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Abstract 

The new Coronavirus pandemic has extensive negative socioeconomic impacts. 

However, its effects on climate change and in particular air pollution, at least at the 

beginning of the outbreak, is not clear. Fear of getting the Coronavirus in crowded 

public spaces increased the use of personal cars, while prevention policies that seek to 

decrease population movement reduced their usage. This paper investigates the 

relationship between the outbreak of COVID-19, measured by the number of infected 

cases, and air pollution, measured by PM2.5, in 31 Iranian provinces over the 19 

February 2020 to 11 March 2020 period. We employ a panel vector autoregressive 

(PVAR) approach along with impulse response functions (IRFs), variance 

decomposition, and Granger causality tests. The analysis shows negative responses of 

the PM pollution to positive shock in COVID-19 cases in Iran. 

Keyword: COVID-19, Iran, panel vector autoregressive model, air pollution. 
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1. Introduction 

Iran is one of the countries that has affected the most from the COVID-19 pandemic. 

Right after the first confirmed cases of COVID-19 in Iran on February 19, 2020, many 

communal events and public places were closed to diminish its spread. The closure of 

many businesses and the need for a severe decline in social communication have led 

to a sharp decline in production in various sectors of the economy. Therefore, apart 

from significant influence on public health, the COVID-19 pandemic has widespread 

socioeconomic consequences that are difficult to capture due to the lack of up-to-date 

data. For instance, GDP data are published at long intervals in seasonal frequency. 

However, the associated variables such as environmental pollution indices, 

and especially particulate matters (PM), can be used to estimate the GDP reduction. 

(Sarkar et al., 2019; Salahuddin & Gow, 2019; Balsalobre-Lorente et al., 2018; Lægreid 

& Povitkina, 2018; Farzanegan & Markwardt, 2018; Chaabouni & Saidi, 2017; and 

Rafindadi, 2016). Results of Asadikia et al. (2009) and Fotros (2012) maintain that the 

air quality, in terms of CO2 emissions, gets worse as the economy grows in Iran as 

well. In the absence of real-time data with daily frequency for GDP, the relationship 

between economic activities and air pollution gives us the chance to analyze how a 

positive shock in the outbreak of COVID-19 can influence economic activities which 

are manifested in the development of PM pollutants. According to World Health 

Organization, PM is a common proxy indicator for air pollution. It affects more people 

than any other pollutant. The major components of PM are sulfate, nitrates, ammonia, 
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sodium chloride, black carbon, mineral dust and water1. The main sources of PM are 

human made (e.g., road vehicles, industrial emissions).  

There is also a substantial collection of literature devoted to evidence that air 

pollution is a principal determinant of epidemic diseases like influenza2 and the 

coronavirus pandemics, as increased contamination can increase people's respiratory 

tract vulnerability. Air pollution can also cause diabetes and respiratory diseases 

which are associated with higher mortality rates for COVID-193. That is why the 

European Public Health Alliance warned that people living in contaminated cities are 

more at risk from COVID-194. 

However, the COVID-19 outbreak has mixed effects of air quality as well. On 

the one hand, fear of getting the Coronavirus in crowded public spaces has changed 

the style of inner-city travel and increased the use of personal cars. On the other hand, 

prevention policies that seek to reduce population movement and serious advice to 

people on voluntary quarantine, staying at home and avoiding unnecessary intra-

urban and inter-city travel reduced the use of personal vehicles.  

                                                           
1 https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health  
2 Xu et al. (2013) found a significant association between children influenza in Australia and PM10 and 

O3. Liang et al. (2014) demonstrated the positive effects of PM2.5 on influenza transmission in Beijing. 

Su et al. (2019) illustrated that the risk of influenza-like illness (ILI) can intensify with an increase in 

PM2.5, PM10, CO and SO2 in Jinan. Liu et al. (2019) confirmed that clinical ILI had a significant 

association with PM10 and PM2.5 and no relation with SO2 and NO2. Chen et al. (2018) noticed that 

PM2.5 has an influence on adult/elderly populations in southwest Taiwan. Chen et al. (2017) 

documented PM2.5 as an increasing factor of influenza in china with a stronger effect in cooler days. 
3https://www.theguardian.com/world/2020/mar/13/coronavirus-pandemic-visualising-the-global-

crisis 
4 https://epha.org/coronavirus-threat-greater-for-polluted-cities/ 

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.theguardian.com/world/2020/mar/13/coronavirus-pandemic-visualising-the-global-crisis
https://www.theguardian.com/world/2020/mar/13/coronavirus-pandemic-visualising-the-global-crisis
https://epha.org/coronavirus-threat-greater-for-polluted-cities/
https://epha.org/coronavirus-threat-greater-for-polluted-cities/
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In this paper, we use a panel vector autoregressive (PVAR) model and daily 

data to examine the relationship between the coronavirus outbreak and air pollution 

within the Iranian provinces. We simulate the response of PM2.5 pollution to a 

positive shock in COVID-19 outbreak in Iran. There are no prior empirical studies, to 

the best of our knowledge, to demonstrate the influence of epidemic infections on air 

quality1.  

Selection of PM2.5 as an air pollution indicator is justified based on its 

significant health impacts (besides its availability for Iranian provinces): because of its 

tiny size, PM2.5 can penetrate lungs at the alveolar level, translocate directly through 

the alveolar capillaries into the circulatory system. They can and leave toxic 

substances in the blood, causing cumulative damage to the body (Stanek et al., 2011). 

A long-term exposure to PM2.5 affects human development and life satisfaction 

(Ebenstein et al., 2016; Zhang et al., 2017).  

The rest of the paper is organized as follows. Data and method are presented 

in the Section 2. Results are shown and discussed in Section 3. Section 4 concludes. 

2. Data and Method 

We use daily data on confirmed cases of Coronavirus across Iranian provinces from 

19 Feb. 2020 to 11 March 2020. The Ministry of Health and Medical Education 

announces officially new confirmed cases of COVID-19 every day. It appears that the 

                                                           
1 There are references in media which use Satellite videos and data and show a decreasing effect of 

COVID-19 outbreak on air pollution in Spain (Planelles, 2020), China (McMahon, 2020), and Italy 

(Mooney et al., 2020).  
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incidence of infection is higher in the central provinces, such as Semnan, Yazd, and 

Alborz, than the border regions, maybe because of the initial origin of the virus in the 

Qom city and Imam Khomeini International Airport. 

PM is used extensively as a measure of air pollutant (see Ansari and 

Ehrampoush, 2019; Al-Hemoud et al., 2019; Gholipour and Farzanegan, 2018; Zhang 

et al., 2017; and Miri et al., 2016). The main sources of PM are combustion engines, 

solid-fuel combustion for energy production in households and industry, other 

industrial activities, erosion of the pavement by road traffic and abrasion of brakes 

and tires, chemical reactions of gaseous pollutants, and soil and dust re-suspension 

(World Health Organization, 2013).  

The PM has two common variations: PM10 which refers to the mass 

concentration of particles with a diameter of <10 μm and PM2.5 which are particles 

with a diameter of <2.5 μm. The PM is a mixture of solid and liquid particles 

suspended in the air. The very small size and a lightness of PM2.5 particles allow them 

to stay in the air longer and enter the lungs and sometimes the blood system. To 

measure the quality of air pollution we use the average of PM2.5 at different stations 

of each province in Iran on a daily basis. The data is taken and calculated from the 

online portal of Air Pollution Monitoring System of Iran1. 

The summary statistics of the key variables, spanning the period from 19 Feb. 

2020 to 11 March 2020, are presented in Table 1.  

                                                           
1 https://aqms.doe.ir/  

https://www.sciencedirect.com/science/article/pii/S0160412017322365#!
https://aqms.doe.ir/
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Table 1 Descriptive statistics 

Variable 
 

Mean Std. Dev. Min Max Obs. 

COVID-19 confirmed cases overall 13.22 37.43 0.00 468.00 N = 682  
between 

 
20.66 0.50 107.73 n = 31  

within 
 

31.42 -94.51 373.49 T = 22 

Average of PM2.5 overall 63.91 69.31 0.00 1221.00 N = 682  
between 

 
37.14 0.00 138.55 n = 31  

within 
 

58.88 -41.50 1146.37 T = 22 

 

To examine the dynamic relationship between COVID-19 outbreak and air 

pollution, we use the panel VAR (PVAR) methodology. Using the VAR methodology, 

we can treat our variables of interest as endogenous, enabling us to examine the 

response of air pollution to a positive shock in COVID-19 cases and vice versa. We 

exploit a PVAR generalized method of moments (GMM) estimator developed by Love 

and Zicchino (2006) to carry out the impulse response functions and variance 

decomposition analysis, using daily data of 31 provinces of Iran. Our panel VAR 

model can be written as follows: 

𝑌𝑖𝑡 =  Γ0 +  Γ(𝐿)𝑌𝑖𝑡−1 + 𝜇𝑖 +  𝜃𝑡 +  𝜀𝑖𝑡              i= 1, …, N & t=1, …,T        (1) 

where 𝑌𝑖𝑡 is a vector of two endogenous variables: COVID-19 cases, and PM2.5 

pollution index; Γ0 is a vector of constants; Γ(𝐿) is a matrix polynomial in the lag 

operator, 𝜇𝑖 denotes fixed effects, capturing unobservable time-invariant province 

specific factors (e.g., cultural and religious norms and attitudes or geographical, 

climate and ethnic conditions); 𝜃𝑡 refers to the forward mean-differencing; and 𝜀𝑖𝑡   is 

a vector of independently and identically distributed errors.  N refers to number of 

provinces (31) and T refers to period of analysis (22 days).  
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To address the possible correlation of fixed effects with regressors, the data 

were time demeaned and forward mean-differenced using the Helmert procedure and 

following Arellano and Bover (1995). Using GMM-style instruments (Holtz-Eakin et 

al., 1988), we estimate Model 1. We first present the results of PVAR estimations. Next, 

we carry out Granger causality Wald tests for each equation of the underlying PVAR 

model. We proceed with Impulse response functions (IRFs) using Monte Carlo (MC) 

simulations for the confidence intervals based as well as forecast-error variance 

decompositions (FEVDs) based on estimated PVAR.  To transform our system in a 

recursive VAR for identification purposes, we follow Choleski decomposition of 

variance–covariance matrix residuals (Hamilton, 1994).  

3. Results 

To estimate the PVAR, we need first to check the optimum lags of endogenous 

variables. Model selection measures calculated for first-to-third-order panel VAR, 

using the first four lags of COVID-19 cases and PM as instruments, is shown in Table 

2.  

Table 2. Panel VAR lag order selection on estimation sample 

lag CD J J p-value MBIC MAIC MQIC 

1 0.49 13.92 0.31 -61.28 -10.08 -30.13 

2 0.51 10.09 0.26 -40.05 -5.91 -19.28 

3 0.62 3.93 0.42 -21.14 -4.07 -10.75 

No. of obs. = 527, No. of panels   = 31, Ave. no. of T =  17 

According to the three model selection criteria suggested by Andrews and Lu 

(2001), first-order panel VAR is the preferred model, since this has the smallest MBIC, 
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MAIC and MQIC. As a result, we fit a first-order panel VAR model with the same 

specification of instruments as above using GMM estimation. Table 3 shows the 

results of PVAR (1) and GMM coefficients. 

Table 3. PVAR (1) coefficient estimates 

 
Coef. Std. Err. z P- value 

Dependent variable: COVID-19 cases 
    

Independent variables 
    

COVID-19 cases (1) 0.94*** 0.07 13.01 0.00 

PM2.5 (1) -0.02 0.02 -0.81 0.42 

Dependent variable: PM2.5 
    

Independent variables 
    

COVID-19 cases (1) -0.21*** 0.06 -3.70 0.00 

PM2.5 (1) 0.18 0.11 1.59 0.11 

No. of obs. = 620, No. of panels = 31, Instruments: l(1/4). Robust standard errors are reported. *** denotes 

significance at the 1% level.  

Although Granger causality for a first-order panel VAR may be inferred from 

the estimated results in Table 3, we still perform the test as an illustration. In Table 4, 

we report the chi-square Wald statistics for the null hypothesis that the PM pollution 

does not Granger cause COVID-19 and vice versa. Results of the Granger causality 

tests in Table 4 show that COVID-19 outbreak Granger-causes PM pollution at the 

usual confidence levels. There is a unidirectional causality.  

Table 4. Granger causality tests 

Equation \ Excluded chi-square statistics P- value 

COVID-19 cases 
  

PM2.5 0.664 0.415    

PM2.5 
  

COVID-19 cases 13.704*** 0.000 

The tests are based on the PVAR (1) model. The entries in the table are the chi-square statistics for the 

null hypothesis that the excluded variable does not Granger cause the equation variable vs. the 



9 
 

alternative hypothesis that the excluded variable Granger causes the equation variable. *** denotes 

significance at the 1% level. 

To examine the impulse response functions and variance decomposition 

analysis, we need to control the stability of estimated PVAR by checking whether all 

eigenvalues lie within the inner circle. The resulting Table 5 confirms that the estimate 

is stable and thus impulse responses are reliable.  

Table 5. Eigenvalue stability condition 

Eigenvalue  

Real Imaginary  Modulus 

.94 0 0.94 

.17 0 0.17 

All the eigenvalues lie inside the unit circle. PVAR satisfies stability condition 

Using this Cholesky ordering (COVID-19, PM2.5), we calculate the implied IRF 

and the implied FEVD. To compute the IRF confidence intervals we use 200 Monte 

Carlo draws based on the estimated model. The IRF results are show in Figure 1. In 

IRF, we are interested to measure the response of one of variables to a positive shock 

in other variables. In Figure 1, we observe that the response of PM pollution to a 

positive shock in outbreak of COVID-19 cases is negative and statistically significant 

at 95% confidence intervals for about a week after the initial shock. The response of 

COVID-19 to a shock in quality of air is not statically significant.  

For robustness check, we also re-estimate the PVAR by changing the ordering 

of variables (PM2.5, COVID-19). The IRF and other results remain unchanged. 
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Figure 1. Impulse response functions  

 

In addition to IRF, we carry out the forecast error variance decomposition 

(FEVD) analysis. Based on the FEVD estimates in Table 6, we see that as much as 8 

percent of variation in PM pollution can be explained by COVID-19 outbreak shocks.  

Table 6. Forecast-error variance decomposition 

Response variable and forecast horizon (days after shock) 
  

 
Impulse variable  
COVID-19 cases PM2.5 

COVID-19 cases 
  

1 1.0000 0.0000 

5 0.9982 0.0018 

10 0.9979 0.0021 

PM2.5 
  

1 0.0073 0.9927 

5 0.0534 0.9466 

10 0.0869 0.9131 
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On the other hand, almost all of fluctuations of COVID-19 cases are explained 

by its own past innovations and share of PM pollution in explanation of this variance 

is almost zero. This is in line with IRF findings. 

 

4. Conclusion 

In this study, we examine the impact of air pollution to a positive shock in outbreak 

of COVID-19, suing a panel data of 31 provinces in Iran from 19 Feb. 2020 to 11 March 

2020 for which we have a complete data. Employing a panel VAR analysis and 

impulse response as well as variance decomposition tools, we show that a positive 

shock in COVID-19 cases is resulting in a negative (decreasing) response of air 

pollution in Iran. While COVID-19 has significant negative impact of economic 

activities and transportation, but on the side may dampen the pressure on 

environment. Our study provides the first empirical insights on such an effect for case 

stud of Iran.  
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