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Abstract

This paper investigates in how far monetary policy shocks impact Euro-

pean asset markets, conditional on different risk states. It focuses on four

different asset classes: equity of industrial firms, equity of banks, high-grade

corporate bonds, and high-yielding corporate bonds. We distinguish between

macroeconomic risk, political risk, and financial risk. In a first step, we sep-

arately extract three factors via principal component analysis from a set of

candidate variables that are assumed to be driven by these latent types of risk.

Next, these factors augment a threshold-VAR model that contains assets and

a short-rate. Our model is estimated with Bayesian techniques and identified

recursively. We illustrate that during periods of severe crisis, different risk

regimes coincide. This impedes a clear delimitation among these three types of

risk. Further on, impulse responses show that we indeed see state-dependency

in the reaction of asset prices to monetary policy shocks. AA-rated corporate

bond yields only show minor state-dependency if we distinguish between states

of high and macroeconomic or financial risk, but show very pronounced state-

dependency for political risk. Their sensitivity to monetary policy shocks is

highest if political risk is . Non-investment-grade corporate bond yields as

well as equity of industrial firms face the strongest state-dependency when

we differentiate between macroeconomic or financial risk. If these risks are

high, junk bond yields are very sensitive to monetary policy shocks while the

opposite holds for equity of industrial corporations. Surprisingly, financial

equity in general reacts positively or insignificant to hikes in short-rates. The
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positive reaction is most pronounced for states of high financial risk.

As a consequence, monetary policy transmission via distinct asset markets

highly depends on the degree of these different kinds of risk inherent in Euro-

pean asset markets. This also has strong implications for investors: they have

to be aware of this varying degree of sensitivity of asset prices to changes in

policy rates as they highly depend on the respective prevailing risk-regime.

Keywords: state-dependency, asset pricing, monetary policy

JEL classification: E44, G12, C11
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1 Introduction

”Given this amount of policy and macroeconomic risk that there is around, there

is no room for complacency for market participants so they have to be prepared for

possible market adjustments. They cannot work under the assumptions that the cur-

rent, very benign market environment is going to stay forever.”1

The statement above emphasizes that the euro area is subject to different kinds of

elevated risks. Albeit we have weathered major crises, namely the Financial Cri-

sis and European Sovereign Debt Crisis, there is a lot of macroeconomic, political,

and financial risk lurking around in Europe. Markets in general, but asset markets

in particular, face these risks as they are highly relevant for asset pricing and the

mechanisms that found them. Conditional on the degree of risk inherent in Europe,

some assets might have a higher susceptibility to changes in monetary policy than

others.

There are claims that complacency of markets was one harbinger of the Financial

Crisis. For instance, the convergence of government bond yields before the Fi-

nancial Crisis did not reflect differences in fiscal soundness of national budgets in

Europe anymore. Foling the macroeconomic consequences of the Financial Crisis

and the European Sovereign Debt Crisis, fiscal measures (re-)gained markets’ at-

tention. This resulted in peaks in e.g. political risk. Asset markets seem to face

periods in which they are complacent or hysteric. This binary state of markets is

linked to the (perceived) risk of investors. Hence, we want to examine the existence

of asymmetric reactions of various asset prices to an unexpected hike in short-rates,

conditional on distinct kinds of risk inherent in Europe. Does their reaction show

state-dependency? And what implications result from potential asymmetries for

monetary policy makers when we are in different regimes of risk? What is risk at

all and what kind of risks, that are common to all assets, do exist in the euro area?

How can they be subject to measurement and evaluation? However, given that the

term risk is not precisely defined, answering these questions is not straight forward.

Aggravating, there exits much overlapping to uncertainty. These issues hinder a

strict delimitation of the phenomenon risk.

In addition, thinking about the fast field of risk from an economist’s perspective,

requires to distinguish between systemic and systematic kinds of risk as e.g. outlined

1Benôıt Cœuré, Member of the Executive Board of the ECB (2017), interview conducted by
Balasz Koranyi and Francesco Canepa for Reuters, on 17 May, 2017, and published on 18 May,
2017.
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by Hansen (2012). Systematic risk cannot be eliminated via additional diversifica-

tion, thus it requires an additional compensation for bearing it, for instance, a risk

premium. It is a phenomenon subject to almost all assets, of course to a varying

degree. On the contrary, systemic risk is a vague concept that, especially these days,

primarily aims at potentially overheating or crumbling financial markets as well as

possible self-enhancing, vicious feedback loops between financial markets and the

real economy. Although we will take into account various financial variables within

this paper, we will not deal with the latter type of risk but rather focus on macroeco-

nomic and (economic) policy risk, supplemented with risk that stems from different

aspects of financial market stress.

We want to answer the questions that arose before. First, we quantify the degree of

macroeconomic, (economic) policy, and financial risk to study different risk regimes

that arose in the euro area, respectively. We extract these risks from a set of vari-

ables via principal component analysis. The resulting distinction between high- and

-risk regimes fits into the literature on state-dependent effects of monetary policy.

Thus, these different risk regimes are an alternative way to drive state-dependence,

especially of asset prices. We then analyze the sensitivity of equity and corpo-

rate bond yields to monetary policy shocks, conditional on high or risk inherent in

European markets, respectively. Our paper fits into several strands of the exist-

ing literature. The general idea to incorporate factors into vectorautoregressions is

prominently promoted by e.g. Bernanke et al. (2005). The authors also use a few

factors extracted from a large set of macroeconomic indicators within an otherwise

standard VAR-model. With this approach, they quantify the impact of a mone-

tary policy tightening to macroeconomic variables. We fol Alessandri and Mumtaz

(2019) and make use of state-dependent sensitivity of variables to monetary pol-

icy shocks. They investigate, in how far the reaction of macroeconomic series is

state-dependent, conditional on high or financial risk, respectively. In addition,

they augment their model with (forecast) uncertainty via an alternating covariance

matrix within their threshold-VAR (TVAR)-model. Tenreyro and Thwaites (2016)

show that during a bad state of the business cycle, i.e. when macroeconomic risk

is elevated, the ability of monetary policy shocks to affect macroeconomic variables

is hampered. Uncertainty about fiscal policy, interpretable as risk about economic

policy, decreases real activity, as outlined in Fernández-Villaverde et al. (2015). This

finding is even more pronounced during periods characterized by very interest rates.

Estimating time-variant risk premia from a large data set of US equity is the aim in

Gagliardini et al. (2016). Although the authors do not differentiate across different
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types of risk, they have a quite important finding: the time-varying risk premia

deviate to a large extend from the standard time-invariant counterparts in crisis pe-

riods. This indicates regime-dependent non-linearities an issue we will address later.

All these paper have in common that they emphasize the need to take non-linearities

into account. We want to point out the distinction among these three types of risk

in our paper, but we believe that they rather interact, at least to some extent. Fur-

thermore, we want to focus on asset markets instead of real activity because most

of them have undoubtedly faced a strong boost in recent years. This boost, whom

many assign to the extra-ordinary loose monetary policy, might go in hand with

lurking risk. Thus, asset prices are possibly susceptible to adjustments in the mon-

etary policy stance or unexpected hikes in short-rates, as outlined by Benôıt Cœré.

Regressing risk related measures on financial variables or evaluating the impact of

unexpected changes within vectorautoregressions is common practice to quantify the

tense relationship between asset prices and risk. Beirne (2012) show in how far the

EONIA is driven by liquidity needs and credit factors, both in normal times and

periods characterized by unconventional monetary policy and the altered allotment

procedures that accompany it. Aastveit et al. (2017) quantify the effects of mon-

etary policy shocks on the US economy, conditional on high or uncertainty. They

differentiate between three uncertainty classes: macroeconomic uncertainty, mea-

sured by the macroeconomic uncertainty factor of Jurado et al. (2015), economic

policy uncertainty, using the EPU index of Baker et al. (2016), and (implied) fi-

nancial market volatility. The key finding for this paper is that the transmission of

short-(shadow)-rate changes is much weaker when uncertainty is high.2

An alternative to the usage of (threshold-indicated) risk regimes to obtain a distinc-

tion between periods is used by Jansen and Tsai (2010) or Chen (2007). Both papers

investigate in how far the reaction of (US) asset prices to monetary policy differs

when the respective asset markets are in bear or bull stages. Beside methodological

differences, both paper find that monetary policy has a larger impact on assets when

they are in bear markets.

Note that the above mentioned papers all have in common that they narrowly focus

on one specific type of risk, neglecting possible interactions between different types

of risk. From the mentioned papers we deduct the question in how far European

2While testing for robustness, the authors also examine whether the findings hold in the ZLB
environment and the usage of shadow-rates is valid.
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asset markets’ pricing mechanisms are prone to unexpected changes in short-rates,

conditional on different types of elevated and interacting risks, respectively.

This paper is structured as fols: we briefly introduce the assets that are the focal

point of this paper. Then, we recapitulate the nexus between asset price determi-

nants and risk and elaborate three distinct categories of common risks that all the

respective asset prices are exposed to. In a next step, we extract factors via princi-

pal component analysis from a set of candidate variables assigned to the respective

kinds of risk. With this approach, we want to reveal the latent phenomenon risk.

We then incorporate these risk factors into TVAR-models that differ by the respec-

tive risk threshold variable. This results in a set of models, namely three per asset.

Using vectorautoregressions is necessary to account for the endogenous relationship

among asset prices, monetary policy, and different types of risk. The models are

estimated using Bayesian techniques and are identified via an assumed recursive

ordering within a er triangular matrix. After illustrating and discussing the issue

of risk delimitation, we present asset-specific response functions to a hike in the

short-rate. To account for the ZLB, we use a shadow short-rate when the effective

er bound is binding, and EONIA otherwise. We conduct a battery of robustness

checks to test the sensitivity of our results with respect to variables and ordering.

Our main findings are that there is a pronounced state-dependency of asset prices to

monetary policy shocks and that different assets seem to show these non-linearities

across states for different kinds of risk. This indicates that the susceptibility of

asset prices to changes in short-rates depends on the currently prevailing risks.

For instance, the junkier the corporate bond, the more accentuated are differences

between high and macroeconomic risk regimes. On the other side of the rating

spectrum, AA-rated corporate bonds only show minor differences between the macro

risk regimes, but also between financial risk. In contrast, AA-rated bonds show a

strong state-dependency when we distinguish between periods of high or political

risk while non-investment-grade bonds display only a minor difference across high or

political risk states. For equity, we find diverging results, depending on the respective

sector: equity of industrial firm shows, depending on the model, less intense reaction

to monetary policy shocks in regimes of macroeconomic or high political risk while

equity of European banks is, surprisingly, positively affected by monetary policy

shocks when financial risk is elevated.
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2 European Asset Markets

In this paper we focus on two distinct types of assets and their risk regime-dependent

sensitivity to monetary policy shocks: equity and corporate yields. Within equity,

we differentiate between an index with focus on industrial firms, EUROSTOXX

Industrials (ESIndustrials), and a bank equity index, EUROSTOXX Banks (ES-

Banks), both total return indices. We use total return indices to also account for

payed dividends. Regarding yields, we focus on long-term corporate bonds from two

rating classes. 10 year AA-rated corporate bond with a 10 year maturity3 and more

risky corporate bonds summarized in a high-yield index4 with maturities between 7

and 10 years.

The four series are in Fig. (1). As we can see, both equity series show the common

feature of a strong downward reaction during the Financial Crisis. However, while

we can observe a recovery in industrial equity, bank equity faced an additional

downward adjustment during the European Government Debt Crisis and has yet

not recovered from these disruptions. This probably reflects investors’ doubt about

future profitability as well as concerns about the actual soundness of the European

financial system in general. Corporate bond yields face a common downward trend

over our sample that goes hand in hand with the sharp ering of policy rates. Also

here, we can see crises effects, as both series show hikes with different size during

crisis periods that are very pronounced for riskier corporate bonds, especially during

the Financial Crisis. Checking for robustness, we also take a look at the reaction of

STOXX Banks and STOXX Industrials, and at corporate bond yields with rating

BBB, the er bound of investment-grade bonds. Since we use euro area government

bonds as variable in order to extract political risk in Sect. (3), we do not include

them in this paper as asset of interest.

3 Risk Factors

To get a better understanding of the link between asset pricing and the types of risk

we focus on within this paper, we revise how financial markets determine the value

of an asset, what role perception of risk plays within these mechanisms, and how

asset prices are expected to react to changes in their determinants.

The value of an asset Vi at time t, e.g. a stock or bond, can be described as a

3AAA is only available until April, 2016. We use AA-rated bonds as proxy.
4ICE BofAML Euro High Yield Index Effective Yield, obtained from FRED Economic Data.
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Figure 1: Euro area assets: EUROSTOXX indices for industrial firms and banks
(left column, in logs*100) and yields of corporate bonds (right column, in per cent).
Notes: stock indices are total return indices, while bond yields are yields to maturity.

function of expected future cash-fs (CF), discounted with expected future discount

rates ri,t. Assuming efficient capital markets, asset prices should only fol a random

walk, except new information enters the pricing mechanisms or the assessment of

existing information changes. Eq. (1) reflects these considerations:

Vi,t = f(E

[ ∫ d

t

ri,tdt

]
, E

[ ∫ d

t

CFi,tdt

]
) + εt εt ∼ N(0, σV,t) (1)

According to Cochrane (2011), asset valuation is primarily dominated by its respec-

tive discount factors ri that are linked to the riskiness of investments and expected

short-rates. Foling these ideas, one key feature is the understanding, correct de-

limitation and measurement of risk and the respective premia linked to bearing it.

Expectations about the discount factor ri,t for an asset with duration d at time t

can be divided into several components, as depicted in Eq. (2):

E

[ ∫ d

t

ri,tdt

]
= E

[
d

d− t

∫ d

t

rfrtdt

]
+ tpd,t + rpi,t (2)

rfrt refers to the (average) risk free short-rate invested over the horizon d, tpd,t

is the term premium that reflects interest rate risk and rpi,t is a risk component.

For the same maturity, rfrt and tpd,t should not differ across assets. In contrast,

rpi,t is an asset-specific, time-varying risk premium. While rpi,t is often treated as

a single variable, from an empirical perspective, this single component is affected

8



by a vast spectrum of different types of risks. The assessment of these risks can

further be distinguished between k risk factors that are common to all assets, we

call them common risks, (CRs), but to a varying extend ψj, and an idiosyncratic

risk component (IR). The idiosyncratic element captures asset-specific properties

and the CR can have a varying relevance for different assets. For example, bonds of

sound firms should face a er susceptibility to macroeconomic risk than bonds of firms

under tension. One might also think that risk in financial markets is more relevant

for the financial sector than for, e.g., industrial firms. Thus, an asset-specific risk

premia is a function of the CRs, the relevance of a specific type of risk for the

respective asset, and idiosyncratic risk, as outlined in Eq. (3)

rpi,t = Σk
j=1ψj,tCRj,t + IRi,t + εt εt ∼ N(0, σi,t). (3)

Foling the elaborated mechanisms of this standard asset pricing nexus, we expect

that increases or peaks in CRj affect asset prices in the foling manner:

Et

[
∂(Vi)

∂(CRj)

]
= ψj

< 0, if Vi is a stock index or a corporate bond.

> 0, if Vi is a bond yield.
(4)

Eq. (4) states that increases in CRj, or its perception, should er stock prices or

increase bond yields. The same considerations hold for changes in current or future

expected short-rates, as stated in Eq. (5):

Et

[
∂(Vi)

∂(rfr)

]< 0, if Vi is a stock index or a corporate bond.

> 0, if Vi is a bond yield.
(5)

Increases in these rates should er stock prices or increase bond yields through their

impact on discount rates and cash-fs.

A key problem is that monetary policy rates, different types of risk, and asset prices

interact with each other, i.e. correlate at least during some periods. One promi-

nent example for this nexus is the entanglement between European governments,

their national banking systems and monetary policy actions of the ECB during the

European Sovereign Debt Crisis. As a result, the mechanisms are simplistic and

do not reflect the endogenous relationship among them, especially when we take an

aggregate perspective with e.g. broad stock indices or corporate bond yields that we

have introduced in Sect. (2). Thus, this is the main motivation to use a VAR-model

that is described in more detail in Sect. (4). Besides the problem of endogeneity,
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we also have to address the question whether or not this interaction varies across

different risk states. If so, this can implicate state-dependent sensitivity of assets to

monetary policy shocks.

In a standard VAR-model there is no room to account for problems like state-

dependency or non-linearities among the interaction between these variables. Hence,

a standard VAR-model cannot distinguish between the impact of unexpected changes

in short-rates, for instance, induced by policy rate hikes, during high or states of risk.

This is were we contribute. We want to show, if and in how far the reaction of

different asset prices to monetary policy shocks, in size as well as in sign, depends

on the degree of distinct types of CRs inherent in European markets.

Estimating risk premia directly is a challenging task, especially when we have to dis-

tinguish among the respective subcategories. Thus, we rather estimate CR directly

from sets of candidate variables and include them into our VAR-model. Within this

paper, we differentiate between k = 3 types of CRs that should all have an impact

on asset markets.5 The three kinds of risk are depicted in Fig. (2).

We think that this categorization among risk is sufficient, albeit some periods, pri-

marily crises periods, are characterized by a large degree of correlation among them.

We will illustrate this in Sect. (5.1).

These types of risk are per se not observable and not directly measurable. Thus,

we interpret them as one common component that drives a set of observable can-

didate variables. We therefore extract a single principal component from a set of

(standardized) series of size n that are assumed to be driven by the respective risk.

They are collected in Xt×n, with t indicating the time horizon. Next, we conduct

an eigenvalue-decomposition of the respective covariance matrix XTX:

(XTX)v = λv (6)

In Eq. (6), v equals the matrix of eigenvectors, often referred to as loadings, and λ

is the vector of eigenvalues of XTX. The eigenvector that corresponds to the largest

eigenvalue is interpreted as a primary driver of the set of variables in X. Thus, this

risk factor Ft is constructed as fols:

Ft×1 = Xt×nvn×1 (7)

This approach is generally used by central bankers, researches and practitioners

5Idiosyncratic risks, e.g. liquidity premia, are neglected in the foling. They should play a minor
role for the broad indices we use within this paper.
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Common Risks

Macroeconomic Risk

PresentProd

• Industrial Production

• Labor Utilization & 

Employment

• (Consumer Prise) Inflation

• ……..

Future
• Consumer & Business 

Confidence

• Volatility Indices

• Term-spread

• …………

Political Risk

Economic Policy Risk

• News-Based Policy

Uncertainty Index

• Government Bond Spreads

• CISS – Sovereign Stress 

Subindex

• Credit Default Swaps

• ……

Geopolitical Risk 
(Not considered further on)

Financial Market Risk

Money Market
• Spread EONIA – ECB 

MRF

• CISS - Money Market 

Subindex

• Overall Liquidity

• TED Spread

• ……

Stock Market
• Realized Volatility

• (Volatility Indices)

• CISS – Stock Market 

subindex

• ……

Figure 2: Common risks and their categorization, differentiation, and candidate
variables for their measurement.

around the world. For example, Brave and Butters (2011) use principal component

analysis (PCA) to construct a Financial Conditions Index (FCI) for the US.

In contrast to most applications of factor (or principal component) analysis that

simultaneously extract a set of (often orthogonalized) factors from a (large) data

matrix, we rather extract ”risk” itself to use it as a variable for further analysis.

Thus, we preemptively select variables and assume that they are primarily driven

by only one type of risk. This is a quite strong assumption, but we do so because

the three assumed risk factors face a high degree of correlation in crises periods

and a respective rotation of factors that makes them orthogonal to each other would

vanish these important interdependences between various types of risks during these

episodes. Henceforth, we are not primarily interested in reducing the data dimen-

sion. Instead, we extract one latent but common driver in the respective variables

and al them to interact within a VAR framework. Of course, the correct and diligent

delimitation, assignment, and categorization of variables is a key element within this
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approach. For example, Koop and Korobilis (2014) suggest a sophisticated way to

address these concerns in a dynamic setup. In particular, they select suitable vari-

ables that are used to construct their FCI and let the contribution as well as the

selection of variables vary over time. However, given that we want to distinguish be-

tween different risks in a categorical way instead of a pure econometric perspective,

this approach does not fit to this paper. We do not want to mechanically replaces

variables during e.g. crisis or drop out others when they do not contribute in a

meaningful manner, e.g. during some calm or complacent times.

In the foling, we will present candidate variables that are assumed to primarily

driven by a certain type of risk. Next, we capture the first principal component to

which we refer in the foling as risk factor Ft. These ideas are depicted in Eq. (6)

and Eq. (7). We show and discuss these factors for each type of risk depicted in

Fig. (2), but also display the unexplained variation in the underlying variables, see

Eq. (8), that is not explained by the common factor. We think that presenting the

unexplained variation for each variable of the respective set of variables assigned to

the specific type of risk, calculated as

εt×n = Xt×n − Ft×1(λn×1)T (8)

is an easy, but illustrative way to show during which periods the respective variables

are quite well explained by the single component and when not. As we face standard-

normally-distributed variables to construct Ft, we also show +/− one sigma bands

to make the degree of unexplained variation more interpretable within the graphics.

Furthermore, we present the outcomes for the three distinct PCAs up to n compo-

nents in Tab. (8) to Tab. (10), appendix. As it can be seen, the first component

captures in all three different categories of risk the absolute majority of variation in

the respective data series.

3.1 Macroeconomic Risk

We interpret macroeconomic risk as risk that stems from business cycles. Hence, we

select variables similar to Stock and Watson (2002) who construct macroeconomic

factors for the US. They emphasize that one or a few factors are sufficient to capture

the common dynamics of the set of underlying macroeconomic series.

For current real activity and price dynamics we use Industrial Production, Con-

sumer Prices (HICP), unemployment, hours worked, the ecoin Indicator, and new

orders as well as capacity utilization of the industry.

The sentiment and confidence about the near future with respect to the then pre-
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Figure 3: First principal component, referred to as Macro Risk Factor (MRF), of
variables in Tab. (5) (upper picture) and residuals εt×n of variable movement that
is not explained by the common component (er picture).

vailing macroeconomic conditions is reflected by financial market variables as well as

survey data. We include the term spread, often referred to as the slope of the yield

curve, as it has a high predictive power for future macroeconomic performance and

thus is often acknowledged as a leading indicator for recessions, see e.g. Estrella and

Hardouvelis (1991). The VDAX, a 12 month-ahead implied volatility index for the

German DAX6, captures uncertainty via (diverging) views about future stock mar-

kets. Besides the business climate, we also include three distinct consumer climate

questionnaires: the expected individual financial situation 12 months ahead, the

expected overall economic conditions in 12 months, and consumer trust. These sur-

veys are provided by the European Commission. Our variables and their respective

transformation as well as their source are listed in Tab. (5), appendix. Moreover,

Fig. (3) shows the resulting estimate for our macroeconomic risk factor and the

respective residuals for each variable we use.

6The measure of first choice, VSTOXX, a volatility index for the EURO STOXX 50, is only
available since 2008. However, for the time period available, both series correlate more than
ρ > 0.95 such that we use the VDAX as proxy for VSTOXX.
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3.2 Political Risk

Compared to macroeconomic risk, the measurement and delimitation of political

risk is a more difficult task. We focus on economic policy risk, other dimensions of

political risk, like geopolitical disputes or domestic tensions besides economic poli-

cies are not considered further on. Measuring this specific type of political risk can

be divided in principle into two strands.

The first one uses variables that are linked to sovereign solvency, e.g. government

yields or credit default swaps. As their data is reliable and easy to obtain, they are

wide-spread measures of economic policy risk. Aizenman et al. (2013), for instance,

regress euro area and non-euro-area credit default swaps (CDS) on a set of fiscal

variables for various samples. A key finding is that the relevance of these fiscal

measures for the determination of CDS is high, albeit it fluctuates over time. While

the relevance of these measures was little pre-2008, they explain quite well the CDS

during the European Sovereign Debt Crisis. A similar approach is used by Bernoth

et al. (2012) who focus on government bond yield differentials though. They find

that the respective risk premia, which is reflected by the spread to German BUNDs,

inversely relates to fiscal imbalances and liquidity.

The second strand augments measurement of political risk with data that stems

from text mining and text analyzing methods. These approaches quantify this spe-

cific type of risk by analyzing relevant text data, primarily newspaper articles, with

respect to relevant key words and their corresponding attitude. One prominent

example is the work of Baker et al. (2016) who construct an index by evaluating dis-

tinct newspaper articles with word counting mechanisms. We combine both strands

within our extraction of political risk.

In the foling, we describe the variables we assign to political risk and their re-

spective construction in more detail. They are summarized in Tab. (6), appendix.

Baker et al. (2016) provides various News-Based Policy-Uncertainty-Indices for Eu-

rope, Germany, France, Italy, Spain, and the UK. As we are primarily interested in

the economic policy risk inherent in the euro area, we construct a proxy by using

the respective indices of Germany, France, Italy, and Spain, representing the largest

economies, and weight them with their (re-scaled) country weight in the HICP.

We also construct a representative euro area government bond spread of selected

euro area member states to Germany. We do so for government bonds with a 10-

year maturity. Therefore, we weight the national bond yields of Italy, France, Spain,

Portugal, Ireland, and Greece with their share on the total amount of outstanding

debt of these countries. Compared to other government bond yields, we assume the
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Figure 4: First principal component, referred to as Political Risk Factor (PRF), of
variables in Tab. (6) (upper picture) and residuals εt×n of variable movement that
is not explained by the common component (er picture).

German BUND to be ”risk free” and, thus, subtract it from this the series.

Our third variable is the Composite Indicator of Sovereign Stress (SovCISS). This

variable aggregates a vast variety of different sovereign stress dimensions, such as

credit risk, volatility or liquidity aspects of government bond markets across differ-

ent maturities, into one indicator. For a detailed description of this variable, see

Garcia-de Andoain and Kremer (2017).

Unfortunately, given that the aforementioned CDS are only available from 2008

onwards, we do not want shorten our sample and, thus, do not include it in our

analysis. The estimated political risk factor is displayed in Fig. (4), amended with

the residuals of the variables involved in the estimation.

3.3 Financial Market Risk

Our third and last category is the analysis of financial risk, where we differentiate

between various aspects. We use subindices of the CISS7 to either capture stock

7Composite Indicator of Systemic Stress, an indicator provided by the ECB to measure overall
stress via various subindices.
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market stress, interbank-business disruptions, or money market tensions. We do

not include the (government) bond market subindex because we assume that this

kind of stress is related to political risk and thus is better captured by the SovCISS.

Risk evasion, ”flight to safety”, and liquidity concerns are reflected in a European

TED-Spread, which is the difference between three month EURIBOR and three

month German government bond yield.

During normal times and in a sound working environment, liquidity shortages as well

as excess liquidity play a minor role in European money and interbank markets, and

they can be measured e.g. via the (absolute or squared) spread between EONIA

and the Main Refinancing Facility (MF). However, given that the ECB has began

to counteract the turmoils of Financial Crisis since 2008, this potential variable is

severely distorted. Thus, to account for unconventional monetary policy that was

directed to mitigate liquidity shortages and calm down financial markets via massive

access to central bank liquidity, we construct a variable that captures the extended

usage of various money market measures (MMMs). Prominent measures regarding

the funding side are the various (Targeted) Longer-Term Refinancing Operations

((T)LTRO), offered to banks by the ECB, but also hikes in the Marginal Lending

Facility (MLF) that indicate high liquidity demand. On the other hand, excessive

usage of the deposit facility (DF) can be interpreted as money market lending side

risk. In order to correct for the conventional conduction of monetary policy that,

in particular, dominates pre-2008 periods, we subtract the MF and thus isolate the

extraordinary nature of ECB’s policy since 2008.8 Thus, our variable takes the form

ECB MMM = (DF + MLF + (T)LTRO)−MF

and is depicted in Fig. (23), appendix, for the sake of illustration. A detailed de-

scription of the variables can be found in Tab. (7), appendix.

One additional variable that might be omitted at the first glance is the simultaneous

probability of default of two or more large European banks9 provided by the ECB.

Since we think that this variable has to be assigned to systematic risk, we do not

8Note that we cannot account for the introduction of e.g. full allotment procedures or altered
requirements for eligibility of assets by the ECB in October, 2008. As we only focus on the quantity
of usage of programs and facilities, not on qualitative changes in their conduction, our measure
may underestimate the degree of intervention by the ECB. On the other hand, as we subtract
Main Refinancing Operations that are also affected by these operational changes, we exclude the
intensive usage of them. Which aspect dominates remains unclear.

9ECB Statistical Data Warehouse identifier: RDF.D.D0.Z0Z.4F.EC.DFTLB.PR.
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Figure 5: First principal component, referred to as Financial Risk Factor (FRF), of
variables in Tab. (7) (upper picture) and residuals εt×n of variable movement that
is not explained by the common component (er picture).

consider it within this paper. Nevertheless, we see the challenge to clearly differen-

tiate among various concepts of the phenomenon risk.

The resulting financial risk factor and the respective residuals of the used variables

can be found in Fig. (5). The factor looks quite similar to the Banque de France’s

FCI for the euro area, suggested by Petronevich and Sahuc (2019). Their index is

estimated via daily data with a more sophisticated principal component approach.

It sums up information from 18 variables (with dynamic weightings) of similar cat-

egories as we use within this paper. Additionally, they include stock indices them-

selves, exchange rates, and inflation expectations. The ladder one, we would rather

assume to be on the macroeconomic side. Again, this highlights that demarcating

different types of risks is a challenging task, although the resulting variables look

very similar. Unfortunately, given that the Banque de France’s FCI is only available

since 2008, we avoid losing pre-2008 observations and, thus, rely on our own series.

For the sake of illustration, we present our estimated risk factors in Fig. (6). We

invert our macroeconomic risk factor for a better interpretation, because this type of
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(blue-dotted).
Notes: the MRF deviates from Fig. (3) because we inverted it for ease of interpretation.

risk is high when our factor that tracks it is and vice versa. The resulting estimates

mirror-image the dominating patterns of various crisis in Europe quite well. Macroe-

conomic risk fols the Great Recession and, to a smaller extend, the macroeconomic

disturbances during the European Sovereign Debt Crisis. The political risk factor

peaks during the European Sovereign Debt Crisis with its concerns about euro-area-

integrity, but is also elevated within the Financial Crisis and at the current edge. It

is est in the run-up to the Financial Crisis. Unsurprisingly, the financial risk factor

skyrockets during the turmoils linked to the Financial Crisis but also reflects, to a

smaller extend, severe distortions in European financial markets until the end of the

European Sovereign Debt Crisis in mid-2013.

Note that all three risk factors have peaks during the Financial Crisis as well as

during the European Sovereign Debt Crisis, with different timings and to varying

scales. However, they show quite different movements during the rest of the sample.

This indicates that during severe crises periods the interaction between different

types of risk is quite high and that a clear delimitation of the phenomenon ”risk”

especially within these outstanding periods remains a challenging task. We introduce

a way to at least illustrate this issue in a more appealing way in Sect. (5.1).
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4 The Factor-Augmented Threshold VAR-Model

We are interested in possible asymmetric responses of asset prices to a monetary

policy shock, conditional on high or risk inherent in markets. Thus, we employ a

TVAR-model that we augment with the aforementioned risk factors. We want to

elaborate possible differences in reaction patterns. The model is similar to the model

suggested by Alessandri and Mumtaz (2017). The foling subsections describe our

model and the estimation methods.

4.1 Data and Model

In our model, we incorporate the three mentioned factors, a (shadow) short term

interest rate and one of the assets mentioned in Sect. (2). Thus, our 5 variable

TVAR-model takes the form

Yt =
[
c1 + A1(L)Yt−p +B−11 εt

]
× St

+
[
c2 + A2(L)Yt−p +B−12 εt

]
× (I− St).

(9)

Yt is a row vector with monthly data. Due to data availability, our sample starts in

January, 2002, and ends in January, 2019. Yt contains our MRF, a short-rate, we use

EONIA10, our PRF, and the FRF. Moreover, we include the four assets presented

in Sect. (2) separately. Equity indices enter in logs*100, yields in percentage points.

Thus, Yt takes the form

Yt = [MRFt SRt PRFt FRFt Asseti,t]
′. (10)

Ai(L) are the reduced-form coefficient matrices up to lag p, while B−1i εt are the

reduced-form error terms with covariance matrix Σi = (B−1i ε)(εB−1i )′, with i ∈
{1,2}. The regime switch of our model is determined by our transition variable

St. As depicted in Eq. (11), our model switches with a delay d across regimes if a

threshold z∗ is surpassed.

St =

I, if zt−d < z∗ (”-risk regime”) → Regime 1

0, otherwise (”high-risk regime”) → Regime 2
. (11)

Using this type of model, we can take into account the varying degree of correlation

among different types of risk and the resulting effects on assets. As we will see in

10For periods characterized by the ZLB, EONIA is augemented with the shadow-rate by Kripp-
ner. The robustness section discusses the usage of an alternative shadow-rate provided by Wu and
Xia (2016).
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Sect. (5.1), different risk-regimes coincide. The VAR-coefficients of our two distinct

regimes can capture these changing relationships.

Moreover, Eq. (10) also reflects the order of our baseline, er-triangular identifica-

tion scheme via cholesky decomposition. Given this order, we obtain a structural

model of the reaction of asset prices to changes in e.g. short-rates. Thus, we are

able to capture the contemporaneous interdependences between the variables and

obtain orthonormal shocks we are interested in later on. Further technical details

regarding model estimation are lined out in Sect. (4.2). We justify this scheme by

the foling considerations: macroeconomic variables are inert and only react to own

shocks contemporaneously. To pursue its mandate, the central bank aims at con-

trolling short-(shadow-)rates to ultimately influence economic performance. Hence,

we assume that macroeconomic innovations and own shocks drive the short-rate.

Variables assigned to (economic) political risk are driven by macroeconomic devel-

opments, changes in yields, and by themselves within the same period. Financial

market risk can generally assumed to be affected by all of the above-mentioned vari-

ables as well as by itself. Additional to their own shocks, the last ordered variables,

namely assets, are assumed to be impacted by the all model variables within the

same period. We alter this identification scheme in Sect. (6). There, we apply two

alternative orders.

4.2 Estimation

We estimate the model using Bayesian methods, very similar to Alessandri and

Mumtaz (2017), chapter 3.3.11 For comparability reasons across the large set of

models12 presented later on we estimate all of them with one lag of the endogenous

variables, implying p = 1. We think this is not a very strict assumption because the

variables of major interest, our assets, are either in inert log-levels or in percentage

points and thus they are primarily driven by their own past values. Additionally,

we set d = 1 for all subsequently presented models. This implies that the indicator

function St switches the regimes with one month delay after passing the unknown

threshold z∗.13 Furthermore, we prior believe that z∗init is around its median and al a

11We thank Blake et al. (2012) for providing very helpful codes that are the backbone of our
estimation procedure.

12In sum we estimate 3×4 = 12 TVAR-models, for each of the 4 assets 3 different TVAR- models
in the main section and additional ((3× 3× 2) + (2× 3× 4)) = 42 TVAR-models in the robustness
section. For sake of comparability across them, we initially calibrate them all the same.

13In Alessandri and Mumtaz (2019) d is estimated as well, with the FCI of the Chicago Fed as
threshold variable. 95 % of the probability mass of the distribution of their estimator lies within
one and two, with a median of 1. We use a similar framework, thus we think that this is not a
harsh assumption.
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quite loose variance σ2
z = 10. We think that this loose prior is appropriate because we

want to take into account that risk is often reflected by fat tails of the risk variables’

distribution. The priors for VAR-coefficients, namely a1 = vec([c1 A1(L)]) and

a2 = vec([c2 A2(L)]), are assumed to stem from an ordinary equation-by-equation

OLS regression of Yt on its own lagged values within a standard, linear VAR-model.

This implies a1 = a2, that we prior assume no sate-dependent differences within our

VAR-coefficients. We limit the value space of permitted estimates to the interval

[-1, 1]. Moreover, we use the estimated coefficient variances as prior for the variance

of the coefficients.

Our reduced-form model is estimated with an iterative Gibbs-sampling-algorithm,

which is in line with Chen and Li (1995). Within this algorithm the latent threshold

z∗ is estimated with a random walk Metropolis-Hastings procedure that generates

a new estimate for the latent threshold. The regime-switching propensity of our

model using this updated latent threshold variable z∗ is updated if the new value

of z∗ provides higher log-likelihood values of the estimated posterior distribution of

the two separate models, and discarded otherwise. As mentioned above, in order to

obtain an identified model with structural, orthonormal shocks, we apply a cholesky

er-triangular decomposition to the two distinct reduced-form covariance matrices

Σi. We do so after our Gibbs-sampling exceeds the number of burn-in iterations

(here: 18,000) and step into a impulse response analysis during the foling 2,000

iterations. We decompose the respective estimated covariance matrix Σi into a

er-triangular matrix Bi. This matrix is then multiplied with the estimated reduced-

form VAR-coefficients Ai(L) and B−1i εt, such that BiΣiB
′
i = I holds. As a result,

we obtain two representations of our model, with structural parameters Θi, for each

iteration step. To derive impulse response functions for the variable of interest within

these iterations, we use Monte Carlo Integration, as described in e.g. Koop et al.

(1996). Given that the propagation paths of shocks across the system are no longer

obtainable using the moving average representations of the model, as e.g. done in

linear, state-invariant (stationary) VAR-models, it is inevitable to proceed this way.

We have to take into account that shocks hitting at different points in time, in a

respective risk state i with the corresponding VAR-parameters Θi linked to it, affect

the dynamics of the whole set of future values after a shock e.g. in the short-rate,

for a horizon h. This is in particular the case for our endogenous threshold variable

z∗. Thus, we need two different conditional expectations, shown in Eq. (12), for

randomly chosen points in time to simulate impulse response functions.

IRF i
t,t+h = E

[
Yt,t+h|Θi, z∗, d, u

]
− E

[
Yt,t+h|Θi, z∗, d

]
, for h = 0, ..., 30. (12)
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These two conditional expectations differ only with respect to the dynamics induced

by a shock vector u14 that enters the first part of Eq. (12). Note that the impulse

response functions to a shock u do not only depend on the set of different VAR-

parameters captured in Θi and z∗ with its assumed delay d, but are also sensitive to

the simulated horizon up to h. Next, we average over the randomly obtained impulse

response functions for each regime. For a general and illustrative description of the

ideas, procedures and algorithms, see e.g. Kilian and Lütkepohl (2017).

With this modeling, we can take into account that the regime-switch within our

model over our sample can endogenously differentiate between the effect that short-

rate shocks have effects not only on our variables but also on the propensity to switch

across regimes over the horizon h. We think that it is plausible to account for the

effects of short-rate shocks on our threshold variables instead of simply considering

the dynamics of shock propagation in two distinct regimes with their respective

VAR-coefficients Θi. The set of the difference between different propagation paths

of our assets to an initial short-rate shock compared to a non-shock scenario then

leads to the impulse response functions presented later on for each regime.

5 Regime-Dependent Transmission of Monetary

Policy Shocks

To get a better understanding about the regime-switching propensities of the set of

models we have estimated, we start with presenting the model-implied thresholds

and the respective transition probabilities. We focus on the estimations for the

mean threshold and the corresponding mean transition probabilities between the

two regimes. We then introduce two ways to illustrate a possible problematic issue

of interconnection among risks, that is most pronounced during the two major crisis

periods in Europe.

Next, we subsequently asses the impact of monetary policy shocks on the various

assets for three distinct threshold variables: political risk, macroeconomic risk, and

financial market risk. Further on, we will refer to a -risk regime when the indicator

variable is be the estimated threshold of the respective variable, otherwise we are in

a high-risk regime, as stated in Eq. (11). We assume in all cases a one percentage

point change15 of the short-rate and its impact on the different assets, conditional

14u is a zero vector except for the second entry, the short-rate. There is a one reflecting the
shock in this variable, in the robustness section this one changes the position to reflect the altered
order.

15As the two different regimes are linear models, the response functions can be re-scaled to e.g.
a 25 bp shock.
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on the respective regime. The impulse response functions for high-risk regimes are

red-shaded while the impulse response functions for risk regimes are black lines. In

both regimes, we present the median reaction and the 16th and 84th percentiles of

the distribution of our 2,000 simulated impulse response functions.

5.1 Entangled Risk Regimes: An Illustration

As we are interested in the sensitivity of four different assets, conditional on three

different types of risk, we estimate in sum 12 TVAR-models. For each of these 12

models, Fig. (7) to Fig. (10) show the respective threshold variable of the model,

the estimated median threshold and the median transition probabilities. Besides

minor deviations, all models identify similar periods of high or risk for the respec-

tive threshold risk variable, independent from the asset incorporated into the model.

Thus, the identification properties of our models with respect to risk regimes are

not very sensitive to the asset selection.

For the first column of Fig. (7) to Fig. (10), we can see that after the dot.com burst

and before the outbreak of the Great Recession there was a prolonged period of

macroeconomic risk. Moreover, we see that this type of risk sky-rockets during the

disruptive events of this outstanding crisis. Again, it fols a short period of macroe-

conomic risk until the European Sovereign Debt Crisis and its dampening impact

on economic performance. After the abate of this debt crisis, our macroeconomic

risk factor remains in a state until the current edge.

The second column of Fig. (7) to Fig. (10) contains the threshold and regime-

switching propensities when political risk is used as threshold variable. Before the

outbreak of the Financial Crisis, there were prolonged periods of policy risk. Con-

trary to this, since the start of the Financial Crisis, our model estimates that we are

permanently in a high-risk regime and (almost) never return to -risk periods equiv-

alent to pre-2008-times. In general, most models estimate that high-risk regimes

dominate the sample space.

We can see the behavior of our models when we distinguish between periods of high

and financial risk in the third column of Fig. (7) to Fig. (10). It stands out that,

in contrast to the other risk factors, we see a quite long period of high financial

market risk, that starts with the Financial Crisis and prolongs until the end of the

European Sovereign Debt Crisis in 2013. During this period, we never drop back

into a -risk regime. This fits the narrative that the Financial Crisis and the Eu-

ropean Sovereign Debt Crisis are highly interconnected via the European financial

markets, especially the banking sector. Only since the introduction Draghi’s famous
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Figure 7: TVAR-models with ESBanks.
Notes: black-solid is the respective risk factor (left axis), red-solid is the median estimate for the
latent threshold (left axis), blue-dotted reflects the median transition probability between regime
1 and regime 2 (right axis).
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Figure 8: TVAR-models with ESIndustrials.
Notes: black-solid is the respective risk factor (left axis), red-solid is the median estimate for the
latent threshold (left axis), blue-dotted reflects the median transition probability between regime
1 and regime 2 (right axis).
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Figure 9: TVAR-models with CorpBond10YAA.
Notes: black-solid is the respective risk factor (left axis), red-solid is the median estimate for the
latent threshold (left axis), blue-dotted reflects the median transition probability between regime
1 and regime 2 (right axis).

2005 2010 2015

-1

0

1

2

0

1

Threshold and Transition Probabilities: MRF

2005 2010 2015

-1

0

1

2

0

1

Threshold and Transition Probabilities: PRF

2005 2010 2015

-1

0

1

2

0

1

Threshold and Transition Probabilities: FRF

Figure 10: TVAR-models with CorpBond7-10YHY.
Notes: black-solid is the respective risk factor (left axis), red-solid is the median estimate for the
latent threshold (left axis), blue-dotted reflects the median transition probability between regime
1 and regime 2 (right axis).

24



”Whatever it takes” statement in July, 2013, financial market risk calmed down

for a prolonged period. Nevertheless, at the current edge as well as between 2016

and 2018, our model often switches between high- and -risk states. This indicates

elevated uncertainty about financial stability in European financial markets.

As our binary variable that indicates the respective regime switches frequently in the

models with the FRF as threshold variable, especially at the current edge, concerns

arise about the sharp ”jump-like” switches between states within a short period. In

the appendix, we present an alternative approach to our binary transition setup that

stem from a smooth-transition function which is depicted in Fig. (17). Incorporat-

ing this transition function into our VAR-framework and deriving impulse response

functions, as in Auerbach and Gorodnichenko (2012) for different states of the US

business cycles, would require ad hoc assumptions about regime boundaries, in our

case for the FRF. As we have not yet found any suitable indicator in the literature

but our own binary one, we rely on the results of our models.

As already mentioned in Sect. (3), one possible problem is that different types of

risk are interconnected, especially during crises periods. We can see this in Fig. (7)

to Fig. (10) where some overlapping periods exist for the three distinct types of

risk we deal with. To illustrate this, we introduce a binary measure that displays

this issue over our sample. This measure, we call it absolute regime overlap (ARO),

equals 1 if two different risks are high simultaneously16 at sample point t, and 0

otherwise:17

AROasset
i,j,t =

1, if Si,t = 0 ∧ Sj,t = 0 with i, j ∈ {MRF,PRF, FRF}, ∀i 6= j

0, otherwise.

(13)

Fig. (24) to Fig. (27) of the appendix show these periods of coinciding high-risk

regimes for our set of estimated models. Almost all figures have hikes during the

Financial Crisis and the European Sovereign Debt Crisis, sometimes with minor

interruptions between the two crises. On the contrast, we only have sporadic pe-

riods of simultaneous skyrocketing of more than one type of risk at the beginning

and at the end of our sample. On the one hand, this emphasizes the outstand-

ing nature of these two crises. On the other hand though, this makes a sharp and

16According to the estimated threshold of the respective model.
17Note that these two different risk regimes stem from the same data collected in Yt, but from

different TVAR-models that differ by the threshold variable.
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distinct delimitation of specific risks during extraordinary crisis periods even harder.

To sum up these interdependences between the respective risk threshold variables in

a more appealing way, we relate them to the (adjusted) sample size. Thus, a relative

regime overlap (RRO) is constructed by dividing the sum of the different AROs by

the sample length, corrected for the lag-length of the model, p:

RROasset
i,j = Σ2018M1

t=2002M4+pAROi,j,t × (nobs− p)−1 , with p = 1 (14)

The results are listed in Tab. (1) to Tab. (4). The main diagonal of the tables is

the share of high-risk regimes of the respective risk threshold on the overall sample.

The overlap between regimes is reflected by the er triangular block.

ESBanks MRF PRF FRF

MRF 0.325
PRF 0.285 0.720
FRF 0.140 0.175 0.175

Table 1: RRO between different models
with ESBanks as asset.

CorpBond10YAA MRF PRF FRF

MRF 0.345
PRF 0.315 0.760
FRF 0.230 0.325 0.330

Table 2: RRO between different models
with CorpBond10YAA as asset.

ESIndustrials MRF PRF FRF

MRF 0.605
PRF 0.425 0.715
FRF 0.315 0.420 0.440

Table 3: RRO between different models
with ESIndustrials as asset.

CorpBond7-10YHY MRF PRF FRF

MRF 0.335
PRF 0.200 0.465
FRF 0.185 0.170 0.250

Table 4: RRO between different models
with CorpBond7-10YHY as asset.

Overall, we can see that the results are quite similar across assets for the differ-

ent RROs. Nonetheless, there seem to be one notable exception, as comparing the

models estimated for ESIndustrials with other assets show the highest degree of

deviation.

In this paper, we cannot determine which threshold from the set of obtained thresh-

olds that stem from the different models is ”the true one”. As all the regime esti-

mates in general seem to be plausible, we will not tackle this question within this

paper. It might be an interesting task for future research, e.g. via Bayesian Model

Averaging for the unknown threshold z∗.
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5.2 Macroeconomic Risk and the Transmission of Monetary

Policy Shocks

Fig. (11) shows the reaction of our assets in states of high (red area) or (black

lines) macroeconomic risk when facing a restrictive one percentage point shock in

the short-rate. We see that almost all of our asset variables react as expect: equity

of industrial firms falls while corporate bond yields rise. Between the regimes,

however, there are notable state-dependent differences for the various asset types.

The response of ESIndustrials, Fig. (11 (a)), dies out faster and is (insignificantly)

less sensitive to short-rate shocks in the -risk regime. It initially shows a contra-

intuitive positive reaction in the high-risk regime that turns negative after about

a quarter. The observation that ESIndustrials is (insignificantly) less sensitive to

restrictive monetary policy shocks in -risk regimes does not hold anymore in the

robustness section. There we find that the impact of short-rate shocks is weaker

in high-macro-risk regimes, i.e. in recessions, than in booms. This fits into the

literature which finds that MP has er (real) impacts in recession periods, i.e. when

our MRF is high18. Tenreyro and Thwaites (2016) line out that the impact of

monetary policy shocks on real activity is weaker during business cycle downturns.

Moreover, Aastveit et al. (2017)find that monetary policy has er effects on the real

economy (and inflation dynamics) when various uncertainty measures are elevated.

The previously discussed reaction of industrial equity might be one aspect that leads

to the their findings. On the contrary, we find that especially risky junk bond yields

react to a much larger extend when macroeconomic risk is high.

For ESBanks, Fig. (11 (b)), we can observe quite interesting patterns. Fist, in both

regimes the bank index initially reacts positively. Second, the positive reaction is

even higher and stays significant for a prolonged period when macroeconomic risk is

high. There exists a continuously growing literature that tries to explain this at first

sight counter-intuitive finding. In a -yield environment, as it is typical for business

cycle downturns in general and longstanding prevailing in the euro area since the

European Sovereign Debt Crisis, bank equity seem to benefit from (unexpected)

interest hikes. According to Ampudia and Van den Heuvel (2018) bank equity can

benefit from unexpected hikes in the policy rates, if they operate within a near-

zero interest rate environment. This can be a possible explanation for this at a

first glance counter-intuitive finding, as economic slack and a sharp decline with

a prolonged period of near-zero policy rates go hand in hand in Europe since the

Financial Crisis.

18Note that we have inverted this variable in Sect. (3) for ease of interpretation.
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Corporate yields, Fig. (11 (c) & (d)), show interesting pattern as well. Bond

yields with investment grade face a similar reaction between the states, although

the sensitivity is significantly more pronounced in the high-risk state, at least up to

the first 8 months after the shock. The high-yield bond yields show a very strong

positive reaction in the high-risk state that peaks at around 2.6 percentage points. In

contrast to the investment grade bond yields, the high-yield bond yields are affected

only on a small scale within a -macro-risk environment. This also fits into the finding

of Tenreyro and Thwaites (2016). The authors line out that during recessions, the

external finance premium, as it is reflected by the Excess Bond Premium (EBP)

in Gilchrist and Zakraǰsek (2012), skyrockets and, as a result, amplifies monetary

policy shocks. This external finance premium can be assumed to be much larger for

risky high-yield bonds than for investment grade bonds. Thus, it would be a good

explanation for the respective findings.

(a) ESIndustrials

(b) ESBanks

(c) AA-rated

(d) High-Yield

Figure 11: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the MRF.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).
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5.3 Political Risk and the Transmission of Monetary Policy

Shocks

Fig. (12) shows the reaction of assets in states of high or political risk when fac-

ing a restrictive one percentage point short-rate shock. In periods of political risk,

we see that ESIndustrials, Fig. (12 (a)), experiences a reduction after an initially

quite strong, positive reaction. In contrast, ESBanks faces a minor positive reaction

that dies out quite fast. We observe a strong positive reaction, namely more than

one percentage point, for investment-grade corporate bond yields that abates after

about 15 months. On the other side, risky bond yields show no significant reaction

in this risk state until abound 15 months after the shock. After that, the reaction

is positive.

Turing to the reaction in high-risk regimes we see that equity is in general less sensi-

tive to yield shocks, compared to the -risk regime. This could be an indication that

in these high-risk states, asset markets are less attentive to changes in the stance of

monetary policy. This interpretation also captures concerns of Benôıt Cœré in the

introductory statement.

Furthermore, we again see a diverging picture between industrial and financial eq-

uity. ESBanks initially reacts positive but turns insignificant after about half-a-year,

very counter-intuitive. ESIndustrials experience significant negative reactions after

the shock though.

Corporate bond yields face heterogeneous reactions, depending on the rating class.

AA-rated bond yields are less impacted in size but abate much ser in a high-risk

environment, compared to a -risk regime. One possible driver of this very pro-

nounced state-dependency with respect to political risk within high-grade corporate

bonds might be rooted in the substitutability between them and government bonds.

During risky political times, investors might evade holding government bonds and

increase their high-grade corporate bond holdings. The resulting increased demand

might er the susceptibility of their yields to monetary policy surprises.

Non-investment-grade corporate bond yields do not show this pronounced state-

dependency. Although a significant positive reaction occurs earlier and abates faster

in the high-risk regime, both kinds of yields react very similar across both high- and

-risk regimes, for the horizon under consideration.
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(a) ESIndustrials

(b) ESBanks

(c) AA-rated

(d) High-Yield

Figure 12: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the PRF.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).

5.4 Financial Market Risk and the Transmission of Mone-

tary Policy Shocks

When taking a look at the reaction of our assets to a restrictive short-rate shock in

regimes of high and financial risk, Fig. (13), we again see very diverging pictures

between high-risk or -risk states. Both distinct types of equity show positive reac-

tions in the high-risk regime, which are very pronounced for ESBanks.

Interestingly, while ESIndustrials turns significantly negative after about 10 months,

the median reaction of ESBanks stays positive over the whole horizon of 30 months.

One possible explanation for this outstandingly different reaction of financial equity

might be linked to the role of expected increased bank margins if a restrictive mon-

etary policy shock occurs in a prolonged period of interest rates. Recall that the

high-risk regimes for our model with ESBanks, as depicted in Fig. (7), concentrate

around the Financial Crisis, the European Government Debt Crisis and around the

year 2016. As outlined in e.g. Hayo et al. (2018) or Claessens et al. (2018), bank

margins deteriorate in long lasting interest rate environments, which in turn dimin-

ishes their (expected) profitability and, as a consequence, the value of their equity.

The prospect of higher net margins in their core business backs up their firm value.

30



For corporate bonds the picture is twofold: while investment-grade bond yields re-

act similar, independent of the regime, high-yielding bond interest rates are strongly

negatively impacted, more than one percentage point, in the first six months after

the shock in a high-risk regime. However, the sign of the reaction changes in a

hump-shaped manner, resulting in a peak reaction of two percentage points after

about one and a half years. There exist some possible explanations for this curios

pattern. On the one hand a restrictive short-rate shock can be interpreted as a signal

for more sound environment that leads to an immediate downward adjustment of

risk premia. On the other hand, restrictive monetary policy increases future default

probabilities via its dampening effect on the economy. This nexus can be expected

to be strongest for less sound firms. The presented results fit the narrative of Rüth

(2017), who finds that the transmission of monetary policy is stronger during periods

of high financial stress for the US. Using a local projection framework to elaborate

effects of monetary policy shocks on economic activity and financial variables, the

author measures financial stress with the EBP of Gilchrist and Zakraǰsek (2012)

which in turn is high for non-investment grade corporate bonds.

(a) ESIndustrials

(b) ESBanks

(c) AA-rated

(d) High-Yield

Figure 13: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the FRF.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).
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6 Sensitivity Analysis

The results of the previous section undergo a variety of robustness checks. We use

alternative assets, broad European indices such as STOXXBanks and STOXXIndus-

trials, as well as other corporate bond yields (BBB, the er bound of investment-grade

classification, also with 10-year maturity). Additionally, we incorporate an alterna-

tive shadow interest rate provided by Wu and Xia (2016). The qualitative findings

discussed before hold in almost all cases.

Further on, we test for two alternative orderings to identify the short-rate shock.

Therefore, we change the assumed contemporaneous relationships among the model

variables. Again, the results remain qualitatively unchanged, although the size or

significance of our findings even increase in some cases.

Since the results are very similar, we do not present the respective regimes for the

various models and their overlapping properties. Instead, we focus on impulse re-

sponse functions. Nevertheless, the results are available on request.

6.1 Alternative Model Variables

Equity Indices

While we focus on equity indices that list only firms of euro area member states in

the main section, we also use two broader European indices, namely STOXXBanks

and STOXXIndustrials, because these broad indices can also be assumed to pri-

marily be driven by the euro area, as it represents by far the largest share of the

European economy. Fig. (14) contains the reaction of STOXXIndustrials for our

three distinct threshold variables and displays strong state-dependency. As we can

see, the findings do not differ qualitatively, whether we use the shadow rate pro-

vided by Krippner or by Wu and Xia (2016). Equity of European industrial firms

is, in general, affected negatively in the long-term perspective and is less sensitive

to monetary policy surprises when we are in high-macroeconomic or -political risk

regimes. One exception is the state of high financial risk in which we can observe

a positive reaction that turns insignificant after one or four months, depending on

the model.
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(a) Threshold variable is the
MRF

(b) Threshold variable is the
MRF

(c) Threshold variable is the
PRF

(d) Threshold variable is the
PRF

(e) Threshold variable is the
FRF

(f) Threshold variable is the
FRF

Figure 14: Impulse response functions of STOXXIndustrials to a one percentage
point shock in the short-rate. The upper row stems from models estimated with
Krippner Shadow Rate, the bottom row stems from models with Wu and Xia (2016)
Shadow Rate.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).

In Fig. (15) we can see the reaction of STOXXBanks for models with various

threshold variables and two distinct shadow rates. In these setups, we can also, in

general, find the curios pattern of a positive reaction of bank equity during high-risk

regimes. This finding is most pronounced when our threshold variable is financial

risk. Again, we have one exception: the model with the Wu and Xia (2016) shadow

rate, (Fig. 15, (b)), where the surprising and contra-intuitive positive reaction is

higher in the regime of macroeconomic risk.
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(a) Threshold variable is the
MRF

(b) Threshold variable is the
MRF

(c) Threshold variable is the
PRF

(d) Threshold variable is the
PRF

(e) Threshold variable is the
FRF

(f) Threshold variable is the
FRF

Figure 15: Impulse response functions of STOXXBanks to a one percentage point
shock in the short-rate. The upper row stems from models estimated with Krippner
Shadow Rate, the bottom row stems from models with Wu and Xia (2016) Shadow
Rate.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).

Corporate Bond Yields

While in the main part we explicitly distinguish between the yield of the high-

est (available) investment-grade bonds, AA-rated, and non-investment-grade high-

yield bonds, we now take a closer look on a rating class that marks the er end of

investment-grade and, thus, lies in between the former two: BBB-rated corporate

bond yields with 10-year maturity.

Fig.(16) contains the respective impulse response functions. If macroeconomic risk

is our threshold variable, we se notable differences across the two regimes. The pat-

tern looks like a mixture of those presented in Fig. (11, (c) & (d)). For the other

two threshold variables we find no outstanding state-dependency. If we use political

risk as threshold variable, the reaction looks more like the reaction of the high-yield

bond yield, depicted in Fig. (12, (d)), although BBB is still investment grade. The

opposite holds for the models when financial risk is the threshold. There, the reac-

tion looks more like the behavior of the AA-rated bond yield, see Fig. (13, (c)).

From these additional results we can conclude that there is a gradual shift in rele-

vance of different types of risk for different rating classes. The riskier the underlying

bond, the more we see pronounced state-dependency with respect to macroeconomic

risk. The better the respective rating of a bond, the more we find political-risk-

related state-dependency. For financial risk, the shift is a sharp one: as long as
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the underlying bond remains investment-grade, we only see minor differences of

the yield reaction to short-rate shocks across the states. This changes drastically

for non-investment grade bonds. There, we find very pronounced state-dependency

with respect to financial risk.

(a) Threshold variable is the
MRF

(b) Threshold variable is the
MRF

(c) Threshold variable is the
PRF

(d) Threshold variable is the
PRF

(e) Threshold variable is the
FRF

(f) Threshold variable is the
FRF

Figure 16: Impulse response functions of BBB Corporate Bond 10-year yield to a
one percentage point shock in the short-rate. The upper row stems from models
estimated with Krippner Shadow Rate, the bottom row stems from models with Wu
and Xia (2016) Shadow Rate.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).

6.2 Alternative Orderings

In this section, we present results that stem from models identified with an alter-

native ordering of our model variables. Hence, we distinguish within this section

between two different ways of arranging our variables in Yt.

Order 2: Yt = [MRFt FRFt SRt PRFt asseti;t]
′. (15)

The motivation of order 2 is similar to the one presented in the main part, but

reflects the possibility that the ECB does not only contemporaneously take into ac-

count the (most inert) macroeconomic circumstances reflected by our MRF, but also

financial market risk, captured by our FRF. This can be justified by maintaining a

sound transmission of ECB’s monetary policy through the financial system. Thus,

we order the short-rate behind these two variables. Additionally, we assume that

political risk, PRF, is impacted by MRF, FRF, and short-rates within the same
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period. Assets are, again, ordered last.

The second alternative ordering to reflect contemporaneous interdependences be-

tween the variables is order 3:

Order 3: Yt = [MRFt FRFt PRFt SRt asseti;t]
′. (16)

With this assumed arrangement of variables, some additional considerations go in

hand. While the contemporaneous relationship between short-rates, macroeconomic

and financial risk remain unchanged, we also imply with ordering the political risk

factor before the short-rate that it is also affected by political shocks within the

same period. This seems to be a quite harsh assumption because it implies that

policy rates might also be driven by political distortions. According to the mandate

of the ECB, accounting for these distortions is not a key subject. It states that

the ECB has to focus on inflation and real activity and, should the situation arise,

to maintain working transmission mechanisms. Nevertheless, we Assets are again

ordered last to be impacted by all other variables within the same period.

In the foling we present and briefly discuss the results stemming from these alter-

natives. They remain qualitatively unchanged in almost all cases.

Macroeconomic Risk and Transmission of Monetary Policy Shocks

Fig. (21) and Fig. (18) show the reaction of our assets discussed in Sect. (5) for

the two alternative orders described above for the case when macroeconomic risk

is the threshold variable. Again, the shock is a one percentage point increase in

the (shadow) short-rate. All assets, except ESIndustrials, show the same qualitative

behaviour in both alternatives. ESIndustrials, on the other side, reacts less strongly

during stages of increased macroeconomic risk when focusing on a longer horizon.

Political Risk and Transmission of Monetary Policy Shocks

Fig. (19) and Fig. (20) contain the reaction functions of the respective assets to a 1

percentage point interest rate shock, identified either by order 2 or 3, for political risk

as threshold variable. Again, the results are very similar to our main part, except

that bank equity shows a negative reaction in the model identified with order 3.

Financial Risk and Transmission of Monetary Policy Shocks

The reaction of our assets, conditional that financial risk is the threshold variable

and that we apply order 2 or 3, respectively, is captured in Fig. (21) and Fig. (22).

In both ordering schemes, we see an outstanding positive effect of short-rate hikes on
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(a) ESIndustrials

(b) ESBanks

(c) AA-rated

(d) High-Yield

Figure 17: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the MRF, identification obtained from order 2.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).

(a) ESIndustrials

(b) ESBanks

(c) AA-rated

(d) High-Yield

Figure 18: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the MRF, identification obtained from order 3.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).
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(a) ES Industrials

(b) ES Banks

(c) AA-rated

(d) High-Yield

Figure 19: Impulse response functions of assets to a 1 percentage point shock in the
short-rate, threshold variable is the PRF, identification obtained from order 2.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).

(a) ES Insustrials

(b) ES Banks

(c) AA-rated

(d) High-Yield

Figure 20: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the PRF, identification obtained from order 3.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).
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equity during regimes of high financial risk. Again, bank stocks show the surprising

positive reaction even during periods of financial tension. While investment-grade

bond yields are impacted quite similar, we obviously see divergent pattern for -grade

bond yields.

7 Summary and Conclusion

Within the transmission mechanisms of monetary policy, the value of assets plays an

important role. Asset pricing theories emphasize the critical role of discount rates

to evaluate assets. The (perceived) risk of market participants is crucial for them.

The riskier the asset, the higher is the respective discount rate.

These rates reflect, among other things, a set of different risks. Depending on the

respective asset, some of these risks are considered to be more relevant than others.

As a consequence, asset pricing has a strong nexus with distinct risks. In a first

step, we extract three different risk factors of the euro area via principal component

analysis: a factor closely related to the business cycle, namely the macroeconomic

risk factor, a factor that tracks economic policy uncertainty, namely the political

risk factor, and a factor that captures financial tensions and turmoils, namely the

financial risk factor. The extracted factors fit the course of the major European

Crises and are similar to alternative suggestions of risk measures made by the liter-

ature.

One key problem is that various types of risk interact with each other, especially

during severe crises periods. This motivates the usage of vectorautoregressions as

well as the incorporation of state-dependency, i.e. high- or -risk regimes. Neverthe-

less, we emphasize the caveat of ”correct” risk delimitation and illustrate how the

indicated regimes overlap for the sets of estimated TVAR-models.

Analyzing the state-dependent sensitivity of asset prices to a short-rate shock, the

impulse responses show that asset prices are disparately susceptible in different risk

environments. We have state-dependent reactions of asset prices to shocks in the

short-rate.

We can summarize these differences in susceptibility: when we distinguish between

high and macroeconomic risk, in general we find that equity of industrial firms is

impacted negatively in both risk states and, depending on the model setup and vari-

able selection, is in most cases less sensitive during states of high macroeconomic

risk, i.e. during recessions. For financial equity, within this paper we focus on banks,

we either find non-significant or even positive reactions when confronted with re-

strictive monetary policy shocks. The at first glance very counter-intuitive, often
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(a) ES Industrials

(b) ES Banks

(c) AA-rated

(d) High-Yield

Figure 21: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the FRF, identification obtained from order 2.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).

(a) ES Industrials

(b) ES Banks

(c) AA-rated

(d) High-Yield

Figure 22: Impulse response functions of assets to a one percentage point shock in
the short-rate, threshold variable is the FRF, identification obtained from order 3.
Notes: median responses and 16th and 84th percentiles of high-risk regimes (red shaded) and

low-risk regimes (black lines).
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significant positive reactions occur primarily during phases of elevated macroeco-

nomic and financial risk. For non-investment-grade corporate bond yields, we find

that their sensitivity with respect to short-rate shocks is highest in periods of ele-

vated macroeconomic risk. AA-rated corporate bonds show the largest divergence

across regimes, if we distinguish between high and political risk.

From these results, we can conclude for corporate bond yields that there is a grad-

ual shift in relevance of different types of risk that depends on the respective rating.

The riskier the underlying bond, the more we see pronounced state-dependency with

respect to macroeconomic risk. The higher the respective rating of a bond, the more

we find political-risk-related state-dependency. For financial risk, the shift is a sharp

one: as long as the underlying bond remains investment-grade, we only see minor

differences of the yield reaction to short-rate shocks across the states. This changes

drastically for non-investment grade bonds. There, we find very pronounced state-

dependency with respect to financial risk.

Addressing the concerns uttered in the introduction, in the end we have to take a

differentiated look at the respective kind of asset in combination with the currently

prevailing risk regime. For policy makers, the findings implicate that the transmis-

sion of monetary policy via asset markets is quite heterogeneous and highly depends

on the respective risk-regime. The implications for investors are quite strong: the

timing, or, more specifically, the prevailing risk environment, determines the inten-

sity and in some cases even the sign of asset price adjustments.
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Appendix

Data

Variable Transformation Source Identifier
EA Index of Industrial Production
(excl. construction, sa, wda)

YoY growth rate Datastream EKIPTOT.G

EA Consumer Price Index
(wda, sa)

YoY growth rate Datastream EMEBCPALE

Unemployment, in %
(wda, sa)

none Datastream EKESUNEMO

Hours Worked, quarterly, in Mill. hours
(wda, sa, Chow-Lin-interpolated)

YoY growth rate Datastream EKEBEHWEO

Term Spread, in %
(10Y - 3M GerGovBond)

none
Datastream,
Authors’ calculations

TRBD10T
TRBD3MT

eCoin Indicator none CEPR HLink
VDAX ln*100 Datastream VDAXNEW
Business Climate Index
(sa, not wda)

none European Commission [ei bsci m r2]

Industry: New Orders, quarterly
(sa, not wda, Chow-Lin-interpolated)

none European Commission [ei bsin q r2]

Industry: Capacity Utilization, quarterly
(sa, not wda, Chow-Lin-interpolated)

none European Commission [ei bsin q r2]

Consumer Climate: FinSit12M
(sa, not wda)

none European Commission [ei bsco m]

Consumer Climate: EconSit12M
(sa, not wda)

non European Commission [ei bsco m]

Consumer Climate: Trust
(sa, not wda)

none European Commission [ei bsco m]

Table 5: List of variables, their initial transformation, and source, that are assumed
to be primarily driven by the present business cycle and expectations about future
real activity.

Variable Transformation Source Identifier
EA News-Based
Policy Uncertainty Index

none
Baker et al. (2016),
Authors’ calculations

-

Spread EA - GER, in % none
Datastream,
Authors Calculations

Debt: ITESC3F2,FRCGVTPA,ESESC3F2,
PTCGDEBT,GREXDGOVA,IREXDGOVA
10YGovYields: ITOIR080R,FROIR080R,
ESOIR080R,PTOIR080R,GROIR080R,
IROIR080R,BDMIR080R

SovCISS none ECB CISS.M.U2.Z0Z.4F.EC.SOV EW.IDX

Table 6: List of variables, their initial transformation, and source, that are assumed
to be primarily driven by (economic) policy risk.

Variable Transformation Source Identifier
CISS-Subindex StockMarkets none Datastream EMCIEMN
CISS-Subindex InterBanks none Datastream EMCIFIN
CISS-Subindex MoneyMarket none Datastream EMECM3E

ECB MMM, in eMill ln*100
Datastream,
Author’s Calculations

EMLDEPO,EMEBSMLFA,
EMECAEX,EMAREFO

Ted-Spread, in % none
Datastream,
Author’s calculations

TRBD3MT,EIBOR3M

Table 7: Variables assumed to be driven primarily by financial market risk, their
transformation, and respective source with the specific identifier.

45



01 04 06 09 12 15 17

-5

0

5

10

15

20
10

5 ECB MMM

Figure 23: Quantitative measure for ECB’s programs that are directed towards
money market distortions and liquidity provision.
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Principal Component Analysis

Eigenvalues
No. of Eigenvalue Value Proportion Cum. Proportion

1 7.1770 0.5521 0.5521
2 2.0777 0.1598 0.7119
3∗ 1.5025 0.1156 0.8275
...

...
...

...
13 ≈ 0 < 0.01 1.0000

Loadings
Variable PC1 PC2 PC3 · · · PC13

Industrial Production 0.2972 0.0058 0.3550
CPI 0.0332 -0.5741 0.2502
Unemployment -0.1463 0.3890 0.3818
Hours Worked 0.3421 -0.1709 -0.0730
Term Spread -0.2063 0.3131 0.2477
eCoin Indicator 0.3190 0.1640 0.1609
Business Climate Index 0.3418 -0.1187 0.1929
VDAX -0.2022 -0.1574 -0.3792
New Orders, Industry 0.2940 0.1044 0.2915
Cap. Ut., Industry 0.6267 -0.3580 -0.0414
Cons. Clim., FinSit12M 0.2684 0.2343 -0.4301
Cons. Clim., EconSit12M 0.3223 0.2998 -0.1276
Cons. Clim., Trust 0.3176 0.2056 -0.3226

Table 8: Principal Component Analysis for the set of variables assigned to macroe-
conomic risk.
Notes: the asterisk indicates the number of factors that optimally solve the trade-off between
sparse number of factors and best explanation of covariance among the variables.

Eigenvalues
No. of Eigenvalue Value Proportion Cum. Proportion

1∗ 1.8580 0.6193 0.6193
2 0.7551 0.2517 0.8711
3 0.3868 0.1289 1.0000

Loadings
Variable PC1 PC2 PC3

SovCISS 0.4727 0.8788 0.0657
EA NBPUI 0.6267 -0.2847 -0.722821
Spread EA - GER 0.6165 -0.3831 0.6879

Table 9: Principal Component Analysis for the set of variables assigned to political
risk.
Notes: the asterisk indicates the number of factors that optimally solve the trade-off between
sparse number of factors and best explanation of covariance among the variables.
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Eigenvalues
No. of Eigenvalue Value Proportion Cum. Proportion

1 3.0775 0.6155 0.6155
2∗ 1.1335 0.2267 0.8422
3 0.4891 0.0978 0.9400
...

...
...

...
5 ≈ 0.1 0.0174 1.0000

Loadings
Variable PC1 PC2 PC3 · · · PC5

CISS-Sub StockMarkets 0.4809 -0.3171 0.5013
CISS-Sub InterBanks 0.5439 -0.0637 0.2392
CISS-Sub MoneyMarkets 0.4809 -0.317071 0.5013
ECB MMM 0.1057 0.8752 0.4324
Ted-Spread 0.4409 0.3429 -0.6704

Table 10: Principal Component Analysis for the set of variables assigned to financial
risk.
Notes: the asterisk indicates the number of factors that optimally solve the trade-off between
sparse number of factors and best explanation of covariance among the variables.
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High-risk Regime Overlap
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Figure 24: TVAR-models with ESBanks.
Notes: black-solid is the high-risk regime overlap between MRF & PRF (left), MRF & FRF
(middle), and PRF & FRF (right).
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Figure 25: TVAR-models with ESIndustrials.
Notes: black-solid is the high-risk regime overlap between MRF & PRF (left), MRF & FRF
(middle), and PRF & FRF (right).
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Figure 26: TVAR-models with CorpBond10YAA.
Notes: black-solid is the high-risk regime overlap between MRF & PRF (left), MRF & FRF
(middle), and PRF & FRF (right).

2005 2010 2015
-0.5

0

0.5

1

1.5
Absolute Regime Overlap: MRF & PRF

2005 2010 2015
-0.5

0

0.5

1

1.5
Absolute Regime Overlap: MRF & FRF

2005 2010 2015
-0.5

0

0.5

1

1.5
Absolute Regime Overlap: PRF & FRF

Figure 27: TVAR-models with CorpBond7-10YHY.
Notes: black-solid is the high-risk regime overlap between MRF & PRF (left), MRF & FRF
(middle), and PRF & FRF (right).
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Smooth Transition: Financial Risk

An alternative way to construct state-dependency and the respective transition

across the states within a VAR-framework are transition functions. We construct a

standard logistic transition function, G(zt, γ, c), reflected in Eq. (17). It is deter-

mined by its input values zt, the transition parameter γ, and a shift parameter c.

With this function, the determination of a state is not binary anymore:

Gt(zt) =
1

1 + exp(−γ(zt − c))
, Gt ∈ (0, 1) (17)

For our analysis, zt equals FRFt. The transition properties of G(.), i.e. how vio-

lently the model switches across regimes, depends on the choice of γ. For γ → ∞,

we are back in a binary setup, as the transition across states is very sharp, limiting

the value space of G(.) on 0 or 1, depending on passing the shift parameter c. In

contrast, for γ → 0 we have no transition at all as G approaches 0.5 for all values

of FRF .

To determine this crucial parameter, we combine the ideas of Auerbach and Gorod-

nichenko (2012) with the varying outcomes of the set of estimated models in our

main section. The authors’ idea is to match the properties of their transition function

with the data they observe. As they are interest in asymmetries across recessionary

or non-recessionary stages of the business cycle with respect to fiscal policy, the

standardized 7-quarter moving average GDP-growth of the US is their variable that

determines the transition of their model, zt. As it has zero-mean and unit-variance,

they set c = 0. They observe that the US is on average in about 20 per cent of their

sample in a recession. Additionally, they assume that the economy is in recession

if G(.) > 0.8. This results in γ = 1.5 such that Pr(G(zt, γ, c) > 0.8) = 0.2 holds.

We proceed in a similar way to determine two alternative transition functions. In

a first step, we need to know how much of our sample is characterized by high-

or -risk regimes. As there exits no universally acknowledged indicator that clearly

states when the euro area is in a high or financial risk state, we use the set of regime

estimates from the main section, see Tab. (1) to Tab (4), right corners, or Fig. (7)

to Fig. (10), right columns, and average over them. We find that we are in a high-

risk regime in about 30% of the sample. We deviate from the ad hoc assumption of

Auerbach and Gorodnichenko (2012) and assume that we are in a high financial risk

regime if G(.) > 0.7, such that Pr(G(zt, γ, c) > 0.7) = 0.3. Otherwise, our transi-

tion function would primarily be driven by the events during the Financial Crisis

and the European Government Debt Crisis. Thus, it would not take into account

the uncertainty about the risk state at the end of our sample, which motivates the
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alternative modeling of states via smooth transition functions.

First, we distinguish between two approaches to determine γ. The first one assumes

that the shift parameter c is zero, as our variable that determines the transition,

FRF , has zero mean and unit variance, like the one in Auerbach and Gorodnichenko

(2012). This yields γ = 3.1 to satisfy the condition that Pr(G(zt, γ = 3.1, c = 0) >

0.7) = 0.3. Alternatively, if we set c = 0.28, which is the average of the estimated

threshold of the four different models with FRF as threshold variable, we obtain

γ = 1.9 such that Pr(G(zt, γ = 1.9, c = 0.28) > 0.7) = 0.3 holds. Fig. (28) displays

these two slightly different transition functions.

Figure 28: The left figure shows the transition functions G(FRF, γ, z). The right
figure shows the value of the transition functions Gt(FRFt, γ, z), for given γ and z,
respectively, over our sample.

We can see that both transition functions are very similar and show the same dy-

namics as our various binary state-determining functions from the main section.

They peak during the Financial Crisis and, to a smaller extent, during the Euro-

pean Government Debt Crisis. Similar to the binary indicator functions of the main

section, depicted in Fig. (24) to Fig. (27), the fluctuation of these continuous tran-

sition functions are very high around the same period at the end of our sample.

This emphasizes that there lurk pitfalls when assessing the degree of financial risk

inherent in the euro area around this period. Financial risk is elevated but by far

less than during the Financial Crisis. Thus, the binary indication of financial risk

in the main section should be taken with a grain of salt during 2015 to 2017.
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