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1 Introduction

In vector autoregressive (VAR) analyses, impulse responses are commonly
used for investigating the effects of shocks to the system. Because the impulse
responses are functions of the VAR parameters, they have to be estimated in
practice. Estimation uncertainty is usually indicated by showing confidence
intervals around the individual impulse response coefficients. Asymptotic,
bootstrap or Bayesian methods are typically used for setting up such in-
tervals (see, e.g., Lütkepohl (2005)). If individual confidence intervals for
a given confidence level are constructed around the impulse response coef-
ficients for each response horizon separately, there is no guarantee that the
overall coverage level for all impulse responses of one variable will correspond
to the prespecified confidence level. In other words, the probability of the
band containing the true impulse response function of a specific variable will,
in general, not be 1 − γ if the confidence band is constructed as the union
of individual (1 − γ) × 100% confidence intervals. Hence, it is desirable to
construct confidence bands with an overall prespecified coverage probability.
A range of suitable methods are reviewed in this study and a new proposal
is considered. A simulation experiment is used to compare the methods and
recommendations for applied work are given. Our criteria for assessing the
bands are the coverage level and the size of the confidence band. While dif-
ferent measures of size are conceivable, in this study we calculate it as the
sum of the widths of all individual intervals.

This is not the first study to consider the problem of constructing con-
fidence bands for impulse responses. For example, Sims and Zha (1999)
propose a method based on Bayesian principles. In this study we will remain
within a classical framework where one could use, for example, the Bonfer-
roni inequality for constructing confidence bands with a joint coverage level
at least as large as the desired one. The drawback of this method is that
it may deliver very conservative bands that provide a much larger coverage
than desired and, consequently, be unnecessarily wide. Therefore we pro-
pose a strategy for reducing the bands by adjusting the Bonferroni bands.
Another proposal is due to Jordà (2009). He constructs the bands on the
basis of so-called Scheffé bounds. Unfortunately, the underlying inequalities
are only approximate and may fail to deliver correct coverage levels even
under ideal conditions, as convincingly argued by Wolf and Wunderli (2012)
in the context of constructing joint forecast bands. Yet another approach is
proposed by Staszewska (2007), who uses numerical search methods to find
smallest confidence bands for a given coverage level. The disadvantage is
that it requires a rather substantial computational effort. Moreover, no gen-
eral results are available showing that the desired coverage level is actually
obtained at least asymptotically. All these proposals will be compared in a
simulation experiment.

Bands with a given coverage level are also of interest in computing forecast
paths over a number of horizons. Constructing bands around path forecasts
has been considered, for instance, by Jordà and Marcellino (2010), Wolf and
Wunderli (2012), Staszewska-Bystrova (2011) and Staszewska-Bystrova and
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Winker (2013). Since impulse responses are conditional forecasts, there is an
obvious relation to the forecast literature and we will draw on it by adopting
the method proposed by Wolf and Wunderli (2012) to our framework of con-
structing confidence bands around impulse responses. The difference to the
literature on path forecasts is that there are two components of uncertainty
attached to forecasts of specific variables even if the data generation process
(DGP) is known apart from its parameters: the intrinsic uncertainty from
the DGP and the estimation uncertainty obtained from using estimated in-
stead of true parameters. In contrast, since impulse responses are conditional
forecasts that consider only the marginal effect of a specific shock for a given
process, only estimation uncertainty is relevant in the context of evaluating
impulse responses if the correct model is used. Of course, in practice there is
the usual uncertainty about the DGP in both types of analysis. In any case,
our results are also of interest for constructing bands around multiple-horizon
forecasts for specific variables although we focus on the impulse response con-
text.

The remainder of the study is organized as follows. In Sec. 2 the model
setup is presented. Sec. 3 reviews the methods for constructing joint confi-
dence bands for impulse responses and in Sec. 4 a simulation comparison is
discussed. An illustrative example is given in Sec. 5 and Sec. 6 concludes.
A number of technical details can be found in the Appendix.

2 Model Setup

A standard reduced form VAR setup is used with variables yt = (y1t, . . . , yKt)
′

being generated by a K-dimensional VAR(p) process,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut. (2.1)

The Ai (i = 1, . . . , p) are (K ×K) parameter matrices and the error process
ut = (u1t, . . . , uKt)

′ is a K-dimensional zero mean white noise process with
covariance matrix E(utu

′
t) = Σu, that is, ut ∼ (0,Σu). The K-dimensional

intercept vector ν is the only deterministic term because such terms are of
limited relevance for the following arguments. Adding other terms such as
linear trends or seasonal dummy variables would not change the substance
of the argument. They need to be included in practice as required for a good
description of the data, of course.

In lag operator notation the process (2.1) can be written as

A(L)yt = ν + ut (2.2)

with A(L) = IK − A1L− · · · − ApL
p. The process is stable if

detA(z) = det(IK − A1z − · · · − Apz
p) 6= 0 for z ∈ C, |z| ≤ 1. (2.3)

Structural shocks εt are obtained from the reduced form errors by a linear
transformation, εt = B−1ut, such that the structural shocks are instanta-
neously uncorrelated and have variance one. In other words, εt ∼ (0, IK).
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The (K × K) matrix B is the matrix of impact effects of the shocks. It
is assumed to be identified by a set of suitable restrictions. These can be
exclusion restrictions on the impact effects or constraints for the long-run
effects of the shocks. For stable processes the impulse responses are just the
coefficients of the moving average (MA) representation of yt,

yt = A(1)−1ν + A(L)−1Bεt = µ+
∞∑

i=0

Φiεt−i, (2.4)

where µ = A(1)−1ν, Φ0 = B and
∑∞

i=0 ΦiL
i = A(L)−1B. Hence, the impulse

response coefficients Φi = Φi(A1, . . . , Ap, B) are nonlinear functions of the
reduced form parameters and B (see, e.g., Lütkepohl (2005, Chapter 9) for
details). For integrated and cointegrated processes where the VAR opera-
tor A(L) has unit roots, that is, detA(1) = 0, the impulse responses are
computed using the same functions of the VAR coefficients as for the stable
case although yt cannot be represented in terms of the infinite order MA
representation (2.4).

3 Methods for Constructing Confidence Bands

for Impulse Responses

In empirical studies VAR parameters are usually estimated using standard
methods with estimates for the impulse responses obtained as (nonlinear)
functions of these estimates. The estimated impulse responses are typically
plotted with confidence bands. In most cases these confidence bands are
obtained by simply connecting confidence intervals for individual impulse
responses. In other words, the joint distribution is ignored in setting up
the confidence bands. Such confidence bands are called näıve bands in the
following. It is well-known that, in general, individual confidence intervals
with level 1 − γ (0 < γ < 1) do not ensure a joint coverage probability of
1 − γ. Therefore a number of proposals have been made for constructing
confidence bands with a more precise coverage level. We will review some of
them in the following and also propose a new variant.

Most of the methods are based on standard residual based bootstraps.
Also, where not explicitly stated otherwise, instead of the usual least-squares
estimates for the VAR coefficients we use bias-corrected estimates because
they were found to work well in this context (see Kilian (1998, 2001)). The
precise details of these methods are presented in the Appendix. The following
procedures for constructing confidence bands around impulse responses are
compared in a Monte Carlo study reported in Sec. 4.

3.1 The näıve band (näıve)

As mentioned earlier, the näıve confidence band is given by a collection of
confidence intervals for individual impulse response coefficients. Let s∗γ/2 and

s∗1−γ/2 denote the γ/2 and 1 − γ/2 quantiles of the bootstrap distribution
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of the estimated impulse response coefficient at horizon h (φij,h), where h =
0, . . . , H. Then the (1− γ)× 100% confidence interval for φij,h is just given
by

[s∗γ/2, s
∗
1−γ/2]

for all horizons h = 0, . . . , H.
Although the method does not ensure a joint coverage probability of 1−γ,

it is often used in applied work, possibly on the grounds that the confidence
bands are just meant to give an indication of the sampling uncertainty related
to the estimated impulse responses.

3.2 Traditional Bonferroni band (B)

In contrast to the näıve bands, the Bonferroni bounds account for the stochas-
tic dependence in the estimated impulse response coefficients by increasing
the size of the bands so as to ensure a prespecified lower bound of the con-
fidence level at least asymptotically, that is, they are generally conservative.
Formally the Bonferroni band is constructed from confidence intervals for in-
dividual impulse response coefficients. The nominal confidence level of each
interval is given by (1− γ/L)× 100%, where L = H + 1 if the impact effect
is not restricted to zero and L = H if the impact effect is restricted to zero.
For each horizon h (h = 0, . . . , H), the (1− γ/L)× 100% confidence interval
for φij,h, is given by

[
s∗γ/2L, s

∗
1−γ/2L

]
,

where s∗γ/2L and s∗1−γ/2L are the γ/2L and 1−γ/2L quantiles of the bootstrap
distribution of the estimator of φij,h under consideration.

3.3 An adjusted Bonferroni band (B-adj)

Since the traditional Bonferroni bands are conservative by construction, we
propose an adjustment that reduces the bands but still observes the overall
coverage level with respect to the bootstrapped impulse responses. In what
follows, the number of bootstrap replicates is denoted by b. First a Bonferroni
band is constructed as in Sec. 3.2. This band covers both complete and
incomplete bootstrap response functions. Bootstrap impulse responses fully
within the band are identified and maintained and a new band is obtained
as an envelope of these functions. The resulting band is narrower, or at
least not wider, than the traditional Bonferroni band. In a final stage, the
number of bootstrap impulse responses covered by the band is calculated and
denoted by nb. If nb > (1 − γ)b, a sequential procedure aimed at removing
nb − (1 − γ)b bootstrap impulse responses is applied. In each step, the
bootstrap impulse responses are identified that provide at least one point on
the current bounds. There are at most 2(H+1) such functions. The function
that contributes the most to the size of the current band (measured as sum
of widths of the individual intervals) is rejected. The procedure terminates
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after nb − (1 − γ)b functions are eliminated. The band is obtained as an
envelope of the remaining (1− γ)b bootstrap impulse responses.

This procedure is called adjusted Bonferroni method and abbreviated
as B-adj in the following. It has asymptotically correct coverage whenever
the bootstrap provides a confidence set with asymptotically precise coverage
level because our method maintains (1 − γ)b bootstrap samples and uses
the outer envelope as confidence set (see Benkwitz, Lütkepohl and Neumann
(2000) for a discussion of the conditions for the bootstrap to work for im-
pulse responses). Another advantage of the method is that by construction
the full bootstrap impulse response functions all lie within the confidence
bands which meets the Fry and Pagan (2011) critique of standard Bayesian
confidence bands in the context of sign restrictions.

3.4 The Scheffé band (Scheffé)

The so-called Scheffé band is proposed by Jordà (2009). It is based on the
asymptotic distribution of the impulse responses (see Appendix A.2 for de-
tails). In our comparison it is calculated using the step-down procedure,
proposed by Jordà and Marcellino (2010) in the context of constructing joint
prediction bands. To describe the method more formally, we use the fol-
lowing notation: φij = (φij,0, . . . , φij,H) is the (H + 1)-dimensional vector of
responses of variable i to the jth shock, φij,1,...,H = (φij,1, . . . , φij,H) denotes
the corresponding vector when the impact effect is restricted to zero and,
hence, not estimated. The estimated asymptotic covariance matrix of φ̂ij,

Ω̂ij/T can be decomposed into Ω̂ij/T = PP ′, where P denotes the lower
triangular Cholesky factor (see Appendix A.2). The quantity c2γ(h + 1) is
the (1− γ)-quantile of the χ2 distribution with h+1 degrees of freedom and[√

c2γ(h+ 1)/(h+ 1)
]
is an ((H + 1) × 1) vector whose (h + 1)-th entry is

√
c2γ(h+ 1)/(h+ 1) (for h = 0, 1, . . . , H). Using this notation the band is

given by

φ̂ij ± P



√

c2γ(h+ 1)

h+ 1


 , (3.1)

if the impact effect of the shock is unrestricted and by

φ̂ij,1,...,H ± P ∗

[√
c2γ(h)

h

]
, (3.2)

if the impact effect of the shock is 0 by construction. Here P ∗ is a lower trian-
gular matrix resulting from the Cholesky decomposition of a matrix obtained

from Ω̂ij/T by removing the first column and the first row and
[√

c2γ(h)/h
]

is an (H × 1) vector with h-th entry
√
c2γ(h)/h (for h = 1, 2, . . . , H).

Notice that the Scheffé bands are based on least-squares estimates of the
VAR coefficients, as originally proposed, and not on bias-corrected estimates.
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While calculating the Scheffé bands for large H (e.g., for H = 10 in our
experiments), it is common to face some numerical problems while trying

to obtain P (as Ω̂ij/T may be rendered as not positive definite). In the
experiments, to overcome this problem and to enable the decomposition, all
eigenvalues of the estimated covariance matrix that are smaller or equal to 0
are replaced with the value 10−6.

We also obtained some results for the version of the original Scheffé band
described by Jordà (2009), which does not use the step-down procedure. We
do not report them, as the method turns out to be inferior to the method used
here under our performance criteria. As mentioned earlier, the inequalities
underlying the Scheffé bands are only approximate and may fail to deliver
correct coverage levels even under ideal conditions. This point is made by
Wolf and Wunderli (2012) in the context of constructing joint forecast bands
and it is equally valid for the present situation.

3.5 The neighbouring paths band (NP)

The neigbouring paths method (NP) proposed by Staszewska (2007) is a

procedure based on b bootstrap response paths φ̂
c∗

ij . In a sequential algorithm,
γb bootstrap paths are eliminated. The envelope of the remaining (1 − γ)b
paths provides the confidence band. While eliminating individual paths the
method aims at achieving a narrow confidence band (still containing (1−γ)b
bootstrap paths). Therefore, candidate paths for elimination in each step are
those containing at least one point outside the envelope of the other bootstrap
paths. Out of the group of these candidate paths, the algorithm selects the
one most distant (in terms of Euclidean distance) from the impulse response
obtained from the original data. After eliminating this extreme path, the
elimination step is repeated until γb paths have been excluded.

3.6 The Wolf & Wunderli band (WW)

Wolf and Wunderli (2012) originally proposed their bands for multiple hori-
zon forecasts but they can be adapted for the present purposes. The band is

based on b bootstrap response paths φ̂
c∗

ij and calculated as:

φ̂
c

ij ±
[
dmax,c
|·|,1−γ

√
ω̂c
h+1,h+1

]
,

where
[
dmax,c
|·|,1−γ

√
ω̂c
h+1,h+1

]
is a vector with dimensions ((H + 1)× 1), whose

(h + 1)-th entry (for h = 0, 1, . . . , H) is given by dmax,c
|·|,1−γ

√
ω̂c
h+1,h+1. Here

ω̂c
h+1,h+1 is the (h+ 1)-th element of the main diagonal of Ω̂c

ij (see Appendix
A.2 for details on this estimate) and dmax,c

|·|,1−γ is obtained as follows:

• In a single iteration of the bootstrap method,

ŝc∗ij (h) =
φ̂c∗
ij,h − φ̂c

ij,h√
ω̂c∗
h+1,h+1

, h = 0, . . . , H,
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are computed. The quantity maxc∗|·| ≡ max(|Ŝc∗(H)|) is calculated,

where Ŝc∗(H) = (ŝc∗ij (0), . . . , ŝ
c∗
ij (H))′ and max(X) returns the largest

value from the vector X.

• After performing b iterations of the bootstrap method and obtaining
maxc∗|·|,1, . . ., maxc∗|·|,b, d

max,c
|·|,1−γ is computed, which stands for the 1 − γ

empirical quantile of the statistics maxc∗|·|,1, . . ., maxc∗|·|,b.

We emphasize that Wolf and Wunderli (2012) did not propose these bands
for impulse responses but for multiple horizon forecasts. In fact, they may
not be ideal for impulse responses because the estimated standard deviation√
ω̂c∗
h+1,h+1 appears in the denominator of ŝc∗ij (h). This standard deviation

may become very small for long response horizons and hence the ŝc∗ij (h) may
become quite unstable by dividing by a quantity close to zero. This problem is
not likely to have an effect for forecasts because forecast error variances reflect
not only estimation uncertainty but also systematic uncertainty that will
not decrease with the forecast horizon. Thus, what works well for forecasts
may not work well for impulse responses. The method is included in our
comparison for completeness. The following simulations are meant to shed
light on the small sample performance of the various proposals.

4 Monte Carlo Comparison with other Meth-

ods

For our small sample comparison we use the DGPs from Kilian (1998),

yt =

[
α11 0
0.5 0.5

]
yt−1 + ut, ut ∼ i.i.d.N

(
0,

[
1 0.3
0.3 1

])
, (4.1)

with α11 ∈ {−0.95,−0.9,−0.5, 0, 0.5, 0.9, 0.95, 1}. This type of DGP is re-
ferred to as DGP1.

A second DGP (denoted by DGP2) is based on the empirical model de-
scribed in Section 5. The DGP is a three-dimensional VAR(3) and the errors
are assumed to follow a multivariate normal distribution with covariance
matrix as estimated on the basis of the data.

The experiments are conducted for different sample sizes T = 50, 100 or
200 for samples generated from DGP1 and T = 100, 200 or 400 in the case
of DGP2. The response horizons considered are H = 10 and 20 for DGP1
and H = 18 and 36 for DGP2. The number of bootstrap replications is b =
5000 because a large number of replications is recommended for confidence
intervals in the related literature (e.g., Efron and Tibshirani (1993)). We
choose γ = 0.1 because that leaves room for over- and under-estimation
of the nominal coverage level. The number of Monte Carlo replications is
1000. Responses to orthogonal innovations, where B is obtained using a
lower-triangular Cholesky decomposition of the estimated residual covariance
matrix, are investigated.
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We have run experiments where the true lag order is used and we have
also used model selection criteria for lag order selection. Clearly the latter
approach is more common in practice where the VAR order is typically un-
known. In particular, we have used the rather popular AIC criterion for lag
order selection. It is more generous than some of the other criteria and is
hence perhaps more suitable when the objective is to uncover the dynamics
of a process rather than optimize forecast performance. Such considerations
may also explain the popularity of AIC in applied structural VAR analysis.
When lag order selection criteria are used, the maximum lag length depends
on the sample size and is given by 10, 12, 14 and 16 for samples of 50, 100,
200 and 400 observations, respectively. We now discuss the results of our
simulation study.

4.1 Results for DGP1

Selected results of the experiments based on DGP1 are given in Tables 1 -
3 and Figures 1 - 4. In the tables values without parentheses are the esti-
mated coverage probabilities of the bands, while the values in parentheses
correspond to the widths of the bands, calculated as the sum of the bands’
spreads at horizons 0, 1, . . . , H. Notice that the coverage rates now refer to
the fraction of full impulse response functions for h = 0, 1, . . . , H being inside
the band, that is, the bands are joint confidence regions. Thus, this criterion
differs from the usual consideration of fractions of individual coefficients ly-
ing within their respective confidence intervals. Of course, one could think
of other measures of the size of the bands. The one used here is a natural ex-
tension of looking at the widths of confidence intervals for individual impulse
response coefficients as considered in Kilian (1998).

Table 1 presents results for DGP1 with selected values of α11 obtained for
a maximum response horizon of H = 10, for samples of size T = 100. The
VAR order is chosen by AIC. A propagation horizon of H = 10 is relatively
short in empirical studies. We still consider it here because a large H will
be more problematic for some of the methods. For example, in constructing
Bonferroni bands the width depends directly on H and it is clear that, at
least indirectly, the other bands are also affected by the choice of propagation
horizon. Thus, this quantity is critical. We therefore present corresponding
results for a longer response horizon (H = 20) in Table 2. The nominal
coverage rate is 90% throughout. Although there is a lot of variety in the
empirical literature with nominal coverage rates ranging from 68% to 95% in
most studies, a level of 90% is suitable here because it leaves room for actual
rates to be smaller or larger.

Looking first at the results in Table 1, there are some striking differences
in the coverage rates obtained by the different methods. First, it is obvious
that the näıve and Scheffé bands have coverage rates far below the nominal
rate of 90% for some parameter values, for instance if α11 is negative. This
result is not unexpected for the näıve bands, given the Bonferroni inequality
that suggests that the individual confidence levels have to be increased in
order to obtain a joint confidence level of 90%. Also, for the Scheffé bands,
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the results correspond to what is reported in other related literature (see in
particular Wolf and Wunderli (2012) and Staszewska-Bystrova (2011)). For
all other bands (B, B-adj, NP, WW) the actual coverage levels come close to
the nominal level of 90% for all parameter values considered. In fact, in all
cases they are above 80%. As expected, the traditional Bonferroni bands are
conservative and tend to produce coverage levels of more than 90%. Also the
WW bands are in some cases rather conservative. For example, the response
path of the first variable to the second shock is inside the WW band in more
than 94% of the cases, except when α1 = −0.95. Generally, there is some
variability of the coverage rates when α11 changes.

Now when considering the widths of the bands, it turns out that they vary
substantially and there is no clear winner. This is, perhaps, more easily seen
in Figure 1, where the coverage levels and widths of the confidence bands are
depicted for four methods that produce reasonable coverage levels: B, B-adj,
NP, and WW. In Figure 1 it becomes apparent that all four methods result
in coverage levels close to the nominal one. The B and WW bands tend to
be the largest, however. Note that in the figure results for a unit root process
(α11 = 1) are also presented. For that case, the coverage levels of all bands
for the responses to the first shock tend to deteriorate compared to stable,
stationary processes.

The width of the WW band becomes worse relative to the other bands
when the sample size is reduced to T = 50. For this case the coverage levels
and sizes of the B, B-adj, NP, and WW bands are depicted in Figure 2. It
is, in fact, striking that in most cases the Bonferroni bands are considerably
smaller than the WW bands. Note, however, that now the actual coverage
rates of all bands are less than 90% in most cases and the WW bands some-
times, but not always, come closer to the nominal level than the other bands.
To further investigate the impact of the sample size, results for T = 200 are
shown in Figure 3. These results look rather similar to those for T = 100
(see Figure 1). In other words, the coverage levels are close to the nominal
one, at least for stationary processes, with the B-adj and NP methods having
advantages in terms of the sizes of the bands.

To study the impact of the response horizon H, we present some results
for H = 20 in Table 2. The sample size is again T = 100, the VAR order is
chosen by AIC and the nominal level is 90%, as before. Again all methods
but the näıve and Scheffé produce reasonable coverage levels of more than
80% for almost all values of α11 reported in the table; with the näıve and
Scheffé band again having partly unacceptably low coverage. For example,
the response of the first variable to the first shock is never fully contained in
the Scheffé band when α11 = −0.9.

Comparing the sizes of the bands of the four most promising methods
there is again no clear winner. However, the WW bands are now excessively
wide in some cases. This is seen even more clearly in Figure 4, where the
coverage levels and sizes of the four best methods are depicted. For example,
for α11 = −0.5 or 0 the WW bands are extremely wide compared to other
methods. Clearly the WW method produces overall much larger bands even
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than the Bonferroni method, which has a handicap for largeH. The situation
does not improve much for T = 200 (results not shown).2 Hence, based on
these results and taking into account that in empirical work large response
horizons are not uncommon, the WW method may not be the best choice
for constructing confidence bands for impulse responses.

We have also considered a number of other MC designs, as mentioned
earlier. In particular, we have also performed comparisons of the different
methods using the true VAR order. Summary results for different designs
based on DGP1 and the four best methods are presented in Table 3. In
that table the mean absolute deviations of the empirical coverages from the
nominal coverage across all values of α11 and all impulse responses are given
together with the average band sizes over all experiments. Clearly, if the
true lag length is used in the simulations, the B-adj and NP methods have
overall the smallest deviations from the nominal coverage level and also the
smallest band size on average. The B-adj method is a little better in terms
of band width while NP has a more precise coverage level. The traditional
Bonferroni method tends to lead to wider bands. The same is true for the
WW method. It shows considerable variation and results in rather wide
bands for long horizons and small sample sizes. By and large the situation
remains unchanged when the lag order is estimated. There is more variability
in the results in that case, however. Thus, overall we can summarize the
results for DGP1 as follows:

1. The näıve and Scheffé methods are, in some situations, very poor in
terms of coverage. In particular, the Scheffé method produces ex-
tremely low coverage rates for some Monte Carlo designs. Therefore
these two methods cannot be recommended if a reasonable coverage
rate is desired. A modification of this method, based on the abso-
lute value of the Cholesky factor used in the construction of the band,
that improves the performance of the Scheffé method is proposed by
Staszewska-Bystrova (2012). We also used this modification in our sim-
ulations (results not reported) and found that it does better but is still
unsatisfactory.

2. Among the four remaining methods the adjusted Bonferroni and NP
bands tend to be the best in terms of deviations from the nominal
coverage and width of confidence band.

3. The WW method may result in much wider bands than B, B-adj, and
NP, especially when the sample size is small.

4. The traditional Bonferroni method tends to be conservative and, hence,
produces coverage levels in excess of the nominal level for many Monte

2Notice that for α11 = 0 the response of the first variable to the first shock is zero for
propagation horizon h > 0. If the true response is estimated fairly precisely, the standard

deviation
√
ω̂c∗
h+1,h+1

is small in the denominator of ŝc∗ij (h). Hence, this quantity may

become unstable in the WW method, as mentioned in Sec. 3.6. This may explain the
excessively large confidence bands produced by the WW method when α11 is close to zero.
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Carlo designs. Despite this fact, the width of the bands is often com-
petitive with the best methods. Unlike the WW method it does not
result in excessively wide bands.

We now turn to the results for the second DGP.

4.2 Results for DGP2

The second DGP is meant to mimic a real-life data generation process. As a
three-dimensional VAR(3) process it has a larger dimension and a higher lag
order than DGP1. Apart from that the two DGPs are difficult to compare
because the parameters of DGP2 are set to the values estimated from a
real data set (as described in Section 5). We do not reproduce the actual
parameter values here but note that the largest autoregressive root is close to
one (0.9681). Hence, the process has some persistence and is, in that respect,
comparable to DGP1 with α11 close to the unit circle. Coverage rates and
band sizes for different sample sizes and propagation horizons H = 18 and
36 are presented in Figures 5 and 6. Given the poor performance of the näıve
and Scheffé methods for DGP1, we only present results for the B, B-adj, NP,
and WW methods.

In Figure 5 the results for response horizon H = 18 are depicted. It is
obvious that the coverage of the bands leaves something to be desired for
the smallest sample size, T = 100. In particular, the methods seem to have
difficulties with responses of the ith variable to the ith shock, i = 1, 2, 3.
Apart from that the coverage levels of all methods are impressively close
to the nominal level for all sample sizes. In other words one may want to
choose between the methods on the basis of the band widths. There is no
clear winner in terms of this criterion either, although the B-adj method
delivers slightly smaller bands than the other methods in many cases.

If the propagation horizon is longer, there are again situations where the
WW method produces much wider bands than the other methods, especially
for the smallest sample size (T = 100) (see Figure 6). They are not as
extreme, however, as for DGP1. Apart from that, it is again difficult to
determine a clear winner on the basis of the coverage levels and band widths.
A summary with averages across all impulse responses is given in Table 4.
In that table it is seen that the B-adj and NP methods tend to be best in
terms of coverage, that is, they tend to deliver confidence bands with actual
coverage closest to the nominal coverage probability. They also produce the
smallest bands on average.

In summary, the results of DGP2 conform with those for DGP1. Note
that our simulations for DGP2 are based on a single DGP and vary only
with respect to sample size, response horizon, and lag length determination.
Therefore they are more limited than those for DGP1 and are perhaps best
compared to results with |α11| close to 1. For this more limited setup we
find that in most situations all four methods do reasonably well in terms of
coverage level. Overall the smallest confidence bands are obtained by B-adj
and NP.
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4.3 Conclusions from MC Simulations

Thus, from our MC experiment we can draw the following general conclu-
sions:

1. The näıve and Scheffé methods may have very poor coverage rates
much smaller than the nominal rate. This is true in particular for
the Scheffé method. These two methods cannot be recommended if
a good coverage rate is desired. Certainly the Scheffé method should
be dismissed for constructing confidence bands for impulse responses.
This does not mean, of course, that the method may not be useful,
for instance, for testing hypotheses about contrasts in the analysis of
variance, as originally proposed by Scheffé (1953).

2. The WW method may give extremely wide confidence bands compared
to Bonferroni type and NP methods, especially when the sample size
is small. Thus, this method should be used with caution, in particular
for relatively small samples.

3. The traditional Bonferroni method tends to produce slightly wider
bands than the adjusted Bonferroni and NP methods, especially if the
propagation horizon is large.

4. The B-adj and NP methods perform well in terms of coverage level and
band width for most scenarios. An exception are unit root processes
when the sample size is small.

Thus, overall the MC experiment confirms that the B-adj method is quite
competitive and in some respects even best. While it has good coverage it also
leads to reasonably small bands. The NP method is the closest competitor,
however, so far it lacks a theoretical basis. An empirical illustration of how
the different methods compare in practice is given next.

5 Illustrative Example

In this section the different methods for constructing confidence bands are
applied in the context of a structural VAR model previously analyzed by
Kilian (2009). It was used to investigate the world crude oil market. The
dataset is the same as that used by Kilian (2009) and consists of monthly
observations for the period 1973:1-2007:12. In other words, we have a sample
size of T = 420. The variables are the percent change in global crude oil
production, ∆prod, an index of real economic activity, rea, and the real
price of oil, rpo. We consider a VAR(3) model with intercepts suggested
by AIC while Kilian uses a VAR(24) in his study. The estimated VAR(3)
model is the same as DGP2. Recall that the model has some persistence,
the modulus of the largest autoregressive root being 0.9681. Following Kilian
we use a response horizon of H = 18 but also consider a longer horizon of
H = 36.
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As in Kilian, a recursive identification scheme with lower-triangular B
matrix obtained from a Cholesky decomposition of the reduced form resid-
ual covariance matrix is used. The estimated structural impulse response
functions for H = 18 and H = 36 are presented in Figures 7 and 8, respec-
tively. Confidence bands obtained with the B, B-adj, NP, and WW methods
are shown in the figures.

Figure 7 reflects what was seen in the MC results for DGP2. The dif-
ferent methods give bands of different size for different impulse responses.
Of course, it is not clear from this example which bands are most reliable.
However, the bands for responses to the first shock (the left-hand column of
Figure 7) from all methods are very similar. The same is not true for the
responses to the second and third shocks. For these the B-adj and NP bands
tend to be the smallest, in line with the simulation results. In fact, if one
judges significance of the response by the bands covering zero or not, the B
band suggests that there is no significant response of the price of oil to the oil
market specific demand shock (the third shock). On the other hand, using
the same criterion, a significant response is diagnosed when the B-adj or NP
bands are considered. Thus, it can make a difference for the interpretation of
the results which method is used for constructing confidence bands around
the impulse responses.

The situation is similar in Figure 8 where the impulse responses and esti-
mated 90% confidence bands for propagation horizon H = 36 are presented.
In this case increasing the propagation horizon does not increase the width
of the bands very much. The confidence bands are similar to those in Figure
7 for the first 18 propagation periods. The B-adj and NP bands are among
the smallest for all impulse responses.

The example is meant to illustrate the different methods for constructing
confidence bands for impulse responses. It shows that the differences can
be remarkable. Hence, in applied work the choice of confidence bands may
matter, as can be seen in our particular example.

6 Conclusions

Impulse response functions are popular tools in structural vector autoregres-
sive analysis. They are used to investigate the reactions of the variables of a
VAR process to specific shocks. Typically the propagation of a shock is traced
over a number of periods and it is desirable to construct confidence bands
for these propagation paths for a prespecified confidence level. A number of
proposals for constructing such bands in a classical setting are reviewed and
it is argued that they either may not obtain the desired coverage level, are
conservative or lack a theoretical justification based on asymptotic theory.
We have also proposed an adjustment of the Bonferroni method that at least
partly accounts for these deficiencies. Our adjusted Bonferroni band is shown
to have some practical advantages.

In a large scale MC study the methods are compared and the adjusted
Bonferroni method is found to perform very well in terms of coverage level
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and width of the band. Hence, it can be recommended for applied work.
In our simulations we also find that the so-called Scheffé bands proposed by
Jordà (2009) and Jordà and Marcellino (2010) may lead to strongly distorted
bands and should not be used for constructing confidence bands around im-
pulse responses. Also the standard bands that just connect confidence inter-
vals for individual impulse response coefficients may have a very distorted
coverage substantially below the nominal level. Moreover, bands adapted
from ideas of Wolf and Wunderli (2012) in the context of multiple horizon
forecasting have satisfactory coverage levels but may be even wider than the
very conservative traditional Bonferroni bands in some situations. Finally,
the NP bands proposed by Staszewska (2007) have comparable coverage and
size characteristics to the adjusted Bonferroni bands in our simulations.

Since impulse responses are conditional forecasts, the adjusted Bonfer-
roni method can also be used for constructing confidence bands for multiple
horizon forecasts. It is not obvious that it will perform better than other
methods in that context because the uncertainty in such forecasts is partly
due to factors that are not present in impulse responses. It is left to future
research to investigate the suitability of the method for constructing forecast
bands.

A Appendix: Methods Used

In this appendix we present some technical matters following Staszewska-
Bystrova and Winker (2013) related to the techniques presented and dis-
cussed in the main body of the text. In particular, we present details on the
bias-corrected estimates for the VAR parameters, asymptotic and bootstrap
estimation methods.

A.1 Bias-corrected VAR estimates

The OLS estimators of the VAR parameters are denoted by ν̂, Â1, . . . , Âp and

the corresponding impulse responses by Φ̂0, . . . , Φ̂H . In contrast, ν̂c, Âc
1, . . . , Â

c
p

stand for the estimators with the bias-correction based on the asymptotic bias
formula given by Nicholls and Pope (1988) and Pope (1990) and Φ̂c

0, . . . , Φ̂
c
H

denote the resulting estimators of the response coefficients. When calculating
the bias-corrected estimates, the stationarity correction, described by Kilian
(1998), is used.

The following notation and presentation follows closely Kim (2004). The
bias-correction is based on the VAR(1) representation of (2.1) for the mean-
corrected variables xt = yt − E(yt). The representation is given by:

Wt = ΠWt−1 + Ut , (A.1)

where Wt = (x′
t, . . . , x

′
t−p+1)

′ and Ut = (u′
t, 0, . . . , 0)

′ have dimensions (Kp×
1), and Π is a (Kp×Kp) matrix given by

Π =

[
A∗ Ap

I 0

]
,
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where I is a K(p−1)-dimensional identity matrix, 0 is a (K(p−1)×K) null
matrix and A∗ = [A1, . . . , Ap−1]. Then, the small sample bias of the least

squares estimator Π̂ for Π is given by:

BΠ = −bΠ/T +O(T−3/2) , (A.2)

where bΠ = G[(I − Π′)−1 +Π′(I − Π′2)−1 +
∑

λ∈Spec(Π) λ(I − λΠ′)−1]Γ(0)−1 ,

Γ(0) = E(WtW
′
t ), G = E(UtU

′
t) and Spec(Π) stands for the set of eigenvalues

λ of the Π matrix. The bias-corrected parameter estimators are obtained
using Π̂c = Π̂− B̂, where B̂ = −b̂Π̂/T .

The Π̂c matrix contains as sub-matrices the bias-corrected least squares
estimators Âc

1, . . . , Â
c
p, while the bias-corrected estimator ν̂c can be obtained

from y − Âc
1y . . .− Âc

py, where y stands for the vector of sample means.

A.2 Asymptotic Confidence Bands

Let φij = (φij,0, . . . , φij,H) be the (H + 1)-dimensional vector of responses of
variable i to the jth shock. If the impact effect of the shock is restricted to
zero it is sometimes useful to consider only the vector of the last H elements.
It will be denoted as φij,1,...,H = (φij,1, . . . , φij,H).

The Scheffé bands are based on the asymptotic distributions of the im-
pulse responses. Hence, they are based on the multivariate normal approxi-
mation √

T (φ̂ij − φij)
d→ N (0,Ωij).

The corresponding covariance estimates Ω̂ij and Ω̂c
ij are obtained using least-

squares and bias-corrected VAR estimates, respectively, and the results from
Lütkepohl (2005, Sec. 3.7.1). The estimators Σ̂u and Σ̂c

u for the residual
covariance matrix are based on the formula (3.2.18) in Lütkepohl (2005).

A.3 Bootstrap Confidence Bands

The bootstrap methods are based on b bootstrap replicates of φ̂
c

ij, denoted

by φ̂
c∗

ij . These are obtained as follows:

• The vectors of residuals corresponding to ν̂c, Âc
1, . . . , Â

c
p are calculated

and rescaled by a factor of [T/(T −Kp−1)]1/2 (see, e.g., Davidson and
MacKinnon (2004)). The rescaled residuals are denoted by {ûc

t}.

• Bootstrap samples are generated from

y∗t = ν̂c + Âc
1y

∗
t−1 + . . .+ Âc

py
∗
t−p + u∗

t . (A.3)

For the required p initial observations of y∗t it is assumed that they
correspond to the first p observed values from the real data. As usual,
the u∗

t are randomly drawn with replacement from the residuals ûc
t .

Once a bootstrap sample is generated, a VAR(p) model is estimated.

By ν̂∗, Â∗
1, . . . , Â

∗
p we denote the resulting least squares estimators. The
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bias correction is applied to these estimates resulting in ν̂c∗, Âc∗
1 , . . . , Â

c∗
p .

If necessary, the stationarity correction of Kilian (1998) is applied.

Then the covariance matrix estimator Σ̂c
u∗ is calculated.

• Structural impulse responses, φ̂
c∗

ij , are derived based on ν̂c∗, Âc∗
1 , . . .,

Âc∗
p and Σ̂c

u∗ .
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Table 1: Estimated Coverage Probabilities and Total Widths (in brackets)
for Nominal 90% Confidence Bands for Impulse Responses of DGP1 for Re-
sponse Horizon H = 10 (based on sample size T = 100, 1000 MC replications
and 5000 bootstrap replications, lag length estimated using AIC)

first shock second shock
band y1 y2 y1 y2

α11 = −0.95

näıve 73.30 (5.29) 61.40 (2.47) 85.30 (1.77) 58.00 (1.76)
Scheffé 0.00 (0.48) 1.20 (1.72) 0.00 (0.28) 9.50 (1.72)
B 91.60 (8.31) 91.50 (3.92) 97.50 (2.92) 89.70 (2.88)
B-adj 84.90 (5.99) 87.80 (3.36) 90.00 (2.00) 85.30 (2.34)
NP 82.00 (6.35) 87.70 (3.46) 89.20 (2.08) 87.30 (2.49)
WW 86.10 (7.36) 87.50 (3.72) 92.70 (2.08) 86.40 (2.64)

α11 = −0.9

näıve 71.90 (5.20) 58.80 (2.46) 84.90 (1.51) 55.60 (1.73)
Scheffé 0.00 (0.44) 1.00 (1.73) 0.00 (0.30) 18.40 (1.70)
B 94.10 (7.87) 92.60 (3.84) 97.60 (2.52) 88.80 (2.83)
B-adj 84.80 (5.96) 86.50 (3.35) 89.60 (1.76) 84.70 (2.27)
NP 85.10 (6.29) 88.00 (3.44) 88.50 (1.82) 86.90 (2.41)
WW 88.20 (7.36) 88.10 (3.72) 94.90 (1.82) 86.10 (2.61)

α11 = −0.5

näıve 64.90 (1.77) 57.50 (1.84) 81.90 (0.65) 66.20 (1.71)
Scheffé 0.70 (0.56) 50.70 (2.07) 35.70 (0.43) 58.90 (1.83)
B 93.50 (2.86) 93.40 (3.01) 96.70 (1.11) 91.80 (2.78)
B-adj 86.50 (2.28) 88.10 (2.58) 94.10 (0.89) 85.90 (2.15)
NP 88.10 (2.39) 89.20 (2.68) 87.00 (0.96) 88.00 (2.23)
WW 86.40 (4.32) 92.30 (3.64) 96.80 (1.06) 85.30 (4.68)

α11 = 0.5

näıve 66.50 (2.09) 68.20 (3.21) 83.50 (1.22) 65.40 (2.21)
Scheffé 54.50 (2.17) 61.60 (3.78) 55.70 (1.16) 59.50 (2.44)
B 94.40 (3.42) 95.90 (5.15) 97.20 (2.05) 92.00 (3.66)
B-adj 90.10 (2.79) 89.60 (4.25) 93.70 (1.50) 86.90 (2.86)
NP 90.70 (3.05) 90.60 (4.55) 90.10 (1.61) 88.30 (3.12)
WW 91.40 (3.35) 88.90 (5.19) 97.20 (1.93) 89.90 (3.62)

α11 = 0.9

näıve 70.80 (5.80) 65.50 (5.81) 84.60 (3.17) 63.10 (3.57)
Scheffé 65.40 (6.95) 65.80 (7.22) 86.90 (3.35) 72.20 (4.05)
B 89.80 (8.76) 91.90 (8.86) 96.80 (5.17) 90.20 (5.84)
B-adj 82.40 (6.81) 85.00 (7.08) 90.60 (3.60) 84.70 (4.50)
NP 82.20 (7.33) 84.70 (7.65) 88.70 (3.78) 86.90 (4.76)
WW 85.00 (8.67) 86.70 (8.66) 94.90 (3.92) 89.10 (5.02)

α11 = 0.95

näıve 70.50 (6.24) 65.60 (5.94) 87.40 (3.61) 65.10 (3.83)
Scheffé 63.60 (7.80) 65.70 (7.60) 87.50 (3.89) 74.00 (4.40)
B 90.00 (9.53) 90.70 (9.20) 98.40 (5.86) 90.70 (6.24)
B-adj 82.30 (7.19) 82.60 (7.18) 93.80 (4.01) 86.30 (4.77)
NP 84.30 (7.88) 83.60 (7.88) 91.00 (4.20) 89.40 (5.04)
WW 85.10 (9.69) 86.30 (9.14) 96.50 (4.48) 88.30 (5.46)
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Table 2: Estimated Coverage Probabilities and Total Widths (in brackets)
for Nominal 90% Confidence Bands for Impulse Responses of DGP1 for Re-
sponse Horizon H = 20 (based on sample size T = 100, 1000 MC replications
and 5000 bootstrap replications, lag length estimated using AIC)

first shock second shock
band y1 y2 y1 y2

α11 = −0.95

näıve 72.60 (12.84) 61.00 (4.90) 85.30 (3.18) 57.90 (2.28)
Scheffé 0.00 (0.50) 0.00 (1.76) 0.00 (0.31) 0.50 (1.78)
B 93.20 (20.09) 94.20 (7.91) 98.70 (6.01) 92.90 (4.19)
B-adj 85.10 (14.10) 86.20 (6.21) 92.90 (3.66) 87.00 (3.14)
NP 76.90 (14.96) 79.50 (6.66) 92.20 (3.85) 88.30 (3.48)
WW 87.00 (22.00) 88.50 (8.80) 96.50 (4.16) 89.60 (3.69)

α11 = −0.9

näıve 71.40 (11.07) 58.10 (4.36) 84.80 (2.43) 55.00 (2.10)
Scheffé 0.00 (0.45) 0.10 (1.79) 0.00 (0.34) 2.60 (1.75)
B 95.00 (17.21) 94.40 (7.04) 98.40 (4.76) 91.50 (3.89)
B-adj 84.30 (12.23) 86.70 (5.60) 92.80 (2.91) 86.90 (2.88)
NP 85.90 (12.94) 87.90 (5.96) 93.00 (3.09) 87.50 (3.21)
WW 91.10 (19.75) 91.10 (7.98) 98.10 (3.45) 90.30 (3.61)

α11 = −0.5

näıve 63.00 (1.93) 54.90 (2.00) 81.80 (0.72) 65.60 (1.87)
Scheffé 0.30 (0.58) 27.10 (2.14) 15.10 (0.45) 30.30 (1.90)
B 95.30 (3.51) 95.60 (3.69) 98.00 (1.42) 94.60 (3.46)
B-adj 88.50 (2.53) 90.50 (2.86) 95.40 (1.03) 87.20 (2.40)
NP 89.10 (2.67) 89.60 (3.01) 87.40 (1.14) 88.80 (2.50)
WW 90.70 (61.40) 96.50 (84.94) 98.00 (13.62) 89.70 (95.68)

näıve 65.70 (2.38) 67.20 (3.79) 81.80 (1.38) 64.80 (2.54)
Scheffé 31.90 (2.28) 42.60 (4.03) 26.20 (1.21) 34.40 (2.57)
B 95.70 (4.50) 97.00 (7.04) 98.10 (2.73) 94.20 (4.93)
B-adj 92.00 (3.22) 91.40 (5.07) 95.40 (1.74) 89.20 (3.32)
NP 91.60 (3.58) 91.60 (5.51) 91.10 (1.92) 89.20 (3.69)
WW 94.40 (11.19) 89.70 (16.62) 98.80 (7.52) 92.80 (12.67)

α11 = 0.9

näıve 70.10 (12.15) 64.50 (12.68) 84.40 (5.29) 62.70 (6.02)
Scheffé 52.70 (12.35) 54.50 (13.41) 82.70 (5.08) 69.80 (6.06)
B 92.30 (19.01) 93.90 (19.92) 98.50 (10.22) 93.20 (11.50)
B-adj 83.60 (13.88) 85.00 (14.89) 93.90 (6.28) 87.90 (7.63)
NP 81.30 (15.14) 82.50 (16.22) 92.10 (6.68) 90.50 (8.08)
WW 87.60 (30.39) 88.20 (28.81) 98.30 (9.07) 95.40 (10.56)

α11 = 0.95

näıve 69.90 (14.49) 65.10 (14.36) 87.30 (6.63) 64.90 (7.07)
Scheffé 53.90 (16.47) 54.00 (16.65) 86.50 (6.81) 73.30 (7.47)
B 92.60 (22.10) 93.10 (22.18) 99.30 (12.55) 93.50 (13.30)
B-adj 82.50 (16.27) 82.50 (16.61) 95.30 (7.63) 87.90 (8.74)
NP 83.90 (18.37) 83.80 (18.67) 93.30 (8.07) 91.50 (9.19)
WW 88.80 (36.92) 88.20 (33.61) 99.50 (11.13) 93.60 (12.34)
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Table 3: Mean Absolute Deviations of Empirical Coverage from the Nominal
Coverage and Mean Widths of the Bands Calculated Across all Values of α11

and all Combinations of Shocks and Response Variables for DGP1

mean absolute deviations mean band width
B B-adj NP WW B B-adj NP WW

true lag length
T = 50 H = 10 4.35 5.70 3.86 4.81 6.78 5.09 5.60 9.73
T = 100 H = 10 5.39 3.68 2.44 3.75 4.72 3.55 3.81 4.85
T = 200 H = 10 5.81 2.63 1.24 2.50 3.26 2.44 2.59 2.88
T = 50 H = 20 5.48 5.67 4.62 6.44 13.97 9.19 10.50 189.76
T = 100 H = 20 6.56 4.43 4.08 5.17 9.48 6.55 7.17 42.94
T = 200 H = 20 7.18 2.96 1.97 4.23 6.63 4.53 4.85 10.75

estimated lag length
T = 50 H = 10 7.14 10.46 8.14 8.41 7.64 6.02 6.50 9.94
T = 100 H = 10 3.68 4.44 3.20 4.01 4.98 3.82 4.08 5.01
T = 200 H = 10 4.51 3.18 2.19 2.67 3.38 2.57 2.72 2.99
T = 50 H = 20 5.78 9.80 7.71 6.63 16.55 11.44 12.74 148.75
T = 100 H = 20 5.32 4.72 4.06 4.43 10.03 7.03 7.68 38.47
T = 200 H = 20 6.11 3.01 2.35 3.74 6.85 4.73 5.06 10.51

Table 4: Mean Absolute Deviations of Empirical Coverage from the Nominal
Coverage and Mean Widths of the Bands Calculated Across all Combinations
of Shocks and Response Variables for DGP2

mean absolute deviations mean band width
B B-adj NP WW B B-adj NP WW

true lag length
T = 100 H = 18 6.53 7.24 5.86 5.10 133.79 98.24 106.01 126.94
T = 200 H = 18 5.83 3.27 2.16 2.31 90.59 66.33 71.10 75.52
T = 400 H = 18 6.74 1.82 0.99 1.31 61.09 44.64 47.61 48.28
T = 100 H = 36 6.40 7.48 6.46 4.66 321.18 202.99 225.69 416.85
T = 200 H = 36 6.77 3.50 2.82 3.02 212.61 141.71 153.97 192.97
T = 400 H = 36 7.81 2.36 1.34 1.36 142.42 96.06 102.73 112.20

estimated lag length
T = 100 H = 18 5.66 9.81 8.83 10.01 131.99 95.96 103.84 125.37
T = 200 H = 18 5.47 5.84 5.99 6.27 90.72 66.09 70.87 75.11
T = 400 H = 18 6.19 1.62 1.31 1.49 61.33 44.87 47.84 48.50
T = 100 H = 36 5.07 8.79 8.60 7.91 317.16 199.78 222.23 419.07
T = 200 H = 36 5.80 5.54 5.88 6.57 212.84 141.47 153.60 191.21
T = 400 H = 36 7.23 2.00 1.68 1.46 142.84 96.39 103.05 112.53
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(c) Second shock, response of y1
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(d) Second shock, response of y2

Figure 1: Coverage (narrower bars, left axis) and width (wider bars, right
axis) of the 90% Bonferroni (B), adjusted Bonferroni (B-adj), neighbouring
paths (NP), and Wolf & Wunderli (WW) bands for DGP1 (estimated lag
length, T = 100 and H = 10).
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(a) First shock, response of y1
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(b) First shock, response of y2
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(c) Second shock, response of y1
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(d) Second shock, response of y2

Figure 2: Coverage (narrower bars, left axis) and width (wider bars, right
axis) of the 90% Bonferroni (B), adjusted Bonferroni (B-adj), neighbouring
paths (NP), and Wolf & Wunderli (WW) bands for DGP1 (estimated lag
length, T = 50 and H = 10).
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(b) First shock, response of y2
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(c) Second shock, response of y1
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(d) Second shock, response of y2

Figure 3: Coverage (narrower bars, left axis) and width (wider bars, right
axis) of the 90% Bonferroni (B), adjusted Bonferroni (B-adj), neighbouring
paths (NP), and Wolf & Wunderli (WW) bands for DGP1 (estimated lag
length, T = 200 and H = 10).
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(a) First shock, response of y1
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(b) First shock, response of y2
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(c) Second shock, response of y1
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(d) Second shock, response of y2

Figure 4: Coverage (narrower bars, left axis) and width (wider bars, right
axis) of the 90% Bonferroni (B), adjusted Bonferroni (B-adj), neighbouring
paths (NP), and Wolf & Wunderli (WW) bands for DGP1 (estimated lag
length, T = 100 and H = 20).
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(i) Third shock, response of y3

Figure 5: Coverage (narrower bars, left axis) and width (wider bars, right
axis) of the 90% Bonferroni (B), adjusted Bonferroni (B-adj), neighbouring
paths (NP), and Wolf & Wunderli (WW) bands for DGP2 (estimated lag
length and H = 18).
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(a) First shock, response of y1
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(e) Second shock, response of y2
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(h) Third shock, response of y2
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Figure 6: Coverage (narrower bars, left axis) and width (wider bars, right
axis) of the 90% Bonferroni (B), adjusted Bonferroni (B-adj), neighbouring
paths (NP), and Wolf & Wunderli (WW) bands for DGP2 (estimated lag
length and H = 36).
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Figure 7: Orthogonalized impulse response analysis for the empirical VAR(3) model and H = 18. Responses of ∆prod, rea and rpo
to the oil supply shock, the aggragate demand shock and the oil-specific demand shock are given, respectively, in the first, second
and third rows of the graph.
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Figure 8: Orthogonalized impulse response analysis for the empirical VAR(3) model and H = 36. Responses of ∆prod, rea and rpo
to the oil supply shock, the aggragate demand shock and the oil-specific demand shock are given, respectively, in the first, second
and third rows of the graph.
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