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ABSTRACT 
 

In this paper, we compare three different models, namely the Nelson- 

Siegel model, the Svensson model and the Diebold- Li model, for the 

estimation of an intraday yield curve on the Italian interbank credit 

market e-MID. Using a sample which spans from October 2005 until 

March 2010, the first important finding is that all three models are 

highly suitable for the estimation of an intraday yield curve providing 

superior empirical results when compared with similar works on e-

MID. The second important finding is that, based on different in sample 

statistics, the Svensson model dominates the other two models before, 

during and after the financial crisis from 2007. Moreover, the Nelson- 

Siegel model seems to dominate the Diebold- Li model although these 

differences in goodness-of-fit between these two models may not be 

statistically significant.  
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1. Introduction 

Is there an implicit intraday interest on interbank credits? This question has been assessed 

recently in different papers. Jurgilas and Žikeš (2013) and Merrouche and Schanz (2010) in the 

UK and Furfine (2001 and 2002) in the US. By using linear models, they found out that there 

is a downward trend in the intraday interest rate, meaning that the interest rates in the analyzed 

interbank credit markets are higher in the morning and lower in the afternoon. In all these 

studies, authors stress that these results are in line with the theoretical argumentation given by 

themselves. Abbassi et al. (2017), base their analysis on secured funding data and use a linear 

model as well. They find out that after the start of the financial crisis, the intraday term structure 

of interest rates may not be only monotone falling during a day.  

Regarding the e-MID market (Mercato Interbancario dei Depositi), the only electronically 

organized interbank credit in the Euro area and in the US, different studies focus on the 

estimation of intraday term structure in different periods. Angelini (2000) was the first one to 

analyze the intraday behavior of interest rates on the e-MID market. Using a linear model for 

the intraday interest rates and based on hourly means of the intraday interest rates in the period 

from July 1993 to December 1996, he finds only very weak evidence for an existing downward 

intraday term structure.1 This low evidence is shown in the estimated term structure where the 

difference of the interest rate in the morning and in the afternoon differs only to a very small 

degree. Based on his premise, the main force of the intraday interest rates are variations in the 

market liquidity.  

Baglioni and Monticini (2008), apply also a linear model using hourly means to estimate the 

intraday term structure in the sample form January 2003 until December 2004. They find weak 

statistical evidence for a downward trend in the intraday structure which is also reflected in a 

relatively small difference between interest rate in the morning and in the afternoon. They state 

that the main drive behind these movements is the higher credit risk, in terms of the counterparty 

risk, in the morning rather than in the afternoon.  

Using two data samples from 11th of July to 10th of September 2007, Baglioni and Monticini 

(2010) redo their analysis from the year 2008. In this second analysis, they find evidence for a 

downward trend in the intraday term structure which becomes steeper after the outbreak of the 

financial crisis in 2007. In addition, here they state that these facts can be observed due to higher 

credit risk in the morning than in the afternoon.  

                                                 
1 When mentioning a linear model, we refer to linear regression model.  
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Baglioni and Monticini (2013) also estimate an intraday term structure on the e-MID market, 

using three different extended linear models, based on the difference of the average of the 

interest rates between 09:00 a.m. and 01:00 p.m., called the morning rate, and the average of 

interest rate between 02:00 p.m. and 06:00 p.m. called the afternoon rate. By using a sample 

ranging from January 2007 to April 2009 they again find evidence for a downward trend in the 

term structure of interests. Based on their models this downward trend becomes even steeper 

after the outbreak of the financial crisis in August 2007 and the steepest after the collapse of 

Lehman Brothers in September 2008. They also argue that intraday interest differs from the 

morning to the afternoon due to higher counterparty credit risk as well as due to market liquidity 

constraints. Furthermore, they state that the interest rates may be influenced by incoming news 

in this in this particular period. 

Furthermore, Demertzidis and Jeleskovic (2016) introduced the concept of the spot intraday 

yield curves (SIYC-s) and differ from the previous studies in two major points, namely the use 

of tick- by- tick interest rate data and the use of a nonlinear model. For the time period from 

October 2005 to March 2013, they showed that the SIYC can be modeled and estimated by a 

standard nonlinear model which is used by many researchers and central banks (Diebold and 

Rudebusch, 2013), namely by the Nelson-Siegel model (hereafter NSM for Nelson-Siegel 

model). The authors achieve an R2 of up to 0.424 on average, which is remarkably high since 

they use tick-by-tick data. The authors conclude that one should move from the assumption of 

linear models for the estimation of SIYC towards explicit modelling of the nonlinear dynamics. 

The second very interesting empirical result is that the goodness-of-fit become significantly 

higher after the outbreak of the financial crisis. Thus, one should expect higher nonlinear 

systematic dynamics of yield curves during turmoil on interbank credit markets. The authors 

attribute this fact to the more intensive process of incoming news within a day during the 

financial crisis. 

The NSM has been modified and extended by many researchers. Among others, Bliss (1996) 

with his three-factor model interpretation, Björk and Christensen (1999), with their five factor 

NSM, Christensen et al. (2009) and Christensen et al. (2011) with their arbitrage free 

interpretation of the NSM and Chen and Niu (2014) with their adaptive dynamic NSM, 

modified and / or extended the model. 

One important model modification improves the original NSM significantly from the 

theoretical as well as from a practical point of view is proposed by Svensson (1994) (hereafter 

SVM for Svensson model). The major highlight of the SVM is modeling a second hump in the 
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yield curve. This model is used for the estimation of the yield curve by many central banks, 

including the ones of Germany, Norway, Spain, Sweden and Switzerland (BIS, 2005). 

According to De Pooter (2007), this model should be used when estimations of a larger variety 

of yield curves or more complex dynamics of the yield curves is necessary. Hence, this model 

should be used in times of higher volatility, e.g. in times of a financial crisis.2 

The SVM is also used by many researchers for the estimation of the yield curve for different 

markets. Among others, Schich (1997) for the German bond market, Clare and Lekkos (2000) 

for the bond yield curves in the US, Germany and the United Kingdom (UK) and Gürkaynak et 

al. (2007) for the US bond market, use the SVM for the estimation of the yield curve.3 

Another popular modification of the NSM is the Diebold and Li (2006) model (hereafter DLM 

for Diebold- Li model), which also has been used widely in practice and theory. Mönch (2008) 

e.g. in his study confirms that the model from Diebold and Li provides a good statistical fit for 

a variety of yield curves.  

Among others, Tam and Yu (2008) for the US, the Japanese and the German bond market and 

Afonso and Martins (2012) for the United States and Germany use the DLM for the estimation 

of the yield curve. Furthermore, this model is also used from a practical point of view in 

different studies, e.g. to model and forecast the term structure of futures on oil contracts 

(GrØnborg and Lunde, 2016).4 Besides the different studies of yield curve estimations, many 

analyses focus on the comparison of different yield curve estimation methods. These studies try 

to, empirically, find out which model suits the best under different conditions and different 

markets and countries. 

Csajbok (1999) compares different estimation methods for the yield curve, including different 

spline-based methods as well as the NSM and the SVM, for the Hungarian bond market. One 

of his key findings is, that the SVM is superior to the NSM and different spline-based methods 

for the estimation in Hungary. This may be because according to Csajbok the SVM is able to 

capture a more complex variety of yield curves. Ganchev (2009) models and estimates the spot 

rates for the Bulgarian bond market. In his study he uses different estimation methods including 

                                                 
2 Angelini et al. (2011) state, that interbank credit market rates become more volatile in times of a crisis.  
3 Besides the original NSM, many researchers have modified the SVM as well. E.g. De Rezende and Ferreira 

(2008), purpose a five-factor model, Christensen et al. (2009) present a dynamic version of the model and De 

Rezende (2011) presents a six-factor model. However, many of these models are mostly not used from a practical 

point of view.  
4 The DLM has been extended/ or modified. Laurini and Hotta (2010) extend the model through a Bayesian 

estimation method using the Markov Chain Monte Carlo Simulation. Bernadell et al. (2005) present a regime- 

switching extension of the DLM by linking expectations of different macroeconomic variables to the estimated 

yield curve. 
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also the NSM and the SVM. One major finding is, that the NSM has a poorer performance than 

the SVM. Aljinović et al. (2012) focus in their study on the comparison between the NSM and 

the SVM for the estimation of the yield curve on the Croatian financial market. They find out 

that the Svensson model is superior to the Nelson-Siegel model. Moreover, Ioannides (2003) 

uses different spline-based models, the NSM and the SVM in order to estimate the yield curve 

in the UK. By estimating the yield curve with different methods, he shows , that the SVM and 

the NSM outperform the other used spline-based methods. By comparing the SVM with the 

NSM model, he points out that the SVM is more suitable than the NSM for the yield curve 

estimation in the UK.  

To the best of our knowledge, no study or analysis has focused on the comparison of different 

nonlinear models and methods for the estimation of yield curve for an interbank credit market, 

neither on an intraday day basis, nor for higher maturities. 

Due to the importance and empirical validity of the previously described three models, the goal 

of the paper is manifold: first, we aim to find out, whether the NSM, the SVM and the DLM 

are able to model the SIYC. The second purpose is to discover which model is the most suitable 

for estimating the SIYC. Using a sample from October 2005 to March 2010 we also put focus 

on the different states of the interbank credit markets by dividing our sample into different sub-

periods according to different relevant events during the financial crisis starting in 2007. Hence, 

the importance and the consequences of the financial crisis are explicitly considered.  

Following e.g. Angelini (2000) and Baglioni and Monticini (2008, 2010), who use one-hour 

intervals for the estimation of an intraday term structure on e-MID by applying the linear 

regression with hourly dummies, we also construct the SIYC over intraday time intervals. 

However, we do not use one-hour intervals but 30-minute intervals, meaning 30-minute 

averages for the interest rates. 5 

The paper is organized as follows: After the introduction, we present in section two our data 

sample and the main descriptive statistics. Section three describes the applied models. In section 

four we present the empirical results. Here, we first examine whether each model is capable of 

modeling the SYIC and in the second part we perform the model comparison. In the last part of 

the section we discuss our empirical results. Section five concludes.  

                                                 
5 The use of different intervals instead of tick-by-tick data is used in different studies focusing on limit order books 
see e.g. Kempf and Mayston (2005) and Hautsch and Jeleskovic (2008) for financial markets. Moreover, Engler 
and Jeleskovic (2016) apply the Multivariate Multiplicative Error Model to analyze the order book data on e-MID 
using 5-minute intervals.  
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2. e-MID and descriptive statistics 

The trading activity on the market begins each day at 08:00 a.m. and ends at 06:00 p.m. During 

this time credits with a minimum credit value of 50.000 euro can be traded. The maturity of 

credits ranges from overnight credits (ON) up to one year.6 

During the transaction process the duration, the interest rate, the specific time and the amount 

of each credit are known. Furthermore, also the Quoter (bank which puts the order for the 

transaction in the limit order book) and the Aggressor bank (bank which selects and accepts the 

specific credit transaction) are known due to a specific code which consists of two letters, 

referring to the country of origin and four digits which refer to the specific bank.  

The exact time of repayment may not be known exactly, but the maximum maturity of the ON 

credits is predefined by the system itself. If an Italian bank is involved in the credit transaction, 

either as a Quoter or as an Aggressor, the latest repayment time point of the ON credit is at 

09:00 a.m. the next day. If no Italian bank is involved the latest repayment time is at 12:00 

(noon) the next day.  

For our analysis we use a data sample starting on 03.10.2005 up to 31.03.2010. This is a large 

sample and includes times before, during and after the financial crisis of 2007 and contains 

377745 overnight transactions. 

As pointed out in many studies (see e.g. Baglioni and Monticini, 2008 and Baglioni and 

Monticini, 2010) in the time band between 08:00 a.m. and 09:00 a.m., the trading activity in 

the e-MID market is very low in terms of volume and number of transactions. Thus, it can be 

characterized as not sufficient in this particular daily time period. This fact can also be observed 

in our data sample. Only 5829 overnight transactions occur during the time between 08:00 a.m. 

and 09:00 a.m., which are approximately five transactions per day, in the whole sample period.  

Furthermore, as stated by Gürkaynak et al. (2007) the estimation of the yield curve behaves 

oddly based on securities with a very short maturity. According to their analysis this fact can 

be observed due to the relative low liquidity of securities with low maturity. As pointed out by 

Angelini (2000) this fact can also be observed in the e-MID. We can observe this trend also in 

our whole data sample. During the time band between 05:00 p.m. and 06:00 p.m. , only 5975 

transactions occur during the whole sample period, meaning that only approximately five 

overnight transactions per day take place in the market during this daily time period.  

                                                 
6 The ON segment represents more than 90% of the credit transaction in terms of volume and number of trades.  
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By considering these two facts, meaning a small number of transactions and low volume 

between the time bands 08:00 a.m. and 09:00 a.m. and 05:00 p.m. and 06:00 p.m. we focus our 

estimations for the SYIC during the time between 09:00 a.m. . and 05:00 p.m., which is in line 

with the previous studies as mentioned above. Thus, in our analysis 365941 out of 377745 

overnight transactions in the sample period are considered, stating for 96.88 % of all the 

overnight transactions in the sample period in the e-MID. 

Out of these overnight transactions, in 345105 transactions at least one Italian bank was 

involved, either as a credit lender or as a borrower within the transaction. This represents 

94.31% of all ON transactions. In the remaining 20836 overnight transactions no Italian bank 

was involved. These credits were completed between foreign banks, accounting for 5.69 % of 

all ON transactions. 

Following different studies, (e.g. Gabbi et al., 2012 and Demertzidis and Jeleskovic, 2016) we 

separate our data sample into four periods. This is done, due to the fact, that our interest goes 

further than the simple analysis of the suitability of the different models. We are interested in 

finding out whether the models are capable of estimating the SIYC in different sub-periods and 

which model performs the best in the in different periods, and different states of the market, 

before, during and after the financial crisis. Hence, splitting up our sample in this way enables 

this kind of analysis.  

The first period, which we call the pre-crisis period, starts on 03.10.2005 until 08.08.2007 - one 

day before the onset of the global financial crisis. The second period ranges from 09.08.2007, 

the onset of the crisis, up to the 14.09.2008, one day before the collapse of the bank Lehman 

Brothers. Hence, we define it as the first crisis period. The third period ranges from 15.09.2008 

until 12.05.2009, one day before the last reduction of the key interest rate by the European 

Central Bank (ECB). We call this period the second period of the crisis. The last period ranges 

from 13.05.2009 until the end of the sample on the 31.03.2010. This period can be called the 

after-crisis period.7 The different periods for our estimations are summarized in table 1.  

  

                                                 
7 Brunetti et al. (2015) refer to the period from April 2009 to March 2010 as the after-crisis period. 
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Table 1: Presentation of the sub-periods 

Period 1 03.10.2005-08.08.2007 Period before the crisis 

Period 2 09.08.2007-14.09.2008 
Outbreak of the crisis until the collapse of 

Lehman Brothers 

Period 3 15.09.2008-12.05.2009 
Lehman Brothers collapse until reduction of 

key interest rate 

Period 4 13.05.2009- 31.03.2010 
Key interest rate reduction until the end of the 

observation period 

The main descriptive statistics for the credit transactions considered in our data sample are 

summarized in the tables 2- 5.  

 

Table 2: Descriptive statistics: days and observations 8 

  
Whole 

Sample 
Period 1 Period 2 Period 3 Period 4 

Number of 

days 

1641 675 403 240 323 

(1149) (473) (281) (166) (229) 

Transactions 365941 182876 97281 41858 43926 

Mean of 

transactions 

per day 

318.49 386.63 346.19 252.16 191.82 

 

Based on table 2 we can see that, the mean number of transactions in the whole sample is 318.49 

trades per day. What is more interesting is that the number of trades is the highest before the 

crisis (period 1) and starts do drop slowly with the onset of the financial crisis in the second 

period. This trend becomes even more acute in period 3, the second crisis period, where the 

mean number of transactions drops dramatically, resulting in an even sharper drop in the 

number of transactions in period 4 in our data sample.  

  

                                                 
8 In parentheses: effective trading days, excluding weekends and holidays.  
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Table 3: Descriptive statistics: volume (in Million Euros) 

  
Whole 

Sample 
Period 1 Period 2 Period 3 Period 4 

Daily average 13116.69 19779.45 13000.34 6977.88 3947.49 

Mean per 

Transaction 
41.18 51.16 37.55 27.67 20.58 

 

Regarding the descriptive statistics in terms of volume, we can state that, the trading volume, 

as daily average volume and mean per transaction, follow the same trend as the number of 

trades in table 3. We see that the volume is the highest before the crisis, drops in periods 2 and 

more in period 3. The lowest volume per day and per transaction is found in period 4.  

Table 4: Descriptive statistics: interest rates 

  
Whole 

Sample 
Period 1 Period 2 Period 3 Period 4 

Mean 2.605 3.050 4.036 2.029 0.355 

Std. Dev. 0.032 0.014 0.0389 0.081 0.027 

   

 

Considering the descriptive statistics of the interest rate, which are calculated over half hour 

time intervals, we can see that the mean of the interest rate is quite high in period 1 and the 

highest in period 2. After the culmination of the financial crisis the interest rate dropped in 

period 3 and even more in period 4. Regarding the standard deviation, one can see that the 

smallest grade of variation of the interest rates is observed in the first period in our data sample 

whereas the highest one is in the second period. After the second period the standard deviation 

is successively declining in the periods 3 and 4. These results for the standard deviation rely on 

the fact that before the outbreak of the financial crisis the dynamic of interest rates is quite flat.9 

On the other hand, this implicates that the strongest variation in the dynamic of interest rates 

can be assumed in the period 2.  

                                                 
9 This fact was also observed by Baglioni and Monticini (2013) 
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As already discussed by Demertzidis and Jeleskovic (2016) the market functions properly 

before the crisis and in the first period of the crisis. They further state that the market does not 

function properly in periods 3 and 4, meaning that the effective allocation of credits is no longer 

possible. This effect is also supported in our data sample in terms of volume and number of 

trades.  

3. Methodology of the SYIC estimation 

As already mentioned above and in contrast to previous studies, we use 30- minute intervals for 

the estimations of the SICY-s. There are at least two reasons to use half hour intraday intervals. 

First, the construction of the SIYC becomes more precise, and thus, the estimation of the SIYC 

as well. Second, from the practical point of view the traders on the e-MID may be more 

interested in the nowcasting of the interest rate in shorter time intervals due to the fact that they 

trade more frequently within the intraday time domain. Hence, in our opinion the use of half-

hour intervals is an appropriate solution for the tradeoff between avoiding the noise in the tick-

by-tick data and the practical advantage of not-using intervals which are too long. 

Therefore, in our data sample we use 14 mean interest rates per day, meaning 14 intervals, 

starting from 09:00 a.m. - 09:30 a.m. which represents the first interval at the time stamp 09:30 

a.m. , until the time band from 04:30 p.m.- 05:00 p.m. which represents the last intraday interval 

for 05:00 p.m.  

To estimate the empirical SIYC, it is necessary to define the maturity of each credit transaction 

in our data sample. We calculate the maturity of each credit interval as the difference between 

the time stamp of the particular half hour interval within a day and 06:00 p.m., when the market 

closes on each day. Thus, because we use the pre-described time bands between 09:30 a.m.- 

05:00 p.m. , the maximum maturity is 8.5 hours ( 09:30 a.m.- 06:00 p.m.) and the minimum 

maturity is one hour (05:00 p.m.- 06:00 p.m.).10 

We can state that these time intervals of 30 minutes generate a high number of observations 

needed for the empirical analysis of the SIYC on the e-MID market. We point out that we also 

estimated the yield curve using time intervals of one, five and fifteen minutes and within the 

interval of one hour. However, the results do not differ qualitatively and are even slightly worse 

in terms of quantitative results.11 

                                                 
10 The first interval lies between 09:00 a.m. and 09:30 a.m.  
11 The problem occurs by the use of shorter time intervals that in a certain number of intervals there are no credit 
transactions. This may cause some artifacts and impact negatively the numerical optimization. However, these 
results can be provided on request. 
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3.1 The Nelson- Siegel Model 

Nelson and Siegel (1987) propose the following equation for the estimation of the spot rate R 

of different maturities (m): 

𝑅(𝑚) = β0 + β1
1−𝑒

−𝑚
𝜏

𝑚

𝜏

+ β2 (
1−𝑒

−𝑚
𝜏

𝑚

𝜏

− 𝑒
−𝑚

𝜏 )      (1) 

 

Where β0, β1, β2 specify the parameters to be estimated and τ denotes the time constant 

associated with the equation.  

β0, is a constant. For a maturity which is approaching infinity, the spot rates converge to this 

value. The second term β1
1−𝑒

−𝑚
𝜏

𝑚

𝜏

, refers to the slope of the specific yield curve and the third 

term of the model β2 (
1−𝑒

−𝑚
𝜏

𝑚

𝜏

− 𝑒
−𝑚

𝜏 ), is important for the modeling of a hump or a U- shape 

in the yield curve. In our case R is the mean of interest rates within a half hour interval and m 

is the maturity defined as above.  

The estimation of the NSM relies on the same procedure as in Demertzidis and Jeleskovic 

(2016). We estimate each parameter of the NSM by fitting R(m) based on formula (1). During 

this process we apply a numerical optimization where we apply an objective function over τ, 

whereas each parameter is estimated simultaneously in each optimization step using the 

ordinary least squares (OLS) method. During our analysis we use the fminbnd function for our 

optimization process, with default settings. The optimization bounds for τ lie between 0 and 

10000 during our estimations.  

3.2 The Svensson Model 

In order to increase the goodness-of-fit and the flexibility of the yield curve Svensson (1994) 

extended the NSM by adding a fourth term. By adding this fourth term, it is possible to model 

a second hump, or a second U- Shape, in the yield curve (Svensson 1994). He validates his 

findings by estimating the yield curve of Swedish government bonds in the time between May 

1992 and June 1994.  

For the estimation of the spot rate R, with a yield to maturity denoted m, Svensson uses the 

equation:  

𝑅(𝑚) = β0 + β1
1−𝑒

−𝑚
𝜏1

𝑚

𝜏1

+ β2 (
1−𝑒

−𝑚
𝜏1

𝑚

𝜏1

− 𝑒
−𝑚

𝜏1 ) + β3 (
1−𝑒

−𝑚
𝜏2

𝑚

𝜏2

− 𝑒
−𝑚

𝜏2 )  (2) 
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Where b is: β0, β1, β2, β3 are the parameters of the estimated yield curves and the parameters 𝜏1 

and 𝜏2 are the time constants of the model.  

In this equation the term β3 (
1−𝑒

−𝑚
𝜏2

𝑚

𝜏2

− 𝑒
−𝑚

𝜏2 ) defines the second hump, or the second U shape 

in the yield curve and the parameter τ2 the position of this positive or negative hump. All the 

other parameters, including their asymptotic properties, can be defined like the model proposed 

by Nelson and Siegel (Svensson, 1994).  

In his model, Svensson uses the Maximum likelihood method in order to estimate the 

parameters. According to Svensson the estimated prices can be fitted to the actual (observed) 

prices also with the general method of movements and the nonlinear least squares method 

(Svensson, 1994).  

In our case, we use the nonlinear least squares method where we apply the Matlab and the 

optimization toolbox. However, as Gilli et al. (2010) report there may be a significant problem 

with the objective function when optimizing the Svensson model. As the authors report, the 

optimization problem might be non-convex and there may be different local minima. To avoid 

these problems, we use at first the genetic algorithm. Having optimized the parameters in the 

Svensson model via the genetic algorithm, we take the optimal parameters to use them as 

starting values for the numerical optimization in the second step. We are convinced that this 

procedure will lessen the problem of starting values and local minima. 

3.3 The Diebold- Li Model 

Diebold and Li (2006) modified the original NSM and use at first a two-step estimation method 

for the parameter estimation. In their work they fitted the yield curve using a three-factor model 

based on the NSM. Equation (3) presents the three-factor model from Diebold and Li (2006).  

y(𝜏) = β1𝑡 + β2𝑡 (
1−𝑒−λ𝑡𝜏

λ𝑡𝜏
) + β3𝑡 (

1−𝑒−λ𝑡𝜏

λ𝑡𝜏
− 𝑒−λ𝑡𝜏)  (3) 

Diebold and Li interpret the parameters β1t, β2t and β3t as latent dynamic factors which vary over 

time and thus, they are state-dependent. The loading on β1t equals one, which can be viewed as 

the long-term factor. The term 
1−𝑒−λ𝑡𝜏

λ𝑡𝜏
 is the loading of the parameter β2t, which starts at the 

value of one and guarantees a quick and monotonical decay towards 0.so, it can be interpreted 

as the short-term factor. The factor loading of β3t, is 
1−𝑒−λ𝑡𝜏

λ𝑡𝜏
− 𝑒−λ𝑡𝜏. The value starts at 0, 
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increases in the beginning and then decays to zero, so it can be viewed as the medium-term 

factor (Diebold and Li, 2006). 

Another important insight of the this extension is that the parameters β1, β2 and β3 can be 

interpreted in another way than in the original NSM. Diebold and Li interpret these parameters 

as the level, slope and curvature of the yield curve respectively (Diebold and Li, 2006). 

The last parameter λ, which is 1/τ in the original NSM, explains the exponential decay rate. 

When λ takes small values, it results in a slow decay, so the model can fit the yield curve better 

at long maturities. If λ takes large values the decay is faster, resulting in a better fit at short 

maturities. Besides the decay rate the parameter λ defines where the loading of β3 achieves his 

maximum. In their work this parameter stays constant at the value of 0,0609 for every given t 

(Diebold and Li, 2006). 

We do the estimation process based on Diebold et al. (2006). The Kalman filter method for the 

yield curve, due to the fact, that obtain better results with this method than with the original 

proposed two step method for the estimation.12 

For the estimation of the SIYC using the DLM we use of the SSM econometrics toolbox in 

Matlab. Here for the state vector 𝑥𝑡 and the observation vector 𝑦𝑡 the parametric form us given 

by the following linear state- space functions:  

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1+𝐵𝑡𝑢𝑡          (4) 

𝑦𝑡 = 𝐶𝑡𝑥𝑡 + 𝐷𝑡𝜀𝑡          (5) 

Here, 𝑢𝑡  and 𝜀𝑡 are unit-variance white noise vector processes which are uncorrelated. In this 

representation the first equation is called the state equation and the second one is the observation 

equation. The parameters of the model, 𝐴𝑡, 𝐵𝑡, 𝐶𝑡 and 𝐷𝑡 are referred to as the state transition, 

state disturbance loading, measure sensitivity and observation innovation matrices, 

respectively.  

The DLM is formulated in such a way that level, slope and curvature follow a VAR (1) or 

autoregressive process of first order and as such the model forms a state space system. As 

already mentioned, we use the interpretation of Diebold, Rudebusch and Aruoba, 

statingtransition equation, which govern the dynamics of the state vector and it is written as:  

                                                 
12 The results of the SIYC estimation of the DLM using the two-step method can be submitted upon request.  
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(

𝐿𝑡  − μ𝐿
𝑆𝑡  − μ𝑠
𝐶𝑡  − μ𝑐

) = (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎11 𝑎23
𝑎31 𝑎32 𝑎33

)(

𝐿𝑡−1  − μ𝐿
𝑆𝑡−1  − μ𝑆
𝐶𝑡−1  − μ𝐶

) + (

𝜂𝑡(𝐿)

𝜂𝑡(𝑆)

𝜂𝑡(𝐶)
)    (6) 

Whereas the corresponding observation equation is written as: 

(

𝑦𝑡(𝜏1)
𝑦𝑡(𝜏1)
⋮

𝑦𝑡(𝜏𝑁)

) =

(

 
 
 
 
1 
1−𝑒−λ𝜏1

λ𝜏1

1−𝑒−λ𝜏1

λ𝜏1
− 𝑒−λ𝜏1

1 
1−𝑒−λ𝜏2

λ𝜏2

1−𝑒−λ𝜏2

λ𝜏2
− 𝑒−λ𝜏2

⋮

1 
1−𝑒

−λ𝜏𝑁

λ𝜏𝑁

1−𝑒
−λ𝜏𝑁

λ𝜏𝑁
− 𝑒−λ𝜏𝑁)

 
 
 
 

(

𝐿𝑡
𝑆𝑡
𝐶𝑡

)+ (

𝑒𝑡(𝜏1)
𝑒𝑡(𝜏2)
⋮

𝑒𝑡(𝜏𝑁)

)    (7) 

In the vector notation the DLM can be rewritten as the following state space system for the 3-

D vector of mean-adjusted factors 𝑓𝑡 and the observed yields 𝑦𝑡: 

(𝑓𝑡 − μ) = 𝐴(𝑓𝑡−1 − μ) + 𝜂𝑡         (8) 

𝑦𝑡 = 𝛬𝑓𝑡 + 𝑒𝑡           (9) 

With the orthogonal, Gaussian white noise processes 𝜂𝑡 and 𝑒𝑡 are defined as following:  

(
𝜂𝑡
𝑒𝑡
)~𝑊𝑁((

0
0
) , (

𝑄 0
0 𝐻

))         (10) 

In this setting, it is assumed that the stochastic terms for the state factor disturbances 𝜂𝑡 are 

correlated leading to a non-diagonal covariance matrix Q which is non-diagonal. On the other 

hand, the diagonality of the covariance matrix H is assumed so that the deviations of the 

observed yields among all maturities are uncorrelated.  

The latent states are to be defined as the mean-adjusted factors: 

𝑥𝑡 = 𝑓𝑡 − μ           (11) 

And the deflated or, intercept-adjusted yields as: 

𝑦𝑡
′ = 𝑦𝑡 − 𝛬μ           (12) 

And then substitute into the equations above.  

Thus, the DLM state-space system may be rewritten as:  
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𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝜂𝑡          (13) 

𝑦𝑡′ = 𝑦𝑡 − 𝛬μ = 𝛬𝑥𝑡 + 𝑒𝑡         (14) 

𝜂𝑡 = 𝐵𝑢𝑡           (15) 

𝑒𝑡 = 𝐷𝜀𝑡           (16) 

𝑄 = 𝐵𝐵′           (17) 

𝐻 = 𝐷𝐷′           (18) 

As already mentioned, the yields-only model forms a state-space system, with a VAR(1) 

transition equation where the dynamics of the vector of latent state vector variables are 

summarized, and a linear measurement equation relating to the observable yields to the state 

vector. For the estimation purposes, we use the SSM toolbox using the smoother algorithms 

and the default specifications given by this toolbox. Due to the often referred to problem of the 

sensitivity of Kalman filter estimator on starting values, we span a grid of starting value for 

parameter 𝜆 in the range between 0.00001 and 0.5 and took the best estimates. 

4. Results 

In order to verify, whether these models are suitable for estimating the SYIC and to compare 

their empirical performance in each sub-period, we evaluate the models using three different 

measures, namely the standard R2 since it also has been used by Nelson and Siegel (1984), the 

Root Mean Squared error (RMSE), which has been used by Svensson (1994) to evaluate his 

model and the Mean Absolut Error (MAE). 

An important fact of the RMSE is that it is based on the squared errors and thus sensitive to 

outlier in the error distribution. Hence, relatively higher weights are put on the tails of the error 

distribution using RMSE as a measure of goodness-of-fit. In an analogous way, this holds true 

also for R2.13 On the other hand, the Mean Absolute Error (MAE) may be quite robust to the 

outliers, and thus, has some advantages compared to the other two. Therefore, we can consider 

the MAE as a robust measure of the goodness-of-fit. Hence the both measures of the goodness-

of-fit, namely the MAE and the RMSE, may behave differently when one uses them for the 

purposes of the measures of the model fit. Relying on this fact, we will use all three measures 

when we are analyzing the three models applied in this paper.  

                                                 
13 However, the R2 takes additionally the variation of the dependent variable into account.  
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In the first part of this chapter, we evaluate each model separately by the three measures over 

the four periods to identify if there are significant changes. In the second part, we compare the 

three models with each other over periods, again based on those three measures, and in the third 

part we discuss our findings.  

4.1 Empirical results for the comparison between the periods  

4.1.1 Evaluation based on the R2 

We calculate the R2 for each day using the following formula: 

𝑅2 = 1 −
∑(𝑟𝑖−𝑟̂𝑖)

2

∑(𝑟𝑖−𝑟̅𝑖)
2
           (19) 

where 𝑟𝑖 stands for the mean interest rate of the ith 30- minute interval within a day, 𝑟̂𝑖 stands 

for its estimate interest rate and 𝑟̅𝑖 stands for the mean of the all sixteen 𝑟𝑖-s on the particular 

estimation day. Thus, we have as many estimates of R2-s as the number of days we consider in 

a sample. After that, we can analyze the statistical properties of calculated R2-s. In the same 

way, we proceed with other two measures of fit. 

Table (5) presents the results for the R2 in the different periods for the estimations of the intraday 

yield curve in the e-MID market using the NSM.  

Table 5: R2 of the NSM 

  Period 1 Period 2 Period 3 Period 4 

R2  0.6732*** 0.7398*** 0.6612*** 0.6259*** 

Std. Dev. 0.2190 0.2023 0.1977 0.2050 

t-statistic  66.847 61.294 49.092 46.201 

*** Denotes significance on the 1% level 

Hence, these results present the mean and the standard deviations of the R2-s, and the t-statistics 

for the means in each period, respectively. First given the high mean of R2 in each period, we 

can state that the NSM is capable of modelling the SYIC in the e-MID market. Second, we can 

also state that, the best performance for the modeling of the SYIC can be found in period 2 with 

an R2 of 0.7398, thus, this is in the offset of financial crisis. This is a first support of results 

given by Demertzidis and Jeleskovic (2016) that the best performance of the NSM may be 

achieved in period 2. Although distortion on the interbank credit markets where noticeable, the 

market was still functioning properly, as already mentioned above. The second-best 
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performance is found in period 1 which is the pre-crisis period where an R2 of 0.6732 is 

achieved. The performance drops slightly in period 3, where we achieve a mean R2 of 0.6612 

which is quite similar to the period 1. Furthermore, the smallest mean R2 of 0.6259 is achieved 

in period 4. Although the achieved means of R2 are remarkably high, we use the standard t-test 

in order to find out whether these means are significantly different from zero:14  

𝑡 = √𝑛
𝑥̅−μ𝑜

𝑠
           (20) 

where n stands for the number of observations, 𝑥̅ stands for the mean of the respective 

goodness-of-fit statistic, in this particular case of R2, s stands for the standard deviation of that 

specific goodness-of-fit statistic, and μ𝑜 is zero, since we test against zero. 

Based on the t-test we can state, that the R2 are significantly different from zero even at the 1% 

level in each sub- period.  

To find out whether the means of the considered statistics for goodness-of-fit from the different 

periods of the same model15 are significantly different, we use the two-sample two-tailed t-test 

between the periods:  

𝑡 = √
𝑛𝑚

𝑛+𝑚

𝑥1̅̅̅̅ −𝑥2̅̅̅̅

𝑠
          (21) 

𝑠2 =
(𝑛−1)2𝑠1

2+(𝑚−1)2𝑠2
2

𝑛+𝑚−2
         (22) 

where n and m stand for the number of observations of the same statistics from two periods, 

respectively, which we want to compare statistically with each other. The two statistics are in 

our case the means of the particular measure of fit, here 𝑥1̅̅̅ and 𝑥2̅̅ ̅, and can stem from two 

different periods for the same model. 𝑠1
2 and 𝑠2

2 are the estimated variances of 𝑥1̅̅̅ and 𝑥2̅̅ ̅. The 

results of the two-sample t-test between each period for the NSM are presented in table 6.  

Table 6: Two-sample t-test of R2 for the SIYC-s estimated by the NSM 

  Period 2 Period 3 Period 4 

Period 1 -4.151*** 0.622 2.736*** 

Period 2  4.001*** 6.283*** 

Period 3    1.714* 

***, **, * Denote significant different means at the 1%, 5% and 10% level respectively. 

                                                 
14 We use this test also for the analysis of the MAE and the RMSE.  
15 Or of two models from the same period. 
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The difference between period 2 and all other periods is significant even at the 1% level. Hence 

the NSM achieves significantly the best performance in period 2. In addition, the difference 

between period 1 and period 4 is highly significant, whereas the difference between period 1 

and period 3 is statistically not significant. Between period 3 and 4 we can state significantly 

different means of R2 only at the 10 % level. These results for the NSM are in line with the 

results provided by Demertzidis and Jeleskovic (2016). Therefore, the same economic 

discussion given by Demertzidis and Jeleskovic (2016) regarding their results for the NSM also 

holds in the case of results in this paper for the NSM when comparing different periods. Thus, 

the main conclusion is that the best performance of NSM is achieved in the period of the onset 

of the financial crises with a proper functioning interbank credit market.16 

The means of R2 for the SVM for the different sub-periods are presented in table 7.  

Table 7: R2 of the SVM 

  Period 1 Period 2 Period 3 Period 4 

R2  0.7863*** 0.8243*** 0.7517*** 0.7176*** 

Std. Dev 0.1740 0.1682 0.1723 0.1892 

t-statistic 97.566 82.121 56.202 57.400 

*** Denotes significance on the 1% level 

Based on the means of R2 we can state that the SVM is also suitable for an empirical estimation 

of the SYIC in the e-MID market. These means of R2 follow the same tendency as in the 

previously presented results for R2 of the NSM. The best performance of the SVM can be found 

in period 2, with a mean R2 of 0.8243. The second best can be found in period 1 of 0.7863 

whereas in period 3 the mean drops to 0.7517 and even more in period 4 where we achieve a 

mean R2 of 0.7176. Moreover, these means are significantly different from zero at the 1% level 

as well, as the t-test indicates.  

Regarding the significance among the different periods, we can state that the results of the two-

sample t-test of the SVM, presented in table 8, are also qualitatively the same as in the case of 

the NSM. The only difference here is that the difference between the mean of period 1 and 

period 3, is significant at the 10 % level. This fact does not change qualitatively the implication 

of the results which can be taken over as for the NSM.  

                                                 
16 For further information see Demertzidis and Jeleskovic (2016). This conclusion holds also for the SVM and the 
DLM, as will be presented below.  
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Table 8: Two-sample t-test of R2 for the SIYC-s estimated by the SVM 

  Period 2 Period 3 Period 4 

Period 1 -3.375*** 1.847* 4.367***  

Period 2  4.369*** 6.732*** 

Period 3    1.832* 

***, **, * Denote significant different means at the 1%, 5% and 10% level respectively. 

The mean of R2 for the DLM for the different periods can be found in table 9 where additionally 

the estimated mean of the λ parameter is presented.  

Table 9: R2 of the DLM 

  Period 1 Period 2 Period 3 Period 4 

R2  0.6025*** 0.6823*** 0.6444*** 0.6020*** 

Std. Dev 0.2491 0.2353 0.2057 0.2224 

t-statistic 52.589 48.605 40.364 40.964 

𝝀̅ 0.0007 0.1681 0.0407 0.0400 

*** Denotes significance on the 1% level 

First, we can state that also the DLM, like the NSM and the SVM, is capable of estimating the 

SIYC for the e-MID market. Also, like the NSM and the SVM the best performance can be 

found in period 2 where we achieve a mean of R2 of 0.6823. In contrast to the previous models, 

the second-best performance cannot be found in period 1 but in period 3 with an R2 of 0.6444. 

Furthermore, the results of the periods 1 and 4 are quite similar and lower than in the previously 

described periods, where we achieve an R2 of 0.6025 and 0.6020 respectively. Like the previous 

two models, the R2 of the DLM in each sub-period are statistically different from zero at the 

1% level. Hence, the DLM is suitable for the modeling of the SIYC as well. These similarities 

in the findings are also supported by the two-sample t-test for the DLM presented in table 10.  

Table 10: Two-sample t-test of R2 for the SIYC-s estimated by the DLM 

  Period 2 Period 3 Period 4 

Period 1 4.344*** -1.947* 0.21  

Period 2  1.724* 3.927*** 

Period 3    1.927*  

***, **, *Denotes significant different means at the 1%, 5% and 10 % level respectively.  
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Based on this test, we can state that the differences between period 1 and 2 and for the periods 

2 and 4 are significant also at the 1% level. The differences between period 1 and 3, period 2 

and 3 and period 3 and 4 are significant at the 10% level whereas the difference between period 

1 and 4 are not significant even at the 10% level. Thus, the best model performance can also be 

found here in period 2 and the worst one in period 4. Furthermore, the most important economic 

discussion regarding the goodness-of-fit in period 2 given by Demertzidis and Jeleskovic 

(2016) holds also for DLM. The only difference to the qualitative results achieved through NSM 

and SVM lies in the comparison between the periods 1 and 3 where, however, this difference 

between these two periods is significant only on the 10% level. Hence, we deem this evidence 

to be a matter for our future interest. 

At this point, we tackle the same discussion about the curvature as in Diebold and Li (2006) 

which correspond to the following figure 1. 

Figure 1: Curvature regarding estimated λ(1) ,λ(2), λ(3), and λ(4) for the periods 1, 2, 3, and 

4, respectively. 

 

As it can be seen in figure 1, the middle of each half hour interval is used to construct this graph 

which is correct when we assume the uniform distribution within the intervals. Due to the very 

small differences between estimated 𝝀(𝟑) and 𝝀(𝟒), and thus both corresponding curves cannot 

be graphically distinguished, we present only one curve for both periods which corresponds to 

𝝀(𝟑,𝟒). Note that in our case the first intraday interval from 9:00 a.m. to 9:30 p.m. has the longest 
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maturity and the last one from 04:30 p.m. to 05:00 p.m. has the shortest maturity. Hence, these 

functions are turned around compared with the curvature presented by Diebold and Li (2006). 

We can recognize that the loadings on the curvature in period 1 is very small and quite flat 

whereas it has a negative slope and is monotonically decreasing. It is monotonically decreasing 

in periods 3 and 4 as well. However, the difference here is that these loadings are remarkably 

high, and the nonlinearity is to some extent obvious. So, all three loadings in periods 1, 3, and 

4 support the hypotheses of monotonically decreasing interest rates during a day advocated by 

e.g. Baglioni and Monitcini (2008) and explained by the intraday risk premium. However, the 

interesting result can be seen in period 2. A curvature with the maximum peak around noon is 

estimated. This is clear evidence of a highly nonlinear shape due to the curvature factor within 

the SIYC in period 2.  

Furthermore, regarding our findings from the tables 5,7 and 9 we can state that, based on the 

R2 all three models are capable of modelling the SYIC in the e-MID market. To the best of our 

knowledge, such high R2 have not been achieved in similar studies by analyzing the intraday 

interest rates on an interbank credit market.  

In his empirical study, Angelini (2000) states that quite low R2 of 0.02 for the modeling of the 

intraday term structure can be achieved, accenting this weak evidence for an intraday 

downtrend. As he uses a “pre-crisis period” we can state that the standard nonlinear models for 

the estimation of the SIYC surpasses linear models like of Angelini (2000).  

Our results further indicate that our empirical findings are better than those obtained by Baglioni 

and Monticini (2008) where their model achieves an R2 of 0.09 and who also estimate there the 

term structure in a pre-crisis period. 

Baglioni and Monticini (2010) state that they achieve an R2 of 0.34 before the outbreak of the 

crisis on 9th August 2007 and of 0.21 after that. Hence, from their point of view, there may be 

a higher difference between the morning and afternoon interest rates but on the other hand, it 

seems, due to lower R2 that the assumption of the simple downtrend in the intraday term 

structure becomes less reasonable after the outbreak of the financial crisis. Moreover, our 

results indicate that the best goodness-of-fit can be achieved immediately after the outbreak of 

the financial crisis starting in 2007 using nonlinear models for the estimation of the SIYC. 

In terms of goodness-of-fit the closest results to ours are those obtained by Baglioni and 

Monticini (2013) who are able to achieve estimated R2 of 0.367, 0.402 and 0.424, using three 
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different linear models. Still, their results are still not nearly as good as the ones presented in 

this paper.  

4.1.2 Evaluation based on the MAE 

We calculate the MAE, analogy to the above analysis of R2-s, for each day based on the 

following formula: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑟̂𝑖 − 𝑟𝑖|
𝑛
𝑖=          (23) 

where 𝑟̂𝑖 is the estimate for 𝑟𝑖.  

The results for the means of MAE of the NSM are summarized in table 11.  

Table 11: MAE of the NSM  

  Period 1 Period 2 Period 3 Period 4 

NSM 0.0047 0.0111 0.0313 0.0114 

St. Dev. 0.0100 0.0137 0.0177 0.0087 

     

For the NSM we can state, that based on the MAE, the best model performance can be found 

in period 1 followed by the periods 2, 4 and 3 respectively, whereas the difference between 

periods 2 and 4 can be considered relatively small. Based on these statistics we can use the two-

sample t-test given by formula (21) to analyze the performance of the NSM based on the MAE 

between the different periods. 

The results of the two-sample t-test between the periods are summarized in table 12.  

Table 12: Two-sample t-test of MAE for the SIYC-s estimated by the NSM 

  Period 2 Period 3 Period 4 

Period 1 -7.380*** -23.507*** -8.609*** 

Period 2  -13.423*** 0.264 

Period 3    14.648*** 

***Denotes significant different means at the 1%. 

Regarding table 12 we can state, that the MAE between all periods are statistically different at 

the 1% level, except the difference between period 2 and 4. Hence, the difference in MAE 

between these two particle periods cannot be considered as significant. This implies that the 
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MAE for the NSM is significantly the best in the period 1, before the crisis. The worst 

performance can be found in period 3, within the crisis, when the market is not functioning 

well.  

The results of the means of MAE for the SVM are summarized in table 13.  

Table 13: MAE of the SVM  

  Period 1 Period 2 Period 3 Period 4 

MAE 0.0033 0.0079 0.0253 0.0096 

St. Dev.   0.007  0.0097  0.0143  0.0079 

 

Based on table 13 we can state that the findings follow the exact same tendency as the NSM. 

Based on the MAE the best model performance can be found again in period 1, followed by 

periods 2, 4 and 3, whereas the difference between the periods 2 and 4 seems relatively small.  

The two-sample t-test between the sub-periods confirm these findings. The results of the test 

are summarized in table 14.  

Table 14: Two-sample t-test of MAE for the SIYC-s estimated by the SVM 

  Period 2 Period 3 Period 4 

Period 1 -7.501*** -25.635*** -10.586*** 

Period 2  -15.224*** -2.091** 

Period 3    13.875*** 

***, ** Denotes significant different means at the 1% and 5% level respectively.  

Based on this test, we can state that all differences are statistically different at the 1% level, 

except between periods 2 and 4 where we have statistically different means at the 5% level.  

The results of the means MAE for the DLM are summarized in table 15.  

Table 15: MAE of the DLM  

  Period 1 Period 2 Period 3 Period 4 

MAE 0.0054 0.0126 0.0318 0.0117 

St. Dev.  0.0112 0.0153 0.0177 0.0091 
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Based on table 15 we can state that the DLM achieves the best performance based on the MAE 

in period 1 and the worst in period 3, as in the case of the NSM and the SVM. The difference 

here is, that using this model, the model performance in period 4 is better than in period 2. 

However, this difference in the performance of the DLM is not statistically different as the two-

sample t-test between the periods in table 16 indicates. 

Table 16: Two-sample t-test of MAE for the SIYC-s estimated by the DLM 

  Period 2 Period 3 Period 4 

Period 1 -7.382*** -22.204*** -7.449*** 

Period 2  -12.129*** 0.720 

Period 3    14.707*** 

*** Denotes significant different means at the 1% level.  

Based on table 16 we can state, that the MAE between the periods are statistically different at 

the 1% level, except between period 2 and 4 where we cannot confirm statistically different 

MAE-s with NSM and DLM, but at 5% with SVM. 

The results based on the MAE are quite different to the results given by the analysis of the R2 

which also shows up regarding RMSE in the next section. We will discuss this fact in section 

4.3.  

4.1.3 Evaluation based on the RMSE 

In this section we present results for the RMSE. The RMSE can be calculated using the formula:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑟̂𝑖
𝑛
i=1 − 𝑟𝑖)2         (24) 

Table 17 presents the mean RMSE in the different periods for the estimations of the SIYC in 

the e-MID market for the NSM .  

Table 17: RMSE of the NSM  

  Period 1 Period 2 Period 3 Period 4 

RMSE 0.0060 0.0141 0.0397 0.0148 

St. Dev.  0.0131 0.0172 0.0228 0.0122 

 



24 

Based on table 17 we can state that best model performance of the NSM can be found in period 

1, followed by period 2, period 4 and period 3, respectively.  

From the point of view of the statistical inference, these findings are mostly verified by the two-

sample t-test between the different periods, which are summarized in table 18.  

Table 18: Two-sample t-test of RMSE for the SIYC-s estimated by the NSM 

  Period 2 Period 3 Period 4 

Period 1 -7.261*** -23.032*** -8.456*** 

Period 2  -13.404*** -0.480 

Period 3    14.003*** 

***Denotes significant different means at the 1%. 

Here we can state that the results of the RMSE are statistically different even at the 1% between 

all periods besides period 2 and 4 where there is no statistically significant difference.  

The means of the RMSE for the SVM are presented in table 19. 

Table 19: RMSE of the SVM 

  Period 1 Period 2 Period 3 Period 4 

MAE 0.0044 0.0103   0.0331 0.0127 

St. Dev.  0.0097  0.0126 0.0194  0.0113 

 

Based on table 19 we can state that the fit of the SVM for the SIYC-s is best also in period 1 

followed by period 2 and period 4 and 3 respectively. Hence these results are qualitatively in 

line with the results of the NSM. 

The results of the two-sample t-test between the periods for the SVM can be found in table 20.  

Table 20: Two-sample t-test of RMSE for the SIYC-s estimated by the SVM 

  Period 2 Period 3 Period 4 

Period 1 -7.207*** -24.581*** -10.038*** 

Period 2  -14.995*** -2.200** 

Period 3    13.138*** 

***, ** Denotes significant different means at the 1% and 5% level respectively.  
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We can see that the results are statistically different at the 1% level among all periods except 

between the periods 2 and 4 where we can assume the significant differences at the 5% level.  

The results of the mean of the RMSE for DLM are summarized in table 21. 

Table 21: RMSE of the DLM  

  Period 1 Period 2 Period 3 Period 4 

RMSE 0.0076 0.0162 0.0412 0.0156 

St. Dev.  0.0168 0.02 0.0236 0.0134 

 

The results of the DLM indicate that the best model performance based on the RMSE can be 

also found in period 1 and the worst in period 3, as in the case of the NSM and the SVM. 

However, unlike the other two models the second-best performance is found in period 4. 

However, the difference between the periods 2 and 4 is not significant, which can be seen in 

table 22 where the results of the two-sample t-test between the periods are presented. In other 

periods these differences are statistically highly significant. 

Table 22: Two-sample t-test of RMSE for the SIYC-s estimated by the DLM 

  Period 2 Period 3 Period 4 

Period 1 -6.301*** -19.729*** -6.224*** 

Period 2  -11.901*** 0.424 

Period 3    13.634*** 

***, ** Denotes significant different means at the 1% and 5% level respectively.  

4.2 Empirical model comparison 

In the previous part of this chapter we stated that all three models are capable of modeling the 

SYIC. Here we will compare the three different models based on the three measures of model 

performance with each attempting to answer the question of which model may be the best one 

for the modeling of the SIYC on the interbank credit market.  

4.2.1 Model comparison based on the R2 

Based on the tables 5, 7 and 9 we can see that the SVM outperforms the NSM and the DLM in 

each period. Regarding the comparison between the NSM and DLM we can state that, the NSM 
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surpasses the DLM in each period, however, the results in periods 2 and 3 may not be different 

to a large extent.  

To test if these differences in means are also statistically verified, we perform a two-sample t-

test, based on formula (20), by testing the means of R2 between these models. The results of 

these two-sample tests are summarized in Table 23 for each period.  

Table 23: Two-sample t-test between the models for R2 

  Period 1 Period 2 Period 3 Period 4 

NSM/SVM -8.351*** -5.384*** -4.445*** -4.975*** 

SVM/DLM 12.746*** 8.224*** 5.151*** 5.989*** 

NSM/DLM  4.635*** 3.101*** 0.758 1.193 

*** Denotes significant different means at the 1% level.  

Based on table 23. we can state that our previously described findings regarding models’ 

performances and their comparison are also statistically confirmed. The difference in means 

between the SVM and the NSM and between the SVM and the DLM is significant even at the 

1% level. Regarding the comparison between the NSM and the DLM we can state that the 

differences in periods 1 and 2 are also significant at the 1% level. As already stated in the 

comparison between the NSM and DLM, the means within period 3 and period 4 do not differ 

to any great degree from each other. This obviously does not lead to the rejection of the 

assumption for the equality of those two means. 

4.2.2 Model comparison based on the MAE 

By considering the tables 11, 13 and 15 for the comparison of the models we can state that the 

SVM dominates the NSM and the DLM in each sub-period as in the case of the R2. Regarding 

the comparison between the NSM and the DLM we can state that NSM surpasses the DLM in 

all sub-periods, though these differences are not as high as in the case of the SVM. To verify 

statistically our findings based on the MAE we also perform a two-sample t-test between the 

models. These findings are summarized in table 24.  
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Table 24: Two-sample t-test between the models for MAE 

  Period 1 Period 2 Period 3 Period 4 

NSM/SVM 2.353** 3.146*** 3.362*** 2.250** 

SVM/DLM -3.338*** -4.273*** -3.701*** -2.658*** 

NSM/DLM  -1.053 -1.197 -0.3 -0.437 

***, ** Denotes significant different means at the 1% and 5% level respectively.  

Based on table 24 we can state that the differences regarding the MAE between the NSM and 

the SVM are statistically different even at the 1% level in the periods 2 and 3, whereas in the 

period 1 and 4 the differences are significant at the 5% level. Regarding the comparison of the 

SVM and the DLM we can see that the differences in each period are different at the 1% level. 

Hence, the dominance of the SVM in comparison to the other two models can be statistically 

verified. The comparison of the NSM and the DLM shows, that the differences in each sub- 

period are not statistically different even at the 10%. 

4.2.3 Model comparison based on the RMSE 

Regarding the model comparison based on the RMSE given the results in tables 17, 19 and 21 

we can state that the SVM surpasses the NSM and the DLM in terms of a lower RMSE in each 

period. By comparing the results of the NSM and the DLM we can state that the findings are 

quite similar, especially in the periods 2,3 and 4. These findings are also confirmed by the two-

sample t-test shown in table 25.  

Table 25: Two-sample t-test between the models for RMSE 

  Period 1 Period 2 Period 3 Period 4 

NSM/SVM 2.153** 2.973*** 2.835*** 1.893* 

SVM/DLM -3.597*** -4.164*** -3.392*** -2.466** 

NSM/DLM  -1.627 -1.323 -0.574 -0.650 

***, **, * Denotes significant different means at the 1%, 5% and 10% level respectively. 

By considering these test results we can state that the differences in the RMSE between the 

SVM and the NSM are highly significant at the 1% in the periods 2 and 3, whereas they are 

significant at the 5% and 10 % in the periods 1 and 4, respectively. By comparing the SVM and 

the DLM we can state that the differences in the means of the RMSE are significantly different 
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at the 1% in each period except period 4, where it is significantly different at the 5% level. 

Regarding the comparison between the NSM and DLM we can state that the differences based 

on the RMSE are not statistically significant. 

4.3 Discussion of empirical results 

The analysis regarding the goodness-of-fit which is measured by R2, MAE and RMSE for each 

model and over different periods reveals some interesting results. At first, all three models 

provide highly significant goodness-of-fit in each period so that one should consider these 

models when modeling SIYC on interbank credit markets. By taking a deeper look into the 

single periods the findings are also quite interesting. Again, these periods are defined as before, 

directly after the outbreak, during and after the financial crisis of 2007, which means periods 1, 

2, 3, and 4 respectively. Having first fitted the SIYC-s to e-MID data and considering the MAE 

and the RMSE over those sub-periods, the qualitatively same results for NSM and SVM occur. 

That means that the best performance from both models was achieved in period 1 and the worst 

one in period 3. Moreover, the performance of these models seems to be better in period 2 than 

in period 4. The DLM is in line with results from MAE and RMSE for periods 1 and 3 where 

these results are the best and the worst ones, respectively. However, it is vice versa regarding 

periods 2 and 4. We point out that the results from the MAE and RMSE for the NSM and DLM 

between periods 2 and 4 are statistically not different. Hence, we can state that the results from 

DLM are not in conflict with them from NSM and SVM. Based on the facts that these four 

periods represent four different states of the market, one can conclude that only the SVM is able 

to recognize those different market states, and thus, has a further advantage over the NSM and 

DLM. Thus, when there is a need to recognize different market states on the interbank credit 

market, rather the SVM should be applied for these purposes.17 

The results look differently regarding R2 when comparing the performance of the models over 

different sub-periods. Overall, the best goodness-of-fit could be achieved in period 2 and the 

worst one in period 4 which is in line with results achieved by Demertzidis and Jeleskovic 

(2016). NSM and SVM have a better performance in period 1 than in period 3 while for DLM 

it is vice versa. However, using the NSM no significant difference between period 1 and period 

3, and using DLM between period 1 and 4 can be found. This is not the case for SVM which 

detects significant differences among all four periods at least at 10% level of significance. Thus, 

it implies that the SVM shows again the higher ability, also based on R2, to distinguish between 

                                                 
17 However, Demertzidis and Jeleskovic (2016) demonstrate that also the NSM possesses this ability when it is 
applied to tick-by-tick data on e-MID.  
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periods of a properly working interbank credit market and the odd market states. From the 

economic point of view, this may be an interesting and important finding. 

The question arises as to why we get partially inconsistent results when we use MAE and RMSE 

on the one side and R2 on the other side. The reason may rely on the variation of the dependent 

variable in the first period which is small within a day so that daily SIYC-s look quite flat. 

Whereas MAE and RMSE do not take directly into account the variation of the dependent 

variable, R2 does. Given the empirical fact that the variation of interest rates in the first period 

is very small, compared to other periods before and during the financial crisis, the MAE and 

RMSE may be per se relatively lower in the period 1. On the other hand, the lower variation of 

the dependent variable has a relevant and direct impact on R2. This might cause the results that 

the best fit was achieved in period 1 according MAE and RMSE, and in period 2 according R2. 

After all, one must recognize that when different measures for the goodness-of-fit are used, 

different qualitative results can be achieved.  

Regarding the direct comparison between the three different models, we can state that the SVM 

dominates the NSM and DLM in each different sub period regarding all three applied statistics. 

So, SVM may be the advanced model for modeling SIYC on an interbank credit market. 

The comparison of results between the NSM and the DLM do not provide overall clear results. 

Regarding the R2, we can state that the NSM dominates the DLM only in periods 1 and 2, when 

the market is still functioning well, whereas the differences in the means of the R2 are not 

statistically significant when the market is not functioning properly in periods 3 and 4. 

Regarding the comparison of these two models based on the MAE we can state that the 

differences in the sub periods are not statistically significant. This is also the case when 

comparing the models based on the RMSE.  

Therefore, by taking into account these facts, we can conclude that the statistical justification 

is given to assume that SVM dominate both other models in terms of the direct comparisons 

based on different statistics for the goodness-of-fit. Hence, given the fact that SVM is able to 

model two humps, and thus higher non-linearities, which is, on the other hand, not the case with 

NSM and DLM we can state that alone the strong nonlinearities in SIYC are ground for such 

better performance of SVM. However, the NSM and the DLM are able to capture non-linearities 

in the SIYC as well as what is proven in section 4.1. Moreover, in terms of statistical tests, one 
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cannot see the NSM in favor of DLM although the means of three measures of goodness-of-fit 

are slightly higher for NSM.18 

5. Conclusion 

This paper represents the first analysis of the in-sample comparison of three standard models, 

namely NSM, SVM, and DLM, for the estimation of the non-linear SIYC on the e-MID market 

and on interbank credits markets on the intraday frequency in general. We apply estimations of 

the models’ parameters based on the half-hourly means of interest rates. Regarding that, this 

procedure is in line with other comparable studies even though they use hourly intervals of 

interest rates on e-MID. Moreover, we split the data into four periods before, after the outbreak 

of financial crisis, after the collapse of Lehman Brothers and after the financial crisis to analyze 

the effects of the financial crisis of 2007. 

We find out that all three models are suitable for the estimation of an intraday yield curve on e-

MID. This is based on the fact that the goodness-of-fit of all three models for the SIYC is 

remarkably high in each period, and thus, these models can be used for the modelling of the 

SIYC on the e-MID market independently of the state of interbank credit market. For the 

measure of goodness-of-fit, R2, Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE) are used. Furthermore, compared with the results from other studies, where linear 

regressions were applied, these three models seem to be highly dominant over all other linear 

models when comparing the goodness-of-fit measured by R2. To statistically justify our results 

and to compare them among different periods, and thus, among different states of interbank 

credit markets and among these three models, we use corresponding t-tests based on these three 

measures. 

Regarding the analysis among the periods, we find that the highest R2 can be achieved in period 

2 by all three models. The second-best result for R2 is achieved in period 1 by SVM and NSM. 

These are periods which are assumed to have a properly functioning market. All three models 

achieved the smallest R2 in period 4 when the market liquidity after interventions of ECB was 

very low. Hence, it is assumed that in this period the market was not functioning properly and 

due to that, all three models have the smallest R2. However, also in this odd market state all 

three analyzed models still achieve remarkably high R2 which is statistically different from zero 

by a very high significance level. Using MAE and RMSE, the best goodness-of-fit is achieved 

in the first period whereas the lowest one is in period 3 by all three models. The reason for this 

                                                 
18 Again, the only significant difference in favor of NSM over DLM is given in periods 1 and 2 and based only on 
R2. 
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variation in results based on R2 and other two one measures is that the last two do not directly 

consider the variation of the dependent variable. Thus, this variation was the lowest one in 

period 1 so that this fact may cause this discrepancy. Moreover, NSM and SVM achieved 

second best results regarding MAE and RMSE in period 2 whereas DLM achieves the second-

best result in period 4. However, neither NSM nor DLM are able to distinguish a statistically 

significant difference between period 2 and 4. On the other hand, SVM is able to recognize 

statistically different results among all four periods using each measure of fit. This is a strong 

result and we strongly recommend using the SVM when one wants to analyze different market 

states as in periods before, during and after financial crises.  

Furthermore, we find out that, that the SVM, based on the two-sample t-test, dominates the 

NSM and the DLM regarding in-sample performance measures in all four single periods and 

regarding all three applied measures. At first sight, the NSM model seems to be the second best 

model, due to the fact that it dominates the DLM through the different periods and due to the 

different in-sample statistics. However, these differences in term of goodness-of-fit regarding 

MAE and RMSE between NSM and DLM are not statistically significant. Hence, one can state 

in this context that the results from NSM and DLM are not statistically different. Regarding R2, 

NSM outperform DLM significantly only in periods 1 and 2. Again, these are states when the 

market was functioning properly.  

Hence, our findings state that SVM is to be preferred when an economic analysis on interbank 

credit market should be conducted. NSM could be preferred over DLM if one conducts the in-

sample analysis in interbank credit markets on condition that the market is working properly. 

However, this finding for NSM and DLM is based only on the goodness-of-fit-measurement 

given by R2 and this statement cannot be given based on MAE and RMSE. 
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