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Abstract

A reliable prediction of unconditional welfare distributions, like income or consumption,

is essential for welfare analysis, and in particular for inequality, poverty or development

studies. Where observations of expenditures or income are missing, the mean predic-

tion based on available covariates is not just a poor estimator of the unconditional

distribution; it fails to predict the required information about tails and quantiles. A

new estimation method is introduced which can be combined with any mean prediction

model. It is used to calculate the income distribution of a survey based on subsample

information, to estimate the unconditional income distribution for the non-responding

households, and to predict the household expenditures of a future panel wave. It al-

lows for imputing welfare distributions for a census from a survey or for synthetic

populations under specific scenarios. Further inference is straight-forward, including

prediction of Lorenz curves, indexes like the Gini, or distribution quantiles, including

confidence intervals. 1

Keywords: household expenditures, income distribution, poverty mapping, project

evaluation, data matching.
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1 Introduction: The problem

For any empirical study on inequality, welfare economics, discrimination or poverty, reli-

able information about welfare distributions, such as income or expenditure, is fundamen-

tal. Especially in underdeveloped areas, having such information is of critical importance

for governmental as well as nongovernmental organizations, including research institutions.

Decision makers rely on distribution estimates or predictions to assess and monitor social

security systems, allocate resources, transfers, etc. Furthermore, those estimations or predic-

tions enable researchers to carry out poverty mapping, to analyze the relationship of poverty

or inequality and human development indicators, and to study the pro-poor growth or re-

lated issues. For the combination of poverty mapping and policy implications see the recent

compendium of Hyman et al. (2005).

There exists many initiatives, e.g. the OPPG2, of national and international institutions – the

World Bank being probably the most involved – for which this information is an imperative.

Ravallion (2001) highlighted the fact that more attention should be given to the micro

level and therefore take into account the micro distributions rather than just on the means.

However, since the collection of good quality expenditure or income data requires a lot of

time and effort, or because the complete information is simply not achievable, researchers

and policymakers have a strong interest in approaches which provide good estimates and

predictions, allow for inferences, scenario simulations, and comparison over time and space.

A most simple question would be, how to study different poverty levels when the information

about preferred consumption expenditure or income measures is absent? Certainly, as we

propose an econometric method, we assume that some useful information is available. More

specifically, we assume the availability of some informative covariates, say x, related to the

variables of interest, say y. Additionally, we are provided with a sample containing both x

and y, maybe collected from a different population or at a different point in time. We further

assume that the conditional distribution of y given x for the population of interest - this can

even be a fictitious one - is similar either to the one of our data at hand or approximately

known. Our use of the term ‘similar’ will be specified along the presentation of our method.

The literature on the issue of poverty and inequality measurement, as well as policy impli-

cations, is abundant. Under www.pep-net.org/programs/pmma, there are more than 1000

“recommended readings” on this topic. Clearly, the huge amount of literature renders a com-

prehensive discussion impossible and we focus only on the most related contributions. They

are still many when concentrating just on imputing income and expenditure. But if it comes

down to the estimation or prediction of welfare distributions, we only find a few procedures

but always proposed within a specific context, typically when studying poverty levels. In

that spirit, Paulin and Ferraro (1994) was an early work on imputing income, Filmer and

2Operationalising Pro-Poor Growth
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Prichett (2001), as well as Sahn and Stifel (2003), did welfare studies when expenditure data

were missing. Hentschel et al. (2000) imputed the likelihood to be poor from a survey to

impute a poverty map with census data.

Most procedures to predict the required micro distribution (thinking of poverty and inequal-

ity indexes) or at least some of its parameters, are based on data matching. A mean regression

is calculated from a set of available information to then predict the non-reported income or

expenditures for the group of interest. For a review on the prediction of expenditure in the

context of poverty and inequality analysis see Abeyasekera and Ward (2002). The popula-

tion of interest can be all individuals for which income or expenditure are missing within

the same survey, or a different survey for which this information is not available, maybe a

census, a future or past panel wave (or cohort), or simply a fictitious population in case of

scenarios. An appropriate data matching technique would therefore allow for comparisons of

income, expenditure and related factors over time and space (cf. Sahn and Stifel, 2000). The

development of techniques to interpolate from a survey to a more general data set has been

well summarized by Davis (2003). Unfortunately, the estimated conditional distribution can

be quite different from the required unconditional one, i.e. the distribution of the effective

income or expenditure. In particular, the conditional distribution has a substantially smaller

spread, and therefore must not be used for welfare, inequality or poverty analysis. In fact,

if measures of inequality, poverty or vulnerability are of interest, one has to correct for the

shrinkage of the predicted values toward the mean in order to really capture the tails of the

distribution. Thus, no matter what kind of regression models or survey types being applied,

the problem is that one gets only conditional values, which have a much smaller spread, may

differ in the shape, etc. resulting in high misclassification errors. Hentschel et al. (2000)

applied numerical “stretching” of the conditional distribution to fit some given percentiles

calculated from a sample with complete information.

A more practical and often used remedy, is to add random errors, normally distributed with

a given constant variance. As the mean prediction is based on a regression with data sets

where full information is available, this variance might be estimated from that data too. In

statistical terms, one does a kind of wild bootstrap under homoscedasticity to simulate the

welfare distribution for the population of interest. This method, though quite popular, entails

several drawbacks like no analytic predictor, random results, no further valid inference, etc.

In the context of small area statistics (for a general idea see Ghosh and Rao, 1994) Birkin

and Clarke (1989) were probably the first who introduced an approach to simulate micro

income distributions. Elbers et al. (2003) proposed a simulation method – though they call

it estimation – based on small area modeling to track poverty and inequality issues on the

macro-level from micro data, the so-called ELL or World Bank method. Note that these

small area based methods are designed to approximate macro-parameters, not the micro-

level distribution itself. Moreover, while in statistics a lot of effort is spent on deriving
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methods for doing valid inference, applied econometricians mostly rely here on intuitively

justified simulations. More recently, Tarozzi and Deaton (2009) and Demombynes et al.

(2007) discussed those approaches quite critically. Note finally that Zeller et al. (2004),

Zeller et al. (2005) and Azzarri, Carletto, Davis and Zezza (2006) compared various models

and methods for poverty assessment.

In this article a method is introduced to reveal the whole unconditional distribution. It is

based on distribution theory rather than on simulation methods such as the kind of wild boot-

strap or Bayesian small area predictors discussed above. This constitutes a quite different

and new way to estimate, or predict, the distribution of interest, although it is based on the

same amount of information. We transform the mean prediction by applying an integration-

based method to assess the unconditional distribution. This provides analytic calculations

instead of simulations; it allows for further valid inference and for a more realistic simulation

of scenarios (see Gasparini et al. (2003) for currently used methods). Another advantage is

that the modeling of income and expenditure distributions on which our approach is based

is a well-studied field in statistics; see the recent compendium of Chotikapanich (2008) or

Atkinson and Bourguignon (2000). Note that the new method is applicable independently

of the mean regression or model; it can be used for mixed effects (multi level) models as e.g.

in the context of small area estimation, nonparametric statistics, any latent variable model

(e.g. Tobit regression), simultaneous equation systems, IV methods, etc. It is evident how

to extend this method to any other context.

Before introducing the main idea, we should mention two rather different approaches which,

in some circumstances, can provide more helpful solutions. First, in the case where only very

few but specific quantiles of a particular distribution are of interest, it is recommendable

to just stick to these quantiles, i.e. scalars instead of functions, see Koenker (2005) for a

recent compendium. The particular interest is directed to quantile regression of conditional

distributions and its marginals, see Firpo et al. (2009), cf. also Rothe (2009). While these

methods look quite promising, they are not constructed for revealing the whole distribution.

Also, they are theoretical rather than practical contributions. Especially the nonparametric

approaches are only recommendable for the one dimensional case and can be computationally

quite cumbersome. This is in contrast to the second approach we would like to mention. If

it is limited to that of imputing some missing values in a large sample, survey or census,

we refer to the so-called imputation methods first introduced by Rubin; for a compendium

see Littel and Rubin (2002). The provision of the associate software and the description

of modules and commands is abundant; see Horton and Lipsitz (2001), Royston (2004), or

Su et al. (2010). Note that this method was explicitly developed for the imputation of

missings in a survey to subsequently and convemently carry out statistical data analysis.

The algorithms work like “black boxes”; they are not considered as estimators or predictors

of (marginal) distributions. Simulations, not shown in this article, revealed that the method
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introduced in this article outperforms the publicly available algorithms in this respect - not

to mention the problems a black box entails for subsequent inference.

The rest of the paper is organized in the following way: In the next section we introduce our

new methodology for estimating the marginal distribution of Y for the population of interest.

In Section 3 we consider two different types of problems of estimating the income distribution

accounting for possible selectivity biases. In Section 4 we use a panel wave from Indonesia to

predict the expenditure distributions for four years later. In two of our applications we are

provided with complete information so that we can validate our estimation results. Section

5 concludes.

2 A general methodology for predicting welfare distri-

butions

Both, matching and prediction is based on conditioning variables. We are interested in the

distribution of some quantity, say y, where in this article we are thinking of household income

or expenditures. Imagine we are provided with a sample S1 containing information about

y and, additionally about (possibly) related information, say x, for example demographic

factors and location. The objective is to estimate the distribution of y for a data set, say S2,
where only information on x is available. This can be a different survey or census, a different

wave in a panel, or even just an enlarged set containing S1, but with missing responses y

for the added records, i.e. households in our case. Alternatively, S2 could be a fictitious

population with some x changed, e.g. for scenarios typical in forecasting and counterfactual

exercises.

There are at least two obvious approaches we would think of; either we estimate directly the

joint distribution of (x, y) then extract the marginal one of y for a given set of x (one may

also think of a predefined distribution of x), or we concentrate on the conditional moments

of y|x which will then allow us to construct the marginal distribution of y for any given

set of x. The first idea corresponds directly to the literature we discussed in the context

of imputation methods and quantile estimation; the latter to the regression plus simulation

methods we mentioned in the context of simulation methods and small area statistics. While

for our purpose the first idea looks formally more elegant from a stochastic point of view, the

second is more appealing under practical considerations. However, as we will see, depending

on the set of prior assumptions, they are even identical and can be converted from one to the

other. Without depreciating the former, we therefore follow in the presentation the second

approach, starting with the conditional mean.
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2.1 From marginalization to local n-fold mixtures

Consider a prior regression setup based on a completely observed sample S1 = {(yi, xi)}ni=1,

yi = g(xi) + εi. (2.1)

For another set S2 containing {xj}mj=1 the yj are missing. These data could be: a) in the

same survey; b) from another survey or census; c) belong to the same panel as S1 but to a

different wave; or d) describe a fictitious population. In a first step one estimates the mean

prediction E(Y |X = x) = g(x) along its particular model specification of g(·) in (2.1). We

could equally well include random or fixed effects if identifiable, as is recommendable for

repeated measurements, multilevel or panel models. For specific economic data, g(·) may

be estimated via Tobit models, selection bias correction, with weights from strata sampling,

etc.. One may even apply non- and semiparametric methods as we are not interested in

the interpretation of any parameters in model (2.1). Actually, any consistent estimation

of g(·) is valid, and it should be emphasized that the main objective is not identification

but estimation and prediction and therefore the minimization of prediction or mean squared

errors. From this point of view, even inconsistent estimators would do, especially if they

provide the smallest prediction error.

As we mentioned in the introduction, the general problem is that, no matter what kind of

prediction models or survey types being applied, one gets only conditional values which have

a distribution with density f(y|x) with a smaller spread than the unconditional distribution

fy(y). For welfare analysis, measuring inequality, poverty or discrimination, the conditional

distribution alone is of little help. The shrinkage of predictions toward the mean is primar-

ily caused by the fact that the predictions do not explain all the variation in consumption

expenditure (or income); therefore some of the existing solutions which do not ignore this

‘shrinkage’ effect, simply add random errors (typically normally distributed) with an ap-

propriate variance to widen the density. The latter method is widely used, often combined

with small area estimation and data mapping. However, since the results are generated by

simulations and under strong assumption on the model and distribution, the resulting val-

ues depend on chance, and any further inference is not statistically justified. Moreover, as

discussed in the introduction, many methods are only constructed for simulating particular

percentiles, not the whole distribution.

In contrast, we introduce a direct analytic method of the unconditional distribution. Recall

that the required marginal distribution fy,2(y) of y in S2 can be written in terms of the

conditional f2(y|x) and the unknown fx,2(x), as

fy,k(y) =

∫
f(y,x),k(y, x)dx =

∫
fk(y|x)fx,k(x)dx, for k = 1, 2 (2.2)
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by integrating covariates out from the joint distribution, where the k indicates the particular

population. A simple numerical approximation of this integration, and to get around the

estimation of fx,k is the sample average, i.e.

fy,k(y) =
1

m

m∑
j=1

fk(y|xj) +O(
1

m
), for k = 1, 2. (2.3)

So we obtain the required distribution by averaging over all estimated local densities. Cer-

tainly, not observing y in S2, we cannot estimate its f2(y, x) nor f2(y|x). If it is believed that

the conditional distributions are the same for S1 and S2, one could use Firpo et al. (2009) or

Rothe (2009) to derive parametric or nonparametric estimates for our context. However, in

addition to the problems that occur in applying multidimensional nonparametrics, Firpo et

al. (2009) found no improvement in their results when looking at some conditional quantiles;

they reported several drawbacks instead.

Instead, we give up the strong assumption of having the same conditional distribution of y in

both data sets, and we stick to flexible parametric modeling. Our argument is first, that for

getting a good approximation of the marginal distribution fy,2 in (2.3) it is sufficient to control

for a given set of identifiable parameters, in particular the mean and variance, but optionally

also the symmetry of f2(y|x). Second, coming up with a proper conditional a priori for f2(y|x)

is not less justifiable than assuming it to be identical to a nonparametric f1(y|x). Finally, the

estimate of the required unconditional density f̂y,2(y) = 1
m

∑m
j=1 f̂2(y|xj) becomes a kind of a

n-mixture of densities. We use here f̂2 to emphasize that the moments have been estimated

before from S1 = {(yi, xi)}ni=1. Mixtures are known to give excellent approximations and are

consistent under different sets of typically mild conditions, see for example McLachlan and

Peel (2000) for a compendium, or for our context of Baysian priors and approximations of

nonparametric functions, Marin et al. (2005). Recall further that kernel density estimates

with second order kernels are local n-fold mixtures. In our case, controlling for the second

moment corresponds to local bandwidths in kernel density estimation, and controlling for the

third moment corresponds to local kernels - as they are recommended for boundary problems

- or asymmetric weighting as in the so-called knn smoothing.

2.2 Modeling, estimation and calibration

Given is a conditional distribution f2(y|x) up to some unknown parameters, which can be

typically expressed in terms of its moments. We concentrate only on distributions with at

most three unknown parameters, and the first three moments, namely E[Y |X], V ar[Y |X],

and E[(Y −E[Y |X])3|X]. Now, the idea is relatively simple: the available data from S1 are

taken to estimate the necessary moments via mean regression first of Y , then of the squared

and, if necessary, also the cubed residuals. For the mean regression it is recommended to use
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a model as rich as possible, but to disregard bias reducing methods which may increase the

total mean squared error (as e.g., instrumental variable methods do). In our applications we

will use all available information x and explore the possible gain of semiparametric models,

like the additive partial linear model (APLM). This is a nontrivial extension of the linear

model:

E[Y |X = (U, T )] = c+ U ′β +

q∑
α=1

gα(Tα), (2.4)

Here, the explanatory variables are separated into two the vectors U and T , where typically,

U denotes a vector containing all categorical, especially dummy variables, and vector T =

(T1, . . . , Tq) the vector of continuous variables. The unknown functions gα(·) are estimated

in a nonparametric way. Most statistical and econometric software packages offer such a

flexible regression model. Where data and model allow for random effect modeling without

introducing a bias which leads serious prediction errors, this can be done, too. However, this

often renders subsequent statistical inference rather complicated.

In the special case where our method is used to predict income or expenditure for the missing

values in the same survey or census, i.e. where S1 ⊂ S2, one has to control for a possible

selection bias. There are several approaches, depending on the economic model and data

availability in S1, the Heckman (1976,1979) correction being maybe the oldest but still most

popular one. Currently, there also exist different semiparametric approaches as e.g. Ahn

and Powell (1993) or Rodŕıguez-Póo et al. (2005).

In another particular case of predicting a variable y inside a panel structure for a wave,

where this information is missing, fixed or random effects models and the inclusion of trends

can seriously improve the prediction quality. For panels being large in the time dimension,

one can also consider varying coefficients to use time trends or business cycles for improving

prediction, i.e.

E[Y |X = (U, T ), V ] = β0(T ) + U ′β(T ) + V (T ), (2.5)

where T can be time and some macroeconomic factors, and V are fixed or random effects,

possibly depending on T , too.

Similarly one can proceed with the scedasticity function σ(x). Certainly, in a case where

homoscedasticity is credible, σ̂2 = 1
n

∑n
i=1 ε

2
i or its df-adjusted version would do, where εi =

yi− ŷi. More recommendable is to use a smoothed version of σ2(xi) ≈ ε2i (heteroscedasticity)

with the index of the mean function, in case of (generalized) linear models x′β, as regressor.

Our experience for monetary measures is that, in case of heteroscedasticity, a constant

coefficient of variation (CoV) often does a very good job for approximating the scedasticity

function when the conditional mean is already estimated. With CoV = σ(x)
E[Y |x] constant, one

gets an appropriate estimator for V ar[Y |x] from the simple regression E[ε2|x] = c · E2[Y |x]

or its simple extension E[ε2|x] = c0 + c1E[Y |x] + c2E
2[Y |x].
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Figure 1: Examples for typical prior conditional distributions with heteroscedasticity when
the mean function is a straight line.

The residual distributions of income and expenditure regressions are bounded from below

and can be quite skewed for income and expenditure regressions. For log-income and log-

expenditures they are only somewhat skewed for higher means. In any case it is worth

considering distributions not restricted to symmetry. One can either work then with para-

metric families containing (at least) three parameters, or make the skewness depend on the

mean–variance proportion. The latter is especially recommended if the residual distribution

is bounded from below or above. In Figure 1 we give three typical examples for appropriate

priors of conditional distributions where the mean is a simply a straight line. A simple ex-

ample for an according parametrization is the application of the gamma distribution for f2,

i.e. if one uses

f̂y,2(y) =
1

m

m∑
j=1

Γ(y|k̂(xj), ŝ(xj)) (2.6)

with E[Y |x] = k(x)s(x) and V ar[Y |x] = k(x)s2(x), s(x), k(x) > 0. It is easy to see that we

get k(x) = E2[Y |x]
V ar[Y |x] and s(x) =

√
V ar[Y |x]
k(x)

; analogously its estimates. For homoscedasticity

one obtains the restriction s(x) =
√

1
k(x)

, and for heteroscedasticity with constant CoV we

obtain k(x) = k.

When the conditional moments have been estimated and the estimation of the marginal

distribution has been done via (2.3), a final calibration is still recommended as long as

information about the variable of interest or its distribution is available. The most evident

case is when for S2 the mean of Y is known; then the mean of the estimated distribution is

adjusted accordingly.
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3 Estimating the income distributions

In the first application we use a continuing longitudinal household-level data set from the

Indonesia Family Life Survey (IFLS). It provides data at the individual and household level

on consumption, income, health, education, housing and employment. Following Alisjahbana

et al. (2003) the IFLS sample is representative for about 83% of the Indonesian population

living in 13 of the 26 provinces in the country. In 1997, 2000 and 2008 the IFLS contains

about 6500 to 10000 households which are partly cross section cohorts and partly a panel,

also because the questionnaires changed over time. The available data also contain some

sensitive information, including the household expenditures and income - though with 20%

to almost 50% missing values. The consumption expenditures and income are expressed in

logarithms of Rupiah.

3.1 A first exercise: sample split

The first application is an easy, artificial exercise to study the functioning of our procedure.

We take the 5567 households in 2008 for which income has been recorded and split them

into half, 2783 for S1 and 2784 for S2. We will apply our procedure with different estimators

and priors to finally compare the resulting predictions with the actually recorded income

distribution. In our study, household income per capita is a summation of five income

sources: (1) income from wage and salary in both cash and in-kind transfers; (2) income

from agricultural business; (3) income from non-agricultural business; (4) household non

labor income, i.e. income outside wage/salary and business e.g. estimated house rent,

pension, scholarship, transfer received, etc; (5) household assets income.

Besides the classic references to the Mincer model, the data availability is a main consider-

ation when choosing the set of explanatory variables. Human capital theory suggests that

education (measured as average years of schooling) and experience of working household

members (measured here as average age) are chosen as explanatory variables. Other socioe-

conomic variables available are the share of working household members, household size,

household’s female labor ratio, and whether there is a farmer in the family. The latter,

together with regional dummies (provinces and urban-rural location) accounts also for the

considerably high discrepancy between urban and rural areas. We neglected the possibility of

area-varying returns to assets or to human capital. The asset ownership variable enters the

model separately by log of assets per capita and share of those assets devoted to household

business activity. We end up with 22 predictor variables.

The model we have outlined at first is the simple linear one used in most poverty assessments

that rely on regression methods. By assuming that income, consumption expenditures,

and many other monetary welfare indicators are conditionally approximately log-normally
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distributed (i.e. ln(y)|x is normally distributed), we constructed an income prediction model

with log household total annual income per capita as response and our set of non-income

regressors referring also to the empirical studies in Alisjahbana et al. (2003). We simply

applied OLS. Today a much more flexible alternative is the additive partial linear model

introduced above, cf. equation (2.4). The resulting coefficients can be seen in Table 1. For

the additive partial linear model (APLM) we only give the coefficients for the parametric

part without standard deviations.

Application 1 Application 2
Linear Model APLM 2-step-est. Heckman-2-step

Constant 10.957 (.2529) 11.55 (.0650)
Average age .0415 (.0102) .0494 .0438 (.0001)
Average age squared −.0006 (.0001) −.0007 −.0007 (.0000)
Average year of schooling .0400 (.0053) .0358 .0310 (.0000)
Log of assets per capita .2261 (.0122) .2294 .2254 (.0001)
Share of asset to business .4672 (.0808) .5027 .5602 (.0054)
Farmer in family −.2351 (.0489) −.2102 −.2102 −.1331 (.0024)
Share of working hhm 1.5472 (.0977) 1.203 .6681 (.0360)
Share of female hhm −.6385 (.1037) −.5233 −.5826 (.0081)
HH size −.0685 (.0099) −.1441 −.2607 (.0016)
Located in urban area .2871 (.0430) .2717 .2610 .2651 (.0014)
North Sumatera −.2365 (.0894) −.2162 −.0747 −.0074 (.0062)
West Sumatera −.0194 (.1102) .0056 −.0433 −.1396 (.0094)
South Sumatera −.1287 (.0942) −.0738 −.0513 .0250 (.0076)
Lampung −.4017 (.0956) −.3702 −.3721 −.2591 (.0081)
West Java −.2611 (.0678) −.2206 −.2196 −.2300 (.0034)
Central Java −.6629 (.0739) −.6095 −.6076 −.5800 (.0041)
Yogyakarta −.6850 (.1022) −.6261 −.6692 −.7929 (.0089)
East Java −.5239 (.0723) −.4890 −.5010 −.5872 (.0042)
Bali −.4119 (.0931) −.4343 −.3488 −.3065 (.0069)
West Nusa Tenggara −.5801 (.0846) −.5296 −.5084 −.4556 (.0056)
South Kalimantan −.0314 (.0965) .0295 −.0234 −.0917 (.0075)
South Sulawesi −.6058 (.1068) −.5632 −.6022 −.6826 (.0086)
Number of observations 2783 2783 5567 5567

Table 1: Coefficients of the mean income models with standard deviations in parentheses.

As parametric prior distributions for the conditional density of ln(y)|x in S2 we tried the (log)

normal distribution and, to account for some asymmetry, the gamma distribution. Then, for

the second moment we compared different estimates for the scedasticity function but, for the

sake of brevity, we present only results under homoscedasticity, and results under constant

CoV; compare Section 2.2. The resulting estimates for the income distribution in S2 are given

in Figure 2 for the linear regression model, and in Figure 3 for the additive partial linear

model. The density plots for the real income distribution and the distribution of conditional
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Figure 2: Probability density curves based on a linear regression mean for the conditional
(grey dashed) and the unconditional (dark dashed) predicted income, compared to a kernel
density estimate based on the real incomes (black line). Different modeling approaches from
the upper left to the lower right.

incomes, were created by kernel methods with Gaussian kernel and two times Silvermans

rule-of-thumb bandwidths, as the default still gave wiggly outcomes. What can be seen first

is that there is an enormous difference between the distributions of the conditional and the

unconditional log income respectively. This is not surprising given an R2 of slightly above

30% for both regressions. Even though the APLM does slightly better, the improvement

is hardly visible. The choice between homo- and heteroscedasticity, and also the choice of

the prior conditional distribution, seem to have a little bit more impact than the regression

model. The differences are nevertheless marginal when looking at the integrated squared

error, which can only be estimated because the real income distribution has to be calculated

via smoothing methods. Repeating this exercise several times, i.e. splitting the original 5567

observations into two sets and estimating one from the other shows that a representative

sampling from the provinces and the urban area is responsible for the shift of the mode (in

our example to the left) of the estimate. Apart from such sampling biases, the prediction

methods seems to work quite well. The outcome is robust and does not depend much on

our prior assumptions. Again, recall that our final estimator can be considered as an n-fold

mixture. For samples S2 larger than n = 100 the differences due to the prior modeling

diminish rapidly, except for extremely different models. In practice one does not really

know which of the models (linear, APLM, homoscedastic, heteroscedastic, normal or gamma
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Figure 3: Probability density curves based on an additive partial linear regression mean
for the conditional (grey dashed) and the unconditional (dark dashed) predicted income,
compared to a kernel density estimate based on the real incomes (black line). Different
modeling approaches from the upper left to the lower right.

distribution) is closest to the real data generating process, and so it is always recommendable

to try more than one for such a robustness check.

3.2 Predicting the income distribution with missing values

In the first application we looked for an artificial problem that allowed us to study and

illustrate the performance of the introduced method. We therefore considered an - admit-

tedly, less interesting - situation where it is quite likely that the moment regressions and the

unknown distribution in S1 and S2 are similar, i.e. come from the same population when

disregarding selectivity biases.

In our second application we now turn to a problem where both data sets again come from

the same population but present the outcomes of a selection that is most likely endogenous.

Furthermore, we will not be able to check our results, simply due to the lack of complete

information. More specific, we again take the IFLS data from 2008 where 5567 households

reported their income but 4894 did not. Even though it is improbable that the same selec-

tivity mechanism applied to almost 50% of the total survey, to assume them to be missing at

random would be rather optimistic. We therefore applied a two step estimator that accounts
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for the selection. The idea is as follows. We face two equations,

y∗ = xTβ + u, income (3.1)

s = 11{zT θ + ε}, reports income or not (3.2)

with the typical assumptions on u and ε. In our case z contains x and the additional dummy

variable “respondent was household head” which turned out to be significant in the selectivity

equation (3.2). Let y be the reported income (else y = 0), then we have

E(y|x, y > 0) = xTβ + E(u|x, y > 0)

= xTβ + α · λ(zT θ) (3.3)

where λ(·) is parametrically specified if the joint distribution of (u, ε) from equations (3.1)

and (3.2) is. Therefore, the first step is the estimation of equation (3.2) to obtain θ, and the

second step is the estimation of equation

y = xTβ + α · λ(zT θ̂) + v (3.4)

where E[v] = E[v|x, zT θ] = 0. Note that for the prediction of the means of the missing

values one refers again to the original equation (3.1).

We tried several parametric and semiparametric estimation methods; see references in Section

2.1. We started with the fully parameterized version of Heckman where, as a result from

assuming joint normality for (u, ε), λ(·) is the inverse Mill’s ratio; see Figure 4. Then we

tried to use a semiparametric single index estimator for equation (3.2), and a partial linear

model estimator for the second step. As all implementations for the single index estimation

we tried turned out to be quite unstable, we finally estimated the selectivity equation with

a probit and applied its θ̂ in a smoothing-spline based partial linear model in (3.4); see the

next to last column of Table 1. Similar to what we found in the first exercise, Section 3.1,

this semiparametric estimation procedure had hardly an impact on the final results for the

unconditional income distribution of S2.

In Figure 4 we compare, once again, the different predictions based on either normality or

gamma for the prior conditional distribution for homo- and heteroscedasticity, respectively.

Again we show only results where the heteroscedasticity is constraint to a constant coeffi-

cient of variance CoV. Contrary to what we often observe in rich, industrialized countries,

our estimates suggest that the households not reporting their income tend to have smaller

incomes, on average, compared to households with the same characteristics but reporting

their income. Though it would be interesting to study this finding in more depth, this is

clearly beyond the scope, and is not the motivation, of this paper. As it is about half of the

households that did not report their income, this could have a notable impact on the total

14



12 13 14 15 16 17 18 19

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Normal (homoscedastic)

log income

D
en

si
ty

12 13 14 15 16 17 18 19

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Normal (heteroscedastic)

log income

D
en

si
ty

12 13 14 15 16 17 18 19

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gamma (homoscedastic)

log income

D
en

si
ty

12 13 14 15 16 17 18 19

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Gamma (heteroscedastic)

log income

D
en

si
ty

reported income
predicted uncond. income
total income

Figure 4: Estimated and predicted density curves of unconditional income for households
with not reported income (grey dashed), households with reported income (solid line), and
for the whole sample (dark dashed) in 2008, based on different prior assumptions from the
upper left to the lower right.

income distribution which is also shown in Figure 4.
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Figure 5: Left figure: The Lorenz curves for the observed (solid) income, the conditional
income (thick dashed) and the predicted income (dotted-dashed). Right figure: The Lorenz
curve for the total survey, i.e. observed plus predicted with 99% point-wise confidence
intervals.

In view of this potential source of bias, one should study the consequences e.g. for the Lorenz

curve and Gini coefficient. In Figure 5, left column, we see the resulting Lorenz curves for the
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conditional and the unconditional predicted incomes and for comparison the Lorenz curve

for the observed incomes. This once more demonstrates that missing values must not be

replaced by mean predictions even if mean prediction might be the best one can do for the

prediction of individual household incomes. Concerning the observed versus the predicted

income distribution we see the main difference for the mean of households. Nonetheless we

see also, that the income distribution for households which did not report income does not

substantially deviate from the one of reported incomes. Moreover, one should have in mind

that our predictions are based on estimation, so they are random although they are not based

on simulations. One would therefore like to have an idea of this randomness and construct

confidence intervals. We could do this for densities but, equally well, we can do this for the

Lorenz curve. In the literature one can find confidence intervals for the simulation based

predictions (where normal random errors were added to the individual income predictions).

However, they were constructed from repeated simulations, which shows the uncertainty of

the simulation method - and therefore proves why an explicit analytic method like ours might

be preferable, but it does not reflect the uncertainty due to the estimation based prediction.

We recommend to construct confidence intervals or bands based on bootstrap or subsampling

from the very first step. For parametric bootstrap or the alternative subsampling we refer to

Politis et al. (1999). For bootstrap inference in semiparametric additive models to Härdle et

al. (2004), and for mixed effects or small area models to Lombard́ıa and Sperlich (2008). For

the purely parametric model, a trivial bootstrap that draws random samples of size n from

the original sample and then simply repeats the whole procedure, is sufficient. In Figure 5,

right column, we see the 99% confidence interval for the Lorenz curve.

As we already mentioned in the introduction, predicted income values typically tend to be

too high for the poorest households and too low for the richest. Measures of inequality in an

income or expenditure distribution such as the Gini coefficient are certainly very sensitive to

that. Therefore we study also the performance of our method to estimate the Gini coefficient.

This coefficient is a specific indicator, which ranges from 0 to 1, where 0 indicates perfect

equality and 1 total inequality. It corresponds to twice the area between the Lorenz curve

and the diagonal. In our application now, the Gini for the observed income is 0.579, for

the income of non-reporting households it is 0.581 with our method but just 0.368 for the

conditionally predicted incomes. Putting together observed and predicted unconditional

income for the missing values respectively, the total Gini for the population is 0.582 with

a 90% bootstrap confidence interval of [0.578, 0.590]. Note that the Gini of the observed is

right the upper bound of this interval.
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4 Predicting the expenditure distribution

Already the first case studies gave us some evidence of the importance of a method for

poverty, inequality and vulnerability analysis. In this Section, we perform a further study,

but now for prediction rather than for estimation. The problem is to predict the distribution

of consumption expenditures of a cohort from the past. Certainly, it is also possible to

change the role of S1 and S2 for historical studies to get an idea for past distributions thanks

to extrapolation from earlier but complete data. A prediction from the 2000 cohort to the

2008 cohort is maybe a little bit too adventurous as the returns have probably changed

over that time period, especially in Indonesia. Therefore, either the mean prediction or the

scedasticity prediction will fail. Instead, we tried to predict the expenditure distribution of

the 2000 cohort with the aid of the 1997 cohort. For evaluation issues we will predict the

expenditures in 2000 only for that part of the population (4585 households) for which we had

actually observed the expenditures. In practice one predicts correctly for the households and

cohorts where there is a lack of information. From 1997 we can use 5406 observations having

reported their expenditures and all predictor variables x, compared to only 439 incomplete

records.

Given our experiences from above, for brevity we limit the presentation to the results based

on a linear regression model for the mean. The coefficients with its standard deviations are

given in Table 5 in the Appendix. We calculated the real per capita consumption for each

household by dividing nominal per capita consumption by the inflation rate of the respondent

household’s province. We used a provincial price deflater based on the Badan Pusat Statistic

consumer price indexes (CPI) reported for 45 cities in Indonesia and matched to the provinces

included in the sample. For provinces with more than one city we use the simple average of

the price index; cf. Chaudhuri et al. (2002). This gave us the regional inflation rates shown

in Table 6 in the Appendix. This makes expenditures more comparable and meaningful

over time and regions. Then, assuming that the expenditure behavior reflected by these

coefficients is relatively stable over the considered time period, we applied the four different

priors on S2, i.e. conditional normality and gamma under homo- and heteroscedasticity

with constant CoV. The final step is the in Section 2 mentioned calibration. Referring to

the measurement of the real GDP per capita provided by the WDI in 2003 we notice that

there is a decline of nearly 11.97% from 259 in 1997 to 228 in 2000. Given the assumption

that the economy of average household income is mirrored in the national real GDP per

capita, we expect a decrease in household income of around 11.97% from 1997 to 2000. The

resulting unconditional predictions of expenditure distribution become comparable to the -

in our illustration - observed one. The results are given in Figure 6.

To better quantify the differences of the performance among different settings, we estimated

17



11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

0.0

0.2

0.4

0.6

0.8

Normal (homoscedastic)

log expenditure

D
en

si
ty

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

0.0

0.2

0.4

0.6

0.8

Normal (heteroscedastic)

log expenditure

D
en

si
ty

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

0.0

0.2

0.4

0.6

0.8

Gamma (homoscedastic)

log expenditure

D
en

si
ty

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0

0.0

0.2

0.4

0.6

0.8

Gamma (heteroscedastic)

log expenditure

D
en

si
ty

observed log exp.
predicted conditional exp.
predicted unconditional exp.

Figure 6: Density curves for the conditional expenditures (grey dashed) the predicted uncon-
ditional expenditures (thick dashed) for 2000 based on a 1997 cohort, and a kernel density
estimates of the observed expenditures (solid line) in 2000.

the integrated squared error

ISE =

∫ ∞
−∞

[f̂(y)− f(y)]2dy , (4.1)

where f(·) indicates the true expenditure density and f̂(·) our predictor. As we do not

really know the true f , this was replaced in our calculations by a kernel density estimate

with Gaussian kernel, Silverman’s rule-of-thumb bandwidths and using the in 2000 actually

reported 4585 household expenditures. Under the assumption of homoscedasticity we got

0.0012 for normal and 0.0010 for gamma priors, but only 0.0008 and 0.0007 for heteroscedas-

tic normal and gamma priors. Not that surprising for people familiar with mixture methods,

and because one maybe does not expect important asymmetries in the conditional density,

the difference between normal and gamma priors is less accentuated than the somewhat

remarkable difference between homo- and heteroscedasticity. For the predicted distributions

under heteroscedasticity for the prior, the corresponding Lorenz curves hardly differ from

the one based on the actually reported expenditures. Similar to the preceding application,

we again calculate the measurement index of inequality in the expenditure distributions,

here the Gini coefficient. The results were a predicted value of 0.447 with [0.429; 0.455] as

its 90% bootstrap confidence interval, and a value of 0.451 for the observed expenditures.

These results, as well as the following ones refer to the gamma prior under heteroscedasticity
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but hardly differ from those obtained when substituting by the normal. Overall, the results

are very promising so far.

A question of central interest is to trace the development of poverty in the underdeveloped

and the developing countries. Certainly, there exist many different definitions of poverty

lines. The hardest ones to predict in our context are probably the absolute ones as any slight

shift of the mean e.g. by calibration can easily have a fundamental impact on the prediction

of the number of households being classified as poor. Therefore, if prediction methods for

other cohorts or years have to be applied or for scenario studies, it is more reasonable to

consider relative poverty measures. Hence, we used the poverty line defined as 40 percent of

the country’s median consumption. The poverty line was then at 13.21458 log Rps per year

along the reported, and 13.20469 log Rps along the predicted income distribution. Once

the poverty line is fixed, one can see from the predicted density the percentile lying below

this line. For the case of a particular small or moderate set of households it might be even

interesting to look directly at the individuals. In that case we need to assign each household

a position inside the unconditional distribution, based on his characteristics x. Based on the

probability densities obtained above, one could approximate the distribution function F (·)
and its inverse F−1(·) e.g. by linear interpolation using the cumulated distribution value.

Then, for a household with given x and predicted mean ŷ one may construct a projection

into the unconditional distribution along

ŷuncond = F−1(Fŷ(ŷ)), (4.2)

where Fŷ indicates the cumulated distribution function of the conditional income. We em-

phasize that this must not be considered as optimal prediction of the household income,

which is still the mean prediction with an accuracy depending for example on the R2 of the

mean regression. We are simply assigning each individual a place according to its x inside

the predicted unconditional distribution. In contrast, this can be very helpful for the analysis

of vulnerability to poverty.

Now, the approximated expenditures generated from the inverse distribution function 4.2

give an estimate for how many people will fall below the poverty line. The accuracy of the

predicted unconditional consumption expenditures can then be examined by cross tabulating

the predicted with the observed consumption expenditures, see Tables 2 to 4. In Table 2

are compared the number and percentages of actual non-poor and poor compared to the

predicted values and its confidence intervals. One is tempted to speak of an almost perfect

prediction thanks to our new method. In Tables 3 is shown what a purely mean prediction

would tell us about poverty. Finally, in Table 4 we analyzed the prediction quality of our

method for the individual household level. While, not surprising, most of the non-poor are

classified correctly, this is not the case for the poor. The outcomes of Table 3 and 4 are not

surprising insofar that the mean regression had an R2 of about 39% for 1997. The tails of
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the marginal expenditure distributions are therefore mainly determined by the households’

unobserved heterogeneity. This is why we said these methods are helpful for vulnerability

but not for tail predictions of the individual level.

Observed Predicted 90% Prediction Interval
Not Poor 4079 (88.96%) 4063 (88.62%) [4056; 4079] (88.46%− 88.96%)
Poor 506 (11.04%) 522 (11.38%) [506; 529] (11.04%− 11.54%)

Table 2: Number of Households below the relative poverty line according to the unconditional
distribution prediction

Observed Predicted 90%Conf.Int.
NotPoor 4079 4495 [4476; 4509]
Poor 506 90 [76; 109]

Table 3: Number of Households below the
relative poverty line according to the mean
prediction

Observed Predicted
NotPoor Poor

NotPoor 3711 368
Poor 352 154

Table 4: Individual classification
of households, predicted versus re-
ported.

5 Conclusions

Our aim is to estimate or predict a monetary distribution, like income or consumption

expenditures. The mean regression gives only the conditional distribution which is only

poor estimator of the unconditional (marginal) distribution. For certain welfare studies one

could use quantile regression instead but again fails to predict the marginal distribution as

a whole. If one uses quantile regressions for each percentile to afterward (re)construct the

unconditional distribution, one lacks of a common model and estimator, probably suffers

estimation problems at the (most interesting) tails, and further inference is hardly possible.

In the literature many different models and methods were proposed, compared and rejected;

many of them being simulation methods.

We propose a simple method based on mild assumptions to get an analytic and unique

estimator for the whole required marginal distribution. The calculus of derivatives, Lorenz

curve, or any index, poverty or inequality measure is straight forward. Furthermore, the

explicit analytic form of our estimate makes inference possible and similar to, for example,

the construction of confidence and prediction intervals.

There exist mainly two or three ways to understand and interpret our method, in particular

the integration or averaging step; see equation (2.3). The Bayesian approach is to think of
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the required distribution as a random function which can be described via estimated mo-

ments and appropriate conditional prior distributions. A more frequentist, but still modeling

approach, is to rely on n-fold mixture models working with estimated but (via common re-

gression models) linked parameters. As a special case we can even think of the nonparametric

approach via kernel density estimation. Here now, the conditional prior distribution is our

kernel, and the scedasticity function is the data-adaptive local bandwidth. Homoscedastic-

ity then resembles the use of a common global bandwidth. The use of asymmetric priors

corresponds to the case of applying special kernels typically used for boundary correction

or asymmetric information (like the knn estimators do in nonparametric regression). They

are therefore recommendable if prior knowledge on boundaries or skewness is available. A

common conclusion of each of these three interpretations is that the choice of the prior dis-

tribution plays a minor role, the scedasticity function is indeed more important, and the

quality of the mean regression has mainly an impact on the variability of the final estimate.

For the regression estimations necessary for the required moments, our method is not at

all restricted to particular methods or models; parametric, nonparametric, semiparametric,

selectivity correction or mixed effects models for cross section, panel or times series; the here

proposed method can straightforwardly be combined with each of them. Inference can most

easily be based on bootstrap or subsampling methods.

We have shown the use and the practical usefulness of our method in three different contexts:

data matching from one sample to another, the completing of surveys with many missing

values (probably endogenous), and the prediction to the future. One could add survey-to-

census, cross-survey or cross-country data matching or scenarios for the prior evaluation of

treatment and policy effects. Our motivation, however, was the illustration and the study of

the performance of this method that can only be done if a reference distribution based on real

observations is available. As the implementation and use of our method is relatively simple

in any of the typically applied software packages like, for example, gretl, R, SAS, S-plus

or Stata, this presents a rather powerful though handy tool for practitioners and empirical

researchers.
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Appendix

Application 3 (linear model)
Constant 11.77 (.1251)
Average age .0231 (.0042)
Average age squared −.0003 (.0000)
Average year of schooling .0488 (.0025)
Log of assets per capita .1567 (.0061)
Share of asset to business .0289 (.0438)
Farmer in family −.2011 (.0247)
Share of working hhm −.1082 (.0562)
Share of female hhm −.0521 (.0612)
HH size −.0567 (.0042)
Located in urban area .1604 (.0212)
North Sumatera −.3990 (.0463)
West Sumatera −.1974 (.0578)
South Sumatera −.3636 (.0561)
Lampung −.2568 (.0556)
West Java −.2754 (.0415)
Central Java −.3456 (.0425)
Yogyakarta −.5030 (.0534)
East Java −.6584 (.0417)
Bali −.4339 (.0500)
West Nusa Tenggara −.3546 (.0482)
South Kalimantan −.1474 (.0525)
South Sulawesi −.6501 (.0493)
Number of observations 5406

Table 5: Regression results of mean expenditures. Figures in parentheses give the standard
deviations
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Inflation Rate
Province 1998 1999 2000
Aceh 78.71 6.09 9.57
North Sumatra 82.53 0.66 5.37
West Sumatra 87.87 4.23 10.99
Riau 64.35 2.04 9.67
South Sumatra 89.22 −1.01 8.49
Bengkulu 84.10 0.47 8.21
Lampung 84.66 3.34 10.18
Jakarta 74.78 1.77 10.29
West Java 72.89 2.94 6.55
Central Java 70.46 1.02 8.62
Yogyakarta 77.46 2.51 7.32
East Java 87.09 1.06 9.62
Bali 75.11 4.39 9.81
West Nusa Tenggara 90.14 0.59 5.19
Central Kalimantan 75.12 −2.56 10.22
South Kalimantan 75.50 1.47 7.57
East Kalimantan 71.70 3.35 11.29
South Sulawesi 79.35 1.64 9.73
Southeast Sulawesi 97.75 1.29 11.25

Table 6: Regional inflation rates in 1997, 1999 and 2000 (Rp per capita/month), see also
Pradhan et al. (2001)
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