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Abstract. Although the phase of euphoria seems to be over, policymakers and 

regional agencies have maintained their interest in cluster policy. Modern cluster 

theory provides reasons for positive external effects that may accrue from interaction 

in a group of proximate enterprises operating in common and related fields. While 

there is some progress in locating clusters, in most cases only limited knowledge on 

the geographical extent of regional clusters is established. The present paper 

presents a hybrid approach to cluster identification. While dominant buyer-supplier 

relations are derived by qualitative input-output analysis (QIOA) from national I-O 

tables, potential regional clusters are identified by spatial scanning. This procedure is 

employed to identify clusters of German R&D intensive industries. In a sensitivity 

analysis, good robustness properties of the hybrid approach are revealed with 

respect to variations in the quantitative cluster composition. 

Keywords: National cluster templates, regional clusters, qualitative input-output 

analysis (QIOA), spatial scanning 

JEL: R12, R15 

 

1. Introduction 

Strong regional clusters are increasingly seen by policymakers and regional 

development agencies as a response to economic globalization. The notion of 

competitive advantages for countries and regions with enterprises organized in 

clusters has been popularized mainly by Porter (1990, 1998, 2000). In Porter‟s 

diamond model, the presence of related and supportive industries in local production 

structures is highlighted as one of the principal determinants of regional 

competiveness. As efficient clusters are associated with high growth in productivity 

and innovation potential, the cluster approach has become more attractive to various 

fields of economic policy (Kiese/Wrobel 2011). In particular, cluster-based 

instruments are an integral part of EU regional policy (see e.g. Christensen et al. 

2011; Popa/Vlăşceanu 2013). In most EU countries cluster-oriented policy plays an 

important role at national and regional level (Oxford Research 2008). This holds true 



also for Germany where diverse national and regional programmes have been set up 

to promote cluster development (Török 2012). 

Although the cluster approach is based on agglomeration theory, a variety of 

definitions for the term cluster exists (Martin and Sunley 2003). Diverse forces of 

agglomeration engendering economies of localization and urbanization are differently 

accentuated in alternative cluster concepts. Moreover, regional actors forming local 

networks are believed to vary in different types of clusters. The vagueness of the 

cluster concept makes the identification of industry clusters difficult. This holds true 

especially for geographical extent and the spatial scale at which such structures take 

place. Nevertheless, targeted cluster-based policies hinge crucially on the knowledge 

of where clusters are located and the sectors in which they are formed. Without 

identifying focused clusters, regional development agents and policy makers do not 

receive any feedback on the success or failure of applied strategies and instruments.  

However, the variety of cluster definitions is not the only reason for the existence of 

different approaches to the identification of clusters. A given cluster concept may be 

differently operationalized (cf. vom Hofe/Chen 2006; vom Hofe/Bhatta 2007; 

Feser/Renski/Koo 2009). The literature distinguishes between two strands in the 

approach to the spatial scale of industrial clusters. The first follows seminal works by 

Marcon/Puech (2003) and Duranton/Overman (2005). In order to avoid problems with 

arbitrary pre-defined geographical entities these studies treat space as continuous. 

Industrial cluster structures are investigated for varying window sizes using the 

Kernel density or cumulative probability functions. The K function approach is utilized 

by Kosfeld/Eckey/Lauridsen (2011) in measuring spatial industry concentration in 

Germany on different spatial scales. Scholl/Brenner (2012) advance the distance-

based techniques in identifying regional clusters. As these methods usually require 

geo-coded data, the data requirements are high. 

The second strand in the literature applies spatial statistics tools to areal data. If 

geographical units are considered to be spatially independent in the presence of 

spillovers, spatial clustering tends to be underestimated (Guillain/Le Gallo, 2010). 

Feser/Koo/Renski/Sweeney (2001) and Feser/Sweeney (2002) were the first to 

explicitly account for spatial interaction between regions in an applied cluster study in 

the US state of Kentucky. In a follow-up study, Feser/Sweeney/Renski (2005) 

extended spatial analysis to the United States as a whole. Both studies make use of 



the Getis-Ord *
iG  statistic to measure and test for local spatial clustering (Ord/Getis 

1995). Recently, Pires et al. (2013) have used the local Moran test for localizing 

industrial clusters in Brazil. A major drawback to both local methods is the necessity 

of fixing the environments of the regions in accounting for spatial dependence.  

Beyond co-location of firms belonging to the same branch, the existence of linkages 

between actors is regarded as a crucial characteristic of industrial clusters. Within 

this context, applied cluster studies often focus on enterprises along value-added 

chains where knowledge exchange is primarily supposed (cf. Kuah 2002). While 

Porter (2003) aims to establish the composition of such chains directly at the regional 

level by locational correlation analysis, most other studies derive benchmark chains 

from national input-output tables before searching for the location of potential 

industry clusters (cf. Feser/Bergman 2000; Feser/Sweeny/Renski 2005; vom 

Hofe/Bhatta 2007; Titze/Brachert/Kubis 2011). A directly regional approach to cluster 

identification has already been proposed by Ó hUallacháin (1984) who advocated the 

use of regional input-output tables for this purpose. The problem with purely local 

approaches lies in the fact that information on gaps in a region‟s value-added chains 

that may hinder regional development is lacking. For most countries, such 

information can only be derived from national benchmarks owing to a lack of input-

output tables on a regional and sectoral disaggregated level that are required for a 

more exact identification of industrial clusters. 

Potentially different compositions of national cluster templates and regional clusters 

pose a great challenge for a methodology of cluster identification. The present paper 

aims at improving strategies of regional cluster identification. Against the backdrop of 

a weak cluster definition, we place great emphasis on systematic, reliable and 

comprehensive identification without fixing the geographical extent of potential 

spillover effects in advance. The papers ties in with appreciative and empirical cluster 

research that has grown in importance over the last decades (Cruz/Teixeira 2010). 

First, at the national level, the dominant related sectors of R&D intensive industries 

are identified by qualitative input-output analysis (QIOA). However, the fact that in 

many cases not all enterprises in these sectors belong to the respective value-added 

chains must be allowed for. In defining an automotive cluster, for instance, only a part 

of the enterprises in the plastics and related sectors can be included, as a 

considerable number of firms are not involved in the production of motor vehicles. 



Thus, QIOA has to be supplemented by quantitative input-output analysis in order to 

avoid distortion effects that may arise from defining overly heterogeneous clusters. 

Here, downstream and upstream sectors are considered depending on their 

involvement in the production activities of the key industry. 

Secondly, at the local level, it has to be established whether and how spatial 

externalities and spillovers should be allowed for in locating regional clusters. Most 

applied cluster studies ignore the presence of spatial interaction between interrelated 

geographical units. In order to allow for varying reaches of the geographical extent of 

regional interaction, the flexible approach of spatial scanning is adopted here 

(Kulldorff 1997). On the basis of Kulldorff‟s scan test, the variable extent of potential 

regional clusters is accurately captured. 

The paper is organised as follows. Section 2 reflects theoretical elements of the 

cluster concept. A hybrid approach to identification of industrial clusters is explained 

in section 3. In section 4, these methods are employed in identifying potential 

regional clusters of R&D intensive industries in Germany. Sector 5 deals with a 

robustness check of identified cluster structures. Finally, in section 6 the findings are 

discussed with a view to further empirical cluster research. 

 

2. Elements of cluster theory 

The number of articles on industrial clusters has risen in the last decades, as has the 

number of journals dealing with this subject. The theory of clusters embraces a 

variety of approaches. There have been some promising attempts in the literature 

based on bibliometric analyses, which aim to organize the different strands, concepts 

and topics of research on industrial clusters. In so doing, the founders, the evolution 

and the disseminators can be reliably identified in a comprehensive manner 

(Cruz/Teixeira 2010; Lazaretti/Sedita/Caloffi 2014). 

Most of these approaches originate from agglomeration theory. This theory explains 

the concentration of enterprises and workers in one or several locations by internal 

and external economies of scale. Positive externalities in the form of economies of 

localization arising from geographical concentrations of specialized industries have 

already been described by Alfred Marshall (1920) in an analysis of industrial 

organization. The geographical concentration of an industry may result in certain 



advantages, for instance, from the availability of specialized skills and the proximity to 

suppliers. The inclusion of knowledge spillovers changes the point of view from a 

static to a dynamic perspective. In the case of industry-specific knowledge spillovers, 

agglomeration economies are termed Marshall-Arrow-Romer (MAR) externalities 

(Glaeser et al. 1992).  

Hoover (1948) pointed to additional effects from an agglomeration of firms from 

different industries. Such urbanization externalities may, for instance, be ascribed to 

the possibility of serving large local markets. General benefits in agglomerations may 

also occur from the availability of a sound infrastructure and research institutions. 

Beyond that, knowledge spillovers between firms from different branches play a 

crucial role. Innovative solutions applied in a particular branch may be usefully 

adopted by other sectors that are faced with similar problems. Dynamic advantages 

for regional actors arising from diversity are termed Jacobs externalities (Jacobs 

1969; Glaeser et al. 1992). 

While Romer (1986) deems a firm‟s incentive to innovate as best realized in 

monopolistic markets, Jacobs (1969) places the emphasis on competition. With his 

„diamond model‟, Porter (1990) introduces a mixed view of innovation and growth 

(see also Porter 1998, 2000). With regard to his concept of a cluster as a group of 

firms in an industry along with its related sectors, agglomeration advantages can be 

regarded more as MAR than as Jacobs externalities. However, in contrast to MAR 

models, the structure of Porter‟s „diamond model‟ is not monopolistic but competitive. 

Thus, Porter‟s externalities arise from geographically specialized industries with 

highly competitive enterprises. The „diamond model‟ claims that firms‟ competitive 

advantages are affected by local business environments that are determined by four 

factors (Porter 1998, 2000): input factor and demand conditions, firm strategy, 

structure, and rivalry, as well as related and supporting industries. Each region has 

its own particular set of factor conditions that explain its orientation and outcome. 

Innovation and productivity growth are believed to depend crucially on the quality of 

these mutually interdependent factors. A certain influence of government on factor 

conditions, e.g. on qualification and the regulatory environment, gives a rationale for 

cluster-based policies. 

Although the concept of clusters is strongly grounded in agglomeration theory, it does 

involve elements of location, innovation and network theory (Vom Hofe/Chen 2006). 



Modern cluster theory shifts the focal point of view from cost benefits to competitive 

advantages and productivity growth. In his influential contribution to cluster-based 

development policy, Porter (2000) defines a cluster as a “geographically proximate 

group of interconnected companies and associated institutions in a particular field, 

linked by commonalities and complementarities”. Within the network of firms, 

competition and cooperation take place at the same time (“cooptition”). Competition 

is expected to prevail among horizontally linked enterprises. Vertical links between 

establishments as well as strategic alliances with universities and research 

institutions will usually be characterized by cooperation on the basis of trust. 

Although Martin/Sunley (2003) have pointed to some vagueness in the concept of 

clusters, particularly in more recent studies there seems to be a certain degree of 

agreement on four core elements (cf. Feser/Bergman 2000; Feser/Sweeney/Renski 

2005; Feser/Rensky/Koo 2009; Titze/Brachert/Kubis 2011). Firstly, a cluster consists 

of a group of firms operating in a core industry and its related sectors. Secondly, the 

establishments belonging to a cluster are interconnected, i.e. they form part of a 

network. Thirdly, the enterprises are proximate to each other, i.e. a cluster is a 

geographic concentration of firms. Fourth, a critical mass of actors is presumed for 

agglomeration economies to be effective. However, for the existence of a cluster, 

enterprises need not necessarily be conscious of being part of a network of 

producers (Ketels/Lindqvist/Sölvell 2006). 

 

3. Hybrid approach to cluster identification 

Regional input-output tables are not furnished by official statistics in Germany 

(Kronenberg 2010). Therefore regional flows of goods between industries can only 

be calculated from the national input-output table. The identification of industry 

clusters is achieved in a multistage process. First, national cluster templates in the 

form of value-added chains of R&D core industries are designed. This approach 

highlights the prominent role of input-output flows in interactions between enterprises. 

Substantial inter-industry links are established with the aid of qualitative input-output 

analysis (QIOA). Next, regional production activity within value-added chains is 

appraised on the basis of district employment data with the aid of national Leontief 

coefficients. Finally, the localization of potential industry clusters is examined using 

spatial scanning. 



3.1 Qualitative input-output analysis (QIOA) and national cluster templates  

Generally, qualitative input-output analysis (QIOA) consists of techniques used to 

transform flows of goods between sectors into binary relationships. Specifically, 

QIOA aims to distinguish important from unimportant flows of goods between sectors. 

Parts of sectors that are related by dominant intermediate good flows form a common 

value-added chain. With the aid of QIOA, the relevant components of value-added 

chains can be identified. Methods of qualitative input-output analysis differ with 

respect to considerations of the kind of sector links and the appraisal of important 

links (c.f. Bon 1989; Schnabl 2000; Schnabl/Kohei 2003). 

The filter approach of input-output-analysis identifies important flows of goods by 

determining an optimal filter rate. Schnabl (1994, 2000) has devised minimal flow 

analysis (MFA) as a layer-based method for analyzing structures of production. In 

contrast to traditional QIOA, the MFA method takes into account direct and indirect 

sector links in the form of layers of different orders. Using this method, the 

binarization of the national input-output table is achieved on the basis of an iteratively 

determined optimal filter rate (for a recent application see Titze/Brachert/Kubis 2011). 

The starting point is the Leontief model 

(1)   yxAx   

where x is the vector of production values, A is the matrix of input coefficients and y 

the vector of final demand. In the representation 

(2)   yAIyMx  1)(  

the matrix M is known as the Leontief inverse which is given by the power series 

(3)   ...)( 321   AAAIAIM  

Using the decomposition (3), layers T1, T2, T3, … in the form of intermediary flow 

matrices of different orders can be derived. With the diagonal matrix <x> of the vector 

of production values x, <x>=diag(x), the total transaction matrix T reads 

(4)    xAT .1 

This matrix is made up of the layers 
                                                           

1
 In order to build strongly on the technical structure, the actual demand vector y may be replaced by 

the summing-up vector ι or its scalar multiple (Schnabl 1994, 2000). 



        yAT1  

(5)    yAAT2  

         yAAT 2
3  … etc. 

The exponentiation of the matrix A continues until no element 
i j
k

t  of the matrix Tk, 

k=0,1,2,3,…., exceeds a given filter value F.  

The layers T1, T2, T3, … are mapped onto binary matrices W1, W2, W3, … which 

elements 
i j
k

w  are defined by 

(6)   




 


otherwise0,

Ftif1,
w

k
ijk

ij . 

As values of one of the elements 
i j
k

w  indicate dominant links between sectors i and j 

in the kth step, the binary matrices Wk, k=1,2,3,…, can be referred to as adjacency 

matrices of orders k.2 

By Boolean multiplication (operator “*”), more complex adjacency matrices (k)W , 

k=1,2,3, …, representing the connection between layer-wise adjacency matrices Wk 

are obtained, 

(7)   1)(k
1k

(k) * 
 WWW , 

with IW (0) . The elements of the binary matrices (k)W  tend to approach zero with 

rising k indicating the increasing irrelevance of intermediate flows of goods at higher 

orders of adjacency. In this way, the qualitative matrices (k)W  reproduce the 

information on sector linkages borne by the Leontief inverse that is required to 

determine the dependence matrix D: 

(8)   ...)(# (3)(2)(1)  WWWD  

The dependence matrix D is computed by Boolean addition (operator “#”). Its 

elements dij indicate whether sector j is directly or indirectly supplied by sector i at a 

minimum level F. 

                                                           

2
 Whereas in traditional QIOA Wk = W0 for all k, in MFA the adjacency matrices Wk generally differ 

from step to step k. 



An index on the type of sector linkages is obtained from the connectivity matrix H: 

(9)   DD'H  2 . 

Exclusively dominant flows between a sector and its suppliers captured by the D-

matrix are termed unidirectional linkages. They are ranked higher than weak 

linkages, indicating that a sector is connected with other branches via deliveries in 

the wrong direction (D’-matrix). Substantial flows of goods in both directions 

constitute bilateral linkages. Specifically, an element hij of the connectivity matrix H 

reflects the characteristics of linkages between sector i and j in the following way: 

          0: no link between sectors i and j, 

(10)    1: a weak link between sectors i and j, 

          2: unidirectional link between sectors i and j, 

          3: bilateral links between sectors i and j. 

Uni- and bilateral links are of particular importance when detecting national cluster 

templates using QIOA. 

The minimal flows by which the value-added chains are formed depend crucially on 

the chosen filter value. In MFA, the filter value is not fixed in advance but determined 

endogenously. The industrial structure implied by the optimal filter rate should be 

characterized by a balance between conflicting qualitative conditions of 

comprehensiveness and reduction. 

This objective suggests evaluating the information contents of alternative 

classifications. In this case, the entropy index E of Shannon/Weaver (1949), 

(11)  )ld(1/ppE
ss s   , 

can be computed for each structure ℓ. Here p is the probability of the occurrence of 

one of the states s in (10). The information measure E is maximized in cases of equal 

occurrence of all states. Starting with a filter value F0 of 0 with the maximum number 

of bilateral relations, Fℓ is incremented by equal steps until the last bilateral relation 

breaks off for a filter value of FL. According to this approach, the optimal filter rate is 

the ratio that maximizes the entropy E at a discrete step in the interval between F0 

and FL.
3 

                                                           

3
 Schnabl (1994) recommends that the maximum step number L be 50. 



However, the entropy function often fails to show a clear peak and runs very flat 

around the maximum. This is why it is necessary to fine-tune by assessing the 

residual cumulated connectivity matrix Hres, 

(12)  L2cumres HH , 

with cumH  as the cumulative connectivity matrix: 

(13)   
L

1cum  HH .  

Subject to (12) the “residual” matrix is obtained from cum,H  by subtracting the 

possible number of unilateral links. The values in the matrix Hcum range from 0 (no 

relation at all) to 3 ∙ L - 1.4 According to (12) the elements of the matrix Hres ensue by 

subtracting a basic amount from the matrix Hcum. Because this algorithm focuses on 

dominant bilateral relations, the basic amount is defined as 2 ∙ L. All negative values 

of the matrix H are set at 0. An element of the matrix Hres indicates the number of 

filter steps comprising a strong bilateral connection. Schnabl (1994, 2000) now 

suggests calculating the average value of an element of the matrix Hres, which forms 

a control measure for the calculation of the optimal filter rate.5 The final optimal filter 

rate F* is chosen as the filter rate that is assigned to the mean of the step values 

corresponding to the entropy and Hres criteria. 

 

3.2 Regional value-added chains and cluster employment 

With the aid of QIOA, national cluster templates can be derived for industries of 

interest. Production of a cluster template is composed by value-added generated in 

the core industry and related sectors. Taking into account direct and indirect linkages, 

the production value 
iCx  of the national cluster template Ci can be calculated by 

using the coefficient mij of the Leontief inverse M:  

(14)     ii Cj jjiijiC xm(mxx ) . 

                                                           

4
 If the maximum number of filter steps is set at 50 the matrix Hcum reaches values from 0 to 149. The 

value of 149 indicates that a bilateral relation breaks off at the last filter step 50 (503–1). 
5
 Sum of the elements of the matrix Hres divided by the number of non-zero elements. 



According to (14), cluster production 
iCx  is obtained by enlarging the production 

value of the core industry, xi, by the link-weighted sum of production values of its 

related industries. Generally, linkages accruing from both purchasing and supply 

chains can be involved. 

As regional input-output tables are not available for all areas in most nations, 

knowledge of the magnitude of production of regional value-added chains is often 

missing. In general, the strength of links between connected industries will vary 

across space. However, as the Leontief coefficients mij render the average degree of 

connectedness between the sectors, they can be used to estimate production values 

of regional value-added chains Ci,r: 

(15)     ii Cj rj,jiijri,r,C xm(mxx )ˆ  

The potential regional production values r,Ci
x̂  are grounded in national industry 

linkages to approximate unknown real production values r,Ci
x  of regional value-

added chains. On the one hand, the r,Ci
x̂  values function as sufficient estimators in 

measuring the size of value-added chains in order to identify potential regional 

clusters. On the other hand, they may help regional agents to identify missing parts of 

local value-added chains that prevent the exploitation of spatial spillovers among 

industries. 

At a highly disaggregated regional level, industry-specific production values are 

ordinarily not available. By contrast, employment data are provided in most countries 

by government agencies or other public bodies. Therefore, potential regional clusters 

are identified using the number of employed persons, B, as an indicator of sector-

specific economic activity in the specific areas of the country. Abstracting from 

possible differences in labour productivity, potential cluster employment, r,Ci
B̂ , can 

be calculated on the basis of (15): 

(16)     ii Cj rj,jiijri,r,C Bm(mBB )ˆ , 

This assumption implies that the output shares of the study industries equal the 

respective employment shares. 

 



3.3 Spatial scanning and regional clusters 

Using employment figures r,Ci
B̂  of the regional value-added chains, the study area is 

scanned for hot spots of industrial relations. Kulldorff‟s spatial scan test 

(Kulldorff/Nagarwal 1995; Kulldorff 1997) that determines the most likely cluster as 

well as secondary clusters by a likelihood ratio approach is utilized in this process. 

The test statistic is obtained by scanning the environments of each centroid of a 

region (e.g. district, county, travel-to-work area) for employment in a core industry 

and its related sectors. In contrast to local Getis-Ord and local Moran tests, no fixed 

reach of the area around a region‟s centre has to be set. Instead, the search for 

employment incidences is carried out for varying window sizes up to a maximum 

distance. The existence of industry clusters with different spatial scales (cf. 

Kosfeld/Eckey/Lauridsen 2012) makes the spatial scan test particularly appealing.6 

By successively increasing the window size around the regions, it is possible to test 

whether the observed counts significantly exceed the expected number of 

employment events under randomness. 

Let Z,Ci
B̂  be the number of employment cases and ZB  the total number of industrial 

workers in a circular zone Z. In addition, the total number of cases and population in 

the study area are denoted by 
iCB̂  and B respectively. Under the assumption that the 

events are generated by a Poisson process, the likelihood ratio is given by  

(13)    zz,C

MM

zC

z,CC

M

z

z,C
z BλBI

BλB

BB

Bλ

B
LR

i

z

i

ii

z

i 

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




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


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
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
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





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




ˆ
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ˆˆ

ˆ

ˆ
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with B/B̂ˆ
iC  as the estimated incidence rate under the null hypothesis of no 

spatial clustering. The indicator function I takes the value 1 if the observed counts, 

Z,Ci
B̂ , exceed the expected number of events, zBλ ˆ , inside zone Z. In this case the 

relative risk RRz of an event occurring within the circle, 

                                                           

6
 Often, an upper limit for the size of the scanning window is specified in the form of the maximum 

percentage of the population at risk (Kulldorff 2003). In empirical regional research, a maximum 
distance for spatial interaction is usually set.  



(14)   
z

Z,C
z

Bλ

B
RR i




ˆ

ˆ
 

is larger than one. Thus, the specification of I initiates a scan for high-value clusters 

(hot spots) instead of a test for either high- or low-value clusters. 

For fixed M and N the likelihood ratio LRz is an increasing function of the number of 

cases in zone Z. The most likely cluster is achieved by maximizing LRz over all 

possible zones and centroids of the areal units. With area data, the number of 

windows to be scanned for each location is usually considerably lower than the 

number of regions as all events are assigned to the regional centroids. Each 

secondary cluster is obtained conditional to the clusters detected in the previous 

stages. In this way, the problem of dependency in multiple testing procedures that 

was present in predecessors such as Openshaw‟s Geographical Analysis Machine 

(GAM) (Openshaw et al. 1987) or Turnbull's Cluster Evaluation Permutation 

Procedure (CEPP) (Turnbull et al. 1990) is avoided (Kulldorff/Nagarwalla 1995).  

Testing for significance of the maximized likelihood ratio LRz is done by Monte Carlo 

simulation. The scan statistic is the likelihood ratio that is maximized over all zones 

with different sets of events of all regional centroids in the study region up to a given 

threshold. The distribution of the test statistic is obtained by multinomial 

randomization under the null hypothesis. With R as the rank of the maximized 

likelihood ratio of the real data set in a large number of random replications S, the p 

value of the test is R/(S+1). Potential regional industry clusters are characterized by 

values lower than the nominal significance level α for coherent territories. 

In many cases, a variety of potential clusters is detected by spatial scanning for 

regional systems with a large number of regional units. In such applications not all 

possible clusters may be of substantive interest. Using employment data, clustering 

in coherent territories reflects the focus of production activities in a specific field in the 

regions concerned. Statistically significant industry clusters originally detected by the 

spatial scanning method may lack a critical mass for externalities (Menzel and 

Fornahl 2010). Porter (1998, 2000) stresses the role of a critical mass of a 

geographical concentration of interconnected companies taking a key position in an 

economic sector. Thus, the importance of a value-added chain in a region is 



determined by both dimensions, that is, focus and size (Feser et al. 2005). The size 

criterion is taken into account by adopting a threshold for the minimum cluster size.7 

Cluster districts with scarce employment in the core industry (< 100 employees) are 

not viewed as constituents of a regional cluster. 

 

4. Empirical analysis 

4.1 Data 

In order to analyze the composition of value-added chains in R&D intensive 

industries, the German input-output table 2006 is used (Federal Statistical Office of 

Germany, 2010). The table consists of 71 sectors at the two- and, in part, three-digit 

level according to the classification of products by activity (CPA). Because the aim is 

to identify regional production linkages, imports are excluded from the analysis. The 

year 2006 is chosen for comparative purposes as more meaningful results of 

traditional cluster mapping are available for this year than for subsequent periods.   

In order to identify potential regional clusters in R&D intensive industries, 

employment data at NUTS-3 level are provided by the German Federal Employment 

Office. The NUTS-3 level covers 439 urban and rural districts that vary considerably 

in size and economic power. The territorial sizes of the districts are obtained from the 

regional data bank of the Federal Statistical Office Germany. The employment 

statistic of the German Federal Employment Office provides the deepest subdivision 

of Germany for which sectoral employment data are available. The number of 

employees subject to social security contributions is available for the given 71 sectors 

of the Statistical classification of economic activities in the European Community 

(NACE Vers. 1.1). Both classifications, CPA and NACE, are linked as they share the 

same conceptual framework. 

In all industrial sectors firms spend a part of their revenue on research and 

development (R&D). Most of the almost 52 billion € German R&D expenditure in 

2006 comes from large companies. Only an estimated share of 9 per cent comes 

from small and medium enterprises (SME) (Grenzmann et al., 2009). Four two-digit 

industries account for roughly two thirds of private R&D expenditure. The automotive 
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 The threshold of 1000 employees used here is in accordance with traditional cluster mapping of the European 

Cluster Observatory (European Communities, 2008).  



industry is clearly dominant, with a share of about one third. This is followed by the 

electrical industry with 20 per cent, the chemical industry with 17 per cent and the 

machinery industry with 9 per cent. Because the individual contributions to amounts 

spent on research and development by these sectors are considerably larger than 

those of all other branches, they are called R&D intensive industries.  

With one exception, employment data of R&D intensive industries at the district level 

are available for two-digit NACE codes. In the automotive and machinery industry, 

employment data refer to the divisions “Manufacture of motor vehicles, trailers and 

semi-trailers” (code 34) and “Manufacture of machinery and equipment” (code 29). A 

differentiation can be made within the chemical industry, where the “Manufacture of 

pharmaceuticals, medical chemicals and botanical products” (code 24.4) can be 

separated from “Manufacture of other chemicals and chemical products” (code 24 \ 

24.4). The electrical industry is divided into “Manufacture of office machinery and 

computers” (code 30), “Manufacture of electrical motors, generators and 

transformers” (code 31), “Manufacture of radio, television and communication 

equipment and apparatus” (code 32) and “Manufacture of medical, precision and 

optical instruments, watches and clocks” (code 33). As the IT sector as a whole is 

often the focus of intention in innovation economics, the “hardware sector” (code 30) 

is combined with the “software sector” (“Computer and related activities”, code 72) for 

identification of regional IT clusters.  

 

4.2 Cluster templates of German R&D intensive industries 

Cluster templates in the form of value-added chains of R&D intensive industries are 

formed by using all inter-industry linkages included in the German input-output table 

2006 (Federal Statistical Office of Germany, 2010). The significant flows are 

determined by qualitative input-output analysis (QIOA). As flows of goods between 

industries are analyzed regardless of their place of departure and destination, cluster 

templates are aspatial constructs. Yet they mirror the predominant links of an industry 

with its suppliers and buyers. 

Significant flows of goods between industries are defined by the optimal filter rate that 

is determined by minimal flow analysis (MFA). Table 1 provides information on the 



choice of optimal filter rate from qualitative input-output-analysis.8 Whereas the 

entropy index E takes the maximum value of 200.0 in the fifth step, the average value 

of the Hres matrix without zero elements refers to step 11. In step 8, as the middle of 

both step values, the optimal filter rate F* of 0.01271 is determined. Using this filter 

rate, 362 significant bilateral links and 1147 weak and unidirectional links, 

respectively, between the 71 sectors are categorized as important. 

Table 1: Choice of the optimal filter rate 

Step Filter Order kb Entropyc Values hij of the connectivity matrix H 

    0 1 2 3 

1 0.00010 11 86.8 420 187 187 4176 

2 0.00182 7 152.1 512 650 650 3158 

3 0.00363 6 181.8 672 964 964 2370 

4 0.00545 5 197.2 972 1175 1175 1648 

5 0.00727 5 200.0 1242 1232 1232 1264 

6 0.00908 5 195.3 1654 1269 1269 778 

7 0.01090 5 189.9 1812 1296 1296 566 

8 0.01271 5 176.5 2314 1147 1147 362 

9 0.01453 4 169.9 2504 1085 1085 296 

10 0.01635 4 161.2 2720 1014 1014 222 

11a 0.01816 4 149.5 2996 907 907 160 

12 0.01998 4 146.3 3068 878 878 146 

                                                    
49 0.08718 2 19.1 4850 59 59 2 

50 0.08900 2 NA 4854 58 58 0 

a This filter step has been chosen according to the control measure for the determination of 

optimal filter rates. The matrix Hres contains 60 elements showing values above 0. The sum 

of elements in this matrix reaches a value of 645 and this leads to an average value of 

645/60 = 10.75 that is rounded up to 11. - b Maximum order of included adjacency matrices 

according to equation (7). - c Values are multiplied by 100 for better readability. 

Source: Authors‟ own calculations. 

The qualitative composition of value-added chains of R&D intensive industries is 

defined by the endogenously determined optimal filter value of 0.01271. Using this 

filter rate, the first adjacency matrix 1W  is obtained according to (6). From this, we 

discern important direct linkages in the German input-output system. In determining 

the optimal filter rate, additional indirect linkages are considered. For this, higher-

order adjacency matrices kW  up to order 5 prove to be relevant. 
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 The analysis is carried out for the so-called standard structure. In this case the total demand vector in 

(5) will be replaced by a synthetic vector that is given in the simplest case by the summing-up vector ι. 

In doing so, the core matrix reveals its technological structure and is not “biased” through total demand 
(see Schnabl 1994, 2000).   



Table 2 shows that the number of related sectors in the cluster templates varies 

substantially across industries. Whereas the pharmaceutical industry is only supplied 

by the chemical industry, input-output relationships in the machinery and chemical 

industries are highly complex. The automotive industry and the divisions of the 

electrical industry inclusive of the IT sector are each significantly linked with several 

sectors. 

Table 2: Cluster templates for German R&D intensive industries 

Cluster templates Related industries 

Automotive cluster (34) 25.2, 28, 31. 

Chemical cluster (24 \ 
24.4) 

17, 19, 20, 21.2, 22.2-22.3, 24.4, 25.1, 25.2, 26.1, 
26.2-26.8, 27.4, 27.5, 36 

Pharmaceutical cluster 
(24.4) 

24 \ 24.4 

Machinery and 
equipment cluster (29) 

25.1, 25.2, 26.1, 26.2-26.8. 27.1-27.3, 27.5, 28, 31, 35, 
36 

IT cluster (30 and 72) 28, 64, 73 

Electrical machinery and 
apparatus clusters (31) 

28, 29, 33, 34, 35 

Radio, television, 
communication 
equipment and apparatus 
clusters (32) 

28 

Medical, precision and 
optical instruments 
clusters (33) 

25.2, 28, 31 

Note: The description of the related sectors is listed in Table A1 of the appendix. 

Source: Authors‟ own calculations. 

 

4.3 Regional value-added chains of German R&D intensive industries 

At the national level, value-added of cluster templates could be calculated by taking 

into account the strengths of the linkages between the core industries and their 

related sectors. In order to identify potential R&D clusters across space, value-added 

chains have to be represented by employment. Furthermore, the amalgamation of 

the core industries with their connected sectors presupposes an assessment of the 

degree of their relatedness. While input and output coefficients only measure the 

strength of direct buyer-supplier interactions, both direct and indirect production 

linkages are captured by the coefficients of the Leontief inverse M (“inverse 

coefficients”). Both ratios are available from national input-output analysis 



(Statistisches Bundesamt, 2010). It should be kept in mind that the inverse 

coefficients from the national I-O analysis reflect average and not actual flow 

intensities across space. Here the more comprehensive concept of interrelationships 

is employed in forming value-added chains. In a robustness check, variations of 

sectoral linkages are also examined. 

 

4.3 Identifying potential regional clusters of R&D intensive industries 

Industrial activity is very unevenly distributed in Germany. Spatial concentrations of 

industrial companies are observed at different geographical scales in nearly all 

sectors (Kosfeld/Eckey/Lauridson 2011; Brenner 2006). The clustering of value-

added chains of R&D industries is also confirmed global autocorrelation analysis. 

Highly significant Moran‟s I values are measured in a distance band from 20 to 100 

kilometres for all regional R&D value-added chains. Beyond this radius, the Moran 

coefficient remains at least weakly significant for all industries up to the maximum 

size used of 220 kilometres. 

Thus, searching for spatial clustering of R&D industries and their related sectors is 

well-founded in research. A limitation of the reach is generally necessary in order to 

avoid measuring dispersion instead of concentration. Here the chosen maximum 

window size conforms to the dmax/4 rule (Kosfeld et al., 2011).9.The localization of 

clusters is accomplished with the aid of the method of spatial scanning. 

Figure 1a) shows that the manufacture of motor vehicles, together with their parts 

and accessories, is mainly concentrated in the western regions of Germany. Apart 

from Schleswig-Holstein and Hamburg, automotive clusters are detected in all West 

German federal states. Only three smaller clusters are identified in East Germany in 

the areas of Eisenach, Zwickau/Chemnitz and Teltow-Fläming. 

The largest automotive clusters are located in the federal states of Lower Saxony, 

Baden-Wuerttemberg and Bavaria. According to the cluster mapping of the European 

Cluster Observatory (www.clusterobservatory.eu), the most important regional 

clusters identified in the areas around Hanover and Braunschweig (Lower Saxony), 

Stuttgart and Karlsruhe (Baden-Wuerttemberg) as well as Upper and Lower Bavaria 
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 As an alternative to using a fraction of the maximum distance dmax between the centres of the regions, the 

maximum cluster size can be determined by the medium or average distance (cf. Duranton and Overman, 2005) 

http://www.clusterobservatory.eu/


belong to the 16 largest automotive clusters in Europe (Blöcker et al., 2009). 

However, despite the considerable correspondence in identifying the main regional 

focuses of automobile production, the method of cluster mapping fails in delineating 

the exact boundaries of clusters. Partly through the use of a finer geographical scale, 

the spatial scan approach succeeds in a more exact delineation of these regional 

clusters. 

Figure 1: Regional R&D clusters I: Non-electrical industries 
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Although the Saarland cluster is rated only as a two star cluster, it also belongs to the 

above-mentioned group (European Commission 2011). Employment concentration in 

automobile production proves to be significant within a slightly reduced area of this 

small German federal state. Additional, mostly isolated, employment clusters in the 

manufacture of motor vehicles and related sectors are found in the Rhine-Ruhr area, 

Rhineland-Palatinate, Northern and Southern Hesse, western Lower Saxony and 

Upper Palatinate. Most of these areas are rated as two star clusters by the mapping 

method of the European Cluster Observatory.  

A highly significant spatial clustering of production activity with regard to chemicals 

and chemical products occurs in the tri-border region of Rhineland-Palatinate, Baden-

Wuerttemberg and Hesse. Focal production sites in this area are the districts of 

Mannheim, Darmstadt and Mainz-Bingen. This contiguous territory is extended to the 

north by the chemical cluster in Middle and Northern Hesse. In Baden-Wuerttemberg, 

two isolated clusters are further evident at the borders with France and Switzerland 

respectively. Coherent chemical clusters are found around Ulm/Biberach and 

Weilheim-Schongau/Starnberg. Scattered centres of chemical production are located 

in the Rhine-Ruhr area. While these clusters are also revealed using the 

methodology of the European Cluster Observatory, the hot spots in Middle and 

Northern Hesse have remained undetected by traditional cluster mapping. This also 

applies to the chemical clusters in Schleswig-Holstein and East Germany. 

A comparison of Figures 1 b) and 1c) reveals some overlap in regional clustering in 

the value-added chains of the chemical and pharmaceutical industry. This is 

particularly the case for the Rhine-Main cluster with the city of Ludwigshafen as the 

core of the pharmaceutical industry. Compared to the manufacture of chemical 

products, the manufacture of pharmaceuticals is much more pronounced in the 

Rhine-Ruhr cluster. Moreover, the northern pharmaceutical cluster covers Hamburg 

as well as some neighbouring districts of Lower Saxony. Except for their boundaries, 

these centres of pharmaceutical production as well as those in southern Baden-

Wuerttemberg and Upper Bavaria are also detected by cluster mapping. The spatial 

scan method points additionally to significant regional clustering in the southern part 

of East Germany. 

No direct comparison with the star cluster mapping is available for the manufacture of 

machinery and equipment. However, a comparison with production technology 



clearly exhibits a cluster in Baden-Wuerttemberg that almost spans the state. With 

the exception of the potential northern cluster, the centres of mechanical engineering 

in Figure 1d) are well in line with the star clusters. Yet the spatial scan method points 

to non clustering areas in the Free State of Bavaria which have not emerged from the 

traditional mapping technique. 

Figure 2: Regional R&D clusters II: Electrical industries 
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Hot spots of IT activity are illustrated in Figure 1e). The three star clusters of the 

European Cluster Observatory around Karlsruhe, in Upper Bavaria and Lower 

Franconia are identified as well by spatial scanning. This also applies to the one star 

cluster regions of Stuttgart, Darmstadt, Düsseldorf, Cologne, Dresden, Detmold and 

Upper Palatinate.10 However, the cluster boundaries of the star rating method appear 

to be very fuzzy. Moreover, significant clustering of IT activity emerges additionally in 

the regions of Berlin, Hamburg, Hanover, Bremen and the Saxony Triangle. 

Figures 1f-1h reveal that the centres of production activity of the sectors “electrical 

machinery and apparatus”, “radio, television, communcation equipment” and 

“apparatus and medical, precision and optical instruments” are located most notably 

in South Germany and North-Rhine Westfalia. In contrast to both other sectors, the 

South German communication equipment and apparatus clusters tend to be relatively 

incoherent. A striking variation is the lack of a northern cluster of manufacture of 

electrical machinery and apparatus. 

 

5. Robustness of cluster structures 

In identifying potential regional clusters using the method of spatial scanning, both 

regional and national employment data have been used. While regionally 

disaggregated data are available for the core industries of regional values chains, the 

proportions of related industries must be estimated from national figures. The method 

of inverse coefficients transfers the national average of employees in related 

industries directly or indirectly involved in production activities in the core industry to 

regional value-added chains. Yet the inverse coefficients will not normally be 

constant but will differ from region to region. Local clusters, for instance, may give 

reason for an engagement of an above average proportion of workers from related 

industries in production of the core industry on account of potential technological 

externalities. On the other hand, employees who are only indirectly involved in core 

production activities may not necessarily participate in cluster activities. This implied 

vagueness gives rise to an analysis of the stability of the identified cluster structures 

in R&D intensive industries. 
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 In the IT sector no region is rated a two star cluster by the mapping method of the European Cluster 

Observatory (European Commission, 2011).  



The robustness of cluster structures with respect to the utilization of inverse or I-O 

coefficients is illustrated in Table 3. In none of the cases are different numbers of 

clusters observed. The two methods produce exactly the same regional clusters for 

the valued-added chains in the automotive and IT industry. A change in size in a 

single cluster is observed in manufacture of machinery and equipment, manufacture 

of radio, TV and communication equipment and apparatus and manufacture of 

medical, precision and optical instruments. In the pharmaceutical industry, a switch 

between both types of coefficients is involved with an expansion and reduction of one 

cluster respectively. Although the geographical extent of two clusters will expand for 

the value-added chain of manufacture of electrical machinery and apparatus with 

both methods, the changes are minor with respect to spatial employment 

concentration. In particular, owing to the overlap with manufacture of 

pharmaceuticals, the size of altogether four regional clusters varies in manufacture of 

chemicals and chemical products. 

Table 3: Alterations of regional clusters between inverse coefficient and input 

coefficients method 

 
Cluster 

 
Method 

Number of 
additional 
clusters 

Number of 
expanded 
clusters  

Number of 
additional 
cluster districts 

Automotive clusters 
Inverse coefficients 0 0 0 

I-O coefficients 0 0 0 

Chemical clusters 
Inverse coefficients 0 2 4 

I-O coefficients 0 2 6 

Pharmaceutical 
clusters 

Inverse coefficients 0 1 5 

I-O coefficients 0 1 1 

Machinery and 
equipment clusters 

Inverse coefficients 0 1 5 

I-O coefficients 0 0 0 

IT clusters 
Inverse coefficients 0 0 0 

I-O coefficients 0 0 0 

Electrical machinery 
and apparatus clusters 

Inverse coefficients 0 2 4 

I-O coefficients 0 2 2 

Radio, television, com-
munication equipment 
and apparatus clusters 

Inverse coefficients 0 1 1 

I-O coefficients 0 0 0 

Medical, precision and 
optical instruments 
clusters 

Inverse coefficients 0 0 0 

I-O coefficients 0 1 3 

 



The fuzziness of regional clusters is introduced not only by potential differences in 

the importance of direct and indirect linkages between industries. It also accrues from 

varying spatial concentrations of suppliers and customers around the core industries. 

In particular, in anticipating much more pronounced spatial spillovers, companies of 

related industries may be more strongly localized in regional clusters. Such behaviour 

is simulated by doubling the inverse coefficients in defining regional added chains. 

Alterations in cluster detection involved in this approach are summarized in Table 4. 

Table 4: Alterations of regional clusters between inverse coefficients and double 

inverse coefficients method 

 
Cluster 

 
Method 

Number of 
additional 
clusters 

Number of 
expanded 
clusters  

Number of 
additional 
cluster districts 

Automotive clusters 
Inverse coefficients 0 1 1 

Double inverse 
coefficients 

0 1 1 

Chemical clusters 
Inverse coefficients 1 4 11 

Double inverse 
coefficients 

0 1 3 

Pharmaceutical 
clusters 

Inverse coefficients 1 4 34 

Double inverse 
coefficients 

0 1 3 

Machinery and 
equipment clusters 

Inverse coefficients 0 2 5 

Double inverse 
coefficients 

0 3 8 

IT clusters 
Inverse coefficients 0 2 3 

Double inverse 
coefficients 

0 1 1 

Electrical machinery 
and apparatus clusters 

Inverse coefficients 0 3 6 

Double inverse 
coefficients 

0 3 3 

Radio, television, 
communication 
equipment and 
apparatus clusters 

Inverse coefficients 0 1 1 

Double inverse 
coefficients 

0 1 1 

Medical, precision and 
optical instruments 
clusters 

Inverse coefficients 0 0 0 

Double inverse 
coefficients 

0 2 2 

 

For most R&D intensive industries, no substantive changes arise. However, the 

formation of regional value-added chains by the doubling of the inverse coefficients 



leaves one undetected cluster in each of three core industries. In addition, the 

isolated cluster of Dresden is left undetected in manufacturing of chemicals and 

chemical products, while the single cluster of Berlin is not identified in manufacturing 

of radio, television and communication equipment and apparatus. In the case of the 

value-added chain of the pharmaceutical industry, the twin cluster of Lörrach and 

Waldshut in southern Germany is not identified when the inverse coefficients are 

doubled. But none of the three undetected potential clusters belong to the main 

production sites of the respective core industries. 

In general, the boundaries of the originally identified clusters change slightly more 

with the double inverse coefficients method compared to the method of input 

coefficients. In the chemical and pharmaceutical industry, however, somewhat more 

noticeable differences occur. While the number of potential clusters is virtually 

unaffected in manufacturing of chemicals and chemical products, differences in their 

size increase considerably. The contraction of existing clusters with double inverse 

coefficients becomes even more pronounced in manufacture of pharmaceuticals. 

This effect is due mainly to the strong relatedness between both industries that by its 

very nature makes a clear separation of their value-added chains difficult. Beside this 

special case, the identified regional clusters show a high degree of robustness with 

respect to a variation in the quantitative cluster composition.  

 

6. Conclusion 

EU and national regional development and innovation policy draw in large part on 

advantages ascribed to regional clusters. Although the concept of a cluster rests 

upon agglomeration theory, its definitional fuzziness poses a challenge for policy 

makers and regional planning agencies. The characteristic of an open concept finds 

its expression in empirical cluster research. Researchers make use of a variety of 

techniques in establishing dominant links between industries in order to form cluster 

templates. Likewise, different approaches have been considered in locating industrial 

clusters. 

In this paper the focus of attention is the identification of potential clusters of German 

R&D intensive industries. For this purpose, a two-step procedure is employed. In the 

first step, national cluster templates of R&D intensive core industries are formed with 

the aid of qualitative input-output analysis (QIOA). Dominant input-output linkages 



between the core industries and related sectors are deduced from on a filter rate that 

is endogenously developed with minimal flow analysis (MFA). In the second step, 

potential regional clusters of R&D intensive industries are localized in space. In this 

step, regional value-added chains of the core industries are formed by making 

allowances for direct and indirect linkages with their dominant related sectors. 

Potential regional clusters are identified using the technique of spatial scanning that 

is highly flexible with respect to the scale of clustering. 

In identifying industrial clusters by analyzing the flow of goods between suppliers and 

customers, it is presumed that interaction between companies takes place primarily 

along their value-added chains. In addition, the formation of benchmark clusters on 

the basis of the national input-out table provides regional planning agencies with 

information on parts missing from regional value-added chains. This adds to an 

understanding of the importance of complementary or related industries in the 

development of a cluster. Such information is lacking when the composition of value-

added chains is deduced directly from locational correlation analysis of sectoral 

employment. 

Most previous studies have localized economic clusters purely descriptively, using 

single or complex indicators. Recently, local spatial methods such as the Gets-Ord 

*
iG  or Moran‟s Ii test have also been applied. Although the testing procedures allow 

explicitly for spatial dependencies across districts, they are inflexible with respect to 

varying spatial scales of coherent industrial groupings. Cluster theory does not 

provide conclusive information on the geographical extent of a cluster. By contrast, 

there is much empirical evidence of varying scales of industrial clusters. Using 

Kulldorff‟s spatial scanning method, the search for regional clusters is accomplished 

by varying the size of the window around each district up a maximum value. Potential 

regional clusters meet criteria of both focus and size.  

Strong regional clusters are increasingly seen as a response to economic 

globalization by policy makers and regional development agencies. The notion that 

countries and regions with enterprises organized in clusters have a competitive 

advantage is closely related to the influential work of Porter. Because of the 

presumed connection between clustering and high productivity growth and innovation 

potential, the cluster approach has become more appealing in different fields of 

economic policy. However, up to now there has been little empirical evidence for the 



impact of clustering on the economic performance of enterprises and the 

development of regions. In many cases, an obstacle in the way of a valid evaluation 

of clustering effects results from a certain fuzziness in establishing the borders of 

regional clusters. Leaving aside the industrial overlap in one special case, the hybrid 

methodology employed in cluster identification that is introduced in this paper meets 

a high degree of robustness. Thus, this approach is expected to provide a sound 

basis for evaluating the impact of industrial clusters on sectoral performance and 

regional development.  
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Appendix 

Table A1: R&D intensive industries and their related sectors  

Code  Sector   

17 Manufacture of textiles 

19 Manufacture of leather and leather products 

20 Manufacture of wood and wood products 

21.1 Manufacture of pulp, paper and paperboard 

21.2 Manufacture of articles of paper and paperboard 
22.2 - 
22.3 

Printing and service activities related to printing; 
reproduction of recorded media 

24 \ 24.4 Manufacture of chemicals and chemical products 

24.4 Manufacture of pharmaceuticals, medical chemicals and  

 botanical products 

25.1 Manufacture of rubber products 

25.2 Manufacture of plastic products 

26.1 Manufacture of glass and glass products 

26 \ 26.1 Manufacture of other non-metallic mineral products 

 without glass and glass products 

27.1 - Manufacture of basic iron and steel and of ferro-alloys; 

27.3 Manufacture of tubes; Other first processing of iron and 

 steel 

27.4 Manufacture of basic precious and non-ferrous metals 

27.5 Casting of metals  

28 Manufacture of fabricated metal products, except  

 machinery and equipment 

29 Manufacture of machinery and equipment n.e.c. 

30 Manufacture of office machinery and computers 

31 Manufacture of electrical machinery and apparatus n.e.c. 

32 Manufacture of radio, televison and communication  

 equipment and apparatus 

33 Manufacture of medical, precision and optical instruments,  

 watches and clocks 

34 Manufacture of motor vehicles, trailers and semi-trailers 

35 Manufacture of other transport equipment 

36 Manufacture of furniture; manufacturing n.e.c. 

72 Computer and related service activities 

73 Research and development services 

Source: Classification of Economic Activities NACE Rev. 1.1 (Commission Regulation (EC) 

No 29/2002) 
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