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Abstract

A recent series of papers has introduced a fresh perspective on the
problem of the evolution of human cooperation by suggesting an
amendment to the concept of cooperation itself: instead of thinking
of cooperation as playing a particular strategy in a given game, usu-
ally C in the prisoner’s dilemma, we could also think of cooperation
as collaboration, i.e. as coalitional strategy choice, such as jointly
switching from (D,D) to (C,C). The present paper complements
previous work on collaboration by expanding on its genericity while
relaxing the assumption that collaborators are able to perfectly iden-
tify their own kind. Conditions for the evolutionary viability of such
collaboration under fairly undemanding assumptions about popu-
lation and interaction structure are derived. Doing so, this paper
shows that collaboration is an adaptive principle of strategy choice
in a broad range of niches, i.e., stochastic mixtures of games.
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1 Introduction

Ample game theoretic research on the conditions allowing for specific types

of cooperative behavior to be fostered by natural and/or cultural selection

exists (see, e.g.: Bowles and Gintis 2011; Nowak 2012; Rand and Nowak

2013; Newton 2018). Nonetheless, a recent series of papers has introduced

a fresh perspective on the subject within the game theoretic framework

by suggesting an amendment to the concept of cooperation itself (Newton

2012; Sawa 2014; Angus and Newton 2015; Newton and Angus 2015; New-

ton 2017a). These authors argue that, instead of thinking of cooperation as

playing a particular strategy in a specific game, usually C in the prisoner’s

dilemma [Pd ], we could also think of cooperation as coalitional strategy

choice, such as jointly switching from (D,D) to (C,C) in the Pd. To dis-

ambiguate play of a cooperative strategy from coalitional strategy choice,

Angus and Newton (2015) suggest to refer to the latter as collaboration.

One particular strength of this concept of collaboration is its genericity,

i.e. it provides a unified formal approach to describing cooperative behavior

in more than one game. Correspondingly, Angus and Newton (2015) and

Newton (2017a) have already shown that collaboration can be positively

selected for by evolutionary processes when social interaction between indi-

viduals is modeled as one of a range of specific games.

The present paper complements previous work on collaboration by ex-

panding on its genericity: conditions for the evolutionary viability of collab-

oration under fairly undemanding assumptions about population and inter-

action structure are derived. Doing so, this paper shows that collaboration

is an adaptive principle of strategy choice in a broad range of niches, i.e.,

stochastic mixtures of games—a concept to be concretized later. Naturally,

and imporantly, analyses also characterize niches in which collaboration

does not readily evolve. Readers interested more generally in the strengths

and limitations of the concept of collaboration are referred to the papers

referenced above, Newton (2017a) in particular.

This paper is organized as follows: Section 2 provides the motivation for

the formal model presented in Section 3. This model is analyzed in Section

4. Section 5 discusses results and concludes.
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2 Motivation

Canonically, game theoretic studies of the evolution of cooperativeness start

with a given game, usually some variety of the Pd (e.g. Axelrod and Hamil-

ton 1981; Nowak et al. 2004; van Veelen et al. 2012; for a literature review

see, e.g., Nowak 2012). Then they add assumptions about population struc-

ture, interaction patterns, and information available to players. Next, they

analyze under which conditions these ingredients facilitate the proliferation

of strategies that entail some form of cooperative behavior. The fruitful-

ness of this approach is evident from the vast literature it has produced (for

reviews see, e.g., Nowak 2006b; van Veelen 2009; Rand and Nowak 2013).

Beginning analyses by specifying a particular ‘base-game’ is inevitable

as long as cooperativeness, i.e. the very phenomenon in focus, needs to

be defined in terms of players playing a specific strategy of that game—

be it C in the one-shot Pd, TFT in iterated Pds, ‘Stag ’ in Rousseau’s

stag hunt [Sh], or positive contributions in public good games. However,

the concept of collaboration renders an alterative approach possible. As

collaboration represents a principle of strategy choice, shorthand: a maxim,

it can be defined generically, i.e. independently of any concrete game (for

comprehensive discussions of the relation of collaborative maxims with other

principles of strategy choice, best-responding in particular, see: Gold and

Colman 2018; Karpus and Radzvilas 2018; Newton 2012, 2017a, 2018).

2.1 What is studied here?

Following Newton (2017a), we will operationalize collaboration here as an

ability of players to determine a status quo strategy profile for any given

game and to jointly optimize their payoffs subsequently, i.e. to search for

possible Pareto-improvements from the status quo and to coordinate on

them if available. Studying (the evolution of) such collaborative maxims has

already proven fruitful; Newton (2018) provides a comprehensive overview.

Notably, previous work has also already identified several scenarios in

which the evolution of collaboration is hampered. This is remarkable since

successfully collaborating players can only attain mutual benefits relative

to the status quo. However, as Newton (2017a) shows, collaboration can

suffer from free-riding when collaborating entails costs while its benefits are
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shared among more players than just the collaborators. Moreover, when

positive assortativity of player types and negative externalities of collabo-

ration are assumed, non-collaborating players can fare better as they are less

likely to suffer the harm that collaborators impose on their vicinity (ibid.).

In network-structured populations, furthermore, collaboration can have re-

tarding effects on the spreading of advantageous strategy choice, which can

lead to collaborative groups being outcompeted by less collaborative ones

(Angus and Newton 2015; Newton and Angus 2015).

Instead of studying the performance of collaboration in similarly com-

plex cases, the present paper looks at unstructured populations of unso-

phisticated agents inhabiting simple but very variable environments and

asks if collaboration can evolve in such primordial settings. Thus, roughly

speaking, this paper traces some elementary ecological conditions that need

to be met in order for collaboration to be able to play out its potential

advantages.

We stress that collaboration is not construed here as being a rational

principle of strategy choice from any individual’s perspective—note, e.g.,

that collaboration can lead to the choice of strictly dominated strategies

(like C in the one-shot Pd). We also emphasize that collaboration as

construed here does not require a separate evolution of individuals’ pref-

erences (sensu Bergstrom 1995 and Alger and Weibull 2013, 2016, 2017;

also see Newton 2017a, 2017b, 2018). Instead, collaborators in our model

are coalitional fitness optimizers, i.e. they exploit all potentials for mutual

benefits, including those that require asymmetric strategy choice. Possibly,

hence, collaborators leave some opportunities for individual fitness max-

imization unused. Thus, while collaborators avoid the inefficiencies that

all-out individual fitness maximization can result in, they remain vulnera-

ble to invasions by more specialized individual fitness maximizers in case

such specialization yields sufficiently large fitness benefits.

This paper, however, is concerned with the question of whether such

collaboration represents an evolutionarily viable solution to the more generic

problem sitting at the core of the literature concerned with the origins of

(human) cooperativeness, namely reaping “those many benefits sought by

living things that are disproportionally available to cooperating groups”

(adapted from Axelrod and Hamilton 1981, p. 1391). Complementing that
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literature, however, we relax the constraints on the strategic nature of the

game played, i.e. we include more games than just the Pd, and analyze the

evolutionary performance of maxims—as opposed to strategies.

2.2 How is it studied?

In short, thus, this paper tries to shed some light on possible beginnings of

collaboration as a maxim governing behavior in social interaction. There-

fore, the core version of the model presented in Section 3 comprises only

three types of players: (i) self-sufficient ‘loners’, who do not interact so-

cially at all, thereby foregoing the potential benefits of, but simultaneously

avoiding all risks entailed by, interacting socially; (ii) ‘self-protectors’, who

interact socially but minimize their risk from doing so; and (iii) collabora-

tors, who can potentially reap all the mutual benefits of social interaction

when interacting with their own kind. However, note that we deviate from

earlier work on collaboration by dropping the assumption that collabora-

tors are capable of recognizing each other flawlessly. Instead, we assume

that attempts to collaborate may result in detrimental failures for collabo-

rators who interact with non-collaborators, making collaboration the most

vulnerable maxim in the competition.

We assume that interactions are one-shot and that the games played

are voluntary, symmetric, simultaneous 2×2-games with random payoffs.

We confine ourselves to symmetric 2×2-games to maintain comparability

with the bulk of the previous literature on the evolution of cooperativeness.

We use voluntary games, because we are interested in the question of how

collaboration can get started in an asocial world (see Axelrod and Hamilton

1981, p. 1391; Hauert et al. 2002, 2007; Silva et al. 2010; also note that

compulsory games are included as a special case in the model).

Furthermore, for our main analyses in Section 3 we assume that players

are unsophisticated in the following sense: (i) they cannot choose mixed

strategies, and (ii) they do not reason strategically. The motivation for

fixing these two restrictions is mostly biological, as, arguably, humans de-

veloped their potentials for strategic finesse only after they had evolved into

a cooperative species (Tomasello 1999, 2012). However, results obtained for

a version of the model relaxing these two restrictions show that collabora-
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tion can also evolve when faced with slightly more sophisticated competitors

(see Appendix A.2).

For now, though, we let collaboration compete with two other maxims:

‘self-sufficiency’ and ‘self-protection’. All three maxims determine behavior

in voluntary 2×2-games that have the following structure. In stage one,

players independently decide whether to engage in social interaction or not.

If at least one player opts out, no interaction takes place and both receive a

fixed baseline payoff. The maxim of self-sufficiency always opts out at this

stage, the other two maxims opt in.

Stage two is a move by nature: the four payoffs required to define a

symmetric 2×2-game are drawn from a distribution centered around the

baseline payoff and arranged such that the probability that a 2×2-game of

type γ is realized is given by pγ ∈ [0, 1], where γ denotes the Pd, Sh, etc.

(see Section 3).

In stage three, players select a strategy using their maxim given these

payoffs. To this end, players using the maxim of self-protection apply the

maximin rule (leading, e.g., to choice of D in the Pd). Players using the

maxim of collaboration also determine a status quo strategy profile by ap-

plying maximin. However, if (and only if) that status quo profile is ineffi-

cient, they jointly switch to playing an efficient profile. A possible process

resulting in such coordination is the following. When two collaborators

meet, nature randomly selects one of them to be quicker. That quicker one

sends a signal to its partner conveying a message saying “Hey, we’re about

to do (X,X). Let’s do (Y, Z) together instead!”, where (Y, Z) is a Pareto-

improvement relative to (X,X) and efficient. Then, the quicker collaborator

plays Y and the slower one acquiesces and plays Z. For the case of multi-

ple possible Pareto-improvements from the status quo, we assume that the

quicker collaborator chooses what is best for herself. When a collaborator

meets a ‘self-protector’ and the status quo is inefficient, the collaborator

follows the procedure just described; the ‘self-protector’, however, does not

follow and sticks with the status quo strategy determined by maximin.

Of course, this setup is stylized in many respects. What we want to

model here are only certain essential features of primordial ecologies. One,

by allowing for voluntary entry into social interaction as a first stage, we

model asocial self-suffiency as the reference case—as opposed to ‘defection’

6



or ‘cheating’ or ‘free-riding’. This can be considered as being biologically

more realistic (Hauert et al. 2002, 2007), as social behavior obviously needs

to evolve from asociality as a first step. Two, by letting payoffs realize only

after players have opted for interacting socially, i.e. disallowing players to

opt out of dilemmatic 2×2-games like the Pd, we make it harder for collabo-

ration to evolve, as it is vulnerable to detrimental failures of coordination in

these types of interactions. Three, self-protection is a rather natural choice

of opponent maxim, because of (i) its low marginal advancement relative to

self-sufficiency—only information about own payoffs is required for apply-

ing the maximin rule; (ii) its behavioral equivalence to defective strategies

like ‘AllD’ in the Pd ; and, maybe most importantly, (iii) its genericity—

unlike best-responding, e.g., the maximin rule always selects a unique pure

strategy in the games studied here, i.e. it is generically applicable. Also

note that ‘defection’ or ‘uncooperative behavior’ may be well defined for

variants of the Pd, i.e. on the strategy level. However, a formal concept of

‘defection’ on the maxim level is not available, yet.

The performance of collaboration against other opponent maxims is

certainly worth being studied, too. (For results on how it fares against

mixed strategy best-responding and security strategy play see the Appendix,

A.2). However, definitions of more exploitative opponent maxims than self-

protection are also more demanding with respect to the cognitive abilities

of players. The maxims compared here, instead, are cognitively rather facile

and thus, arguably, more likely to represent first steps in a series of evolu-

tionary refinements of maxims guiding social interaction (Tomasello et al.

2005; Tomasello et al. 2012; Rusch and Luetge 2016). Furthermore, the

results presented in Section 4 already show that collaboration, even when

merely faced with self-protection as its opponent maxim, does not evolve as

readily as one may be tempted to expect given its intuitively quite obvious

advantages.

3 Model description

We analyze evolutionary dynamics in an unstructured population consisting

of N animals. Reproductive success is fitness proportional. The baseline

fitness of all animals is 1. Animals have one of three types: L (‘loners’), M
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(‘maximiners’), or S (‘intention sharers’). L-types do not engage in social

interaction with other animals, whereas M - and S-types do. When two

animals engage in social interaction, they face a simultaneous, one-shot,

symmetric 2×2-game as given in matrix A.

A =

(
a b

c d

)
(1)

Herein, payoffs a, b, c, d are determined by drawing four i.i.d. random vari-

ables from a symmetric distribution, F (X), with mean 1 and support Z,

and arranging them into A such that the probability that A represents

a game of type γ is given by pγ. Thus, each time two animals interact

socially, they play one of the twelve strategically distinct symmetric 2×2-

games with payoffs X(i), i ∈ {1, 2, 3, 4}, where X(i) denotes the ith order

statistic of sampling four values from Z according to F (X). Shorthand, we

write 1 = E(X(1)), 2 = E(X(2)), etc. (In the following we let F (X) = X/2

and Z = [0, 2], i.e. payoffs are uniformly distributed over [0, 2], yielding

4 = 1.6, 3 = 1.2, 2 = 0.8, 1 = 0.4. However, mutatis mutandis, qualitative

results hold for any symmetric CDF.)

Using the notation suggested by Bruns (2015), the set of game types

potentially played by social types is

Γ = {As,Ba, Ch,Cm,Co,Dl,Ha,Hr,Nc, Pc, Pd, Sh}.

More precisely, thus, when two social types are matched for their one-shot

interaction, the probability that they will be playing a game of type γ ∈ Γ

is given by pγ with
∑
γ∈Γ

pγ = 1.

As explained in Section 2, the two social types differ in their maxims.

M -types apply the maximin rule: they choose their strategy such that they

never receive the lowest possible payoff (= 1), irrespective of their oppo-

nent’s choice. S -types, on the other hand, use the maximin rule to deter-

mine a status quo strategy profile but then check for mutually beneficial, i.e.

Pareto-better, deviations from that status quo profile. If one such Pareto-

better strategy profile exists, they jointly deviate accordingly. If two such

Pareto-better profiles exist, S -types coordinate on each of them with equal

probability. If none exists, they stick to the status quo profile. Table 1
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Ch L R
U

∥∥3, 3∥∥ 2, 4
D 4, 2 1, 1

Cm L R
U

∥∥3, 3∥∥ 4, 2
D 2, 4 1, 1

Co L R
U

∥∥4, 4∥∥ 2, 1
D 1, 2 3, 3

Dl L R
U

∥∥3, 3∥∥ 4, 1
D 1, 4 2, 2

Ha L R
U

∥∥4, 4∥∥ 3, 2
D 2, 3 1, 1

Nc L R
U

∥∥4, 4∥∥ 2, 3
D 3, 2 1, 1

Pc L R
U

∥∥4, 4∥∥ 3, 1
D 1, 3 2, 2

As L R
U ‖4, 4‖ 1, 2
D 2, 1 3, 3

Ba L R
U 2, 2 ‖3, 4‖
D ‖4, 3‖ 1, 1

Hr L R
U 2, 2 ‖4, 3‖
D ‖3, 4‖ 1, 1

Pd L R
U ‖3, 3‖ 1, 4
D 4, 1 2, 2

Sh L R
U ‖4, 4‖ 1, 3
D 3, 1 2, 2

Table 1: Overview of the 12 strict symmetric ordinal 2×2-games;
underlined profiles are reached by M -types, profiles in norm dashes

(‖•, •‖) are reached by S -types

shows the resulting strategy choices by S - and M -types for all games in Γ.

When an S -type plays with an M -type, the S -type behaves as if matched

with another S -type and is thus vulnerable to failures of coordination on

Pareto-better profiles. When a social type plays with a loner, finally, no

interaction takes place, and both receive the baseline payoff of 1 ( 6= 1).

As can be seen from Table 1, M - and S -types choose the same strategies

in seven games (Ch,Cm,Co,Dl,Ha,Nc, and Pc). In the remaining five

games, however, their choices differ: θ = {As,Ba,Hr, Pd, Sh}. Obviously,

these five games are the ones decisive for the dynamics of the population.

Therefore, let their individual occurrence probabilities be denoted by: 0 ≤
pAs, pBa, pHr, pPd, pSh ≤ 1, with

∑
i∈θ
pi ≤ 1. Shorthand, we say that η =

(pi)i∈θ characterizes the niche that the population is inhabiting.

Finally, we assume that the expected fitness of the types in the pop-

ulation is approximated sufficiently well by the expected payoffs given in

matrix G, with πX,Y (η) denoting the expected fitness of type X when play-
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ing against type Y in niche η.

G =

πS,S(η) πS,M(η) πS,L(η)

πM,S(η) πM,M(η) πM,L(η)

πL,S(η) πL,M(η) πL,L(η)

 (2)

Herein,

πS,S(η) = [50 + 6(pAs + pSh)− pBa − pHr − 8pPd] / 35,

πS,M(η) = [50− 36(pAs + pPd + pSh) + 6pBa − 22pHr] / 35,

πM,S = [50− 22(pAs + pHr)− 8(pBa + pSh) + 6pPd] / 35,

πM,M(η) = [50− 8pAs − 22(pBa + pHr + pPd + pSh)] / 35,

and πL,•(η) = π•,L(η) = 1 always. (The non-trivial expected payoffs are

obtained by summing over the respectively probability-weighted payoffs

obained by the types S and M in the games in Γ using 4 = 1.6, 3 = 1.2, 2 =

0.8, 1 = 0.4. The general form of G is derived in the Appendix, A.1.)

4 Results

Given a population of size N inhabiting a niche η, is it possible for S -types

to invade? And if so, will they prevail?

4.1 Very large populations

We focus on the case of very large, well-mixed populations first, i.e. N =∞.

In these, population dynamics can be described using the replicator equation

(eq. 3), wherein φ(t) = (s,m, l)T denotes the shares of the respective types

in the population at time t, implying s+m+ l = 1 always.

φ̇i(t) = φi
[
(Gφ)i − φTGφ

]
, i ∈ {1, 2, 3} (3)

First, we check for equilibria on the edges of the (s,m, l)-simplex. Short-

hand, slightly abusing notation, let S = (1, 0, 0)T , M = (0, 1, 0)T , and

L = (0, 0, 1)T denote the three monomorphic equilibria, i.e. the corners
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of the simplex. We find an equilibrium on the S/M -edge, i.e. in the

(s, 1− s, 0)T -hyperplane, at

s∗ =
4pAs − 4pBa + 2pPd + 2pSh
8pAs − 3pBa + 3pHr + 4pSh

. (4)

The S/L- and M /L-edges, in contrast, are degenerate in the following sense.

As πL,•(η) = π•,L(η) = 1 always, solving for payoff equality between M - and

L-types yields that this edge either contains only monomorphic equilibria

or is entirely equilibrial. The latter is the case if πM,M(η) = 1, i.e. if

pPd = [15− 8pAs − 22(pBa + pHr + pSh)] /22 =: p
M/L
Pd . (5)

As πS,S(η) > 1 always holds for
∑
i∈θ
pi ≤ 1, the S/L-edge only contains the

monomorphic equilibria at S and L.

Comparative statics applied on eq. 5 reveal that particularly increasing

probabilities of Ba, Hr, Pd and Sh work against M -types’ success relative

to L-types. This, of course, is due to the fact that M -types playing against

their own type receive a payoff of 2 < 1 in these four games. Moreover,

comparative statics on eq. 4 show that S -types are more successful against

M -types in niches with relatively higher probabilities of Ba and Hr, i.e. in

niches featuring those two games more frequently in which mutual collab-

oration by S-types cures an inefficiency resulting from maximin strategy

choice but is not harmed by the coordination failures occurring when S-

types interact with M -types.

Next, we check for asymptotic stability of S and M . (Note that as

πS,S(η) > 1 always holds, L can never be stable.) We find that S is asymp-

totically stable as long as πS,S(η) > πM,S(η), i.e.,

pPd < 2pAs +
1

2
pBa +

3

2
pHr + pSh =: pSPd, (6)

with the signs of the terms in eq. 6 reflecting the fact that the Pd is the

only game in Γ in which M -types do better against S-types than these do

against their own kind. Similarly, we find that M is asymptotically stable

as long as pPd < p
M/L
Pd and πM,M(η) > πS,M(η), the latter condition being

pPd > 2pBa − 2pAs − pSh =: pMPd, (7)
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or, equivalently, pBa < pAs+ 1
2

(pPd + pSh), and reflecting the fact that Ba is

the only game in Γ in which S-types do better against M -types than these

do against their own kind.

Figure 1: Two illustrative dynamics.
Panel A: pAs = pBa = pHr = pPd = pSh = 1

12
;

Panel B: pAs = pHr = pSh = 1
10
, pBa = 2

10
, pPd = 3

10

Figure 1 illustrates evolutionary dynamics for two niches. Panel A of Fig.

1 shows the dynamics for pi = 1
12
,∀i ∈ θ, implying pMPd < pPd < pSPd, p

M/L
Pd ,

i.e. both S and M are stable (and s∗ = 1
3
). Parameters in panel B are

pAs = pHr = pSh = 1
10
, pBa = 2

10
, and pPd = 3

10
, implying pMPd, p

M/L
Pd < pPd <

pSPd, i.e. S is stable, M is unstable (and s∗ = 4
9
).

4.2 Finite populations

We have just derived the conditions that niches must fulfill in order for S -

types to be able to invade into and grow to dominate very large populations

consisting of S -, M - and L-types. Furthermore, when s∗ ≤ 0 in eq. 4

and pPd < pSPd hold simultaneously, S -types even prevail when exclusively

competing against resident M -types. The condition s∗ ≤ 0 can be relaxed

further in finite populations, i.e. when N <∞. As shown by Nowak et al.

(2004), a straightforward 1/3-rule applies for large finite populations in the

limit of weak selection, i.e. when G is assumed to represent only a minor
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component of animals’ overall fitness (i.e. when w in eq. 9 is sufficiently

small; also see, e.g., Taylor et al. 2004 and Sample and Allen 2017). For this

case, we obtain that selection favors invading S -types replacing resident M -

types (L-types being absent) for sufficiently large N and sufficiently weak

selection if pMPd < pPd < pSPd and s∗ < 1/3. The latter condition holds if

pPd < [9pBa − 4pAs + 3pHr − 2pSh] /6 =: p
1/3
Pd . (8)

Figure 2: Rates of evolution in finite populations of size N.
Parameters: pAs = pPd = 2

10
, pBa = 3

10
, pHr = 0, and pSh = 1

10

More generally, for any strength of selection w ∈ [0, 1] and population

size N , we can use the methods of Taylor et al. (2004) to calculate the

fixation probability, ρS, for a single S -type in a finite population with N−1

resident M -types using

ρS = 1/

(
1 +

N−1∑
k=1

k∏
i=1

gi
fi

)
, (9)
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wherein fi = 1−w+w [πS,S(η)(i− 1) + πS,M(η)(N − i)] / [N − 1] and gi =

1−w+w [πM,S(η)i+ πM,M(η)(N − i− 1)] / [N − 1] (see, e.g., Taylor et al.

2004 and Nowak 2006a for methodological details). Whenever ρS > 1/N ,

i.e. whenever the fixation probability of a single S -type is larger than its

fixation probability in the case of no selection (1/N), we have positive se-

lection for S -types. As eq. 9 contains N th-order polynomials, though, no

convenient form of this condition can be obtained. Figure 2 shows rates

of evolution (NρS) for different population sizes and selection strengths for

pAs = pPd = 2
10
, pBa = 3

10
, pHr = 0, and pSh = 1

10
. As can be seen from

Fig. 2, numerical evaluations of eq. 9 indicate that selection favors S -

types replacing M -types, i.e. NρS > 1, for w ∈ {1, 0.1, 0.01} as long as

13 ≤ N ≤ 330 in this particular niche.

5 Discussion and conclusion

The model devised and analyzed here demonstrates that collaboration as a

principle of strategy choice, i.e. as a maxim, can be evolutionarily viable

and successful in both finite and infinite populations. Collaboration can

prevail against both self-sufficiency and self-protection as opponent max-

ims provided that the niches inhabited by the respective populations fulfill

certain conditions.

Notably, collaboration’s potential for evolutionary success in this model

is not based on repeated encounter, population structure, or information

about past behavior nor any of the other previously studied factors favor-

ing the evolution of cooperativeness (see, e.g.: Nowak 2006b). In fact, we

have seen that collaboration can potentially prevail in entirely unstructured

populations, even when all interaction is assumed to be one-shot. Rather,

collaboration’s evolutionarily fate in this model depends on whether social

interaction offers sufficiently many opportunities for attaining mutual ben-

efits, i.e. on whether a population’s niche favors collaboration or not. In

light of these results, several observations are worth being addressed.

One, previous work on the evolution of cooperativeness has mostly fo-

cused on the Pd in its many varieties, as it represents “the most stringent

cooperative dilemma” (Nowak 2012, p. 1). The model presented here recon-

firms this focus. In niches that are ‘too dilemmatic’, i.e. whenever combina-
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tions of pAs, pPd, and pSh exceed certain thresholds, collaboration does not

evolve. However, the model also shows that there are ‘quite dilemmatic’

niches in which it still does. (For appropriate N and w, e.g., collabora-

tion can evolve in finite populations inhabiting the niche characterized by

pAs = 0, pBa = 0.2, pHr = 0.3, pSh = 0.1, and pPd = 0.4, i.e. a niche in

which forty percent of all social interactions are Pds.)

Two, it may be deemed a weakness of collaboration that it cannot evolve

in niches that are too dilemmatic. However, when applied to the question

of why humans are highly collaborative while other species are not, or not

as much, this weakness may have some explanatory value. Think of the

rudimentary collaborative maxim studied here as modeling an early step in

the evolution of human cooperative behavior. Then, the main implication

of the present model is that we should try to find out what types of niches

our ancestors were inhabiting and how these differed from those occupied

by other animals. This way of phrasing and formally modeling the problem

of ‘the evolution of human cooperation’ seamlessly connects with less formal

biological theorizing, particularly in evolutionary anthropology (Tomasello

2009; Tomasello et al. 2012), and follows the principles of behavioral ecology

(Davies, Krebs, and West 2012).

Three, apart from its potential value for the study of the evolutionary

origins of human cooperative behavior, studying collaboration as a maxim

may also prove helpful in explaining choice behavior of contemporary hu-

mans. A recent strand of experimental literature in economics and psychol-

ogy has begun to study the question of whether participants in laboratory

experiments use distinct strategies for different games they play or whether

they follow more generic heuristics that do not distinguish too sharply be-

tween different strategic contexts (e.g. Bednar et al. 2012; Peysakhovich,

Nowak, and Rand 2014; Rand et al. 2014; Peysakhovich and Rand 2016;

Rusch and Luetge 2016; Angelovski et al. 2018). The evidence collected in

these studies points more in the direction of the latter conjecture, rendering

maxims a promising formal tool for modeling decision behavior of this kind.

Finally, the model presented here has several limitations, including the

following. One, only symmetric 2×2-games were studied. Two, maxims

were assumed to be inherited without mutations. Three, the results pre-

sented are limited to stylized primoridial ecologies and rather unsophisti-
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cated agents typifying a limited set of maxims. Removing these limitations,

particularly by allowing for advancement of the strategic finesse of maxims,

is a promising task for future research.

Appendix

A.1: Derivation of payoff matrix G

Given a niche η = (pAs, pBa, pHr, pPd, pSh) we can derive the entries of G as
follows. First, note that with probability pR = 1−pAs−pBa−pHr−pPd−pSh
two animals play one of the seven games in which S- and M -types obtain
the same payoff; these are: Ch,Cm,Co,Dl,Ha,Nc, and Pc. For simplicity,
we assume that each of these realizes with the same probability, resulting
in an expected payoff of pR · (4 · 4 + 3 · 3) / 7 for S- and M -types in these
cases. Payoffs in the remaining cases differ for S- and M -types; these are
θ = {As,Ba,Hr, Pd, Sh}.

Take the example of the Pd. It realizes with probability pPd. S-types
are able to obtain 3 when playing against each other, because of their ability
to jointly switch from the inefficient status quo, (D,R) in Table 1, to the
Pareto-better and efficient cooperative strategy profile, (U,L). S-types play-
ing against M -types, however, obtain 1: assuming, w.l.o.g., that the S-type
is the row player, the S-type will try to initiate joint switching to (U,L),
but the M -type will not follow, resulting in (U,R) being played. M -types,
vice versa, obtain 4 when matched with an S-type. M -types matched with
other M -types, finally, stick with the status quo and thus obtain 2.

Take Hr as another example and look, w.l.o.g., at the row player. When
two S-types meet, each of them is equally likely to be the first to signal where
to jointly deviate from the status quo, which is (U,L) in Table 1. Thus, each
obtains an expected payoff of (4+3)/2. When an S -type meets an M -type,
both receive 2, because the possible Pareto-improvement that the S -type
‘suggests’, (U,R), would require the column player to switch to R, which
she does not. When two M -types meet, finally, both stick with the status
quo and obtain 2.

Payoffs for the other games in θ are calculated analogously to these
examples, resulting in

πS,S(η) = 4 · (pAs + pSh) +
4 + 3

2
· (pHr + pBa) + 3 · pPd +

4 · 4 + 3 · 3
7

· pR,

πS,M(η) = 4 · pBa + 2 · pHr + 1 · (pAs + pPd + pSh) +
4 · 4 + 3 · 3

7
· pR,

πM,S(η) = 4 · pPd + 3 · (pBa + pSh) + 2 · (pAs + pHr) +
4 · 4 + 3 · 3

7
· pR,
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πM,M(η) = 3 · pAs + 2 · (pBa + pHr + pPd + pSh) +
4 · 4 + 3 · 3

7
· pR.

A.2: Additional dynamics

In this supplementary section, we derive the conditions under which S -
types can invade into and grow to dominate very large populations consist-
ing of two other potential opponent maxims: R-types and C -types. Both
these types use mixed strategies. R-types play the mixed strategy that
makes their opponent exactly indifferent between her two strategies. I.e.,
R-types play their part of the mixed strategy Nash equilibrium of any sym-
metric 2×2-game. Note that such strategy choice is quite elaborate and
thus requires rather advanced cognitive capacities. Also note that pure
strategy best responses lead to equilibrium selection problems in six of the
twelve strict symmetric ordinal 2×2-games—which is why pure strategy
best-responding is ignored here (see, e.g., Newton 2017a for additional com-
parisons of collaborative types with best-responders). C -types are a bit less
sophisticated. They play the mixed strategy that maximizes their minimum
payoff under the assumption that their opponent chooses her pure strategy
maximally malevolently, i.e. they play their security strategy (see Binmore
2007, Section 7.4). Table A.1 shows strategy choice by all three types.

Game S-types C-types R-types
As U 1/4 1/2
Ba U or D 3/4 1/2
Ch U 1 1/2
Co U 1/2 1/4
Hr U or D 1/2 3/4
Pd U 0 0
Sh U 0 1/2

Cm, Dl, Ha, Nc, Pc U 1 1

Table A.1: strategy choice conditional on type of game by S-, C-, and
R-types; probabilities stated are probabilities of playing U in the notation

of Table 1; S-types choose pure strategies as before, C- and R-types
choose mixed strategies.

All three types select the same strategy, U in the notation of Table 1, in
five of the twelve 2×2-games: Cm, Dl, Ha, Nc, and Pc. For simplicity, thus,
let these games’ respective probabilities all be equal to pR = (1−pAs−pBa−
pCh − pCo − pHr − pPd − pSh)/5. Further, let η = (pi)i∈{As,Ba,Ch,Co,Hr,Pd,Sh}
in the following. Fixing 4 = 1.6, 3 = 1.2, 2 = 0.8, and 1 = 0.4, this yields

H =

πS,S(η) πS,C(η) πS,R(η)
πC,S(η) πC,C(η) πC,R(η)
πR,S(η) πR,C(η) πR,R(η)

 (A.1)
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with

πS,S(η) = [36 + 4(pSh + pCo + pAs)− 6(pPd + pCh)− pHr − pBa] / 25,

πS,C(η) = [72− 52(pSh + pPd)− 12(pHr + pCo + pCh)− 7pBa − 37pAs] / 50,

πS,R(η) = [36− 11(pSh + pHr + pCo + pCh + pBa + pAs)− 26pPd] / 25,

πC,S(η) = [36− 6(pSh + pCh) + 4pPd − 11(pHr + pCo + pBa + pAs)] / 25,

πC,C(η) = [36− 16(pSh + pPd)− 11(pHr + pCo + pBa + pAs)− 6pCh] / 25,

πC,R(η) = [36− 11(pSh + pHr + pCo + pCh + pBa + pAs)− 16pPd] / 25,

πR,S(η) = [72− 2(pSh + pCh) + 8pPd − 27pHr − 37pCo − 32pBa − 12pAs] / 50,

πR,C(η) = [72− 42pSh − 32pPd − 17(pBa + pHr)− 27(pCo + pAs)− 2pCh] / 50,

πR,R(η) = [36− 16pPd − 11(pSh + pHr + pCo + pCh + pBa + pAs)] / 25.

Applying standard replicator dynamics (as in eq. 3), we find an equilibrium
on the S/R-edge at:

sS/R =
4pPd

2pSh + 5pHr + 9pCo − 2pCh + 6pBa + 4pAs
. (A.2)

Further, we find an equilibrium on the S/C-edge at:

sS/C =
4pSh + 4pPd − 2pHr − 2pCo − 3pBa + 3pAs

8pSh + 2pHr + 4pCo + pBa + 9pAs
. (A.3)

The C/R-edge, finally, is degenerate. As πC,R(η) = πR,R(η),∀η (see eq.
A.1), the dynamics on this edge solely depend on whether πC,C(η) Q πR,C(η),
implying that when

πC,C(η)− πR,C(η) = 2pSh − pHr + pCo − 2pCh − pBa + pAs > 0

holds, C-types invade and fully replace R-types, S-types being absent.
Apart from a theoretically interesting competition between mixed-strategy

maximin and best-response maxims (see Pruzhansky 2011, 2013), a note-
worthy observation that this variant of our model yields is the following.
As eq. A.2 shows, the success of S-types in competition with R-types cru-
cially depends on the probability of Pds in a niche. When Pds are absent,
R-types are always invaded and fully replaced by S-types in direct com-
petitions between these two types; see Figure A.1 for an example. While
this observation can again serve to justify the central role that has been
assigned to the Pd in the literature on the evolution of cooperativeness, it
also shows that best-responding, at least as we have operationalized it here,
quickly succumbs to collaboration when we broaden the scope of adaptive
problems faced by the agents under selection.
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Figure A.1: Illustrative dynamics in a population consisting of S-, C-and
R-types. Parameters: pAs = pSh = 3

12
, pBa = pCh = pCo = pHr = 1

12
,

pPd = 0
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