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Abstract. Modeling intraday financial markets by means of agent based
models requires an additional building block which reflects the order execu-
tion, i.e. the trading process. Current implementations rely only on stochastic
placement strategies, ranging from total randomness to adding some bud-
get constraints. This contribution addresses the issue of order placement
for low-tech traders, by replacing the zero-intelligence assumption with a
microtrading-based approach. The results show that the power-law decaying
relative price distribution of off-spread limit orders and the concave shape of
the overall market price impact can be replicated when rational order sub-
mission strategies are used.
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1 Introduction

A literature review identifies two main classes of Agent Based Models (ABMs)
for financial markets with respect to their time-line frequency. On one side,
daily ABMs focus on the behavior of individual agents, but simplify to a
great extent the process of price discovery. The daily market equilibrium
price is updated usually either through a market impact function, where the
excess demand is cleared by the market maker at the new adjusted price
(e.g. Lux (1995, 1998), Lux and Marchesi (1999, 2000), Chen and Yeh (2001,
2002), Farmer and Joshi (2002), Westerhoff (2009, 2010)), or by means of
a Walrasian tâtonnement mechanism of identifying the equilibrium where
there is no aggregate excess demand (e.g. Arthur, Holland, LeBaron, Palmer
and Tayler (1996), Brock and Hommes (1997), Fischer and Riedler (Forth-
coming)). Both approaches are highly synchronous, i.e. agents’ demands
are batched together and executed at the same time and at the same price.
These low-frequency ABMs describe the emergent market dynamics by a sin-
gle price, sometimes associated with a total volume.

A different class of ABMs zooms into the intraday world where trading takes
place within a continuous double auction framework. These models are also
referred to as disequilibrium models since agents asynchronously disclose their
trading demands, and transactions can take place outside the equilibrium
price. Price changes can be seen as an outcome of the interplay between
order flow and the persistent order book liquidity. Moreover, their dynamics
is characterized by tick-by-tick data on order flow (issuing new orders, mod-
ifying, deleting, expiration of limit orders), quotes (bid-ask spread and order
book shape) and trades (price and volume).

In contrast to daily ABMs, an additional decision layer dealing with order
execution is required. Most intraday ABMs implement only stochastic place-
ment strategies, ranging from pure randomness such as in Cui and Brabazon
(2012) to adding budget constraints such as in Chiarella, Iori and Perelló
(2009).1 The zero-intelligence approach represents the most appealing way
of circumventing a difficult problem and, from an historical perspective, is one
of the earliest solutions proposed.2 Moreover, a model with random agents
allows for the assessment of market institutional design such as in Farmer,
Patelli and Zovko (2005) and can also provide a benchmark for other ABMs
involving more rational agents. On the other side, besides their lack of re-
alism – the “promise” of ABM is to provide a sound micro-based design –,
these models are confronted with several limitations.

1The price is randomly drawn from an interval restricted by the current budget and re-
turn expectation. This stochastic limit price and the current portfolio structure determine
the sign of the individual order as well as its size.

2Similarly, in the case of the traditional daily ABMs one of the first order formation
(investment) strategies proposed by Gode and Sunder (1993) was based also on random
behaviour. The authors are also the ones who have actually coined the “zero-intelligence”
term.
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For example, Cui and Brabazon (2012) conclude that replicating a realistic
price impact of market orders cannot be achieved without agent intelligence.
In real markets, trade size and timing are not random, but rather take into
account the existing market liquidity – just by inspecting the depth of the or-
der book a large market impact can usually be avoided when execution time
permits. If this liquidity factor is ignored, the market impact in a simulation
experiment is higher for larger orders than in the case of real markets, such
as replicated in Cui and Brabazon (2012).

We also stress that the order flow generated by these low-frequency agents,
as well as the eventual shape of the order-book, play key roles in building
more complex intraday market models, where further microstructure-based
trading strategies – such as algorithmic traders, market makers or other high-
frequency traders – rely on these sources of information. Thus, simplifying
too much the way low-frequency agents execute their orders influences the
general intraday environment and could further on affect the behavior of
high-frequency traders.

This contribution addresses the issue of order placement for low-tech strate-
gies by replacing random trading decisions with a liquidity and volatility-
based optimisation approach. We introduce more intelligence in order exe-
cution, by taking into account the current market state as well as intrinsic
agent characteristics, and inspect how the intraday market dynamics changes.

Section 2 starts with the description of the order placement problem in sub-
section 2.1. We briefly mention three modelling approaches present in the
literature and also introduce how our model relates to them. Following, a
set of microstructure factors and their relationship to various order proper-
ties are described. In subsection 2.2 we present in more detail our model’s
components, parameters and assumptions. An iterative numerical procedure
for identifying the optimal relative limit distance is presented in subsection
2.3. Section 3 describes how the order submission model is integrated within
an agent based model framework. In section 4, we present the experimental
results benchmarked against a zero-intelligence model with respect to the
relative price distribution of limit orders and price impact of market orders.
Finally, we present our conclusions and further research options.

2 Order placement in a continuous double

auction

The double auction is one of the most common mechanisms of price discov-
ery in equity markets. Basically, participants can place their trading offer
and demand as market or limit orders. New orders are matched against an
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Bid Ask
# Size Price Price Size #
1 2521 296.98 297.30 2437 1
2 3495 296.97 297.32 260 1
3 13725 296.96 297.33 344 1
1 13613 296.95 297.34 1944 1
2 13910 296.94 297.35 1473 1
1 17613 296.93 297.36 3211 1
1 7282 296.92 297.38 8409 1
1 3168 296.91 297.39 1470 1
1 9982 296.88 297.41 1271 1
5 26620 296.87 297.48 8357 1
4 9129 296.86 297.65 15788 3
1 13938 296.85 297.66 9329 3
1 18418 296.84 297.67 17951 2
2 6759 296.83 297.69 22918 1
3 13187 296.82 297.72 8694 2
2 5414 296.81 297.73 12275 2
2 6842 296.80 297.74 15727 2
2 14650 296.79 297.75 4881 1
1 8760 296.78 297.76 127584 1
1 5212 296.77 297.77 11092 2
2 5873 296.76 297.78 948 2
1 4134 296.62 297.79 22943 6
. . . . . . . . . . . . . . . . . .

296.11 296.37 296.63 296.89 297.15 297.4 297.65 297.9 298.15

Price

best
bid

best
ask

spread

relative
limityprice

relative
limitydistance

sellyordersy(ask)

buyyordersy(bid)

midpointgap

Figure 1: Order book illustration

outstanding order book formed of two queues of limit orders – one for buy
(bid) and one for sell orders (ask) – which are ordered by price and time
priority as in figure 1. Prices are discretised up to a minimum increment
called tick. The highest bid price (296.98) and the lowest ask price (297.30)
are called best quotes and the difference between them (0.32) is known as bid-
ask spread. Moreover, the centre of the spread is referred to as the midpoint
or midprice (297.14). An incoming market order is sequentially executed
against the available limit orders on the other side of the market, ordered
by their priority, until the entire order size is filled. On the opposite, a new
limit order which does not cross any outstanding limit orders is stored in
the order book at the specified price and waits to be executed against future
arriving market orders. A graphical representation where some related con-
cepts are identified is provided in figure 1. Two key measures which will be
extensively used in the rest of this paper are the relative limit distance ∆,
i.e. the difference between the limit price and the best quoted price on the
opposite side of the market, and the relative limit price δ, defined in Zovko
and Farmer (2002) as the difference from the best quote on the same side.
The two measures differ by an amount equal to the current spread.

2.1 Order placement problem

The trading process is a trade-off between execution cost and delay risk and
comprises two types of trading decisions: order scheduling (break-up large
orders or all-in-one piece) and order submission (type choice and placement).
In this paper we will tackle only the later one, which is actually the foun-
dation for designing a trading-driven ABM. Proper execution of individual
orders involves a set of micro-trading decisions, i.e. the order can be articu-
lated into a market order, a limit order or can be split between a market order
and a limit order. In other words, the trader faces a trade-off between exe-
cution certainty and a more favourable transaction price. At one extreme, a
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market order does not carry any execution risk, but has a higher transaction
cost consisting in market impact. On the other side, preferring a limit or-
der saves the cost of immediacy associated with the market order alternative
and can further improve trading costs with the relative limit distance. The
drawback is that limit orders encounter the risk of remaining unexecuted, as
they are conditioned on the uncertain future event of being matched by a
counter party.

Several papers have studied various order placement strategies for limit or-
der book markets. Lillo (2007) defines an optimisation problem within the
framework of expected utility maximisation, where the probability for a limit
order of getting executed is given by the first passage time distribution of a
random walk, i.e. the probability that the stochastic price reaches the limit
price ∆ by a certain time – thus, the hitting time probability is a function
of ∆, time horizon and volatility. Kovaleva and Iori (2012) develop a model
which discriminates between placing a market order and a limit order at an
optimal limit price. In their model, the total time-to-fill is not only given by
the first passage time distribution which measures the probability of reach-
ing the beginning of the queue, but also by a random delay – sampled from
an exponential distribution with constant intensity – which stands for the
order’s effective execution. By assuming stochastic log-normal processes for
the trajectories of the bid and ask prices, an analytical solution is identified
by maximizing a mean-variance utility function.

Cont and Kukanov (2012) formulate a convex optimisation problem for the
decision of splitting between a market and a limit order placed at the best
bid or ask. The optimisation function penalises the execution price with an
execution risk which takes into consideration factors such as order size, the
existing queue size at the front of the book and the cumulative distribution
function of the queue outflow. If a functional form for the outflow CDF is
assumed, a parametric numerical solution can be computed or, alternatively,
a non-parametric solution when the empirical distribution is based on past
order fills. The authors also extend the allocation problem into a routing
problem across multiple trading venues, further taking into consideration
liquidity fees and rebates structure.

Our contributed model is more related to Cont and Kukanov (2012) by the
construction of the optimisation problem – deciding with respect to the
market-limit order split with the goal of minimising the risk adjusted ex-
ecution cost. One distinction is that limit order placement is not restricted
any more to only the best quotes and thus a supplementary decision about
the optimal limit price has to be made. More important is that our model
relies only on intrinsic agent characteristics and several microstructure fac-
tors. The latter can be directly observed and assessed within an agent based
framework with a limit order book mechanism, without assuming any func-
tional forms of the underlying price or order flow processes. The agents’

4



order placement strategies are not optimal in the sense of being derived un-
der expectations, but appear as rule-of-thumb strategies expressing a form of
bounded rationality. The strategy inputs reflect different facets of the cur-
rent market state making agents more reactive, in the spirit of agent-based
modeling where reflexivity is a key concept.

Johnson (2010) provides a broad overview of factors driving traders to act
more aggressively (impatient) or passively (patient), which can be classified
into liquidity-, price- and time-based factors. Firstly, the choice in favour
of a market order is found to be highly dependent on the instant liquidity
reflected by the market tightness, i.e. the bid-ask spread, and by the order
book height, i.e. the potential price impact of a market order walking up the
book. Aggressive orders are more probable when the cost of immediacy is
low, while a high liquidity cost due to higher spreads encourages liquidity
suppliers to place more limit orders. Beber and Caglio (2005) found also evi-
dence for a non-linear relation showing that particularly wide spreads favour
in-spread limit orders rather than market or far away off-spread orders. Pas-
cual and Veredas (2009) concluded that wide spreads discourage especially
small market orders, increasing the frequency of larger market orders. With
respect to order size in general, Cont and Kukanov (2012) state that market
orders are usually larger than limit orders.

Order book depth influences the general order aggressiveness in two ways.
An overall supply-demand imbalance drives traders to price their orders more
aggressively when their side of the book is thicker and crowded in order to
increase their order execution probability (competition effect). Conversely,
traders become less aggressive when the opposite side is deeper, forecasting
a favorable short-term order flow (strategic effect). If only the thickness of
the opposite side of the market is taken into consideration, both Beber and
Caglio (2005) and Pascual and Veredas (2009) identify an asymmetric be-
havior – sellers are more impatient to trade than buyers and thus are more
willing to take advantage of the available liquidity by issuing larger aggressive
orders; contrary, buyers show more patience and place less aggressive orders.3

Zovko and Farmer (2002) found that short-term volatility at least partially
drives the relative limit prices and also suggest that such a feedback loop may
contribute to volatility clustering. On one side, the probability of execution
for further placed limit order increases and, on the other side, the picking-off
risk due to adverse selection is also higher. Another price-based factor is the
momentum indicator proposed by Beber and Caglio (2005), defined as the
ratio between the current price and its exponential moving average. The di-
rection of the short-term market trend asymmetrically affects the execution
probability of limit orders and ultimately leads to a change in order pricing
aggressiveness. Moreover, higher previous traded volumes, acting as a proxy

3Sellers are more concerned about the non-execution risk, while buyers pay more at-
tention to the picking-off risk due to misspricing their orders.
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for market information, lead to an even bigger increase in aggressiveness in
the direction of the market trend.

2.2 Order placement model

The model proposed in this paper is set up as an optimisation problem which
consists in making two decisions: (i) discriminating between a market and
a limit order, and (ii) – in the case of a limit order – identifying the opti-
mal relative limit distance which minimises the risk adjusted execution cost.
Several liquidity- and price-based components are included.

The objective function f(M,∆) describes the trade-off between execution
cost and non-execution risk, balanced by agent’s sense of urgency λu. The
sense of urgency can reflect a mix of risk aversion, degree of informativeness,
strategy time-frame or just time pressure, i.e. waiting time of the trading
process. The decision variables are the fraction M of the total order exe-
cuted as a market order and the relative limit distance ∆ for the outstanding
quantity (1−M) v traded as a limit order.4

min
M,∆

f(M,∆) (1)

f(M,∆) = cost(M,∆) + λu risk(M,∆)︸ ︷︷ ︸
adjusted risk

(2)

BASE =
best ask

0

best
bid

s s/2

market order/
crossing limit order

in-spread
limit order

off-spread
limit order

market
impact

BMis

∆ 1
∆ 2

spread
limit order

Figure 2: Examples of buy order aggressiveness, relative to the base price

The cost function cost(M,∆) captures what is known as the implementation
shortfall imp.sh(M,∆), i.e. the difference between a given benchmark BMis

4The function is not identified for M = 1, reflecting the situation in which the entire
quantity is traded as a market order, which is logical consistent with the fact that a
decision regarding ∆ is no longer required.
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and the effective order execution price. One of the most common benchmarks
in liquid markets is the arrival price, i.e. the current bid-ask midpoint, but
also other benchmarks, such as the last trade price or previous day close, can
be considered.5 For example, in the extreme case when the entire quantity is
executed as a market order (M = 1), the implementation shortfall reflects ex-
actly the price of immediacy – equal to half the spread – plus any additional
market impact. The market impact function mk.imp(v) is influenced by the
current order book state and can be computed as the percentage change in
price where the entire order size is executed. Actually, all measures involved
(∆, BMis, mk.imp) are scaled as percentage returns relative to a base price,6

which is the best bid for sell orders or the best ask for buy orders, respec-
tively.7 An example of how these measures are related for different types of
buy orders is depicted in figure 2. The order volume V is usually expressed
as a percentage of the average daily volume (ADV).

imp.sh(M,∆) = M (BMis + mk.imp(M V ))︸ ︷︷ ︸
market order part

+ (1−M) (BMis −∆)︸ ︷︷ ︸
limit order part

(3)

= BMis +M mk.imp(M V )− (1−M) ∆ (4)

The cost function in equation (5) wraps around the implementation shortfall
by adjusting it with a volatility-threshold downside price change penalty in
order to discourage execution prices which are too far away beyond a mul-
tiple σis of the short-term volatility, corresponding to highly unfavourable
executions.8 Besides exponent θ, the parameter β > 1 controls for the size
of this penalty.

cost(M,∆) =

{
imp.sh(M,∆) for imp.sh(·) ≤ σis

β σis (imp.sh(M,∆)/σis)
θ for imp.sh(·) > σis

(5)

On the risk side, the execution probability of a given limit order depends on

5In the arrival price case, the relative execution benchmark BMis = s/2, where s is
the bid-ask spread.

6Because of the additivity property, log returns would have been more precise in com-
puting the differences between the aforementioned measures, but the derivations in sub-
section 2.3 would have become analytically intractable. Eventually, as we are dealing with
small intraday deviations, the imprecisions associated with the use of simple percentage
returns appear acceptable.

7In case the bid and/or ask values are missing, the last trade price can substitute as
base reference, as well as execution benchmark.

8If the return expectation of the agent is known, an execution threshold taking into
consideration also this value could be implemented.
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(i) short-term market volatility dyn(∆),9 (ii) order flow proxied by the order
book imbalance flow(OBI),10 and (iii) order queue in front of the limit order
queue(∆). Moreover, (iv) an opportunity cost as a penalty function of order
size size(ν) is also included. The aggregate non-execution risk function
risk(M,∆) is given by (6). The parameters α0, α1, α2 tune the general
preference for market and limit orders, as well as the distribution of relative
limit distances. Eventually, each individual decision will also depend on the
agent’s urgency factor λu and on the specific state of the market.

risk(M,∆) = (1−M) flow(OBI) size((1−M)V ) (α0+α1 dyn(∆)+α2 queue(∆))

(6)

dyn(∆)

1
2

3
4

5

1.0

1.5

2.0
2.5

3.0

0

5

10

15

20

25

∆

ω

dyn(∆)

flow(OBI)

1.0
1.2

1.4
1.6

1.8
2.0 −1.0

−0.5
0.0

0.5
1.0

0.5

1.0

1.5

2.0

µ OBI

µOBI

Figure 3: (left) Market dynamics effect as a function of ∆ and ω with fixed
BMdyn = 1%, σdyn = 1.5%; (right) Order-flow as a function of µ and OBI

The functional form of the market dynamics effect dyn(∆) describes a sub-
linear increasing risk of non-execution for limit orders inside the volatility
bands, defined by a central benchmark BMdyn and a multiple of the short-
term volatility σdyn. When the relative limit distance is outside this interval,
the risk increases faster penalising far away orders.11 In the same spirit,
a larger exponent ω increases the relative weight associated with the limit
distance effect. Potential candidates for BMdyn can be for example the bid-

9According to Johnson (2010), short-term or transient volatility is mostly liquidity-
driven, while fundamental volatility is more long-term and caused by informational shocks.

10Order flow can also be computed as the imbalance in the value or number of incoming
orders over a period of time.

11The intuition behind this effect could be seen as similar to the technical trading tool
known as “Bollinger Bands” (see Bollinger (2001)), which relies on the price dynamics
fluctuating inside an interval bounded, under standard parameters, by two standard devi-
ations above and below a 20 periods (days) moving average.
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ask midpoint, last trade price or previous close price.

dyn(∆) = σdyn

(
∆−BMdyn

σdyn

)ω
(7)

A key model component is the expected order-flow flow(OBI), which drives
the short-term price returns and affects the execution probability of out-
standing limit orders. In this implementation, order flow is more liquidity-
rather than price-based and relies on the order book imbalance (OBI) indi-
cator. OBI quantifies the difference between the cumulated volumes up to
a certain depth level N on each side of the order book.12 By its definition
in (9), OBI takes values between −1 and 1, the extremes corresponding to
the cases when one book-side is empty. When the order book is unfavorable
leaned, OBI is positive, flow(OBI) is larger and the ultimate non-execution
risk increases leading to a bigger incentive of placing more aggressive limit
orders. Overall, flow(OBI) takes values between 1/µ and µ – asymmetric
around zero – meaning that it also acts as a complementary penalty factor
when OBI is unfavorable. The constant µ in equation (8) weights the relative
importance of the order flow effect in assessing the aggregate non-execution
risk and in setting the optimal relative limit distance ∆, e.g. OBI is neutral
when µ = 1. Finally, it is useful from the implementation perspective if OBI
has a different sign for buy and sell orders.

flow(OBI) = µOBI (8)

OBI = (−1)1sell
∑N

i=1 bidi −
∑N

i=1 aski

max(
∑N

i=1 bidi,
∑N

i=1 aski)
(9)

The effective order queue effect queue(∆) reflects the cumulative size of the
book queue BQ∆ situated in front of the client limit order – placed at the
relative distance ∆. The order queue can be immediately computed within
an observable order book and is expressed directly as a percentage of ADV,
without assuming any functional form.

queue(∆) = BQ∆ (10)

12Alternatively, the book imbalance and the short-term price return can be assessed by
comparing the bid-ask midpoint with the weighted price at a given depth of the order
book as in Cao, Hansch and Wang (2009).
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The opportunity component size(ν) is an increasing function of order size,
always bigger than one because of the exponential. Since order size ν takes
most of the time subunitary values very close to zero, the exponent η should
also be less than one in order to be able to discriminate between the various
order sizes. The intuition behind this penalty is that an outstanding limit
order is associated with a “signaling” risk as well as a “jump-over” effect –
the bigger the order, the more likely other limit orders get placed in front.
Furthermore, a non-executed limit order is expected to be transformed into
a market order at a worse transaction price than the initial one, because the
market is assumed to have moved in an unfavorable direction, i.e. adverse
selection.

size(ν) = exp(νη), (11)

where, in the general case, ν = (1−M)V .

2.3 Order placement strategy

There are a three issues in trying to analytically deal with the optimisation
problem defined in subsection 2.2: (i) in the case of continuous 0 ≤ M ≤ 1
the resulting exponential equation due to (11) can only be solved by apply-
ing the Lambert W function (omega function) or numerical procedures; (ii)
unless a functional form for the order queue effect queue(∆) is assumed, an
analytical solution cannot be derived; (iii) certain polynomial degree restric-
tions with respect to exponents θ and ω need to be made in order to have
unique solutions.

We are willing to partially simplify the minimisation problem in equation
(1) by restricting M to take only binary values 0/1, which corresponds to
choosing only between a market and a limit order for the entire quantity.13

Furthermore, we restrict θ = ω = 2, as there is no need for a higher degree
penalty – any necessary tuning is possible by adjusting the αi and β param-
eters. However, if a functional form for queue(∆) based, for example, on an
average order book shape would be assumed, any connection to the tempo-
ral specific structure of the book would be lost. Therefore, we implement an
iterative numerical procedure for identifying the optimal relative distance ∆∗

of a potential limit order. The implications of these decisions are presented
in the rest of this subsection.

As a consequence of restricting M to binary values, the conditions in the
multi-part cost function (5) can be rewritten and the optimisation problem

13In other words, we do not allow for splitting the execution between market and limit
orders.

10



can be forked.

cost(M,∆) =


imp.sh(M,∆) M = 1 and mk.imp(V ) ≤ σis −BMis,

M = 0 and ∆ ≥ BMis − σis
β imp.sh(M,∆)2/σis elsewhere

(12)

The selection decision between a market or a limit order placed at rela-
tive distance ∆∗ becomes equivalent to choosing the minimum of the follow-
ing three branches: f(M = 1), f(∆∗ ≥ BMis − σis|M = 0) and f(∆∗ <
BMis − σis|M = 0).

I. When M = 1 (market order, negative price change relative to BMis), one
can discriminate between two cases – inside or outside the volatility bands –
depending on the market impact size:

f(M = 1) =

{
BMis + mk.imp(V ) for mk.imp(V ) ≤ σis −BMis

β (BMis + mk.imp(V ))2/σis otherwise

(13)

II. When M = 0 (limit order) and ∆ ≥ BMis − σis (positive price change
or negative price change smaller than the volatility threshold, i.e. inside the
bands – identified in figure 4 with ∆II+ and ∆II−, respectively). Let A =
λu flow(OBI) size(V ). It follows that:

⇒ f(∆|M = 0,∆ ≥ BMis−σis) = BMis−∆+A (α0+α1 dyn(∆)+α2 queue(∆))

(14)

III. When M = 0 (limit order) and ∆ < BMis − σis (negative price change
larger than the volatility threshold, i.e. outside the bands – ∆III in figure 4).
As ∆ > 0, the precondition BMis − σis > 0 must apply.

⇒ f(∆|M = 0,∆ < BMis−σis) = β
(BMis −∆)2

σis
+A (α0+α1 dyn(∆)+α2 queue(∆))

(15)
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Figure 4: Volatility bands for sell orders

In a simulation framework, the non-execution risk function can be based on
the effective order queue component, which takes into account the actual
state of the order book. This queue function increases in steps at random
values because of the probable book gaps and stochastic depth sizes at var-
ious book levels. Thus, the queue function is not derivable and a numerical
procedure has to be implemented. We propose an iterative procedure where
a trajectory of potential solutions ∆i starting at 0 is evaluated step by step
with respect to the objective of minimizing f(∆i|M = 0) and the best candi-
date ∆∗ is stored. Finally, the fitness of the best candidate for a limit order
f(∆∗|M = 0) can be compared to the fitness of a market order f(M = 1)
and the appropriate order type can be chosen.

If the queue effect is temporarily ignored, i.e. α2 = 0, the functional forms
of the cost and risk functions can be exploited with the goal of identifying
a stopping point for the numerical procedure, reached where the derivative
of the fitness function f(∆|M = 0, α2 = 0) is zero.14 Pre-identifying this
critical point also allows for considering a sparser search space, by jumping
from one book level to the next – since the only inflexion point is at the
end of the search interval, all intermediary potential ∆i situated within the
order-book gaps can be ignored. Thus, the stopping point corresponding to
branch (14) is given by:

∂f(∆|M = 0,∆ ≥ BMis − σis, α2 = 0)

∂∆
= −1+2α1A

∆−BMdyn

σdyn
= 0 (16)

⇒ ∆S
1,∆≥BMis−σis = BMdyn +

σdyn
2α1A

(17)

If BMis − σis > 0, the solution corresponding to the third branch (15) is:

∂f(∆|M = 0,∆ < BMis − σis, α2 = 0)

∂∆
= −2 β

BMis −∆

σis
+2α1A

∆−BMdyn

σdyn
= 0

14From a graphical perspective, the slope of the cost function decreases for 0 < ∆ <
BMis − σis and equals the constant −1 for ∆ ≥ BMis − σis. On the other side, the slope
of the risk function increases for ∆ > 0. The inflexion point is situated where the slope of
the adjusted risk equals the absolute value of the cost function slope.
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(18)

⇒ ∆S
2,∆<BMis−σis =

β BMis σdyn + Aα1BMdyn σis
β σdyn + α1Aσis

(19)

3 Market design

Since the main focus of this paper is to analyse the market dynamics gen-
erated by order placement decisions, we simplify the core investment deci-
sion processes and adopt the zero-intelligence paradigm with this respect.
Moreover, as results are mainly benchmarked to Cui and Brabazon (2012)
(henceforth referred to as “CB model”), we try to keep as much as possible
common to their design. Therefore, the “population” structure is minimal-
istic as in Cui and Brabazon (2012), comprising of two agents – a buyer and
a seller – and one market maker. Time is considered to be discrete with a
millisecond granularity, and a single trading session of 8.5 hours corresponds
to 30,600,000 milliseconds. At each millisecond, one of the buyer or seller
agents is picked to trade with probability 1/2. Each agent can choose be-
tween three possible actions: (i) do nothing with probability λo, (ii) submit
a market or a limit order with probability λm + λl, or (iii) cancel the oldest
outstanding limit order with probability λc = 1− λo − λm − λl. Order sizes
are random draws from a log-normal distribution, with the associated gener-
ating function: exp(µsize +σsize rnorm), where µsize and σsize are the location
and scale parameters, and rnorm is a standard normal deviate. Whenever
a side of the order book is empty, the market maker intervenes by filling
it with three random off-spread limit orders, with the relative price drawn
from a distribution with the following random number generating function:

xminoffspr (1− runif)
− 1

1−βoffspr , where xminoffspr and βoffspr are parameters,
and runif is a uniform deviate between zero and one.15 In contrast to the
stochastic cancellation process of agents’ limit order, the market maker’s
limit orders are set to expire in five minutes. This allows them to have a
longer life span then agent’s limit orders, leading to the formation of order
book gaps, i.e blocks of adjacent price levels with missing quotes.

The main difference between the CB model and our model is that we re-
place the random order placement based on statistical distributions with a
microtrading strategy as described in section 2 (therefore, our model will be

15This functional form of the random number generator actually produces values dis-
tributed to 1/x where x ∼ power-law, because of the minus sign in front of the fraction
exponent. As a consequence, xmin acts as an upper bound for the generated sample. The
resulting distribution is discrete because of the tick size and its shape is plotted in figure
6. For comparison, the derivation of a power-law random number generator is provided in
appendix A.
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referred to as “Micro model”). The Micro model adds an extra layer dealing
with order execution, which is separated and independent from the invest-
ment decision. The inputs of this layer are the size and direction of the
order, as well as agent preferences regarding trading urgency, benchmarks
and volatility bands. The current market state – defined by order-book liq-
uidity, short-term price volatility – is also taken into account. The optimised
micro-trading decision consists in generating the ultimate order submitted
to the trading-venue, which can take the form of a market or limit order.

Heterogeneity over the agents’ sense of urgency λu is introduced by drawing,
for each new order, random values from a mixture of two normal distribu-
tions. The two modes correspond to two types of agents, i.e. a patient type
with λu closer to zero and an impatient type with λu around one. An ab-
solute value operator is applied over the random draw to ensure λu ≥ 0.
Additional heterogeneity is provided by the log-normal random order sizes
and the various conditions reflected by the order book.

4 Experimental setup and results

Both the CB and the Micro model are implemented in the same software
framework in order to keep differences to the minimum – actually, the micro-
trading agent is an extension of the original CB trader which overwrites only
the placement decision; everything else, e.g. matching engine, agent pooling,
order cancellation, market making is kept unchanged.

The parameters of the CB implementation have the same values as in Cui and
Brabazon (2012), which are originally computed from a dataset for Barclays
Capital from London Stock Exchange. Even if we have tried to reproduce the
CB model based on its description in Cui and Brabazon (2012), the results
still differ to some extent, e.g. market impact averages are lower in our im-
plementation, so we cannot claim that we actually benchmark to the model
implemented in Cui and Brabazon (2012), but to a similar model using our
own coding.

The Micro model maintains the same parametrisation as in Cui and Brabazon
(2012), where it applies: λo = 0.9847, λm + λl = 0.008, λc = 0.0073,
µsize = 8.2166, σsize = 0.9545, xminoffspr = 0.05, βoffspr = 1.7248, ini-
tial mid-quote price 300.00, initial spread 0.50, tick size 0.01. The remaining
parameters regarding the microtrading strategy are set in order to replicate
the same order type frequencies as the ones generated by the CB model:
4% market orders, 10% in-spread and 86% off-spread limit orders. Also we
have tried to roughly reproduce the stylized facts discussed in the rest of
this section, but no intensive or automated calibration has been pursued.
The chosen set of parameters is: default average daily volume ADV = 77m,
book depth levels N = 3, OBI base µ = 2, size penalty exponent η = 0.8,
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α0 = 0.1, α1 = 0.5, α2 = 0.25, β = 2.5. The parameters of the distribution
mixture associated with the sense of urgency λu are: µ1 = 0.4, σ1 = 0.2,
µ2 = 1.1, σ2 = 0.2, and the probability of drawing from the first normal
is 40%. The two benchmarks BMis = BMdyn are chosen as the exponential
moving average of trading price p̄t = 0.95 p̄t−1+0.05 pt, because this indicator
is more stable than the mid-price, given the low market liquidity. The index
t corresponds to the trade price time series and thus p̄ is updated every new
trade. Similar, the two volatility bands σis = 7 σ̄ from (5) and σdyn = 7.5 σ̄
from (7) are multipliers of the estimated time-varying instant standard devia-
tion computed as σ̄t =

√
0.95 σ̄2

t−1 + 0.05 r2
t , where r is the percentage return.

Both models are run for 30 artificial days, each day with a different random
seed. At the beginning of every day, the model is warmed up for 3,600,000
milliseconds (1 hour). All data, except for the warm-up period, is aggregated
in one dataset and several statistics as well as two stylised facts are inves-
tigated. The “stylized facts”, i.e. empirical regularities exhibited by a wide
range of financial time series, are commonly used to validate ABM designs
and parametrizations. A wide range of stylized facts, both for high-frequency
and aggregated data, are described in the literature, e.g. Cont (2001, 2011),
Daniel (2006), Pacurar (2008), Chen, Chang and Du (2012). The class of in-
traday stylized facts can be associated to transaction data, order book shape
and order flow. In this paper, we have chosen one stylised fact related to limit
orders which states that the distribution of the relative limit prices decays
asymptotically as a power-law, and one associated with market orders which
were found to generate a non-linear concave price impact function of trade
size. No stylised facts related to return or order flow are selected since both
models assume purely random investment decisions and inter-events dura-
tions.

4.1 Emergent properties and determinants of order
placement

In this subsection a list of summary statistics related to trading events and
market dynamics are presented (see table 1). Moreover, we test how the
results are linked to some explanatory measures, as proposed in the mi-
crostructure literature and previously detailed in section 2.

Overall, the Micro model generates a lower number of trades, less trading
volume and a larger average spread than the CB model. These measures have
not been taken into consideration during the modeling and parametrisation
process, and carry no special meaning in discriminating between the two
models. Regarding market maker’s activity, there are fewer interventions
in the Micro model, since an agent is not allowed to send a market order
that would consume the entire book liquidity. In other words, if the order
is greater than the available book depth, the agent decides for a limit order,

15



CB model Micro model
Trades analysis
Average daily volume 76m 62m
Av. daily no. of trades 32,319 25,090
Av. daily no. of cumulated tradesa 17,519 12,088
Av. cumulated trade returnb -2.40e-06 -1.30e-05
Cumulated return variance 7.43e-07 2.15e-03
Quote analysis
Average spread 0.11 0.77
Average percentage spread 0.04% 0.26%
Order types – effective frequencies
Market maker orders 0.77% 0.09%
Agent market orders 3.75% 4.93%
Agent crossing limit orders 3.41% 0.003%
Agent in-spread limit orders 3.23% 10.23%
Agent spread limit orders 32.90% 8.17%
Agent off-spread limit orders 56.71% 76.67%

aTrades initiated by the same order are merged as they belong to the same fill with
multiple counter-party limit orders

bThe resulting price of the cumulated trade is the weighted average price

Table 1: Summary statistics

no matter its aggressiveness. The market maker’s intervention is required
only at the beginning in order to initially fill the order book – three limit
orders on each of the two order book sides – or if one side of the book be-
comes empty due to order cancellation. On the other side, in the CB model,
the market maker intervenes also during trade execution when there is not
enough liquidity to fill an incoming market order. Eventually, the default
market maker spread of 0.5 seems to emerge as a significant level for both
models.

Figure 5 presents the spread binned scatter plot for the first run/day along-
side the spread histogram with the mean value over all 30 runs.16 We can
observe that for the CB model the most common spread value is equal to
0.10, i.e. the minimum possible given the tick size. This explains also the dif-
ferences between the agents’ trading intentions and the ultimate limit order
classification, e.g. when the spread is equal to the tick size, an inside-spread
limit order becomes due to rounding either a crossing or a spread limit order.
Furthermore, the relative price drawn from the power-law distribution can
get rounded to zero because of the tick size, and thus some of the off-spread
limit orders actually become spread limit orders.17

16Observations above the 99th percentile are considered outliers and are discarded in
order for the graphs to zoom better on the data – however no observation is discarded for
analysis purposes. Moreover, the different shapes of the histogram plots are not due to
scaling.

173.41% effective crossing limit orders vs. the model setting of 0.30% are recorded,
3.23% instead of 9.70% in the case of in-spread limit orders, 32.90% instead of 17.00% for
spread limit orders, and 56.71% instead of 72.00% for off-spread limit orders.
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Figure 5: Bid-ask spread

17



In order to establish the relationship between the order type preference and
various order and market factors, we will apply the logit regression in equa-
tion 20,18 where the dependent binary variable is the order type – market or
limit – and the predictor variables are the indicator variable buy/sell, order
size, market tightness, market impact, OBI and instant volatility.

logit(Prob(isLimit = 1)) = β0 + β1 isBuy + β2 size+

β3 spread + β4 percMkImp + β5 obi + β6 vola (20)

The results are presented in table 2 and the coefficients can be interpreted
as the linear impact on the log odds of choosing a limit over a market or-
der (the reference group). The results are statistical significant due to the
very large number of observations (7.34 million). Though, only some results
are in accordance with the findings in the micro-structure literature – or-
der aggressiveness is decreasing in the bid-ask spread, potential price impact
of a market order and short-term volatility –, while others are contradic-
tory – limit orders preference increases with order size, unfavourable overall
supply-demand imbalance and sell orders. It is also to be noted that we have
excluded important factors which we consider to be unobservable in real con-
ditions, e.g. sense of urgency.

Coefficient Estimate Std. Error
(Intercept) −0.016326***a 0.004441
isBuy1 −0.117418*** 0.003825
percSize 5.637183*** 0.200678
percSpread 5.101229*** 0.026782
percMkImp 0.130466*** 0.012100
obi 0.377489*** 0.003180
vola 45.851542*** 0.103838

a*** denotes statistical significance at < 0.001 percent level

Table 2: Logistic regression estimates

4.2 Relative price distribution of the off-spread limit
orders

Zovko and Farmer (2002) define the relative limit price of a limit order δ
as the difference between the limit price and the best quote on the same
side of the market, i.e. the best bid for a buy order and the best ask for a

18Alternatively, we could differentiate between multiple levels of aggressiveness based
also on the limit order price – market, cross, in-spread, spread, off-spread (can further be
split in various intervals) – and use an ordinal logistic regression.
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sell order. Furthermore, the standard procedure introduced in Zovko and
Farmer (2002) takes into consideration only off-spread limit orders, i.e. only
limit orders with positive relative prices (δ > 0), while the rest – crossing,
in-spread and spread – are discarded. The distribution of δ was found to
decay asymptotically as a power-law, meaning that even if most of the limit
orders are concentrated close to the best quotes, there are enough orders
which are priced much less aggressively such that the distribution exhibits
fat-tails. Different values for the characteristic exponent α associated with
the power law probability distribution function p(δ) ∼ δ−α have been com-
puted in the literature: Zovko and Farmer (2002) found α ∼ 1.49 for data
from London Stock Exchange, while Bouchaud, Mézard and Potters (2002)
and Potters and Bouchaud (2003) found α ∼ 1.6 for Euronext and NASDAQ.

Relative price histogram (CB model)
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Figure 6: Relative limit price distribution of the off-spread limit orders
a

aThe bottom-left relative price histogram is zoomed by showing the x-axis up to the
99th percentile.

In the Micro model case, the power-law tail of the relative limit price distri-
bution can graphically be assessed by the approximately linear shape of the
Zipf plot on a log-log scale.19 We have also estimated the distribution expo-

19Plot the complementary cumulative distribution function of the ordered variable,
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nent α̂ = 1.66 for xmin set to 0.5, using the R package ‘poweRlaw’ which
was developed based on the Santa Fe Institute recommendations.20 A key
role in replicating this stylised fact is played by the bimodal distribution of
urgency coefficients λu, which allows for a number of passive limit orders with
no chance of immediate execution to be sent to market by agents with low
risk aversion. Otherwise, these passive orders could be the result of differ-
ent agent’s evaluations or strategies, e.g. fundamentalists could place orders
away from the current trading price, but no investment process is considered
in the current model.

4.3 Market price impact

Market impact reflects the relationship between market order size and price
impact, captured by the shift between the pre-trade and post-trade market
equilibrium. Lillo, Farmer and Mantegna (2002, 2003) provide a method
for computing the average market impact. Firstly, trades with the same
time-stamp are aggregated and treated as a single transaction, as these are
assumed to be part of a single market order which is matched against several
outstanding limit orders. The market impact associated with each transac-
tion is reflected by the difference in the logarithmic mid-quote price. Origi-
nally, the transaction size was measured in dollars, but we adopt the approach
from Cui and Brabazon (2012) where the size of the market order is relative
to the total daily trading volume. Finally, the data is divided into ten bins
based on order size and the average price impact of each bin is computed.
We also remove the upper outliers with respect to order size using a modified
interquartile range rule,21 otherwise the number of observations in the higher
bins would be very low if not zero.

A functional form of the market price impact is provided in the literature
– Lillo et al. (2002, 2003) and Plerou, Gopikrishnan, Gabaix and Stanley
(2002) consider the empirical market impact function for trade by trade data
to be a power function of order size η νγ, with exponent γ taking values
between 0.2 and 0.6 for different stocks.22 This functional form is only an
average property of the entire market. Since the order timing process is not
observable and also not completely random – we can assume at least some
intelligent trading taking into consideration available market liquidity – we

rev(cumsum(1/N)), where N is the total number of observation.
20The estimation is highly sensitive to the value of the xmin parameter. Thus, ˆxmin

estimated using the package functions gives 314.38, for which the estimated α̂ is 2.0.
21The suspected outliers are all observations greater than the 99th percentile plus 1.5

times the interquartile range given by the difference between the third and the first quartile.
The rule discards only 0.75% observations in the CB model and 0.65% in the Micro model.

22Other studies have analysed the market impact on different time scales, by aggregating
orders over time intervals of 5 or 15 minutes, as in Plerou et al. (2002) and Weber and
Rosenow (2005), or by looking at the delayed price impact after 30 minutes as in Hopman
(2007). The estimated exponent is slightly larger than in the case of tick by tick data and
ranges from 0.33 to 0.75.
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are confronted with an endogeneity issue which does not allow for the iden-
tification of the “true” relationship between order size and market impact
only by analysing historical transaction data. Moreover, if the unconditional
impact function would be concave, there would be no incentive to split a
large order, as the total market impact of the smaller trades would be larger
than the initial impact. Actually, Weber and Rosenow (2005) found that
a virtual price impact function – computed by inverting the available order
book depth as a function of return – is convex and is increasing faster than
the concave average price impact function associated with effective market
orders. Still, the overall average market impact represents a stylised fact
which should emerge in a market with rational trading agents.

The average market impact computed on binned data – as in the standard
procedure described previously – is depicted in the left plots of figure 7. In
order to identify the relation with respect to the normalised order size, we
estimate the coefficients of the power function β1 v

β2 using nonlinear least
squares. The results presented in table 3 show a convex market impact func-
tion for the CB model, which is in line with the instantaneous price impact
of Weber and Rosenow (2005) expected for randomly timed trading. On the
other side, the Micro model function is concave with an exponent β2 = 0.67,
statistically significant different from zero and one.23 The result is slightly
larger than the empirical exponent levels found in the interval 0.2 - 0.6, and
this can be explained by the lack of a thoroughly automated calibration, on
one side, and by the major simplifications with respect to the investment
process, on another side. Since the sample size for the binned data is very
small, we repeat the estimations on all available data, but the results are
not very different.24 Both the individual as well as the average market im-
pact are smaller in the Micro model, which can be explained by the selective
trading strategy pursued by the agents aware of their market impact. This
results is also in accordance with Weber and Rosenow (2005) who found that
the virtual price impact is more than four times stronger than the actual one.

The right panels of figure 7 show a scatter plot (hexagonal binned) of the
market impact for all transactions, as well as the fitted market impact func-
tion. In the CB model case, we observe that the data on the market impact
axis is slightly bimodal, which raises the question of the validity of the mean
estimate – even if the relative weight of the upper mode is very low. The
mode around 0.001 is caused by the market maker’s intervention to prevent
the order book from getting empty – even during executing of transactions
– and resetting the bid-ask spread to its default value.25

23We have tested the restriction β2 = 1 using the likelihood-ratio test.
24We have also tried to discriminate between buy and sell initiated transactions, but

found no difference.
25The largest possible mid-quote difference after the intervention of a market maker is

0.27, determined by half of the spread expansion from a minimum of 0.01 to the market
maker default 0.50 plus the range of the limit order power law distribution 0.05. When this
shift is centred around the default price 300.00, the expected maximum market impact is
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CB model Micro model
Market order percentage size
min, max 6.98e-06, 1.14e-01 2.91e-05, 6.91e-02
50%Q, 75%Q 4.41e-03, 1.08e-02 4.51e-03, 9.39e-03
Bin size 0.0114 0.0069
Av. market impact range
min, max 7.3e-06, 3.8e-04 7.3e-06, 5.5e-05
Power function estimates and standard errors for binned data
β1 6.54e-03**a (1.72e-03) 3.43e-04*** (2.75e-05)
β2 1.25e+00*** (1.06e-01) 6.69e-01*** (2.56e-02)
Market impact range
min, max 0.00, 0.0103 0.00, 0.0014
Power function estimates and standard errors for all data
β1 5.92e-03*** (1.80e-04) 3.22e-04*** (7.21e-06)
β2 1.21e+00*** (1.02e-02) 6.48e-01*** (5.30e-03)

a*** and ** denote statistical significance at < 0.001 and the 0.001 percent levels,
respectively.

Table 3: Market impact measures

5 Conclusion and outlook

We have modeled the agent’s order placement decision as an optimisation
problem which minimizes the risk adjusted execution cost, taking into con-
sideration various micro-structure factors – such as order book liquidity, order
flow proxied by the order book imbalance and transient volatility –, as well
as intrinsic agents characteristics – such as the sense of urgency. We have
derived an order submission strategy based on an iterative numerical pro-
cedure which allows for the efficient identification of the potential optimal
limit price, taking into account the effective state of the order book. Next,
we have integrated the order submission model into a zero-intelligence agent
based model. Thus, we were able to assess the impact of replacing the orig-
inal random order placement by the micro-trading strategy, with respect to
two high-frequency stylised facts. Our model has successfully reproduced the
power-law tail of the relative price distribution of off-spread limit orders, even
if there is no explicit power-law component assumed and hard-coded into the
agents’ design – thus it can be considered an emergent property. Regarding
market orders, both the binned-average price impact as well as the indi-
vidual price impact functions exhibit a concave shape – a trace of rational
selective trading. On the opposite, in the absence of any intelligent trading
decision, the expected market price impact shape is convex – confirmed by
the results obtained with the alternative zero-intelligence agent based model.

Both the order submission model as well as the agent based model have some
limitations which could be tackled in future implementations. The invest-

given by ln(300.14)− ln(299.87) = 8.99e-4.
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Figure 7: Market price impact
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ment process is purely random and there is no relationship between agents’
type and/or wealth with order sizes – usually volumes are correlated with
strategy time-frame – or with risk aversion and trading urgency, respectively.
The implementation of various missing model components could lead on the
other side to relaxing some of the current model assumptions, e.g. the bi-
modal distribution of urgency coefficients could be replaced with a simpler
distribution if heterogeneity is introduced into the model through modeling
the investment decision. Moreover, no learning component is implemented.
On one side, because of the short running time span of a single trading day,
we can reasonably assume constant micro-trading strategies during the trad-
ing session. On the other side, agents do not adapt/react to the current
market conditions in order to exploit them and, as consequence, market con-
ditions do not change over time.

Several other stylised facts related to order book shape could be analysed,
e.g. order book gaps. Also, even if the investment process is stochastic, some
stylised facts related to price returns or order flow might emerge. More in-
teresting would be the analysis of possible feedback loops related to price
volatility and order book imbalance. Moreover, model calibration encom-
passing both the estimation of parameters as well as the choice of individual
components, with the objective of better fitting various behavioural aspects,
could be pursued.

The order placement model can be extended by taking into consideration
other factors, e.g. intraday market trend, time of day, available trading time,
prior order aggressiveness based on trading events clustering. Moreover, the
market model can be enriched by adding other high-tech trading strategies
such as algorithmic trading or high-frequency trading. We underline that,
within the current model, the new computer-based strategies would interact
with a market whose intraday dynamics is a little more similar to real mar-
kets than the dynamics generated by random placement decisions.
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A Power-law random numbers generator

• Power-law pdf:

P (X = x) = fX(x) = C x−α

- α = k + 1 > 1 is the exponent of the power-law distribution, while k is
known as the tail index (Pareto shape parameter)26

- C = (α− 1)xα−1
m is a normalizing constant

FX(x) =

x∫
xm

fx(x
′) dx′ =

x∫
xm

C x′−αdx′

=
C

−α + 1
x′−α+1

∣∣x
xm

=
(α− 1)xα−1

m

1− α
x′1−α

∣∣x
xm

= −
(xm
x′

)α−1
∣∣∣∣x
xm

= −
(xm
x

)α−1

+

(
xm
xm

)α−1

= 1−
(xm
x

)α−1

∞∫
xm

fx(x
′) dx′ =

∞∫
xm

C x′−αdx′ = −
(
xm
x′

)α−1
∣∣∣x
∞

= −
(
xm
∞

)α−1
+
(
xm
xm

)α−1

= 1

• Power-law random number generator

Let y a uniform distributed random variable in [0, 1]:

FX(x) = 1− xα−1
m

x1−α = y

⇔ x1−α =
1− y
xα−1
m

⇔ x =
(
(1− y)x1−α

m

) 1
1−α = xm (1− y)

1
1−α

⇒ F−1
X (x) = xm (1− x)

1
1−α is distributed as fX(x).

In the case of x ∈ [xm, xM ], xm and xM define the range of the distribution:

26The correspondence is well explained in
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
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xM∫
xm

C x′−αdx′ =
C

−α + 1
x′−α+1

∣∣xM
xm

= 1

⇔ C =
1− α

x1−α
M − x1−α

m

⇒ FX(x) =

x∫
xm

C x′−αdx′ =
C

−α + 1
x′−α+1

∣∣x
xm

=
x1−α − x1−α

m

x1−α
M − x1−α

m

= y

⇔ x =
[

(x1−α
M − x1−α

m ) y + x1−α
m

] 1
1−α

⇒ F−1
X (x) =

[
(x1−α

M − x1−α
m )x+ x1−α

m

] 1
1−α
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Figure 8: Power law distributions by simulation: lower-bounded xm = 0.5,
α = 1.7 (left); lower- and upper-bounded xm = 0.05, xM = 1.5, α = 1.4
(right)
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