the often considered benchmark case, σ = 1−α, the damping coefficient
is less than one if ϕ > 0. Then K features more-than-arithmetic growth. The
growth momentum is µ and is seen to incorporate a scale effect (reflecting the
non-rival character of learning). Although K is growing, the growth rate of K

tends to zero. The investment-capital ratio, (Y − cL)/K, tends to δ; thus, the
saving rate, s ≡ 1− cL/Y, tends to δK/Y = δ/z∗.

As to manufacturing output we have in the long run

Y (t) = z∗K(t) =
(

α

δ + ρ

) α
1−α

LA
σ

1−α

0 (1 + µt)
σ

(1−α)(1−ϕ) ,

which is, of course, also regular growth with positive damping. A similar pattern
is then true for the marginal product of labor w(t) = (1−α)Y (t)/L. The output-
capital ratio tends to a constant in the long run. Per capita consumption, c(t) =
(1− s(t))Y (t)/L, tends to (1− δ/z∗)Y (t)/L. Finally, the net marginal product of
capital, αY (t)/K(t)− δ, tends to

αz∗ − δ = ρ.

This explains why the growth rate of consumption tends to zero.
Although the asymptotic steady state is never reached, the conclusion is that

K, Y, and c in the long run are arbitrarily close to a regular growth pattern with
a damping coefficient, (1−α)(1−ϕ)

σ , and a growth momentum, µ, the same for all
three variables. In spite of the absence of exponential growth, key ratios such as
Y/K and wL/Y tend to be constant in the long run.

The purpose of this example was to show that a positive rate of time pref-
erence, ρ, is no hindrance to such an outcome.18 Given that the regular growth

18Presupposing δ > 0, qualitatively the same outcome − asymptotic regular growth − emerges
for ρ = 0 (although in this case we have to use catching-up as optimality criterion).
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pattern was inherited from the independent technology path described by (16),
this conclusion is perhaps no surprise. In the next section we consider an example
where there is mutual dependence between the development of technology and
the remainder of the economy.

5 Example 3: Investment-specific learning and em-
bodied technical change

Motivated by the steady decline of the relative price of capital equipment and
the secular rise in the ratio of new equipment investment to GNP, Greenwood
et al. (1997) developed a tractable model with embodied technical change. The
framework has afterwards been applied and extended in different directions. One
such application is that of Boucekkine et al. (2003).19 They show that a relative
shift from general to investment-specific learning externalities may explain the
simultaneous occurrence of a faster decline in the price of capital equipment and
a productivity slowdown in the 1970s after the first oil price shock.

In this section we present a related model and show that regular, but less-than-
exponential growth may arise. To begin with we allow for population growth in
order to clarify the role of this aspect for the long-run results. Notation is as
above, unless otherwise indicated. The technology of the economy is described by

Y = KαL1−α, 0 < α < 1, (23)

K̇ = qI − δK, δ > 0, K(0) = K0 given, (24)

q = γ̃

(∫ t

−∞
I(τ)dτ

)β

, γ̃ > 0, 0 < β < (1− α)/α, q(0) = q0 given, (25)

where L = L0e
nt, n ≥ 0, and K0, q0, and L0 are positive. The new variables are

I ≡ Y − cL, i.e., gross investment, and q which denotes the quality (productivity)
of newly produced investment goods. There is learning by investing, but new
learning is incorporated only in newly produced investment goods (this is the
embodiment hypothesis). Thus, over time each new investment good gives rise
to a greater and greater addition to the capital stock, K, measured in constant
efficiency units. The quality q of investment goods of the current vintage is
determined by cumulative aggregate gross investment as indicated by (25). The
parameter β is named the “learning parameter”. The upper bound on β is brought
in to avoid explosive growth (infinite output in finite time). We assume capital

19We are thankful to Solow for suggesting that embodied technical change might fit our ap-
proach and to a referee for suggesting in particular a look at the Boucekkine et al. (2003)
paper.

16



goods cannot be converted back into consumption goods. So gross investment, I,

is always non-negative.
As we will see, with this technology and the same preferences as in the previous

example, including a positive rate of time preference, the following holds. (a) If
n > 0, the social planner’s solution features exponential growth. (b) If n = 0,

the solution features asymptotic quasi-arithmetic growth; in the limiting case β

= (1−α)/α, asymptotic exponential growth arises, whereas the case β > (1−α)/α

implies explosive growth. Before proceeding it is worth pointing out two key
differences between the present model and that of Boucekkine et al. (2003).
In their paper q is determined by cumulative net investment. We find it more
plausible to have learning associated with gross investment. And in fact this
difference turns out to be crucial for whether n = 0 leads to quasi-arithmetic
growth or merely stagnation. Another difference is that in the spirit of our general
endeavor we impose no knife-edge condition on the learning parameter.20

Since not even the exponential growth case of this model seems explored in the
literature, our exposition will cover that case as well as the less-than-exponential
growth case. Many of the basic formulas are common but imply different conclu-
sions depending on the value of n.

5.1 The general context

By taking the time derivative on both sides of (25) we get the more convenient
differential form

q̇ = γq(β−1)/βI = γq(β−1)/β(Y − cL), γ ≡ γ̃1/ββ. (26)

Given ρ > n and initial positive K(0) and q(0), the social planner chooses a plan
(c(t))∞t=0, where 0 < c(t) ≤ Y (t)/L(t), so as to maximize

U0 =
∫ ∞

0

c1−θ − 1
1− θ

Le−ρtdt

subject to (24), (26), and non-negativity of K for all t. From the first-order con-
ditions for an interior solution we find (see Appendix C) that the Keynes-Ramsey
rule takes the form

gc =
1
θ
(αz −mδ − ρ), (27)

where z ≡ qY/K (the modified output-capital ratio) and m ≡ pq with p denoting
the shadow price of the capital good in terms of the consumption good. Thus, z

20Differences of minor importance from our perspective include, first, that Boucekkine et
al. (2003) let the embodied learning effect come from accumulated (net) investment per capita
(presumably to avoid any kind of scale effect), second, that they combine this effect with a
disembodied learning effect.
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is a modified output-capital ratio and m is the shadow price of newly produced
investment goods in terms of the consumption good. Let v ≡ qcL/K (the modified
consumption-capital ratio), so that, by (24), the growth rate of K is gK = z−v−δ.

Further, let h ≡ γY/q1/β , so that, by (26), the growth rate of q is gq = (1−v/z)h;
that is, 1 − v/z is the saving rate, which we will denote s, and h is the highest
possible growth rate of the quality of newly produced investment goods. Then,
combining the first-order conditions and the dynamic constraints (24) and (26)
yields the dynamic system:

ṁ =
[
1−m

m
(δm− αz) + (1− v

z
)h

]
m, (28)

v̇ =
[
1
θ
(αz − δm− ρ)− (z − v − δ − n) + (1− v

z
)h

]
v, (29)

ż =
[
−(1− α)(z − v − δ − n) + (1− v

z
)h

]
z, (30)

ḣ =
[
α(z − v − δ − n) + n− 1

β
(1− v

z
)h

]
h. (31)

Consider a steady state, (m∗, v∗, z∗, h∗), of this system. In steady state, if
n > 0, the economy follows a balanced growth path (BGP for short) with constant
growth rates of K, q, Y, and c. Indeed, from (30) and (31) we find the growth rate
of K to be

g∗K = z∗ − v∗ − δ =
(1− α)(1 + β)
1− α(1 + β)

n > n iff n > 0. (32)

The inequality is due to the parameter condition

α < 1/(1 + β) (33)

which is equivalent to β < (1− α)/α, the condition assumed in (25). Then, from
(30),

g∗q = s∗h∗ = (1− v∗

z∗
)h∗ =

(1− α)β
1− α(1 + β)

n =
β

1 + β
g∗K . (34)

In view of constancy of h ≡ γY/q1/β ,

g∗Y =
1
β

g∗q =
1

1 + β
g∗K . (35)

That is, owing to the embodiment of technical progress Y does not grow as fast
as K. This is in line with the empirical evidence mentioned above. Inserting (27),
(32), and (34) into (29) we find

g∗c =
1
θ
(αz∗ −m∗δ − ρ) =

αβ

1− α(1 + β)
n > 0 iff n > 0. (36)
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This result is of course also obtained if we use constancy of v∗/z∗ to conclude that
g∗c = g∗Y − n. To ensure boundedness of the discounted utility integral we impose
the parameter restriction

(1− θ)
αβ

1− α(1 + β)
n < ρ− n, (37)

which is equivalent to (1− θ)g∗c < ρ− n.

With these findings we get from (28)

m∗ =
α(θg∗c + ρ)

(1− α + αθ)g∗c + αρ
=

θαβn + [1− α(1 + β)] ρ
(1− α + αθ)n + [1− α(1 + β)] ρ

≤ 1, (38)

if n ≥ 0, respectively. The parameter restriction (37) implies m∗ > α. Next, from
(36),

z∗ =
θβ

1− α(1 + β)
n +

ρ + δm∗

α
> 0, (39)

so that, from (32),

v∗ =
θβ − (1− α)(1 + β)

1− α(1 + β)
n +

ρ + δm∗

α
− δ, (40)

and
s∗ ≡ 1− v∗

z∗
= α

(1− α)(1 + β)n + [1− α(1 + β)] δ
θαβn + [1− α(1 + β)] (ρ + δm∗)

∈ (0, 1). (41)

That s∗ > 0 is immediate from the formula. And s∗ < 1 is implied by v∗ < z∗,

which immediately follows by comparing (40) and (39). Finally, we have from
(34)

h∗ =
g∗q
s∗

=
(1− α)βn

[1− α(1 + β)] s∗
≥ 0 for n ≥ 0, (42)

respectively.
In a BGP the shadow price p (≡ m/q) of the capital good in terms of the

consumption good is falling since m is constant while q is rising. Indeed,

g∗p = −g∗q = − (1− α)β
1− α(1 + β)

n = − β

1 + β
g∗K . (43)

Thus, at the same time as Y/K is falling, the value capital-output ratio Y/(pK)
stays constant in a BGP. If r denotes the social planner’s marginal net rate of
return in terms of the consumption good, we have r = [∂Y/∂K − (pδ − ṗ)] /p.

Since p ≡ m/q and z ≡ qY/K, we have (∂Y/∂K)/p = αY/(pK) = αz∗/m∗.

Along the BGP, therefore,

r∗ = α
z∗

m∗ − (δ − g∗p) =
θαβ

1− α(1 + β)
n + ρ = θg∗c + ρ, (44)
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as expected. Since the investment good and the consumption good are produced
by the same technology, we can alternatively calculate r as the marginal net rate
of return to investment: r = (∂Y/∂K − pδ) ∂K̇/∂I = (αY/K − pδ)q. In the BGP
we then get r∗ = αz∗−m∗δ, which according to (36) amounts to the same as (44).

We have hereby shown that if the learning parameter satisfies (33), a steady
state of the dynamic system is feasible and features exponential semi-endogenous
growth if n > 0.21 On the other hand, violation of (33) combined with a positive
n implies a growth potential so enormous that a steady state of the system is
infeasible and growth tends to be explosive. But what if n = 0?

5.2 The case with zero population growth

With n = 0 the formulas above are still valid. As a result the growth rates
g∗K , g∗q , g

∗
c , and g∗p are all zero, whereas m∗ = 1, z∗ = (ρ+δ)/α, v∗ = (ρ+δ)/α−δ,

s∗ = αδ/(ρ + δ) = δ/z∗, and h∗ = 0. By definition we have h ≡ γY/q1/β > 0 for
all t. So the vanishing value of h∗ tells us that the economic system can never
attain the steady state. We will now show, however, that the system converges
towards this steady state, which is therefore an asymptotic steady state.

When n = 0 and α < 1/(1 + β), we have from purely technological reasons
that limt→∞ h = 0 (for details, see Appendix C). This implies that for t →∞ the
dynamics of m, v, and z approach the simpler form

ṁ = (1−m)(δm− αz),

v̇ =
[
1
θ
(αz − δm− ρ)− (z − v − δ)

]
v,

ż = −(1− α)(z − v − δ)z.

The associated Jacobian is

J =

 ρ 0 0
− δ

θv∗ v∗ (α
θ − 1)v∗

0 (1− α)z∗ −(1− α)z∗

 .

This is block-triangular and so the eigenvalues are ρ and those of the lower right
2 × 2 sub-matrix of J. Note that this sub-matrix is identical to the Jacobian in
the learning-by-doing example of Section 4. Accordingly, its eigenvalues are of
opposite sign. Since m and v are jump variables and z is pre-determined, it
follows that the asymptotic steady state is locally saddle-point stable.22

21The standard transversality conditions are satisfied at least if θ ≥ 1 (see Appendix C). Owing
to non-concavity of the maximized Hamiltonian, however, we have not been able to establish
sufficient conditions for optimality.

22The unique converging path unconditionally satisfies the standard transversality conditions,
see Appendix C.
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For t → ∞ we therefore have s ≡ 1 − v/z → 1 − v∗/z∗ ≡ s∗ and K →
L(q/z∗)1/(1−α) (from the definition of z). So, from (26) and (23) follows that
ultimately

q̇ = γq
β−1

β s∗KαL1−α = γLs∗z∗
−α
1−α q

1− 1−α(1+β)
(1−α)β ≡ Cq1−ξ, (45)

where C and ξ are implicitly defined constants. This Bernoulli equation has the
solution

q(t) = (qξ
0 + ξCt)

1
ξ = q0(1 + µt)

1
ξ , where µ ≡ ξLγδ

(
α

ρ + δ

) 1
1−α

q−ξ
0 ,

using the solutions for s∗ and z∗ above. This shows that in the long run the
productivity of newly produced investment goods features regular growth with
damping coefficient ξ = [1− α(1 + β)] / [(1− α)β] > 0 and growth momentum µ

(which, as expected, is seen to incorporate a scale effect reflecting the non-rival
character of learning). The corresponding long-run path for capital is

K(t) = L
( q

z∗

) 1
1−α = L

(
α

ρ + δ

) 1
1−α

q
1

1−α

0 (1 + µt)
1

(1−α)ξ

and for output

Y (t) = K(t)αL1−α = L

(
α

ρ + δ

) α
1−α

q
α

1−α

0 (1 + µt)
α

(1−α)ξ .

The damping coefficient for Y is thus (1− α)ξ/α = [1− α(1 + β)] /(αβ), so that
more-than-arithmetic growth arises if 1

2(1−α)/α < β < (1−α)/α and less-than-
arithmetic growth if β is beneath the lower end of this interval. The same is then
true for the marginal product of labor, w(t) = (1− α)Y (t)/L, and for per capita
consumption, c(t) = (1− s(t))Y (t)/L, which tends to (1− δ/z∗)Y (t)/L. For the
capital-output ratio we ultimately have K(t)/Y (t) = q(t)/z∗, which implies more-
than-arithmetic growth if β > 1−α and less-than-arithmetic growth if β < 1−α.

A new interesting facet compared with the learning-by-doing example of Sec-
tion 4 is that the shadow price, p, of capital goods remains falling, although at
a decreasing rate. This follows from the fact that the shadow price, m ≡ pq, of
newly produced investment goods in terms of the consumption good tends to a
constant at the same time as q is growing, although at a decreasing rate. Finally,
the value output-capital ratio Y/(pK) tends to the constant (qY/K)m = z∗m∗ =
z∗ = (ρ + δ)/α and the marginal net rate of return to investment tends to r∗

= αY/(pK)− δ = ρ.

These results hold when, in addition to n = 0, we have α < 1/(1 + β). In
the limiting case, α = 1/(1 + β), the growth formulas above no longer hold and
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instead exponential growth arises. Indeed, the system (28), (29), (30), and (31)
is still valid and so is (45) in a steady state of the system. But now ξ = 0. We
therefore have in a steady state that q̇ = Cq, which has the solution q(t) = q0e

Ct,

where C ≡ γLs∗z∗
−α
1−α > 0. By constancy of h in the steady state, gY = αgK

= gq/β = C/β = αC/(1 − α) so that also Y and K grow exponentially. This is
the fully-endogenous growth case of the model. If instead α > 1/(1 + β) we get
ξ < 0 in (45), implying explosive growth, a not plausible scenario.

We conclude this section with a remark on why, when exponential growth can-
not be sustained in a model, sometimes quasi-arithmetic growth results and some-
times complete stagnation. In the present context, where we focus on learning, it
is the source of learning that matters. Suppose that, contrary to our assumption
above, learning is associated with net investment, as in Boucekkine et al. (2003).
If with respect to the value of the learning parameter we rule out both the knife-
edge case leading to exponential growth and the explosive case, then n = 0 will
lead to complete stagnation. Even if there is an incentive to maintain the capital
stock, this requires no net investment and so learning tends to stop. When learn-
ing is associated with gross investment, however, maintaining the capital stock
implies sustained learning. In turn, this induces more investment than needed to
replace wear and tear and so capital accumulates, although at a declining rate.
Even if there are diminishing marginal returns to capital, this is countervailed
by the rising productivity of investment goods due to learning. Similarly, in the
learning-by-doing example of Section 4, where learning is simply associated with
working, learning occurs even if the capital stock is just maintained. Therefore,
instead of mere stagnation we get quasi-arithmetic growth.

6 Conclusion

The search for exponential growth paths can be justified by analytical simplicity
and the approximate constancy of the long-run growth rate for more than a cen-
tury in, for example, the US. Yet this paper argues that growth theory needs a
more general notion of regularity than that of exponential growth. We suggest
that paths along which the rate of decline of the growth rate is proportional to the
growth rate itself deserve attention; this criterion defines our concept of regular
growth. Exponential growth is the limiting case where the factor of proportional-
ity, the “damping coefficient”, is zero. When the damping coefficient is positive,
there is less-than-exponential growth, yet this growth exhibits a certain regularity
and is sustained in the sense that Y/L → ∞ for t → ∞. We believe that such
a broader perspective on growth will prove particularly useful for discussions of
the prospects of economic growth in the future, where population growth (and
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thereby the expansion of the ultimate source of new ideas) is likely to come to an
end.

The main advantages of the generalized regularity concept are as follows: (1)
The concept allows researchers to reduce the number of problematic parameter
restrictions, which underlie both standard neoclassical and endogenous growth
models. (2) Since the resulting dynamic process has one more degree of freedom
compared to exponential growth, it is at least as plausible in empirical terms.
(3) The concept covers a continuum of sustained growth processes which fill the
whole range between exponential growth and complete stagnation, a range which
may deserve more attention in view of the likely future demographic development
in the world. (4) As our analyses of zero population growth in the Jones (1995)
model, a learning-by-doing model, and an embodied technical change model show,
falling growth rates need not mean that economic development grinds to a halt.
(5) Finally, at least for these three examples we have demonstrated not only the
presence of the generalized regularity pattern, but also the asymptotic stability
of this pattern.

The examples considered are based on a representative agent framework. Our
conjecture is that with heterogeneous agents the generalized notion of regular
growth could be of use as well. Likewise, an elaboration of the embodied tech-
nical change approach of Section 5 might be of empirical interest. For example,
Solow (1996) indicates that vintage effects tend to be more visible against a back-
ground of less-than exponential growth. As Solow has also suggested,23 there is an
array of “behavioral” assumptions waiting for application within growth theory,
in particular growth theory without the straightjacket of exponential growth.

7 Appendix

A. The canonical Ramsey example This appendix derives the results re-
ported for Case 4 in Section 3. The Hamiltonian for the optimal control problem
is:

H(K, A, c, u, λ1, λ2, t) =
c1−θ − 1

1− θ
L + λ1(Y − cL) + λ2γAϕ(1− u)L,

where Y = AσKα(uL)1−α and λ1 and λ2 are the co-state variables associated with
physical capital and knowledge, respectively. Applying the catching-up optimality
criterion, necessary first-order conditions (see Seierstad and Sydsaeter, 1987, p.

23Private communication.
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232-34) for an interior solution are:

∂H

∂c
= c−θL− λ1L = 0, (46)

∂H

∂u
= λ1(1− α)

Y

u
− λ2γAϕL = 0, (47)

∂H

∂K
= λ1α

Y

K
= −λ̇1, (48)

∂H

∂A
= λ1σ

Y

A
+ λ2ϕγAϕ−1(1− u)L = −λ̇2. (49)

Combining (46) and (48) gives the Keynes-Ramsey rule

gc =
1
θ
αAσKα−1(uL)1−α. (50)

Given the definition p = λ2/λ1, (47), (48), and (49) yield

gp = αAσKα−1(uL)1−α − σγAϕ−1uL

1− α
− ϕγAϕ−1(1− u)L. (51)

Let x ≡ pA/K. Log-differentiating x w.r.t. time and using (47), (6), (5), and (4)
gives (7). Log-differentiating (47) w.r.t. time, using (51), (5), (4) and (6), gives
(8). Finally, log-differentiating 1 − s ≡ cL/Y, using (50), (4), (6) and (5), gives
(9).

In the text we defined µ ≡ (1− ϕ)γ(1− u∗)LA0
ϕ−1.

Lemma 1. In a steady state of the system (7), (8), and (9)

λ1(t)K(t) = λ1(0)K0(1 + µt)ω, and (52)

λ2(t)A(t) = λ2(0)A0(1 + µt)ω, (53)

where
ω ≡ σ + 1− ϕ− θ [σ + α(1− ϕ)]

(1− α)(1− ϕ)
.

Proof. As shown in the text, in a steady state of the system we have Y (t)/K(t)
= (Y (0)/K0)(1 + µt)−1 so that∫ t

0

Y (τ)
K(τ)

dτ =
Y (0)
K0

µ−1 ln(1 + µt) =
θ [σ + α(1− ϕ)]
α(1− α)(1− ϕ)

ln(1 + µt),

where the latter equality follows from (13), (11), (10), and the definition of µ.

Therefore, by (48) and (13),

λ1(t)K(t) = λ1(0)e−α
∫ t
0

Y (τ)
K(τ)

dτ
K0(1 + µt)

σ+1−ϕ
(1−α)(1−ϕ)

= λ1(0)K0(1 + µt)
σ+1−ϕ

(1−α)(1−ϕ)
− θ[σ+α(1−ϕ)]

(1−α)(1−ϕ) ,
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which proves (52).
From (49) and p ≡ λ2/λ1 follows that in steady state

λ̇2

λ2
= −σY

pA
− ϕγAϕ−1(1− u∗)L = −γ

(
σu∗

1− α
+ ϕ(1− u∗)

)
LAϕ−1

0 (1 + µt)−1,

where the latter equality follows from (4), (12), and (11). Hence,∫ t

0

λ̇2(τ)
λ2(τ)

dτ = −ϕ− σ − α + θ [σ + α(1− ϕ)]
(1− α)(1− ϕ)

ln(1 + µt),

by (10) and the definition of µ. Therefore,

λ2(t)A(t) = λ2(0)e
∫ t
0

λ̇2(τ)
λ2(τ)

dτ
A0(1+µt)

1
1−ϕ = λ2(0)A0(1+µt)

1
1−ϕ

−ϕ−σ−α+θ[σ+α(1−ϕ)]
(1−α)(1−ϕ) ,

which proves (53). �

We have ω < 0 if and only if

θ > (σ + 1− ϕ)/ [σ + α(1− ϕ)] . (54)

Hence, by Lemma 1 follows that the “standard” transversality conditions, limt→∞

λ1(t)K(t) = 0 and limt→∞ λ2(t)A(t) = 0, hold along the unique regular growth
path if and only if (54) is satisfied. This condition is a little stronger than θ > 1.

Our conjecture is that these transversality conditions together with the first-order
conditions are necessary and sufficient for an optimal solution. This guessed
necessity and sufficiency is based on the saddle-point stability of the steady state
(see below). Yet, we have so far no proof. The maximized Hamiltonian is not
jointly concave in (K, A) unless σ = ϕ(1−α). Thus, the Arrow sufficiency theorem
does not apply; hence, neither does the Mangasarian sufficiency theorem (see
Seierstad and Sydsaeter, 1987). So, we only have a conjecture. (This is of course
not a satisfactory situation, but we might add that this situation is quite common
in the semi-endogenous growth literature, although authors are often silent about
the issue.)

As to the stability question it is convenient to transform the dynamic system.
We do that in two steps. First, let z ≡ xu and q ≡ (1 − s)xu. Then the system
(7), (8), and (9) becomes:

ż = γLAϕ−1
(
1− ϕ +

σ

α
− z − (1− ϕ)u

)
z,

u̇ = γLAϕ−1

(
σ

α
+

σ

1− α
u− q

1− α

)
u,

q̇ = γLAϕ−1

(
1− ϕ +

α− θ

(1− α)θ
z − (1− ϕ)u +

1
1− α

q

)
q.
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The steady state of this system is (z∗, u∗, q∗) = (x∗u∗, u∗, (1 − s∗)x∗u∗). Second,
this system can be converted into an autonomous system in “transformed time”
τ = lnA(t) ≡ f(t). With u(t) < 1, f ′(t) = γA(t)ϕ−1(1 − u(t))L > 0 and we
have t = f−1(τ). Thus, considering z̃(τ) ≡ z(f−1(τ)), ũ(τ) ≡ u(f−1(τ)) and
q̃(τ) ≡ q(f−1(τ)), the above system is converted into:

dz̃

dτ
=

(
1− ϕ +

σ

α
− z̃ − (1− ϕ)ũ

) z̃

1− ũ
,

dũ

dτ
=

(
σ

α
+

σ

1− α
ũ− q̃

1− α

)
ũ

1− ũ
,

dq̃

dτ
=

(
1− ϕ +

α− θ

(1− α)θ
z̃ − (1− ϕ)ũ +

1
1− α

q̃

)
q̃

1− ũ
.

The Jacobian of this system, evaluated in steady state, is

J =

 −z∗ −(1− ϕ)z∗ 0
0 σ

1−αu∗ − 1
1−αu∗

α−θ
(1−α)θq∗ −(1− ϕ)q∗ 1

1−αq∗

 · 1
1− u∗

.

The determinant is

det J = −σθ + (θ − 1)(1− ϕ)α
(1− α)2θ

z∗u∗q∗ < 0,

in view of θ > 1. The trace is

trJ =
(α− s∗)x∗ + σ

1− α

u∗

1− u∗
=

[σ + α(1− ϕ)] (2θ − 1)− σ − 1 + ϕ

(1− α)(θ − 1) [σ + α(1− ϕ)]
σu∗

1− u∗
> 0,

in view of the transversality condition (54). Thus, J has one negative eigenvalue,
η1, and two eigenvalues with positive real part. All three variables, z̃, ũ and q̃,

are jump variables, but z̃ and ũ are linked through

z̃ =
1− α

γLα
Aσ+1−ϕ(

ũ

K
)1−α ≡ h(ũ, A,K). (55)

In order to check existence and uniqueness of a convergent solution, let x
= (x1, x2, x3) ≡ (z̃, ũ, q̃) and x̄ = (x̄1, x̄2, x̄3) ≡ (z∗, u∗, q∗). Then, in a small neigh-
borhood of x̄ any convergent solution is of the form x(τ) = Cveη1τ + x̄, where C

is a constant, depending on initial A and K, and v = (v1, v2, v3) is an eigenvector
associated with η1 so that

(−z∗ − η1)v1 − (1− ϕ)z∗v2 = 0, (56a)

0 + (
σ

1− α
u∗ − η1)v2 −

1
1− α

u∗v3 = 0, (56b)

α− θ

(1− α)θ
q∗v1 − (1− ϕ)q∗v2 + (

1
1− α

q∗ − η1)v3 = 0. (56c)
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We see that vi 6= 0, i = 1, 2, 3. Initial transformed time is τ0 = lnA0 and we
have x(τ0) = (h(u(0), A0,K0), u(0), q(0)) for A(0) = A0 and K(0) = K0 (both
pre-determined), where we have used (55) for t = 0. Hence, coordinate-wise,

x1(τ0) = Cv1e
η1τ0 + z∗ = h(u(0), A0,K0), (57)

x2(τ0) = Cv2e
η1τ0 + u∗ = u(0), (58)

x3(τ0) = Cv3e
η1τ0 + q∗ = q(0). (59)

This system has a unique solution in (C, u(0), q(0)); indeed, substituting (58) and
(59) into (57), setting v1 = 1 and using z∗ = x∗u∗, gives

1
v2

u(0) + u∗(x∗ − 1
v2

) = h(u(0), A0,K0). (60)

It follows from Lemma 2 that, given θ > 1, (60) has a unique solution in u(0).
With the pre-determined initial value of the ratio, Aσ+1−ϕ/K1−α, in a small
neighborhood of its steady state value (which is γLαx∗u∗α/(1− α)), the solution
for u(0) is close to u∗, hence it belongs to the open interval (0, 1).

Lemma 2. Assume θ > 1. Then 1/v2 > x∗.

Proof. From (56a),

v2 =
−z∗ − η1

(1− ϕ)z∗
. (61)

Substituting v1 = 1 together with (56b) into (56c) gives

α− θ

(1− α)θ
q∗ − (1− ϕ)q∗v2 + (

1
1− α

q∗ − η1)(σ −
(1− α)η1

u∗
)v2 ≡ Q(v2, η1) = 0.

Replacing η1 and v2 in (61) by η and w(η), respectively, we see that P (η) ≡
Q(w(η), η) is the characteristic polynomial of degree 3 corresponding to J . Now,

P (−z∗) =
α− θ

(1− α)θ
q∗ < 0,

as θ > 1. Consider η0 ≡ −(1 − ϕ)z∗/x∗ − z∗ < −z∗. Clearly, w(η0) = 1/x∗.

If P (η0) > 0, then the unique negative eigenvalue η1 satisfies η0 < η1 < −z∗,

implying that v2 ≡ w(η1) < 1/x∗, in view of w′(η) < 0; hence 1/v2 > x∗. It
remains to prove that P (η0) > 0. We have

P (η0) =
α− θ

(1− α)θ
q∗ − (1− ϕ)q∗w(η0) + (

1
1− α

q∗ − η1)(σ −
(1− α)η1

u∗
)w(η0)

=
α− θ

(1− α)θ
q∗ − (1− ϕ)q∗

x∗
+ (

1
1− α

q∗ − η0)(σ −
(1− α)η0

u∗
)

1
x∗
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=
α(1− θ) [(1− α)(1− ϕ) + σ] (1− s∗)x∗u∗

(1− α)θσ

+
[(1− α)(1− ϕ) + σ] (1− s∗) + (1− α)σ

1− α
u∗ +

1− ϕ

x∗
σu∗ +

1− α

u∗x∗
η2
0

=
θ − 1

θ
[σ + α(1− ϕ)] +

1− α

u∗x∗
η2
0 > 0,

where the third equality is based on reordering and the definition of q∗, whereas
the last equality is based on the formulas for x∗, u∗, and s∗ in (10); finally, the
inequality is due to θ > 1. �

B. The learning-by-doing example By (19), the transversality condition
(21) can be written

lim
t→∞

c(t)−θe−ρtK(t) = 0,

which is obviously satisfied along the asymptotic regular growth path, since ρ > 0,

and c and K feature less than exponential growth. In the text we claimed that
the first-order conditions together with the transversality condition are sufficient
for an optimal solution. Indeed, this follows from the Mangasarian sufficiency
theorem, since H is jointly concave in (K, c) and the state and co-state variables
are non-negative for all t ≥ 0, cf. Seierstad and Sydsaeter (1987, p. 234-35).
Uniqueness of the solution follows because H is strictly concave in (K, c) for all
t ≥ 0.

C. The investment-specific learning example The current-value Hamilto-
nian for the optimal control problem is:

H(K, q, c, λ1, λ2, t) =
c1−θ − 1

1− θ
L + λ1 [q(Y − cL)− δK] + λ2γq

β−1
β (Y − cL),

where Y = KαL1−α and λ1 and λ2 are the co-state variables associated with
physical capital and the quality of newly produced investment goods, respectively.
An interior solution will satisfy the first-order conditions

∂H

∂c
= c−θL− λ1qL− λ2γq

β−1
β L = 0, (62)

∂H

∂K
= λ1(qα

Y

K
− δ) + λ2γq

β−1
β α

Y

K
= ρλ1 − λ̇1, (63)

∂H

∂q
= λ1(Y − cL) + λ2γ

β − 1
β

q
−1
β (Y − cL) = ρλ2 − λ̇2. (64)

The first-order conditions imply:

Lemma 3. d
dt(c

−θ) = c−θ(ρ− αq Y
K ) + λ1qδ.
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Proof. Let

u ≡ c−θ − λ1q = λ2γq
β−1

β = λ2
q̇

I
, (65)

by (62) and (26), respectively. Then, using (64) and I ≡ Y − cL,

gu = gλ2 +
β − 1

β
gq = ρ− (

λ1

λ2
+ γ

β − 1
β

q
−1
β )I +

β − 1
β

γq
−1
β I = ρ− λ1

λ2
I, (66)

so that
u̇ = ρu− λ1

λ2
Iu = ρu− λ1q̇, (67)

by (65). Rewriting (65) as c−θ = λ1q + u, we find

d

dt
(c−θ) = λ1q̇ + λ̇1q + u̇ = ρu + λ̇1q = ρc−θ − (ρλ1 − λ̇1)q (from (67) and (65))

= ρc−θ −
[
(λ1q + λ2γq

β−1
β )α

Y

K
− λ1δ

]
q = ρc−θ − c−θαq

Y

K
+ λ1qδ,

where the two latter equalities come from (63) and (62), respectively. �

From Lemma 3 follows

gc = −1
θ

d
dt(c

−θ)
c−θ

=
1
θ

(αz −mδ − ρ) ,

using that z ≡ qY/K and

m ≡ pq ≡ (λ1/c−θ)q =
λ1

λ1q + λ2γq
β−1

β

q, (68)

by (62). This proves (27).
The conjectured necessary and sufficient transversality conditions are limt→∞

λ1(t)e−ρtK(t) = 0 and limt→∞ λ2(t)e−ρtq(t) = 0. We now check whether these
conditions hold in the steady state. First, note that (63) and (65) give

gλ1 = ρ + δ − c−θ

λ1
α

Y

K
= ρ + δ − α

Y

pK
= ρ +

1
m

(mδ − αz)

= ρ− 1
m∗ (θg

∗
c + ρ) =

(1− α + αθ)g∗c
α

in steady state, by (38). Further, we have in steady state g∗K = g∗c/α + n. Hence,
g∗λ1

+ g∗K − ρ = (1− θ)g∗c + n− ρ < 0, by the parameter restriction (37). Thus the
first transversality condition holds for all θ > 0.

From (66)

gλ2 + gq − ρ = ρ− λ1

λ2
I − β − 1

β
gq + gq − ρ = − m

1−m
γq

−1
β I +

1
β

gq (by (68))

= − m

1−m
gq +

1
β

gq = −(θg∗c + ρ) +
1− α

αβ
g∗c =

1− α(1 + θβ)
1− α(1 + β)

n− ρ,
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in steady state, by (38), (34), and (36). It follows that θ ≥ 1 is sufficient for the
second transversality condition to hold. If n = 0, no particular condition on θ is
needed to ensure this transversality condition.

It remains to show:

Lemma 4. If n = 0 and α < 1/(1 + β), then for purely technological reasons
limt→∞ h = 0.

Proof. Let n = 0 and α < 1/(1 + β). We have h ≡ Y/q1/β = KαL1−α/q1/β ,

where L is constant and q is always non-decreasing, by (26). There are two cases
to consider. Case 1 : q 9 ∞ for t → ∞. Then, by (25), for t → ∞, I → 0,

hence K̇ → −δK, and so K → 0, whereby h → 0. Case 2 : q → ∞ for t → ∞.

If K 9 ∞ for t → ∞, we are finished. Suppose K → ∞ for t → ∞. Then, for
t →∞ we must have gK = sz−δ ≥ 0 so that z 9 0, in view of δ > 0. In addition,
defining x ≡ zhβ, we get x = Kα(1+β)−1L(1−α)(1+β) → 0 for t → ∞. It follows
that h ≡ (x/z)1/β → 0 for t →∞, since α < 1/(1 + β). �
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