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Abstract

We study the response of daily household spending to the unexpected compo-
nent of the COVID-19 pandemic, which we label as pandemic shock. Based
on daily forecasts of the number of fatalities, we construct the surprise compo-
nent as the difference between the actual and the expected number of deaths.
We allow for state-dependent effects of the shock depending on the position
on the curve of infections. Spending falls after the shock and is particularly
sensitive to the shock when the number of new infections is strongly increas-
ing. If the number of infections grows moderately, the drop in spending
is smaller. We also estimate the effect of the shock across income quartiles.
In each state, low-income households exhibit a significantly larger drop in
consumption than high-income households. Thus, consumption inequality
increase after a pandemic shock. Our results hold for the US economy and
the key US states. The findings remain unchanged if we choose alternative
state-variables to separate regimes.
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I INTRODUCTION

The global spread of the COVID-19 pandemic since January 2020 led to a
sharp contraction of economic activity in almost all economies affected by
the virus. Between January and April, real personal consumption expen-
ditures declined by more than 15%. With personal consumption expendi-
tures accounting for 68% of US GDP in 2019, this decline in spending casts
shadow on overall economic activity in 2020. Consumption recovered in
May and June, partly driven by government transfers which led to an in-
crease in real disposable income.
In this paper, we provide an analysis of the causal effect of the pandemic on

household spending. Spending, like consumption in general, should mostly
be driven by unexpected shocks. According to the theory of permanent in-
come, predictable fluctuations in future income should prompt households
to tap the capital market and smooth consumption, such that consumption
exhibits very little fluctuations.1 Initially, the spread of the pandemic might
be considered unpredictable. After that, and in particular with the begin-
ning of the second wave of infections in June, however, a large part of the
development should have been predictable.
We look at the unexpected element of the pandemic and analyze how it

affects spending decisions. We draw on forecasts of the number of fatalities
due to COVID-19 in the US provided by Gu (2020) and contrast the one
day-ahead forecast with the actual number of deaths. A positive forecast
error is consistent with an under-prediction of the number of fatalities or a
surprise in the severity of the pandemic, respectively. We refer to this series
of unexpected deaths as a pandemic shock and use it as the key explanatory
variable for household spending.
Ourmeasure of household spending is provided by Chetty et al. (2020) and

consists of debit and credit card transactions in the US. The key advantage
of the data is timeliness. We can track spending on a daily frequency for the
entire US economy as well as for US states. In a series of local projections,
see Jordà (2005), we estimate the response of spending to a pandemic shock.
There are at least three channels through which a pandemic shock can af-

fect spending. First, an adverse pandemic shock could prompt households to
restrain consumption voluntarily. This is because the virus spreads through

1See Jappelli and Pistaferri (2010) for a survey of the field.
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social interaction such as shopping in retail stores, dining or entertainment.
Anxious households could reduce these activities even before official lock-
downmeasures are in place.2 Second, households might be barred from con-
sumption due to a lockdown of selected activities or even shelter-in-place or-
ders. An adverse pandemic shock makes these measures more likely. Third,
households could perceive an unexpected change in future income and ad-
just their spending accordingly. Even if a household is not itself affected by
the virus, the future of entire industries is at risk. Workers in the service
sector, for example, cannot resort to working from home and experience a
large drop in future income.3

While we cannot disentangle these transmission channels, we take account
of an important property that all three channels have in common: the effect
of a pandemic shock should be stronger if the virus spreads more rapidly.
The more widespread the virus is, the larger the reluctance to shop offline,
the more likely stricter lockdown measures and the more severe the drop in
future income will be. Thus, the effect of the pandemic shock should depend
on the position of the economy on the infection curve.
Therefore, we generalize our model and allow the pandemic shock to have

regime-dependent effects. In our baseline setting, we chose the growth of
the daily number of new infections as our state variable. This figure is om-
nipresent, especially in the media, and provides information on where the
economy stands on the infection curve. The transition between states is
driven by either a non-parametric model introduced by Born et al. (2020)
or a parametric approach proposed by Auerbach andGorodnichenko (2012).
We show that a pandemic shock originating when the number of new

infections is growing fast has a strongly negative effect on spending. We
find a significant drop of about 1% in spending after a pandemic shock of
one standard deviation. The drop in consumption is consistent with recent
macroeconomic models of the effect of income expectations and uncertainty
on consumption, see Dietrich et al. (2020), or the feedback between the
spread of the pandemic and macroeconomic aggregates, e.g. Eichenbaum
et al. (2020). The pandemic shock explains more than 20% of fluctuations

2Goolsbee and Syverson (2020) show that consumer behavior during the
pandemic is more driven by fear of infection than formal restrictions.

3In a survey conducted early in the pandemic, Binder (2020) finds that
households expect an increase in unemployment due to the pandemic.
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in spending.
If the shock occurs in a situation in which the virus spreads less rapidly,

spending drops by 0.5% only with the peak response occurring after one
week. Throughout the paper, we find that the nexus between spending and
the pandemic shock is strongly depending on the underlying regime. In al-
most all cases, we can reject the null hypothesis of equal spending responses
across regimes. We estimate the model not only for the whole US economy,
but also for the 10 largest US states. Across all states, the regime-dependent
sensitivity of spending to pandemic shocks is very similar. The results re-
main unchanged if we use alternative state variables such as the level of new
infections rather than the growth rate of infections.
We also study the spending response across income quartiles. We use

spending data for residents of ZIP codes with low, middle and high me-
dian household income. This allows us to estimate the response of house-
hold spending across income groups to a pandemic shock. The first two of
the three transmission channels discussed before, voluntary and forced con-
sumption restraint, should apply equally to high-and low-income house-
holds.
The third, however, should imply that low-income households reduce

their spending by more compared to high-income households. This is be-
cause the drop in lifetime income should be particularly pronounced for low-
productivity workers, e.g. workers in the service sector.4 We do indeed
find that in the regime with a strong growth of the number of infections,
high-income households reduce their spending by 0.5%, while low-income
households cut expenditures by 1%. This is remarkable because the initial
fall in spending was larger for high-income households as documented by
Chetty et al. (2020). Our results suggest that the economic burden of the
pandemic in terms of consumption falls more on low-income households.5

The difference in spending responses is highly statistically significant in both

4Even if the drop in incomewere equal across income groups, we expect the
marginal propensity to consume (MPC) to be higher for low-income quartiles.
In fact, Karger and Rajan (2020) track spending of recipients of governmental
transfer payments during the COVID-19 pandemic. They find an MPC of
0.68 for hand-to-mouth consumers and 0.23 for savers.

5See Mongey et al. (2020) for an analysis of the effect of social distancing
across workers. They find significant differences in the burden from social
distancing.
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regimes. Thus, the pandemic contributes to a growing of consumption in-
equality.
This paper contributes to the recent work on household behavior based on

innovative datasets. In an early paper, Baker et al. (2020) use transaction-level
data for the US in order to document the changes in consumption patterns
after the outbreak of the coronavirus. Cox et al. (2020) extend this line of
research and sheds light on the response of consumption and saving across
the income distribution. Using transaction-level data from the largest Dan-
ish bank, Andersen et al. (2020) show that the decline in spending increases
in the exposure of households to the economic consequences of the pan-
demic. Surico et al. (2020) use data from a fintech company based in the UK
to track the behavior of spending. These authors also document the build-
up of financial stress as well as consumption and income inequality across
households. Carvalho et al. (2020) use six billion transactions of customers
of Spain’s second-largest bank to track consumption over the crisis. Coibion
et al. (2020) estimate the effect of lockdowns on spending and household ex-
pectations based on survey data. They make use of the asynchronous timing
of lockdown measures in order to identify a causal effect. The occurrence of
the first corona infection is used to instrument local lockdown restrictions.
They find that lockdown restrictions explain most of the fall in consumer
spending since March 2020.6

Most of these papers, with the exception of Coibion et al. (2020), provide
descriptive evidence based on massive new datasets or estimate the response
of spending to observable events. Instead, we aim at estimating the sensitivity
of spending to unexpected changes in the severity of the pandemic.
The paper is organized as follows. Section 2 presents the data and discusses

the derivation of our pandemic shock. Section 3 lays out our estimation
strategy. Our results are discussed in section 4. Section 5 presents results for
alternative state variables. Section 6 concludes.

6Alexander and Karger (2020) analyze consumer spending and cellphone
records in the US and show the causal effect of stay-at-home orders on spend-
ing.
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II DATA

To investigate the response of consumption to the unexpected spread of the
pandemic, we rely on two data sets. The first contains information on daily
household spending since the outbreak of the coronavirus and the second
reports daily historical forecasts on the number of fatalities due to COVID-
19.

A. Household spending

Throughout the paper, the dependent variable is a measure of household
spending. We have daily observations ranging from April 3 up to July 26.
We use the series provided by Chetty et al. (2020), which are open source
and available at https://tracktherecovery.org.7

We also have spending broken down into ZIP codes with high, middle and
low median income. Below, we will refer these subgroups of households as
high and low income households, although we do not have information on
household income, only on median income of the ZIP code of residency.
Because the original data on spending exhibits substantial periodic fluc-

tuations across days, the publicly available series are 7-day moving aver-
ages in order to smooth daily fluctuations. Furthermore, data on consumer
spending exhibits strongweekly fluctuations which are autocorrelated across
years. To account for this, Chetty et al. (2020) divide all spending series by
its corresponding value from 2019. Lastly, the seasonally adjusted data are
indexed to its pre-pandemic level, namely the mean of the 7-day moving
average from January 8-28.8 Hence, our series are given in percent, such
that a value of two percent in t corresponds to an increase of spending by
two percent relative to its average value in January.

7Chetty et al. (2020) collect the data on spending from Affinity Solutions
Inc. This company aggregates information on credit and debit card spending.
The data is available for nation-wide aggregates as well as for each US state.

8It should bementioned that the spending data for the entire sample is avail-
able on a daily basis. Since July 5th, however, it is based on the average of the
last 7 days. More precisely, the daily data available from July 6th onward is
interpolated as line segments connecting the weekly data points. For more
details on the construction of the data, see Chetty et al. (2020).
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Figure 1: TOTAL SPENDING AND SPENDING BY INCOME QUARTILE
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Notes: The left panel shows the difference of actual spending relative to its level in Jan-
uary 2020 by customers living in ZIP codes with different income classes, namely high
(top quartile) median income, middle (middle two quartiles) median income as well as low
(bottom quartile) median income. The right panel shows the difference in spending of cus-
tomers living in ZIP codes with high median income and customers living in ZIP codes
with low median income. In both samples, the start of our estimation sample (April 3rd) is
highlighted by the red vertical lines.

The left panel of Figure (1) shows that for all income households, spend-
ing fell sharply in mid-March, when the National Emergency was declared.
In early April, spending fell by 36.4% for high-income households, 32%
for low income households and 29.8% for middle income households. The
right panel shows relative spending, i.e. the difference between spending
of high and low income households. The reversion of spending to the pre-
pandemic level differs remarkably, with the level of low-income households
being almost back to the pre-pandemic level. Spending from high-income
households fell more and recovered less - a finding that we need to keep in
mind because belowwe show that the sensitivity of high-income households
to pandemic shocks is actually smaller than that of low-income households.

B. The surprise number of fatalities

Consumption should respond to the unexpected severity of the pandemic.
Hence, in order to investigate the consumption response, we need a series of
the surprise component of the pandemic. We formulate the surprise in terms
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of the unexpected number of fatalities due to COVID-19, i.e. the difference
between expected and realized deaths.
We retrieve daily real-time projections on deaths and the unrevised re-

ported number of deaths due to COVID-19 in the US from Gu (2020). This
data is open source and can be downloaded from www.covid19-projections.
com. The author takes a (machine learning) data-driven approach rooted
in epidemiology to forecast infections and deaths from the coronavirus epi-
demic in the US (and around the world).9 These forecasts have been covered
by almost all major US media outlets.
Importantly, we do not only have the latest forecast, but also the histor-

ical forecasts. The forecasts are updated on a daily basis. We use this data
to derive a pandemic shock, i.e. the unexpected number of deaths due to
COVID-19. To do so, denote dt|t−1 the forecast made in t − 1 for deaths
occurring in t. Thus, we focus on one day-ahead forecasts. Our pandemic
shock is calculated as the difference between the actual outcome for t and
the forecast number of deaths, that is

et = dt − dt|t−1. (1)

That is, our pandemic shock is the difference of today’s number of reported
deaths and yesterday’s forecast for today. Notice that the number of reported
deaths exhibits transient drops on weekends, typically followed by increases
during the week. We therefore purify our shock by regressing the shock on
a set of dummies for each day of the weak. Formally, we regress

et = γDt + φet−1 + εt. (2)

Note that the estimated residuals for εt can be interpreted as the pandemic
shock which cannot be explained neither by the set of daily dummies cap-
tured in Dt nor by yesterday’s forecast error.10

Table (1) reports some descriptive statistics for both the raw shock et and

9Details on the forecasting model, including assumptions on the model pa-
rameters are available at https://covid19-projections.com/model-details.

10We checked whether other control variables have explanatory power, in-
cluding the daily number of cases and a lag polynomial for up to seven lags.
However, it turns out that the dynamics jointly explained by these variables is
negligible. We therefore exclude them from our regression.
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Table 1: DESCRIPTIVE STATISTICS FOR SHOCKS

RAW SHOCK
MIN MAX MEAN MEDIAN 5th 95th Q-STAT. p−VAL.
-1007 2416 52.86 63 -587.1 745.40 184.65 0.000

PURIFIED SHOCK
MIN MAX MEAN MEDIAN 5th 95th Q-STAT. p−VAL.

-632.10 1865.36 0.00 -29.68 -468.59 465.68 10.61 0.717
Notes: Numbers are in deaths per day. Shocks are calculated based on unrevised real-time
data. The last two columns report Q-statistics and p−values for a Ljung-Box test with the
null hypothesis of zero autocorrelation up to 14 lags.

the purified shock εt. It is noteworthy that a large fraction of outliers can be
explained by our daily dummies. This can be seen because for the purified
shock, the 5th and 95th percentiles are much closer to zero than for the raw
shock. Also for the minimum and maximum values of our shock, a notable
fraction seems to be grounded on the seasonal patterns that is apparent in
the reported number of deaths. The purified shock is almost iid and has no
serial correlation for up to fourteen lags. Finally, in order to interpret our
shock in terms of standard deviations, we subtract the mean and divide the
series by the sample standard deviation.
Figure (2) shows the underlying data we use to derive the shock as well

as our shock series. Starting with the right panel, the bars show the actual
daily reported number of deaths over time. The black solid line corresponds
to the one-step ahead forecasts. One can immediately recognize the seasonal
pattern mentioned before. The reported number of deaths increased up to
2000 per day until the end of April and started to steadily decrease afterward,
with daily deaths (on average) below 500 by the end of June. However, since
early July, the number of daily deaths started to increase again. Interestingly,
the forecasts follow the overall direction of the actual number of reported
deaths with forecasts errors being either positive or negative equally likely.
The left panel shows the raw and the purified shock series constructed as
described above. While the raw series clearly exhibits seasonal patterns, the
purified shock series now looks very much like an iid process. Moreover,
especially from May onward, we can now see that a significant fraction of
the swings disappears when taking seasonality into account.
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Figure 2: RAW VS PURIFIED SHOCK

Notes: The left panel shows the raw shock calculated as et = dt − dt|t−1 as well as the shock
after our purification procedure, i.e. εt. The right panel shows the reported number of
deaths per day (in real-time) of people infected with the coronavirus (purple bars) as well as
the real-time one-step-ahead forecasts.

III METHODOLOGY

We investigate the effects of pandemic shocks via local projections as pro-
posed by Jordà (2005). Local projections provide a flexible framework and
are easy to implement. Moreover, they offer a straightforward way to con-
dition the short-run effects of pandemic shocks on the state of the pandemic.

A. Setup

The linear model of departure reads

yt+h = αh + βhεt + δht + γhxt +ϕhDt + ut+h, (3)

where yt+h is the response of the dependent variable at time t+h to a shock εt

occurring in t. In our model, the dependent variable is household spending
and εt is the pandemic shock introduced before. The coefficient αh corre-
sponds to a fixed effect at horizon h and δh measures the effect of a determin-
istic linear trend. The vector γh contains the effects of the lagged endogenous
variable and other control variables (including our shock) at horizon h cap-
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tured in the vector xt and ϕh contains the effects of daily dummy variables.
Finally, ut+h is assumed to have a zero mean and a (strictly) positive variance.
Our vector Dt in (4) includes the stringency index provided by researchers

from the University of Oxford as well as two dummy variables to account
for (1) the stimulus payment under the CARES act that started in April 15,
the Paycheck Protection Program signed into law by President Trump on
April 24, and (2) the three FOMC meetings since April.11 In our baseline
setting, xt includes one lag of the endogenous variable, one lag of the Eco-
nomic Policy Uncertainty Index (EPU) as well as one lag of our structural
shock. This lag structure is the recommendation of the Bayesian Schwartz
Criterion.12

The model presented before is linear. We now generalize the model to al-
low for state-dependent effects, that is we condition the impact of the shock
on different regimes. Our preferred version throughout this paper condi-
tions the response on the growth rate of new infections. Therefore, we esti-
mate a smooth transition model of the form

yt+h = F(zt)
(
αI

h + β
I
hεt + γ

I
hxt

)
+ (1 − F(zt))

(
αII

h + β
II
h εt + γ

II
h xt

)
+ δht +ϕhDt + ut+h,

(4)

where the fixed effects, the effects of controls and the lagged endogenous
variable captured in xt as well as the effect of our shock are now allowed to
differ across regimes I and II at each horizon h, respectively. That is, the
indicator function F(zt), which lies between 0 and 1, determines the weight
of each regime, whereby F(zt) depends on outcomes of the state variable zt,
which in our case is the growth rate of new infections.
In effect, the response of our endogenous variables to a shock is a weighted

11The stringency index is meant to measure the strictness of policies restrict-
ing people’s behavior and lies between 1 and 100. The data is available on
a daily frequency at https://www.bsg.ox.ac.uk/research/research-projects/
coronavirus-government-response-tracker. The index is aggregated from 17
indicators of government responses, economic policies and health system poli-
cies.

12The results are insensitive to using the Akaike Information Criterion in-
stead.
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average of regimes I and II conditional on zt and reads

∂yt+h

∂εt

∣∣∣∣∣
zt

= F(zt)βI
h + (1 − F(zt))βII

h . (5)

In the next subsection, we will describe the specification of F(zt) in detail.
However, it is important to note that our framework allows us to easily com-
pare the sensitivity to shocks across both regimes, without making explicit
assumptions (as in the case of VARmodels) on the economy staying in either
regime I or II. That is, we can draw inference on the difference between βI

h
and βII

h based on t−type tests.

B. State-Dependent Dynamics

Our approach follows Born et al. (2020) and relies on specifying the transi-
tion function F(zt) based on the empirical cumulative density function (CDF)

F(zt) =
1
T

T∑
t=1

1z j<zt, (6)

where T is the sample size and 1z j<zt = 1 if z j < zt and zero otherwise. That
is, 1z j<zt denotes the indicator function of the event z j < zt. We refer to this
approach as non-parametric, as we do not need to specify parameters driving
the transition.
We choose the weekly growth rate of new infections as our state variable.

Since the outbreak of the pandemic, numbers on new infections are reported
every day in almost all media outlets. Public policies geared towards "flat-
tening of the curve" made this statistic particularly popular. The left panel of
Figure (3) shows the weekly growth rate of new infections with the coron-
avirus over time. The right panel shows the transition functions F(zt) based
on the empirical cumulative density function over time.13

Startingwith the left panel, after awell-pronounced declinewith the growth
rate falling from 60% to almost zero throughout mid of April, the growth

13In order to further get rid of noise in the data, we take a 7-day moving
average before calculating the transition function. It must be stressed, however,
that we get exactly the same results if we abandon the moving average and use
the un-smoothed growth rate.
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rate of new infections fluctuated stable around zero until the beginning of
June. Since then, however, we observe a strong increase in the growth rate
with an increase in cases of above 40% in mid June, which declines again at
the end of our sample.

Figure 3: DERIVING THE STATE VARIABLE
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Notes: The left panel shows the weekly growth rate of daily cases of new infections with the
coronavirus that causes COVID-19. The right panel shows the transition functions F(zt)
based on parametric approach drawing on the empirical cumulative density function.

The right panel of Figure (3) shows the resulting transition function calcu-
lated as described above. While we see a sharp fall of F(zt) at the beginning of
our sample, saying that the economy swiftly moves from regime I to regime
II, the sudden rise in daily cases translates into a fast reversion from regime
II to regime I from mid June onward. As a result, we observe that a high
weight is attached to regime I throughout June and July.

C. Inference

We regress the dependent variable at different horizons on the same set of
control variables. This will likely result in autocorrelated residuals. In or-
der to calculate standard errors that account for the possibility of serially
correlated residuals both within and across equations, we follow the strat-
egy of Ramey and Zubairy (2018) and Tenreyro and Thwaites (2016) and
estimate seemingly unrelated equations as proposed by Driscoll and Kraay
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(1998). That is, we estimate the parameters of interest of each equation sep-
arately and, in a second step, average the moment conditions across hori-
zons h = 0, ...,H when deriving Newey-West standard errors. As a result,
Driscoll and Kraay (1998) standard errors account for autocorrelation across
both, time t and horizons h.
Finally, we follow standard practice (see Jordà, 2005) and set the maximum

autocorrelation lag for the Newey-West procedure to L = h + 1.14

IV RESULTS

In this section, we first set out our baseline results. In the baseline setting,
the idea is to uncover possible asymmetries across regimes in the responses of
consumer spending to a standardized pandemic shock. That is, the baseline
regression focuses on the effects of pandemic shocks conditional on the state
of the infection curve. The sample size covers data from April 3 to July 26,
consisting of 115 observations. After adjusting for leads and lags, the effective
sample size starts in April 4 and ends in July 12 and, hence, consists of 100
observations. The section also reports results for different income levels as
well as for the 10 largest US states.

A. Baseline Results

Figure (4) shows the state-dependent impulse responses of total spending fol-
lowing a pandemic shock. Remember that throughout the paper, all spend-
ing variables are given in percent change relative to the average level of
January. That is, a value of one corresponds to an increase in spending of
one percent relative to January. In the left column, the red-solid line depicts
the impulse response coefficients in regime I following a pandemic shock.
Regime I corresponds to a situation with a high growth rate of new in-
fections. The shaded area corresponds to the 90 percent confidence bands

14Note that for each horizon h, our null hypothesis is that H0 : (βI
h−β

II
h ) = 0.

Since we test the same null hypothesis for each h = 0, ...,H, one could argue
that our t−statistics will result in a multiple testing problem as we test H+1 null
hypotheses at a significance level α and in effect would - on average - reject αn
true hypotheses. However, as pointed out by Tenreyro and Thwaites (2016),
the multiple testing problem is negligible when the t−statistics for adjacent
horizons are correlated, which is what we will see when we discuss our results.
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based on Driscoll-Kraay standard errors. For the purpose of comparison,
we also report the corresponding coefficients from the linear model (red-
dashed line). Accordingly, the second column reports the corresponding
values for regime II, i.e. the regime with a modest growth rate of new in-
fections. The third column shows the t-statistics testing the null hypothesis
H0 : βI

h − β
II
h = 0 for adjacent horizons h = 0, ...,H, where the shaded area

covers the t−critical values for a 90 percent confidence interval, i.e. ±1.645.

Figure 4: RESPONSE OF TOTAL SPENDING

Notes: The first column shows the impulse response coefficients (red-solid)βI
h for h = 0, ...,H

in regime I following a pandemic shock (one standard deviation), the second column shows
the corresponding impulse response coefficients βII

h in regime II. In both cases, the red-
shaded area corresponds to the 90 percent confidence interval relying on Driscoll-Kraay
standard errors. The red-dotted lines in the first two columns correspond to the impulse
response coefficients from the linear model without allowing for state-dependent effects.
The third column shows the t−statistics testing the null that H0 : βI

h − β
II
h = 0 for each

horizon using the Driscoll-Kraay method. The red-shaded area covers the t−critical values
for a 90% confidence interval, i.e. ±1.645.

In this context, it is important to stress that a perfectly symmetric transmis-
sion of pandemic shocks would imply that βI

h = β
II
h ∀h = 0, ...,H. In other

words, a pandemic shock as identified in the previous section would have
the same effects across both regimes. Contrary to this, we would refer to
asymmetric effects when the difference between βI

h and β
II
h is significantly

different from zero.
Starting with the results from the left panel, i.e. the impulse response co-
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efficients in regime I, we see a significant drop in total spending. That is,
following a pandemic shock, total spending falls by about 0.5 percent on im-
pact relative to its average value in January. Spending decreases even further
on subsequent days and peaks at a decrease of 0.8% three to four days after
the shock. Afterwards, total spending starts to steadily revert to its mean
which is reached after eight days. In other words, having recognized the
pandemic shock as bad news, households respond with a significant decline
in aggregate spending when the reported daily number of new infections is
relatively high.
However, we see a different pattern in regime II, i.e. when the growth

rate of new infections is relatively small. Following a pandemic shock of the
same size, spending remains unchanged for the first week. After that, we
find a drop by about 0.5%. The t−statistics in the right panel shows that the
difference between the response in regime I and regime II is significantly
different from zero for the first five days. This being said, we reject the
null hypothesis of symmetric effects and find strong evidence for a regime-
dependent response of spending to a pandemic shock.
As discussed in the introduction, the effect of the pandemic on household

spending, whether it works through voluntary or force consumption re-
straint or an unexpected fall in lifetime income, should increase in the spread
of the pandemic. If few people are affected by the virus, the need to reduce
spending, either voluntarily or through governmental restrictions, remains
limited. Likewise, the drop in lifetime income remains small since a shock
does not call entire industries or job profiles into question. If, in contrast, the
number of infections is large, the shock should have stronger effects. Our
results are consistent with this notion because the effect of the shock is sig-
nificantly larger in regime I compared to regime II. As we will see now,
the shock impact across income quartile is also consistent with this. Low-
income households work more in contact-intensive jobs. With low-income
household bearing the burden of social distancing, the future of these jobs
is uncertain in a situation with many infections, while high-income house-
holds have jobs in which social distancing is possible. The impact of the
shock in regime I should therefore be larger for low-income compared to
high-income households.
Next, we take a closer look on the response of spending and investigate

how the impulse responses differ across income quartiles. This is possible
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because we have data on spending by customers living in ZIP codes with
different income levels, namely high (top quartile) median income, middle
(middle two quartiles) median income as well as low (bottom quartile) me-
dian income. This encourages us to estimate the response of spending to our
pandemic shock across different income classes.
Figure (5) reports the results for spending of all three different income

categories. Starting with panel A, it stands out that, prompted by a pan-
demic shock, high-income households significantly reduce spending when
the growth rate of new infections is relatively high (regime I). After four
days, spending drops by about 0.8% and starts to revert to its mean which is
reached after one week. The reaction to the same shock has no significant
effect in regime II, i.e. when the spread of the virus is slower.
We have a similar picture in panels B and C. While the qualitative pic-

ture is similar to the one of high-income households, it stands out that the
response of households in regime I seems to be negatively correlated with
lifetime income. That is, we see a larger drop in spending for middle-income
households and an even larger drop for low-income households. In regime I,
spending of low-income households drops by 1% percent, i.e. low-income
households are more sensitive to the shock than high-income households.
For all income groups, the response to a pandemic shock depends strongly

on where the economy is at the infections curve. Our results indicate that
over the first week after the shock the response is much stronger in regime
I and is significantly different from the response in regime II. For each in-
come quartile, we cannot reject the null that βI

h = β
II
h over the first few days

considered. Hence, the response of household spending is asymmetric across
regimes.
These findings can be rationalized based on the notion that the fall in life-

time income as a result of a pandemic shock is larger for low-income house-
holds. Workers in the service and hospitality sector, for example, face un-
certainty about whether and when they can return to their old jobs. In
addition, our results resemble what is found in literature dealing with the
nexus between household characteristics and the marginal propensity to
consume (MPC). Aggregate MPC is typically found to depend on how ag-
gregate shocks are distributed across households (see, for instance, Carroll
et al., 2017; Carroll, 2009; Gelman, 2020; Calvet and Comon, 2003). In this
context, higher marginal propensities to consume as typically found in the
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Figure 5: RESPONSE OF SPENDING BY INCOME QUARTILE

Notes: The first column shows the impulse response coefficients (red-solid)βI
h for h = 0, ...,H

in regime I following a pandemic shock (one standard deviation), the second column shows
the corresponding impulse response coefficients βII

h in regime II. In both cases, the red-
shaded area corresponds to the 90 percent confidence interval relying on Driscoll-Kraay
standard errors. The red-dotted lines in the first two columns correspond to the impulse
response coefficients from the linear model without allowing for state-dependent effects.
The third column shows the t−statistics testing the null that H0 : βI

h − β
II
h = 0 for each

horizon using the Driscoll-Kraay method. The red-shaded area covers the t−critical values
for a 90% confidence interval, i.e. ±1.645.

18



literature can explain why our pandemic shock has a larger impact on lower-
income households. In the context of the COVID-19 pandemic, Karger and
Rajan (2020) show an MPC of 0.68 for hand-to-mouth consumers and 0.23
for households with access to assets. 15

Figure 6: RESPONSE OF RELATIVE SPENDING (HIGH INCOME - LOW INCOME)

Notes: Difference of estimated coefficients βhigh,I
h − βlow,I

h in regime I and βhigh,II
h − βlow,II

h in
regime II. The shaded areas cover the 5th and 95th percentiles from the distribution of the
block bootstrap procedure as described in the text.

The previous graph revealed a significant state-dependence of the spend-
ing responses. However, we could not infer whether the response of high-
income households is significantly different from low-income households.
To shed light on the responses across quartiles, we proceed as follows: we
generate 2,000 samples of contiguous blocks (with replacement) of four con-
secutive observations each. Within each replication, for each h = 0, ...,H
we then estimate the impulse response coefficients and calculate the sign of
β

high, j
h −β

low, j
h in regime j =I, II.16 We then use the distribution of our boot-

15Explanations include households’ wealth or employment status and the
accompanying heterogeneity with respect to liquidity constraints.

16One difficulty in our application is that our set of control variables includes
two dummies which have mostly 0-entries. It is therefore likely that inverting
the matrix of right-hand side variables is not possible due to multicollinearity.
To overcome this issue, we add another step and make sure that each bootstrap
sample contains at least once those observations (not blocks) where the dummy
variables are equal to one. From a practical point of view, this should not be a
problem, since the dummy variables only improve the in-sample fit.
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strap and report the 5th and 95th percentiles.
We show the results in Figure (6). Starting with the left panel, i.e. regime

I, we find a significantly positive difference, which peaks at about 0.5% after
six days. To interpret this finding, recall that the actual response for both
income quartiles was negative. Hence, the positive value means that, follow-
ing a pandemic shock, low-income households reduce spending significantly
more than high-income households. The results are consistent with the view
that the pandemic prevents low-income households from returning to their
jobs, while high-income households can reconcile their jobs with the neces-
sary degree of social distancing. As a result, the drop in permanent income is
larger for low-income households. Also in regime II, i.e. when the number
of new infections is growing less strongly, we find that the drop in spend-
ing is significantly stronger for low-income households. Hence, a pandemic
shock prompts an increase in consumption inequality.

B. The Quantitative Significance of Pandemic Shocks

So far our results imply that spending is significantly responsive to our iden-
tified pandemic shock. However, we do not yet know the overall quanti-
tative significance of our shock. If the shock we have identified is indeed
an important driver of consumer spending, this should also be reflected in
the variance of the forecast errors. In this section, we therefore apply the
strategy of Gorodnichenko and Lee (2019) for forecast error variance de-
compositions (FEVDs) within the local projection framework and assess the
contribution of our pandemic shock to the variation of forecast errors at dif-
ferent horizons. In a first step, we estimate the same model as before, but
this time we leave out the contemporaneous effect of the shock

yt+h = F(zt)
(
αI

h + γ
I
hxt

)
+ (1 − F(zt))

(
αII

h + γ
II
h xt

)
+ δt +ϕhDt + ut+h. (7)

In a second step, we take the estimated forecast errors ût+h and regress them
on the shock εt occurring between t and t + h while accounting for our
regimes I and II from our baseline setting

ût+h = F(zt)
(
ωI

0εt + · · · + ω
I
hεt+h

)
+ (1 − F(zt))

(
ωII

0 εt + · · · + ω
II
h εt+h

)
+ ηt+h,

(8)
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where ωi
j for j = 0, ..., h and i = I, II measures the state-dependent effect

of the pandemic shock on the estimated forecast error. Note that the coef-
ficient of determination of this regression gives us the share of the forecast
error variance which is explained by our pandemic shock. As shown by
Gorodnichenko and Lee (2019), the R2-method of the above regression is a
natural estimator of the population share of variance explained by the future
innovations εt in the total variations of our endogenous variable.
Inference is based on the distribution of theR2s from a block bootstrap pro-

cedure including a bias-correction step as recommended by Gorodnichenko
and Lee (2019).17

Figure 7: FEVD BY INCOME QUARTILES
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Notes: Explained share of forecast error variance after the bias-correction procedure (red
dots) and the 5th and 95th percentiles of the distribution of the block bootstrap procedure

Remember that we do not have a VAR-based benchmark for our local
projection-based FEVD, which is due to the novelty of the data. However,
theoretically, and based on our results so far, we expect pandemic shocks to

17To do so, we generate B = 2000 samples consisting of contiguous blocks
of four consecutive observations each. Our bias is calculated as the difference
between the mean over all bootstrap-based R2,(b) and the R2 from our baseline
procedure, i.e. biash = B−1 ∑B

b=1 R2,(b)
−R2. Hence, our bias-corrected variance

decomposition reads R2,bc = R2
− biash. As in the previous section, we adjust

our bootstrap algorithm and manually add the dummy observations equal to
one in our bootstrap samples to improve the robustness of our estimates.
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be a major driver of fluctuations in household spending. This is what we see
in Figure (7), which shows the estimated share of the forecast error variance
that can be explained by our pandemic shock by income quartiles. The red
dots correspond to the explained share of the forecast error variance. The
green bars cover 90% of the distribution the R2s obtained by our bootstrap
procedure. For all groups, our pandemic shock seems to be an important
driver of spending. Over the first week, our shock explains up to above 20%
of the forecast error variance. While we observe a drop in the explained
share for all income quartiles after the first week (especially for high-income
households), the quantitative significance increases sharply and reaches its
maximum after 12 days or so. We see again that spending for low-income
households is most responsive to our pandemic shock, with an explained
share of above 40% after nearly two weeks. Interestingly, the 5th percentiles
are above zero across all income quartiles and for all horizons considered.
Our results therefore point to an important role of the pandemic shock in
the variation of consumer spending. While after 12 days about 29% of the
forecast variance can be explained for high-income households, this share is
almost twice as large for low-income households. In other words, our results
imply that for low-income households all other shocks together have a lesser
role in the fluctuations of spending than our pandemic shock alone.
Thus, we conclude that our pandemic shock is a significant driver for all

income groups, but especially for low-income households.

V RESULTS ON THE STATE LEVEL

Our data on spending is also available on the level of US states. We therefore
repeat our exercise from the previous subsection and now investigate the
responsiveness of spending for the ten states with the largest population.
We estimate the baseline model with spending in each of the 10 largest US

states as the dependent variable. The driving variable remains the nation-
wide pandemic shock and the state-variable is still the nation-wide growth
of new infections.
Figure (8) shows the mean impulse responses of total spending following

a pandemic shock for 10 states. It stands out that the qualitative pattern in
regime I appears to be very homogeneous across all states. In regime I, for
all states we observe a sharp drop in spending which peaks after four or five
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Figure 8: Response on the State Level

Notes: The first column shows the impulse response coefficients βI
h for h =

0, ...,H in regime I following a pandemic shock (one standard deviation),
the second column shows the corresponding impulse response coefficients
βII

h in regime II. The third column shows the t−statistics testing the null that
H0 : βI

h − β
II
h = 0 for each horizon using the Driscoll-Kraay method. The

red-shaded area covers the t−critical values for a 90% confidence interval,
i.e. ±1.645.

days before it returns to its mean after two weeks. Also in regime II, the
overall direction of the responses looks quite similar across all states. The
third column shows that, for the first five days, in many cases we reject the
null of equal responses across regimes.
While there are no error bands shown in Figure (8), Figure (9) shows the

corresponding impulse response coefficients across states with ±1.645 stan-
dard deviations for selected periods, namely four, eight and twelve periods
after the pandemic shock. For reasons of comparison, the transparent hori-
zontal lines report the coefficients on the national level.
In almost all states, spending after four days is significantly reduced in

regime I. In regime II, in contrast, we see an insignificant response for most
states. Let us focus on two states, Michigan and New York, in which spend-
ing behaves differently than in most other states. Eight days after the occur-
rence of the shock in regime I, the drop in spending is sharpest in Michigan,
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while the response in New York is also well below the nationwide average
response. Household spending in Michigan and New York deviates from
the nationwide recovery after 12 days since spending in regime I is below
spending in regime II.

VI ALTERNATIVE STATE-VARIABLES

In our baseline setting, we choose the growth rate of daily infections as our
state variable. While figures about new infections are omnipresent in the
media, the drawback of this state variable is that it does not necessarily pro-
vide information on where the economy stands on the infection curve. In
fact, households may condition their spending behavior on the overall level
of the infections curve, rather than the slope of the curve.
As a first alternative, we therefore repeat our estimation and take as a state

variable an indicator variable which is 0 if the temporary peak of new infec-
tions is not yet reached and 1 if the total number of new infections decreases
(alternative I). To do so, we set our indicator function to 1 until April 9th, to
0 from April 10th to June 8th, and to 1 again afterwards. These are roughly
the cut-off dates that reflect a reversal of the current infection pattern.18

As a second alternative, we specify F(zt) as a logistic function of the form

F(zt) =
exp

(
κ

zt−µ
σz

)
1 + exp

(
κ

zt−µ
σz

) , (9)

where µ is used to control the proportion of the sample the economy spends
in either state, and σz is the sample standard deviation of the state variable
zt. The parameter κ controls how abruptly the economy switches from one
state to the other following movements of the state variable. In other words,
higher values of κ mean that small movements of the state variable suffice
to induce a switch from one regime to the other. However, although the
parametric approach has the disadvantage that we have to make explicit as-
sumptions about the parameters determining the behavior of switching from
one state to the other, this approach is well understood and relies on the idea

18Keeping anything else constant, we therefore replace F(zt) with an indi-
cator variable I(zt), where I(zt) is equal to zero from April 10 to June 8 and
equal to one otherwise.
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Figure 9: Response of Total Spending on the State Level
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Notes: The dots correspond to the point estimates point estimates for regime
I (red) and regime II (blue) after 4 periods (upper panel), 8 periods (middle
panel) and 12 periods (bottom panel). The edges indicate 1.645 standard
deviations in order to cover a 90% confidence interval, based on Driscoll-
Kraay standard errors. The horizontal lines reflect the nation-wide effects
in each regime.
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of Granger and Terasvirta (1993) and is, among others, used in Auerbach
and Gorodnichenko (2012), Ramey and Zubairy (2018) and Tenreyro and
Thwaites (2016). We set κ = 3 which implies an intermediate degree of in-
tensity of regime-switching and set µ = med(zt). Figure (10) shows both

Figure 10: ALTERNATIVE STATES
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Notes: The left panel shows daily new infections (red-solid) and the cor-
responding alternative regimes as described in the main text. The right
panel shows the alternative transition function obtained by the parametric
approach as described in the text.

alternative regimes. The left panel shows the actual number of daily new in-
fections and the distinction of regimes I and II as indicated by the black ver-
tical lines on the cut-off dates. The right panel shows the transition function
based on the parametric approach (blue-dashed). The alternative transition
function looks very much like our baseline transition function, although we
observe a higher weight of regime I at the end of our sample.
Figures (11) to (14) in the appendix show the corresponding impulse re-

sponse functions for total spending and spending across income quartiles for
both alternative regime classifications. It stands out that our results from the
first alternative state look exactly like the results in the previous section. That
is, total spending significantly decreases in regime I, i.e. when the growth
rate of new infections is relatively high. The peak is reached after 3-4 days
with a drop of 0.7 percent. Also the responses in regime II look exactly like
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those from our baseline results. Finally, we also observe a significant differ-
ence in the responses across regimes which is consistent with asymmetric
effects. The responses across different income quartiles also look very much
like in the benchmark model.
The results from our alternative state variable (alternative II) exhibit a sim-

ilar picture. Both the shape of the impulse responses and the magnitudes of
the effects are remain unchanged. This being said, our results indicate that
spending reacts more strongly when the number of new infections is high.
Again, we find that the difference across regimes I and II is again stronger
for low-income households.

VII CONCLUSION

We provided evidence on the causal effect of unexpected news about the
COVID-19 pandemic on spending of US households. Our first finding is
that a pandemic shock, the forecast error about the number of fatalities, has
a negative effect on spending: a surprise increase in the number deaths leads
to a sharp reduction in expenditures. We also showed that this effect is de-
pending on the position of the US economy on the infection curve. With the
number of new infections increasing, the effect of a shock is much stronger.
If the growth rate of the number of infections is small, in contrast, the pan-
demic shock has almost no effect. A second finding pertains to the effect
across income quartiles. If the number of infections is increasing strongly,
the shock prompts a much larger adjustment of spending from low-income
households compared to high-income households. Hence, the pandemic
shock increases consumption inequality.
Our results have two implications for economic policies designed to sta-

bilize aggregate economic activity. First, policy should target low-income
households more than high-income households. Spending of low-income
households is particularly sensitive to a pandemic shock, and support pack-
ages will be more effective when targeting relatively poor households. Sec-
ond, economic support through direct and indirect transfers should be con-
ditioned on the state of the pandemic in order to stabilize consumption ef-
fectively. Transfers will be more effective when the number of infections is
large, because in this state households would reduce spending the most.
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APPENDIX

Figure 11: RESPONSE OF TOTAL SPENDING: ALTERNATIVE I

Notes: The first column shows the impulse response coefficients (red-solid)βI
h for h = 0, ...,H

in regime I following a pandemic shock (one standard deviation), the second column shows
the corresponding impulse response coefficients βII

h in regime II. In both cases, the red-
shaded area corresponds to the 90 percent confidence interval relying on Driscoll-Kraay
standard errors. The red-dotted lines in the first two columns correspond to the impulse
response coefficients from the linear model without allowing for state-dependent effects.
The third column shows the t−statistics testing the null that H0 : βI

h − β
II
h = 0 for each

horizon using the Driscoll-Kraay method. The red-shaded area covers the t−critical values
for a 90% confidence interval, i.e. ±1.645.
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Figure 12: RESPONSE OF SPENDINGACROSS INCOMEQUARTILES: ALTERNATIVE
I

Notes: The first column shows the impulse response coefficients (red-solid)βI
h for h = 0, ...,H

in regime I following a pandemic shock (one standard deviation), the second column shows
the corresponding impulse response coefficients βII

h in regime II. In both cases, the red-
shaded area corresponds to the 90 percent confidence interval relying on Driscoll-Kraay
standard errors. The red-dotted lines in the first two columns correspond to the impulse
response coefficients from the linear model without allowing for state-dependent effects.
The third column shows the t−statistics testing the null that H0 : βI

h − β
II
h = 0 for each

horizon using the Driscoll-Kraay method. The red-shaded area covers the t−critical values
for a 90% confidence interval, i.e. ±1.645.
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Figure 13: RESPONSE OF TOTAL SPENDING: ALTERNATIVE II

Notes: The first column shows the impulse response coefficients (red-solid)βI
h for h = 0, ...,H

in regime I following a pandemic shock (one standard deviation), the second column shows
the corresponding impulse response coefficients βII

h in regime II. In both cases, the red-
shaded area corresponds to the 90 percent confidence interval relying on Driscoll-Kraay
standard errors. The red-dotted lines in the first two columns correspond to the impulse
response coefficients from the linear model without allowing for state-dependent effects.
The third column shows the t−statistics testing the null that H0 : βI

h − β
II
h = 0 for each

horizon using the Driscoll-Kraay method. The red-shaded area covers the t−critical values
for a 90% confidence interval, i.e. ±1.645.
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Figure 14: RESPONSE OF SPENDINGACROSS INCOMEQUARTILES: ALTERNATIVE
II

Notes: The first column shows the impulse response coefficients (red-solid)βI
h for h = 0, ...,H

in regime I following a pandemic shock (one standard deviation), the second column shows
the corresponding impulse response coefficients βII

h in regime II. In both cases, the red-
shaded area corresponds to the 90 percent confidence interval relying on Driscoll-Kraay
standard errors. The red-dotted lines in the first two columns correspond to the impulse
response coefficients from the linear model without allowing for state-dependent effects.
The third column shows the t−statistics testing the null that H0 : βI

h − β
II
h = 0 for each

horizon using the Driscoll-Kraay method. The red-shaded area covers the t−critical values
for a 90% confidence interval, i.e. ±1.645.
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