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1 Introduction

Agent-based modeling (ABM1) basically stands for bottom-up modeling, i.e.
instead of directly modeling the global outcome, the focus is shifted towards
the individual agents and on the interactions between them, which subse-
quently lead to the emergence of collective behaviour. By this description of
ABM, one can see that ABM might also be interpreted as a computational
model suitable for describing complex systems. In the field of economics, this
modeling framework is also known as Agent-based Computational Economics
or Complexity Economics (see, e.g., Tesfatsion (2001), Arthur (2014)).

ABM has been applied in various fields of research where complex systems
are involved, ranging from natural phenomena (e.g., ecological systems as in
Reuter, Breckling and Jopp (2011)) to socio-economical systems (see, e.g.,
the contributions in LeBaron and Winker (2008) for some examples). This
contribution focuses on applications to financial markets, but the approach
taken might be useful also in other fields.

Reviewing the literature on ABM in the financial markets context allows
to identify two slightly different lines of research. The first one, which covers
most of the existing studies, views ABM as a tool for testing abstract ideas or
thought experiments by means of computer-based simulations. Such ABM
are usually evaluated only qualitatively, if at all, e.g., by examining their
ability to replicate some of the so-called “stylized facts” of financial markets
(Cont, 2001; Winker and Jeleskovic, 2006; Winker and Jeleskovic, 2007).
The second line takes a more quantitative (econometrical) approach and
tackles calibration to real data (Winker, Gilli and Jeleskovic, 2007) or even
forecasting.

A calibration procedure – in the sense of parameter estimation – repre-
sents a relevant step in order to fit a model to a specific time series. However,
given the uncertainty about the most adequate model, choosing parameter
values alone is not sufficient. It has to interact with a further step, namely
taking into account also the model specification, i.e. a model selection pro-
cedure. A first example is provided by Winker et al. (2007) who rejected
the model proposed by Kirman (1991, 1993) for exchange rate data under
the assumption of a constant fundamental value. The rejection was based on
an objective function comparing properties of real and simulated data. The
minimum obtained for this objective function was tested against the boot-
strap distribution for the real data. Winker et al. (2007) also rejected the
model suggested by Lux and Marchesi (2000). A further example is provided
by Fabretti (2013) who set up an optimization problem for the ABM pro-
posed by Farmer and Joshi (2002) using the objective function introduced
by Winker et al. (2007) and, both a Nelder-Mead with Threshold Accepting,
as well as a Genetic Algorithm heuristic. After fitting the model parame-
ters and comparing the (optimized) simulated time series properties with the
ones of real data, the authors conclude that the replication is not completely

1We will also use the acronym ABM for agent based models.
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satisfactory, which is attributed to the design of the model itself.

Model design is still quite an open problem in ABM. In the last two
decades, a substantial number of ABM for financial markets have been pro-
posed following quite different approaches. This diversity might be explained
by the interdisciplinary character of ABM and, consequently, researchers with
a different modeling background. Chen (2012) provides a historical perspec-
tive on the different lines of research in agent-based computational economics.
Moreover, several surveys review the most prominent milestones of this devel-
opment, e.g., LeBaron (2000), Tesfatsion (2001), Hommes (2006), LeBaron
(2006), Lux (2009), Chiarella, Dieci and He (2009), Hommes and Wagener
(2009), Cristelli, Pietronero and Zaccaria (2011), Iori and Porter (2012).

However, a commonly agreed upon set of “core concepts” is still missing,
and also the issue of discriminating between various models has not been
completely solved. Chen, Chang and Du (2012) propose an ABM taxonomy
and order the different types of models with respect to their complexity.2

According to the authors, there are essentially two main design classes of
financial agents in ABM of financial markets: the N-type design and the
autonomous-agent (AA) design.

Within the first class, agents have either a behavioral forecasting rule,
such as fundamentalists and chartists, or follow a more loosely-typed rule
described by general – linear or non-linear – functions. The adaption strategy
consists in a herding or a probabilistic switching mechanism. This class spans
from few-type to many-type agents. Intuitively, the few-type models are
considered less complex than the many-type models because of their limited
heterogeneity.

On the other side, the autonomous-adaptive agents are associated with a
more complex learning algorithm, such as a Genetic Algorithm (GA) or Ge-
netic Programming (GP), which does not only change the agents’ behavior
by choosing between predetermined strategies, but also creates new, some-
times improved, trading rules. Again intuitively, this class is considered to be
more complex than the N-type design, as the learning mechanism is able to
generate a more heterogeneous population, which enables to search through
a larger space of forecasting functions.

Chen et al. (2012) classify 50 ABM with respect to their type (class
membership: 2-type, 3-type, many-type, AA) and analyzes to what extent
the type has an impact on the capability to replicate stylized facts. The
authors find no significant evidence in favor of more complex design models
having higher explanatory power (explaining more stylized facts).3 From our
perspective, it is interesting that Chen et al. (2012) define the concept of com-
plexity for an ABM class as the degree of agents’ heterogeneity (diversity).

2It should be noted that the term “complexity” is used here in a quite general mean-
ing. We come back to the question which concepts and measures of complexity might be
adequate in the context of ABM in Section 3.

3It is also to be noted that the results are based on original reported data and not
every ABM approach refers to the same list of stylized facts.
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Though, this heterogeneity is not independent of the learning algorithm.

Following a different approach, Westerhoff (2009) considers the “level”
of building blocks of ABM in order to find explanations for their ability to
replicate stylized facts. The author tweaks around with different parametric
forms and with stochastic factors of the agents’ trading rules, of the strategy
selection mechanism, as well as of the price impact function, which defines
the price adjustment process. He finds that the underlying structure of the
endogenous dynamics is a result of the non-linear (deterministic or stochastic)
interactions between positive and negative feedback rules.

Our research question is how size and complexity of an ABM can be
defined at the conceptual level, and how it actually could be measured.
Thereby, we have to take into account that from the perspective of a com-
plex system, at least two dimensions have to be distinguished: The size of
the model itself (number of components, parameters, description length, non-
linearity etc.) and the emergent complexity resulting from the aggregation of
individual behavior in an ABM. We might consider the first approach as the
more conventional input oriented definition of complexity, while the second
one is focusing more on the qualitative properties of the resulting dynamics.

We will start by identifying the main building blocks of typical ABM for
financial markets in Section 2. In the following Section 3, we will discuss
some facets of complexity and how they could be accommodated with ABM.
The approach is illustrated with an example of the foreign exchange market
in Section 4. Section 5 concludes and provides an outlook to further research.

2 Building Blocks of Agent Based Models of

Financial Markets

Generally, an ABM consists of interacting adaptive agents. In the case of
ABM for financial markets, the agents play the role of traders and their in-
teractions might be direct, implemented by various social learning processes,
or indirect, represented by individual evolution strategies centred around the
endogenous market price (trading demand interaction). In this section, we
will describe in more details the three main building blocks, i.e. the agent
itself, the evolution/learning and the price discovery mechanisms.

2.1 Agent design

The agent is equipped with one or several trading strategies, which trans-
form information input into conditional expectations about the future price
or return. Actually, deriving beliefs is the main component of the agent’s
bounded rationality, and the heterogeneity of agents’ expectations is one of
the pillars of ABM. In a second step, the investment decision, i.e. the trading
demand is derived by taking into consideration risk preferences or portfolio

3



selection models. In the case of intraday ABM, when individual trades are
modeled, it is also important how agents actually trade, i.e. the assumptions
about order execution.

The simplest and maybe the earliest trading strategy used in ABM is the
random behavior or zero-intelligence (ZI) strategy. ZI agents can be gener-
alized as in Gode and Sunder (1993) to ZI-constrained (ZIC) traders, which
are subject to some constraints, e.g., resource or bankruptcy restrictions, or
as in Cliff and Bruten (1997) to ZI-plus (ZIP), i.e. profit motivated traders.
The class of ZI strategies represents an important reference to which more
complex ABM can be benchmarked and is also used in order to evaluate
other ABM components such as the institutional or market design (price
discovery).

More structure is added by means of parametric forecasting rules. These
mathematical models vary in shape as well as in size, e.g., with regard to
the number of parameters and information variables.4 Some functions corre-
spond to stylized implementations of rule-governed trading strategies, which
mimic human behavior. The standard chartist-fundamentalist dichotomy,
backed by empirical evidence provided in survey studies, e.g., by Frankel and
Froot (1987), was implemented since the early developments of ABM, e.g.,
Kirman (1991, 1993). Fundamentalists – also called “value investors” – build
their expectations about future prices upon assets’ fundamentals, which are
cumulatively reflected by a fundamental value. They believe that, in the long
run, the market price should converge to this intrinsic value. Consequently,
they buy undervalued and sell overvalued assets.5 On the other side, techni-
cal traders create trading rules that extrapolate observed price patterns. A
particular kind of technical traders are the trend followers, who believe that
price changes have inertia also known as momentum. This kind of strategy
adds a positive feedback to the dynamics of financial markets, and may be
destabilizing. Another type of chartists known as contrarians, rely on rever-
sal price formations and thus contribute a negative feedback on the market
price.

Within the type of non-parametric forecasting rule, we can mention the
condition classifier proposed by Palmer, Arthur, Holland, LeBaron and Tayler
(1994), Arthur, Holland, LeBaron, Palmer and Tayler (1997), and LeBaron,
Arthur and Palmer (1999), which is a non-continuous, piece-wise linear fore-
casting rule. Also, Chen and Yeh (2001) have implemented agents based on
genetic programming trees (GPT). The authors are thus able to define the
complexity of the forecasting model based on the number of nodes or based
on the depth of the tree. These designs are strongly related to evolutionary
algorithms – genetic algorithms (GA) and genetic programming (GP) – ap-

4Usually, one of the factors is stochastic in order to reflect missing information or
uncertainty about the strategy. It also introduces some heterogeneity of agents’ behavior.

5The fundamental value can be perceived by the agents without or with errors. For
example, in Fischer and Riedler (2014), evaluation errors persist only for a limited time,
as agents will eventually become aware and correct them.
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plied in order to adapt and evolve agents’ trading strategies, as discussed in
the following Subsection 2.2.

With respect to their risk awareness, agents can be assumed to be ei-
ther risk neutral (only aiming at maximizing their profits), or risk averse,
i.e. determining their optimal portfolio composition by trading-off expected
return against expected risk. In the later case, the asset demand function is
usually computed in the framework of expected utility maximisation. Under
constant absolute risk aversion (CARA), the optimal position in the risky
asset the agent wishes to hold is independent of wealth. On the other side,
the constant relative risk aversion (CRRA) computes the proportion of total
wealth the agent wants to invest in the risky asset in the up-coming period.
Thus, in this setting, the demand for the risky assets will increase with wealth
in a linear way.

Most ABM ignore the agents’ individual wealth in computing the asset
demand and rely mainly on the expected return. By including the wealth
component into the model, an agent’s demand becomes restricted also by
her current wealth, which might add to the heterogeneity of agents in the
model and also introduces an extra feedback loop – when balance sheets are
marked to market, prices directly affect a trader’s wealth, which in turn has
an impact on the trader’s ability to influence future prices (see, e.g., Fischer
and Riedler (2014)).

2.2 Evolution and Learning

It is possible to differentiate between two main approaches for strategy se-
lection, which correspond to the two directions of building ABM identified
by Chen et al. (2012). In the first approach, which might be labeled as herd-
ing, a switching mechanism is implemented, which allows agents over time to
change their type out of a set of two or more (N -type) options corresponding
to alternative strategies. The second approach consists in inductive learning,
which is related to computational models of autonomous agents.

Within the group of switching mechanisms, a further distinction can be
made between two different types of switching methods. The first one, i.e.
probabilistic switching, is purely stochastic and describes herding behavior
by recruitment or opinion formation driven by the social pressure of the
majority. For example, Kirman (1991, 1993), proposes a mechanism where
agents meet at random and the first is converted to the second one’s view
with a given probability; there also exists a small probability that the first
agent will change his opinion independently. The second type is represented
by the case of evolutionary switching. In this setting, the switching proba-
bilities which determine whether the agent sticks to or changes her strategy
are not constant any more, but depend on the recent relative performance
of the strategies. In Brock and Hommes (1997, 1998), the evolutionary se-
lection of trading strategies is given by the multinomial logit probabilities
from a discrete choice model. Under the switching paradigm, agents are not
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fully heterogeneous as they randomly choose from the same distribution of
potential strategies. In other words, Chen et al. (2012) point out that, under
this paradigm, “all agents are homogeneous ex ante, but heterogeneous ex
post”.

For the second approach, random initialized strategies are updated by
means of an evolutionary algorithm. Individual learning might be considered
to be a more realistic type of evolution, as agents’ strategies are typically
not observable in reality and, thus, direct interaction and imitation between
different agents cannot always be assumed. Instead, agents can only observe
the final outcome, i.e. the price endogenously driven by all of the agents’
expectations and their resulting decisions,6 and learn only from their own
experience. A typical implementation of inductive learning is given by the
Santa Fe Institute Artificial Stock Market (SFI-ASM), described in Palmer
et al. (1994), Arthur et al. (1997), and LeBaron et al. (1999). In this model,
a multi-population GA is run within each agent.7 A different approach which
implements a single-population GP is proposed by Chen and Yeh (2001).8

Alternatively to the concept of individual learning, social learning assumes
direct interaction between the agents and is usually implemented by applying
a single-population GA/GP directly over the entire population of market
participants.

The search incentive, i.e. the agent’s decision to change her current strat-
egy, can also be modeled in an explicit way. In Chen and Yeh (2002) it is
the result of a two-stage independent Bernoulli experiment, with the suc-
cess/failure probabilities depending on the peer pressure (a rank of traders’
performance) and on the self-pressure (individual progress over the last pe-
riod of time). Alternatively, Fischer and Riedler (2014) model the probability
that the agent sticks to her current strategy with a binary-choice model, by
comparing a measure of individual profit to a benchmark representing the
average of all agents’ profitability measures.

2.3 Price discovery

Traditional ABM focus on trading at a low (daily) frequency and the price
discovery mechanism resemble call auctions, where trading orders are batched
together and executed at the same price and at the same time.9 The new

6Arthur et al. (1997) underline this reflexive nature of the market, where agents’ ex-
pectations co-evolve in a world they co-create.

7Each agent has at her disposal a set of strategies which is continuously evaluated –
even if the rule was not actually executed, but would have been a valid selection based on
its condition classifier part – and updated at random times by replacing a subset of the
agent’s worst rules with new ones generated by crossing-over and mutating a selection of
its own best rules.

8A population of new trading rules is evolved by means of GP within a distinct “school-
ing” component, which is visited from time to time by underperforming single strategy
holding agents.

9Alternatively, in the case of intraday ABM, a continuous market is implemented where
trading demand is disclosed asynchronously and orders are matched by means of a limit
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market equilibrium price is updated usually through a market impact func-
tion (e.g., Lux (1995, 1998), Lux and Marchesi (1999, 2000), Chen and Yeh
(2001, 2002), Farmer and Joshi (2002), Westerhoff (2009, 2010)) or by Wal-
rasian tâtonnement (e.g., Arthur et al. (1997), Brock and Hommes (1997),
Fischer and Riedler (2014)). In the former case, the price change is a function
of the aggregate excess demand. This function varies in shape and can be
interpreted as the speed of price adjustment. The excess demand is assumed
to be cleared by the market maker at the new adjusted price. The latter,
i.e. the Walrasian tâtonnement procedure, identifies by means of numerical
analysis an equilibrium where there is no excess demand and all agents trade
at this clearing price.

3 Complexity of Agent Based Models

When comparing alternative models, a standard approach consists in con-
sidering two aspects. First, one analyzes to what extent the model is able
to describe those features of the analyzed objects the researcher is most in-
terested in. In an ABM context this might be idealized properties, e.g.,
endogenous creation of bubbles, or features related to real data, e.g., gener-
ating stylized facts or even well fitting – in an econometric sense – selected
statistical moments of the data. Second, the principle of parsimony suggests
to prefer a “small” model to a larger one if both exhibit the same degree
of fit. In a typical linear econometric model, the “size” of a model can be
described by the number of parameters to be estimated. Then, information
criteria such as the ones suggested by Akaike (1974), Schwarz et al. (1978)
and Hannan and Quinn (1979) are well established tools for analyzing the
trade-off between good description and parsimony (Haughton, 1991).

It turns out that in the framework of ABM for both aspects of model
evaluation, i.e. quality of description and complexity, there do not seem to
exist concepts which are generally agreed upon let alone broadly applied.
Gilli and Winker (2003) and Winker et al. (2007) introduced the idea of
simulated method of moments for the evaluation of ABM in applications to
financial markets. Although it is still an open issue which moments should
be taken into account, this and similar approaches are used more routinely
over the last few years (see, e.g., Franke (2009), Fabretti (2013), Grazzini
and Richiardi (2015)). While this might provide an answer to the first issue,
namely measuring descriptive quality or fit, a standardized answer to the
second question, namely on how to measure the complexity of an agent based
model, seems to be still far off. We do not claim to provide a conclusive
answer to this issue. Rather do we try to pave the way for a discussion of

order book at various prices (see, e.g., Chiarella and Iori (2002), Daniel (2006), Chiarella,
Iori and Perelló (2009), Mandes (Forthcoming)). As a consequence, transactions do not
take place only at the global equilibrium price. However, this higher-frequency framework
deals with a finer level of details which are not within the scope of market features we
want to capture in this paper.

7



what “complexity” could mean for an ABM, which eventually might result
in an accord on how to measure complexity of an ABM.

In the case of ABM, or more generally of complex systems, the topic is
not trivial given that there does not exist any unified definition, let alone
standardized measures of complexity as concepts of complexity depend on
the specific context. Lloyd (2001) has collected a list of concepts and mea-
sures of complexity used in quite diverse settings. He identifies three different
dimensions that researchers have used in order to quantify complexity: dif-
ficulty of description, difficulty of creation, and degree of organization. In
the following subsections, we try to organize our discussion of complexity of
ABM along these dimensions.

3.1 Difficulty of Description

Difficulty of description refers to the model. In the setting of a linear regres-
sion model, such a measure would be the number of parameters. Obviously,
the model

yt = α0 + α1x1,t + α2x2,t + εt (1)

is more difficult to describe than

yt = α0 + α1x1,t + εt . (2)

However, considering a further, non-linear model

yt = α0 + α1x
α2
1,t + εt , (3)

the ranking, e.g., between model (1) and (3), does not seem to be as obvious
any more. Nevertheless, the use of the number of parameters to be estimated
is common in the context of information criteria also for non-linear settings
(Nakamura, Judd, Mees and Small, 2006). Therefore, we will also include
this standard measure of difficulty of description as one option for describing
ABM complexity keeping in mind its limitations with regard to highly non-
linear processes. We will label this measure by C#P , complexity according to
the number of parameters.

A related measure of difficulty of description could take into account the
effort needed to describe the actual proceeding of an ABM. When making
use of a standard description language, e.g., based on ideas of a Turing
machine, the length of the shortest algorithm describing the model might be
a sensible measure (for an introduction in standard computational complexity
see, e.g., Du and Ko (2014)). Based on this measure, model (3) would exhibit
a substantially higher complexity compared to model (1). Unfortunately,
deriving the complexity of an ABM in this sense, is a highly complex task
by its own. First, typically, ABM are implemented in some higher level
language. Thus, statements in this language would have been to recorded in
the standard description language also taking into account components used
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from external libraries, e.g., random number generators. Second, even the
length of such a machine level code would represent only an upper bound for
the actual complexity. In addition, a lower bound is required, which is an
even more demanding challenge.

Therefore, we will rely in our analysis on a crude method, which is only
an approximation to an upper bound, namely the length of the code used for
the ABM. When using higher order programming languages, the comparison
has to be based on the same language for alternative models, ideally using
similar conventions for naming of variables and functions, inclusion of exter-
nal libraries etc. Furthermore, comments in the code as well as parts of the
code dealing with result presentation etc. have to be removed prior to ob-
taining the approximation. Despite of these limitations, we will also consider
this crude approximation of relative difficulty of description and denote it by
Ccode.

Alternatively, software complexity metrics, created for development and
testing purposes, could be used. The cyclomatic complexity number is an
example of such a quantitative measure. It is based on the number of lin-
early independent execution paths through a program’s source code, i.e. each
function or method has a complexity of one plus one for each branch state-
ment such as if, else, for, foreach, while, case in a switch block or catch or
except statement in a try block (for details see McCabe (1976), Watson, Mc-
Cabe and Wallace (1996), Rosenberg (1998)).10 When a project has multiple
source files, both a maximum and an average cyclomatic complexity met-
ric can be reported, further denoted by Ccyc−max and Ccyc−av. Similarly, the
maximum block depth, i.e. the maximum nested block depth level found,11

and the average block depth, i.e. the average nested block depth weighted by
depth, can be computed – further labeled by Cdepth−max and Cdepth−av.

3.2 Difficulty of Creation

Difficulty of creation measures what it takes to generate the outcome of a
model. In the context of ABM for financial markets, such a measure could
be the computational time needed to generate, e.g., an aggregate price time
series of a given frequency and length. Obviously, in order to make such
a concept operational for the comparison of several models, one has to run
all of them in an identical setting (software, operating system, hardware).12

Furthermore, run time might depend on parameter values, seeds of random

10A complexity count is added for each logical connective operator and and or within
logical statements. Also, conditional expressions using the ternary operator ?: add one
count to the complexity total.

11At the start of each file the block level is zero and the block depth grows with each
execution control statements such as if, case and while.

12One way to achieve such a standardization consists in considering Flops instead of
time. Given that this might not be feasible in practice, counting the counts to procedures,
functions etc. might provide a way to obtain more reliable lower bounds for this type of
computational complexity.
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number generators or the status of other routine operations of the computer
in the background. In particular, for some parameter settings, the behavior
of the model might become more chaotic resulting in a higher computational
load. Therefore, the evaluation of run time should be performed either for
a set of relevant parameter values and several random seeds or for those
parameter values which are the result of an optimization step.

Finally, we have to take into account that this empirical measure of run-
time for a specific model provides only an upper bound to the actual difficulty
of creation, as the model might be implemented in a more efficient way re-
ducing computational time substantially. Given that obtaining an accurate
measure of the minimum computational time required to generate a model’s
output is a difficult task similar to the one of algorithmic complexity de-
scribed in the previous subsection, we will have to stick to a rather heuristic
approximation of the upper bound as provided by timing tools. We will de-
note this measure of complexity by Ctime. Similarly, a measure regarding the
memory storage requirements can be defined, henceforth labeled Cspace.

3.3 Degree of Organization

A potential downside of the measures introduced so far is that they focus
only on static (quantitative) dimensions of an ABM. It might be challenged
whether these are sufficient to account for the non-linear interactions which
lead to unpredictable collective behavior or for the continuous evolution of
agents due to the learning process. In other words, two ABM of equal size,
e.g., number of parameters, might be capable of generating different poten-
tial outcomes because of the way how the building blocks are connected.
This aspect is addressed by measures of the degree of organization, which
puts emphasis on the amount of exchange between the components of the
model. For an ABM, e.g., by design only, the degree of organization might be
considered to be higher, if there is direct interaction between agents than if
interaction takes place exclusively over the market price. It becomes obvious,
that all these dimensions focus more on the architecture of the model, i.e.
its structural relations, than on its output, i.e. the type of (global) dynamics
generated by the model.

Since many ABM implement a learning mechanism (as described in Sub-
section 2.2), we could also look at the emergence of self-organisation which,
alongside adaptiveness, is a key feature of complex systems. This layer can be
considered as being intermediary between the static blueprint of the model
and its final output, e.g., the price time series. From an organic point of view,
an ABM can be seen as an information processing mechanism with the final
goal of providing efficiency – a market price in line with the fundamentals
– under bounded rationality, as well as trading liquidity. In its dynamics,
new information is being handled at every time step. Besides the obvious ex-
ogenous shocks, e.g., changes in the fundamental price, one can also identify
an internal (endogenous) source of information represented by the current
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agents’ wealth and strategies. These structures actually act as a memory
component, which is storing information describing the current state of the
market, is being updated at each simulation step and constitutes a prior for
the next steps. We argue that how these internal distributions evolve could
be considered as a more qualitative trace of the complexity of ABM, reflect-
ing also the latent features of the system, such as feedback loops, which are
difficult to be identified and measured otherwise.

On one side, a higher degree of agents heterogeneity – captured quantita-
tively by Cspace – corresponds to a bigger storage capacity,13 but this is not a
sufficient condition to reckon a more “capable” system, as the latent informa-
tion should also be fructified in a meaningful way. The patterns of how these
middle-layer distributions change are key. One can distinguish between two
extremes, i.e. regularity (periodicity) and randomness, both corresponding
to simple behavior. According to Mitchell (2009), “complexity” is related to
a combination between order and randomness. More precisely, a complex en-
tity can neither be too ordered, nor too random, and its effective complexity
is represented by the amount of information contained in its regularities.

The approximate entropy ApEn(m, r), defined in Pincus, Gladstone and
Ehrenkranz (1991) and Pincus (1991), is a model-independent statistic which
quantifies the amount of sequential regularity and can potentially discrim-
inate between classes of systems, e.g., periodic, deterministic chaotic and
stochastic. The two parameters which need to be specified stand for the block
length m and the tolerance window r.14 The ApEn algorithm computes a
nonnegative number, with smaller values corresponding to more regular or
ordered sequences and larger values assigned to more irregular or random
time-series. ApEn can be used as a relative measure which can distinguish
between different groups of data for fixed m and r. If the groups have sig-
nificantly different standard deviations, a normalized ApEn is recommended
for comparison purposes. A shortcoming with respect to ABM is that the
approximate entropy can only be applied to univariate time-series, while in
the case of more than two agents we are dealing with multivariate data.
Therefore, we will use it only for 2-type models, such as the Kirman, Lux
and Farmer-Joshi models (see Section 4), and label it CApEn. If applied di-
rectly to the final (observable) output, this statistic could evaluate and even
validate/reject a calibrated model with respect to specific data.15

Similarly, the patterns of time-series describing the dynamics of the en-
dogenous information contained in the middle-layer could also be analysed

13This view is in line with the intuition of Chen et al. (2012) who define complexity as
the degree of heterogeneity (diversity).

14The implementation algorithms are described in Pincus et al. (1991) and Manis (2008).
15There is also the potential of becoming a stylised fact, given that certain values would

be exhibited by a wide range of financial data. A first application is contained in Pincus
and Kalman (2004), but more work is needed. As benchmark, Pincus and Kalman (2004)
have computed the ApEn(1, 0.2σ) for the DJIA log returns at a 10-minute time frequency
and obtained a maximum value of 1.949, with all moving window values oscillating in a
range above 80% of the maximum.
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based on their fractal dimension index, which gives information about the
geometrical structure of the system at multiple time scales (for an introduc-
tion to fractals and the concept of fractal dimension see, e.g., Mandelbrot
(1977) and Mitchell (2009)). The fractal dimension quantifies the complexity
of a system as a ratio of the change in detail to the change in scale. A tech-
nique for calculating the fractal dimension of a time-series was proposed by
Higuchi (1988), where the estimate of the fractal dimension – labeled in the
following by CHFD – is given by the exponent of the power law distribution
of the average lengths of curves extracted at different scales (the algorithm
is briefly described in Appendix A).

Another complexity measure known as statistical complexity has been
proposed by Crutchfield and Young (1989). This measure is non-monotonic
in the sense that it is small for simple systems (highly ordered and random
ones) and high for the in-between systems, which are intuitively considered to
be complex. The analysed information needs also to be first translated into a
sequence via a measuring channel. Thus, the ABM can be considered a “mes-
sage” source and the general idea is to construct a “parallel” computational
model which is able to “predict” its behavior (statistically indistinguishable).
The information content of the simplest such model determines the complex-
ity class of the original system. Alternatively, the Kullback-Leibler (KL)
distance between the simulated time-series and a random walk benchmark
could be used as a measure of model complexity. Barde (2015) develops an
Universal Information Criterion (UIC), which relies on mapping the target
data-generated process to an underlying Markov process by applying a uni-
versal data compression algorithm, i.e. the Context Tree Weighting (CTW)
algorithm proposed by Willems, Shtarkov and Tjalkens (1995). Once the
Markov transition matrix is generated, the mean value of the benchmark
observation-level score, i.e. the log-likelihood, can be computed, giving the
prediction accuracy which is equivalent to the KL distance. Because com-
puting these measures is quite tedious, we will not apply them at the current
step of our research.

4 An Application to the FX Market

We first compute the measures of complexity described in Section 3 for three
ABM of the behavioral class – the Kirman model introduced in Kirman
(1991, 1993) with a detailed version specified in Gilli and Winker (2003),
the Lux model described in Lux (1995, 1998) and Lux and Marchesi (1999,
2000), and the Farmer-Joshi model from Farmer and Joshi (2002).
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4.1 Models specifications

The Kirman model

The Kirman model is a 2-type design model, where N agents are split be-
tween fundamentalists and chartists. At every step,16 any agent i = 1 . . . N
can switch his type by random mutation with probability ε or by direct in-
teraction with another agent with probability δ. Thus, we can classify this
procedure as probabilistic switching. However, the final trading decision does
not depend directly on the agent’s type, but on a majority assessment proce-
dure, where each agent is able to observe the share of fundamentalists in the
market qt = #{i|i ∈ F}/N under the form of a noisy signal q̃i,t ∼ N (qt, σ

2
q ).

The agent’s expectations about the future log price change Ei
t [∆pt+1] will

be in line with the perceived majority, i.e. either linear fundamentalist (see
equation (4)) or linear chartist (see equation (5)).

Ei
F,t[∆pt+1] = αF (f̄ − pt),∀i ∈ F , (4)

where 0 < αF ≤ 1 is the adjustment speed in fundamentalists expectation
and f̄ is the long-run equilibrium given by the mean of the logarithm of the
fundamental value.

Ei
C,t[∆pt+1] = (pt − pt−1), ∀i ∈ C (5)

Price updating takes the form of an Walrasian tâtonnement mechanism,
where the equilibrium price p̂t – at which there is no excess demand – results
from solving the market model specified as follows:

pt
!

= cEM
t [∆pt+1] + f̄ , (6)

where c is the market maker’s price adjustment sensitivity and EM
t [∆pt+1] =

N∑
i=1

Ei
t [∆pt+1]/N is the aggregate market expectation.

An analytical solution of (6) is possible and is given by:

p̂t =
(1 + cwt αF ) f̄ − c (1− wt) pt−1

1 + cwt αF − c+ cwt
, (7)

where the only input variable is the fraction of agents “acting” as fundamen-
talists wt = #{i|q̃i,t ≥ 1/2}/N .

16Each trading day is divided into n = 50 micro-time intervals.
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Finally, the next log price pt+1 = p̂t + ut is obtained by adding an exoge-
nous perturbation ut ∼ N (0, σ2

s), where σ2
s is the variance of fundamental

shocks.

There are two possible implementations of the Kirman model. The first
one consists in an holistic, explicit modeling of agents’ actions and interac-
tions as described previously. A second one is more compact and is based
on the observation that the entire population can be conceptually reduced
to only two clusters, since the parameters of the two strategies are fixed
in time and common for all agents adopting the respective type of strat-
egy.17 The switching mechanism between the two clusters can be described
by a stochastic process, where the dynamics of number of fundamentalists is
given by:

P (i→ i+ 1) =

(
1− i

N

) (
ε+ δ

i

N − 1

)
P (i→ i− 1) =

i

N

(
ε+ δ

N − i
N − 1

)
and consequentially,

P (i→ i) = 1− P (i→ i+ 1)− P (i→ i− 1).

(8)

The aggregate price change expectation EM
t [∆pt+1] can be viewed as a

probabilistic average of the two cluster strategies, given the noisy perceived
weight of fundamentalists in the market wt, as defined in the following:

EM
t [∆pt+1] = wtEF,t[∆pt+1] + (1− wt)EC,t[∆pt+1] (9)

Winker et al. (2007) reformulate the probabilistic cluster weight wt by ap-
plying, at each time step, the complementary normal cumulative distribution
function as follows:18

wt = 1− Φ((0.5− qt)/σ2
q ), (10)

where Φ is the cumulative distribution function of the normal distribution
N (0, 1).

As a bottom line, the second implementation requires less computational
resources than the former, but cannot be applied to all agent based models,
e.g., computational class ABM. In the case of the Kirman model, we will
implement both and compare the results.

17Farmer and Joshi (2002) show that even if the strategy coefficients would be het-
erogenous among agents, when the strategies are linear, equivalent results can be achieved
by using a “representative agent” for each strategy type with a coefficient equal to the
group-mean. As a side note, Chen et al. (2012) classify this category as “few-type” models.

18Some “fallacy of composition” might arise due to this aggregation.
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The Lux model

The Lux model is a 3-type design model based also on the fundamentalist-
chartist feedback, but with three agent categories, i.e. fundamentalists NF ,
optimistic N+

C and pessimistic chartists N−C .19 The fundamentalist demand
is given as a function of the mispricing from the fundamental value F (see
equation (11)),20 and the chartist demand is a function of the opinion index
x = (N+

C − N
−
C )/NC , reflecting the current market sentiment based on the

relative number of optimistic and pessimistic chartists (see equation (12)).21

Di
F,t+1 = αF (F − Pt), (11)

where αF > 0 is the reaction speed of fundamentalists.

Di
C,t+1 = xt t

C , (12)

where tC is a fixed amount assets bought or sold by a chartist.

The switching mechanism between the three agent clusters is evolution-
ary, being dependent on the performance of the respective strategies. Chartists’
switching between optimistic and pessimistic is based on the preference func-
tion U1 which depends on the opinion index and the recent price change
∆Pt = Pt−Pt−0.2 as in equation (13), where the time tick ∆t = 0.01.22 Thus,
the change in the number of optimistic traders is ∆N+

C = N−C r
−+−N+

C r
+−,

where r−+ ∼ N (π−+, 1/N−C ) and r+− ∼ N (π+−, 1/N+
C ).23

π−+ =
v1
n

(
NC

N
eU1

)
; π+− =

v1
n

(
NC

N
e−U1

)
; U1 = α1 x+α2

∆P

v1
, (13)

where π−+ denotes the directional probability for a pessimistic chartist to
turn into an optimistic one, model parameter v1 is the frequency of the
respective transition type, NC/N = 1 − NF/N stands for the fraction of

19Chen et al. (2012) identify the Lux model as an hierarchical two-type model, with two
chartist subdivisions.

20The fundamental value is assumed to remain constant over the entire simulation time
span.

21Agents’ portfolios are ignored and therefore they are able to accumulate unbounded
inventories.

22This means that there are n = 100 microintervals per day, at which interaction and
trading sessions occur.

23When computing the effective net transitions between different clusters, we are not
using the expected value as described in Lux (1998), rather we simulate the sampling
data effect by drawing a random deviate from a normal distribution centred around the
expected value and with a variance depending on the cluster size. Otherwise, due to
rounding and very small probabilities per time unit, the number of agents changing their
types would be zero most of the time.
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agents not involved in the fundamentalist-chartist switching, α1 and α2 are
sensitivity measures with respect to the majority and trend components.

The other switching probabilities, i.e. between the two chartist categories
and fundamentalists, are defined as follows:24

πF+ =
v2
n

(
N+
C

N
eU2,1

)
; π+F =

v2
n

(
NF

N
e−U2,1

)
πF− =

v2
n

(
N−C
N

eU2,2

)
; π−F =

v2
n

(
NF

N
e−U2,2

)
,

(14)

where model parameter v2 > 0 is the frequency of this type of transition,
N+
C /N is the probability of meeting an optimistic chartist, etc.25 The corre-

sponding fitness measures U2,1 and U2,2 are in this case driven by the relative
excess profits and are defined as:

U2,1 = α3

(
r + ∆P/v2

p
−R− s |P − F |

P

)
U2,2 = α3

(
R− r + ∆P/v2

P
− s |P − F |

P

)
,

(15)

where parameter α3 is the sensitivity of traders to differences in profits. The
realised excess profits for optimistic chartists are given by (r + ∆P )/P −R,
where r are constant nominal dividends of the asset and R is the average
real return from other investments (R = r/F ), while the excess profit for
pessimistic chartists is negative. On the other side, the expected excess
profit of fundamentalists is given by the deviation from the fundamentals
s |P−F |/P , where the parameter 0 < s < 1 may be interpreted as a discount
factor.

Finally, the new market price is set by means of a stochastic market
impact function of total excess demand ED = NC DC + NF DF , with the
speed of adjustment β and a small noise µ ∼ N (0, σ2

µ). The price change per
time unit is restricted to a fixed tick size ∆P = ±0.01, as described in Lux
and Marchesi (2000), and takes place probabilistically in the direction of the
excess demand according to:

π↑P = min(max(0, β (ED + µ)), 1)

π↓P = min(−min(0, β (ED + µ)), 1).
(16)

24For example, the flow of fundamentalists to the optimistic chartists group is NF r
F+−

N+
C r

+F , where rF+ ∼ N (πF+, 1/NF ) and r+F ∼ N (π+F , 1/N+
C ).

25The switching probabilities are based on the assumption of direct interaction between
agents (herding effect) and, thus, their values depend on the sizes of agent groups pursuing
a common strategy.
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Alternatively, the Lux model could be implemented at the individual
(agent) level. In this approach, the evolution of the cluster sizes will have a
different dynamics because the effective net transitions will be more affected
by the tails of the sampling distributions than in the cluster-composite ap-
proach presented previously.

The Farmer-Joshi model

The Farmer-Joshi model is also built on two types of agent expectations, i.e.
fundamentalism and chartism (see equation (17)), where pt = log(Pt) and θi

is a time lag uniformly distributed between θmin and θmax. The logarithmic
fundamental value ft follows a random walk ft+1 = ft + ηt+1 with exogenous
fundamental shocks ηt ∼ N (µη, σ

2
η). Fundamentalist agents perceive a noisy

fundamental value f it = ft+ f̃ i with an individual constant random offset f̃ i,
assigned uniformly between f̃min and f̃max, where f̃min = −f̃max so that the
entire range is 2 f̃max.

Ei
F,t[∆pt+1] = f it+1 − pt; Ei

C,t[∆pt+1] = pt − pt−θi (17)

In this model, the agents’ strategies are state-dependent and non-linear
by taking into consideration the current stock inventory and by adding
individually-paired entry T i > 0 and exit τ i ≤ 0 thresholds, which are ran-
domly initialized from uniform distributions ranging from Tmin to Tmax and
from τmin to τmax, respectively.26 An agent’s asset placement size is given
by Di = a (T i − τ i), where the constant a > 0 is called scaled parameter for
capital assignment. For example, if the mispricing in (17) is smaller than
−T and the agent carries no position yet, a fundamentalist enters a short
position −D which is hold until the mispricing goes above −τ .

The running frequency of the model is daily, with no intraday microinter-
vals. Another model feature is that no evolution is implemented, i.e. agents
do not change strategies and thus the number of agents corresponding to
each type remains constant N/2. Finally, the price discovery mechanism as-
sumes the presence of a risk neutral market maker and takes the form of the
price impact function of net demand in equation (18), where λ represents a
liquidity scale factor and ξt ∼ N (0, σ2

ξ ) is a random term corresponding to
random perturbations in the price.

pt+1 = pt + 1/λ
N∑
i=1

Di
t + ξt+1 (18)

Table 1 presents an overview of the three previous ABMs with focus on
the classification of their building blocks, as introduced in Section 2.

26Other conditions regarding the thresholds are −T < τ < T and |τmin| ≤ Tmin.
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Kirman Lux Farmer-Joshi

Model design 2-type 3-type 2-type

Agent design

Expectation behavioral & ma-
jority assessment

behavioral behavioral

Fundam. process noisy constant constant random walk

Risk preference neutral neutral neutral

Wealth n.a. n.a. asset position

Learning probabilistic
switching

evolutionary
switching

n.a.

Price discovery Walrasian
tâtonnement

prob. discrete mar-
ket impact

market impact with
noise

Table 1: Comparative model classification

4.2 Calibration and output analysis

Since the dynamics of an ABM also depends on the selected set of parameters,
in the following we will compare the outcomes of both the original parametri-
sations and a set of alternative parametrisations (marked with ?).27 In the
case of the Farmer-Joshi model we are using and ad-hoc parametrisation in-
stead of the optimised one as the alternative choice, because the calibration
procedure identifies a configuration where no trading occurs and the price is
driven only by the noisy fundamental value (see Table 4). The calibration
procedure is based on the simulated indirect inference method introduced in
Gilli and Winker (2003), which minimizes the aggregated distance between
a selected set of real data moments me and the simulated moments gener-
ated by the actual ABM, given its current parametrsiation, denoted by ms|θ.
The distance measure is operationalized through the objective function in-
troduced in Winker et al. (2007), where the weighting matrix Ŵ (me) for all
pairs of moments is derived by inverting the variance-covariance matrix of
the joint distribution of moments obtained from a block-bootstrap analysis.
The objective function f(θ) takes the following form:

f(θ) =

[
1

I

I∑
i=1

[(ms
i |θ)−me]

]′
Ŵ (me)

[
1

I

I∑
i=1

[(ms
i |θ)−me]

]
(19)

In this paper, we are using the same empirical exchange rate time-series
(DEM/ USD, 1991–2000) and include the same moments as in Winker et al.
(2007) and Jeleskovic (2011): the mean and standard deviation of log-returns,
the L2-distance in the Lilifors statistic, the mean over the 5-10% thresholds
for the Hill estimate of the right tail index, the sum of ARCH(10) coefficients,
the Geweke & Porter-Hudak (GPH) estimator of the degree of fractional inte-
gration, and the OLS regression coefficients of the Augmented Dickey-Fuller

27There is an exception in the case of the Kirman model where, because of missing
original parameters, we use the parameters presented in Winker et al. (2007)
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test with drift and no lags (for more details see also Winker and Jeleskovic
(2006, 2007)). The benchmark daily DEM/ USD time-series counts 2285 ob-
servations and is plotted in Fig. 1 and the estimate of the weighting matrix
Ŵ is given by:

Ŵ =



1.0 · 108 1.4 · 106 332.19 3.2 · 103 4.9 · 104 −4.2 · 104 −3.5 · 106

1.4 · 106 8.7 · 106 −193.73 4.6 · 103 788.00 4.8 · 103 1.4 · 105

332.19 −193.73 1.5228 −0.4122 0.9262 −0.4249 −42.717
3.2 · 103 4.6 · 103 −0.4122 15.705 28.963 11.942 −255.98
4.9 · 104 788.00 0.9262 28.963 245.10 −64.102 −442.80
−4.2 · 104 4.8 · 103 −0.4249 11.942 −64.102 217.29 −126.67
−3.5 · 106 1.4 · 105 −42.717 −255.98 −442.80 −126.67 5.2 · 105



0 500 1000 1500 2000

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

DEM−USD (1991−2011)

Days

E
xc

ha
ng

e 
ra

te

Figure 1: DEM/USD time series (1991–2000)

Finally, the optimisation problem is approached using a standard Genetic
Algorithm with a population of 200 individual solutions, 30 generations, a
crossing probability of 25% and a mutation probability per bit of 5%. The
simulated moments of each individual solution are computed as the mean
over 100 different price time-series generated by the particular solution, start-
ing with different random seeds. Moreover, the entire Genetic Algorithm is
restarted ten times with different random seeds. Afterwards, the overall best
solution is chosen. The imposed search intervals for the optimisation process
are presented in Appendix B. Tables 2, 3 and 4 contain the values of the pa-
rameters for both the (unoptimised) original and the optimised cases, as well
as the associated mean values of the objective function, of the approximate
entropy of log returns ApEn(1, 0.2σ) and of the Higuchi fractal dimension of
the price time-series, computed over 100 runs with various random seeds.28

For comparison, the approximate entropy of the original DEM/USD data is
2.2245, while the normalized approximate entropy is 203.82 and the Higuchi
fractal dimension is 1.4645.

28We are using the set-up provided in Pincus and Kalman (2004) where m = 1 and r
equals 20% of the time-series standard deviation.
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Moreover, as benchmark for the ABM models, we have calibrated a ran-
dom walk model, with drift, of the following form:

Pt+1 = Pt + µ+ ξ, (20)

where ξ ∼ N (0, σ2), P0 = 1.681, Pt ≥ 0.001 and the optimised parameters
are µ = 0.0007, σ = 0.0133, with an average fit f(θ) = 73.592. The mean
value over 100 different runs for the approximate entropy of the calibrated
random walk is 2.2837, for the normalized approximate entropy 171.72 and
for the Higuchi fractal dimension 1.4946. The absolute ApEn shows that
the random walk series is more irregular than the original data, while the
normalized ApEn, on the contrary, indicates more regularity. On the other
side, the values of the Higuchi fractal dimension index (HFD) are quite close
to each other, in an interval between 1.45 and 1.50.

Regarding the model fit, an important observation is that only the op-
timised Lux model is better than the calibrated random walk, while the
Farmer-Joshi and, especially, the Kirman models are worse. Also, even if
not part of the set of moments targeted by the objective function f(θ), the
calibrated Lux model is the closest to the original time-series regarding the
absolute ApEn and HFD, while the normalized ApEn is even larger than
the one describing the random walk process. The Farmer-Joshi model pro-
vides the second best fit, which is also in line with the ranking given by the
absolute ApEn. However, it would be ranked first based on the normalized
ApEn and HFD. The Kirman models are invariantly the worst performing
according to all measures, but to different extent.

Label Interpretation Parameter values

Kag Kcl

original optim. (?) original optim. (?)

αF Fundamentalist adjustement speed 0.08 0.04 0.08 0.02

c Market maker price adjustement speed 0.50 0.50 0.50 0.50

σq Majority assessement noise 0.07 0.01 0.07 0.01

δ Conviction probability 0.35 0.75 0.35 0.50

ε Mutation probability 0.01 0.02 0.01 0.02

Objective fit f(θ) 149,088 115,133 147,451 116,128

Approximate entropy of log returns 1.8257 1.7439 1.8354 1.7499

Normalized approximate entropy of log returns 3730 2121 3779 2168

Higuchi fractal dimension of price 1.6994 1.5419 1.6975 1.5450

Table 2: Parameters of the individual-based (Kag) and cluster-based (Kcl)
Kirman models (agents number N = 100)

Fig. 2 plots the price and fundamental value dynamics of a single real-
isation, generated by the previous ABM designs, both for the original (un-
optimised) and the alternative parametrisations. In contrast to the original
time series shown in Fig. 1, the length of each time series in Fig. 2 is only
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Label Interpretation Parameter values

original optimised (?)

∆P Fixed value of price increase change 0.01 0.002

αF Fundamentalist adjustement speed 0.01 0.01

tC Fixed amount assets bought or sold by a chartist 0.02 0.009

ν1 Frequency of the in-between chartist switching 3.00 2.10

α1 Chartist sensitivity measures w.r.t. majority opinion 0.60 1.60

α2 Chartist sensitivity measures w.r.t. trend 0.20 0.40

ν2 Frequency of the fundamentalist-chartist switching 2.00 1.60

α3 Sensitivity of traders to differences in profit 0.50 0.10

s Fundamentalist discount factor 0.75 0.75

R Average real return from other investments 0.0004 0.0003

β Speed of price adjustment 6.00 4.60

σµ Noise std. dev. 0.05 0.065

Objective fit f(θ) 65,149 26.64

Approximate entropy of log returns 2.4166 2.2380

Normalized approximate entropy of log returns 495 378

Higuchi fractal dimension of price 1.5323 1.3980

Table 3: Parameters of the Lux model (agents number N = 500)

Label Interpretation Parameter values

original optimised ad-hoc (?)

Tmin Min. threshold for entering positions 0.2 0.46 0.1

Tmax Max. threshold for entering positions 4.0 0.78 1.5

τmin Min. threshold for exiting positions -0.2 -0.8 -0.1

τmax Max. threshold for exiting positions 0.0 0.0 0.0

a Scale parameter for capital assignment 0.0025 0.0002 0.0025

f̃min Min. offset for log of perceived fund. value -2.0 -1.2 -0.1

f̃max Max. offset for log of perceived fund. value 2.0 1.6 0.1

θmin Min. time delay for trend followers 1 1 1

θmax Max. time delay for trend followers 100 20 100

µη Mean of fundamental shocks 0.0 -0.6 0.0

ση Std. dev. of fundamental shocks 0.010 0.012 0.005

λ Liquidity 1.0 1.5 0.5

σξ Noise driving price formation process 0.35 0.01 0.01

Objective fit f(θ) 122 · 104 2,411 2,541

Approximate entropy of log returns 2.2793 2.2822 2.2809

Normalized approximate entropy of log returns 6.41 228 225

Higuchi fractal dimension of price 1.5086 1.5011 1.5142

Table 4: Parameters of the Farmer-Joshi model (population size N = 1200)
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three years (252 time periods per year), which follows a burn-in period of one
year. The plots related to Kirman’s model present a high degree of similar-
ity, showing and alternation between periods when the price closely follows
the fundamental values and periods of larger volatility. As opposed to the
original parametrisation of the Lux model, the optimised Lux parameters
generate a price series which does not exhibit a fast reversal to the funda-
mental price. Nevertheless, under this calibrated parametrisation, the Lux*
model provides the best fit to the real DEM/USD time-series. The original
parametrisation of the Farmer-Joshi model is associated with the worst fit
of the objective function, its price outcome does not follow the fundamental
value and also exhibits huge volatility clusters. On the other side, the alter-
native ad-hoc parametrisation generates a more “temperate” volatility, but
the price still does not revert to the underlying fundamentals.

4.3 Complexity assessment

In this subsection, the complexity measures introduced in Section 2 are pro-
vided for all three models described in Subsection 4.1, both with the original
parameters and under the alternative parametrisation previously discussed
in Subsection 4.2 (marked with ?). Table 5 includes the average results over
100 runs with various random seeds, as well as the mean values of the objec-
tive function f(θ) defined in Winker et al. (2007) – since the optimisation is
a minimsation problem, the lower the objective function value, the better the
fit. Also, for the first two classes of complexity, i.e. difficulty of description
and difficulty of creation, a lower value of the indicator is associated with a
lower complexity. The less complex model–parametrisation pair is marked
in Table 5 with boldface for each of the measures of complexity considered.

All implementations are built up on the same framework in order to en-
force a common design structure, which closely follows the building blocks
in Section 2. Thus, the framework defines abstract classes and their depen-
dencies, e.g., Agent/Cluster, Expectation, RiskPreference, MarketClearing,
Evolution, WorldState and AgentBasedModel, which have to be extended by
each model implementation. The source files of the framework sum up to
159 lines of code and are added to the model specific code when computing
Ccode. For computing Cspace, we use the class Runtime methods which relates
to the memory consumption in the Java virtual machine.29

The Lux model has the lengthiest implementation mainly because of its
lengthy description of the evolution process, associated also with a worse
time and space performance – five times slower than the cluster-based Kir-
man while the number of iterations is only double due to the higher number
of intraday microintervals. Also, the maximum cyclomatic complexity num-
ber records its highest value in the case of the Lux model. On the other side,

29Every Java application has a single instance of class java.lang.Runtime that allows
the application to interface with the environment in which the application is running,
including the virtual memory space assigned by the operating system to the Java process.
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Figure 2: Fundamental value (dashed-red) and price (blue) time series
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Kag K?
ag Kcl K?

cl Lux Lux? F-J F-J?

ABM type class ag. ag. cl. cl. cl. cl. ag. ag.

Difficulty of description

C#P 7 7 7 7 13 13 14 14

Ccode (lines) 373 373 399 399 579 579 349 349

Ccyc−max 13 13 12 12 18 18 15 15

Ccyc−av 3.07 3.07 2.28 2.28 3.00 3.00 3.08 3.08

Cdepth−max 6 6 5 5 5 5 6 6

Cdepth−av 2.10 2.10 1.95 1.95 2.05 2.05 2.06 2.06

Difficulty of creation

Ctime (ms) 1242 1217 57 38 250 264 30 24

Cspace (MB) 1.94 1.95 1.95 1.96 3.74 3.74 0.44 0.44

Degree of organisation

CApEn(1,0.2σ) 0.53 0.37 0.50 0.40 0.92 0.99 1.00 0.44

CApEn(1,0.2σ)/σ 1.31 0.77 1.24 0.81 5.71 6.80 4.64 1.60

CApEn(2,0.2σ) 0.50 0.33 0.48 0.36 0.91 0.97 0.76 0.41

CApEn(2,0.2σ)/σ 1.22 0.69 1.18 0.74 5.64 6.67 3.47 1.51

CHFD 1.551 1.511 1.504 1.505 1.550 1.550 1.897 1.950

Output

Objective fit (e+03) 149 115 147 116 65 0.027 1220 2.51

Table 5: Complexity measures (100 runs with T = 2350 days each)
a

aThe number of iterations differs because of the various number of intraday microin-
tervals, e.g., the Kirman (K) model has 2350 ∗ 50 time-steps, the Lux model 2350 ∗ 100
time-steps and the Farmer-Joshi (F-J) model only 2350 time-steps.
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because of its missing evolution component and lacking intraday frequency,
the Farmer-Joshi model is the fastest and also has the lowest memory con-
sumption. As expected, the cluster-based Kirman is much faster than its
individual-based version, since the evolution process is more compact, how-
ever the necessary memory space remains the same. Another observation
regarding the first two complexity classes is that Ctime is the only measure
which is sensitive to a change in model parameters. Except for the Lux
model, all other models record a decrease of the running time, ranging from
5% to 33%, for the calibrated configurations as compared to the standard
parametrization.

Before discussing the third complexity class, i.e. degree of organisation,
we describe how the internal information time-series mentioned in Subsec-
tion 3.3, which are the basis for computing the approximate entropy measure
CApEn, are obtained. For the cluster-based Kirman and Lux models, CApEn
can be applied straight forward to the cluster weight dynamics of fundamen-
talists (since the weight of chartists is only complementary). For the atomic
implementation of the Kirman model, a sequence corresponding to the per-
centage of “acting” fundamentalists can also be easily generated. In the case
of Farmer-Joshi the number of agents in each category remains constant,
however CApEn can be computed over the relative trading volume of funda-

mentalists given by
∑
i∈F
|Di

t|/
N∑
i=1

|Di
t|. These middle-layer time-series used as

a proxy for self-organisation are depicted, for a single run, in Fig. 3. It can be
observed that these time-series describe different dynamics depending both
on the model and the calibration. For the Kirman models, the switching
between the extreme cases, when all traders are of one single type, occurs
more often when the model parameters are calibrated with the Genetic Al-
gorithm as compared to the original parametrisation. In the case of the Lux
model, there is a shift in the mean of the percentage of fundamentalists –
the average fundamentalists weight is 0.77 with the original and 0.55 with
the optimised parameters. A particular situation is observable in the case of
the Farmer-Joshi model with original parameters, when after 230 days the
fundamentalists do not participate in trading anymore.

As previously described in Subsection 3.3, the approximate entropy is
lower for regular systems, larger for irregular and somewhere in-between for
complex ones. At one extreme, a deterministic alternating sequence cor-
responds to a value of zero for ApEn(1, 0.2σ). At the other end, a purely
stochastic series of random draws from a normal distribution has an ApEn of
2.30 and a normalized ApEn of 2.31. Alternatively, a binomial distribution
leads to an ApEn of 0.70 and a normalized ApEn of 1.39. In the following,
we will quantitatively interpret the complexity associated with CApEn(1,0.2σ)
by its proximity to a mid-value depending on the distribution type. The
middle-layer distributions introduced in Subsection 3.3 resemble a binary
distribution for the Kirman and Farmer-Joshi models (observable also from
Fig. 3), and are thus benchmarked to a middle valued ApEn of 0.35 and a
middle normalized ApEn of 0.70. In the case of the Lux model, the internal
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Figure 3: Internal information time series
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distribution is Gaussian and will be benchmarked to a middle ApEn and a
middle normalized ApEn of 1.15. Thus, two types of less complex systems
can be identified, either too regular or too random. The entries marked in
boldface in Table 5 correspond to the model exhibiting the largest absolute
deviation from the middle value. For this comparison, only the calibrated
models are considered.

The standard ApEn(1, 0.2σ) measure shows that all considered ABMs
exhibit a deterministic chaotic dynamics of the endogenous fraction of fun-
damentalists, far away from pure randomness and from periodic behavior.
On the contrary, the normalized ApEn identifies the Lux* and the Farmer-
Joshi* as highly irregular. According to both the standard and the nor-
malized ApEn, the less complex is the Lux* model – however the standard
ApEn captures a deviation from the benchmark mid-value towards more
regular, while the normalized ApEn towards more irregular. For the same
parametrisation, i.e. original parameters, the cluster-based Kirman is slightly
more regular than its individual-based alternative, which is explainable by
the loss of heterogeneity due to aggregation. The values of CApEn are sensitive
to the model parameters, meaning that the parameter choice influences the
dynamics of the fundamentalist-chartist fractions. However, the direction of
change is not consistent with the values of the objective function, e.g., an
improvement of fit is associated with a CApEn increase for Lux and with a de-
crease in the case of Kirman and Farmer-Joshi models. On the other side, it
is not necessary to have a direct relation between CApEn and the values of the
objective function, since the internal information of the model is processed
into the final output only by passing through the ABM specific design. In
other words, it might be that for some models a more chaotic dynamics of
agent type shares might correspond to a better fit, while for other models
it might be exactly the other way around. Also, as previously noted, these
middle-layer distributions can be different for various ABMs, i.e. binomial
for the Kirman and Farmer-Joshi models and Gaussian for the Lux model.

Regarding the complexity captured by the Higuchi fractal dimension of
the dynamics of fundamentalists fraction, i.e. CHFD, it can be noticed that
the Farmer-Joshi model is the most complex, while the other three have
similar values; by a small difference, the Kirman cluster could be ranked as
the least complex model. Also, in the case of the Farmer-Joshi model, the
calibration is associated with an increase in complexity, while for the atomic
implementation of the Kirman model, it is the other way around. The Lux
model and the cluster-based Kirman are mostly insensitive in this respect.
However, the same remark as with the ApEn interpretation should be taken
into account – there is a tight coupling between the internal information of the
model and the model design which, on one side could allow the identification
of some complexity footprint of the model, but on the other side shortcuts the
relation to the final output and, consequentially, to the model fit measure.

27



5 Conclusion and Outlook

We have identified and described the main building blocks, which are charac-
teristic to most agent-based models for financial markets, as following: agent
design, agent evolution and price discovery. These building blocks have been
conceptually specified and exemplified with the main historical milestones
and various derivations. Moreover, the previously introduced building blocks
are connected within a framework which can be used as a common standard
for developing and characterizing ABMs. The procedure is exemplified with
three popular ABMs for financial markets: the Kirman model introduced in
Kirman (1991, 1993), the Lux model described in Lux (1995, 1998) and Lux
and Marchesi (1999, 2000), and the Farmer-Joshi model from Farmer and
Joshi (2002). In the case of the Kirman model, two possible implementa-
tions are discussed: an individual-based (atomic) and a cluster-based design.
In a next step, all three models are calibrated to a set of stylized facts com-
puted on real data using the simulated indirect inference method introduced
in Gilli and Winker (2003) and the objective function defined in Winker et al.
(2007).

Alongside, we have started a discussion on how to define and measure
size and complexity of ABMs. Similar to Lloyd (2001), we have considered
three different dimensions of complexity and tried to identify and accom-
modate different measures of complexity which might be meaningful from
an ABM perspective. Thus, the number of parameters, code length, cyclo-
matic complexity number and maximum block depth reflect the difficulty of
description of an ABM, while the computational time and memory require-
ments deal with the difficulty of creation. A third class of complexity, i.e.
the degree of organization, is meant to capture a different facet of complexity
which is related to the dynamics of an ABM due to non-linear interactions,
self-organisation and latent features of the system. We argue that the aggre-
gate complexity of an ABM can be observed as a footprint by analyzing a
middle-layer of information represented by the distributions of agent types.
For 2-agent types models, e.g., the ones built on the fundamentalist-chartist
dichotomy, we have assessed the complexity of this inner information time-
series by means of approximate entropy and Higuchi fractal dimension.

The previously introduced complexity measures have been computed for
the three selected ABMs, both under the original and under the calibrated
parametrisations. None of the three models was uniquely identified as the
most or the least complex by the entire range of proposed complexity mea-
sures, which shows that the various measures reflect different dimensions of
complexity. For example, the atomic Kirman model was ranked as the least
complex by one single measure out of thirteen, while the cluster-based Kir-
man models by six, the Lux model by five and the Farmer-Joshi by three.
In fact, some measures of complexity, such as the ones included in the de-
gree of organisation class, do not exhibit a strong relationship with the other
measures which belong to the more static descriptive classes. Both aspects
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of complexity probably have to be considered jointly to gain proper insights
in the overall “complexity” of a model in a broad sense. Further research is
needed to gain a better understanding of the relationship between the two
type of classes.

An extension of the current research could also analyse ABMs with autonomous-
agents, where individual learning takes place by means of evolutionary algo-
rithms, e.g., the Santa Fe Institute Artificial Stock Market. Also, it might be
useful not to compare already settled, however too different ABM implemen-
tations, but instead to design new, incremental scenarios where small changes
are applied to the individual building blocks, or single building blocks are
replaced one at a time. For example, a possible experiment could target the
effect of heterogeneity as follows. The base-model could be equipped with
a pool of two alternative strategies (chartist and fundamentalist) with pa-
rameters which are fixed in time and common for all agents. The learning
mechanism can consist in evolutionary stochastic switching, meaning that an
agent will change his strategy based on the relative performance to an average
benchmark. In the alternative case, the model could allow for a more diverse
pool of strategies and also for developing new and improved ones using the
Genetic Algorithm – the functional form of the forecasting rule should be
common, e.g., a mix of chartist and fundamentalist components, but the pa-
rameters could be agent specific and the strategies pool could be frequently
updated by means of the evolutionary algorithm. In order to maintain the
same updating frequency as in the base-model, at every time step, the agents
should make decisions about sticking to their current strategy or choosing a
different one from the strategies pool, which is better fitted to the current
market dynamics.

Another extension should deal with how to conduct model selection in a
structured way, by taking into account both building blocks and complex-
ity. After having provided some possible concepts and related measures of
the complexity of an ABM, a link with its ability to reproduce stylized facts
needs to be established. Intuition suggests that there should be a monotonic
relation between the measure of complexity and the number of replicable
stylized facts. However, a theoretical proof of this assumption might be hard
to provide. Furthermore, even if the relationship turns out to be monotonic,
the question arises how much complexity should be accepted in order to ob-
tain a useful model and when improved replication turns into overfitting.
In the context of (non)linear regression models, information criteria provide
sensible answers. Obviously, the issue of matching stylized facts is strongly
coupled with the problem of calibration or estimation of model parameters.
For a given model design, it depends on the parameter values to what extent
the model can replicate stylized facts or – in a more quantitative sense –
fit moments of the real data. On the other side, as mentioned in Subsec-
tion 4.3, changing parameter values, e.g., in an optimization procedure, also
directly influences the model’s complexity, i.e. an ABM with the same de-
sign but different parameter settings exhibits different levels of complexity.
Consequently, model selection has to take into account the complexity of the
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model for those parameter values obtained from calibration or estimation
procedures.

A Higuchi Fractal dimension algorithm

Let X(1), X(2), . . . , X(N) be the finite set of N observations to be analyzed.
A number of k new series Xm

k can be constructed as follows:

Xm
k = X(m), X(m+ k), X(m+ 2 k), . . . , X

(
m+

[
N −m
k

]
k

)
, (21)

with m = 1, 2, . . . , k representing the initial values, k indicating the in-
terval time (delay) and [·] denoting the Gauss notation, i.e. the integer part.

For each of the previous Xm
k series, the length of the curve can be com-

puted as follows:

Lm(k) =
1

k

[(N−m/k)]∑
i=1

|X(m+ i k)−X(m+ (i− 1) k)|

 N − 1[
N−m
k

]
k
, (22)

where the last factor is a normalisation factor.

The average length for each scale k = 1, 2, . . . , kmax, L(k), is computed as
the mean of Lm(k) where m = 1, 2, . . . , k and is proportional to k−D, i.e. the
average lengths follow a power law. D is considered the fractal dimension
computed by Higuchi’s algorithm and a least squares estimate for D is given
by the slope of the line that fits the pairs (ln(L(k)), ln(1/k)).

B The search intervals for the calibration pro-

cedures

Label Interpretation Search intervals Precision

αF Fundamentalist adjustement speed [0.01, 0.64] 0.01

c Market maker price adjustement speed [0.5, 0.6] 0.1

σq Std. dev. of the majority assessement noise [0.01, 0.32] 0.01

δ Conviction probability [0.05, 0.80] 0.05

ε Mutation probability [0.01, 0.32] 0.01

Table B1: Search intervals and precision for the calibration of individual-
based (Kag) and cluster-based (Kcl) Kirman models
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Label Interpretation Search interval Precision

∆P Fixed value of price increase change [0.001, 0.016] 0.001

αF Fundamentalist adjustement speed [0.005, 0.020] 0.005

tC Fixed amount assets bought or sold by a chartist [0.001, 0.032] 0.001

ν1 Frequency of the in-between chartist switching [0.1, 3.2] 0.1

α1 Chartist sensitivity measures w.r.t. majority opinion [0.1, 1.6] 0.1

α2 Chartist sensitivity measures w.r.t. trend [0.1, 0.8] 0.1

ν2 Frequency of the fundamentalist-chartist switching [0.1, 3.2] 0.1

α3 Sensitivity of traders to differences in profit [0.1, 1.6] 0.1

s Fundamentalist discount factor [0.65, 0.80] 0.05

R Average real return from other investments [0.0001, 0.0016] 0.0001

β Speed of price adjustment [2.1, 8.4] 0.1

σµ Noise std. dev. [0.005, 0.080] 0.005

Table B2: Search intervals and precision for the calibration of the Lux model

Label Interpretation Search interval Precision

Tmin Minimum threshold for entering positions [0.01, 0.64] 0.01

Tmax Maximum threshold for entering positions [0.75, 3.90] 0.05

τmin Minimum threshold for exiting positions [-0.8, -0.1] 0.1

τmax Maximum threshold for exiting positions [0.0, 0.7] 0.1

a Scale parameter for capital assignment [0.0005, 0.0080] 0.0005

f̃min Minimum offset for log of perceived fund. value [-3.2, 0.1] 0.1

f̃max Maximum offset for log of perceived fund. value [0.1, 3.2] 0.1

θmin Minimum time delay for trend followers [1, 8] 1

θmax Maximum time delay for trend followers [50, 200] 10

µη Mean of fundamental shocks [-0.7, 0.8] 0.1

ση Std. dev. of fundamental shocks [0.001, 0.032] 0.001

λ Liquidity [0.1, 1.6] 0.1

σξ Noise driving price formation process [0.01, 0.64] 0.02

Table B3: Search intervals and precision for the calibration of the Farmer-
Joshi model
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