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Abstract

Energy efficiency provides a substantial opportunity to tackle increasing greenhouse gas

emissions. However, in traditionally regulated energy markets, energy providers maximize

their profits by selling electricity or heat as long as their marginal revenue exceeds their

marginal costs of production. This so called ’throughput incentive’ fundamentally restricts

the motivation of utilities to invest in energy efficiency. This paper therefore investigates the

relation between the regulatory policy revenue decoupling, that separates utilities’ revenue

from sales fluctuations, and electricity customers’ energy demand and efficiency in the U.S.

To address the research question at hand, we follow recent developments in energy demand

function modeling and Stochastic Frontier Analysis (SFA) estimation techniques that allow

to account for persistent as well as transient efficiency. The estimation results show a signif-

icant negative correlation between revenue decoupling and electricity consumption patterns.

Furthermore, we find electricity customers have small transient inefficiency. However, results

indicate an underlying persistent inefficiency across the entire electric sector.
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1. Introduction

Rising global energy demand is one well-documented driver of greenhouse gas emissions

(see e.g. Ang (2007) or Apergis and Payne (2010)). Thus, the ongoing global increase in

energy demand (OECD, 2012) lies at odds with climate protection goals, demonstrating a

need for action in the energy sector. Even though CO2 emissions in the U.S. were about 10.4

% lower in 2015 than in the peak year 2007 (EPA, 2017) the U.S., as the 2nd-largest CO2

emitter in the world, still substantially contribute to global CO2 emissions. Furthermore, the

set target of the Obama administration to reduce emissions by 26 - 28 % by 2025 compared

to 2005 levels seems ambitious and potentially unachievable (Victor et al., 2017). While

several aspects need to be taken into account, the U.S. Environmental Protection Agency

(EPA) as well as the International Energy Agency (IEA) highlight the importance of energy

efficiency as an energy resource and as a key factor in reducing CO2 emissions (EPA, 2008;

IEA, 2009).

To support the efficiency of climate protection measures, Victor et al. (2017) identify the

need for more adequate indicators that evaluate the actual impact of regulatory policies. We

take up their call and investigate the relation between an energy market regulation, namely

revenue decoupling, and energy demand and efficiency.

In traditionally regulated electricity markets electricity providers maximize their profit by

selling as much electricity as possible, as long as the marginal costs of production are be-

low the marginal revenue (Eto et al., 1997). Considering this so called ’throughput incen-

tive’, electricity utilities have little motivation to invest in energy efficiency, as a reduc-

tion of sold electricity implies a reduction of revenue (this also applies for the gas sector)

(Kahn-Lang, 2016). Alongside other policies the concept of decoupling was implemented

for investor-owned energy utilities to tackle this misleading and unsustainable incentive of

sales-maximization (NARUC, 2007). In a nutshell, decoupling is the separation of the total

electricity delivered by an electric utility and its profits (Brennan, 2010), thereby making

revenue independent from sales fluctuations (NARUC, 2007). By 2015, decoupling was im-

plemented in 26 U.S. states and the District of Columbia. Thirteen of those states and the

District of Columbia have implemented decoupling policies in the electricity sector (EEI,

2015). Recognizing revenue decoupling as a major policy in energy market regulations, the

question arises whether it has a significant impact. As this study only examines the elec-

tricity sector, the aim of this paper is to investigate the relation between revenue decoupling

and the electricity demand and efficiency of electricity utilities’ customers in the U.S.

Voigt et al. (2014) argue that energy intensity, generally defined as the ratio of energy con-
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sumption to gross domestic product (GDP), would be the reciprocal of energy efficiency and

thus a valid measurement. However, Filippini and Hunt (2015a) argue that energy intensity

is solely the reciprocal of energy productivity but not an optimal measurement for energy

efficiency1. They compare average energy intensity scores with persistent energy efficiency

levels via an estimated energy demand function for 49 U.S. states and show that energy

intensity is only a valid proxy for energy efficiency in some cases and should therefore be

used carefully.

One common approach is to decompose energy intensity into several components, such as

changes in fuel sources, alterations of the production level, changes of the overall struc-

ture of the economy and energy efficiency (Jimenez and Mercado, 2014). Comprehensive

methodological reviews about decomposition approaches are provided by Ang et al. (2010)

and Boyd and Roop (2004).

Alternatively, different frontier analysis approaches have been conducted to estimate en-

ergy efficiency levels (Filippini and Hunt, 2012). Usually frontier analysis approaches are

either non-parametric, such as Data Envelopment Analysis (DEA), or parametric, such as

Stochastic Frontier Analysis (SFA). As specified in detail in Section 3, this paper will follow

the argumentation of Filippini and Hunt (2015a) to understand energy (in)efficiency based

on the micro-economic theory of production. We pursue their suggestion to use a SFA ap-

proach as originally introduced by Aigner et al. (1977). Furthermore, the differentiation

between persistent and transient efficiency (long and short-term) recently gained attention

in the general debate on energy efficiency (Filippini and Hunt, 2015a) and will thus play an

important role in the estimation approach of this paper.

The basis for our analysis is an unbalanced panel data set for the period of 2001 to 2015,

which includes utility specific information regarding total sales, absolute customer numbers

and consumption shares (commercial, industry and households) as well as state-level data

regarding Cooling Degree Days (CDD), Heating Degree Days (HDD), real Gross Domestic

Product (GDP) and average electricity sales prices. Furthermore, we control whether a

utility is affected by Energy Efficiency Resource Standards (EERS) which are implemented

on the state level and, of course, whether a utility implemented a decoupling-mechanism or

not. Throughout all model specifications, our analysis reveals a statistically highly significant

negative correlation between revenue decoupling true up plans and electricity consumption.

1The U.S. Department of Energy discusses this matter at: https://energy.gov/eere/analysis/energy-
intensity-indicators-efficiency-vs-intensity, stating that energy intensity can be a qualitative proxy for energy
efficiency if other explanatory variables are accounted for, and if the (diss)aggregated level of energy intensity
allows for useful interpretations.
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While results suggest that electricity customers are able to avoid transient inefficiency, we

identify a larger share of underlying persistent inefficiency.

The following Section 2 provides a general overview of decoupling. Section 3 continues

overviewing the methodology, defining the different models used in the analysis and dis-

cussing their econometric specifications. Section 4 describes the data used. We present the

estimation results in Section 5 and finalize the paper with a conclusion in Section 6.

2. Background

The term decoupling is used in different and potentially confusing ways in the literature.

Lowry and Makos (2010) consider revenue decoupling as the general, overall aim to tackle

the throughput incentive. They argue that ’decoupling true up plans’, ’lost revenue adjust-

ment mechanisms (LRAMs)’ as well as ’straight fixed variable pricing (SFV)’ are the main

three decoupling approaches. On the other hand, the EPA and the National Association of

Regulatory Utility Commissioners (NARUC) argue that decoupling mechanisms (referring

only to decoupling true up plans2) are one way to address the throughput incentive while

LRAMs and SFV are different approaches and therefore should not be understood as de-

coupling3 (EPA, 2007; NARUC, 2007). LRAMs allow utilities to recover efficiency-related

revenue (sales) reductions, and thus target the misdirected incentive of avoiding efficiency

improvements. By spreading the fixed costs of a utility equally to all its customers via a

high fixed charge combined with low consumption based costs (price/kWh), SFV tariffs try

to nivelise the sales maximization incentive of utilities directly. (EPA, 2007)

Following the definition of the EPA, decoupling can be further specified into different mech-

anisms that try to unlink total sales and revenue recovery. While certain approaches aim

to preserve the recovery of lost margins, accounting for the simultaneous reduction of costs

when sales decline, others offer limited true ups. The two most prominent decoupling ap-

proaches are total-revenue-caps and revenue-per-customer-caps. In both cases an allowed

revenue is defined for a baseline year. A utility’s unit sales price will be adjusted depending

on whether the actual revenue has exceeded this threshold or has fallen short in the follow-

ing year. In regular time increments the threshold has to be revised. Assuming there is a

2The count of 13 states and the District of Columbia also refers only to decoupling true up plans. If
all three mechanisms would be considered, 26 states and the District of Columbia would have implemented
decoupling policies in the electricity sector.

3We will control for all three policy mechanisms. However, we follow the definition of the government
agencies and consider solely ’true up plans’ as decoupling. For detailed descriptions and examples see
NARUC (2007), EPA (2007) or Eto et al. (1997).
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revenue-per-customer-cap, the actual revenue of a utility is compared periodically with its

allowed revenue (while accounting for changes in the number of customers) and adjusted

in the following period via modifying the unit sales price. A general side effect is that de-

coupling consolidates the revenue of companies confronted with a volatile energy demand

(EPA, 2007).

It is important to state that decoupling was not initially developed to create energy effi-

ciency, but to tackle the ’throughput incentive’ (NARUC, 2007). Despite general concerns

about implementation there is also a wide-ranging discussion regarding the actual effects

of decoupling. The Electricity Consumers Resource Council (2007) and Brennan (2010)

suggest that decoupling passes risks on to the consumers. When utilities’ revenues are in-

dependent from sales, the utilities might lose incentives to ensure the security of supply

(Brennan, 2010). Furthermore, secure revenues for utilities lead to less volatile costs for end

consumers, reducing their incentives to invest in energy efficiency (Electricity Consumers

Resource Council, 2007). Additionally, if some customers implement efficiency measures

they can increase the electricity bills of those who do not invest in efficiency. This can

put extensive pressure on low-income households, who cannot afford efficiency investments

(NARUC, 2007). Brennan (2010) presents a thorough theoretical approach, modeling - inter

alia - the behavior of electric utilities, that implement the decoupling mechanism. His results

indicate that decoupled utilities will support energy efficiency investments and will supply

demand-reducing information, but only if electricity sales prices are below their marginal

costs of production. He concludes his analysis on ’decoupling in electric utilities’ with the

suspicion that the real reason why decoupling is implemented is that politicians want to

avoid telling customers that they are responsible for increasing energy usage and climate

pollution. Rather the responsibility for decreasing energy usage is pushed to the supply side.

Existing empirical work regarding revenue decoupling is limited. Focusing on Demand Side

Management (DSM), Datta (2015) addresses the influence of decoupling on electric utility

expenditures on energy efficiency. Using fixed effects regression models and utility specific

data for the period of 2007 to 2011, he finds that utilities that have been decoupled spend on

average four times as much money on energy efficiency than non-decoupled utilities. Kahn-

Lang (2016) uses a game-theoretical approach to analyze potential connections between

decoupling, residential energy consumption and utilities expenses in DSM. Using data for

218 non-governmental electricity utilities from 2001 − 2010, his results show that decoupling

has an indirect influence on decreased energy consumption as it promotes DSM spending

and DSM efficiency. Finally, Brucal and Tarui (2018) investigate the effect of revenue decou-

4



pling on electricity prices and welfare. They utilize a panel data set covering 12 years and

containing information about roughly 200 investor-owned electric utilities. By combining

a propensity score matching approach with a difference-in-difference estimation, they find

that soon after utilities implement a decoupling policy they charge significantly higher elec-

tricity prices. In fact, their results suggest that decoupling mechanisms are misused. While

a decrease in sales leads to a rise of electricity prices an increase in sales does not lead to

the reverse effect in the same order of magnitude. In terms of welfare, their results support

the argument that revenue decoupling transfers economic risks from the supply side to the

consumers (Brucal and Tarui, 2018).

Yet, none of these studies focus on the initial target of revenue decoupling to tackle the

throughput incentive. To the best of our knowledge no one so far has implemented a SFA

approach using a demand frontier function, as suggested by Filippini and Hunt (2015a),

to investigate the influence of decoupling on electricity demand and efficiency. We find a

significant negative effect of decoupling on electricity demand and thus contribute to the

on-going discussion about the overall repercussions of decoupling. Furthermore, we detect

the presence of persistent as well as transient (in)efficiency among electricity customers.

However, the persistent inefficiency is substantially larger than the transient.

3. Empirical approach

Several approaches exist to date to investigate energy efficiency. As discussed before, en-

ergy intensity seems to be an inadequate proxy for energy efficiency. Metcalf (2008) therefore

aims to decompose energy intensity into actual efficiency improvements and economic activ-

ity related changes of the intensity score. Similarly, Jimenez and Mercado (2014) decompose

energy intensity through the Fisher Ideal Index into energy efficiency (real energy intensity)

and economic activities. They find developments in energy efficiency to be the major driver

of energy intensity change. However, activity changes also substantially contribute to en-

ergy intensity alterations. In addition to decomposing methods, a large share of literature

aims to estimate efficiency through frontier analysis approaches. Those approaches are ei-

ther non-parametric or parametric. Both define efficiency as a measure of comparison of a

unit to a ”best-practice” benchmark, while accounting for specific individual characteristics

(Boyd, 2008).

The estimation of an input or distance demand frontier function, as well as the estimation

of a cost or production frontier function rests upon the concept of productive efficiency, as
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originally introduced by Farrell (1957). Filippini and Hunt (2015a) define three major com-

ponents that ensure that the production of an energy service is efficient, which is a necessity

for economic success. These are the minimization of inputs to produce a given output-level,

the selection of the best (in financial terms) combination of input factors, and the utilization

of the lowest cost technology.

Concepts to investigate efficiency by using non−parametric approaches and linear program-

ming are generally referred to as Data Envelopment Analysis (DEA). A specification to

investigate energy efficiency using DEA models was developed by Zhou and Ang (2008).

Their approach is to measure economy-wide energy efficiency performance based on a joint

production framework. Advantages of such models are that they can be used to analyze

rather small datasets. Furthermore, non-parametric approaches don’t impose a specific form

of the production (or cost) function. However, as those approaches are unable to account

for unobserved heterogeneity, the present study follows the argumentation of Filippini and

Hunt (2015a) to use a parametric method, namely SFA.

Using SFA to estimate a Shepard energy distance function, Lin and Du (2013) use a meta-

frontier concept to evaluate energy efficiency developments of 30 administrative regions in

China. Buck and Young (2007) investigate the energy efficiency in the Canadian commercial

building sector using the SFA approach as presented by Aigner et al. (1977). Specifically,

they calculate the ratio of the actually used energy in a building to the hypothetical optimal

level of energy usage. A similar approach was conducted by Boyd (2008), who interprets

the stochastic frontier function as an input-distance function to estimate efficiencies at plant

level.

While the proposed frontier function by Aigner et al. (1977) is based on the neoclassical

theory of production, Filippini and Hunt (2011) utilize their approach to estimate an aggre-

gated energy demand function, assuming an underlying ’production process’. By analyzing

the energy efficiency development of 29 OECD countries via the joint use of energy demand

modeling and a stochastic frontier approach they introduce a new tool to estimate energy

demand and efficiency. Furthermore, their results support the proposition that energy in-

tensity is not a suitable proxy for energy efficiency.

Following this concept, Filippini and Hunt (2012) estimate a Pooled Model, a Random Ef-

fects Model (REM) and a Mundlak corrected version of a REM (MREM) to investigate US

residential energy demand and efficiency in 48 U.S. states. Filippini et al. (2014) pick up

the SFA approach developed by Filippini and Hunt (2011, 2012) to estimate a residential

frontier energy demand function, in order to evaluate the effects of energy-efficiency policy
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measures within the EU.

However, none of the listed studies differentiates between persistent and transient efficiency.

There are in fact only few studies trying to separate both levels of efficiency. Tsionas and

Kumbhakar (2012) present a SFA model that allows this differentiation. They develop

a generalized true random effects model, which differentiates time-invariant effects into a

persistent (time-invariant) inefficiency effect and a random firm effect (to capture hetero-

geneity). Additionally, they introduce a time-variant inefficiency component, leading to the

construction of a 4-component error-term. This model thus differentiates between persis-

tent and transient efficiency and captures random firm effects and general noise. Additional

studies that are based on this theoretical approach are, amongst others, Kumbhakar et al.

(2012) and Colombi et al. (2014).

A different, and for our study, more applicable approach was developed by Filippini and

Hunt (2015b), which is the starting point for the analysis presented here. While discussing

three types of parametric approaches, namely the estimation of an input requirement func-

tion (as proposed by Kumbhakar and Hjalmarsson (1995)), a Shepard energy input distance

function (e.g. conducted by Lin and Du (2013)) and an input demand frontier function (as

developed by Filippini and Hunt (2011)), they suggest the use of the latter. Despite having

some limitations the key advantage of this function is that it takes allocative as well as

technical efficiency into account (Filippini and Hunt, 2015a)4.

Furthermore, Filippini and Hunt (2015a) suggest estimating two models separately: A

Mundlak adjusted random effects (MREM) model to estimate the persistent part of the

level of energy inefficiency, and a true random effects model (TREM) to estimate the tran-

sient part. One of the classic SFA random effects model (REM), which was developed by

Pitt and Lee (1981) (in the following PL-model), is based on the assumption that the in-

efficiency term ui is constant over time. Therefore it only captures the persistent level of

energy efficiency.

Persistent levels of energy efficiency are entirely caught by a utility-specific constant term

when a TREM is used. Thus, the estimation of a TREM creates efficiency values that are

transient, as they vary over time. 5 One key-feature of the TREM, which was developed by

Greene (2005a,b) is the ability to differentiate between transient efficiency and unobserved

heterogeneity. However, Greene (2005a) also argues that the PL-model is unsuitable to

4For a detailed discussion regarding the different model specifications and empirical examples see Filippini
and Hunt (2015b).

5Nevertheless, the exclusion of persistent energy efficiency must be taken into account when interpreting
the estimated efficiencies.
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identify persistent inefficiency. Especially, as the time invariant component will be captured

not only in the inefficiency term but also in the constant α, which are ”indecomposable”.

Investigating the Swiss railway sector, Filippini and Greene (2015) take up this argument to

explain the weak correlation between the estimated efficiency scores based on a PL-model and

the persistent efficiency values estimated using the Generalized True Random Effects Model

(GTREM), which they present in this paper. They extend the TREM, which was developed

by Greene (2005a,b), by a second disturbance parameter. Therefore, the GTREM contains

one time invariant and one time variant efficiency component. The reduced complexity of

the maximization of the underlying log likelyhood function is an essential advantage com-

pared to the earlier mentioned model of Tsionas and Kumbhakar (2012). This is achieved

by using a simulation approach and by utilizing the work of Butler and Moffitt (1982)6.

Empirical applications of this model are done by Filippini et al. (2017), who estimate a

translog cost function using data on hydro-powered electricity production in Switzerland,

and Blasch et al. (2017), who utilize unique survey data to estimate transient and persistent

efficiency of Swiss residential households.

We utilize the GTREM as third model, to correctly identify the persistent and transient

efficiency. In line with Filippini and Greene (2015) we additionally estimate a MREM (PL-

model) and the TREM developed by Greene (2005a,b), as originally suggested by Filippini

and Hunt (2015a). However, we include Mundlak corrections in all estimations. Table 1

presents the characteristics of the three models.

Table 1: Model characteristics

Model I - REM Model II - TREM Model III - GTREM

lnEit = α+ β′xit + vit + ui, lnEit = αi + β′xit + vit + uit, lnEit = αi + β′xit + vit + uit,

vit ∼ N [0, σ2
v ], αi = α+ wi, wi ∼ N [0, σ2

w], αi = α+ (wi − hi)

ui = |Ui| , Ui ∼ N [0, σ2
u], vit ∼ N [0, σ2

v ], wi ∼ N [0, σ2
w],

ǫit = vit + ui uit = |Uit| , Uit ∼ N [0, σ2
u], hi = |Hi| , Hi ∼ N [0, σ2

h],

ǫit = vit + uit vit ∼ N [0, σ2
v ],

uit = |Uit| , Uit ∼ N [0, σ2
u],

ǫit = vit + uit

Within the framework of the REM vit captures random noise and ui is non-positive

(u ≤ 0) and represents time-invariant (persistent) inefficiency. Regarding the TREM, the

constant term additionally contains wi, which is a random component within the random-

effects framework that is independent and identically distributed (iid). The error term

6For a detailed description of the model derivation and an empirical example see Filippini and Greene
(2015).
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contains two components: vit to capture noise and the inefficiency term uit. Based on

the assumption that uit is non-normal distributed (namely: exponential, half-normal or

truncated-normal) and fulfills the iid-conditions, the inefficiency must vary over time (Fil-

ippini and Greene, 2015).

By displaying the GTREM it becomes clear that the key difference to the TREM lies within

the integration of the second disturbance parameter hi, which captures time-invariant in-

efficiency. The random components wi,vit, and uit are defined as in the TREM and the

additional hi is half-normal distributed. In terms of estimation complexity, it is essential to

know that these four components add up to only two disturbance parameters and not four.

On the basis of the assumed underlying aggregated energy demand function (following Filip-

pini and Hunt (2011, 2015b,a), we estimate a stochastic frontier function that is constructed

as follows:

lnEit = α + βplnPit + βgdplnGDPit + βcuslnCUSit + βhddlnHDDit + βcddlnCDDit

+ βshiSHIit + βshsSHSit + βshpSHPit + βtrueTRUEit + βlramLRAMit

+ βsfvSFVit + βeersEERSit + βtT + ǫ

(1)

where lnEit represents the logarithmised energy consumption in the sphere of utility ’i’ in

period ’t’ (sold electricity), lnPit the logarithm of the average state-level electricity price7,

lnGDPit the logarithm of GDP per capita, and lnCUSit the logarithm of the total number

of customers. lnHDDit and lnCDDit are the logarithmised values of the heating degree

days and cooling degree days respectively. SHIit, SHSit and SHPit are the industrial

electricity consumption, the commercial and the residential shares respectively. TRUEit,

LRAMit, SFVit and EERSit are qualitative variables that indicate whether a utility ’i’ has

implemented a true up plan, LRAM, SFV or EERS respectively, in period ’t’. Finally T

represents year fixed effects to account for technology changes over time and ǫ represents

the error term, whose specific design depends on the estimated model.

With respect to the REM and the TREM, to measure the efficiency of the customers of an

electricity utility, the energy efficiency score EEit is defined as follows:

EEit =
EF

it

Eit

= exp(−ûit) (2)

7We are aware of the potential endogeneity that comes along with the usage of a price variable. However,
we assume non-monopolistic markets, in which a utility can not freely set its selling price and thus changes
of the sold electricity of a single utility should not be able to influence the average state-level electricity
price.
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where EF
it represents the frontier estimated in (1), which thus represents the (efficient)

minimum demand of the customers of utility ’i’ in period ’t’, and Eit represents the actual

energy demand of the ’i’s utilities customers in period ’t’. Therefore, each utility that lies on

the frontier gets an EE-score (EEit) equal to one, which implies that they are 100% efficient.

EE-scores of utilities apart from the frontier are between zero and one.

4. Data description

The basis of our analysis is an unbalanced data set containing information for all U.S.

states8 and the District of Columbia from 2001 until 2015. The dataset covers 209 elec-

tric utilities with an average 13.1 years within the considered period (N = 2739). Table 2

presents descriptive statistics of the data.

Table 2: Descriptive Statistics

Unit Mean Std. Dev. Minimum Maximum

Total Sales GWh 10,634.23 14,881.25 9.53 87,160.37

State-level Electricity Price US ct/kWh 9.01 3.38 4.24 34.04

Real GDP per Person (2009) US $ 46,632.74 11,575.73 28,856.00 170,687.00

Share of Industrial Customers % 26.01 17.60 0.00 75.68

Share of Residential Customers % 39.76 13.94 10.70 81.59

Share of Commercial Customers % 33.82 12.08 6.94 85.14

Total Number of Customers - 443,876.80 700,692.10 1001 5,268,369

Heating Degree Days - 5,154.82 2,167.50 0 11,702

Cooling Degree Days - 1,191.07 909.16 2 4,904

EERS - 0.32 0.47 0 1

True Up Plan - 0.06 0.24 0 1

LRAM - 0.08 0.28 0 1

SFV - 0.01 0.11 0 1

Note: HDD (CDD) are measured as the absolute year-sum of the daily differences between the average day-temperature and

the set base temperature of 65 F◦ if the difference is negative (positive).

The US Energy Information Administration (EIA) grants access to utility-specific data re-

garding total sales, consumption shares (SHI, SHP and SHS) as well as the total number

of customers. They provide detailed data files based on the Form EIA-861, which compre-

hensively presents information raised in the ‘Annual Electric Power Industry Report’ online

on their web-page. The EIA also provides data on the average state-level electricity price

8The state of Nebraska is later excluded from the sample, as no electric utility is investor-owned in this
state.
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within the data files based on EIA-861. We correct those average state-level prices for infla-

tion to the base year 2009, by using the price index for private consumption expenditures,

which is provided by the Bureau of Economic Analysis (BEA) (U.S. Department of Com-

merce). Furthermore, the BEA provides state-level real GDP per capita values, chained to

the same base year of 2009. Information on HDD and CDD is jointly provided online by

the U.S. National Weather Service, which is part of the National Oceanic and Atmospheric

Administration (U.S. Department of Commerce). Information on EERS is provided by the

American Council for Energy-Efficient Economy (ACEEE, 2017). The EEI (2015) provides

year-specific information on whether a utility implemented a decoupling true up plan or a

LRAM. They also present information, although not always year-specific, on implemented

SFV mechanisms. Figure 1 illustrates the deployment development of the mechanisms aim-

ing to tackle the ’throughput incentive’ across the observed period.

0
5

10
15

20
25

S
ha

re
 in

 %

2000 2005 2010 2015
Year

True up plans LRAMs SFV tariffs

Figure 1: Development of policy mechanisms

In the year 2001 very few electric utilities had any of the three policies implemented. Overall,

true up plans and LRAMs experience a rise in popularity with strongly growing deployment

from 2008 on. In 2015 almost 15% of electric utilities implemented a true up plan and

around 25% a LRAM. The share of utilities who implemented a SFV-tariff remains below

5% throughout our sample.

Our dataset is restricted in the following ways. For utilities that start or end their operation

within our investigated period, we delete their last (first) year, if an outstanding difference

in electricity sells to the previous (following) year indicates that the utility did not end

(start) its operations at the end (beginning) of the considered year. Additionally, we drop

observations with less than 1,000 customers, with 0 kWh sold, and with an average of more
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than 100,000 kWh/customer, as those utilities are not comparable to the rest of our sample9.

For a few utilities we have ambiguous information regarding the implementation of a SFV

tariff, thus we exclude them too. Finally, we eliminate four utilities, who have at least one

gap, e.g. a missing year, within their operation period.

5. Estimation results

The estimation results are presented in Table 3. The computation was done using the

software LIMDEP/NLOGIT, where commands for all our models are available. All three

models show quantitatively and qualitatively very similar coefficients. Therefore, we focus

our interpretation on the MGTREM.

Table 3: Estimation results

Model I (MREM) Model II (MTREM) Model III (MGTREM)

Variable Coef. Std. Error Coef. Std. Error Coef. Std. Error

Constant 1.812 (3.657) 0.849∗∗∗ (0.116) 0.450∗∗∗ (0.111)

St.-lvl elec. pr. (log) −0.100∗∗∗ (0.007) −0.103∗∗∗ (0.006) −0.099∗∗∗ (0.006)

GDP per capita (log) 0.242∗∗∗ (0.009) 0.236∗∗∗ (0.006) 0.245∗∗∗ (0.008)

No. of customers (log) 0.962∗∗∗ (0.004) 0.975∗∗∗ (0.003) 0.977∗∗∗ (0.003)

HDD (log) 0.129∗∗∗ (0.015) 0.129∗∗∗ (0.012) 0.130∗∗∗ (0.012)

CDD (log) 0.040∗∗∗ (0.005) 0.043∗∗∗ (0.004) 0.046∗∗∗ (0.003)

SHI 0.286∗∗∗ (0.056) 0.260∗∗∗ (0.050) 0.258∗∗∗ (0.050)

SHS 0.000 (0.055) −0.030 (0.050) −0.033 (0.049)

SHP −1.837∗∗∗ (0.056) −1.841∗∗∗ (0.051) −1.850∗∗∗ (0.051)

True Up Plan −0.037∗∗∗ (0.003) −0.038∗∗∗ (0.003) −0.038∗∗∗ (0.003)

LRAM 0.002 (0.003) 0.003 (0.002) 0.003 (0.002)

SFV 0.043∗∗∗ (0.005) 0.044∗∗∗ (0.005) 0.048∗∗∗ (0.005)

EERS −0.001 (0.002) −0.001 (0.002) −0.001 (0.002)

Year fixed effects yes yes yes

Observations (N) 2739 2739 2739

Note: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01; Both, MREM and MGTREM, are based on 1000 Halton draws.

Note: The Mundlak corrections are excluded from the table to safe space.

9The estimated coefficients are qualitatively and quantitatively robust to variations of those thresholds
throughout all models. However, the minimum values of the estimated efficiencies are implausibly small, if
we include utilities with less customers or with a higher sells/customer-ratio.
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The estimated mean parameter for the decoupling true up plan is highly statistically sig-

nificant and negative. The parameter indicates that revenue decoupling true up plans are

associated with a 3.752%10 reduction of the electricity consumption. The findings of Brucal

and Tarui (2018) that decoupled utilities charge higher electricity prices than non-decoupled

ones, are supported by these findings. If we acknowledge the mechanism of decoupling, which

only allows utilities to increase the electricity prices if sales are less than expected, the sig-

nificant associated reduction of electricity sales should lead to an increase in kWh prices.

Furthermore, we can not identify any correlation between LRAMs and energy consumption,

and even a highly statistically significant positive correlation between SFV tariffs and en-

ergy consumption. Given the design of SFV tariffs (high fixed costs and almost no variable

costs), this finding is intuitive and suggests that those tariffs fail to tackle the throughput

incentive by ignoring corresponding incentives for the demand-side.

It seems straight forward that the average state-level electricity price has a significant neg-

ative relation with the electricity consumption. Also the results regarding the GDP and the

total number of customers are as expected. An increase of customers by 1% is associated

with an estimated increase of electricity consumption by also around 1% (0.962% - MREM,

0.975% - MTREM, and 0.977% - MGTREM). Similarly, GDP per capita has a highly statis-

tically significant positive relation with the electricity consumption. The positive and highly

statistically significant correlations between HDDs/CDDs and electricity consumption are

also intuitive. The increased use of air conditioning or heating should increase the total

electricity consumption. We further identify that the share of industrial consumption (SHI)

is statistically significant and positively associated with electricity consumption, while the

residential share has a statistically significant negative relation. The estimated parameter

regarding the EERS is neither statistically significantly different from zero nor economically

relevant. By controlling for year fixed effects we account for technological changes over time.

Acknowledging the findings of Datta (2015) and Kahn-Lang (2016), we control for DSM-

spending as a robustness check. However, the relevant data availability is limited, which

not only restricts our sample to the period of 2001 - 2012, but also excludes some utilities.

Throughout all models, we can not find a significant correlation between the DSM-spending

of a utility and its electricity sales. Apart from the commercial sector (SHS), the estimated

parameters remain qualitatively the same. Quantitative changes are most-likely caused by

the sample restrictions.

10As discussed by Giles (1982) to be the preferred method, we follow the approach of Kennedy (1981) and

estimate the effect size of the dummy variable using eβ1−1/2V (β1)−1 (β̂true = −0.04278; V̂ (βtrue) = 0.00248).
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Furthermore, by using Equation 2 and utilizing the approach presented in Filippini and

Greene (2015) we obtain efficiency estimates shown in Table 4. While the transient efficiency

scores based on the MTREM an MGTREM are highly correlated (0.864) the estimated per-

sistent efficiency values based on the MREM and the MGTREM are only moderately cor-

related (0.127). The rather small correlation value indicates biased estimates with respect

to the MREM. This is in line with the argumentation of Greene (2005a) that long-run effi-

ciency estimates based on a PL-model are potentially biased. This biased can be caused by

any underlying unobserved heterogeneity, which the REM identifies as inefficiency (Blasch

et al., 2017). This could also explain why the efficiency scores of the REM are substantially

smaller than those of the GTREM. For this reason, we do not further interpret the long-run

efficiency based on the MREM.

Table 4: Summary of efficiency estimates

Mean Std. Dev. Minimum Maximum

Long-run EE (MREM) 0.6191 0.1562 0.2890 0.9931

Short-run EE (MTREM) 0.9598 0.0232 0.7445 0.9954

Long-run EE (MGTREM) 0.8314 0.0010 0.8279 0.8373

Short-run EE (MGTREM) 0.9560 0.0083 0.7924 0.9932

In line with the results of Filippini and Hunt (2015a), who estimated energy efficiency in the

U.S. on a state-level basis, we find a larger share of persistent than transient energy ineffi-

ciency. We identify a low level of variation in the transient efficiency around the average of

96%. Furthermore, the estimated persistent efficiency indicates a sector-wide inefficiency of

almost 17%. Aggregated, the GTREM predicts an average electricity inefficiency of around

20% between 2001 and 2015.

6. Conclusions

Different methods exist to estimate energy efficiency. Common are decomposition tech-

niques and the estimation of efficiency via parametric or non-parametric frontier approaches.

However, most previous studies do not differentiate between persistent (time-constant) and

transient (time-varying) efficiency. We pursue the approach proposed by Filippini and Hunt

(2015a,b) to estimated an energy demand function using SFA. In addition to their suggested
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models, we utilize the GTREM developed by Filippini and Greene (2015), which allows

the differentiation between persistent and transient efficiency. By taking up the discussion

about biased efficiency estimates based on a PL-model (Greene (2005a); Filippini and Greene

(2015)), we integrate our empirical analysis into this strand of literature.

The estimation results allow the conclusion that persistent inefficiency is substantially larger

in the electric utility sector in the U.S. than transient inefficiency. Customers of investor-

owned electric utilities seem able to avoid transient inefficiency quite well. However, results

indicate an underlying persistent inefficiency across the electricity sector, which should be

a concern for electricity regulators.

Investigating the impact of implemented decoupling mechanisms on investor-owned electric-

ity utilities’ customers, we find a significant negative relationship between revenue decoupling

true up plans and the electricity consumption of the effected customers. Furthermore, we can

not find any statistically significant correlation with respect to LRAMs and even a positive

one regarding SFV tariffs. Based on our results, we can conclude that solely decoupling true

up plans are actually associated with a reduction of the sold electricity of electric utilities,

indicating their ability to tackle the throughput incentive.
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