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Abstract: Various studies investigate the effects of learning strategies on students' 

(math) performance. However, particularly in math, one can see a mixed pattern 

of the impact of learning strategies on performance. This is probably because of 

different methodological approaches, leading to different results. This study 

investigates the effect of learning strategies on math performance within different 

statistical and methodological approaches using a sample of 299 undergraduate 

students enrolled in Economics and Business Administration at a midsized 

German university and compares the different outcomes. On the one hand, the 

results suggest that most studies probably report biased estimations, which are 

not trustworthy. On the other hand, those learning strategies might not be as 

important as educational researchers and practitioners think. 

Keywords: math performance, learning strategies, omitted variables, higher 

education 

  

mailto:buechele@uni-kassel.de


 

2 

 

WHAT DO WE ACTUALLY KNOW ABOUT MATH LEARNING 

STRATEGIES? 
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impact of learning strategies on performance. This is probably because of 

different methodological approaches, leading to different results. This study 

investigates the effect of learning strategies on math performance within different 

statistical and methodological approaches using a sample of 299 undergraduate 

students enrolled in Economics and Business Administration at a midsized 

German university and compares the different outcomes. On the one hand, the 

results suggest that most studies probably report biased estimations, which are 

not trustworthy. On the other hand, those learning strategies might not be as 

important as educational researchers and practitioners think. 

Keywords: math performance, learning strategies, omitted variables, higher 

education 

1. Introduction 

Mathematics in higher education is one of the most challenging subjects, particularly in 

study programs with service mathematics like economics or engineering. Furthermore, 

many students (in Germany) drop out because of performance issues (Heublein 2014). 

Notably, the transition to higher education challenges students in two ways. Firstly, 

structural changes from secondary school to higher education (e. g., formal teaching 

authority vs. self-regulated learning), and secondly, math-related changes (e. g., proof 

schemes) might be challenging (Geudet 2008, Luk 2005). 

This transition, however, most likely leads to changes according to students' use 

of learning strategies (Coertjens 2017, Donche 2010). The presented study uses these 

naturally occurring changes and investigates the effect of different learning strategies on 

students' math performance and learning growth. Furthermore, this study compares 
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different and highly used methodological and statistical approaches when examining the 

effect of learning strategies. 

2. Theoretical background 

2.1 Literature Review 

2.1.1 The influence of learning strategies on academic achievement 

A wide variety of studies investigate the influence of learning strategies on academic 

achievement from primary to higher and adult education. Cho (2021), for instance, 

reports positive effects of self-regulated strategies, functioning as a mediator variable 

between adaptive beliefs and the performance of international students. Magen-Nagar 

and Cohen (2017) also found mediating effects of learning strategies, and their results 

imply that different learning strategies mediate the positive influence of motivation on 

academic achievement. Dabas et al. (2021) report that higher-skilled students (utilizing 

exam grades) have more robust metacognitive self-regulation and elaboration. Further 

recent studies (Diseth et al., 2021; Weisskirch, 2018) report similar results of significant 

positive correlations between strategic learning approaches, quality of learning, and 

effort with course grades. Particularly in medicine, learning strategies positively 

influence academic achievement (Nabzadeh, 2019; Hayat et al., 2020). Further research 

approaches are interventions in the form of metacognitive training for teachers or 

students. Olson (2012) performed an experimental study on secondary school teachers 

and found that teacher training on cognitive strategies used during lessons increases 

students' reading and writing. Similar results were reported by Ulstad et al. (2018).  

Most of the reported studies focus on particular courses or study programs (such 

as English, Math, or Medicine) or overall academic achievement (e. g. GPA) at single 

schools or universities. A meta-analysis, however, uses this variety and combines the 
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effects of these studies with limited external validity. Credé et al. (2011), for instance, 

reviewed studies using the MSLQ (Motivated Strategies for Learning Questionnaire) 

and found positive but mostly weak correlations between elaboration, organization, as 

well as meta-cognitive self-regulation, and general academic achievement (GPA). De 

Boer et al. (2018) report a similar influence of these learning constructs on students' 

achievement, investigating studies focusing on student strategy instruction 

interventions. The meta-analysis of Richardson et al. (2012) reveals, among others, a 

significant positive influence of metacognition, elaboration, and deep learning on 

students' GPA, while surface learning correlates negatively. However, learning 

approaches and the effect on academic achievement might differ in different subjects or 

educational settings. Therefore, it seems necessary to review the literature on the impact 

of learning strategies on mathematic achievement separately in the next section. 

2.1.2 The influence of learning strategies on math achievement 

The studies focusing on mathematics subjects find somewhat mixed results and cannot 

fully replicate the clear findings of the previous section. With a view to studies 

investigating the relationship between learning strategies and secondary school math 

performance, research finds a positive influence of higher metacognitive strategies 

(Chiu et al. 2007) and deep learning strategies (McInerney et al. 2012; Murayama et al. 

2013) on students' math performance. High use of surface learning (McInerney et al. 

2012; Murayama et al. 2013) or memorizing strategies (Chiu et al. 2007) negatively 

influences math achievement. A further study (Fadlelmule et al., 2015) does not find 

any significant correlation between students' math performance and organizational or 

metacognitive strategies, while robust elaboration strategies correlate positively 

(Murayama et al., 2013). 
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Regarding studies investigating college students' performance, the picture gets 

even fuzzier. For instance, Cho and Heron (2015) do not find any significant influence 

of college students' metacognitive strategies on math achievement. Laging and 

Voßkamp (2017) reported similar results, and Liston and O'Donogue (2009) did not 

find any significant effects of memorizing strategies, surface learning, elaboration 

strategies, or deep learning. Liebendörfer et al. (2022) report a positive impact of 

practicing and frustration resistance and adverse effects of repeating on students' math 

achievement. This picture gets even more differentiated when focusing on the point of 

time students' learning strategies, and math achievement was measured. Roick and 

Ringeisen (2018) find positive effects of strong metacognitive learning strategies on 

performance when measured at the beginning of the semester and adverse effects of the 

same strategies before the final exam. 

This mixed pattern leads to various methodological problems when investigating 

the influence of learning strategies on math achievement. On the one hand, the point of 

time the learning strategies and math achievement are measured seems essential, since 

at the beginning of tertiary education, "the variables map the learning behaviour the 

students applied at school "(Laging and Voßkamp 2017, p. 132). On the other hand, the 

reviewed literature on the influence of learning strategies on math performance cannot 

provide a clear picture, which might be due to the studies' different methodological 

approaches. In the next section, we give a brief overview of the various methodological 

approaches and the problems regarding internal validity. However, we focus on 

practical examples rather than technical, mathematical, or statistical explanations1. 

 

1 Readers interested in more technical approaches are refered to Antonakis (2010) and Sajons 

(2020). 
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2.2 Methodological approaches and issues  

Focusing on the methodological approaches and statistical analysis of the above-

reviewed studies, one finds analysis with cross-sectional and longitudinal data, 

correlative or experimental studies, and different statistical techniques, like correlation 

analysis, regression analysis (OLS), and structural equation modeling (SEM). However, 

most of the studies cannot provide any causally interpretable results. The different 

statistical approaches, which also depend on the methodological setting (e. g. cross-

sectional vs. longitudinal data), limit the results. Furthermore, only about half of the 

studies mention limitations regarding the causation of their results. 

The problem is often summarized as "endogeneity", which is a threat to one of 

the conditions of causal effects, namely, that other causes must not explain the 

relationship between two variables (Kenny 1979). In the case of endogeneity, there is a 

correlation (covariance (COV)) between the independent variable (e. g., particular 

learning strategy (LS)) and the error term of the dependent variable (e. g., math 

achievement (MA), see Figure 1). 

[Figure 1 near here] 

This (unwanted) correlation, however, leads to an inconsistent (biased) estimator 

(e. g., Sajons 2020). Literature (Antonakis et al. 2010; Antonakis et al. 2014) refers to 

different validity threats that result in biased estimations. In this study's focus, omitted 

variables are the most crucial threat. Omitting variables means (among others) not 

including important control variables or not knowing about the control variables. Then, 

the estimation will be inconsistent, as shown by Antonakis et al. (2010). One can 

identify groups of often used statistical approaches, which all suffer (at different levels) 

from problems regarding the internal validity of the results, which are presented next. 
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2.2.1 Correlation analysis and group differences 

Studies that focus solely on correlations form the first group. For instance, 

Liston and O'Donoghue (2009) perform separate correlation analyses to investigate the 

influence of learning strategies on math performance. Studies investigating and 

comparing differences in learning strategies for higher-skilled and lower-skilled 

students (e. g., Dabas et al. 2021, Thiessen and Blasius 2008), or perform cluster 

analysis (e. g., Malcolm and Meyer 2004), are also correlative. The issue with solely 

correlative results in cross-sectional and non-randomized data is that one cannot 

interpret it causally because of omitted variables. 

[Figure 2 near here] 

Correlation analysis is performed isolated (for each learning strategy separately). 

Therefore, the estimated correlation between different learning strategies and math 

achievement is likely biased (see Figure 2). For instance, given an accurate model (A1), 

where a second learning strategy (LS2) is correlated with both the first learning strategy 

(LS1) and the math achievement (MA), isolating the second learning strategy from the 

model, which is the case for separated correlation analysis (A2), would lead to omitted 

variable bias. In a non-randomized setting, one can nearly always find such a third 

variable, affecting both the independent and dependent variables. Therefore, most 

studies do not rely on separate correlation analysis but rather use statistical models, 

where one can implement more variables. 

2.2.2 OLS and SEM in cross-sectional data 

Therefore, the second group clusters studies that perform multiple regression 

analysis (OLS) or structure equation modeling (SEM). The main difference between 

these two approaches and the separated correlation analysis is that one can implement 

more than one dependent variable and control different variables. However, the studies 
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in this group use cross-sectional data. From the above-reviewed studies Cho (2021), 

Diseth (2010), Fadlelmula et al. (2015), Magen-Nagar & Cohen (2017), Nabizadeh et 

al. (2019), Hayat et al. (2020), McInerney (2012) use SEM, while Weisskirch (2018), 

Chiu et al. (2007), and Cho and Heron (2015) use OLS to identify the influence of 

learning strategies on math achievement. However, when it comes to omitted variable 

bias, both methods suffer from the same methodological issue (see Figure 3). 

[Figure 3 near here] 

Assuming an accurate multiple regression model (B1.1) with motivation (MOT) 

as a control variable correlating with the set of learning strategies (LSi) and math 

achievement (MA), the estimations 𝛽1i are consistent. Excluding motivation from the 

model, when, for instance, student data for motivation is not available, the estimates of 

𝛽1i get inconsistent because the variable motivation now acts as an omitted variable, and 

the variables LSi directly correlate with the error term of math achievement (B 1.2). 

SEM behaves very similarly to omitted variables. Example B2.1 shows a valid model 

with a consistent 𝛽1 estimator; not controlling for motivation as a control variable 

results in an inconsistent estimation of 𝛽1 (B2.2). 

2.2.3 OLS and SEM in "quasi-panel-data" 

In the next step, to overcome the issue of omitted variables, some studies make 

use of longitudinal data (Laging and Voßkamp (2017), Roick and Ringeisen (2018), 

Liebendörfer et al. (2022)). While longitudinal data can help reduce estimation bias 

(students' characteristics and confounding variables might be constant over time), these 

studies either miss crucial information or do not follow acceptable methods to make use 

of the time-series data. We refer to this type of data as "quasi-panel-data". For instance, 

Roick and Ringeisen (2018) measured learning strategies at two points in time, the 

beginning of the semester and later, before the final exam. Math achievement, however, 
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was only measured once at the second point in time. On the contrary, Liebendörfer et al. 

(2022) measured math achievement twice but learning strategies only once. Therefore, 

these studies cannot use statistical methods of panel analysis since crucial information 

on independent or dependent variables is unavailable at both points. However, these 

studies have an advantage compared to studies using cross-sectional data. They can 

implement prior math achievement (at the beginning) as a control variable and predictor 

for the later math achievement measured at the second point. Controlling for students' 

prior math achievement should combine various control variables and underly the 

consistency of the estimation, but it remains unclear whether it completely solves 

omitted variable bias (see Figure 4). 

[Figure 4 near here]  

One could assume an accurate model (C1), where the math achievement at the 

second point in time (MAT2) depends on learning strategies (LSi), math achievement at 

the first point in time (MAT1), and, for instance, students' prior high school GPA 

(pGPA). Not including the pGPA, which, in this model, correlates with both MAT1 and 

MAT2, will result in biased estimations (C2), even if the correlation between LSi and the 

error term remains zero, which is unlikely. In this case, the bias might get through the 

correlations of MAT1 with the error term (see also Antonakis et al. 2010). Consequently, 

controlling for prior math achievement leads to a more consistent estimation than 

analysis with cross-sectional data; however, it is not enough to claim causation. 

2.2.4 Methods for more consistent estimations 

One can fall back on various experimental or quasi-experimental designs to 

counter endogeneity. There are, for instance, methods like propensity score matching 

(PSM), difference-in-difference (DID), regression-discontinuity (RD), and instrumental 

variable (IV), which are very common in research fields of economics, but relatively 
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unknown in social sciences or management research (Antonakis et al. 2010). These are 

approaches for quasi-experimental settings and evaluations of interventions where 

randomized manipulation is impossible. However, to examine the influence of learning 

strategies on academic achievement, these approaches seem (except IV or DID) 

complicated and not suitable. Therefore, we propagate two possible approaches to 

minimize endogeneity bias: first-best and second-best options. 

The first best option is randomization within an experimental setting. Students 

could be randomly assigned to an experimental and control group. Studies have shown, 

that educational interventions might influence students' strategy use (Dignath et al. 

2008, Biwer et al. 2020). Therefore, interventions could foster, for instance, deep 

learning strategies of the students in the experimental group, and omitted variables 

would be addressed because of the randomization. Olson (2012) and Ulstad et al. (2018) 

investigate randomized metacognitive interventions for teachers and report a positive 

effect on students' academic achievement. However, randomization is not always 

possible, and even if one conducts a randomized experiment, results might still be 

biased if an IV approach is not performed (see Sajons 2020). 

[Figure 5 near here] 

The illustrated research design in Figure 5 uses a randomized intervention to 

estimate the effect of a learning strategy (LS1) on math achievement (MA). In the first 

setting (D1), experimental studies measure the causal effect of the intervention on the 

learning strategy (𝛽1). However, the learning strategy acts as a mediator between the 

intervention and math achievement. Therefore, there is a second correlation between the 

learning strategy and math achievement, which is, in most cases, not separately 

analyzed. If only the direct effect (intervention → math achievement (𝛽1 * 𝛽2)) is 

reported, this effect could still be biased if the estimator of 𝛽2 is inconsistent. Therefore, 
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Sajons (2020) suggests an instrumental variable approach. Using the randomization of 

the intervention as an exogenous variation (instrumental variable), one can also estimate 

a consistent estimator for 𝛽2. However, experimental designs, particularly in higher 

education, are laborious, costly, and hardly controllable.  

Therefore, the second-best option for analyzing learning strategy effects is a 

time-series panel design, in which students' academic achievement and learning 

strategies are measured at least twice. Roick and Ringeisen (2018) state that "collecting 

data on the mathematics performance prior to course participation would have enabled 

[…] a measure of relative change in mathematics achievement" (p. 156). The advantage 

of time-series data is that baseline information on learning strategy use, and academic 

achievement is available. Therefore, one can measure students' changes in the use of 

learning strategies between (at least) two points in time and estimate the influence of 

these changes on learning growth over the same time (see e. g. Murayama et al. (2013)). 

Panel analysis (e. g., fixed effects models (FE)) controls for unobserved heterogeneity 

and therefore omitted variables when heterogeneity is constant over time. This means 

that students' time-invariant characteristics that affect academic achievement the first 

time just the same as the second point in time are controlled (see section 3.3). However, 

time-dependent heterogeneity has to be controlled by including crucial variables. 

Additionally, panel analysis reduces measurement errors2 since the same students are 

surveyed at different times, expecting individual measurement errors for learning 

strategy scales to remain the same over time. 

 

2 Measurement errors are, as well as omitted variables, a threat to internal validity (Antonakis et 

al. 2020). 
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2.2.5 Changes in students' use of learning strategies 

Problematic seems that, at first, one has to observe changes in the use of 

learning strategies over time when measuring the effects on academic achievement. But 

how and when does the use of learning strategies change? Change can be fostered with 

educational interventions (first best option) or naturally expected; for instance, the 

transition to higher education changes the students' learning approaches (Hussey 2010). 

Some studies investigate the change in general learning strategies (not math-

related) used in secondary school and higher education; however, naturally occurring 

changes in learning strategy use seem relatively rare in secondary schooling. For 

instance, Leutwyler (2009) could not find a development in metacognitive learning 

strategies during upper secondary education. A possible reason could be the formal 

teaching authority, which leads to more stable learning approaches (Lietz and Matthews 

2010). Contrary, a study by Veenman et al. (2004) reports a development of 

metacognitive learning strategies, particularly over the lifespan. Studies investigating 

changes in students' use of learning strategies, particularly during the first year of 

college, find some developments (Coertjens 2017, Donche 2010). Therefore, research 

analyzing learning strategies should focus on the transition from secondary to higher 

education, which seems empirically more consistent. Because of the structural, 

educational and individual changes during the college transition, changes in the use of 

students' learning strategies can be naturally expected. This study investigates the effect 

of learning strategies in a higher education math course for economics using time-series 

data of first-year students transitioning to higher education. 
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3. Empirical background 

3.1 Sample 

Since the winter semester of 2012, students enrolled in the study program of economics 

and business administration were asked to take an anonymous math skill test and 

accompanying questionnaire in the first lecture of "mathematics for economics "– a 

first-year course – at a German midsized university. The data was raised entirely 

anonymously, and students knew the gathered data would be used for research studies. 

While the math skill test remained the same over time, the questions asked in the 

questionnaire slightly changed according to the lecturer's research interests and 

limitations in the length of the questionnaire. Data on learning strategies were mainly 

gathered in the winter semesters of 2012 and 2013. Additionally, students in these 

semesters participated in an anonymous skill test in the middle of the semester. 

Altogether, complete information of 299 students who took part in both skill tests at the 

beginning (T1) and middle of the semester (T2) in the winter semester of 2012 and 2013 

is available. At both points, data on students' math skills and the use of different 

learning strategies was gathered. Consequently, there is information on the students' 

change in math skills and the change in using different learning strategies during their 

first semester. 

3.2 Variables, measurement, and descriptive statistics 

3.2.1 Variables 

Two different but comparable skill tests (see also Laging & Voßkamp 2017) measured 

the students' math skills at the beginning (T1) and the middle of the semester (T2). Each 

skill test consists of 30 tasks, and students could score 30 points (one point per task). 

The skill tests were developed for students enrolled in economics and similar study 
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programs and focused on secondary school math (arithmetic, algebra, functions, 

calculus). 

Besides the math skill, data on students' use of learning strategies, learning goal 

orientation, and control strategies was gathered, once at the beginning of the semester 

(T1) and again in the middle of the semester (T2). Information on learning and concept 

strategies was raised via proven scales (see e. g., Laging & Voßkamp 2017; Büchele 

2020). At both points in time, we measured the students' use of memorizing strategies 

(MS), elaboration strategies (ES), learning goal orientation (LGO), control strategies 

(CS) while learning math, and math self-concept (MSC). For better readability, all 

scales are referred to as learning strategies. 

Additionally, at T2 only, we raised information on students' persistence (LP) and 

regularity (LR) in learning math, which are variables that only affect math achievement 

in the middle of the semester (at T2). The original items of the learning strategy scales 

are in German and, therefore, not reported in detail3. Table 1 gives a brief overview 

with item examples (translated from German). 

[Table 1 near here] 

3.2.2 Descriptive statistics 

Table 2 gives an overview of the variables mentioned above' descriptive statistics. We 

report both values of each variable (at T1 and T2) separately and the differences between 

the two points in time. 

[Table 2 near here] 

Firstly, the student's math skill (scores on both tests) is relatively low. Students, 

on average, only gained  8.3 points (nearly 30 %) in the first and about 11.5 points 

 

3 However, one can find a sufficient overview in Laging & Voßkamp (2017). 
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(almost 40 %) in the second skill test. However, the students performed better over time 

and increased their math skills by about 3.3 points. Secondly, one can find information 

on the different learning strategies measured. Except for memorizing strategies 

(Cronbach's alpha of .69 and .71, respectively), the scales show good reliability values. 

Furthermore, students show a relatively high learning regularity (4.78) and learning 

persistence (4.01) over the semester. 

As mentioned in section 2.2.5, one could expect changes and adjustments in 

student learning over the transition into higher education. As summarized in Table 2, 

however, the average changes that occur to the use of the given learning strategies are 

relatively small or non-existent. Although t-statistics show that the use in MS (t=5.09, 

p<.01), LGO (t=3.48, p<.01), CS (t=6.99, p<.01), and MSC (t=6.13, p<.01) declined 

statistically significant, the size of the changes is small. ES, for instance, did not change 

at all over time. These relatively minor changes, however, came with a high standard 

deviation (compared to the mean difference). And although there are no significant 

average differences in the shift of ES, the individual variation is relatively high. For 

each variable, at least half of the sample show individual changes above 0.5 scale units 

(scale from 1 to 6). This change is normally distributed, which results in minor average 

differences. However, for the statistical analysis in this study, average differences do 

not matter since individual changes are regressed on individual achievement differences 

over time (see next section). 

3.3 Different statistical approaches 

As mentioned in section 2.2, research in learning strategies usually falls back on 

typical statistical approaches. This study will pick up and compare the results of three of 

these approaches with the exact same sample, namely: separated correlation (simple 

OLS), multiple OLS, and "quasi-panel" OLS (with math skill baseline information). 



 

16 

 

Furthermore, since information on students' math skills and the use of learning 

strategies at two points is available, we will run a fixed-effects regression (FE), isolating 

changes in the use of learning strategies. All models were estimated in Stata with robust 

standard errors to counter heteroskedasticity, and for better comparability, all models 

were estimated with math achievement at T2 as the dependent variable. 

3.3.1 Simple OLS (Model 1) 

The first model estimates the separate correlations of each learning strategy with 

math achievement at T2. We used simple regression analysis instead of Pearson 

correlations for better comparability with the other models. Therefore, we can refer to 

non-standardized coefficients like models 2 to 4. Consequently, we ran the regression 

seven times for the seven learning scales. Equation (1) shows the estimation with 𝛼 as 

the constant, 𝛽𝑖 as the estimator for learning strategy i at time T1 (𝐿𝑆1𝑖), and the error 

term 𝜖. 

𝑀𝐴𝑇2 = 𝛼 + 𝛽𝑖 ∗ 𝐿𝑆1𝑖 + 𝜖 (1) 

3.3.2 Multiple OLS (Model 2) 

In the second model (see equation 2), we run only one multiple regression with 

information only available at T1, representing a typical cross-sectional study design 

(except for 𝑀𝐴𝑇2, which is taken as the dependent variable for comparability). 

Therefore, we simultaneously include the five learning scales MS, ES, LGO, CS, and 

MSC. 

𝑀𝐴𝑇2 = 𝛼 + ∑ 𝛽𝑖 ∗ 𝐿𝑆1𝑖
5
𝑖=1 + 𝜖 (2) 

3.3.3 "Quasi-panel" OLS (Models 3.1 and 3.2) 

Models 3.1 and 3.2 take advantage of the aforementioned "quasi-panel", with 

the additional information on students' baseline math skills at T1. Therefore, the math 
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achievement at T1 is taken into the model (𝑀𝐴𝑇1) as an independent variable. 

Furthermore, variables are included in two steps to compare the models with models 1 

and 2. First, the five learning scales as in model 2 (equation 3.1), and second, the 

additional scales LP and LR, which influence the math achievement at T2 only 

(equation 3.2). 

𝑀𝐴𝑇2 = 𝛼 + 𝛾 ∗ 𝑀𝐴𝑇1 + ∑ 𝛽𝑖 ∗ 𝐿𝑆1𝑖
5
𝑖=1 + 𝜖 (3.1) 

𝑀𝐴𝑇2 = 𝛼 + 𝛾 ∗ 𝑀𝐴𝑇1 + ∑ 𝛽𝑖 ∗ 𝐿𝑆1𝑖
7
𝑖=1 + 𝜖 (3.2) 

3.3.4 Fixed-effects (Models 4.1 and 4.2) 

In the fourth model, we estimate a fixed-effects model, isolating changes in the 

use of learning strategies over time and regressing these changes on the skill differences 

over the same time. As in models 3.1 and 3.2, variables are implemented in two steps; 

first, the variables affecting the math achievement at T1 and T2 (equation 4.1), and 

second, including the variables affecting math achievement at T2 only (equation 4.2). 

The fixed-effects regression can be estimated with various time-periods (T) and 

the individuals (j), as in equations 4.1 (FE) and 4.2 (FE), where, for instance, 𝑀𝐴𝑗
̅̅ ̅̅ ̅̅ =

∑ 𝑀𝐴𝑗𝑡
𝑡
1

𝑇
. The major advantage in contrast to multiple regression analysis is that 𝑎𝑗 

describes unobserved and time-invariant individual effects (like gender, age, etc.). Since 

these variables are time-invariant 𝑎𝑗 equals 𝑎�̅� and the effect adds up to zero (see 

equations 4.1 and 4.2). Consequently, the fixed effects model controls for time-invariant 

unobserved variables. However, estimation bias due to omitted variables is not 

automatically controlled since only time-invariant but not time-variant unobserved 

individual effects are eliminated. Since the students' use of learning scales changes over 

time, these variables are time-variant, and these changes (difference between 𝐿𝑆𝑗𝑡𝑖 and 

𝐿𝑆𝑗𝑖
̅̅ ̅̅ ̅) can be implemented as control variables. 
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𝑀𝐴𝑗𝑡 − 𝑀𝐴𝑗
̅̅ ̅̅ ̅̅ = (𝑎𝑗 − 𝑎�̅�) + ∑ (𝛽𝑖(𝐿𝑆𝑗𝑡𝑖

5
𝑖=1 − 𝐿𝑆𝑗𝑖

̅̅ ̅̅ ̅)) + (𝜖𝑗𝑡 − 𝜖�̅� ) (4.1 (FE)) 

𝑀𝐴𝑗𝑡 − 𝑀𝐴𝑗
̅̅ ̅̅ ̅̅ = (𝑎𝑗 − 𝑎�̅�) + ∑ (𝛽𝑖(𝐿𝑆𝑗𝑡𝑖

7
𝑖=1 − 𝐿𝑆𝑗𝑖

̅̅ ̅̅ ̅)) + (𝜖𝑗𝑡 − 𝜖�̅� ) (4.2 (FE)) 

However, in the case of two measurement points – like in this study – the fixed-

effects estimation (FE) is equivalent to the first difference estimation (FD), which is 

more compact. The differences between the learning scales (∆𝐿𝑆𝑖 = 𝐿𝑆2𝑖 − 𝐿𝑆1𝑖) can be 

regressed on the differences in math achievement (∆𝑀𝐴 = 𝑀𝐴𝑇2 − 𝑀𝐴𝑇1): 

∆𝑀𝐴 = ∑ (𝛽𝑖 ∗ ∆𝐿𝑆𝑖)
5
𝑖=1 + ∆𝜖  (4.1 (FD)) 

∆𝑀𝐴 = ∑ (𝛽𝑖 ∗ ∆𝐿𝑆𝑖)
7
𝑖=1 + ∆𝜖   (4.2 (FD)) 

4. Results 

In this section, we will only present the results of our statistical analysis. For a 

better readability and overview, the discussion of these results (changes and 

interpretation of statistical significance or effect sizes and comparability analysis) is 

shifted to the next section. Table 3 provides the coefficients of the models described 

above, and the sample and variables remained the same for each model. For better 

comparability between the models, the coefficients are not standardized. Analysis was 

performed in Stata with robust standard errors. 

[Table 3 near here] 

With a view on the first model (column 2), we find significant correlations 

between math achievement at T2 and all given learning strategies. The non-standardized 

coefficients are easy to interpret. Therefore, one additional point in the skill test at T1 

(math achievement T1) leads to .87 points in the second skill test. Furthermore, one 

extra point on the scales (from 1 - 6) leads to a higher score from about 1.3 points for 

ES, 1.8 points for LGO, 2.4 points for CS, 3.5 points for MSC, 2 points for LP, and 1.6 
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points for LR. Higher use of memorizing strategies (MS) results in a decreasing score of 

about 1.2 points per unit on the scale. 

In the second model (column 3), the influence of learning strategies is measured 

simultaneously, which clears parts of the interdependence between the independent 

variables. In the second model, only LGO and MSC correlate significantly with math 

achievement. One additional point on the LGO scale leads to about 0.7 (extra) points in 

the skill test and 3.3 points (MSC), respectively. 

Model 3 use the baseline information of students' math skill at the beginning of 

the semester (math achievement T1). For better comparability, the first step (model 3.1) 

is estimated without the semester-dependent variables LP and LR. In this model, prior 

math achievement (𝑀𝐴𝑇1) and MSC correlates significantly with later math 

achievement. Including LP and LR in the model leads to a slightly reduced effect size of 

MSC and a significant and positive influence of LR on math achievement. 

Model 4 estimates a fixed-effects regression, and again, the semester-dependent 

variables (LP and LR) are implemented in a second step (model 4.2). Because the 

dependent variable is now the individual differences in math achievement, the model 

includes the baseline, and no values for prior math achievement can be reported. In 

model 4.1, we find two significant influences of learning strategies on math 

achievement. First, MS is negatively correlated with math achievement. More precisely, 

the increase of MS uses during the semester by one unit on the scale results in an 

average decrease in math achievement of about 1.5 points. Second, the rise of ES uses 

during the semester by one unit on the scale results in an average increase in math 

achievement of about 0.9 points over the semester. However, including learning habits 

(LP and LR) in model 4.2, these effects dissolve, and the scales of LP and LR now 

positively correlate with the differences in math achievement. 
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5. Discussion 

One can see that, although the sample always remains the same, the statistical 

significance and effect sizes change depending on the used model. Therefore, using 

different models leads to different coefficients, results, and implications. The discussion 

of these results is divided into one methodological part, where we compare the models, 

and one educational part, where we further analyze and put perspective on the particular 

influences and outcomes on math achievement. 

5.1 Discussion of the Results 

5.1.1 Methodological Discussion 

At first, we discuss the methodological results of the different statistical 

approaches. Not surprisingly, the separately performed analysis in model 1 shows 

highly significant and large effect sizes of the given learning attributes on math 

achievement. However, as mentioned above (see section 2.2.1), statistical significance 

typically does not easily match causation. Since these variables and correlations with 

math achievement are interdependent and correlate simultaneously with math 

achievement, the effect sizes are not trustworthy and overestimated. In the transition to 

the second model, which also imitates a cross-sectional design, one can see that the 

coefficients mostly lose their effect size and significance. Only the coefficients for LGO 

and MSC remained statistically significant, but the effect size for LGO decreased by 

more than half, while MSC nearly remained the same. In this model, the learning 

strategies are included simultaneously, which results in a more accurate estimation. 

Model 3.1 additionally controls for baseline math skills, and the coefficients 

from model 2 change again. Firstly, the coefficient of LGO loses statistical significance 

and its effect size, and secondly, the MSC's effect size is halved. Similarly, one can see 



 

21 

 

that model 2 overestimated the effect of LGO and MSC because of omitted variables. 

This picture intensifies in transition to model 3.2, where we additionally control for the 

time-variant variables LP and LR. However, the effect of prior on later math 

achievement seems relatively consistent. We can only observe minor changes from 

model 1 to model 3. 

Finally, models 4.1 and 4.2 estimates the coefficients via a first-difference 

regression. The effect sizes change again and are, in some cases, similar to the first 

model. We can report comparable positive effects of ES and adverse effects of MS on 

math achievement in model 4.1. As mentioned above, fixed effects analysis only 

controls for time-invariant heterogeneity. Therefore, die estimations are more 

trustworthy than, for example, model 1 or 2, but time variant heterogeneity might still 

bias the effect sizes. This is the case for model 4.1; In the transition to model 4.2, we 

include the variables LP and LR. However, the effect sizes of ES and MS disappear, 

which indicates that Model 4.1 also overestimates the effects of ES and MS, although 

we control for time-invariant heterogeneity. Consequently, fixed-effects models might 

still be biased if the information on crucial confounding and time-dependent variables is 

rare. However, it is still more consistent than models 1 to 3. 

Altogether, it gets clear that different models estimate different coefficients, 

although the sample and data remain the same. This is a major issue when interpreting 

the effect of learning strategies on math achievement since different studies are not 

comparable and might report different results because of misspecified models. 

5.1.2 Educational discussion 

The results suggest different factors influencing the students' math 

achievements. At first, one can see that prior (math) knowledge positively correlates 

with the student's math skills in the middle of the semester. This is not surprising, and 
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many studies find a strong correlation between prior knowledge, academic achievement, 

and learning growth (e.g., Liebendörfer et al. 2022, Laging & Voßkamp 2017). 

From an educational view, the results of Model 4 are more interesting. The 

fixed-effects analysis in Model 4.1 shows a positive influence of the high use of 

elaboration strategies and a negative effect of memorizing strategies on math learning 

growth. This, in particular, is not surprising since theory and empirical evidence 

underlying the advantage of elaboration strategies and deep learning (see section 2.1). 

However, the transition to Model 4.2 shows that the variables LR and LP act as 

mediators between ES, MS, and students' math achievement, indicating that it is 

essential for students to show regular engagement and high persistence when it comes to 

learning math. In other words: the results suggest that it does not matter how but if 

students learn regularly. 

5.2 Implications and limitations 

The study showed that different methodological approaches lead to different 

outcomes when analyzing the effect of learning strategies. This is mainly because of 

missing information on students learning growth since many studies only use cross-

sectional data. However, this problem cannot be easily solved, even with panel data and 

information on students' math skills and learning habits over various periods. One can 

control for time-independent but not for time-dependent heterogeneity with panel data. 

We gave some evidence that panel data analyses (as demanded by multiple researchers) 

seem more trustworthy than other methods, but cannot solely fix the issue of omitted 

variable bias. Therefore, we recommend instrumental variable and experimental designs 

to estimate learning strategies' effect for future research. 

This study also showed that learning strategies might not be that important. 

Learning regularity and persistence mainly determine students' math achievement in 
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higher education, and this has also been demonstrated most recently by Liebendöfer et 

al. (2022). The research did not sufficiently investigate these mediating effects yet. For 

educational practice, we suggest that students are animated to learn regularly and are 

provided with educational offers that help to foster persistence. Concrete measures 

could be different assessments distributed over the semester, mandatory exercises, or 

math support centers, which have become very popular over the last decade (Schürmann 

et al. 2020, Lawson et al. 2019). 

This study has some limitations. Most importantly, the sample only consists of 

students enrolled in the Economics and Business Administration study program. 

Therefore, the educational analysis must be limited and not generalized since the topics 

of, e. g. mathematical study programs are more technical. Particularly in mathematical 

proof schemes, elaboration strategies might be more critical. Furthermore, the skill tests 

mainly cover topics of secondary math schooling, which is sufficient for the first 

semester of math for Economics but not for other study programs. From the 

methodological view, we have to point out that the effects are still not causally 

interpretable. Even though using panel data and a fixed-effects model lead to more 

trustworthy coefficients, we cannot assure that further time-dependent omitted variables 

might bias the results. 
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Table 1: Item examples of learning strategy scales 

Scale Examples 

Memorizing strategy • When I am learning math, I try to memorize as 
much as possible 

• I calculate some tasks so often that I can solve 
them while sleeping 

Elaboration strategy • When solving tasks in math, I often think about 
new solving strategies 

• When learning math, I try to find links to topics I 
already know 

Learning goal 

orientation 

• I prefer challenging tasks so that I can learn new 
skills 

• I am happy with my study when the lecture is 
thought-provoking 

Control strategy • When I want to perform well in math, I can do so 

Learning persistence • When I am stuck solving a task, I try another way 

• I do not give up, even when a task is challenging 

Learning regularity • I solve the exercise sheets every week 
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Table 2: Overview of descriptive statistics 

Variable 

(short) 

Value Items 

(CA4
T1 / 

CAT2) 

Mean (SD) 

T1 

Mean (SD) 

T2 

Differences 

(SD) 

Math achievement 

 

0 – 30 30 8.30 (4.78) 11.61 

(5.80) 

3.31 (4.08) 

Memorizing 

strategies 

(MS) 

1 

(lowest) 

- 6 

(highest) 

5 

(.69 / .71) 

3.60 (.95) 3.35 (.96) -.25 (.84) 

Elaboration 

strategies 

(ES) 

1 

(lowest) 

- 6 

(highest) 

7 

(.78 / .84) 

3.06 (.87) 3.07 (.95) .01 (.78) 

Learning goal 

orientation 

(LGO) 

1 

(lowest) 

- 6 

(highest) 

5 

(.86 / .88)  

3.61 (.91) 3.46 (.96) -.15 (.74) 

Control strategies 

(CS) 

1 

(lowest) 

- 6 

(highest) 

5 

(.89 / .90) 

4.17 (.99) 3.88 (.96) -.29 (.71) 

 

4 Cronbach’s alpha at T1 and T2 
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Math self-concept 

(MSC) 

1 

(lowest) 

- 6 

(highest) 

3 

(.90 / .89) 

3.65 (.93) 3.42 (.99) -.23 (.64) 

Learning regularity 

(LR) 

1 

(lowest) 

- 6 

(highest) 

3 

( - / .83) 

 4.78 (1.15)  

Learning 

persistence 

(LP) 

1 

(lowest) 

- 6 

(highest) 

4 

( - / .83) 

 4.01 (1.08)  

Number of cases 

(N) 

299 
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Table 3: Overview of estimations in different statistical approaches 

Variable OLS - simple 

(Model 1) 

 

OLS - 

multiple 

(Model 2) 

OLS – mutliple „quasi 

panel“ (Models 3.1 / 3.2) 

Fixed-effects (first 

difference) 

(Models 4.1 / 4.2) 

 Coefficient 

(robust SE) 

Coefficient 

(robust SE) 

Coefficient  

(robust SE) 

Coefficient  

(robust SE) 

Constant  -.21 

(1.82) 

.25 

(1.40) 

-2.21 

(1.44) 

  

Math 

achievemen

t (T1) 

.87** 

(.04) 

 .68** 

(.05) 

.68** 

(.05) 

  

Memorizing 

strategies 

(MS)  

-1.15** 

(.37) 

-.22 

(.33) 

-.13 

(.27) 

-.33 

(.25) 

-1.47** 

(.36) 

-.39 

(.30) 

Elaboration 

strategies 

(ES) 

1.32** 

(.34) 

-.19 

(.32) 

.03 

(.25) 

-.12 

(.25) 

.87* 

(.37) 

.20 

(.30) 

Learning 

goal 

orientation 

(LGO) 

1.85** 

(.35) 

.72* 

(.32) 

.22 

(.24) 

-.04 

(.24) 

-.58 

(.42) 

-.32 

(.33) 

Control 

strategies 

2.38** 

(.34) 

-.17 

(.39) 

-.09 

(.29) 

-.07 

(.29) 

-.69 

(.41) 

.31 

(.35) 
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(CS) 

Math self-

concept 

(MSC) 

3.45** 

(.26) 

3.31** 

(.36) 

1.65** 

(.29) 

1.28** 

(.30) 

-.68 

(.45) 

.37 

(.36) 

Persistence 

(LP) 

2.03** 

(.26) 

  .41 

(.27) 

 .47* 

(21) 

Learning 

regularity 

(LR) 

1.64** 

(.27) 

  .83** 

(.21) 

 .53** 

(.17) 

Dependent 

Variable 

Math achievement (T2) 

 

Math achievement 

differences (∆𝑀𝐴) 

N 299 299 299 598 

R²  .355 .579 .615 .112 

(within 

R²) 

.466 

(within 

R²) 

**p<.01 *p<.05 
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Figure 2: Endogeneity in correlation analysis 

Figure 1: The issue of endogeneity (adapted from Antonakis et al. 2010) 
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Figure 3: Endogeneity in multivariate models 

 

 

 

 

 

 

Figure 4: Endogeneity in "quasi-panel" models 
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Figure 5: Endogeneity in randomized interventions (adapted from Sajons 
2020) 
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