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Abstract: Many decision problems in various fields of application can be characterized as 
diagnostic problems trying to assess the true state (of the world) of given cases. The 
investigation of assessment criteria improves the initial information according to observed 
signal outcomes, which are related to the possible states. Such sequential investigation 
processes can be analyzed within the framework of statistical decision theory, in which prior 
probability distributions of classes of cases are updated, allowing for a sorting of particular 
cases into ever smaller subclasses. However, receiving such information causes investigation 
costs. Besides the question about the set of relevant criteria, this defines two additional 
problems of statistical decision problems: the optimal stopping of investigations and the 
optimal sequence of investigating a given set of criteria. Unfortunately, no solution exists with 
which the optimal sequence can generally be determined. Therefore, the paper characterizes 
the associated problems and analyzes existing heuristics trying to approximate an optimal 
solution. 
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1. Introduction 

Many decision problems can be characterized as diagnostic problems, in which 
decisionmakers try to determine the correct consequences for cases they have to decide on. 
The determination generally follows an assessment process of the true state of the world, by 
which the diagnosis is improved pursuant to realizations of the investigation of specific 
features. 

For example, physicians are interested in the presence or absence of certain diseases to match 
medical treatment. Performing a number of medical tests enables them to refine their initial 
diagnosis and respective intended treatment, according to the observed outcomes of the 
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specific tests. Competition authorities are interested in whether certain business behaviors 
(e.g. specific types of agreements or horizontal mergers) are characterized by a positive or 
negative welfare effect (i.e. whether they are pro- or anticompetitive). The diagnosis is refined 
by the assessment of different market indicators. Subsequently, decisions of permission or 
prohibition follow from specific outcomes of these indicators. In educational questions – such 
as examinations – as well as in psychological issues one is concerned about the correct 
assessment of specific levels of knowledge. Conducting certain tests allows for a refinement 
of the diagnosed level of knowledge, which is based on the observed answers. 

All such decision situations have in common both that it is ex ante uncertain, which of the 
possible states of the world is realized in concrete cases, and an assessment process aiming at 
the improvement of the given imperfect information. The stepwise refinement of an initial 
diagnosis by sequentially investigating certain features and observing specific outcomes can 
be represented by a multi-stage decision tree. At each stage, decisionmakers have to 
determine the next relevant feature and whether the benefits of further investigation outweigh 
additional costs. Thus, termination at early stages may become preferable because further 
information does not alter the terminal decision and/or is too costly to gather. 

Such kinds of problems are statistical decision problems,1 referring to the classification of 
different single decision situations according to recurring or corresponding characteristics.2 
Accordingly, the ex ante uncertainty about a class of cases is expressed by a (subjective) 
probability distribution over the possible states of the world – based on experience and 
theoretical analyses. This information can be improved by investigation of different criteria 
(or tests) out of a given set, the outcomes of which somehow relate to the possible states of 
the world. For example, reacting to certain medical tests in a specified way (or showing 
specific symptoms) increases the probability of a certain disease (Gorry 1967: 23; 
Warner/Veasey 1992: 43 et seqq.), observing low market shares reduces the potential of 
exerting market power and the probability of anti-competitive vertical restraints (Motta 2004: 
117-118, 377-378), and answering to certain tests in a correct way increases the probability of 
being a high-knowledge student (Vos 1999: 273; 2007: 617). Thus, the investigation of 
criteria leads to a refinement of the distributions and a sorting of particular cases into ever 
smaller subclasses (Gorry 1967: 23-24), with any given history of outcomes assigning specific 
probabilities to the possible states of the world. Accordingly, general diagnostic problems 
(which can be found in lots of different areas) can be described by so-called differentiated 
multi-stage decision processes with different possible investigation paths. The latter are 
characterized by different developments of probability distributions. 

The decision in favor of one of the possible states of the world over another is accompanied 
with some probability of decision failure and its possible consequence (error costs). In 
medical diagnosis problems, the possible consequences are represented by the costs of 
misdiagnosis (Gorry/Barnett 1968: 494), which comprise the misdiagnosis of one disease as 
another or the failing in identifying a specific disease. The costs of misdiagnosis most notably 
                                                 
1 See, for example, DeGroot (1970: 136 et seqq.) for the general definition of the essential components of a 

statistical decision problem.  
2 See Vanberg (1993: 175) for a more detailed description of decision situation regularities. 
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include the consequences associated with inappropriate uses of health services, avoidable or 
failed treatments as well as illness and distress related (emotional) factors (Reid et al. 1998: 
354). When regarding competition policy concerns, losses from permitting or prohibiting 
certain business behaviors may occur – among other things – as supra-competitive pricing, 
prevention of innovative activities or abuse of market power. And in educational questions, 
losses from terminal decisions on the level of knowledge include all relevant psychological, 
social and economic consequences (Vos 2007: 613). Investigating different criteria aims at 
reducing the uncertainty about the true state of the world and the resulting error costs. Since 
the investigation of any criterion raises costs (investigation costs) the improvement of 
information (i.e. reduction of error costs) might not be justified. The comparison of expected 
total costs (i.e. the sum of error and investigation costs) of an immediate decision with those 
obtained if more information is gathered might terminate the assessment process prior to the 
investigation of every possible criterion. This problem of optimal stopping will only be 
addressed shortly in this paper. 

Besides, there is the effect of re-arranging the sequence of criteria, on which the paper 
focuses: Even though total investigation costs remain unaffected, changing the sequence of 
criteria has a side-effect on the potential of reducing error costs of every (other) criterion 
(Mussi 2002: 103-104). Stated differently, information gathered by the investigation of 
criteria differs according to the reference point of current knowledge. Therefore, the actually 
realized criteria on every investigation path depend (or may depend) on the investigated 
sequence. For example, the significance of certain reactions to a specific medical test depends 
on previously conducted tests and observed reactions; certain examination questions provide 
for a ‘fine-tuning’ of knowledge levels at later stages, but fail to provide meaningful 
information when applied in examinations early. The optimal sequence simply minimizes 
total expected costs, i.e. aggregated error and investigation costs. Unfortunately, no solution 
exists with which the optimal sequence of criteria can generally be determined; therefore we 
have to refer to certain heuristics. The analysis does not refer to special fields of interest, but 
rather allows for a more general application. 

This paper is the first comprehensive overview of the sequencing problem in sequential 
investigation processes. Present literature comprises a variety of articles about different 
aspects, but lacks a systematic analysis. Next to summarizing the determinants of the 
sequencing problem and surveying so far offered heuristic solutions, this paper further 
enhances the number of solutions offered by combining the myopic heuristic with a 
dominance characteristic of certain criteria. The paper is structured as follows: Section 2 
contains a simple model of sequential investigation processes. Heuristic solutions are 
analyzed and discussed in section 3. Addressing specific constellations among the 
characteristics of investigation processes allows for tentative conclusions concerning the 
advantageousness of one heuristic or another. Finally, conclusions are drawn in section 4. 
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2. Optimizing the sequence of assessment criteria in sequential investigation 
processes 

Sequential investigation processes characterize general diagnostic problems, which try to 
determine the right consequences for specific cases by improving the ex ante uncertainty 
about their true state of the world. This is accomplished by the sequential assessment of 
criteria allowing for a refinement of underlying expectations about the frequencies of different 
possible states of the world if certain characteristics are observed after their respective 
assessment. The first problem arises in determining the relevant set of criteria. In general, the 
existence of an exhausting amount of possible criteria may be far from obvious; furthermore, 
there may be disagreements about the ability of certain criteria in improving the respective 
decision basis. Even though these problems arise in the first place and should be dealt with 
before the analysis of a sequential process starts, it is not subject of this paper. Assuming that 
the relevant set of criteria is defined, the following analysis introduces the second problem of 
sequential investigation processes, which is the optimal amount of gathered information. The 
next section offers the basic model and determines when final decisions should optimally be 
handed down without further information. This determination is needed to analyze the third 
problem of sequential investigation processes, which is the main subject of this paper, i.e. 
determining the optimal sequence in which a set of criteria optimally should be investigated. 
Answering the question of determining optimal sequential investigation processes requires 
solving these three central problems. 

 

 

2.1 Basic Model 

The analysis of the sequencing problem within sequential investigation processes is conducted 
by illustrating and using the model of Kerber et al. (2008: 5-11), who mainly referred to 
competition law as the field of application.3 

Starting point is a decisionmaker trying to assess different cases out of a given class of cases 
concerning their true states of the world.4 The decisionmaker has some knowledge – based on 
theoretical analyses and experience – about the prior probability distribution of the possible 
states of the world w and their respective (quantitative) consequences. Assuming that the 
possible states of the world are dichotomous, { },w B H∈ , the prior probabilities (priors) of 

 (‘beneficial’) and w  (‘harmful’) are given by w B= H= p  and 1 p− , respectively.5 

                                                 
3 The following sequential decision model simplifies general designs of statistical decision theory to a certain 

extent, without loss of generality (see, e.g., Berger (1993), DeGroot (1970), Hadley (1967), Hamburg (1970) 
or Moore/Whinston (1986 and 1987) for more general analyses). 

4 Such a classification refers to corresponding characteristics of different single decision situations (Vanberg 
1993: 175). For example, a class of cases may be given by resale price maintenance or horizontal mergers in 
competition law, students of the same semester and/or lecture when assessing a certain knowledge-level, or 
patients in whom congenital heart disease is suspected. 

5 The analysis can also be conducted for a range of welfare effects with a continuous prior probability density 
function. However, besides complicating the analysis, the results and implications remain the same. 
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This a-priori information can be refined by the investigation of k distinct assessment criteria, 
labeled by the index { }1, 2,...,i K k∈ = , whose outcomes are related to the two states of the 

world and function as evidence for the more probable occurrence of one of these states. The 
investigation of those criteria is assumed to be without error and does not alter the set of 
possible states of the world. For each of these criteria, the decisionmaker may gather exactly 
one signal , whose outcome iz { }1, 1∈ ≡ − +

1im = +

im M  is dichotomous.6 The conditional 

probabilities (likelihoods) of observing  and  are given by  and 1 , 

respectively, for the true state of the world w.

1im = − w
iq w

iq−
7 

When assuming that the decisionmaker may collect only one signal at a time the investigation 
process is split into stages { }0,1, ,j k∈ K , where j denotes the number of signals already 

collected. In fact, the likelihoods of the different criteria may depend on already collected 
signals and their outcomes – otherwise the signals are stochastically independent. Thus, after 
having collected j signals, the decisionmaker knows a history  of collected signals and their 

outcomes. This history consists of a sequence of j pairs ( ) , in which the 

first entry denotes the index of the signal collected at stage 

jh

j ji m% % {, K∈ × − + }1, 1

j%  and the second entry denotes 

the outcome of this signal. For any given history  the decisionmaker may then use the 

conditional likelihoods  to determine updated probabilities (posteriors) of the true state 

of the world, denoted by 

jh

( )jh

( )1j

w
iq

p̂ h + ˆ1 and ( 1j )p h +− , by iterated Bayesian updating. Assuming 

that signal  is collected at stage iz j  and writing  for a history  whose last signal yielded 

outcome 

m
jh jh

{ }1, 1m ∈ − + , Bayesian updating yields 

(1) ( ) ( ) ( )
( )

1
1

ˆ
ˆ

B
j i j

j
i j

p h q h
p h

q h
+
+ =      and     ( ) ( ) ( )( )

( )( )
1
1

ˆ 1
ˆ

1

B
j i j

j
i j

p h q h
p h

q h
−
+

−
=

−
, 

with 

(2)  and ( ) ( ) ( ) ( )( ) ( )ˆ ˆ1B H
i j j i j j i jq h p h q h p h q h= + −

( ) ( ) ( )( ) ( )( ) ( )( )ˆ ˆ1 1 1 1B H
i j j i j j i jq h p h q h p h q h− = − + − −  

as the probabilities of observing the outcomes  and , respectively, when the 

true state of the world is unknown (unconditional probabilities). Generally, the unconditional 

1im = + 1im = −

                                                 
6 The interpretation of the signal outcomes can differ: for example, specific symptoms may be absent or not, the 

answer to an examination question may be ‘right’ or ‘wrong’, market shares may be ‘high’ or ‘low’, and a 
business practice may be initiated by producers or retailers. 

7 In general, these likelihoods may differ between different decisionmakers, thereby reflecting their ability to 
discriminate between the possible states of the world by investigation of the respective criteria. Depending on 
the concrete decision situation, the likelihoods at hand can be recalculated after a sufficient number of 
observations of the realized states of the world (Warner/Veasey 1992: 50). The improvement of the 
underlying criteria, respectively ‘evidence system’, can then be used for future decision situations. 
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probability of observing the outcome  at stage j is the sum of the conditional probabilities 

of observing the outcome , weighted by the posteriors of stage j (Mag 1977: 234-235). The 

definition of  and )0  as the likelihoods without any history of observed 

signals terminates the iterative upd

im

ng. 

iz

im

( )0p̂ h p≡  (w
iq h

ati

To avoid trivial results, the signals are assumed to be neither totally uninformative nor 
perfectly informative. The former condition requires the more probable inference – at least to 
some extent – to one of the two states of the world when observing a specific outcome, i.e. the 
likelihood that the outcome of signal  is  is not the same for both states of the world 

(
im

H B
iq q≠ i ). As a result (see (1) and (2)), the updated probabilities at stage 1j +  differ from 

those at stage j ( ( )1ˆ im ( )ˆ jjp h + ≠

( ) ( )1
1ˆ ˆj j

p h

)ˆ j

). Assuming that , i.e. the outcome  

( 1) is more likely for the beneficial (harmful) state of the world, the posteriors then 

fulfill: 

( ) ( )B H
i j i jq h q h> 1im = +

im = −

( 1
1h p h+

+ > > p h−
+p . The latter condition excludes the perfect inference on one 

of the two states of the world when observing a specific outcome ( 0 1). Both 

conditions can thus be summarized as follows: . These likelihoods can be used 

to characterize the different criteria with respect to their power in discriminating between the 
two states of the world – as revealed, e.g., by the ratio 

( )1ˆ im
jp h +< <

0 1H B
i iq q< ≠ <

B H
i iq q  (Heckerman et al. 1989: 6). 

Costs accrue in two ways: first, from collecting more information (investigation costs), and 
second, from making wrong decisions (error costs). Investigation costs of collecting signal  

are independent of all other criteria and given by . For ease of exposition, we will 

assume that , unless otherwise stated. Error costs are determined by a loss 

function , which represents the loss when the true state of the world is w and the 

decisionmaker chooses decision 

iz

0ic >

= ∀ ∈ic c i

( ), d

K

L w

{ },d d d+ −

( ,

∈

0

, where d  and  are two terminal decision 

possibilities (e.g., permission and prohibition or passing and failing) with  ( d ) relating to 
 ( w ). Normalizing the loss from making correct decisions to zero 

( ), we get 

+ d −

d + −

w B=

L B

H

( ),L H d+ =

=

( ),d ) H
− = L H

EL

d + L=  and . Total expected costs 

(EC) from terminating the investigation after history  are thus given by: 

( ), BL B L=d −

jh

(3)  and ( ) ( ) ( )( )ˆ, , 1j j Hh d jc L p h+ + = + −EC h d jc= + j

B j( ) ( ) ( )ˆ, ,j jEC h d jc EL h d jc L p h− −= + = + , 

with EL as the expected loss associated with the respective decision.8 This allows 
representing the sequential investigation structure by a multi-stage decision tree (see Kerber et 
al. 2008: 6). 

                                                 
8 In the case of a range of possible states of the world ed costs are given by:  , total expect
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When first analyzing the optimal depth of investigation we will take the sequence of criteria 
within the decision tree as given. For simplicity, we assume that signal i is collected at stage j. 
At each stage except for the last, the decisionmaker has to decide from a trichotomous choice 
set { }0, ,jD d d d+ −= , which comprises two terminating decisions (  and ) and one 

continuing decision (collecting a 

d + d −

1j + st signal, ). For the last stage the choice set comprises 

only the two terminating decisions. The decision is made by calculating the minimum of the 
expected total costs of each decision possibility. 

0d

Expected total costs for continuing the investigation after history  (jh ( 0,j )EC h d

⎤
⎦

( )j

) depend on 

the signals and choices of all possible later stages (Lewis/Sheehan 1990: 374). We define 

 as the minimal expected total costs 

after history , and as the optimal decision achieving 

( ) ( ) ( ) ( 0min , , , , ,
j

j j jD
EC h EC h d EC h d EC h d∗ + −⎡= ⎣

jh ( )jd h∗

)j

EC h∗ . Hence, ( )0,jEC h d  

is given by the expected value of the minimal expected total costs of the next stage, taken 
over the unconditional probabilities of the next signal (Marschak/Miyasawa 1968: 144):  

( )i jq h  for  and  for . 1im = + ( )1 i jq h− 1im = −

Thus, 

(4) .( ) ( ) ( ) ( )( ) ( )0 1
1 1, 1j i j j i jEC h d q h EC h q h EC h∗ + ∗ −

+ += + − 1
j

ˆ

9 

Specifying criteria by means of the likelihoods and Bayes’ theorem (see (1)) or directly by 
means of the posterior probabilities and their possible unconditional probabilities is equivalent 
(Ponssard 1975: 449). We thus can reverse the formulae of Bayesian updating given in (1) to 
express the likelihoods and unconditional probabilities solely in terms of prior and posterior 
probabilities of the possible states of the world.10 Given the consistency condition of the 
priors being equal to the average of the posteriors of the next stage (Athey/Levin 2000: 3), 

, the unconditional probabilities can be expressed 

as follows: 

( ) ( ) ( )( ) ( ) ( )1 1
1 1ˆ ˆ1i j j i j j jq h p h q h p h p h+ −

+ ++ − =

(5) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )
1 1
1 1

1 1 1 1
1 1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ
and 1j j j

j j j j
i j i j

jp h p h p h p h

p h p h p h p h
q h q h

− +
+ +

+ − + −
+ + + +

− −

− −
= − = . 

The reversion, however, only holds for the general discrete case if the number of possible 
states of the world at least equals the number of possible signal outcomes (see Appendix A). 

                                                                                                                                                         
( ) ( ) ( )

0
ˆ, ,j jw

EC h d j c L w d p h dw+ +

<
= + ∫  and ( ) ( ) ( )

0
ˆ, ,j jw

EC h d j c L w d p h dw− −

>
= + ∫ , 

( ),L w d ( )ˆwith  as a continuous loss function and jp h  as the probability density function of history jh . 
9 It is assumed for simplicity that (quantitative) losses are the same for each possible stage, whereas in practice 

the loss structure may alter due to delays in reaching terminating decisions (Hamburg 1970: 727). 
10 Reversing the formulae of Bayesian updating in (1) at first gives the likelihoods in the following terms: 

( ) ( )
( )

1

1
ˆ

ˆ
jB

i

j

j

p h
q

p h
h

+

+= Φ  and ( ) ( )
( )

1

1
ˆ1

ˆ1
jH

i

j

j

p h
q

p h
h

+

+−
= Φ

−
 with 

( ) ( )
( ) ( )

1

1

1 1

1 1

ˆ ˆ

ˆ ˆ
j j

j j

p h p h

p h p h

−

+

+ −

+ +

−
Φ =

−
. 



 8 
 

Optimal decisions and the consequential minimal expected total costs must then be 
determined in a backwards iterated manner, i.e. starting at stage k (Hamburg 1970: 733). At 
the final stage k, the optimal decision is given by 

(6) ( ) { }arg min , where ,
k

k k kd D
d EC h d D d∗ +

∈
⎡ ⎤= =⎣ ⎦ d − , 

which is equivalent to selecting d  if and only if + ( ) ( )ˆ k H H Bp h L L L≥ + .11 Minimal expected 

total costs at stage k are thus given by 

(7) ( ) ( )( ) ( )ˆ ˆmin 1 ,k H k BEC h k c L p h k c L p h∗
k⎡ ⎤= + − +⎣ ⎦ .12 

We can iterate backwards for  by following j k<

(8) ( ) { }0arg min , where , ,
j

j j jd D
d EC h d D d d∗ +

∈
⎡ ⎤= =⎣ ⎦ d−

j

 

as decision rule. This yields 

(9) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )1 1
1 1ˆ ˆmin 1 , , 1j H j B j i j j i jEC h j c L p h j c L p h q h EC h q h EC h∗ ∗ + ∗ −

+ +
⎡ ⎤= + − + + −⎣ ⎦  

as minimal expected total costs at stage . j k<

This analysis determines how deep the investigation should continue in each of the branches 
of the multi-stage decision tree (optimal stopping). The decision rule given by (6) and (8) 
assigns to each observed outcome the optimal decision to be taken by the decisionmaker: 
Either terminating the investigation by deciding between  and  or investigating another 
criterion. For a terminating decision being optimal in any of the branches, the reduction of 
expected losses (expected information value) achieved by additionally gathered information is 
not sufficient to justify the raised investigation costs, i.e. expected total costs are at their 
minimum. At any stage, this condition encompasses the entire subsequent decision tree and 
cannot be seen separately for only one (or the next) criterion, because the expected 
information value of any criterion is also affected by subsequent criteria and sometimes the 
reduction in expected losses of a subsequent criterion may be so high to over-compensate low 
expected information values of previous criteria (and the raised investigation costs). Appendix 
C addresses this characteristic because neglecting it is the crucial shortcoming of the so-called 
myopic approach. 

d + d −

 

 

 

                                                 
11 This decision rule assumes that the decisionmaker decides in favor of  if indifferent between and other 

decisions. Only in the case of symmetric losses, the decisionmaker should decide in favor of the more 
probable state of the world. If, for example, 

d + d +

HL  is assumed to be four times as large as BL , the probability 
threshold equals 4

5ˆ Bp = . The assumption of symmetric losses indicates equal undesirability of both types of 
possible erroneous decisions (Lewis/Sheehan 1990: 370; Beckner/Salop 1999: 61-62). 

12 If one of the terminating decisions is taken prior to stage k, one may replace k by any  in (6) and (7). j k<
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2.2 Information value analysis 

Given the definition of the minimum expected losses ( ( )*
jEL h ) analogously to ( )*

jEC h , the 

expected information value (IV) is defined by 

(10) ( ) ( ) ( ) ( ) ( )( ) ( )* * 1 *
1 11i j j i j j i j jIV h EL h q h EL h q h EL h+ −

+ +
1⎡ ⎤= − + −⎣ ⎦ . 

The expected information value is always non-negative (DeGroot 1962: 405-406; Gould 
1974: 67; Heckerman et al. 1992: 97; Hirshleifer/Riley 1979: 1395) and can only be zero if 
the decisionmaker takes the same decision for both outcomes as taken without investigating 
the signal (Heckerman et al. 1991: 6; Hirshleifer/Riley 1992: 180). Taking the same decision 
with or without additional information cannot impair the decisionmaker’s position in terms of 
expected losses (Cyert/DeGroot 1987: 16). This is formally ensured by the consistency 
condition of prior and updated probabilities (Athey/Levin 2001: 3; Hirshleifer/Riley 1992: 

188), see (1) and (2): ( ) ( ) ( ) ( )( ) ( )1 1
1 1ˆ ˆ ˆ1j i j j i j jp h q h p h q h p h+ −

+ += + − . 

A negative expected information value is generally excluded if additional information only 
affects the probabilities of the states of the world (Drukarczyk 1974: 9). It would only be 
possible if the posteriors of one state of the world change into the same ‘direction’ (increase 
or decrease) with respect to both possible signal outcomes; this case, however, is excluded 
directly by Bayes’ theorem (see (1)).13 

The non-negative expected information value must be compared to the strictly positive 
investigation costs in order to determine the expected total costs to be saved by investigating a 
criterion. In combination, both elements define the so-called expected net information value, 
which measures the informativeness of criteria in terms of reduced expected losses due to 
improved decision making and additional investigation costs (Kalagnanam/Henrion 1990: 
272):14 

(11) ( ) ( ) ( ) ( ) ( )( ) ( )* * 1
1 11i j j i j j i j jNIV h EC h q h EC h q h EC h+ −

+ +
* 1⎡ ⎤= − + −⎣ ⎦ . 

Comparative statics of optimal stopping and realized investigation rules concerning the size of 
losses and investigation costs reveal the following: A general increase in investigation costs – 
while losses remain unchanged – tends to shorten the investigation process of any class; 
analogously, increasing the losses – while investigation costs remain unchanged – tends to 
deepen the investigation of any class. Increased losses increase the possible extent of the 
expected information value and thus call for a more accurate decision based on (an) 

                                                 
13 If additional information reduces the choice set (Drèze 1960) or becomes loss-relevant (i.e. changes the 

amount of losses), the expected information value may indeed become negative. The latter case of so-called 
‘signal dependence’ is analyzed, e.g., by Bertocchi/Spagat (1998), Datta/ Mirman/Schlee (2000, 2002) and 
Sulganik/Zilcha (1997). However, these cases are not considered here. In the case of partial uncertainty about 
the required information inputs (states of the world, prior probabilities, choice set, loss function, signal 
outcomes, and likelihoods), Firchau (1980) analyzes bounds for the expected information value. 

14 This definition of the information value as the difference of expected average values takes into account the 
quantitative effects (i.e. losses) as well (Howard 1966: 22). Other definitions, for example solely regarding 
the effects on probabilities, are also possible but not regarded here (see, e.g., Ben-Bassat 1978: 171 and 
DeGroot 1970: 431). 
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additionally gathered signal(s), while increased investigation costs more likely over-
compensate these possible benefits (Mookerjee/Dos Santos 1993: 127). 

 

 

2.3 Sequencing problem 

Due to the assumption of a given sequence of criteria, the focus was on the optimal stopping 
of investigations, i.e. the minimization of expected total costs for a given sequence. However, 
next to solving the often nontrivial task of defining an adequate set of investigation criteria, 
the sequence of possible criteria matters to a great extent because it generally may change the 
realized posteriors and, therefore, expected total costs.15 This is due to the following facts: 

The informational decision for a criterion at any stage cannot be seen isolated from previous 
informational decisions as well as consequential effects if the investigation is continued for at 
least one of the possible signal outcomes. Standard Bayesian updating (see (1)) reveals that 
for any given priors, different likelihoods lead to different posteriors, and for any given 
likelihoods, different priors will result in different posteriors. Thus, the (net) expected 
information value of any criterion is affected by its own position within the sequence as well 
as by the sequence of previous and subsequent criteria, which can be seen directly from (10) 
and (11). The example in Appendix B addresses the dependence of a criterion’s (net) 
information value on the sequence of subsequent criteria, if the investigation is continued for 
at least one of the possible signal outcomes. 

In this respect, Mussi (2002: 103) describes the investigation of a criterion as having the side-
effect of changing the expected information value of other criteria. For example, the 
significance of certain reactions to a specific medical test depends on previously conducted 
tests and observed reactions; the investigation of initiation of resale price maintenance by 
manufacturers or retailers may provide different information about the anti-competitiveness if 
the market share of a specific practice has already been investigated compared to the case it 
has not. Furthermore, different criteria – when compared – can become advantageous for 
different priors (Hirshleifer/Riley 1992: 191) and, in general, the expected (net) information 
value of two or more criteria is not the sum of the single expected (net) information values 
(Kalagnanam/Henrion 1990: 272). Shortly stated, general principles concerning the estimation 
of information values are widely missing (Ferschl 1982: 71). 

For these reasons, on the one hand, different sequences may not only result in different 
optimal stopping decisions but also in different realized expected total costs for a given class 
of cases; the minimization of total expected costs thus also requires the finding of the optimal 
sequence of criteria. On the other hand, finding the optimal sequence for one class of cases 
does not generally allow to draw conclusions regarding another one’s optimal sequence. 

                                                 
15 Only if all possible criteria are stochastically independent and, in addition, the investigation will be continued 

until the set of possible criteria is exhausted for any combination of signal outcomes, the sequence of criteria 
does not matter to the realized probabilities of the states of the world. In the case of stochastically 
independent criteria, the joint likelihoods are simply the product of the single corresponding likelihoods 
(DeGroot 1962: 408). 
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The determination of the optimal sequence of a class of cases can generally be done by the 
examination of the entire decision tree, which encompasses every possible sequence of 
criteria, by backwards induction.16 Optimal rules then minimize the expected total costs at 
every point of the investigation process (Lewis/Sheehan 1990: 371; Vos 2007: 612). 
Unfortunately, the large number of possible sequences raises concerns about their calculation. 

By splitting the investigation process into stages (due to the assumption of collecting only one 
signal at a time), we simultaneously defined each stage – except for the prior investigation 
stage – as consisting of at least two investigation points (depending on the realized outcomes 
at previous stages). An investigation path through the stages of a decision tree is therefore 
defined by at most one investigation point at every stage. For simplicity, we assume that every 
criterion can be investigated only once (cannot be repeated) on every such investigation path. 
Then, the following distinction has to be made (Kerber et al. 2008: 11-12): 

1. Stage-consistent sequences mean that the same criterion is investigated at every 
investigation point of an investigation stage. The number of possible sequences is then 
given by the factorial of the possible number of criteria, i.e. !k ; in the cases of 3k = , 

4k =  and 5k = , e.g., the number of possible sequences are given by 6, 24 and 120, 
respectively. 

2. Flexible sequences mean that a given criterion can be investigated at different stages for 
different investigation paths. The discrimination power of a criterion thus differs 
according to previously investigated criteria and observed signal outcomes (stochastically 
dependent likelihoods); for example, the investigation of the adoption-rate of resale price 
maintenance may provide different information for cases with low manufacturer market 
concentration compared to those with high manufacturer market concentration. Generally, 
the number of possible sequences is then given by the factorial of the number of possible 
criteria, with a power for every number that doubles for the decreasing order of them 
(beginning with one for the highest number), i.e. 

; 

in the cases of 3k = , 4k =  and 5k = , e.g., the number of possible sequences are given 
by 12, 576 and 1,658,880, respectively. 

( )
( )

( )
( )

( )
( )

( )( )
( )( )

( )( )
( )( )2 11 2 3 2 22 2 22 1 2 3 2 1

k k k k k kk k k k k kk k
k k k k k k k k

− − − − − −− − − − − −−
⋅ − ⋅ − ⋅ − ⋅⋅ ⋅ − − ⋅ − −

The distinction makes clear that the number of possible sequences, i.e. the entire decision tree, 
is incredibly large (Hadley 1967: 153; Kalagnanam/Henrion 1990: 272) and – especially in 
the case of a flexible sequence – intractable without any computational aid. Unfortunately, no 
general solution exists with which the optimal sequence can be determined in advance by only 
regarding the criteria’s likelihoods (Bradt/Karlin 1956: 390-391; Hadley 1967: 153; 
Heckerman et al. 1992: 97; Mussi 2002: 104). However, certain heuristics do exist, which try 
to approximate the optimal sequence in particular decision problems. While producing sub-
optimal solutions in general, the heuristics’ advantage of reducing a decision tree’s size (i.e. 
the number of decision nodes) may offset this disadvantage (Gorry 1967: 39-40).  

                                                 
16 See DeGroot (1962: 410), Gorry (1967: 37-39), Gorry/Barnett (1968: 496-497), Heckerman et al. (1993: 292), 

Laux (1993: 118) or Mussi (2002: 103) 
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The sequencing problem in Bayesian sequential procedures can also be “solved” by 
determining a distribution function, which chooses over the next selected criteria (Mag 1977: 
225). Such a random selection of sequences is done, for example, in psychological and 
educational questions with the aim of determining students’ level of knowledge 
(Lewis/Sheehan 1990, 1992; Vos 1999, 2007). Two distinctions are made: the number of 
tested items (in the above sense: criteria) may be fixed in advance (fixed-length testing), or 
the number of tested items out of a given set may vary (variable-length testing). In the first 
case, only two decisions are possible: passing or failing. The decision minimizes total 
expected losses and is revealed by (1) the number of correct answers if the tests do not differ 
in difficulty or (2) must be evaluated for every possible branch if the tests may differ in 
discrimination power, i.e. difficulty (Lewis/Sheehan 1990: 371-373). In the second case, a 
third decision alternative must be examined, i.e. the decision to continue testing. The design 
of this sequential procedure allows for the random choice of items in advance. Optimal 
decision rules are then derived by backward induction (Lewis/Sheehan 1990: 374-375; Vos 
1999: 272-273; Vos 2007: 612). Another possibility is to choose the next tested item after 
each answer: either randomly (Lewis/Sheehan 1992: 68) or based on the amount of provided 
information at that point of investigation (Lewis/Sheehan 1990: 367-368; the authors briefly 
survey different approaches). The latter can be done with respect to any information measure 
(see Ben-Bassat 1978) and would be equivalent to the myopic approach of Gorry/Barnett 
(1968) if quantitative losses next to probabilities are included (see section 3.1). Although, it 
may be a good advice in some areas of application, it cannot be classified as a direct solution 
to the sequencing problem in general. 

Therefore, we will focus on the examination of a number of possible heuristics in the 
following three sections, which try to approximate the optimal solutions. 

 

 

3. Heuristic solutions 

3.1 Myopic approach 

Heuristic solutions try to approximate the resulting expected total costs of the optimal 
sequence and thus alleviate the problem of intractability of computing all possible sequences. 
As Mussi (2002: 104) mentions, many applications use the ‘myopic approach’ of 
Gorry/Barnett (1968). 

This approach does not analyze a decision tree in its full dimension, but restricts the depth of 
the analysis by only considering sequences of criteria of limited length (Gorry/Barnett 1968: 
498). The restriction may consider, for example, only the next one or two stages by asking if 
there exist single criteria or combinations of criteria for which the ‘myopic information value’ 
is higher than the raised investigation costs. Thereby, all further (possible) investigation 
stages are cut off and expected costs are calculated and compared under the assumption of 
terminating the investigation after the considered length of sequence. If more than one 
sequence reduces expected costs, the one with the highest reduction is chosen and the ‘myopic 
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question’ is asked again at the next stage (with a reduced criteria set left because already 
investigated criteria cannot be chosen again); if not, the investigation is terminated.17 The 
myopic approach’s repetition of the ‘myopic question’ is seen as being inconsistent with its 
own assumptions because the decisionmaker chooses the criteria under the assumption of 
immediate termination after observing the signal outcomes (Heckerman et al. 1993: 294). 

When considering only one further criterion at any stage, the formal definition of the ‘myopic 
information value’ ( IV% ) of criterion i at stage j is given by the reduction in expected losses, 
which results from the investigation of this one additional criterion, i.e. 

(12) 

( ) ( ) ( ){ }
( ) ( ) ( ){ }

( )( ) ( ) ( ){ }

1 1
1 1

1 1
1 1

min , , ,

min , , ,

1 min , , ,

i j j j

i j j j

i j j j

IV h EL h d EL h d

q h EL h d EL h d

q h EL h d EL h d

+ −

+ + + −
+ +

− + − −
+ +

=

⎡− ⎣
⎤+ − ⎦

%

,

 

with EL as defined in (3). Thus, the following maximization problem must be solved: 

(13) ( ){ }max
j

i j ii K
IV h c

∈
−% , 

with  as the set of criteria not yet investigated at stage j. jK

While the original model requires the consideration of all costs at further investigation stages 
when deciding on whether to study the next criterion, the myopic approach requires the 
decisionmaker only to decide whether the solution to (13) is still positive. If not, no more 
criteria should be studied (Gorry/Barnett 1968: 501), which assumes the decision in favor of 
termination if the solution to (13) is zero. This also refers to a cost-effective investigation 
procedure because both the reduction in expected losses as well as the raised investigation 
costs is considered; in general, costly and well discriminating criteria may be less cost-
effective compared to cheap and less discriminating criteria (Mookerjee/Dos Santos 1993: 
116). Therefore, the myopic choice of a specific criterion may also regard the reduction of 
expected losses per unit of investigation costs.18 

The myopic heuristic induces larger total expected costs as compared to the optimal sequence 
of criteria. On the one hand, this approach may induce a suboptimal sequence even for 
stochastically independent criteria (Appendix C exemplifies this shortcoming). On the other 
hand, stopping decisions may be handed down too early even when the sequence of criteria is 
correct because further cost reductions resulting from improvements at later investigation 
stages are neglected (Kerber et al. 2008: 12-13). Both reasons of sub-optimality of the myopic 
approach are aggravated if the criteria are assumed to be not stochastically independent. 
                                                 
17 See, for example, Heckerman et al. (1992: 97), Kalagnanam/Henrion (1990: 272), Mussi (2002: 104) and 

Tseng/Gmytrasiewicz (1999:2-4). 
18 This is the way Mookerjee/Dos Santos (1993), Mookerjee/Mannino (1997) and Mannino/Mookerjee (1999) 

describe an inductive algorithm, which seeks to maximize the value of an expert system (defined by solving 
the problem of optimally choosing the next information input under the given trade-offs between better 
information and acquiring costs), i.e. maximizing the difference of the expected decision value and costs of 
collecting information inputs. Gorry/Barnett (1968: 501) explicitly allow for such a method used to develop a 
decision tree “without altering the basic method of the analysis”. 
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Furthermore, investigation processes cannot be terminated too late by the myopic approach: 
should the complete study of possible sequences indicate that termination is the best 
alternative, then there obviously is no more criterion worthwhile to be investigated at the next 
stage; thus, the myopic criterion will also recommend termination. 

Generally, by restricting the analysis to a sequence of limited length, the decisionmaker may 
overlook an effective sequence characterized by at least one more criterion (Gorry/Barnett 
1968: 498). Sometimes the expected information value of a sequence of criteria is larger than 
the sum of their investigation costs, while this does not hold for single (respectively: a shorter 
sequence of) criteria (Mussi 2002: 103-104). Despite the obvious shortcomings, as 
Gorry/Barnett (1968: 505) argue, the myopic approach may be seen as a good heuristic in 
practice – which also refers to the possible offsetting advantage of a reduced decision tree’s 
size (Gorry 1967: 39-40).19 

 

 

3.2 ‘Bracketing condition’ 

The myopic approach raises the question if the myopic information value must be calculated 
at each stage for every remaining criterion. When regarding a sequence of only one criterion 
to be considered next, the determination of a superior criterion i , which dominates other 
criteria '  no matter which loss function and prior probabilities are presumed, would reduce 
the set of criteria coming into question.

i
20 For any given decision situation, such a superior 

criterion is characterized by lower total expected losses (i.e. a higher information value) 
compared to other possible criteria (Bradt/Karlin 1956: 391; Hirshleifer/Riley 1979: 1397; 
Ponssard 1975: 452). This condition is fulfilled if the posteriors of the superior criterion 
bracket those of an inferior; therefore the decisionmaker has a smaller posterior risk of 
making the wrong decision, no matter which outcome is observed (Hirshleifer/Riley 1979: 
1397; Marschak/Miyasawa 1968: 144 et seqq.; Ponssard 1975: 452).21 Formally, we say that 
a criterion i ‘brackets’ another criterion i  for a history j  of collected signals and their 

outcomes if 

 'i ≠ h

(14)  ( )( ) ( )( ) ( )( ) ( )( )ˆ ˆ ˆ ˆ, 1 ', 1 ', 1 , 1j j j jp h i p h i p h i p h i∩ + > ∩ + > ∩ − > ∩ −

is satisfied, where  denotes the extension of history  by the collection of signal i 

and its outcome m and  is defined accordingly for signal i'. Without loss of 

generality it is presumed that  ( ) is more conclusive as to the occurrence of 

( ,jh i m∩

j ∩

)
)

                                                

jh

( ',h i m

1m = + 1m = −
 

19 Gorry/Barnett (1968) concretely consider the diagnosis of congestive heart disease. Their decision-theoretic 
approach can nevertheless be generalized to allow the conclusion also for other sequential decision problems. 

20 Such a determination is more difficult, or impossible in general, for a sequence of more than one criterion 
because the expected net information value of two or more criteria is not the sum of the single expected net 
information values (Kalagnanam/Henrion 1990: 272). 

21 Davis (1994) evaluates different legal procedures (criteria) in resolving legal disputes. The legal procedures 
reveal the value of a continuous variable and can be ranked according to the fulfilment of a mean-preserving 
spread of the corresponding probabilities of guilt. This also describes better discrimination and concludes 
smaller decision error costs. 
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w B=

w B=

 ( w ); otherwise the inequality chain will reverse. Since the condition only applies 
to the information (and not net information) value (Marschak/Miyasawa 1968: 148), its 
application is limited to cases of equally costly criteria and cases where investigation costs of 
an inferior criterion are at least as high as those of a superior criterion. The proof of lower 
total expected losses is given in Appendix D. 

H=

H=

The ‘bracketing condition’ is revealed at the same time also by the direct characteristics of the 
criteria, which are given by the likelihoods: when those of an inferior criterion are obtained 
from those of the superior criterion by a stochastic transformation, the former is less 
informative for any priors and loss functions, and thus always reveals higher expected 
losses.22 Thus, the superior criterion is characterized by a higher discriminatory power of the 
possible signal outcomes, which means that the signal outcomes can more probably be 
assigned to the true state of the world. In the case of  ( ) being more likely for 

 ( w ), we get  and 
1m = + 1m = −

'
B
iq q> B

i '
H H
i iq q<  (Appendix D also provides the proof of lower 

total expected losses in this case). 

The bracketing condition is satisfied for pairs of criteria, leading to a ranking of the fulfilling 
criteria. This ranking holds for any priors and loss functions due to the equivalent expressions 
either in terms of the resulting posteriors or in terms of the underlying likelihoods (Ponssard 
1975: 449-452). If, on the other hand, the bracketing condition is not fulfilled for some pair of 
criteria, which thereof is more informative depends on the specifics of the decision situation 
(Hirshleifer/Riley 1979: 1397). Thus, the bracketing condition is a strongly sufficient 
condition for more informativeness (Hirshleifer/Riley 1992: 198).23 Difficulties may arise in 
the case of stochastic dependency among the outcomes of the criteria out of K. In that case, to 
name one criterion superior to another requires that the bracketing condition is fulfilled for 
any history of signals and their outcomes. Nevertheless, even in case of stochastic dependency 
the bracketing condition can reduce the number of criteria to be considered at each specific 
stage. To summarize, the fulfillment of the bracketing condition simplifies the myopic 
approach’s application. 

Given that the myopic approach, in general, does not lead to the optimal solution, it may be 
asked whether this can still be accomplished under (special) conditions. At first glance, the 
bracketing condition might be a candidate for the general ex ante determination of optimal 
investigation solutions. Unfortunately, the bracketing condition cannot be applied to yield a 
general optimal sequence. Although it is optimal in a one-step decision problem to always 
choose the superior criterion, the analogy for multi-stage decision problems is not true in 
general. Even for a set of stochastically independent and equally costly criteria, which are 
completely ordered due to the pair-wise fulfillment of the bracketing condition, it is not 
generally optimal to always investigate the criteria in a decreasing order, i.e. beginning with 
                                                 
22 See, e.g., Athey/Levin (2001: 2-3), Bielinska-Kwapisz (2003: 21 et seq.), Blackwell (1951, 1953), Blackwell/ 

Girshick (1954: 324-336), Crémer (1982: 439 et seq.), Hirshleifer/Riley (1992: 187-193), Marschak (1964: 
53), Marschak/Miyasawa (1968: 144 et seq.) or Ponssard (1975: 449-452). 

23 DeGroot (1962) and Ponssard (1975) regard the optimal design of sequential experiments (in the above 
framework: investigation of criteria). In the case of independent experiments and the existence of a superior 
one, the optimal investigation rule – the one that minimizes expected total loss – requires the replication of 
the superior experiment (DeGroot 1962: 412; Ponssard 1975: 452). 



 16 
 

the most superior criterion (the one that brackets all other criteria) and ending with the most 
inferior criterion (the one that is bracketed by all other criteria). Stated differently, sometimes 
expected total costs are reduced by more at stage  if an inferior probability distribution – 
left by a worse criterion at stage j – is discriminated better than if a superior probability 
distribution – left by a better criterion at stage j – is discriminated worse. Intuitively, it 
sometimes pays off to exercise strong criteria on remaining uncertain subclasses at later stages 
of the investigation instead of applying the same criteria earlier without the additional benefit 
of shortening some paths of the whole investigation process. Therefore, the bracketing 
condition can only be applied to the myopic approach if one criterion is considered. 

1j +

 

 

3.3 More heuristics 

Heckerman et al. (1993) consider so-called non-myopic approximations for the special case of 
dichotomy among states of the world, decision possibilities and signal outcomes.24 Each 
signal is conditionally independent of the observation of other signals’ outcomes. In the case 
of independent investigation costs of all possible criteria, the approximation works as follows: 
given that no single criterion is worthwhile investigating at any stage according to the myopic 
approach, the remaining criteria should be arranged in descending order of their net 
information value; at next, all subsequences starting with the most (net) informative criterion 
are regarded and the smallest subsequence with a positive net information value is chosen 
(Heckerman et al. 1993: 298). However, the myopic approach of Gorry and Barnett explicitly 
allows for the consideration of sequences of criteria (Gorry/Barnett 1968: 498) and does not 
automatically mean to consider the net information value of only a single criterion at any 
stage. Therefore, their approach might be classified as more general than the one of 
Heckerman et al. (1993). 

Another interesting special analysis of Heckerman et al. (1993) regards dependencies among 
the investigation costs of some criteria. The examination of a sequence of criteria (of a 
defined length) must consider all possible combinations of the outcomes. Thus, there are 
combinations leading to the optimality of one decision possibility and combinations leading to 
the optimality of the opposite decision possibility. Total expected costs of both decisions must 
then include the expectations over all corresponding combinations. Since criteria can only be 
performed as a set, all net information value analysis must be applied analogously. 

Gorry (1967) mentions a few more heuristics, which are more or less applicable to the above 
framework. In general, he distinguishes between so-called breadth-limiting and depth-limiting 
heuristics (ibid.: 43): the first limit the number of analyzed criteria at each stage, and the 
second limit the number of stages looked ahead. The myopic approach of section 3.1 must, 
therefore, be classified as a depth-limiting heuristic (Gorry/Barnett 1968: 498). 

                                                 
24 Heckerman et al. (1993: 293) use the notions of hypotheses, action (or alternatives), and instantiations of 

pieces of evidence (or tests). 
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Applying a breadth-limiting heuristic, the decisionmaker may restrict attention to some fixed 
number of criteria at each stage (Gorry 1967: 43-44). The main problem is the specification of 
a selection rule because it always requires the examination of information values, which 
include effects on subsequent stages. The heuristic’s purpose (of limiting the considered 
breadth) is thus self-destroyed. Another breadth-limiting heuristic, therefore, ignores effects 
on information values and the information embodied in prior probabilities (ibid.: 44-45). At 
each stage the number of possible criteria is limited and chosen according to the increased 
order of their investigation costs. When regarding more than two possible states of the world, 
the selection may comprise only criteria with a (stronger) relationship to the most probable 
states; which, on the other hand, does not necessarily mean to exclude any criterion (ibid.: 45-
46). However, such selection rule – based purely on current probability distributions – 
somehow risks driving the subsequent investigation process in a predetermined direction. 

Depth-limiting heuristics can be either characterized by fixed depth to be considered at each 
stage or by variable depth; the latter try to take into account some kind of ‘information 
potential’ of different probabilities at each stage (ibid.: 48). In fact, this is the crucial problem 
of finding an optimal solution to sequential decision problems and thus supports the sub-
optimality of heuristics. As mentioned in the previous section, depth-limiting heuristics suffer 
from neglecting further cost reductions at later stages and thus indicate termination at some 
points, at which the optimal solution requires further investigation (ibid.: 49-50). 

These additional heuristics, however, have to be questioned in regard to their actual purpose 
of reducing the computational effort. In result, the myopic solution (with short sequences of 
criteria to be regarded) seems to be the most promising approach; especially in conjunction 
with the simplifying bracketing condition. However, the above-listed heuristics become more 
important for special situations. For example, knowledge about dependencies among the 
investigation costs of some criteria would make it necessary to somehow account for the 
second heuristic of Heckerman et al. (1993); application in combination with another heuristic 
may create a new approach. Furthermore, knowledge about incompatibilities among some 
investigation criteria functions like a selection rule for breadth-limiting heuristics. 

Despite the non-existence of an optimal approach as well as a best heuristic, predictions about 
the recommendation of one or another heuristic may be possible in the case of incomplete 
knowledge about certain characteristics of the investigation criteria. For example, choosing 
among the criteria according to the increased order of their investigation costs may be 
preferable or the only option if too little is known about the discrimination characteristics of 
the available criteria. On the other hand, a lack of knowledge concerning the associated 
investigation costs may necessitate assuming equal costs, which lets the myopic approach 
look reasonable. However, it is difficult to be more precise concerning a general preference 
among the heuristics; one cannot help but examine the available heuristics in concrete 
decision situations with specific constellations and knowledge about the investigation 
criteria’s characteristics. 
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4. Discussion and conclusions 

A lot of different areas in ordinary and professional life can be characterized as statistical 
decision problems, in which particular cases are assessed corresponding to their true and ex 
ante unknown state of the world. Classifying different decision situations subject to recurring 
or corresponding characteristics provides decisionmakers with information about respective 
probabilities of the possible states of the world. The subsequent assessment follows a 
sequential investigation of specific features (so-called investigation criteria), which leads to a 
refinement of initially presumed probability distributions, according to the observation of 
respective realizations that are linked to the possible states of the world. This procedure sorts 
particular cases into different and ever smaller subclasses. 

For example, reacting to certain medical tests in specified ways (or showing specific 
symptoms), leads to a refinement of the probabilities of specific diseases (Gorry 1967: 23; 
Warner/Veasey 1992: 43 et seqq.). Answering to certain examination questions in a correct 
way increases the probability of being examined as a high-knowledge student; vice versa for 
incorrect answers (Vos 1999: 273; 2007: 617). The assessment of market indicators (e.g. 
market concentration, buyer power or existing R&D agreements) refines the probabilities of 
pro- and anticompetitive welfare effects of specific business behaviors and thus the potential 
of exerting market power. 

The comparison of obtained information and raised costs may indicate an optimal termination 
prior to the investigation of every possible criterion (or test) out of the relevant set. This 
optimal stopping problem is one of the crucial characteristics of sequential investigations.25 
Another one is a generally unsolved problem: namely, the optimal sequencing of investigation 
criteria. As mentioned above, different sequences affect the information gained by 
investigating the criteria and thus result in different expected total costs (i.e. the sum of 
expected losses through wrong decisions and the costs of investigating the criteria). 

Despite its obvious theoretical significance, one may question how substantial the sequencing 
problem is in specific decision situations. This cannot be generalized, but certainly depends 
on the distribution of losses and investigation costs of the different criteria. Furthermore, the 
relevance of the problem increases with the depth of realized investigation paths. On the other 
hand, the prior probability distribution does not seem to be a promising indicator in this 
regard; depending on the set of available criteria, relatively unambiguous classes often require 
numerous criteria to be investigated in specific paths, while it suffices to roughly subdivide 
relatively ‘uncertain’ classes. However, the sequencing problem becomes especially important 
if different sequences lead to (substantially) different investigation structures, i.e. different 
stopping points within the analogously same investigation paths. 

Even though the optimal solution is derived by backward induction, this remains tractable 
only for decision problems characterized by a manageable number of criteria. Unfortunately, 
no general solution exists with which the optimal sequence can be determined in advance (i.e. 
by purely considering the criteria’s characteristics). Therefore, this paper analyzes existing 

                                                 
25 Of course, diagnostic decision problems first require the definition of a set of relevant criteria. 
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heuristics trying to circumvent the sequencing problem by approximating the optimal solution 
and its expected total costs. 

The approximation by means of myopic approaches probably proves to be the superior 
method in practice, at least for the majority of decision situations requiring the 
subclassification of behaviors or actions. The main advantage lies in fast sorting of cases into 
clearly differentiated subclasses. This is secured by investigating the most powerful criteria 
first and this is what the solution of many practical decision problems often requires. 
However, preference for one (heuristic) solution over another crucially depends on the 
specific characteristics of concrete decision situations. Incomplete knowledge about some 
characteristics or constellations might also require adjustments towards one or another 
heuristic. 

Unfortunately, the ubiquity of statistical decision problems in lots of different areas lacks the 
non-existence of a general solution to the sequencing problem. Despite their usefulness, the 
available working approximations cannot hide this fact. One possible approach for future 
research may be the analysis of specific decision situations narrowed by (simplifying) 
assumptions about certain characteristics and constellations. Present research results cannot 
exclude the derivation of optimal solutions for subsets of sequential decision problems either. 

 

 

Appendix A 

This appendix proves that the reversion of Bayesian updating only holds for the general 
discrete case if the number of possible states of the world at least equals the number of 
possible signal outcomes. The possible states of the world  (basic model case: 1,...,w = n

{ },∈w B H ) are characterized by prior probabilities ( )p w

s

 (‘priors’). Every criterion has the 

same number of possible signal outcomes  (basic model case: 1,...,=m { }1, 1∈ − +m ), which 

are characterized by the likelihoods ( )q m w . Then, if any one of the outcomes  is 

observed, standard Bayesian updating yields: 

m

( ) ( ) ( )
( ) ( )1

ˆ
=

=
∑n

w

q m w p w
p w m

q m w p w
, 

with ( ) ( ) ( )1=
=∑n

w
q m w p w q m  as the unconditional probability of observing m  and 

(ˆ )p w m  as the posterior probability of the true state of the world w. 

Now, with s possible signal outcomes we get s posterior probabilities for each state of the 
world, i.e. we get s independent equations for each state of the world (illustrated by the 
columns in the figure below). Given any outcome m, the posteriors for the true state of the 
world w add to one, i.e. we get  independent equations for each signal outcome 1n −
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(illustrated by the rows in the figure below). Thus, in total we have  independent 

equations. 

( 1× −s n )

 

 1=w  . . .  =w n  

 

1=m  

 

( ) ( ) ( )
( )

1 1 1
ˆ 1 1

1

= = =
= = =

=

q m w p w
p w m

q m
 

. . .   

( ) ( ) ( )
( )

1
ˆ 1= = =

q m
p w n m

1

= = =

=

w n p w n

q m
 

 

1=∑w  

.

.

.
 

.

.

.
 

.
.

.
 

.

.

.
 

.

.

.
 

 

=m s  ( ) ( ) ( )
( )

1 1
ˆ 1

= = =
= = =

=

q m s w p w
p w m s

q m s
. . .  ( ) ( ) ( )

( )
ˆ

= = =
= = =

=

q m s w n p w n
p w n m s

q m s
 

 

1=∑w  

 

To calculate consistent conditional probabilities with only the knowledge of the priors and 
posteriors, we need  equations for each of the n states of the world (because the 
likelihoods add to one for every state of the world w), i.e. we need (  equations. 

1−s

)1− ×s n

 

 1=w . . .  =w n

 

1=m  
 

( )1 1= =q m w  
. . .   

( )1= =q m w n  

.

.

.
 

.

.

.
 

.
.

.
 

.

.

.
 

 

=m s  ( )1= =q m s w  . . .  
 

( )ˆ = =p m s w n

 

1=∑m . . .  1=∑m

 

It is only possible to calculate consistent likelihoods if the number of independent equations at 
least equals the number of needed equations, which holds if: 

( ) ( )1 1× − ≥ − × ⇔ ≥s n s n n s . 

The same result can be derived directly from the unconditional probabilities via the 

consistency conditions for prior and posterior probabilities: ( ) ( ) (1
ˆ

=
= )∑ s

m
p w q m p w m . For 

n possible states of the world we have  independent consistency conditions. Because the 

unconditional probabilities add to one (

1n −

1= ( ) 1=∑ s

m
q m ), we need  equations. 1−s
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  1=m  . . .  =m s  

 

( 1=p w )  
 

= 

 

( ) ( )ˆ1 1= = =q m p w m 1  
 

+ 

 

. . .  
 

+ 

 

( ) ( )ˆ 1= = =q m s p w m s  

.

.

.
 

 .
.
.
 

 .
.
.
 

 .
.
.
 

 

( = )p w n

 

= 

 

( ) ( )ˆ1 1= = =q m p w n m

 

+ . . .  
 

+ 

 

( ) ( )ˆ= = =q m s p w n m s  
 

1=∑w        

 

To summarize, if the number of possible states of the world is less than the number of 
possible signal outcomes, we are unable to express the likelihoods and unconditional 
probabilities only in terms of priors and posteriors of the states of the world; intuitively, more 
than one signal outcome has to be assigned to at least one of the possible states of the world, 
which produces inconclusive information.26 

 

 

Appendix B 

Consider the following simple example with three stochastically independent criteria ( K = 3). 
The example addresses the dependence of a criterion’s (net) information value on the 
sequence of subsequent criteria if the investigation is continued for at least one of the possible 
signal outcomes. Losses are assumed to be symmetric and normalized to one. Investigation 
costs are the same for all criteria and amount to 0.04 times the losses (  ). c = 0.04

 

 B
iq  H

iq  
1i =  0.7 0.28 
2i =  0.74 0.3 
3i =  0.75 0.35 

 

Next, consider the class of cases characterized by p = 0.35

m = −

 and the two possible sequences 
starting with the second criterion i , i.e. continuing with  or    first: both 
sequences are terminated in the cases of observing  at the first stage as well as 
observing    at the first and second stage, and completely investigated when observing 

 at the first and    at the second stage. The net information value of criterion 
 is defined by equation 

= 2 i = 1 i = 3
1

m = +1
  m = +1
  i = 2

m = −1
(11): 

                                                 
26 Hirshleifer/Riley (1992: 196-197) provide the same claim, however, without a proof. 
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( ) ( ) ( ) ( ) ( )( ) ( )* * 1
2 0 0 2 0 1 2 0 11+ −* 1⎡ ⎤= − + −⎣ ⎦NIV h EC h q h EC h q h EC h . 

First, expected total costs of immediate termination, ( )*
0EC h , are given by the lower prior 

probability   p = 0.35 and thus independent of the subsequent sequence. 

Second, expected total costs are the same for both sequences when observing    at the 
first stage, because both start with the same criterion: 

m = −1

( ) ( )* 1 1
1 1ˆ 0.206− −= + =EC h c p h

0.65 0.3 0.454+ ⋅ =

. From 

equations (5) we know that the unconditional probabilities of the first signals can be 
expressed in terms of the priors and first stage posterior probabilities. Consequently,  

is also the same for both sequences: q h . 

( )2 0q h

( )
(2)

2 0 0.35 0.74= ⋅

Third, when observing  at the first stage, expected total costs, , are reduced 

by a larger amount if continued with  first, instead of . The increased discrimination 
power of the former sequence is given by 

  m = +1 (* 1
1
+EC h )

=

=

i = 3 i = 1

( ) ( ) ( ) ( )( ) ( )* 1 0
1 3 1 2 3 1 2, 1 , 0.3682EC h q h EC h d q h EC h d+ += + −  

compared to 

( ) ( ) ( ) ( )( ) ( )* 1 0
1 1 1 2 1 1 2, 1 , 0.3705EC h q h EC h d q h EC h d+ += + − . 

Figures 1 and 2 summarize the second-stage calculations for both sequences by means of a 
simple decision tree illustration, which is based on Kerber et al. (2008: 6). To summarize, the 
net information value of  is given by i = 2

( )2 0 0.35 0.454 0.36819 0.546 0.206 0.07=NIV h ⎡ ⎤= − ⋅ + ⋅⎣ ⎦  if continued with    first and by i = 3

( )2 0 0.35 0.454 0.3705 0.546 0.206 0.068953NIV h ⎡ ⎤= − ⋅ + ⋅ =⎣ ⎦  if continued with    first. i = 1

 

 

Figure 1: Second-stage investigation of . i = 3
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Figure 2: Second-stage investigation of . 1i =

 

 

Appendix C 

The following example addresses the myopic approach’s failing in finding the optimal 
sequence of criteria. Reducing the calculation to three possible criteria ( ) and a stage-
consistent sequence, the examination focuses on the second stage. 

3K =

 

 B
iq  H

iq  

1i =  0.82 0.18 

2i =  0.72 0.41 

3i =  0.68 0.34 

 

The optimal decision tree for  is given in figure 3. When we rely on the myopic 
approach (regarding a sequence of only one criterion) to determine the sequence of criteria, 
the information value of criterion  is underestimated (see figures 5 and 6 for the second-
stage calculations of expected costs according to the myopic approach), since for one outcome 
the investigation does not terminate but calls for criterion . As may be seen from the 
myopic decision tree in figure 4, the same is true for criterion  if investigated at the 
second stage; but here the effect is weaker (see figures 5 and 6). As a consequence, the 
sequence of these two criteria is reversed. 

0.24p =

2i =

3i =
3i =

Assuming that losses are symmetric and the investigation costs are the same for all criteria 
( ), the expected total costs of the optimal decision tree are given by 0.2031 and those 
of the myopic decision tree by 0.2038. 

0.04c =



 24 
 

 

Figure 3: Optimal decision tree 

 

Figure 4: Myopic decision tree 
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Figure 5: Second-stage criterion according          Figure 6: Optimal second-stage criterion  
to the myopic approach   

 

 

Appendix D 

This appendix proves lower total expected losses for any given priors and loss function if a 
superior criterion i brackets another possible criterion i' out of K. The lower total expected 
losses are equivalent with a higher reduction of total expected losses, which indicates more 
informativeness. For this to hold, the posteriors of criterion i' are derived by a stochastic 
transformation of the posteriors of another criterion i, wherefore the posteriors of w of 
criterion i' can be expressed as a convex combination of the posteriors of w of criterion i, 
regarding both signals. This proof of more informativeness is known as Blackwell`s 
Theorem.27 The first part derives conditions, which hold for the unconditional signal-
probabilities if the bracketing condition is fulfilled; the second part then proves the resulting 
lower total expected losses of criterion i. 

 

Starting point of the analysis is any stage j in the investigation process with the given history 
of signals . To simplify the expressions, we abbreviate the notation as follows: jh

)((ˆ ,j )p h i∩

w B= w =

m

H

 is shortly written as  and  abbreviates . Obviously, the 

expected loss may only be reduced by one-step investigation if the terminating decision 
depends on the signal outcome for at least one of the two criteria. Assuming without loss of 
generality that the outcome  ( ) is more conclusive as to the occurrence of 

 ( ), this implies the distinction of five different cases: 

( )ˆ ip m

1m = −

iq ( )i jq h

1m = +

(i) the terminating decision depends on the signal’s outcome for both criteria, 

(A.1) ( ) ( ) ( ) ( )' 'ˆ ˆ ˆ ˆ1 1 1+ > + ≥ > − > −
+
H

i i i i
H B

Lp p p p
L L

1

                                                

; 

(ii) the terminating decision depends on the signal’s outcome for one of the two criteria, 
which can by definition of the bracketing condition (14) only be criterion i, 

 
27 See Blackwell (1953), Blackwell/Girshick (1966: 324 et seqq.) and Hirshleifer/Riley (1992: 188 et seqq.) 
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(A.2) ( ) ( ) ( ) (' 'ˆ ˆ ˆ1 1 1H
i i i i

H B

Lp p p p
L L

+ ≥ > + > − > −
+

)ˆ 1 , or 

(A.3) ( ) ( ) ( ) ( )' 'ˆ ˆ ˆ ˆ1 1 1 H
i i i i

H B

Lp p p p
L L

+ > + > − ≥ > −
+

1 ; 

(iii) the terminating decision is equal for both signal outcomes, 

(A.4) ( ) ( ) ( ) ( )' 'ˆ ˆ ˆ ˆ1 1 1 1 H
i i i i

H B

Lp p p p
L L

+ > + > − > − ≥
+

, or 

(A.5) ( ) ( ) ( ) ( )' 'ˆ ˆ ˆ ˆ1 1 1H
i i i i

H B

L p p p p
L L

≥ + > + > − > −
+

1

)'i

. 

Both cases of (iii) do not fulfill the requirement that the terminating decision depends on the 
signal’s outcome for at least one of the two criteria. Thus, both criteria are characterized by a 
zero information value in these cases. The analysis follows Hirshleifer/Riley (1992: 187-193). 
 

First, the expression of the posteriors of criterion i' as a convex combination of the posteriors 
of criterion i (‘bracketing condition’), is given by: 

(A.6) . ( ) ( )( ) ( ) ( ) ( )( ) ( )' 'ˆ ˆ ˆ ˆ ˆ ˆ1 1 1 1   and  1 1 1 1i i i i i ip a p a p p a p a p+ + − −+ + − − = + + + − − = −

The prior probabilities of the true state of the world at any stage j can always be expressed as 
the average of the corresponding posteriors of any criterion at the next stage, weighted by the 
unconditional probabilities of observing the two signal outcomes, i.e. 

(A.7) ( ) ( )( ) ( ) ( ) ( )(' ' 'ˆ ˆ ˆ ˆ ˆ1 1 1 1 1 1i i i i j i i ip q p q p h p q p q+ + − − = = + + − − . 

Inserting (A.6) yields 

(A.8) 
( ) ( )( )

( ) ( )( )( ) ( ) ( )( )( )( )' '

ˆ ˆ1 1 1

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1
i i i i

i i i i i

p q p q

,ip a p a q p a p a q+ + − −

+ + − −

= + + − − + + + − − −
 

which simplifies to: 

(A.9) . ( )' '1i iq a q a q+ −= + − i

1

)' 1

ˆ B

−

 

Now, total expected loss of ' , , expands to: i ( ) ( ) ( ) ( )* 0 * *
' ' ' ' ', 1 1i j i i i iEL h d q EL q EL= ⋅ + + − ⋅ −

(i)  ( ) ( )( ) ( ) (0
' ' ' 'ˆ ˆ, 1 1 1i j i H i i B iEL h d q L p q L p= ⋅ − + + − ⋅ −

( )( ) ( )( )( )( ) ( ) ( ) ( )( )( )
( )( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )

( .6)

' '

' '

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1 1 1

ˆ ˆ ˆ1 1 1 1 1 1 1 1 1

B

i H i i i B i i

i i H i H i i B i

q L p a p a q L p a p a

q a p L a p L q a p L a p L

+ + −

+ + − −

= − + + − − − + − + + − −

= − + + − − − + − + + − −
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( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( )
( )

( .1)

' '

' ' ' ' ' '

( .9)

0

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1 1 1

ˆ ˆ1 1 1 1 1 1

ˆ ˆ1 1 1 1

, ,

B

i i H i B i i H i

i i i H i i i i i B

B

i i H i i B

i j

q a p L a p L q a p L a p L

q a q a p L q q q a q a p L

q p L q p L

EL h d

+ + − −

+ − + −

> − + + − − + − − + + − −

= + − − + + + − − − − −

= − + + − −

=

B

' 1

B

)1

−

− H

 

(ii)  ( ) ( ) ( ) ( )0
' ' ' 'ˆ ˆ, 1 1i j i B i i B iEL h d q L p q L p= ⋅ + + − ⋅ −

( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( .6)

' '

' '

( .2)

' '

' ' ' '

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1 1 1

ˆ1 1 1 1

+ + − −

+ + − −

+ + − −

+ −

= + + − − + − + + − −

= + + − − + − + + − −

> − + + − − + − − + + − −

= + − − + + + − −

B

i B i i i B i i

i i B i B i i B i B

B

i i H i B i i H i

i i i H i i

q L p a p a q L p a p a

q a p L a p L q a p L a p L

q a p L a p L q a p L a p L

q a q a p L q q ( )( ) ( )

( )( ) ( ) ( )
( )

' '

( .9)

0

ˆ1 1

ˆ ˆ1 1 1 1

,

+ −− − −

= − + + − −

=

i i i B

B

i i H i i B

i j

q a q a p L

q p L q p L

EL h d

 

 

or  ( ) ( )( ) ( ) (( )0
' ' ' ' 'ˆ ˆ, 1 1 1 1i j i H i i H iEL h d q L p q L p= ⋅ − + + − ⋅ − −

( )( ) ( )( )( )( ) ( ) ( )( ) ( )( )( )( )
( )( ) ( )( )( )( ) ( ) ( )( ) ( )( )( )( )
( )( ) ( )( )( ) ( ) ( )( ) ( )( )( )
( )( )

( .6)

' '

' '

( .3)

' '

' '

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1 1 1 1 1

ˆ ˆ ˆ ˆ1 1 1 1 1 1 1 1 1

ˆ1 1

+ + −

+ + −

+ + − −

+ −

= − + + − − − + − − + + − − −

= − + + − − − + − − + + − − −

> − + + − − + − − + + − −

= + − −

B

i H i i i H i i

i i H i H i i H i

B

i i H i B i i H i B

i i

q L p a p a q L p a p a

q p a L p a L q p a L p a L

q p a L p a L q p a L p a L

a q a q p ( )( ) ( )( ) ( )

( )( ) ( ) ( )
( )

' '

( .9)

0

ˆ1 1 1 1

ˆ ˆ1 1 1 1

, .

+ −+ + − − − −

= − + + − −

=

i H i i i B

B

i i H i i B

i j

L a q a q p L

q p L q p L

EL h d
 

Therefore, if the posteriors of any two criteria i and i' fulfill the ‘bracketing condition’, the 
superior criterion i always results in lower total expected losses ( ( ) ( )0 0

', ,<i j i jEL h d EL h d ) 

with respect to any loss function and prior probabilities. 

Next, we consider the ‘bracketing condition’ concerning the direct characteristics of the 
respective criteria, which are given by their likelihoods. Assuming – without loss of generality 
– that  ( ) is more likely for  ( w ), the likelihoods of criterion i and '  
fulfill 

1m = + 1m = − w B= H= i

(A.10) . ' 'andB H B H
i i iq q q q> > i
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Now, the bracketing condition reveals that the superior criterion i is characterized by a higher 
discriminatory power of the possible signal outcomes, which means that the signal outcomes 
can more probably be assigned to the true state of the world. Thus, 

(A.11) . ' 'andB B H
i i iq q q q> < H

i

)' 1

 

The possible cases (i) and (ii) are described as follows: 

(i)  ( ) ( )( ) ( ) (0
' ' ' 'ˆ ˆ, 1 1 1= ⋅ − + + − ⋅ −i j i H i i B iEL h d q L p q L p

   ( )( ) ( )( )
(1)

' 'ˆ ˆ1 1= − + −H B
H j i B j iL p h q L p h q  

( )( ) ( )( )
( .11)

ˆ ˆ1 1> − + −
B

H B
H j i B j iL p h q L p h q  

( )( ) ( ) ( ) ( )
(1)

0ˆ ˆ1 1 1 1 ,= ⋅ − + + − ⋅ − =i H i i B i i jq L p q L p EL h d ; 

 

(ii)  ( ) ( ) ( ) ( )0
' ' ' 'ˆ ˆ, 1 1= ⋅ + + − ⋅ −i j i B i i B iEL h d q L p q L p ' 1

)1( )( ) ( ) (
( .2)

' ' ' 'ˆ ˆ1 1 1> ⋅ − + + − −
B

i H i i B iq L p q L p  

 ( )( ) ( )( )
(1)

' 'ˆ ˆ1 1= − + −H B
H j i B j iL p h q L p h q  

( )( ) ( )( )
( .11)

ˆ ˆ1 1> − + −
B

H B
H j i B j iL p h q L p h q  

( )( ) ( ) ( ) ( )
(1)

0ˆ ˆ1 1 1 1 ,= ⋅ − + + − ⋅ − =i H i i B i i jq L p q L p EL h d  

or  ( ) ( )( ) ( ) (( )0
' ' ' ' 'ˆ ˆ, 1 1 1 1= ⋅ − + + − ⋅ − −i j i H i i H iEL h d q L p q L p )1

)1   ( )( ) ( ) (
( .3)

' ' ' 'ˆ ˆ1 1 1> ⋅ − + + − ⋅ −
B

i H i i B iq L p q L p

  ( )( ) ( )( )
(1)

' 'ˆ ˆ1 1= − + −H B
H j i B j iL p h q L p h q  

( )( ) ( )( )
( .11)

ˆ ˆ1 1> − + −
B

H B
H j i B j iL p h q L p h q  

( )( ) ( ) ( ) ( )
(1)

0ˆ ˆ1 1 1 1 ,= ⋅ − + + − ⋅ − =i H i i B i i jq L p q L p EL h d . 

 

Thus, the lower expected total losses of the superior criterion i are sufficiently derived – in 
each case – from condition (A.11). 
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