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Abstract

We study a setting in which one or two agents conduct research on

behalf of a principal. The agents’ success depends on effort and the

choice of a research technology that is uncertain with respect to its

quality. A single agent has no incentive to deviate from the principal’s

preferred technology choice. In the multiagent-setting researchers pur-

sue individual rather than overall success which yields a preference for

the most promising technology. We show that a mechanism that de-

ters this bias towards mainstream research always entails an efficiency

loss if researchers are risk-averse. Our results suggest that there is too

little diversity in delegated research.
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1 Introduction

The job of a researcher -both in academia and in the industry- is unique in

many ways. One of its most striking characteristics is the high degree of

uncertainty any researcher faces when trying to answer a specific research

question. Despite hard work, success is by no means certain. Max Weber

was certainly right when he wrote nearly 100 years ago

”Yet it is a fact that no amount of such enthusiasm, however sincere and

profound it may be, can compel a problem to yield scientific results” (Weber

1946 [1917], p.135).

Effort on the part of the researcher is a necessary but not a sufficient condi-

tion for success. In fact, the technology that the researcher uses to address

the research question is another important determinant of the probability

of finding an answer. If a researcher backs the wrong horse, i.e., he or she

employs a method or technology that turns out to be a dead end, all efforts

are in vain. Hence, the choice of research technology is a risky bet from any

researcher’s perspective. In our model of research activities, we therefore

separate a researcher’s actions into ”effort choice“ and ”technology choice“.

Two motivating examples will illustrate this issue:

Example 1: Oil drilling

An oil company hires one or more experts (say geologists), to conduct ex-

ploratory drillings with the aim of finding a new oil spring. There are two

possible locations for test drillings available. If an expert chooses a location

that does not contain oil, he or she will not be able to yield a success, inde-

pendent of the chosen effort level.

Example 2: Cancer research

A national health agency is interested in a cure for lung cancer. Academic

researchers can now choose from several methods to accomplish this goal.
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They could, for example, test different possible active ingredients to deter-

mine whether or not they could improve existing chemotherapies. Again,

only if the selected approach is suitable will a higher effort level increases the

chance for success.

A second striking characteristic of research is its ”winner-takes-all-structure“.

The marginal value of a second successful researcher who replicates the dis-

covery of one of his colleagues is (close to) zero. In the words of Dasgupta

and Maskin:

”There is no value added when the same discovery is made a second, third,

or fourth time. To put it sharply [...], the winning research unit is the sole

contributor to social surplus.“ (Dasgupta and Maskin 1987, p.583).

Such “multiples”are likely to occur whenever researchers independently try

to answer similar questions (Merton 1963). From a social perspective, it is

neither interesting how many researchers found the answer to any solved re-

search question, nor which specific approach yielded the answer (abstracting

from ethical considerations).1 What is crucial is that there is a cure for lung

cancer, not how it was found. From an ex ante perspective however, fac-

ing uncertainty about any available research technology, a principal or social

planner might find it optimal to diversify the technological risk by employ-

ing more than one approach to maximize the overall probability of success.

Our contract-theoretical analysis of this problem shows that this goal might

conflict with the researchers’ vested interests of maximizing their individual

probability of success. Hence, whenever technology choice is not observable,

a moral hazard problem arises because selfish researchers choose research

portfolios that exhibit too little diversity from an efficiency perspective. Al-

1If there is no definite answer to the research question yet, the number of researchers

promoting a preliminary answer may still be informative. We focus on research questions

for which only a definite answer is valuable.
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though diversity of research is often optimal from a social point of view, it

is not rational from a researcher’s perspective to engage in less promising

technologies. Whether or not the assumption of an unobservable technology

is reasonable, depends on the characteristics of the specific research question.

For example, a non-expert principal might have no problem in observing the

spot of an oil spring (example 1), but cannot observe the technology behind

an effective anti-cancer drug (example 2). We will capture both cases in our

analysis.

The remainder of the paper is organized as follows: Section 2 provides the

reader with literature related to our research. Section 3 first analyzes the

case of a single researcher. Here the interests of principal and agent regard-

ing the technology choice are perfectly aligned. Subsequently we will analyze

the multiagent-case that -for many parameter realizations- gives rise to a dis-

tortion of optimal technology choice when the principal cannot observe the

selected technology. For such cases we will show that the incentivization of

the principal’s preferred technology choice comes at a cost for the principal,

such that there is an overall loss of efficiency. Section 4 discusses critical

assumptions and limitations of our model, and Section 5 concludes. Detailed

derivations of the presented results are collected in Appendix A. Detailed

proofs can be found in Appendix B.

2 Related Literature

Our research contributes to three branches of the economic literature. First

and foremost it is related to the literature on incentives and incentives in

teams. In the classic papers of Holmström (1979; 1982) the effort level is

unobservable, leaving the principal with lower expected return compared to

the first-best solution. In our model we extend the agent’s strategy space and

make the technology choice an (unobservable) part of any agent’s strategy.

Moreover our research is related to Mookherjee (1984) and Itoh (1991) who
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both study compensation schemes for multiple agents and find that optimal

individual remuneration should also depend on the other agents’ performance

to filter out common uncertainty. Legros and Matsushima (1991) suggest

a compensation scheme that deters free-riding by making use of different

performance distributions of heterogeneous agents. Although free-riding is

excluded in our model by the assumption of individually observable output,

our model features similar characteristics, since differences in output distri-

butions are harnessed to deter undesired actions by the agents.

Second, our research is related to the literature on the Economics of R&D.

Here, our results are linked to models that show an unduly amount of ag-

gregated research efforts in equilibrium, like Loury (1979) or Dasgupta and

Stiglitz (1980). More specifically, our research is connected to models of

optimal research portfolios, e.g., Bhattacharya and Mookherjee (1986) or

Dasgupta and Maskin (1987). The latter -similar to our model- shows that

independent researchers choose research projects that are overly correlated

from a social planner’s perspective. In a model of Fershtman and Rubinstein

(1997), two researchers independently conduct research at one of multiple

sites to find a hidden treasure. In equilibrium, there is an efficiency loss

due to a coordination failure which implies a wasteful duplication of research

efforts. Moreover, recent contributions to the theory of contests also show

similarities to our model, e.g., the work of Erat and Krishnan (2012), and

Konrad (2014). Our own contribution differs from the aforementioned mod-

els in a number of ways. First, and most importantly, the driving force for the

wasteful duplication of research efforts in our model is the non-observability

of research technologies. Moreover, and unlike in most of the models men-

tioned before, we explicitly assume delegated research, instead of independent

research. Hence, our model aims to capture research activities within a firm

instead of research activities between (competing) firms. What is more, our

model sheds light on how the prospects of different technologies explicitly

influences the agent’s optimal effort choice.
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Third, in a wider context, our research is also related to the “Economics

of Science” literature (Stephan 1996), which analyzes the plethora of issues

related to the creation and the transfer of (academic) knowledge. Works

cited here are only exemplary and incomplete. Frey (2003), Starbuck (2005)

and Grey (2010) criticize the prevailing system of academic peer-reviewed

publication as unreliable, opaque, and discouraging to innovative research.

Ioannidis (2005) points to a publication bias towards false results. Kieser

(2010) criticizes performance related pay in academic research. Felgenhauer

and Schulte (2014) show that an information loss between researcher and

scientific community is implied when the researcher strives for publishing

his/her research.

None of the contributions that we know however, deal with the issue of du-

plicated research efforts from an agency-perspective. Therefore, our research

is new to the best of our knowledge.

3 The Model

3.1 Assumptions and Main Setting

A risk-neutral (female) principal is interested in a conclusive research out-

come to a specified research question.2 Her utility from a research project is

given by

V (q, w) = q − E[W ] (1)

where q ∈ {0, 1} denotes the stochastic output of the research project, which

can be either a failure or a success. W =
∑n

i=1wi denotes the overall compen-

sation of the employed agent(s), wi denotes agent i’s private compensation,

2You can think of the principal as a social planner who wishes to maximize society’s

benefits from research, but she could just as well be a firm owner who wants to maximize

gains from a company’s R&D-department.
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and n (the number of agents) is either one or two.

Each employed agent chooses exactly one research technology j ∈ {m, o},
where technology m is labelled as “mainstream-technology”and technology

o is labelled as“outsider-technology”. Furthermore, each agent chooses a

costly research effort level ei ∈ R+
0 that determines the probability of in-

dividual success. An agent’s strategy can therefore be fully described as

(ei, j) ∈ R+
0 × {m, o} and his overall utility equals

Ui = ui(wi)− ei. (2)

As standard in the literature, we assume that

u′(·) > 0, u′′(·) ≤ 0.

The agents’ reservation utility level is zero.

Any agent’s individual output depends on the selected research technol-

ogy, which can either be “good”or “bad”, denoted by ωj ∈ {g, b}. We

let πj = P (ωj = g) denote the common prior probability that technology

j is good and make the assumption that technologies are independent, i.e.,

knowing the quality of technology m is not informative about the quality of

technology o.3 Furthermore, we assume that πm ≥ πo, i.e., the mainstream-

technology appears at least as promising as the outsider-technology.

Let qi denote the event that agent i’s research yields a success. We impose:

P (qi = 1 | ei × j) =

ρ(ei), if ωj = g

0, else.
(3)

A success is only possible if the agent has chosen a good technology; other-

wise, all his efforts are in vain. But even when a good technology has been

3The independence-assumption restricts the generality of our model, but simplifies the

analysis. It is reasonable when technologies are sufficiently distinct from each other.
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chosen, success is not guaranteed and depends on the agent’s effort. Here,

ρ(ei) defines the probability of agent i’s success, given that technology j is a

good technology. As is standard in the literature, we assume that

ρ′(·) > 0, ρ′′(·) ≤ 0.

We add the following technical assumptions that guarantee an interior solu-

tion:

ρ′(0) · πj > 1, ρ(0) = 0, ρ(∞) = 1.

An agent’s overall probability of success, provided the usage of technology j

and effort ei, is given as

P (qi = 1 | ei × j) = ρ(ei) · πj. (4)

The principal offers a contract to the agent(s) so as to maximize (1), antici-

pating that agent i chooses his actions as to maximize (2). We assume that

all of the above (number of agents, cost functions, utility functions, state

probabilities) is common knowledge.

The course of action is as follows:

1. Nature chooses ωj according to πj.

2. The principal offers a take-it-or-leave-it-contract to the agent(s) which

the agents either accept or reject.

3. If an agent accepts the contract, he chooses a technology and an effort

level that maximizes his utility given the conditions of the contract. If

the contract is rejected, the game ends.

4. Nature draws qi according to (3) and each party obtains remuneration

according to the specified conditions.
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3.2 Contracting with a Single Researcher

In this section, we derive the optimal contract with a single researcher, n = 1.

As there is no ambiguity, we omit subscripts referring to the agent. Let w

indicate the wage level that is paid to the agent if his research yields a success,

and let w denote the wage level in the event of fruitless research.

3.2.1 Symmetric Information

As a benchmark, we start with the case of symmetric information. Using

the Lagrangian to solve the principal’s problem, we obtain the optimal co-

insurance conditions (Borch 1962) between principal and agent which yield

w = w = w. (5)

The optimal effort and wage levels for a given technology are implicitly de-

fined by

ρ′(ej) · πj =
1

u′(w)
(6)

and

w = u−1(e). (7)

The left-hand side of (6) equals the marginal product of effort and the right-

hand side equals the marginal cost of effort, both seen from the principal’s

perspective. It is evident (and in accordance with intuition) that the opti-

mal effort e and optimal wage w rise in πj. As usual, under symmetric in-

formation, the risk-neutral principal completely insures the risk-averse agent

against the risk of failure by paying a wage that is not conditioned on the

agent’s success.

Regarding the technology choice, we obtain the intuitive result, that choosing

the more promising technology is optimal from the principals perspective:

Proposition 1. For n=1 and symmetric information, technology m is the

principal’s optimal technology choice.
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Proof. Suppose it is true that the principal’s payoff is higher when the

agent chooses the outsider-technology, so that ρ(e) ·πo−w(e, j) > ρ(e) ·πm−
w(e, j)⇔ πo > πm. This contradicts our assumption that πm ≥ πo.

As the principal can perfectly observe the agent’s actions, she could induce

the optimal choice of technology by inflicting (arbitrary) punishments on the

agent for using the wrong technology. In the current setting, this is not nec-

essary, as a rational agent does not profit from departing from the principal’s

optimal technology choice. He receives a fixed wage in any case. Hence, the

agent will always act in the best interest of the principal.

3.2.2 Asymmetric Information

In the case of unobservable actions, the agent’s incentive constraint becomes

a part of the principal’s optimization problem. In order to satisfy the agent’s

participation constraint and the incentive compatibility constraint, it must

be that

w > w. (8)

We therefore obtain the typical result that a success is rewarded, and fruitless

effort (q = 0) is punished. As usual, we see that the non-contractability of e

entails an efficiency loss since

πj · ρ(e) · u(w) + (1− πj · ρ(e)) · u(w) = e <

u(πj · ρ(e) · w + (1− πj · ρ(e)) · w)

⇔ u−1(e) < πj · ρ(e) · w + (1− πj · ρ(e)) · w,

(9)

where the right-hand side is due to Jensen’s inequality. The expected wage

to induce a given effort level is thus larger under asymmetric information

than under symmetric information.

Next, we extend the degree of asymmetric information and assume that the

agent’s technology choice is also not observable (or verifiable in court) by

the principal. We will refer to the case of unobservable effort and observable
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technology as “Moral Hazard I”and unobservable effort and unobservable

technology choice as “Moral Hazard II”. The assumption of unobservable

technology choice is -at least for many research settings- plausible, as any

(non-expert) principal will find it difficult to observe the techniques and

methods the agent has applied.

Recall from Proposition 1 that it is optimal to choose the mainstream-

technology, from the principal’s standpoint. It is easy to see that a rational

agent will choose the same technology.

Proposition 2. For n=1 and asymmetric information, technology m is the

agent’s optimal technology choice.

Proof. Consider any (possibly suboptimal) effort choice by the agent. The

agent’s expected gain when employing the mainstream-technology equals

ρ(e) · πm · u(w) + (1 − ρ(e) · πm) · u(w) − e. If we replace πm with πo, the

expected gains are strictly lower as u(w) > u(w) and the higher utility level

u(w) obtains a lower weight. Hence, the agent prefers technology m for any

effort choice.

The agent’s and the principal’s interests regarding technology choice are

completely aligned, and the optimal contract does not have to condition

on technology choice.

3.3 Contracting with two Researchers

We now turn to the case where the principal can employ a second agent. The

structure is similar to the one-agent case. Each agent is assigned to a specific

technology and exerts research effort. The principal can choose to employ

both agents who either both use the same technology or, use different tech-

nologies. We will refer to the former option as “concentrated efforts”and the

latter as “diversified efforts”. We make the important assumption that indi-

vidual output of agents is always observable, effectively excluding free-riding
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problems from our setting. In addition, we assume that contracting between

agents is impossible (no side contacting) and that researcher’s probabilities

of success are independent of each other and, thus, only depend on every

researcher’s own effort level and technology choice.

Let wi (wi) denotes agent i’s wage level when both agents (only agent i)

have been successful, and let w
i

(wi) denote the wage level for the case that

both agents (only agent i) fail.

3.3.1 Symmetric Information

Again, we start with an analysis of the case of symmetric information. For

both settings, concentrated efforts and diversified efforts, we once more ob-

tain the result that the agents’ wage only conditions on effort and not on

performance:

wi = wi = wi = w
i

= wi. (10)

Case 1 : Concentrated Efforts:

We postpone the optimal choice of technologies and take it as given for

determining the optimal effort and wage levels for each agent. Plugging the

uniform wage into the optimization problem, we yield optimal effort and

wage levels for agent 1 (likewise for agent 2) by solving

ρ′(e1) · πj · (1− ρ(e2)) =
1

u′(w1)
(11)

and

wi = u−1(ei). (12)

As can be seen from equation (11), the optimal effort also depends on the

probability of success of the other agent. We can show that identical effort

levels for both agents are optimal.

Proposition 3. Symmetric effort, i.e., e1 = e2 = ei, is optimal when two

agents use the same technology.
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Proof. See Appendix.

The intuition for the proof is that due to the increasing cost of inducing

higher effort, any probability of success can be obtained in a cost-minimizing

manner by equalizing the effort requirements. As a useful corollary we ob-

tain the result, that employing two agents endowed with a certain technology

yields higher expected returns than employing a single agent, using that tech-

nology:

Corollary 1. Contracting with two agents, both using technology j, yields

a strictly higher expected return than contracting with a single agent using

technology j.

Proof. Any return that is generated by offering the optimal effort-wage-

combination to a single agent, can be replicated by offering the same condi-

tions to only one of two agents while the remaining agent receives a zero-wage.

However in this case, efforts would be asymmetric, a contradiction to Propo-

sition 3.

Plugging the result from Proposition 3 into (11), optimal effort and wage

levels are defined by

ρ′(ei) · πj · (1− ρ(ei)) =
1

u′(wi)
(13)

and (12). We can easily see that in the two-agent case a lower effort level per

agent is optimal, since the left-hand side of (13) is smaller than the left-hand

side of (6).

Case 2: Diversified efforts

In the following we assume that agent 1 uses technology m and agent 2 uses

technology o. Plugging the uniform wage ino the optimization problem, the

optimal effort and wage levels solve
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πm · ρ′(e1) · (1− πo · ρ(e2)) =
1

u′(w1)
(14)

for agent 1 and

πo · ρ′(e2) · (1− πm · ρ(e1)) =
1

u′(w2)
(15)

for agent 2 and (12) for both agents. From the previous two equations we can

conclude that agent 1, who uses the mainstream-technology exerts a higher

effort level than agent 2, who uses the outsider-technology.4

Having derived optimal effort-wage-combinations for diversified and concen-

trated efforts, we can now turn to the question of which of the two options

is optimal. The principal has three possible options:

(i) Both agents are assigned to technology m (Concentrated Efforts I).

(ii) Both agents are assigned to technology o (Concentrated Efforts II).

(iii) Agents are assigned to alternate technologies (Diversified Efforts).

Following the reasoning of Proposition 1, assigning both agents to the in-

ferior technology cannot be optimal. Consequently, only the two remaining

alternatives (concentrated efforts while using the mainstream-technology and

diversified efforts) have to be compared to determine the optimal strategy.

Diversifying efforts is optimal when

E(Vmo(·)) > E(Vmm(·)), (16)

where Vmo (Vmm) denotes the principal’s payoff function for diversified efforts

(concentrated efforts). We can show that there is a set of combinations of πm

and πo for which it is optimal to assign one agent to the outsider-technology.

4For the edge case of πm = πo, effort levels would be identical.
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Proposition 4. For n = 2 with symmetric information, a threshold π̃o =
πm·(ρ(e1)·(2−ρ(e1))−ρ(e′1))−2·w1+w′

1+w
′
2

ρ(e′2)·(1−πm·ρ(e′1))
< πm determines the optimal allocation of

agents, where π̃o < πm whenever 0 < πm < 1. When πo ≤ π̃o, concen-

trated efforts with technology m are optimal; otherwise, diversified efforts are

optimal.

Proof. See Appendix.

Figure 1:

a) The principals payoff under symmetric information, when choosing con-

centrated efforts (mm), and diversified efforts (mo).

b) The optimal research portfolio for different parameter constellations

(πm, πo). CE: concentrated efforts, DE: diversified efforts.

The intuition for the proof is as follows: We know from Corollary 1 that

if πo = 0, concentrated efforts are better than diversified efforts. Next, we

verify that for πo = πm diversified efforts are strictly better than concen-

trated efforts. Finally, the fact that the principal’s payoff from diversifying
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effort strictly increases in πo, whereas her payoff from concentrated efforts is

constant, yields a unique value for πo ∈ (0, πm) where her payoffs are equal.

Figure 1a) illustrates the proof of Proposition 4 by showing the necessity of

a unique intersection of E(Vmo(·)) and E(Vmm(·)) as a function of πo. Figure

1b) illustrates the optimal research portfolio for different parameter constel-

lations of πm and πo, where “DE” and “CE” represent “diversified efforts”and

“concentrated efforts”respectively.

Note that the implementation of the optimal research agenda is again no

problem in the symmetric information setting since the uniform wage makes

any agent indifferent between both technologies. Therefore no agent wishes

to deviate from the principal’s optimal choice.

3.3.2 Asymmetric Information

Let us now assume that the principal cannot observe the agents’ actions, i.e.,

effort level and technology choice. We start with the analysis of observable

technology choice and unobservable effort (Moral Hazard I).

Case 1: Concentrated efforts

When effort is unobservable we have to add incentive compatibility con-

straints to the principal’s maximization problems when contracting with

agent 1 and agent 2 respectively.

Applying the first-order approach and then constructing the Lagrangian

yields
1

u′(wi)
=

1

u′(wi)
= λi + µi ·

ρ′(ei)

ρ(ei)
, (17)

and
1

u′(wi)
= λi − µi ·

ρ′(ei)

1− ρ(ei)
, (18)
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and, by taking into account that e1 = e2 = ei,

1

u′(w
i
)

= λi − µi ·
πm · ρ′(ei) · (1− ρ(ei))

πm · (1− ρ(ei)) · (1− ρ(ei)) + (1− πm)
, (19)

where λi and µi are Lagrange multipliers.

From equations (17) to (19) we can derive the structure of optimal wages

for concentrated efforts. Letting w
SB1
i , wSB1

i , wSB1
i , and wSB1

i
denote the op-

timal wages for agent i for different output distributions (analogous to the

case of symmetric information), we obtain the following result:

Lemma 1. For n = 2 with unobservable effort and observable technol-

ogy choice, the structure of optimal wages when efforts are concentrated is

w
SB1
i = wSB1

i > wSB1
i
≥ wSB1

i .

Proof. w
SB1
i = wSB1

i follows directly from (17). w
SB1
i > wSB1

i
must be

true, because the right-hand side of equation (17) is strictly larger than the

right-hand side of equation (19). Furthermore, wSB1
i
≥ wSB1

i follows from

comparing (18) to (19), where the inequalities are identical except for the

term (1−πm) that is added to the right-hand side denominator of (19), such

that we have a strict inequality whenever πm < 1.

If an agent fails to produce a positive output, his wage also depends on the

performance of the other agent. This is the case because the other agent’s

output is informative about the technology’s quality and individual perfor-

mance alone is not a sufficient statistic for any agent’s effort level (Mookherjee

1984). By incorporating into the contract any signal that is informative with

respect to individual effort choice (Holmström 1979), a more advantageous

trade-off between effort provision and insurance is created for the principal.

Case 2: Diversified efforts

As in the case of concentrated efforts, we have to add the agents’ incentive

17



constraints to the original problem. This yields

1

u′(wi)
=

1

u′(wi)
= λi + µi ·

ρ′(ei)

ρ(ei)
, (20)

1

u′(w1)
=

1

u′(w
1
)

= λ1 − µ1 ·
πm · ρ′(e1)

1− πm · ρ(e1)
(21)

as well as
1

u′(w2)
=

1

u′(w
2
)

= λ2 − µ2 ·
πo · ρ′(e2)

1− πo · ρ(e2)
. (22)

From the previous equations we can derive the wage structure for diversified

efforts:

Lemma 2. For n = 2 with unobservable effort and observable technol-

ogy choice, the structure of optimal wages when efforts are diversified is

w
′SB1
i = w

′SB1
i > w

′SB1
i = w

′SB1
i

.

Proof. w
′SB1
i = w

′SB1
i follows directly from (20). w

′SB1
i > w

′SB1
i must be

true, because the right-hand side of equations (21) and (22) is strictly larger

than the right-hand side of equation (20). w
′SB1
i = w

′SB1
i

follows directly

from (21) and (22).

Due to the technological independence, the performance of agent 1 is not

a signal for the effort level of agent 2 and vice versa. Hence, when efforts

are diversified, individual performance alone determines the wage level for

any agent. This independence will facilitate the analysis of Moral Hazard II

drastically.

In both cases -concentrated and diversified efforts- under asymmetric in-

formation, the expected wage for any agent needed to induce the first-best

effort level is higher than under symmetric information. The reasoning is

similar to the one-agent setting, such that we abstain from formally stat-

ing the argument again here. What is more interesting is the change in the
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optimal research portfolio generated by the non-observability of effort. We

obtain the intuitive result that concentrated efforts (i.e., research with the

more promising technology) is optimal for more parameter constellations of

πm and πo as compared to the first-best solution.

Proposition 5. For n = 2 and unobservable effort (“Moral Hazard I”),

π̃SB1
o =

πm·(ρ(eSB1
1 )·(2−ρ(eSB1

1 ))−ρ(e′SB1
1 ))−2·E(WSB1

1 )+E(W
′SB1
1 )+E(W

′SB1
2 )

ρ(e
′SB1
2 )·(1−πm·ρ(e

′SB1
1 ))

determines

the optimal allocation of agents, where π̃o < π̃SB1
o < πm whenever 0 < πm <

1. When πo ≤ π̃SB1
o , concentrated efforts with technology m are optimal,

otherwise diversified efforts are optimal.

Proof. See Appendix.

The intuition for the proof of the uniqueness of the threshold is similar to

that of the proof of Proposition 4. The proof that π̃SB1
o > π̃o takes three

steps. First, it relies on the fact that for either option of the technology

choice, the principal’s payoff is lower when she cannot observe the agents’ ef-

forts. Second, showing that for πo = 0 the difference between payoffs is larger

for diversified efforts than for concentrated efforts and, third, acknowledging

that for diversified efforts she gains more from a marginal increase of πo when

she can observe the agents’ efforts, implies that the intersection between her

payoffs when choosing diversified and concentrated efforts, respectively, oc-

curs for a larger value of πo if she cannot observe agents’ efforts. Figure 2

illustrates the argument. Due to the agents’ risk-aversion, it is more costly

for the principal to induce effort for low success probabilities. Hence the prin-

cipal finds it optimal to concentrate efforts on the mainstream-technology for

a larger parameter range. A deviation from the assigned technology can eas-

ily be deterred by the principal, as she can observe the technology choice.

This is no longer the case in the problem of “Moral Hazard II”, when tech-

nology choice is also unobservable. Following the reasoning of Proposition
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Figure 2:

a) The principals payoff under symmetric information (dashed), and under

Moral Hazard I (solid), when choosing concentrated efforts (mm), and diver-

sified efforts (mo).

b) The optimal research portfolio for different parameter constellations

(πm, πo). CE: concentrated efforts, DE: diversified efforts. In the setting

Moral Hazard I, the set of parameters for which DE is optimal shrinks (DE

SB1).

2, any agent prefers to use the mainstream technology. Hence, an explicit

incentivization for choosing the mainstream-technology is not necessary and

asymmetric information with respect to technology choice does not harm the

principal when the parameter constellation is such that she prefers concen-

trated efforts. Whenever diversified efforts are optimal, however, the wage

scheme derived for the previous problem is no longer optimal. In fact, under

that wage scheme, agent 2 will deviate from the principal’s desired behavior

and switch to the mainstream-technology, since choosing the mainstream-

technology increases the probability of individual success for any given effort

level.
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Proposition 6. For n=2 with unobservable effort and unobservable tech-

nology choice (“Moral Hazard II”), every agent will choose the mainstream-

technology under the optimal wage scheme for “Moral Hazard I”.

Proof. See Appendix.

The unobservability of the agent’s technology choice requires a mechanism

that incentivizes the principal’s preferred technology choice. Hence we have

to add another incentive compatibility constraint for the second agent (see

Appendix). The incorporation of the additional constraint into the princi-

pal’s problem yields a new wage scheme that rewards or punishes the second

agent according to his own performance and the performance of agent 1.

Lemma 3. For agent 2, the structure of wages for diversified unobservable

efforts and unobservable technology choice is wSB2
2 > w

SB2
2 and wSB2

2 > wSB2
2

.

Proof. See Appendix.

The resulting wage scheme rewards agent 2 according to the distribution of

outcomes. If he is the sole agent to succeed, his earnings are higher compared

to the outcome where both agents are successful. Moreover, his punishment

is more severe when both agents fail as compared to the case where he, alone,

fails. This new wage structure is optimal because output distributions are

informative about agent 2’s compliance with the principal’s desired actions.

A single success and a single failure are more likely to occur in situations

where the agent complied with the principal’s wishes. A double-success and

a double-failure, however, are signals for deviant behavior. Our wage scheme

is therefore similar to the one suggested by Legros and Matsushima (1991),

who use heterogeneity in agents’ characteristics to deter free-riding in team-

production.
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Figure 3:

a) The principals payoff under Moral Hazard I (dashed), and under Moral

Hazard II (solid), when choosing concentrated efforts (mm), and diversified

efforts (mo).

b) The optimal research portfolio for different parameter constellations

(πm, πo). CE: concentrated efforts, DE: diversified efforts. In the setting

Moral Hazard II, the set of parameters for which DE is optimal shrinks (DE

SB2).

The incentivization of her preferred technology choice comes at a cost for

the principal because of the agent’s risk aversion. For both performance lev-

els of agent 2, his respective wage also depends on the performance of agent

1. Hence, he faces a lottery in both respective cases. Agent 2 prefers pair-

wise sure outcomes over respective lotteries with identical expected value.

Therefore, an additional risk-premium is necessary to induce any given effort

level, which entails a cost for the principal.

Proposition 7. The principal’s expected payoff is lower for diversified ef-

forts, when the technology choice is not observable: E(V SB1
mo (·)) > E(V SB2

mo (·))
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Proof. See Appendix.

Since diversified efforts are more costly compared to Moral Hazard I, the set

of parameter constellations for which diversified efforts are optimal shrinks

once more, and we define a new threshold.

Proposition 8. For n = 2 with unobservable effort and unobservable technol-

ogy choice (“Moral Hazard II”), π̃SB2
o =

πm·(ρ(eSB2
1 )·(2−ρ(eSB2

1 ))−ρ(e′SB2
1 ))−2·E(WSB2

1 )+E(W
′SB2
1 )+E(W

′SB2
2 )

ρ(e
′SB2
2 )·(1−πm·ρ(e

′SB2
1 ))

determines the optimal allocation of agents, where π̃SB1
o < π̃SB2

o < πm when-

ever 0 < πm < 1. When πo ≤ π̃SB2
o , concentrated efforts with technology m

are optimal, otherwise diversified efforts are optimal.

Proof. See Appendix.

Again we have a non-empty set of parameter-constellations for which it is

optimal to diversify, although this set must be smaller than under “Moral

Hazard I”. Figure 3 illustrates Proposition 8.

4 Discussion

Our results suggest that -for the case of two researchers- the individual opti-

mal research portfolio choice does not necessarily have to coincide with the

social optimum, when asymmetric information between principal and agents

is involved. First, when effort is unobservable but technology choice is observ-

able, the adjusted optimal research portfolio shifts towards the mainstream-

technology for a larger set of parameter realizations compared to the first-

best solution (Moral Hazard I). Second, the wage scheme developed for Moral

Hazard I, is not optimal any longer, when the principal wants to induce a

multiplicity of research approaches and technology choice is also unobserv-

able for the principal. Without modifications of the wage-structure, only

the mainstream-approach would be used by both agents. The optimal wage-

scheme for Moral Hazard II takes into account that an agent who is sup-

posed to use the inferior technology has to be additionally incentivized to do
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so. However this adjustment of payments comes at a cost for the principal,

shifting the optimal research portfolio towards mainstream research for more

parameter constellations once more. Hence, the bias towards mainstream-

technology becomes more pronounced in Moral Hazard II. Unlike in related

models like Dasgupta and Maskin (1987) and Fershtman and Rubinstein

(1997), the misdirection of research effort is completely due to the informa-

tion asymmetry between principal and agents.

Admittedly our model is quite stylized, and does not cover important as-

pects of reality. First and foremost, the resulting bias towards mainstream

research is (partly) driven by the assumptions that all players have a com-

mon prior about success probabilities, identical cost functions for both tech-

nologies, and decide simultaneously, which technology to chose. Changes in

these assumptions might yield results that resolve or mitigate the resulting

bias. Furthermore we exclude important aspects like economies of scale5 or

closely related technologies, where our independence assumption is violated.

Furthermore one might criticize the resulting optimal wage scheme as too

complicated or unrealistic.

As valid as all these points may be, our model helps to understand why

research diversity is nothing that is achieved easily or follows naturally from

a researcher’s own interest. In fact, without well-designed incentives, a ben-

eficial multiplicity of research approaches is not likely to occur.

5 Conclusion

We have derived optimal contracts for a setting of delegated research in which

the agents’ action space encompasses an effort level and the choice between

two research technologies. For a single agent, the optimal second-best con-

5For example, success probabilities might disproportionally increase when more than

one agent uses a certain technology, due to knowledge spillovers.

24



tract is simple and is characterized by an effort level that is higher the more

promising the superior technology. Optimal technology choice follows from

the agent’s self-interest and does not have to be incentivized by the con-

tract. Hence, the non-observability of effort reduces the principal’s expected

income, whereas the non-observability of technology choice does not.

For two agents, depending on the respective realizations of parameter values,

either (i) concentrating efforts on the mainstream-technology or (ii) diversify-

ing efforts on both technologies can be optimal. Given technological indepen-

dence, the optimal second-best contract conditions on the other agent’s per-

formance level only when efforts are concentrated. Unobservable effort shifts

the optimal allocation of researchers towards the mainstream-technology for

a larger range of parameter values compared to the first-best solution. When

the principal intends to induce diversified efforts and technology choice can-

not be observed, the original second-best wage scheme fails, since employing

the mainstream-technology always yields the agent a higher expected pay-

off. The desired choice of technology can be induced by an adjusted payoff

scheme that harnesses differences in outcome distributions. The distortion

due to the additional information asymmetry lowers the principal’s expected

payoff and leads to a further enlargement of the set of parameters for which

concentrated efforts are optimal. Our model suggests that there is a socially

suboptimal level of diversity in research when multiple researchers work on

an identical research goal.
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Appendix A: Details to the Optimization Prob-

lems

Symmetric Information, n=1

Postponing the choice of j, we obtain the following program

E(Vj(·)) = max
j,e,w,w

πj · [ρ(e) · (1− w) + (1− ρ(e)) · (−w)]

+(1− πj) · (−w),
(P I: FB)

subject to

πj · [ρ(e) · u(w) + (1− ρ(e)) · u(w)]+

(1− πj) · u(w)− e ≥ 0.
(IR I: FB)

We obtain the Lagrangian

L =
ρ(e) · πj · (1− w) + (1− ρ(e) · πj) · (−w)+

λ · [ρ(e) · πj · u(w) + (1− ρ(e) · πj) · u(w)− e] = 0.
(23)

Taking the first-order-conditions yields

∂L
∂e

=
ρ′(e) · πj · (1− w + w)+

λ · [(ρ′(e) · πj · (u(w)− u(w))− 1] = 0,
(24)

∂L
∂w

= ρ(e) · πj · (−1) + λ · [ρ(e) · πj · u′(w)] = 0, (25)

∂L
∂w

=
(1− ρ(e) · πj) · (−1)+

λ · [(1− ρ(e) · πj) · u′(w)] = 0.
(26)

From (25) and (26) we can easily obtain the optimal co-insurance conditions

and yield
1

u′(w)
=

1

u′(w)
⇔ u′(w) = u′(w)⇔ w = w. (27)
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Plugging the uniform wage w into (24) we yield

1

u′(w)
= λ =

ρ′(e) · πj · (1− w + w)

1− ρ′(e) · πj · (u(w)− u(w))︸ ︷︷ ︸
0

(28)

which can be rearranged to (6).

Asymmetric Information, n=1

We obtain the following program

E(V SB
j (·)) = max

j,e,w,w
πj · [ρ(e) · (1− w) + (1− ρ(e)) · (−w)]

+(1− πj) · (−w),
(P I: SB)

subject to

πj · [ρ(e) · u(w) + (1− ρ(e)) · u(w)]+

(1− πj) · u(w)− e ≥ 0
(IR I: SB)

and

ej ∈ argmaxêπj · [ρ(ê) · u(w) + (1− ρ(ê)) · u(w)]+

(1− πj) · u(w)− ê.
(IC I: SB)

To solve this problem we can use the common first-order-condition approach

(Holmström 1979), given our assumptions on ρ(·), u(·), and πj. Thus, the

agent’s original incentive constraint is replaced by

ρ′(e) · πj · [u(w)− u(w)] = 1. (29)

We obtain the Lagrangian

L =

ρ(e) · πj · (1− w) + (1− ρ(e) · πj) · (−w)+

λ · [ρ(e) · πj · u(w) + (1− ρ(e) · πj) · u(w)− e]+
µ · [ρ′(e) · πj · [u(w)− u(w)]− 1] = 0.

(30)
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Taking derivatives with respect to w and w yields

1

u′(w)
= λ+ µ · ρ

′(e)

ρ(e)
(31)

and
1

u′(w)
= λ− µ · ρ′(e) · πj

1− ρ(e) · πj
. (32)

Equations (31) and (32) imply that w > w.

Symmetric Information, n=2

Concentrated efforts:

If both agents use technology j, the principal’s maximization problem is

E(Vjj(·)) = max
e1,e2,j,w1,w2,w1,w2,w1,w2,w1

,w
2

=

πj · [ρ(e1) · ρ(e2) · (1− w1 − w2)+

ρ(e1) · (1− ρ(e2)) · (1− w1 − w2)+

(1− ρ(e1)) · ρ(e2) · (1− w1 − w2)+

(1− ρ(e1)) · (1− ρ(e2)) · (−w1
− w

2
)]+

(1− πj) · (−w1
− w

2
).

(P II: FB CE)

The problem is subject to the individual rationality constraints of the agents

(here presented only for agent 1, analogously for agent 2):

πj · [ρ(e1) · ρ(e2) · u(w1)+

ρ(e1) · (1− ρ(e2)) · u(w1)+

(1− ρ(e1)) · ρ(e2) · u(w1)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
1
)]+

(1− πj) · u(w
1
)− e1 ≥ 0.

(IR II: FB CE)
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We obtain the Lagrangian

L = πj · [ρ(e1) · ρ(e2) · (1− w1 − w2)+

ρ(e1) · (1− ρ(e2)) · (1− w1 − w2)+

(1− ρ(e1)) · ρ(e2) · (1− w1 − w2)+

(1− ρ(e1)) · (1− ρ(e2)) · (−w1
− w

2
)]+

(1− πj) · (−w1
− w

2
))+

λ1 · [πj · [ρ(e1) · ρ(e2) · u(w1)+

ρ(e1) · (1− ρ(e2)) · u(w1)+

(1− ρ(e1)) · ρ(e2) · u(w1)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
1
)]+

(1− πj) · u(w
1
)− e1]+

λ2 · [πj · [ρ(e1) · ρ(e2) · u(w2)+

ρ(e1) · (1− ρ(e2)) · u(w2)+

(1− ρ(e1)) · ρ(e2) · u(w1)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
1
)]+

(1− πj) · u(w
2
)− e2] = 0.

(33)

Taking derivatives with respect to the different wage levels for agent 1 (like-

wise for agent 2 ) yields

∂L
∂w1

=

πj · ρ(e1) · ρ(e2) · (−1)+

λ1 · [πj · ρ(e1) · ρ(e2) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1,

(34)

∂L
∂w1

=

πj · ρ(e1) · (1− ρ(e2)) · (−1)+

λ1 · [πj · ρ(e1) · (1− ρ(e2)) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1,

(35)
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∂L
∂w1

=

πj · (1− ρ(e1j)) · ρ(e2) · (−1)+

λ1 · [πj · (1− ρ(e1)) · ρ(e2) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1,

(36)

and

∂L
∂w

1

=

πj · (1− ρ(e1)) · (1− ρ(e2)) · (−1)+

(1− πj) · (−1)+

λ1 · [πj · (1− ρ(e1)) · (1− ρ(e2)) · u′(w1
)+

(1− πj) · u′(w1
)] = 0

⇔ 1

u′(w
1
)

= λ1.

(37)

From the previous four equations we obtain that

1

u′(wi)
=

1

u′(wi)
=

1

u′(wi)
=

1

u′(w
i
)

⇔ wi = wi = wi = w
i

= wi.

(38)

Making use of (38), we take the derivative with respect to e1:

∂L
∂e1

=

πj · (ρ′(e1)− ρ′(e1) · ρ(e2))+

λ1 · [−1] = 0

⇔ ρ′(e1) · πj · (1− ρ(e2)) = λ1.

(39)

The same can be done for e2. From equations (34) to (37) and (39) one can

easily obtain

ρ′(e1) · πj · (1− ρ(e2)) =
1

u′(w1)
(40)

and

wi = u−1(ei). (41)
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Diversified efforts:

If the agents use one technology each (agent 1 uses m and agent 2 uses o),

the principal’s problem becomes

E(Vmo(·)) = max
e1,e2,w1,w2,w1,w2,w1,w2,w1

,w
2

=

(πm · πo) · [ρ(e1) · ρ(e2) · (1− w1 − w2)+

ρ(e1) · (1− ρ(e2)) · (1− w1 − w2)+

(1− ρ(e1)) · ρ(e2) · (1− w1 − w2)+

(1− ρ(e1)) · (1− ρ(e2)) · (−w1
− w

2
)]+

(πm · (1− πo)) · [ρ(e1) · (1− w1 − w2)+

(1− ρ(e1)) · (−w1
− w

2
)]+

((1− πm) · πo) · [ρ(e2) · (1− w1 − w2)+

(1− ρ(e2)) · (−w1
− w

2
)]+

((1− πm) · (1− πo)) · (−w1
− w

2
),

(P II: FB DE)

subject to agent 1’s participation constraint (likewise for agent 2)

(πm · πo) · [ρ(e1) · ρ(e2) · u(w1)+

ρ(e1) · (1− ρ(e2)) · u(w1)+

(1− ρ(e1)) · ρ(e2) · u(w1)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
1
)]+

(πm · (1− πo)) · [ρ(e1) · u(w1) + (1− ρ(e1)) · u(w
1
)]+

((1− πm) · πo) · [ρ(e2) · u(w1) + (1− ρ(e2)) · u(w
1
)]+

((1− πm) · (1− πo)) · u(w
1
)− e1 ≥ 0.

(IR II: FB DE)
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We obtain the Lagrangian

L = πm · πo · [ρ(e1) · ρ(e2) · (1− w1 − w2)+

ρ(e1) · (1− ρ(e2)) · (1− w1 − w2)+

(1− ρ(e1)) · ρ(e2) · (1− w1 − w2)+

(1− ρ(e1)) · (1− ρ(e2)) · (−w1
− w

2
)]+

πm · (1− πo) · [ρ(e1) · (1− w1 − w2) + (1− ρ(e1)) · (−w1
− w

2
)]+

(1− πm) · πo · [ρ(e2) · (1− w1 − w2) + (1− ρ(e2)) · (−w1
− w

2
)]+

(1− πm) · (1− πo) · [−w1
− w

2
]+

λ1 · [πm · πo · [ρ(e1) · ρ(e2) · u(w1)+

ρ(e1) · (1− ρ(e2)) · u(w1)+

(1− ρ(e1)) · ρ(e2) · u(w1)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
1
)]+

πm · (1− πo) · [ρ(e1) · u(w1) + (1− ρ(e1)) · u(w
1
)]+

(1− πm) · πo · [ρ(e2) · u(w1) + (1− ρ(e2)) · u(w
1
)]+

(1− πm) · (1− πo) · [u(w
1
)]− e1]+

λ2 · [πm · πo · [ρ(e1) · ρ(e2) · u(w2)+

ρ(e1) · (1− ρ(e2)) · u(w2)+

(1− ρ(e1)) · ρ(e2) · u(w2)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
2
)]+

πm · (1− πo) · [ρ(e1) · u(w2) + (1− ρ(e1)) · u(w
2
)]+

(1− πm) · (πo) · [ρ(e2) · u(w2) + (1− ρ(e2)) · u(w
2
)]+

(1− πm) · (1− πo) · [u(w
2
)]− e2] = 0.

(42)
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Taking derivatives with respect to the different wage levels for agent 1 yields

∂L
∂w1

=

πm · πo · ρ(e1) · ρ(e2) · (−1)+

λ1 · [πm · πo · ρ(e1) · ρ(e2) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1,

(43)

∂L
∂w1

=

(πm · πo · ρ(e1) · (1− ρ(e2)) + πm · (1− πo) · ρ(e1)) · (−1)+

λ1 · [(πm · πo · ρ(e1) · (1− ρ(e2))+

πm · (1− πo) · ρ(e1)) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1,

(44)

∂L
∂w1

=

(πm · πo · (1− ρ(e1r)) · ρ(e2l) + (1− πm) · πo · ρ(e2l)) · (−1)+

λ1 · [(πm · πo · (1− ρ(e1)) · ρ(e2)+

+(1− πm) · πo · ρ(e2)) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1,

(45)

and

∂L
∂w

1

=

(πm · πo · (1− ρ(e1)) · (1− ρ(e2))+

πm · (1− πo) · (1− ρ(e1))+

(1− πm) · πo · (1− ρ(e2))+

(1− πm) · (1− πo)) · (−1)+

λ1 · [(πm · πo · (1− ρ(e1)) · (1− ρ(e2))+

πm · (1− πo) · (1− ρ(e1))+

(1− πm) · πo · (1− ρ(e2))+

(1− πm) · (1− πo)) · (u′(w1
))] = 0

⇔ 1

u′(w
1
)

= λ1.

(46)
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The previous four equations are equivalent to (38). The optimal wage levels

for agent 2 can be derived in a similar way.

Taking the derivative with respect to e1 results in

∂L
∂e1

=
πm · ρ′(e1) · (πo · (1− ρ(e2)) + (1− πo)) + λ1 · [−1] = 0

⇔ πm · ρ′(e1) · (1− πo · ρ(e2)) = λ1.
(47)

From equations (43) to (46) and (47) one can easily obtain

πm · ρ′(e1) · (1− πo · ρ(e2)) =
1

u′(w1)
. (48)

The same can be done for e2, which yields and

πo · ρ′(e2) · (1− πm · ρ(e1)) =
1

u′(w2)
. (49)

Moreover, equation (38) also holds for the case of diversified efforts.

Asymmetric Information, n=2

Concentrated Efforts, Moral Hazard I:

The incentive compatibility constraint for agent 1 (likewise for agent 2) is

given as

e1 ∈ argmaxê1πm · [ρ(ê1) · ρ(e2) · u(w1)+

ρ(ê1) · (1− ρ(e2)) · u(w1)+

−ρ′(ê1) · ρ(e2) · u(w1)−
ρ′(ê1) · (1− ρ(e2)) · u(w

1
)]− 1.

(IC II: SB1 CE)

Therefore we add
µi · [πm · [ρ′(e1) · ρ(e2) · u(w1)+

ρ′(e1) · (1− ρ(e2)) · u(w1)+

−ρ′(e1) · ρ(e2) · u(w1)−
ρ′(e1) · (1− ρ(e2)) · u(w

1
)]− 1]

(50)
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to the left-hand side of the original Lagrange function (33) to obtain the

updated Lagrangian. We take derivatives with respect to the different wage

levels of agent 1 (likewise for agent 2):

∂L
∂w1

=

πm · ρ(e1) · ρ(e2) · (−1)+

λ1 · [πm · ρ(e1) · ρ(e2) · u′(w1)]+

µ1 · [πm · ρ′(e1) · ρ(e2) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1 + µ1 ·

ρ′(e1)

ρ(e1)
,

(51)

∂L
∂w1

=

πm · ρ(e1) · (1− ρ(e2)) · (−1)+

λ1 · [πm · ρ(e1) · (1− ρ(e2)) · u′(w1)]+

µi · [πm · ρ′(e1) · (1− ρ(e2)) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1 + µ1 ·

ρ′(e1)

ρ(e1)
,

(52)

∂L
∂w1

=

πm · (1− ρ(e1)) · ρ(e2) · (−1)+

λ1 · [πm · (1− ρ(e1)) · ρ(e2) · u′(w1)]+

µ1 · [πm · (−ρ′(e1)) · ρ(e2) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1 − µ1 ·

ρ′(e1)

1− ρ(e2)
,

(53)

and

∂L
∂w

1

=

(πm · (1− ρ(e1)) · (1− ρ(e2)) + (1− πm)) · (−1)+

λ1 · [(πm · (1− ρ(e1)) · (1− ρ(e2)) + (1− πj)) · u′(w1
)]+

µi · [πm · (−ρ′(e1)) · (1− ρ(e2)) · u′(w1
)]

⇔ 1

u′(w
1
)

= λ1 − µ1 ·
πm · ρ′(e1) · (1− ρ(e2))

πm · (1− ρ(e1)) · (1− ρ(e2)) + (1− πm)
.

(54)
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Diversified Efforts, Moral Hazard I:

The incentive compatibility constraint for agent 1 (likewise for agent 2) is

given as

e1 ∈ argmaxê1πm · πo · [ρ(ê1) · ρ(e2) · u(w1)+

ρ(ê1) · (1− ρ(e2)) · u(w1)+

(1− ρ(ê1)) · ρ(e2) · u(w1)+

(1− ρ(ê1)) · (1− ρ(e2)) · u(w
1
)]+

(πm · (1− πo) · [ρ(ê1) · u(w1) + (1− ρ(ê1)) · u(w
1
)]+

(1− πm) · πo · [ρ(e2) · u(w1) + (1− ρ(e2)) · u(w
1
)]+

(1− πm) · (1− πo) · [u(w
1
)]− ê1.

(IC II: SB1 DE)

We add

µi · [πm · πo · [ρ′(e1) · ρ(e2) · u(w1)+

ρ(e1) · (1− ρ(e2)) · u(w1)+

(1− ρ(ê1)) · ρ(e2) · u(w1)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
1
)]+

(πm · (1− πo) · [ρ(e1) · u(w1) + (1− ρ(e1)) · u(w
1
)]+

(1− πm) · πo · [ρ(e2) · u(w1) + (1− ρ(e2)) · u(w
1
)]+

(1− πm) · (1− πo) · [u(w
1
)]− e]

(55)

to the left-hand side of equation (42) to obtain an updated Lagrangian. We

once more take derivatives with respect to the different wage levels of agent

1 (likewise for agent 2):

∂L
∂w1

=

πm · πo · ρ(e1) · ρ(e2) · (−1)+

λ1 · [πm · πo · ρ(e1) · ρ(e2) · u′(w1)]+

µ1 · [πm · πo · ρ′(e1) · ρ(e2) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1 + µ1 ·

ρ′(e1)

ρ(e1
,

(56)
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∂L
∂w1

=

πm · ρ(e1) · (πo · (1− ρ(e2)) + (1− πo)) · (−1)+

λ1 · [πm · ρ(e1) · (πo · (1− ρ(e2)) + (1− πo)) · u′(w1)]+

µ1 · [πm · ρ′(e1) · (πo · (1− ρ(e2)) + (1− πo)) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1 + µ1 ·

ρ′(e1)

ρ(e1)
,

(57)

∂L
∂w1

=

(πm · (1− ρ(e1)) + (1− πm)) · πo · ρ(e2) · (−1)+

λ1 · [(πm · (1− ρ(e1)) + (1− πm)) · πo · ρ(e2) · u′(w1)]+

µ1 · [πm · πo · (−ρ′(e1)) · ρ(e2) · u′(w1)] = 0

⇔ 1

u′(w1)
= λ1 − µ1 ·

πm · ρ′(e1)
1− πm · ρ(e1)

,

(58)

and

∂L
∂w

1

=

(1− πm · ρ(e1)) · (1− πo · ρ(e2)) · (−1)+

λ1 · [(1− πm · ρ(e1)) · (1− πo · ρ(e2)) · u′(w1
)]+

µ1 · [πm · (−ρ′(e1)) · (1− πo · ρ(e2)) · u′(w1
)] = 0

⇔ 1

u′(w
1
)

= λ1 − µ1 ·
πm · ρ′(e1)

1− πm · ρ(e1)
.

(59)

Diversified efforts, Moral Hazard II:

The additional incentive compatibility constraint that is needed to insure
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agent 2’s usage of the outsider-technology is

(πm · πo) · [ρ(e1) · ρ(e2) · u(w2)+

ρ(e1) · (1− ρ(e2)) · u(w2)+

(1− ρ(e1)) · ρ(e2) · u(w2)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
2
)]+

(πm · (1− πo)) · [ρ(e1) · u(w2) + (1− ρ(e1)) · u(w
2
)]+

((1− πm) · πo) · [ρ(e2) · u(w2) + (1− ρ(e2)) · u(w
2
)]+

((1− πm) · (1− πo)) · u(w
2
)− e2 ≥

πm · [ρ(e1) · ρ(e2) · u(w2)+

ρ(e1) · (1− ρ(e2)) · u(w2)+

(1− ρ(e1)) · ρ(e2) · u(w2)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
2
)]+

(1− πm) · u(w
2
)− e2.

(IC2 II: SB2 DE)

Since this conditionmust hold with equality (otherwise the principal would

give away utility for free), we can incorporate the former constraint into the

Lagrange-function and add
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We add

ν · [(πm · πo) · [ρ(e1) · ρ(e2) · u(w2)+

ρ(e1) · (1− ρ(e2)) · u(w2)+

(1− ρ(e1)) · ρ(e2) · u(w2)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
2
)]+

(πm · (1− πo)) · [ρ(e1) · u(w2) + (1− ρ(e1)) · u(w
2
)]+

((1− πm) · πo) · [ρ(e2) · u(w2) + (1− ρ(e2)) · u(w
2
)]+

((1− πm) · (1− πo)) · u(w
2
)−

(πm · [ρ(e1) · ρ(e2) · u(w2)+

ρ(e1) · (1− ρ(e2)) · u(w2)+

(1− ρ(e1)) · ρ(e2) · u(w2)+

(1− ρ(e1)) · (1− ρ(e2)) · u(w
2
)]+

(1− πm) · u(w
2
))]

(60)

to the left-hand side of the former Lagrange function (equations (42) and

(55)) and take derivatives with respect to the different wage levels of agent

2.

∂L
∂w2

=

πm · πo · ρ(e1) · ρ(e2) · (−1)+

λ2 · [πm · πo · ρ(e1) · ρ(e2) · u′(w2)]+

µ2 · [πm · πo · ρ(e1) · ρ′(e2) · u′(w2)]+

ν · [πm · (πo − 1) · ρ(e1) · ρ(e2) · u′(w2)] = 0

⇔ 1

u′(w2)
= λ2 + µ2 ·

ρ′(e2)

ρ(e2)
+ ν2 ·

πo − 1

πo
,

(61)
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∂L
∂w2

=

πo · ρ(e2) · (πm · (1− ρ(e1)) + (1− πm)) · (−1)+

λ2 · [πo · ρ(e2) · (πm · (1− ρ(e1)) + (1− πm)) · u′(w2)]+

µ1 · [πo · ρ′(e2) · (πm · (1− ρ(e1)) + (1− πm)) · u′(w2)]+

ν · [ρ(e2) · (πm · (ρ(e1) · (1− πo)− 1) + πo) · u′(w2)] = 0

⇔ 1

u′(w2)
= λ2 + µ2 ·

ρ′(e2)

ρ(e2)
+ ν2 ·

πm · (ρ(e1) · (1− πo)− 1) + πo
πo · (1− πm · ρ(e1))

,

(62)

∂L
∂w2

=

(πo · (1− ρ(e2)) + (1− πo)) · πm · ρ(e1) · (−1)+

λ2 · [(πo · (1− ρ(e2)) + (1− πo)) · πm · ρ(e1) · u′(w2)]+

µ1 · [πo · πm · ρ(e1) · (−ρ′(e2)) · u′(w2)]+

ν · [(1− πo) · πm · ρ(e1) · ρ(e2) · u′(w2)] = 0

⇔ 1

u′(w2)
= λ1 − µ1 ·

πo · ρ′(e2)
1− πo · ρ(e2)

+ ν2 ·
ρ(e2) · (1− πo)
1− πo · ρ(e2)

,

(63)

and

∂L
∂w

2

=

(1− πm · ρ(e1)) · (1− πo · ρ(e2)) · (−1)+

λ2 · [(1− πm · ρ(e1)) · (1− πo · ρ(e2)) · u′(w2
)]+

µ2 · [πm · (−ρ′(e1)) · (1− πo · ρ(e2)) · u′(w2
)]+

ν2 · [ρ(e2) · (πm · (1− ρ(e1)) · (1 + πo))− πo)] = 0

⇔ 1

u′(w
2
)

= λ2 − µ2 ·
πm · ρ′(e1)

1− πm · ρ(e1)
+ ν2 ·

ρ(e2) · (πm · (1− ρ(e1) · (1− πo))− πo)
(1− πm · ρ(e1)) · (1− πo · ρ(e2))

.

(64)
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Appendix B: Proofs

Proof of Proposition 3:

From equation (11), we obtain that optimal probabilities are given as

ρ(e1) = 1− 1

u′(w1) · πj · ρ′(e2)
(65)

and

ρ(e2) = 1− 1

u′(w1) · πj · ρ′(e1)
. (66)

Suppose ρ(e1) > ρ(e2) = 0. Equation (66) implies that ρ(e2) = 0 cannot be

an optimum and the left-hand side of ρ(e2) will increase. This in turn will

cause ρ′(e2) to decrease, making ρ(e1) also decrease. This process continues

until ρ(e1) = ρ(e2)⇔ e1 = e2.

Proof of Proposition 4

Denote with ei and wi, the optimal effort and wage levels for concentrated

efforts, and with e′i and w′i, the optimal effort and wage levels for diversified

efforts. Condition (16) holds iff

(πm · πo) · (ρ(e′1) · ρ(e′2) + ρ(e′1) · (1− ρ(e′2)) + (1− ρ(e′1)) · ρ(e′2))+

πm · (1− πo) · ρ(e′1) + (1− πm) · πo · ρ(e′2)− w′1 − w′2 >
πm · (2 · ρ(e1)− ρ(e1)

2)− 2 · w1

⇔ πo >
πm · (ρ(e1) · (2− ρ(e1))− ρ(e′1))− 2 · w1 + w′1 + w′2

ρ(e′2) · (1− πm · ρ(e′1))
,

(67)

where we use the fact that e1 = e2 and w1 = w2.

Next, we show that for 0 > πm > 1, π̃o is strictly larger than 0. We do

so by first showing that for πo = 0, concentrated efforts are strictly better

than diversified efforts. Since ρ(e′2) = 0 for πo = 0, the expected payoff for

diversified efforts equals the expected payoff of a single researcher, using the

mainstream-technology. From Corollary 1 we know that every expected re-

turn of a single researcher can be obtained more cheaply with two researchers
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both using the same technology. Hence, π̃o must be larger than zero.

Second, we show that for πo = πm, diversified efforts are strictly better,

so that π̃o is strictly smaller than πm. We plug in the optimal effort-wage-

combination for concentrated efforts into E(Vmo(·)) and yield

1− (1− πm · ρ(e1)) · (1− πm · ρ(e1))− 2 · w1 >

πm · (1− (1− ρ(e1)) · (1− ρ(e1)))− 2 · w1

⇔ πm · ρ(e1) · (2− πm · ρ(e1)) > πm · ρ(e1) · (2− ρ(e1))

⇔ 1 > πm.

(68)

Again, this condition is always satisfied, so that π̃o < πm.

Finally we show that E(Vmo(·)) is strictly increasing in πo and E(Vmm(·))
is not affected by changes of πo, which implies that a unique intersection of

both payoff functions must exist.

If πo increases, but the effort-wage-combination remains unchanged, E(Vmo(·))
rises. Hence, increasing the effort when πo rises must necessarily yield weakly

higher returns than keeping the effort level constant, so that E(Vmo(·)) is

strictly increasing in πo. According to equation (13), E(Vmm(·)) does not

depend on πo, so that the intersection must be unique.

Proof of Proposition 5

The existence of a unique threshold π̃SB1
o can be proven with a similar ar-

gument used to prove Proposition 4. What remains to be shown is that

π̃SB1
o > π̃o. It is sufficient to prove that

E(V SB1
mm (·))− E(V SB1

mo (·)) > E(Vmm(·))− E(Vmo(·)) (69)

∀πo. Let ∆SB1(πo) = E(V SB1
mm (·)) − E(V SB1

mo (·)) denote the difference in ex-

pected payoffs between the two options for asymmetric information and let

∆(πo) = E(Vmm(·)) − E(Vmo(·)) denote the differences for symmetric in-

formation. We have ∆SB1(0) > ∆(0), because the principal gains more
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from employing a second agent in the case of Moral Hazard I, as it is more

expensive to induce individual effort. Thus, the cost-reduction effect of re-

ducing individual effort is more pronounced. Furthermore, it must be that

∆′SB1(πo) < ∆′(πo), because the principal benefits less from an increase in πo

in Moral Hazard 1, since effort invested in the outsider-technology increases

less due to the higher cost of inducing effort. As a consequence we have

π̃SB1
o > π̃o and ∆SB1(π̃

SB1
o ) = 0.

Proof of Proposition 6

Since only two wage levels have to be considered (Lemma 2), agent i prefers

to choose the mainstream-technology if

πm · ρ(e′i) · u(w′i) + (1− πm · ρ(e′i)) · u(w′i) >

πo · ρ(e′i) · u(wi)
′ + (1− πo · ρ(e′i)) · u(w′i)

⇔ u(w′i) > u(w′i).

(70)

Hence agent 2 will always deviate.

Proof of Lemma 3

For wSB2
2 > w

SB2
2 to be true, equations (61) and (62) imply that it is sufficient

to show that

πm · (ρ(e1) · (1− πo)− 1) + πo
πo · (1− πm · ρ(e1))

>
πo − 1

πo

⇔ 0 > (πo − 1) · (1− πm · ρ(e1))− (πm · (ρ(e1) · (1− πo)− 1) + πo)

⇔ 1 > πm.

(71)

Likewise, for wSB2
2 > wSB2

2
to hold, equations (63) and (64) imply

ρ(e2) · (1− πo)
1− πo · ρ(e2)

>
ρ(e2) · (πm · (1− ρ(e1) · (1− πo))− πo)

(1− πm · ρ(e1)) · (1− πo · ρ(e2))

⇔ (1− πo) · (1− πm · ρ(e1))− (πm · (1− ρ(e1) · (1− πo))− πo) > 0

⇔ 1 > πm.

(72)
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Proof of Proposition 7

Since u(·) is concave, it is true that

πm · πo · ρ(e1) · ρ(e2) · u(w2)+

πm · ρ(e1) · (1− πo · ρ(e2)) · u(w2)+

(1− πm · ρ(e1)) · πo · ρ(e2)) · u(w2)+

(1− πm · ρ(e1)) · (1− πo · ρ(e2)) · u(w
2
) = e2 <

πo · ρ(e2) · u(πm · ρ(e1) · w2 + (1− πm · ρ(e1)) · w2)+

(1− πo · ρ(e2)) · u(πm · ρ(e1) · w2 + (1− πm · ρ(e1)) · w2
).

(73)

If (w
SB2
2 , wSB2

2 , wSB2
2 , wSB2

2
) are the solutions to the principal’s optimization

problem under Moral Hazard II, the left-hand side of (73) equals e2, as agent

2’s participation constraint is binding. Under Moral Hazard I the principal

conditions agent 2’s wage only on his own success. Keeping the expected

value fixed, the principal can adjust the spread between payments so that

the agent is incentivized to provide the same effort. Thus she can achieve

the same success probability at a lower cost.

Proof of Proposition 8

Let eSB2
i and E(W SB2

i ) denote the optimal effort and expected wage levels

for concentrated efforts and let e
′SB2
i and E(w

′SB2
i ) denote the optimal ef-

fort and expected wage levels for diversified efforts when the effort level and

technology choice are unobservable. Then, a revised form of condition (67)

yields

πo >

πm · (ρ(eSB2
1 ) · (2− ρ(eSB2

1 ))− ρ(e
′SB2
1 ))− 2 · E(W SB2

1 ) + E(W
′SB2
1 ) + E(W

′SB2
2 )

ρ(e
′SB2
2 ) · (1− πm · ρ(e

′SB2
1 ))

.

(74)

Proposition 7 states thatE(V SB1
mo (·)) > E(V SB2

mo (·)) ∀πo > 0. SinceE(V SB1
mm (·)) <

E(V SB2
mm (·)), an intersection of E(V SB2

mo (·)) and E(V SB2
mm (·)) must be to the
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right of the intersection of E(V SB1
mm (·)) and E(V SB1

mo (·)). The existence of

such an intersection is guaranteed whenever π̃SB2
o < πm. To show that this is

true we assume πo = πm and plug in the optimal effort-wage-combination for

E(V SB2
mm (·)) into E(V SB2

mo (·)) and compare payoffs. We yield a revised form

of inequality (68):

1− (1− πm · ρ(eSB2
1 )) · (1− πm · ρ(eSB2

1 ))− 2 · E(W
′SB2
1 ) >

πm · (1− (1− ρ(eSB2
1 )) · (1− ρ(eSB2

1 )))− 2 · E(W
′SB2
1 )

⇔ πm · ρ(eSB2
1 ) · (2− πm · ρ(eSB2

1 )) > πm · ρ(eSB2
1 ) · (2− ρ(eSB2

1 ))

⇔ 1 > πm.

(75)
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