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Abstract 

Regular or automated processes require reliable software applications that provide accurate 

volatility and Value-at-Risk forecasts. The univariate and multivariate GARCH models proposed in the 

literature are reviewed and the suitability of selected R functions for automated forecasting systems 

is discussed. With the Markov-switching GARCH function constructed for modelling regime changes, 

parameter estimates are reliably obtained in studies with moving time windows. In contrast, in the 

case of structural breaks or outliers, the algorithm of the ordinary GARCH function often does not 

return valid parameter estimates and fails.  

VaR prognoses are produced for extreme quantiles (up to 99.9%) and three alternative distribution 

assumptions (Skew Student-T, Student-T and Gaussian). Accurate one-day-ahead VaR predictions up 

to the 99% quantile are generally obtained for the time series when Skew Student-T distributed 

innovations are assumed. The VaR exceedance rates and their percentage deviations from the target 

alpha as well as the mean and median excess loss are reported. 

The accompanying mean equation is often omitted when fitting GARCH models to heteroskedastic 

time series. The impact of this on the accuracy of VaR forecasts is investigated. 

Coefficients of the ordinary (Pearson) and the default correlation are calculated for moving time 

windows. Since the calculated default correlation depends on the VaR forecasts, analyses are 

performed for different quantiles, the ordinary and the MS-GARCH function and specifications of 

mean equations. 
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Introduction 

Preliminary considerations 

Market participants have an interest in protecting themselves against the consequences of excessive 

losses in the event of fluctuating market prices of their exposures (e.g. securities investments, 

foreign currency risks from international trading, etc.). For risk management, the use of the Value-at-

Risk (VaR) measure in particular has become established. The VaR indicates the loss from an 

exposure that will not be exceeded with a certain (high) probability over a predetermined period of 

time. In order to avoid liquidity bottlenecks, coverage capital in the amount of the VaR can be held 

for a risky position or an entire portfolio. GARCH models have become established for volatility 

forecasts and the VaR forecasts generated from them. The present work is intended to contribute to 

achieving accurate VaR forecasts. 

Various extensions for GARCH models are presented in the literature. These can basically be justified 

by the fact that time series can be based on various stochastic processes of data generation or that 

random individual events can also be represented in the time series. Since time series can differ in 

their properties (e.g. volatility structures, structural breaks, regimes, outliers, etc.), different suitable 

models are also conceivable. However, the accuracy of volatility or VaR forecasts is essentially 

influenced not only by the structure of the fitted model equation but also by the distribution model 

used for the innovations (i.e. residuals): the normal distribution, which is traditionally used for 

modelling scientific phenomena, is less suitable for modelling return series. The Gaussian bell curve 

does not do justice to the frequency of extreme outcomes, i.e. masses at the edges of the return 

distributions, which are of particular interest for the VaR measure. The frequency of extreme returns 

(or losses) is clearly underestimated with the normal distribution. In recent years, distribution models 

have been proposed that provide a much more accurate fit to return series. However, no new 

standard model has yet been found or established that adequately represents the fat tails of the 

distributions. Obviously, the distribution models that have been focused on recently are also not able 

to model the extreme tail of a return distribution quite accurately. 

Taking into account the descriptions of ARMA GARCH models in scientific studies, it can be assumed 

here that a textbook adaptation of these methods to financial market time series is dispensed with in 

the application. It is assumed here that in applications of forecasting models, e.g. in the financial 

industry, a simple lag structure is usually chosen for GARCH models. An implementation of complex 

GARCH models in daily applications may be dispensed with. However, such a procedure may be 

justified due to the sufficient approximation of complex GARCH models by simple ones. Furthermore, 

the scientific studies support the assumption that modelling the dynamics of the expected value or 

the mean return is dispensed with. I.e. the textbook establishment of a mean value equation within 

the framework of GARCH models is (entirely) dispensed with. This approach is also justified if the 

abandonment of the expected value or the mean value of a time series can be justified by the fact 

that it tends towards zero for high-frequency time series. 

Structure of the paper  

The next section provides an overview of recent literature examining the VaR forecasting 

performance of different variants of GARCH models under different distributional assumptions. The 

research topic is then described in more detail. Afterwards, the time series used for the study are 
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presented. With regard to the different asset classes or risky exposures represented by the time 

series used, an explanation of their economic relevance and risk management is provided.  

This is followed by a chronological description of the crises or major events that have historically 

caused stronger price fluctuations and have caused temporary or permanent changes on the world 

markets. These crises and changes are also reflected in the time series.  

In a further part, the requirements of automated forecasting systems for VaR forecasts are discussed. 

In this context, preliminary considerations are also made about flexible variants of GARCH models 

and their R-functions, which guarantee stable forecasts. In addition, variance-covariance matrices are 

presented, which are used to represent the relationships between different risky exposures. 

A section on methods provides an overview of the univariate and Multivariate GARCH models 

proposed in the literature. ARIMA models, which are used to model the mean equations 

supplementing the volatility equations, are discussed first. With regard to own VaR forecasts, 

descriptions of the study design are provided. The Value-at-Risk concept and other risk management 

concepts are presented. 

The results of the study are discussed in detail in a further section. This is followed by a summary and 

hints or suggestions for further research. 

Literature Review 

Heracleous (2003) inserts the Student-T-distribution in univariate and multivariate volatility models. 

Yoon & Kang (2007) fit Fractionally Integrated GARCH (FIGARCH)-models to Japanese financial time 

series. The authors find more accurate VaR estimations with the Skewed Student-T compared to the 

Student-T or Normal Distributions. FIGARCH is an extension of Baillie, Bollerslev & Mikkelsen (1996) 

to model long memory volatility processes.1 

Osterrieder & Lorenz (2016) recognise: „Bitcoin returns are much more volatile (albeit with volatility 

levels decreasing over the course of the last few years), much riskier and exhibit heavier tail behaviour 

than the traditional fiat currencies.[…] Using the traditional tail risk measures Value-at-Risk and 

expected shortfall, we could quantify that extreme events lead to losses in Bitcoin which are about 

eight times higher than what we can expect from the G10 currencies.“ 

The authors consider the Generalized Pareto distribution (GPD) and the Generalized Extreme Value 

distribution because of their important role in Extreme Value Theory. They also compute VaR (95%-

quantile) for the Bitcoin assuming Gaussian distributed innovations. 

Colucci (2016) suggests the use of Gaussian innovations for the 95% VaR forecasts, but prefers 

Student-T innovations for the extreme tail of the Bitcoin return distribution. However, he obtains the 

best results for the extreme tail and in particular the regulatory relevant 99% quantile with the 

Historical Filtered Bootstrap (HFBVaR-N) model. 

Colucci (2018) considers Gaussian and Student-T distributed innovations in One day-ahead VaR 

prognosis for the Bitcoin. He also applies more sophisticated methods such as the Historical 

Simulation and the Extreme Value Theory Historical Filtered Bootstrap. For the mean equation, he 

fits AR(1) models.  

                                                           
1 Cf. Tayefi & Ramanathan (2012) concerning FIGARCH and related time series models 
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Ardia et al. (2019b) find clear evidence of regime changes in the Bitcoin return series for a period 

from 13 June 2014 to 2 March 2018. The authors conclude that the MS-GARCH model with two 

regimes considerably outperforms the one day ahead VaR forecast of the ordinary GARCH model 

(with one regime). The Skewed Student-T -distribution provides a particularly good fit. However, the 

study by Ardia et al. (2019b) is limited to Bitcoin time series with their particular characteristics 

(including high volatility). However, the question arises whether the MS-GARCH model with 

employed distribution Skew Student-T also provides a better fit than the ordinary GARCH model for 

other time series. This paper aims to clarify this question. 

Research Topic 

The paper reviews and discusses extensions of the GARCH model and simplified implementations in 

practical applications. 

The ordinary GARCH and the Markov Switching GARCH models are used to produce one-day-ahead 

Value-at-Risk forecasts. The VaR forecasts are made on the basis of variable time series segments, i.e. 

rolling and growing time windows. Different distribution assumptions (Gaussian, Student-T, and Skew 

Student-T) are run and accuracies of VaR forecasts are calculated for a range of quantiles of the 

distributions. 

Correlations and default correlations are calculated for different asset pairs. The development of the 

default correlations is shown by means of successively moving time windows. From this, it is possible 

to see whether historical events have changed these relationships. 

It is examined how simplifying (i.e. imprecise) procedures in modelling the dynamics of the expected 

value (i.e. the mean equation) using ARIMA affect the VaR forecast accuracy and the calculated 

default correlations. 

Time Series Data 

For the study, exchange rates for currencies whose time series are provided by the European Central 

Bank (ECB) were used, among others.2  The euro exchange rates are given in indirect quotation: US 

dollar (USD/EUR), Japanese yen (JPY/EUR), Chinese yuan renminbi (CNY/EUR), British pound sterling 

(GBP/EUR), Swiss franc (CHF/EUR). The time series of the euro exchange rates are provided in 

trading-day periodicity (i.e. for five days per week, excluding public holidays) for the period from 4 

January 1999 to 3 January 2020. The time series for the Chinese yuan renminbi starts on 13 January 

2000. 

In addition, the price of Brent crude oil in US dollars per barrel, the gold price in US dollars per troy 

ounce and the silver price in US dollars per troy ounce were available. The time series were used in 

trading-day periodicity for the period from 3 January 2006 to 13 February 2020. They were retrieved 

from the internet platform finanzen.net.3 

Furthermore, time series of the US dollar prices of two crypto-assets were available. These are 

reported in daily periodicity (i.e. seven days per week, excluding holidays). The Bitcoin (USD/BTC) 

time series is available for the period from 1 October 2013 to 3 January 2020, the Ethereum 

                                                           
2 The exchange rates  ("Collection: Average of observations through period (A)") were retrieved from the ECB's 

website on 4 January 2020: http://sdw.ecb.europa.eu/browse.do?node=9691296 
3 Closing prices were downloaded from https://www.finanzen.net/rohstoffe/ 
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(USD/ETH) time series starts on 9 August 2015. The data source for the crypto assets is the internet 

platform CoinDesk.4 

At irregular intervals, no quotations were recorded for some days. Due to the different public 

holidays in the countries, these days only partially coincide in the time series. 

Figures of the time series used in the study are presented in the appendix. 

Risky Exposures or Asset Classes 

Besides shares and bonds as classic asset classes, precious metals were also considered. In the low-

interest phase of the past years, however, bonds were hardly attractive for investors. Investors were 

looking for alternative investments that promised higher yields. As private wealth grew, there was 

also a need to diversify capital to reduce or avoid cluster risks. As alternative investments, real estate 

became more and more in the public's awareness due to rising real estate prices. The emerging 

crypto-assets (so-called "cryptocurrencies") were also perceived by some investors as an interesting 

investment alternative. Crypto assets are fungible, which is supported by the possibility to buy 

shares. This new form of investment has brought investors enormous speculative profits at times 

since its emergence. As the "leading cryptocurrency", bitcoin initially recorded enormous price 

increases in its comparatively short history, but also high losses in the meantime. The hope that it 

could achieve the status of an alternative means of payment (independent of governments and 

central banks) has not yet been fulfilled, mainly because of its strong price fluctuations. 

From the perspective of an investor in a country with a stable currency (i.e. not subject to significant 

inflation), investments in foreign currencies tend to play a subordinate role. However, foreign 

currencies can be held for intended trading transactions, which may be acquired at a supposedly 

favourable exchange rate. Investments in foreign currencies can also be made speculatively and 

indirectly, e.g. through foreign stocks. From an economic perspective, exchange rate developments 

play a role depending on the size of the country and the extent of its international trade relations 

(i.e. its external balance). 

The oil price can affect the economic development of both oil-exporting and oil-importing countries. 

Due to existing dependencies for energy supply, the oil price has a strong impact on industrial 

companies. 

Market participants' need for instruments to hedge against (loss) risks in the event of high volatility 

of an underlying security (or exchange rate) is met with standardised (or fungible) financial products 

such as futures and warrants. However, derivative financial products can be used not only to hedge 

actual positions of their associated underlying securities in an investor's portfolio, but also (in the 

absence of regulation) for speculative purposes with sometimes considerable risks and opportunities. 

In this context, the volatility of the price of the underlying security has a significant influence on the 

derivative price. Duan (1995) therefore proposed a GARCH option pricing model that reflects changes 

in the conditional volatility of the underlying asset. However, the historical trading of derivative 

financial instruments has amplified the market price volatilities (of the underlying securities). 

For the unhedged exposures, risk management should preserve coverage capital in the amount of 

the VaR to ensure solvency. GARCH models are likewise used for VaR forecasts. 

                                                           
4 Closing prices were obtained for the crypto assets at www.coindesk.com 
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Historical Events with an Impact on International Financial Markets and 

Exchange Rates 

Especially in phases of upheaval, uncertainty increases. In crisis scenarios, the information situation 

can change from day to day, so that investors become more insecure or the uncertainty decreases 

again. This leads to drastic price changes in short periods of time, accompanied by higher fluctuation 

amplitudes or changes in the time-related volatilities. The events stand out in the time series as 

structural breaks or phases of increased volatilities. 

Historically, the following significant events, among others, led to permanently changed market 

conditions: 

In 1944, 44 countries signed an agreement in Bretton Woods (USA) that included the establishment 

of the World Bank and the International Monetary Fund (IMF) as well as a system of fixed exchange 

rates. The system of fixed exchange rates came into force in 1946 and linked major currencies such 

as the Japanese yen, the British pound, the Swiss franc and the German mark to the US dollar as the 

lead currency. There was a gold standard for the US dollar. However, as early as the 1960s, the US 

dollar could no longer be covered by the gold reserves of the Federal Reserve Bank. In August 1971, 

the gold dollar standard collapsed when the Fed refused to meet its obligation to exchange the US 

dollar for gold at a fixed price. The fixed exchange rate system agreed in the Bretton Woods 

Agreement was also temporarily suspended in 1971 and finally ended in 1973. The dissolution of the 

system led to fluctuations in the then flexible exchange rates.5 

The oil price shocks in 1973 and 1979/1980 led to recessions in industrialised countries and to a rise 

in inflation and interest rates. 

On Black Monday (19 October 1987), stock prices plummeted on the Hong Kong Stock Exchange and 

around the world during the day. It was the first stock market crash after the Second World War. 

Japan experienced an economic crisis when price bubbles burst on the stock and real estate markets 

in 1990. In the following decade, the ongoing recession could not be overcome even by keeping key 

interest rates low. 

Iraq's capture of Kuwait in August 1990 triggered the First Iraq War (Second Gulf War). Oil prices 

temporarily rose sharply due to fears of an oil price crisis. In early 1991, allied troops led by the 

United States carried out a ground offensive to free Kuwait. US President Bush declared the fighting 

over at the end of February 1991. 

The Asian crisis of 1997/1998 was a financial, monetary and economic crisis that started in Thailand 

and spread to the Tiger and Panther states in March 1997. The People's Republic of China, however, 

was hardly affected. 

On 2 May 1998, heads of state and government of several present-day EU countries decided to 

introduce the common currency, the euro. On 31 December 1998, the exchange rates of the 

currencies of participating countries were fixed and on 1 January 1999 the euro was initially 

introduced as book money.6 On 1 January 2002, the euro also replaced the old currencies as cash. 

                                                           
5 Due to the then flexible exchange rates, a need for hedging instruments such as futures contracts and 

warrants against the new currency uncertainties was also allowed to arise. 
6 In 1999, the following countries launched the euro: Austria, Belgium, Finland, France, Germany, Ireland, Italy, 

Luxembourg, Monaco, Netherlands, Portugal, San Marino, Spain and the Vatican City. 2001 Greece, 2002 
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In March 2000, the dot-com bubble burst, which had been built up by exaggerated profit 

expectations for technology companies of the new economy. 

The terrorist attacks of 11 September 2001 on the World Trade Center in New York, among others, 

provided a rationale for US warfare against Afghanistan and Iraq. In October 2001, NATO troops 

under US leadership invaded Afghanistan, and in March 2003, US troops invaded Iraq (Second Iraq 

War). This led to destabilisation in the Middle East. 

The subprime crisis was triggered by a bursting of the price bubble in the US real estate market after 

real estate prices peaked in 2006. Debtors with poor credit ratings ("subprime") benefited from years 

of rising real estate prices that allowed them to take out new loans. When the price bubble burst, the 

debts were not matched by sufficiently high real estate assets. However, US mortgage banks had 

made their claims tradable through securitisation and tranching and partially refinanced themselves 

through global trading. The contents of the traded packages of pro-rata loan receivables could no 

longer be transparently traced. However, they were given ratings that did not do justice to the actual 

volume of bad loans. The lack of transparency about shares of bad loans in bank portfolios worldwide 

led to a crisis of trust, so that banks no longer lent money to each other because of the insolvency 

risks. On 15 September 2008, the US investment bank Lehman Brothers went bankrupt, which is 

considered the climax of the financial crisis. 

After the experience of the insolvency of the US investment bank Lehman Brothers, other countries 

tried to protect their (system-relevant) banks from insolvency. The government intervention 

schemes led to a sharp increase in public debt. The US central bank Fed and the European Central 

Bank ECB pursued a policy of low key interest rates and bought up bonds on a massive scale to 

counteract an impending recession.7  

The "euro crisis" began in October 2009 when the new government of Greece declared earlier 

declarations of net new debt in 2009 to be false. 8 To avoid sovereign defaults due to excessive public 

debt, the European Financial Stabilisation Facility (EFSF) was established in 2010 and the European 

Stability Mechanism (ESM) in 2012. Greece was particularly affected by the threat of insolvency in 

2015 and 2016 and repeatedly demanded loans from the other euro member states. 

On 23 June 2016, an EU referendum was held on whether the United Kingdom should remain in the 

EU (the so-called "Brexit referendum"). In the referendum, 51.89% of voters voted in favour of 

leaving the EU. The EU referendum on Brexit led to a strong devaluation of the British pound against 

other leading currencies. The British government repeatedly agreed with the European Council to 

postpone the exit date. There were renegotiations on the withdrawal agreement in particular 

because of domestic political resistance in connection with the "backstop" clause, which was 

supposed to prevent a hard border between Ireland and the United Kingdom. The United Kingdom 

exited the EU on 31 January 2020. 

In March 2020, a pandemic emerged due to the uncontainable spread of Covid 19 infections. Global 

stock markets plummeted as a recession was feared. Although the pandemic was still ongoing in 

2020/2021, stock markets recovered and indices climbed to new highs. In 2020, the Corona crisis has 

made it difficult to turn away from the zero interest rate policy and a reduction in public debt. 

                                                                                                                                                                                     

Kosovo and Montenegro, 2007 Slovenia, 2008 Malta and Cyprus, 2009 Slovakia, 2011 Estonia, 2014 Latvia and 

Andorra, 2015 Lithuania. 
7 The ECB's key interest rate was at an interim high of 4.25% on 9 July 2008 and fell to 0% by March 2016. 
8 After Greece's joining the euro area, it was questioned whether Greece actually fulfilled the entry criteria. 
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On the Requirements of Automated Value-at-Risk Forecasting Systems and 

Data Sets Suitable for Them 

Established models for time series analysis or volatility forecasting 

In order to find a suitable forecasting model, the properties of the time series must be taken into 

account. Time series of financial markets usually exhibit time-varying volatility: Graphical 

representations of heteroskedastic return series show that clusters of high and low volatility 

alternate. These reflect turbulent or tranquil market phases. The associated price level time series 

(e.g. of Bitcoin prices, exchange rates, gold prices, etc.) are usually also characterised by a lack of 

stationarity, i.e. a time-varying mean value (i.e. deterministic trend) or a volatility that increases with 

the forecast horizon across all boundaries (i.e. stochastic trend).9 The price changes (or log returns) 

calculated by difference taking (if necessary after logrithmisation) are usually stationary, but still 

autocorrelated; i.e. there are dependencies between successive time series values or between their 

squares or time-related volatilities.10   

Generalised Autoregressive Conditional Heteroscedasticity (GARCH) models have become established 

for modelling and forecasting time-dependent volatility. The (ordinary) GARCH model contains a 

volatility equation that is supplemented by a mean equation adjusted to the time series. 

Autoregressive Integrated Moving Average (ARIMA) models are usually used as time series models 

for forecasting the time-dependent expected value - i.e. forecast (mean) value - of a variable. 

However, if the mean or expected value (e.g. of the percentage change in the exchange rate) per 

period is approximately zero for high-frequency time series, the fitting of an (exact) mean equation is 

often neglected. The study examines, among other things, on the basis of the available time series, 

what effect the neglect of the mean equation can have on the accuracy of VaR forecasts. 

The importance of  flexible models and stable software applications 

For regular applications such as daily VaR forecasts, it would be desirable to have a stable estimation 

algorithm that delivers a valid (and plausible) value even in unfavourable (data) constellations. 

Finally, in case of an interruption of the programme, a case-specific investigation of the cause or 

modification of the programme has to be carried out and, if necessary, even a substitute solution has 

to be justified. This requires a costly deployment of professional staff. If an interruption was 

triggered at the point of a structural break, a shortening of the time series by the preceding time 

period is also not necessarily possible if the following time period is too short for a time series 

analysis. The modelling of the structural break is then hardly to avoid. In addition, supervisory 

regulations may require the inclusion of a longer history of time series data. Especially when 

processing large amounts of data, such as when running through all elements of a variance-

covariance matrix with repeated application of an algorithm for estimating (GARCH) parameters of 

the (univariate) models and calculating forecast values, however, if the stability is fundamentally 

insufficient, the estimation algorithm must be expected to abort and thus interrupt further 

programme runs. Complete calculations for all elements of a variance-covariance matrix are 

necessary, however, if this matrix is included in further calculation operations to determine the total 

risk of a portfolio (i.e. the portfolio variance). 

                                                           
9 Cf. Hamilton (1994) or Hassler (2003) on the properties of economic time series, especially instationarity. 
10 The time-dependent volatilities can be approximated by squared returns. 
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Arguments for preferring univariate methods in automated applications 

Processes (including analysis and forecasting tools) should be largely automated and trouble-free. 

For the exclusive purpose of a prediction, it makes sense to first consider the use of univariate 

procedures. Data mining of one's own historical values of a time series is advantageous, as there is 

then no dependence on the availability of explanatory variables. This availability would also have to 

be ensured for future applications, as in the case of regular Value-at-Risk forecasts. Univariate 

forecast models are also more easily transferable to other applications or other time series. This 

argues for the application of univariate methods in automated analysis and forecasting tools. When 

multivariate methods are used, matching explanatory variables would have to be found or the model 

structure modified if they were to be transferred to other time series to be explained or forecast. 

However, these are not necessarily available in the appropriate periodicity and for the same time 

period. Even with panel data sets, there may be a need for adjustment when selecting multivariate 

time series. In addition, working with multivariate methods or panel data sets increases the risk that 

one of the time series included has particular characteristics that the estimation algorithm cannot 

handle. In the study, a lack of return of valid estimated values occurred especially in the case of 

outliers at the current edge of a time series. Such circumstances may require an adjustment of the 

application by an econometrician or data scientist. However, if adjustments to the programme are 

required on a regularly basis, this would run counter to a high degree of automation and thus to an 

application that is as accessible as possible. Multivariate procedures enable the explanation of 

correlations between variables or may be necessary for this purpose. However, they should only be 

considered as a secondary option for automated forecasting for the reasons mentioned above. 

Moreover, univariate ARMA-GARCH models usually already provide a high forecasting accuracy for 

time-ordered data, which is hardly outperformed by multivariate procedures. 

Alternative distribution models to the normal distribution  

The accuracy of the predicted conditional volatilities and the Value-at-Risk forecasts calculated from 

them depends in particular on the distribution selected for parametric models, as the results of this 

study also confirm. However, the normal distribution discovered by C.F. Gauss (1777 - 1855) and 

established as the standard model in statistics does not do justice to the relative frequencies of 

extreme values in the two "fat tails" of the actual distributions of financial market data. Extreme 

values of returns actually occur much more frequently than the Gaussian distribution would suggest. 

Nevertheless, the normal distribution is also frequently used in forecasts with time series models 

(such as ARMA-GARCH): Read (1998), for example, claims that parametric models based on the 

assumption of normal distribution are comparatively easy to use and very popular. However, 

Bollerslev (1987) had already proposed to use the Student-T distribution for modelling. He had called 

this modified model "GARCH-T".11 The Student-T distribution usually provides a better fit to actual 

return distributions because of its higher kurtosis compared to the Gaussian distribution, but it is also 

symmetric. However, actual return distributions are usually asymmetric: negative returns are often 

higher in amount than positive returns. This is also the reason why speculative bubbles burst faster 

than they have built up. Asymmetric distributions such as the Skew Student-T distribution do justice 

to this circumstance. However, extensions to the GARCH model have also been proposed that 

                                                           
11 Heracleous (2007) investigates the ability of the GARCH-T model to estimate the correct number of degrees 

of freedom. 
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capture asymmetry through their model structure. That is, the effects of returns (or residuals) with 

different signs or ranges of values are modelled differently. 

Alternative distribution models  and modified GARCH models offered by statistical 

software R 

In past years, studies often still used VaR calculations with the normal distribution. For standard 

(time series analytical) applications, however, Statistical Analysis Software now offers alternative 

distribution models to choose from. The software R, for example, offers the normal distribution and 

the Skew Student-T distribution, 12 among others, via the function garchFit of the package "fGarch" 

for estimating GARCH models. The same applies to the MS-GARCH function provided via the R 

package "MSGARCH".13  It is more flexible than the ordinary GARCH function due to the possibility of 

formulating multiple variance equations and was created for modelling time series with changing 

regimes. Thus, the MS-GARCH model should also be able to capture structural breaks and possibly 

also outlier values. Time series of the value development of internationally traded assets, exchange 

rates, etc., some of which encompass decades, are likely to show structural breaks due to 

macroeconomic and global economic relationships that have changed in the meantime. If these 

structural breaks are not modelled, the fitted time series models do not reflect the actual dynamics 

on the markets and biased parameters are estimated. In the study, the R-function garchFit 

estimation algorithm for the ordinary GARCH model also frequently failed when the processed time 

series section contained outliers. In particular, the attempt to fit the GARCH model to the time series 

of the CHF/EUR exchange rate did not provide a valid estimate for a long sequence of successively 

changed time windows that contained the clear outlier values. In contrast, the fit with the R function 

MS-GARCH (R package "MSGARCH") was successful. It should be assumed here that the flexible MS-

GARCH model also captures or at least approximates other proposed variants of GARCH models. 

Asymmetric GARCH models that treat e.g. positive and negative returns differently (e.g. by case 

distinction in parameter estimation) can possibly also be approximated by the switching regime 

model, provided that some market phases contain predominantly positive returns and others 

predominantly negative returns.14 

Multivariate time series and Multivariate GARCH Models 

The time series available for the study differ with respect to the daily data of missing quotes due to 

deviations on trading days and holidays (see section Time Series Data). Multivariate procedures (e.g. 

Multivariate GARCH models), however, require time series that are compatible with each other, so 

that they should match in their daily data of missing values and other properties. In multivariate 

methods, the optimised model order must fit all time series included. Since GARCH(g,a) and 

ARMA(p,q) models with low lag orders g, a, p and q (at most two each) generally approximate higher 

model orders well, the use of a uniform lag order for all included time series is often uncomplicated 

and appropriate. Under certain circumstances, however, the estimation algorithm of a more complex 

(e.g. Multivariate GARCH model) may fail because one of the time series may not allow a fit (with the 

specific lag order). Accordingly, this will happen in frequent applications such as VaR forecasts 

                                                           
12 The forecasts carried out for the study are predominantly based on these applications. 
13 See Ardia (2019a) on probability density function (PDF) of the R package "MSGARCH" and in particular 

Trottier and Ardia (2016) on the density function of the Skew Student-T-distribution as well as Hansen (1994) 

on the Student-T-density function and a skewed generalisation of it. 
14 Cf. Schoffer (2003) on asymmetric GARCH models 
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produced on a daily basis or extensive variance-covariance matrices. In contrast, when fitting GARCH 

models to univariate time series, an individual optimisation of the lag structure is possible. 

Alternative methods for the calculation of Value-at-Risk forecasts 

Since time immemorial, non-parametric methods have also been used for VaR forecasting, such as 

"Historical Simulation". In addition, forecasting systems that use machine learning algorithms or 

artificial intelligence have been developed more recently. With the help of these methods, 

multivariate data sets could possibly be used to better explain the exceeding of VaR values in certain 

periods or to make more differentiated probability statements. However, the VaR forecast quality of 

the (extended) parametric GARCH models with regard to the coverage of the entire time series range 

is already high and can thus hardly be improved upon using alternative methods. Moreover, the 

machine learning or AI methods were not (originally) created for the purpose of explorative studies.15   

In case of doubt, the effects of data mining, such as empirical significance levels that are too high, 

should also be taken into account. 

Variance-covariance matrices 

Risk management requires an assessment or forecast of the development of all risky exposures. If 

necessary, only exposures with potentially substantial effects, such as a threat to the company's 

survival, are to be taken into account. Since a company usually pursues various risky activities or is 

exposed to risks, their covariances (or correlations) must also be taken into account: These are of 

interest in determining the overall risk of a company. Moreover, in the case of strong dependencies, 

several risky investments could fail at the same time. For companies in the financial industry (banks, 

investment companies, etc.) it also makes sense to set up separate variance-covariance matrices for 

the management of investment portfolios of individual clients (groups), even if the company itself is 

not (directly) exposed to these risks. This poses particular challenges for investment companies that 

invest in many different assets. In a static view, the variance-covariance matrix � can be represented 

as follows: 

� = ⎝⎛
��� ������ ���

⋯ ��
⋯ ��
⋮ ⋮�
� �
� ⋱ ⋮⋯ �
� ⎠⎞ 

The variance-covariance matrix � contains the variances on the main diagonal and the covariances of 

the different exposures on the outside. It is symmetric, since ��� = ���. The elements of the variance-

covariance matrix to be considered are thus already completely contained in the upper or lower 

triangular matrix. Their number grows disproportionately with the number k of exposures: � (� + 1)2  

In a static perspective, the (unconditional) variance of a portfolio ��� (representing the total risk) of a 

number k of exposures, where �� represents the weighting of exposure (e.g. number of units of 

security) i in the portfolio, is as follows: 

                                                           
15 However, a research strand could also evolve here that is concerned with extracting explanations from the 

results of AI applications. 
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��� = �� � � = (�� ��  ⋯  �
) ⎝⎛
��� ������ ���

⋯ ��
⋯ ��
⋮ ⋮�
� �
� ⋱ ⋮⋯ �
� ⎠⎞ �����⋮�

� 

Sophisticated (Multivariate) GARCH models and considerations concerning stable 

software applications     

When the first Multivariate GARCH models were presented at the end of the 1980s, the computing 

power of personal computers available at the time hardly allowed (regular) estimates of univariate 

GARCH models or predictions for all elements of a time-conditional variance-covariance matrix.16  

Restrictive Multivariate GARCH models, which make certain assumptions regarding the elements of a 

variance-covariance matrix or their relationships, should allow a joint modelling of the dynamics of 

all elements.17 On the one hand, restrictions are necessary that allow an estimation of the 

Multivariate GARCH models at all and fulfil the requirements of convergence and positive 

definiteness of generated variance-covariances.18 On the other hand, the restrictions should allow 

relationships between the assets and their dynamic developments to be represented realistically. For 

example, Constant Conditional Correlation (CCC) models assume a constant correlation between 

asset returns over time. Accordingly, only the dynamics of the volatilities of the assets would have to 

be modelled, i.e. the dynamics of the elements on the main diagonal of a variance-covariance matrix. 

If necessary, it would have to be checked in a preliminary study whether such an assumption of 

constant (default) correlations between different asset (classes) of a portfolio is justified.19     

Since today's computing power allows a mass of forecasts of conditional variances and covariances in 

a short time, Multivariate GARCH models have probably lost importance for forecasting purposes.20 

However, Multivariate GARCH models offer the possibility of modelling volatility spillovers as 

dynamic relationships between time series. 

For mass-used software applications, a high degree of stability and reliability is desirable: In the case 

of permanently repeated applications, an estimation algorithm is too often interrupted even if it fails 

only in the case of rarely occurring data constellations. However, the personnel effort for necessary 

model adjustments would be inefficient and possibly also not compatible with time limits. While the 

flexibility of a more sophisticated model such as MS-GARCH allows for a more stable application than 

                                                           
16 In addition to the low computing capacity, suitable software applications were not available and certain risk 

management concepts such as the Value-at-Risk ratio were not yet established. 
17 Realistically, however, it should be assumed that only selected, substantial exposures of a company are 

actually included in the application. 
18 The requirement of positive definiteness for variance-covariance matrices corresponds to that of positivity 

for the scalar quantity variance. It ensures the calculation of a positive total variance (or portfolio variance) 

from the variance-covariance matrix with arbitrary weights n. The requirement of positive definiteness tends to 

complicate the operationalisability of a multivariate GARCH model as the variance-covariance matrix grows. 

This is particularly true in the absence of restrictions on the structure of the GARCH model that guarantee 

positive definiteness from the outset. 
19 This is contradicted by the fact that in times of crisis there is often hardly any investment that is not affected 

by losses in value. Correlations increase.  This can also be observed for exposures whose correlations are quite 

stable for a long period in normal times. The protective diversification effect of a portfolio is thus lost especially 

in times of crisis, so that the aim of value preservation is impaired. 
20 This also means that ongoing controlling of the restrictions is no longer necessary (i.e. checking compliance 

with positive definiteness, rearranging assembled time series (i.e. the multivariate context) and, if necessary, 

making adjustments to the variance-covariance matrix or models to comply with it).   
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the standard GARCH model, in other cases (unnecessary) complexity causes instability. The use of 

simplified models can be justified if the performance (here forecast quality) is not significantly 

reduced. In this context, the effect of neglecting the mean equation, which according to the textbook 

complements the volatility equation of a GARCH model, is also examined here. 

Forecasting Methodology and Study Design 

ARIMA models 

For the application of the Autoregressive Integrated Moving Average ARIMA(p,d,q) method 

introduced by Box and Jenkins (1970), it is necessary to determine the integration order d of a time 

series to be analysed.21 Usually prices �� as well as their logarithms are integrated of first order, in 

short ��~!(1).22 Their first differences "� = �� − ��$� , i.e. price changes as well as logarithmised 

returns "� = log(��) − log(��$�) (i.e. percentage price changes) are then integrated of order zero, "�~!(0), or stationary. 

ARMA(p,q) models can then be fitted to the stationary time series obtained by differentiations. In 

ARMA(p,q) models, the current values are regressed on lagged values and innovations (i.e. residuals) 

of a stationary time series: "� = )* + )�"�$� + ⋯ + )+"�$+ + ,� + -�,�$� + ⋯ + -.,�$. 

A more compact representation of the equation is: 

"� = )* + � )�"�$�+�/� + ,� + � -�,�$�.
�/�  

A distribution assumption is made for the innovative variable ,� (which results from a random 

process), e.g. the normal distribution is assumed, i.e. ,�~0(12 = 0, �2�). 

The values of the parameters )�  and -� (and the residuals ,�) are estimated in the regression analysis 

that way that the residuals are zero on average. 

The values of the parameters )� and -� represent the impact of the i-th lagged AR- ("�$�) and the  

 j-th lagged MA-term (,�$�), respectively, on the current value "� of the time series.  

The ARMA(p,q) model order states that the influences of the time series value lagged by 4 = 5 

periods (here trading days) and the residual lagged by 6 = 7 periods on the current value are 

necessarily non-zero. The influences of the intermediate lags, on the contrary, can also be non-

existent (i.e. equal to zero). 

In the study, the lag structure chosen for a particular time series was optimised using the Bayes 

Information Criterion (BIC). The lags p and q were each constrained to up to five in order to limit the 

number of model orders (or lag combinations) played through. Usually, models with p and 7 ≤ 2 

already provide a sufficient fit to time series. The possibility of approximating higher ones by simple 

                                                           
21 In order to determine the orders of integration d of the available time series, Augemented Dickey Fuller 

(ADF) unit root tests were performed with the R package "urca".  

If a time series �� is integrated of order d, a stationary time series  "�  is obtained for the first time after d times 

differentiation, e.g. for 9 = 2 it follows: "� = ∆��� = ∆(�� − ��$�) = �� − 2 ��$� +  ��$�. An ARMA(p,q) 

model can then be fitted to the stationary time series  "� . Cf. Hamilton (1994) on time series analysis. 
22 Logarithmising changes the distribution of a variable. If, for example, prices are log-normally distributed, 

logarithmising produces a normal distribution that is symmetrical. 



Gohs, A.M. (2022) The Choice of GARCH Models to Forecast Value-at-Risk 

14 

 

ARMA model orders results from the invertibility of AR(p) or MA(q) processes. Cf. Hamilton (1994) on 

the AR(∞) representation of an MA(1) process. 

Study design to analyse the impact of inaccurately modelling the dynamics of the 

expected value or even omitting the mean equation 

For heteroscedastic time series and VaR forecasting, the focus is on volatility. However, the paper 

also examines how less accurate modelling of the dynamics of the expected value affects the VaR 

forecast. It should be noted, however, that the results depend on the frequency of a time series and 

the forecast horizon, each of which corresponds to one day in the study. Indications that an 

inaccurate adjustment of the mean equation is common in scientific studies can be seen in the 

presentations in the papers themselves. For example, Koether (2005) uses the "mean equation" �� =��<� , i.e. he even omits the estimation of the constant before fitting the variance equation. In its 

formal representation, the time series value �� (i.e. not the residual) is incorporated directly into the 

variance equation: ��� = = + >��$�� + ?��$�� .23 Colucci (2018) uses an AR(1) model for the mean 

equation in the context of estimating a Student-T-GARCH(1,1) model as well as a Historical Filtered 

Bootstrap VaR model. 

Here it is assumed that in practice (i.e. in the financial industry) the mean equation is also neglected 

in GARCH modelling. This is probably due to practical and economic reasons, among others: 

On the one hand, automation processes may require a sacrifice of (exact) model adjustments (of the 

mean value equation), since more complex models may also bear a higher probability of a failure of 

the estimation algorithm, i.e. a break down of the forecasting system. In particular, frequent use of 

the procedure could possibly result in additional personnel costs. On the other hand, the expected 

value for high-frequency return series is usually close to zero. In relation to the assets of investment 

banks, this may nevertheless result in high capital buffers to be held in order to comply with 

regulatory requirements or to actually secure liquidity. 

The question arises whether a (significant) change in the VaR forecast accuracy results from an 

inaccurate adjustment of the mean equation. This is examined here as an example on the basis of the 

available time series and in connection with the MS GARCH function, which proved to be stable in 

contrast to the ordinary GARCH function of the R software. The following four alternatives for 

modelling the mean are played out: 

1) The fitting of a mean equation is dispensed with, i.e. the variance equation is fitted directly 

to the return time series. 

2) Only the mean return (here via the estimated constant) is extracted from the return time 

series before fitting the variance equation. 

3) An AR(1) model is fitted to the return time series and the variance equation is fitted to its 

residuals. 

4) As described above, an ARMA(p,q) model with optimised model order is fitted according to 

the Bayes information criterion and then a variance equation is fitted to the residuals 

obtained. 

This implies or follows: 

                                                           
23 The notation from Koether (2005) is quoted unchanged. He also denotes the conditional variance with ���. In 

contrast, in the further course of this paper, the conditional variance is again denoted by ℎ�� and the 

unconditional variance by  �� for a clear distinction. 
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Ad 1) The assumed forecast value for the mean return in the next period is zero, "ABC� = 0. This can 

be justified, if necessary, by the fact that the mean return or change in high-frequency financial 

market time series relates to a very small time span and is thus approximately zero. 

Ad 2) The mean return can be obtained by regressing the return series on a constant: "� = )* + ,�. 

The expected return of a future period D + E then corresponds to the mean value: "ABCF = )A*. This 

approach certainly makes sense if the (trading) daily time division is not yet fine enough so that the 

mean return is significantly different from zero. However, the autoregressively explainable portion 

may be negligible. 

Ad 3) The autoregressive process AR(1) can be written as follows: "� = )* + )�"�$� + ,�  

According to the equation of the AR(1) model, the current return value "�  is explained by its 

preceding value "�$�, which is incorporated with a share )�, as well as by an innovation ,� in period 

t. Here, a dynamic of the expected value is assumed, which can essentially be captured by an AR(1) 

term. The constant )* is also taken into account in this paper, but may not be in studies by other 

authors. If observations (of an exchange rate) are available up to trading day T, the one-step ahead 

(point estimator) forecast  "ABC� for the next trading day T+1 is received by application of  "ABC� = )A* + )A�"B  

taking G(,BC�) = 0. The parameter estimate )A� (as well as estimates for the historical residuals up 

to period T) can be received with the Maximum Likelihood method.24 

Ad 4) The ARMA(p,q) process can be represented as follows: "� = )* + )�"�$� + )�"�$� + ⋯ + )+"�$+ + ,� + -�,�$� + -�,�$� + ⋯ + -.,�$. 

From the ARMA(p,q) model presented above, the following one-step forecast function is obtained:25 "ABC� = )A* + )A�"B + )A�"B$� +  … + )A+"B$+C� + -I�,B̂ + -I�,B̂$� + ⋯ + -I.,B̂$.C� 

In addition to the parameter values, the residuals are also estimated up to the current period.26 

GARCH models 

To model the time-conditional variance ℎ� of a heteroscedastic time series "�, from which the 

residuals K� are obtained after estimating a mean equation, Engle (1982) proposed the 

Autoregressive Conditional Heteroscedasticity (ARCH) model. 

The conditional variance ℎ� over time in Engle's ARCH(L) model, when taking into account the 

influences of the residuals (i.e. innovations) from up to  L previous periods, results from 

ℎ� = >* + � >�  K�$��M
�/�  

Bollerslev (1986) then formulated the Generalised Autoregressive Conditional Heteroscedasticity 

(GARCH) model. The variance equation of the GARCH(N, L) model is 

                                                           
24 For this study the parameter estimates are done with the R-function "ARIMA", choosing the Maximum 

Likelihood method "ML". 
25 Forecasts based on estimated ARMA(p,q) models were made using the R function "predict". 
26 In the case of multi-level forecasts for h periods in advance, their expected value of zero is used for the 

future residuals, cf. Hamilton (1994). 
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ℎ� = >* + � >�  K�$��M�/� + � O�  ℎ�$�P
�/�  

with consideration of the influences of the lags L ≥ 1 and N ≥ 1, whereby analogous to the ARMA 

model intermediate lags can also be without influence. 

Variances are positive. The positivity is ensured by the restrictions: >* > 0,  >� ≥ 0, O� ≥ 0   
Moreover, the time-conditional variance converges when the parameter sum is less than one: 

� >�M
�/� + � O�P

�/� < 1 

In the case of heteroscedastic time series with conditional variance  ℎ�, a mean value equation is also 

formulated in conjunction with the volatility equation of the GARCH model when proceeding 

according to the textbook, which can be represented as follows for the AR(1) process, for example: "� = )* + )� "�$� + Tℎ�  <� 

The decomposition  K� = Tℎ�<�  with independently and identically distributed <� ~4. 4. 9, for 

example standard normally distributed  <�~0(0,1), is performed. 

Extended univariate GARCH models 

Various extensions to GARCH models have been proposed in the literature to fit time series with 

special characteristics.27 

Nelson (1991) proposed the Exponential GARCH (EGARCH for short) model, for which various 

variations are again presented in the literature. 

ln(ℎ�) = >* + � >� K�$��M
�/� + � O� ln (ℎ�$�)P

�/�  

Here, the positivity of the conditional variance is ensured by modelling its logarithmic size. Nelson 

and Cao (1992) claim that the non-negativity requirements of the ordinary GARCH model are too 

restrictive. In the EGARCH model, these restrictions are not imposed. In the literature and on the 

internet, modifications of models are also proposed under the name EGARCH, which, in addition to 

the logarithmisation of the heteoskedastic variance, also take asymmetric effects into account.28 

Asymmetry often refers to the assumption that bad news (associated with negative returns) 

increases time-varying volatility to a greater extent than positive news. Such effects can be captured 

by the models presented below. However, generalisations of the models are also conceivable that 

operate at a value other than the zero value or even make case distinctions for more than two value 

ranges. 

In the Threshold GARCH (TGARCH for short) model, the different treatment of negative and positive 

shocks is carried out by taking into account not only the influence of the innovations but also that of 

their absolute values. Since the variance equation no longer contains squared innovations (as in the 

ordinary GARCH model) to account for the changing sign, it is also appropriate to no longer include 

the time-lagged variance but the standard deviation as the explanatory variable: 

                                                           
27 Various special GARCH models are presented in Ali (2013) and their goodness of fit is compared on an 

application basis, taking into account various distribution models (normal distribution, Student-T). 
28 Cf. Dhamija & Bhalla (2010) 
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ℎ� = >* + � >�(|K�$�| − X�K�$�)M
�/� + � O�Yℎ�$�P

�/�  

The GJR-GARCH model is represented by the volatility equation 

ℎ� = >* + � (?�!�$� + >�) ∙ K�$��M
�/� + � O�ℎ�$�P

�/�  

with indicator variable 

!�$� = [1 4\ K�$� < 00 4\ K�$� ≥ 0 

The term GJR is due to the initials of the authors Glosten, Jagannathan and Runkle (1993). 

With a positive parameter ?�, a negative innovation (or return) thus leads to higher conditional 

volatility in the following period than a positive one of the same amount. It is obvious that 

generalisations of the model are possible, with the indicator variable set at a threshold other than 

zero. 

It must be taken into account with the special GARCH models that special requirements (i.e. 

deviating from the ordinary GARCH model) may have to be fulfilled in order to generate positive 

time-dependent variances and for the process to be stationary, i.e. the variance does not grow with 

increasing time distance across all boundaries. 

In the GJR model, the positivity of the conditional variance is ensured by the restrictions: >* > 0, >� ≥ 0, >� + ?� ≥ 0, O� ≥ 0   
Stationarity (i.e. convergence) is ensured if  

� ]?�2 + >�^M
�/� + � O�P

�/� < 1 

is fulfilled. 

Under the names and abbreviations, not necessarily standard specific models are found in the 

literature and on the internet, but partly generalised, more restrictive, modified and even different 

models. The EGARCH, T-GARCH, GJR-GARCH and other specific univariate GARCH models are also 

described by Ali (2013). Ali (2013) deals with environmental issues and presents empirical results for 

the special univariate models, for which he also uses different distributions. For some models, 

including E-GARCH and T-GARCH, he reports "not radically different" results. Koether (2005) 

describes with Treshold GARCH a model equation which, due to its generalised representation, 

encompasses a class of special models. In contrast, his description of the Exponential GARCH model 

only considers a sum of ARCH terms, not the GARCH component. 

Markov-switching GARCH 

Markow-switching GARCH models allow the modelling of regime changes in the volatility structure of 

time series.29  Gray (1996) was a pioneer in proposing to model conditional distributions by means of 

regime-switching processes. 

                                                           
29 For the study, Markov-switching GARCH models were estimated using the R package “MSGARCH“, which is 

described in Ardia et al. (2019a). This R package also allows the prediction of the conditional variance as well as 

the Value-at-Risk and the expected shortfall. 
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Variance equations result for the regimes � = 1, … , _ here presented analogously to Ardia et al. 

(2019a) for an MS(K)-GARCH(1,1) process: ℎ
,� = >*,
 + >�,
   "�$�� + ?
 ℎ
,�$� 

Ardia et al. (2019a) explain that covariance-stationarity in each regime requires  >�,
 + ?
 < 1 and 

positivity is ensured, if  >*,
 > 0, >�,
 > 0,  and  ?
 ≥ 0. 

A state variable `� determines the regime of the process in time t.30  

The probability of remaining in or switching to another of the  _ regimes at time  D + 1 depends on 

the regime � prevailing at the current time  D. The transitions between the _ regimes are formulated 

by a (_ × _) probability matrix. 

According to Ardia et al. (2019), the conditional variance  ℎ
b,� of the MS(_)-GARCH(1,1) process "� 

in period c is thus a function of the observation "�$� and the conditional variance ℎ
,�$� of the 

previous period as well as the regime-dependent parameter vector  de: ℎ
b,� = \("�$�, ℎ
,�$�, de) 

For the present study, the optimal number of up to five regimes of GARCH(1,1) processes was 

obtained for each time series segment using the Bayes information criterion. 

Multivariate GARCH models 

In order to (fully) capture the risk of a securities portfolio, all risky exposures (contracts, foreign 

exchange reserves, financial derivatives, etc.) of a company, etc., variance-covariance matrices for 

the rates of change in value of the exposures must be set up. 

As an example, a variance-covariance matrix for only  _ = 2 exposures is given: 

� = f ��� ������ ��� g 

The variance-covariance matrix Σ contains the variances on the main diagonal and the covariances 

outside the main diagonal. It is symmetrical, since ��� = ���. The number of elements of the variance-

covariance matrix to be considered grows disproportionately with the number K of exposures: _ (_ + 1)2  

In a static view, the (unconditional) return variance for a portfolio ��� results from a number K of 

securities or exposures, where �� represents the number of securities (or, more generally, the 

weighting of the exposure) i in the portfolio: 

��� = �� Σ � = (�� ��  ⋯  �
) ⎝⎛
��� ������ ���

⋯ ��
⋯ ��
⋮ ⋮�
� �
� ⋱ ⋮⋯ �
� ⎠⎞ �����⋮�

� 

For example, with only two securities, the portfolio variance is calculated as follows: 

                                                           
30 Ardia et al. (2019) explain that the state variable dynamics can alternatively be formulated according to Haas, 

Mittnik & Paolella (2004a) or Haas et al. (2004b). The specification of the MS-GARCH model from Haas et al. 

(2004a) was selected via the R package “MSGARCH“. 
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��� = �� Σ � = (��  ��) f ��� ������ ��� g ]����^ 

However, in the case of heteroskedasticity over time and a possible change in the portfolio 

composition in each period, these dynamics must be taken into account. 

The time-dependend portfolio variance ℎ�,�  is calculated as   

ℎ�,� = �′� j� �� = k��,� ��,�  ⋯  �
,�l �ℎ��,� ℎ��,�ℎ��,� ℎ��,� ⋯ ℎ�
,�⋯ ℎ�
,�⋮ ⋮ℎ
�,� ℎ
�,� ⋱ ⋮⋯ ℎ

,�
� ���,���,�⋮�
,�

� 

With only two exposures, a (2 × 2)-matrix of time-conditional variances results, with symmetry ℎ��,� = ℎ��,� : 

j� = ]ℎ��,� ℎ��,�ℎ��,� ℎ��,�^ 

For the prediction of the time-dependent variances and covariances, in general (�� + �)/2  or, in the 

concrete example, three individual equations can be set up. Fitting GARCH(1,1) models results in the 

following system of equations:31 ℎ��,� = n�� + >��K�,�$�� + O��ℎ��,�$� ℎ��,� = n�� + >��K�,�$�K�,�$� + O��ℎ��,�$� ℎ��,� = n�� + >ooK�,�$�� + Oooℎ��,�$� 

An advantage of single equations is the possibility of optimising the model order of each single 

equation. Nevertheless, the presented system of equations for GARCH(1,1) models can also be 

presented in matrix notation: 

The result is the Multivariate GARCH(1,1) process in Diagonal VECH representation: 

�ℎ��,�ℎ��,�ℎ��,�� = pn��n��n��q + r>�� 0 00 >�� 00 0 >oos ∙ � K�,�$��K�,�$�K�,�$�K�,�$�� � + rO�� 0 00 O�� 00 0 Ooos ∙ �ℎ��,�$�ℎ��,�$�ℎ��,�$�� 

The parameter vector t can alternatively also be represented as a diagonal parameter matrix u, 

where the main diagonal contains the parameters n46. For variance-covariance matrices of arbitrary 

dimension and arbitrary lag structure N and L of a GARCH(g,a) process, the following short 

representation results: 

vwnℎ(j�) = u + � x� ∙ vwnℎ(y z${ ∙ y′ z${)M
�/� + � Γ� ∙ vwnℎ(j�$�)P

�/�  

Here, the parameter matrices x�  and Γ� for the periods delayed up to L and N, respectively, and C  for 

the constants are diagonal matrices.32 Diagonal matrices only contain non-zero elements on the main 

diagonal. 

Here, the vector of time-conditional (co-)variances to be explained or forecast is obtained by 

applying the vector operator vwnℎ(. ), which stacks the elements of the upper triangular part of an 

                                                           
31 Analogously, mean value equations are to be included if necessary, which are omitted in the following 

presentation (and, if applicable, in the actual application). 
32 The constants C are partially omitted. 
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(� × �)-matrix on top of each other in such a way that a vector of length (_� + _)/2 results. For the 

example of a portfolio of two securities, it follows: 

vwnℎ(j�) = �ℎ��,�ℎ��,�ℎ��,�� 

Multivariate GARCH models in Diagonal VEC representation were proposed by Bollerslev et al 

(1988).33  In the Diagonal VECH model, each element of the (co-)variance matrix is explained only by 

its own past values or innovations. 

In place of ensuring the positivity of a (predicted) variance in the univariate case (i.e. in the single 

equation model), in the multivariate context there is the condition of positive definiteness to be 

fulfilled. According to Attanasio (1991), the variance-covariance matrices predicted with the Diagonal 

VEC representation are positive definite if the parameter matrices u, x� und Γ�  as well as the initial 

time-conditional variance-covariance matrices corresponding to the lag structure are positive 

definite. Engle and Kroner (1995) explain that the Diagonal VEC representation is covariance 

stationary exactly when all eigenvalues of the matrix  } formed as the sum of the parameter 

matrices x�  und Γ� are absolutely less than one. 

} = � x�M
�/� + � Γ�P

�/�  

However, generalisations are also conceivable, so that a conditional (co-)variance is not only 

explained from its own past values and innovations, but corresponding influences of the other (co-

)variances are also captured. This enables the modelling of volatility jumps between time series. This 

makes it possible to show that, if necessary (and to what extent and with what time lag), a change in 

the conditional volatility on one market spills over to another market. 

The VECH model was introduced by Bollerslev, Engle and Wooldridge (1988): 

�ℎ��,�ℎ��,�ℎ��,�� = pn��n��n��q + r>�� >�� >�o>�� >�� >�o>o� >o� >oos ∙ � K�,�$��K�,�$�K�,�$�K�,�$�� � + rO�� O�� O�oO�� O�� O�oOo� Oo� Ooos ∙ �ℎ��,�$�ℎ��,�$�ℎ��,�$�� 

For variance-covariance matrices of arbitrary size as well as arbitrary lag structures N und L of a 

GARCH(g,a) approach and, if necessary, taking into account further explanatory variables ~z, the 

following concise representation results: 

vwnℎ(j�) = u* + u� ∙ vwnℎ(~z) + � x� ∙ vwnℎ(y z${ ∙ y′ z${)M
�/� + � Γ� ∙ vwnℎ(j�$�)P

�/�  

Since the number of parameters to be estimated is a multiple of the number of elements of the 

variance-covariance matrix and also the positive definiteness of the predicted variance-covariance 

matrices has to be guaranteed, there are limited application possibilities. 

If time series with regime changes are concerned, Multivariate GARCH models could also be set up to 

represent the volatilities or covariances of possible regime combinations of one or more time series. 

                                                           
33 In general, the vec(.) operator is used to write the elements of a matrix as a vector by stacking them column 

by column. Due to the symmetry of (co-)variance matrices, only the upper triangular part of a matrix is taken 

over when using the vech(.) operator, thus avoiding a double entry of elements.  
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In practice, portfolios are restructured when, for example, newly issued securities are included, 

warrants expire, new transactions with foreign currency risks are entered into, etc. These constant 

changes in variance-covariance matrices would also require the necessary checks or assurances of 

the positive definiteness of the covariance matrices. This is difficult to do with large covariance 

matrices, or most likely with sophisticated additional analysis software. Since adjustments might be 

necessary in every change period if the requirements are not met, it makes sense from the outset to 

set up an efficient strategy for risk measurement or volatility forecasting. 

Due to their ("understanding") complexity, multivariate GARCH models are certainly less frequently 

used in practice. For controlling the requirements regarding positive definiteness and convergence, it 

is recommended to work with clear models. I.e. the covariance matrices should be as small in size 

and number of parameters as possible. This applies all the more to relatively short time series, which 

require a consideration of the degrees of freedom. 

When modelling or selecting a Multivariate GARCH model proposed in the literature, the user should 

consider which volatility spillover effects exist between the time series used. The models should take 

these relationships into account suitably, succinctly but completely (not only in the sense of fully 

representing an economic theory, but also in the sense of avoiding biased parameter estimates). 

Insights into possible volatility-spillover relationships can be derived theoretically, if necessary. In 

addition, (time-conditional or unconditional) correlations can be calculated in advance to find out 

which time series pairs show a (significant or not only weak) correlation. In order to enable 

controlling of the requirements regarding positive definiteness and convergence in the case of daily 

updated time series and, if necessary, reallocations of large investment portfolios, this should also be 

carried out with (partially) automated support. But the applications developed for this purpose 

should (initially) also contain manageable problems in the sense of the developer or data scientist 

(who must correct initial errors). If necessary, it makes sense to automatically decompose large 

covariance matrices into (2�2)-covariance matrices and to run through them for a search for 

volatility spillover effects.34  

Contrary to the time of the emergence of (multivariate) GARCH models in the late 1980s to mid-

1990s, it should also be possible to estimate univariate GARCH models for all combinations of a 

variance-covariance matrix of a certain size in single equations due to today's computing power. If 

necessary, individual equations for covariances or correlations can also be used. 

However, in order to make the (possibly daily) run-through process of all elements of a covariance 

matrix possible, a stable application function is required. If the run-through process is aborted, 

individual problem treatments are often required, which are time-consuming. In the present study, it 

was shown that the R function "MSGARCH" provided stably estimated parameters, while the 

estimation algorithm of the ordinary GARCH function frequently aborted. 

Especially for investment companies that hold many different securities, a time-dependent forecast 

of a variance-covariance matrix that takes into account covariances for all pairs of securities is hardly 

feasible. However, individual securities investments with a small share of assets are negligible. In 

                                                           
34 However, the influence of a third time series variable remains unconsidered in the individual sub-models 

with this approach. Analogous to the context of a multivariate regression analysis, if a (significant) third 

variable is omitted, the relationships between the two variables taken into account may be distorted. However, 

it is questionable whether such a systematic error arises in the given context and it may be negligible. In order 

to significantly reduce the possibility of such an effect, it may also be possible to work with (3�3)-matrices. 
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addition, other investments are due to several risk factors, for example, shares carry a country risk or 

foreign currency risk in addition to their sector risk, among others. 

If a company is exposed to a large number of risky exposures, the question of complexity reduction 

arises. The variants of multivariate GARCH models proposed in the literature may already offer 

solutions for this: 

The Baba, Engle, Kraft and Kroner (BEKK) representation of a Multivariate GARCH process is 

presented in Engle & Kroner (1995). For a bivariate GARCH(1,1) process it can be represented in 

matrix notation as follows: 35 

j� = ]ℎ��,� ℎ��,�ℎ��,� ℎ��,�^ = ]n�� 0n�� n��^ ∙ �n�� n��0 n��� 
+ �>�� >��>�� >��� ∙ f K�,�$�� K�,�$�K�,�$�K�,�$�K�,�$� K�,�$�� g ∙ �>�� >��>�� >��� 

+ �O�� O��O�� O��� ∙ ]ℎ��,�$� ℎ��,�$�ℎ��,�$� ℎ��,�$�^ ∙ �O�� O��O�� O��� 

The BEKK representation allows a more parsimonious parameterisation. The representations for the 

bivariate case show that instead of a (3x3) parameter matrix, a (2x2) matrix is pre-multiplied and 

post-multiplied respectively. The flexibility of the BEKK model with regard to parameters to be 

estimated is therefore more restricted compared to the "Full" representation shown above: The 

parameterisation of the resulting three (co-)variance equations is no longer done independently, but 

restrictions are created within and between the equations via the combinations of the estimated 

parameters. However, this also has the advantage that the generated variance-covariance matrices 

are positive definite under weak assumptions.   

Alexander & Chibumba (1997) proposed the Orthogonal Multivariate GARCH model (O-GARCH for 

short). This is designed to identify orthogonal factors that are uncorrelated using principal 

component analysis. This provides a dimensionality reduction in which the few significant risk drivers 

are identified as principal components behind many risky exposures. 

The use of factor analysis procedures with the aim of identifying factors that are as uncorrelated as 

possible (but possibly also correlated) should certainly be considered for huge investment portfolios 

consisting of many different assets. 36  Risks of individual equity investments can then be attributed, 

for example, to their main underlying risks, such as sector and country risks. The residual individual 

risk of a share remaining after deduction of the country and sector portion can possibly be neglected 

for a small number of stock certificates. However, the respective portions of different factor 

characteristics (e.g. country and industry risks) may have to be determined for the individual stocks. 

Due to the dimension reduction, conditional variance-covariance matrices can then be generated 

whose elements represent individual factors (countries or industries). The principle of using variance-

covariance matrices for the risk factors underlying the exposures is basically applicable to all 

specifications of Multivariate GARCH models. Only uncorrelated factors are not always found. 

Industries and countries can be similar and have relationships. 

                                                           
35 It should be noted that in the following system of equations residuals K� are listed, while in the original 

literature returns �� are sometimes used directly. In this way, however, the authors indirectly show that they do 

not model the dynamics of the expected values of the time series, i.e. the mean equations. 
36 Cf. Hair et al. (2010) on factor analysis 
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Instead of directly forecasting time-conditional variance-covariance matrices, it has also been 

suggested to treat time-conditional variances and correlations separately. For example, time-

conditional variances could be predicted using univariate GARCH models that are specifically fitted. 

The possibilities for forecasting time-conditional correlations can be distinguished between Dynamic 

Conditional Correlation (DCC) and Constant Conditional Correlation (CCC) models. 

CCC models were proposed by Bollerslev (1990). Here, the time-conditional variance-covariance 

matrix j� can be constructed using a diagonal matrix ��, which contains the time-conditional 

standard deviations on the main diagonal, and a matrix R of time-constant correlation coefficients: j� = �� ∙ � ∙ �� 

j� = ]ℎ��,� ℎ��,�ℎ��,� ℎ��,�^ = fTℎ��,� 00 Tℎ��,�g ∙ ] 1 ������ 1 ^ ∙ fTℎ��,� 00 Tℎ��,�g 

DCC models were proposed by Engle & Sheppard (2001), where the conditional variance-covariance 

matrix  j� is calculated as follows: j� = �� ∙ �� ∙ �� 

The use of time-conditional correlations is reflected in the notation in such a way that, deviating 

from the representation of the CCC model, the correlation coefficients in the matrix �� are indexed 

with time index t in the DCC model: 

�� = ] 1 ���,����,� 1 ^ 

For a more flexible modelling, mixed forms could also be considered. For this purpose, it would make 

sense to identify which exposures show significant and medium-strong to strong correlations at all. If 

a correlation coefficient is not subject to any significant dynamics, it can be approximated by a time-

constant correlation coefficient. Then only the time-conditional volatilities would have to be forecast. 

The time-conditional covariances then result in a further step as products of the time-conditional 

standard deviations and the time-constant correlation coefficients. 

The Value-at-Risk 

Capital buffers are retained to hedge against insolvency in the event of significant losses from 

exposures. To determine these cover amounts the Value-at-Risk concept has become established in 

risk management and has been included in regulatory requirements.37 The VaR method became 

popular through the RiskMetrics risk management tool published in 1994 by the US investment bank 

J.P. Morgan. 

The Value-at-Risk (VaR) is the anticipated loss of an exposure, which will not be exceeded in a 

specified time period from an adverse market movement with a predetermined probability.38 

For the purpose of evaluating the accuracy of a VaR forecast methodology, such forecasts are 

considered for a range of time periods. The prediction function is optimal if the VaR forecasts are not 

exceeded at exactly (1-α)∙100% of the forecasts.  

                                                           

37 Cf. for example Basel Committee on Banking Supervision (2019), Federal Register (1996), Greenspan (1996) 

38 Basel Committee on Banking Supervision (2019) defines: “Value at risk (VaR): a measure of the worst 

expected loss on a portfolio of instruments resulting from market movements over a given time horizon and a 

pre-defined confidence level.“ 
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From the mean equation estimated (usually with ARIMA model), a point forecast is generated, i.e. 

the expected value (of return) of an exposure is calculated. The VaR forecast is then derived as a 

deviation from the point forecast using the volatility forecast from the GARCH model.39 This deviation 

is calculated via the α-quantile of the assumed distribution. 

The calculation of VaR as an absolute value results from the fact that it is usually expressed as a 

positive value like a loss. 

Assuming normally distributed returns with ��~0("� , Tℎ�), the quantile for the VaR forecast is 

calculated by subtracting a number of � � conditional standard deviation units from the expected 

return: 

7A� = "ABC� − � � ∙ YℎIBC�. 

The VaR forecast for the subsequent period D + 1 with selected probability 1 − > is therefore 

calculated as follows:40 

�L�� BC�(1 − >) = �B ∙ �"ABC� − � � ∙ YℎIBC�� 
and 

 � � is the >-quantile of the standard normal distribution  0(0,1);41 

 "ABC� is the point forecast of the return for the next period  D + 1, which results from the 

mean value equation; 

 ℎIBC� is the predicted conditional variance in the next period; 

 �B is the value or price of the asset at the current time T . 

The probability that the (negative) change in value in the subsequent period is greater than the VaR 

in absolute terms is then  >: 

��k�B ∙ �BC� ≤ −�L�� BC�(1 − >)l = > 

The Mean Excess Loss 

The Mean Excess Loss (EL) (also termed Conditional VaR or Expected Shortfall) is the average loss 

beyond the Value-at-Risk prognosis in the excess cases.42 

It is calculated as 

G(G�BC�(1 − >)) = G(�B ∙ �BC�|�B ∙ �BC� ≤  −�L�� BC�(1 − >)) 

The Median Excess Loss 

Additionally, in the study the median loss beyond the Value-at-Risk prognosis is calculated. }w94L� kG�BC�(1 − >)l = 
                                                           
39 The GARCH model is used to forecast the conditional variance h, from which the conditional standard 

deviation √ℎ for the VaR forecast is calculated as the root. 
40 Cf. also Artzner et al. (1999) for the calculation of Value-at-Risk and Expected Shortfall.  
41 Cf. Sukono et al. (2019) on the quantile function or VaR calculation for the (Skewed) Student-T-distribution. 
42 Basel Committee on Banking Supervision (2019) defines: “Expected shortfall (ES): a measure of the average 

of all potential losses exceeding the VaR at a given confidence level.“  
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� (�B ∙ �BC�)��C�� �|�B ∙ �BC� ≤  −�L�� BC�(1 − >) \�� �99 �12 ](�B ∙ �BC�)���� + (�B ∙ �BC�)���C��^ |�B ∙ �BC� ≤  −�L�� BC�(1 − >)\�� wvw� � 

The usual case distinction for the median calculation is made for an even or odd number n of 

exceedances of the VaR forecasts, ordered by size. 

The Not Exhausted VaR 

In addition to the Mean Excess Loss and the Median Excess Loss, corresponding calculations are also 

carried out for these trading days on which the VaR was not exceeded. The results of these 

calculations are also presented in the appendix in tables entitled "Not Exhausted VaR". 

Default Correlations (Correlations of the exceedances of Value-at-Risk forecasts) 

For investment decisions and hedging strategies, it is also interesting whether correlations exist 

between the exceedances of Value-at-Risk forecasts for exposures. The term "default correlation" 

was adopted from credit risk management, referring to the correlations of defaults (or insolvencies) 

of borrowers. 

In the world of set theory, ��,� describes the event that borrower i defaults in period t or that the 

Value-at-Risk forecast for exposure i was exceeded on (possibly the end of) trading day t. The 

associated default probability or exceedance probability is described by ��,� = ��(��,�) 

The joint occurrence of the exceedances of two VaR forecasts for risk positions i and j on trading day 

t can then be determined by the intersection of (��,�  ∩  ��,�), and the corresponding probability of 

event is ���,� = ��(��,�  ∩  ��,�) 

The correlation of two exceedance events or default correlation ���,� is calculated taking into account 

the joint probabilities:43 

���,� = ���,� − ��,� ∙ ��,�T��,� ∙ (1 − ��,�) ∙ ��,� ∙ (1 − ��,�) 

If the exceedances of the VaR forecasts of both exposures i and j are independent of each other, the 

probability (or relative frequency) of both VaR forecasts being exceeded on one day is equal to the 

product of their individual default probabilities or exceedance probabilities. The numerator and the 

total expression ���,�  are then equal to zero. 

For an operationalisation (i.e. programming), dichotomous variables ��,� can be produced for all 

exposures i, j with 

��,� = [1 �L� − 5�w94nc4�� \�� 4 4` w�nww9w9 4� c               0 �L� − 5�w94nc4�� \�� 4 4` 0�D w�nww9w9 4� c     
and probability functions 

                                                           
43 Cf. Liu et al. (2015) 
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\k��,�l = ���,�        \�� ��,� = 11 − ��,� \�� ��,� = 00                   w�`w    

Relationships between asset correlations and VaR-implied as well as expected shortfall-implied 

correlations are shown in Liu (2016). 

In an empirical investigation Servigny & Renault (2002) find that “there does not seem to be an 

obvious link between equity correlation and asset correlation and this casts some doubt about the 

value of equities as precise indicators of default correlations”. 

The results of the present study show that for some pairs of assets, the ordinary correlations and 

default correlations have similar magnitudes or temporal dynamics. 

Design of the Ex-Post forecasts 

For the generation of the forecasts, the time series models (incl. determinations of the model order 

and parameter estimates) were fitted again in the study for each of the successively changing time 

series sections (growing or rolling time windows). 

The tables "Percentage deviation of exceedance rate from alpha" also contain mean values of the 

percentage deviations (i.e. the forecast errors) over all time series or quantiles (alpha 1% to 10%) as 

well as the corresponding Mean Absolute Percentage (Error) deviations, the mean values of positive 

deviations and the mean values of negative deviations. 

A positive default correlation would mean that, for example, an exceedance of the VaR forecast for 

the US dollar/euro exchange rate would most likely be accompanied by an exceedance of the VaR 

forecast for the Chinese renminbi/euro exchange rate. 

Put simply, high losses on one currency go hand in hand with high losses on the other. Provided that 

the corresponding other currency is held, an offset can be achieved if necessary, so that, for 

example, a European company can offset high exchange-rate-driven losses on liabilities in Chinese 

renminbi with high profits on receivables in US dollars. 

Discussion of the Results 

Key findings 

Numerous univariate and multivariate extensions for GARCH models are presented in the literature, 

which can generally be used for forecasting conditional volatilities and Value-at-Risk calculated from 

them. In addition, alternative methods for VaR forecasting have been proposed, including non-

parametric methods such as historical simulation. 

In the theoretical part of the paper, different variants of GARCH models are presented. For own 

Value-at-Risk forecasts, the focus is on the MS-GARCH model, which was constructed for modelling 

time series with regime changes. 

Since the structure of the MS-GARCH model permits flexibility, it is assumed here that it also 

captures structural breaks and outliers in time series.44 If this is true, the MS-GARCH model would 

also encompass, replace or approximate other variants of GARCH models: For example, the 

                                                           
44 Structural breaks divide a time series into different sections, which could be interpreted as single-occurrence 

regimes and are thus also captured by the MS-GARCH model. 
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Threshold GARCH model proposed earlier in the literature treats positive and negative returns 

differently. Price losses may be accompanied by greater fluctuations than price gains. However, this 

is also due to different temporal market phases in which speculative bubbles build up or burst, crises 

cause recessions or upswings occur. Since some market phases are characterised by frequently 

positive returns, but in others predominantly negative ones occur, these can possibly be interpreted 

as regimes. 

For the study, Value-at-Risk forecasts were produced using the MS-GARCH and the ordinary GARCH 

model. For this purpose, time series of Euro exchange rates as well as of rates in US Dollars of the 

crypto assets Bitcoin and Ethereum as well as of gold, silver and crude oil were available. Quite 

accurate VaR forecasts were achieved with both the ordinary and the MS GARCH model (also for high 

quantiles up to 98% and partly beyond), provided a suitable distribution assumption (Skew Student-

T) was made for the residuals or time series values. 

Distribution models and stability 

VaR forecast accuracies were evaluated for three alternative distribution models (Gaussian, Student-

T, Skew Student-T). These distribution models are offered for selection via the R packages, among 

others, for both the ordinary GARCH and the MS-GARCH functions.  

With the normal distribution, fairly accurate 95% VaR forecasts are obtained. However, for higher 

VaR quantiles (VaR > 95% or alpha < 5%) it provides an inadequate fit. The Skewed Student-T-

distribution provides a fairly accurate fit to the time series used up to the 98% or 99% quantile and in 

some cases for even higher quantiles. Nevertheless, even the Skewed Student-T-distribution cannot 

accurately fit the fat tails of the actual return distributions. 

In ex-post predictions (one day-ahead) of VaR due to shifting time series sections (rolling and 

growing time windows), the estimation algorithm of the ordinary GARCH model interrupted 

repeatedly. In contrast, the R function MS-GARCH reliably delivered parameter estimates for all time 

series sections, which serve as the basis for the VaR calculation. 

The time series of the CHF/EUR exchange rate contains two clear outliers. The estimation algorithm 

of the ordinary GARCH function generally returned an error message instead of valid parameter 

estimates if the moving time window contained one or even both outliers.  

For other time series, the estimation algorithm was also unable to output valid parameter values for 

some time windows. Instability occurred more frequently in the study with rolling time windows, 

especially with outliers of current values.45    

This concerns several time series or study designs of miving windows (see appendix).  

In this respect, the MS GARCH function proved to be better suited for modelling the present time 

series than the ordinary GARCH function.  

Moreover, it should be taken into account that when fitting ordinary GARCH models to time series 

with structural breaks, biased parameter values may also be estimated. 

The results (see appendix) show, however, that the MS GARCH function does not necessarily 

(constantly) provide more accurate forecasts than the ordinary GARCH function, evaluated on the 

basis of the results for the Skewed Student-T distribution. 

                                                           
45 The same should apply to structural breaks, which are, however, more difficult to detect. Extensive tests for 

structural breaks in the time series were not carried out in order to limit the scope of the study. 
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Correlation and default correlation 

Correlations and default correlations were calculated between the euro exchange rates of major 

currencies and between the US dollar prices of Bitcoin, Ethereum, gold, silver and crude oil.  

Since the calculated default correlation coefficients depend on the VaR forecasts, the effects of 

different forecasting procedures on these are analysed (forecast with ordinary GARCH versus MS-

GARCH function, variants in the mean equation used). 

For the management of a portfolio of assets, not only the volatilities of the return series may be of 

interest, but also the covariances or correlations of these time series with each other. After all, the 

maintenance of a company's solvency would be endangered especially in the case of significant 

(total) losses on several exposures. Basically, the correlation matrix (pairwise correlations) of all 

substantial exposures should be calculated. This provides information about further meaningful 

analyses. In the case of medium or even strong or perfect positive or negative correlation of two 

exposures, it may be useful to determine the dynamics (i.e. development over time) of the 

correlation. This can then be taken into account when forecasting conditional variances and 

covariances. In the study, selected dynamic developments of the coefficients of the ordinary and the 

default correlation are presented (see appendix). 

Correlations and default correlations were calculated between the euro exchange rates of major 

currencies and between the US dollar exchange rates of Bitcoin, Ethereum, gold, silver and crude oil. 

Time developments of (default) correlations of the USD/EUR exchange rate with other time series 

were calculated via successively changing time series sections (growing time windows, for the 

ordinary correlation also rolling ones). They are shown graphically in the appendix. The default 

correlations of the exchange rates are or are developing quite steadily, apart from temporary 

changes during the financial crisis. For gold, silver and oil, there are converging trends. For the 

relatively short time series of Bitcoin and Ethereum, stronger changes in the correlations are evident, 

but they remain around the coefficient value of zero. For the entire period, it was examined how the 

calculated default correlations are influenced by the fitted model variants or distribution 

assumptions. 

Time-conditional correlation and selection of Multivariate GARCH models 

The paper argues that the Multivariate GARCH models proposed since the 1980s may have lost their 

importance (if they ever had any importance for forecasting) due to the computing power of modern 

personal computers.46  Today, it is possible to forecast all elements of variance-covariance matrices 

of a certain size and within a reasonable time using single equations or univariate GARCH models. 

Thus, if necessary, specific and exact adjustments of time series models to individual time series or 

volatility equations can be made. Error handling (especially missing outputs of the estimation 

algorithm) is also less problematic, since only the forecast for a single exposure or a single variance 

or covariance is affected. For forecasts of the time-conditional variance-covariance matrix by means 

of Multivariate GARCH models, on the other hand, special requirements for the invertibility of the 

matrices, stationarity and positive definiteness have to be fulfilled. This is necessary in order to 

forecast conditional covariances or correlations for the composed assets with the Multivariate 

GARCH model. In daily applications for forecasting purposes, however, difficulties are likely to arise 

                                                           
46 An important application of multivariate GARCH models is the identification of volatility spillovers between 

assets. 
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regularly, since even a current outlier value can prevent the estimation of the Multivariate GARCH 

model. Changes to model structures or collections of included time series would then be necessary 

and may have to be documented.   

If Multivariate GARCH models are nevertheless considered for forecasting purposes or explorative 

studies, the question of the model variant to be selected arises for economical modelling or 

feasibility. In particular, a distinction can be made between Dynamic Conditional Correlation (DCC) 

and Constant Conditional Correlation (CCC) models. In the latter, the correlations are assumed to be 

constant over time, so that only the volatilities as elements on the main diagonal of a variance-

covariance matrix are to be modelled or forecast as time-dependent. 

Furthermore, the choice of a multivariate GARCH model requires weighing up and, if necessary, 

trying out different models: On the one hand, it should be ensured that volatility spillovers between 

time series are modelled realistically. Therefore, restrictions in the parameters and the model 

structure that suppress a realistic representation of the correlations should be avoided. Otherwise, it 

cannot be ruled out that biased parameter values are estimated. On the other hand, restrictions on 

the model must be made in such a way that requirements (including positive definiteness) are 

fulfilled that allow an estimate for the given multivariate time series at all and lead to plausible 

results. A control of the model structure that ensures an application to multivariate time series is 

rather possible for manageable models with a small number of parameters to be estimated. 

The results of the present study can be used for a decision on model selection. It is recommended to 

conduct similar preliminary studies for alternative time series. For example, the results (see 

appendix) show that the (default) correlations of Bitcoin, Ethereum, gold, silver and crude oil with 

the USD/EUR exchange rate are rather weak. The determined (default) correlations fluctuate over 

time, partly in the positive and negative range around zero. It can therefore be considered to use the 

conditional correlation in CCC models as an (estimated) constant or even to set it equal to zero for 

the assets concerned, even if they are subject to directionless variation or directional dynamics. In 

the case of the (default) correlations between different exchange rates, modelling of the dynamics 

can also be dispensed with even in the case of (medium) strength if the (default) correlations are just 

constant or show hardly any variation over a long period of time. This is particularly true if the 

(default) correlation is perfect due to exchange rate pegging and thus stable. On the other hand, if 

the (default) correlation is medium to strong and there are recognisable dynamics, this would have 

to be depicted using Dynamic Conditional Correlation (DCC) models. Alternatively, if multivariate 

GARCH models are not used, the time-conditional covariance or correlation can be predicted using 

single equation models. 

VaR exceedances and default correlation 

To estimate a reliable (Pearson's) correlation coefficient, it would be advantageous to have a 

minimum number of approximately ten pairwise observations of both variables. Due to the rarity of 

VaR overruns, long time series are required for the calculation of default correlations (i.e. 

correlations of the exceedance events, i.e. when considering exposures in pairs, both VaR forecasts 

are exceeded in one period). Particularly with the extreme quantiles, a mass of observations is 

required to obtain robust coefficients. For the 1% VaR, for example, one exceedance is expected in 

one hundred trading days or ten exceedances in 1000 trading days. If two time series of this length 

are available, this might be sufficient for the calculation of a coefficient. However, with such a long 

observation period it is possible that the market conditions (or correlations) have changed in the 
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meantime. However, these changes are not reflected by a single coefficient. If time series of this 

length are not yet available for new assets (e.g. crypto assets), the determination of the default 

correlation is also impaired. The question therefore arises whether the coefficients of the default 

correlations can be replaced by the ordinary (Pearson's) correlation coefficients as proxies or at least 

explained (e.g. via regression models).47 If so, changes in the ordinary correlation coefficients 

(calculated for short time periods, such as 30 trading days) also indicate changes in the risk of 

pairwise defaults or VaR exceedances. Alternatively, the current change in the default correlation 

coefficient should be tracked, which is calculated on the basis of moving time windows. Due to the 

high weight of historical values, even slight changes in the default correlation coefficient can indicate 

strong current (daily) changes. In the appendix, developments of default correlations of selected 

exposures are presented over growing time windows.  The figures show that the default correlations 

become more stable with growing time windows. Due to the proportion of outdated values, 

however, effects due to current market changes are less and less clearly recognisable. Nevertheless, 

trends are recognisable, i.e. it becomes apparent whether the default correlations tend to remain 

stable in the long term or tend to increase or decrease. This is informative for long-term or strategic 

decisions. 

However, unforeseeable events and fluctuations in market value can greatly increase the insolvency 

risk of a company in the short term. For an appropriate reaction in a short period of time, changes in 

the value of the exposures and their volatilities and correlations should therefore be monitored 

continuously. It is therefore recommended to calculate Pearson's correlation coefficients for rolling 

time windows as in the study. These tend to vary more the shorter the time windows are. 

If the rolling time windows show a strong dynamic of correlations, it makes sense to model the 

conditional correlations between the exchange rates. In principle, various univariate or multivariate 

GARCH models can be considered for this purpose. Multivariate GARCH models can also be used to 

model spillover effects between the time series. Volatility spillover means that a change in the 

fluctuation margins on one market can influence those on another market (with a time lag). 

The default correlations between the USD/EUR exchange rate returns and the asset returns (BTC, 

ETH, gold, silver, oil) were temporarily medium-sized and subject to dynamics. However, as long as 

the (default) correlations are weak or fluctuate closely around zero in the positive and negative 

range, the modelling of their dynamics can also be dispensed with or even a missing (default) 

correlation can be assumed for forecast models. 

A strong depreciation of the euro against the US dollar is also accompanied by a strong depreciation 

of the euro against other major currencies, especially the CNY. This relationship diminished for the 

Japanese yen and the British pound during the financial crisis. For the Chinese Remnimbi, a slight dip 

in the already high default correlation can also be seen at the beginning of 2008. For the Swiss franc, 

an increase between 2008 and 2010 is more noticeable. 

The results illustrated in the appendix indicate that default correlations can be replaced or explained 

by correlations or that this is true for their changes. This should be investigated in more detail in 

further studies. 

                                                           
47 Alternatively, coefficients of default correlations can also be derived theoretically or empirical values can be 

used. 
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Neglecting the mean equation 

The effects of neglecting the mean equation on the accuracy of the VaR forecasts were also 

investigated. For the time series at hand, it was found that even less accurate VaR forecasts are 

obtained for quantiles above 95 % (or alpha < 5 %) when ARIMA models are fitted according to the 

textbook manner. That is, forecast accuracy increases in the absence of the mean (i.e. assumed mean 

zero) or inaccurate modelling of the dynamics of the expected value. One explanation for this 

phenomenon is that a deviation of the predicted from the actual expected value of the conditional 

distribution causes a shift of the density function on the abscissa. In the case of a positive mean 

return in the history, its neglect leads to a higher VaR quantile (lower alpha) being used than 

reported, since the predicted expected value is zero. Thus, more regulatory capital would be 

deposited for a risk position than required. The percentage VaR exceedance frequency would be 

below its corresponding target alpha. Neglecting a negative mean, on the other hand, results in  

correspondingly opposite effects. If the normal distribution is used for the VaR calculation, it is 

probably often the case in practice that the volatility equation is fitted directly to the return values. 

In a textbook way, however, the volatility equation would have to be fitted to the residuals resulting 

from the fitted mean equation. The ignorance can also be justified by the fact that the mean return is 

usually close to zero for time series with daily periodicity or even higher frequency. However, this 

does not apply to the Bitcoin time series and other crypto assets, which at times recorded enormous 

daily returns. In addition, it must be taken into account that for large funds managed by investment 

banks, even returns in the proportionate per mille range represent large amounts or a high coverage 

capital.    

When using a distribution other than the Gaussian distribution, such as Student-T or Skew Student-T 

for the VaR forecast, other parameters have to be estimated. These also determine the skewness or 

kurtosis of the fitted distribution. When using the R-functions for these special distributions, the 

various parameters are output, including the mean value. If these R-functions also allow a forecast of 

time-dependent density functions or quantiles (i.e. Value-at-Risk), the mean value is taken into 

account. However, an independent modelling of the dynamics of the mean (and, by the way, also 

skewness) via individual equations may not be sufficiently taken into account.  

In any case, there is the problem that the "fat tails" (extreme quantiles) of the actual return 

distributions are poorly represented by the fitted distributions. 

Precise modelling of the mean has the effect that the fitted density function accurately represents 

the actual distribution in its entirety, i.e. in particular the quantiles of the central mass. However, the 

extreme quantiles of the actual distributions, which are of interest for VaR, are usually inaccurately 

covered by the fitted distributions. When the mean is inaccurately estimated, the mass shifts so that 

the fitted density function then hits certain quantiles of the actual distribution - possibly in the 

extreme tail - more accurately (but other quantiles even more inaccurately). 48  

However, with increasing distance from the mean, a certain (constant) mass under the density 

function (of the normal distribution) is represented by an increasing range on the abscissa. The 

change in the mean has a stronger effect on more extreme quantiles.49 It can be seen from the tables 

                                                           
48 The corresponding quantiles in the other tail of the distribution are hit even worse because of the shift in the 

density function. 
49 A more detailed explanation: If the mean (of the normal distribution) is shifted, the range (i.e. the difference) 

between the actually applied and the assumed (i.e. reported) quantile value is the same for all quantile values. 

However, as the distance from the mean increases, the area above a constant range (i.e. the probability mass 



Gohs, A.M. (2022) The Choice of GARCH Models to Forecast Value-at-Risk 

32 

 

in the appendix that in concrete application cases a lack of consideration of the expected value has 

led to particularly accurate VaR forecasts at various extreme quantiles. In this case, less precise 

modelling of the mean equation was accompanied by a gain in forecast accuracy. 

Altogether, it can be stated that the omission of modelling (the dynamics) of the expected value is 

usually justified, as the impact on forecast accuracy is only minor. However, this is not necessarily 

true in the case of the formation (or bursting) of speculative bubbles with enormous mean price 

changes. In any case, based on the sign of the mean of historical returns, an assessment should be 

made of the impact of this neglect on VaR quantiles of interest and the coverage capital to be held. A 

(complex) mean equation should rather be omitted if the estimation algorithm frequently interrupts 

during regular forecast generation.  

By manipulating or (possibly permissible under supervisory law) subsequently changing the 

estimated (ARMA GARCH) parameter values representing the mass of a distribution, a better 

adjustment to the mass in the marginal areas of the distributions may be possible. When using the 

normal distribution, there is thus scope for design in that the density function is shifted by changing 

the mean value or the variance is compressed or stretched by changing the variance. 

By manipulating or subsequently changing the estimated parameter values that represent the mass 

of a distribution, a better fit to the mass in the tails of the distribution can be achieved. There is 

scope when using the normal distribution in that the density function can be shifted by changing the 

mean or compressed or stretched by changing the variance. 

Conclusion and Suggestions 

The digital transformation promotes the increasing introduction of automated or partially automated 

applications in all possible areas of activity. In order to increase efficiency in companies, process 

flows should overlap as automatically as possible. This can be achieved by barrier-free interfaces 

which, for example, enable the linking of a wide variety of applications.50 Since individual error 

handling in the event of system failures can hardly be managed by personnel, these complex 

processing sequences require stable functions in the individual applications. 

Risk management has its origins in the financial industry, but is becoming increasingly important for 

companies in all sectors and legal forms. International institutions and standards as well as national 

legislation, which demand the introduction of risk management in companies, are also contributing 

to this. This development was justified in the past by insolvencies of large companies with 

considerable disadvantages for society (i.e. employees of the affected companies themselves, but 

also taxpayers, etc.). Many companies are currently in the process of introducing risk management 

systems. At the same time, there is a shortage of skilled personnel to set up and maintain the 

systems. This makes it all the more important to strive for a largely automated and barrier-free flow 

of the processes that are new for the companies.51  

                                                                                                                                                                                     

associated with the error) decreases. However, this area increases in relation to the remaining area (or alpha) 

in the tail of the distribution. Thus, with more extreme quantiles, the deviation of the actual VaR exceedance 

probability from the given alpha also increases. 
50 This concerns the compatibility of different software products. But also within a programme, intermediate 

results of functions are no longer read out and manually entered into other functions or programmes as input. 

Instead, a function that forecasts conditional volatilities, for example, submits this forecast value at runtime 

directly to the next function as input, so that the latter calculates and spits out the VaR, for example. 
51 These processes involve or require the processing of information or data. 
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The present study is essentially concerned with the key figure Value-at-Risk, which has gained 

particular importance in risk management. In addition to an evaluation of the accuracy of Value-at-

Risk forecasts, it was of interest to find out which functions of the software R are used to obtain 

reliable (in the sense of stable programme processes) results.52 

To investigate this, analyses and forecasts were carried out for the present work based on 

successively changed time windows. These are carried out using various functions of the R software. 

The paper describes the ordinary GARCH model and extensions, especially for modelling and analysis 

of univariate and multivariate time series. Among other things, an overview of multivariate GARCH 

models is given, which could be used for forecasts of time-conditional variance-covariance matrices. 

VaR forecasts for portfolio compositions of assets can then be calculated from the forecast variance-

covariance matrices. In this context, it is discussed whether or which variants of multivariate GARCH 

models are most likely to be used for forecasts or automated forecasting systems. However, there 

are arguments in favour of forecasting the individual elements (variances and covariances) using 

specifically fitted univariate GARCH models. 

Software routines that are as stable as possible are required for frequent and automated forecasting. 

The study with rolling and growing time windows revealed that the Markov switching GARCH model 

of the R package "MSGARCH" ensures a flexible adaptation to time series and reliably delivers 

parameter estimation results. In contrast, the estimation algorithm of the R function of the ordinary 

GARCH model broke down more frequently in the case of outliers and structural breaks. 

However, the accuracy of a VaR forecast was essentially determined by the adjusted distribution 

model. 

Since it has been shown in the past that the normal distribution is not suitable for modelling financial 

market data, other distributions for the residuals (or returns) have also been considered. For 

example, the software R also offers the Student t distribution and the Skewed Student t distribution 

as alternatives in various applications (including for estimating GARCH and MS GARCH models).  

Both, but most likely the Skewed Student t-distribution, provide a better approximation to the actual 

distributions. Calculations were also performed for high VaR quantiles. The actual distributions 

typically have more mass (so-called "fat tails") at the edges (especially above the 95% or below the 

5% quantile) compared to the normal distribution. Accordingly, extreme return values occur more 

frequently than would be assumed by the normal distribution. 

The effects of neglecting or designing the mean equation on the Value-at-Risk forecast using GARCH 

models were also investigated. It was shown that in some cases even more accurate forecasts are 

achieved for certain extreme quantiles. 

In addition, calculations were made in the study on the development of the (ordinary) correlation 

and default correlation. These illustrations should contribute to a better decision regarding the 

modelling (and, if necessary, model selection) for the dynamics of the coefficients. 

As far as the default correlation is concerned, the result for some pairwise exposures is that it hardly 

decreases even with increasing extreme quantiles. In this case, high losses would be expected for 

both exposures if VaR were exceeded. 

                                                           
52 "R is a free software environment for statistical computing and graphics." , see https://www.r-project.org/  
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Since the calculated default correlations depend on their underlying VaR forecasts, it was also 

examined how a consideration of the expected value (or modelling of the mean equation) affects 

them. It turns out, however, that the coefficients of the default correlations are hardly changed. 

Since calculated default correlations require long time series, possibly based on periods with 

intervening changes in market conditions, further research should address how to obtain short-term 

dynamics of this coefficient. 

An evaluation of the accuracy of VaR forecasts refers to the mass of trading days for which the 

forecasts are made. 

If key figures are actually relevant for insolvency prevention and are not only calculated because of 

regulatory requirements, further analyses and forecasts should be carried out for individual trading 

days in addition to the VaR calculation: 

Kwon (2021) for example extends the CAViaR model of Engle and Manganelli (2004) to study 

potential drivers of the Bitcoin's 5% and 1% VaR. The author finds for the 1% VaR variables related to 

the macroeconomy as key drivers. For the 5% VaR the author identifies for example positive 

relationships to the Bitcoin trading volume and the Internet search index, and negative responses to 

volatility on the Chinese stock market. 
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APPENDIX 

Histograms of bitcoin returns and USD/EUR exchange rate returns and fitted 

density functions 

Histograms of Bitcoin returns and USD/EUR exchange rate returns are presented below. Density 

functions of the normal distribution (dark red), the Student t-distribution (light red) and the Skew 

Student t-distribution (blue) are fitted to these distributions.  

Figure 1 Histogram of daily Bitcoin returns and fitted density functions 

 

Especially for the extreme bitcoin returns, it is apparent that the normal distribution does not 

provide a suitable fit. The density function of the Student t-distribution is overlaid by that of the 

Skew Student t-distribution in both figures. The Skew Student t-distribution provides an even better 

fit. 

Parameters of the Student t and skew Student t distributions were estimated with the functions 

stdFit and sstdFit of the R package fGarch. 
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Figure 2 Histogram of daily US Dollar/Euro exchange rate returns and fitted density 

functions 
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Exemplary calculations for the Value-at-Risk forecast error when neglecting 

the mean value 

The density functions were fitted to the (unconditional) distributions. For the Gaussian distribution, 

the two parameters mean and standard deviation were estimated with the R functions mean and sd. 

The estimated parameter values were transferred to the dnorm functions to calculate the density of 

the normal distribution. The graphs of these density functions were created with the R function 

curve.  

Parameters of the Student t and Skew Student t distributions were estimated with the functions 

stdFit and sstdFit of the R package fGarch. These also include estimates of the mean values alongside 

the other parameters of these distributions.  

Quantiles were obtained via the R-functions quantile (actual distribution), qnorm (Gaussian 

distribution), qstd (Student t) and qsstd (Skew Student t). 

The following two tables show that the three distribution functions provide different precision fits to 

the quantiles.   

As an example, it is also shown how neglecting the mean can affect these results. For this purpose, 

the unrealistic scenario was assumed that the returns are actually normally distributed. However, the 

established distribution functions do not provide a suitable fit, especially for the extreme returns at 

the tails of the distributions. 

Table 1 VaR forecast error due to a neglected negative mean if USD/EUR exchange 

rate returns were normally distributed 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

Quantiles of USD/EUR returns and fitted distributions 

actual -0,735 -0,986 -1,208 -1,294 -1,595 -1,861 -2,135 -2,495 

Gaussian -0,786 -1,009 -1,202 -1,259 -1,426 -1,579 -1,721 -1,894 

Student t -0,711 -0,967 -1,229 -1,316 -1,599 -1,906 -2,245 -2,752 

Skew Student t -0,715 -0,974 -1,239 -1,328 -1,614 -1,926 -2,270 -2,784 

Overestimated quantile values when neglecting the negative mean value 

actual -0,734 -0,985 -1,207 -1,293 -1,594 -1,860 -2,134 -2,494 

Gaussian -0,785 -1,008 -1,201 -1,258 -1,425 -1,578 -1,720 -1,893 

Student t -0,710 -0,966 -1,228 -1,315 -1,598 -1,905 -2,244 -2,751 

Skew Student t -0,714 -0,973 -1,238 -1,327 -1,613 -1,925 -2,269 -2,783 

Forecast error (%) of exceedance probability if returns were Gaussian distributed 

Prob.-Gaussian 10,030 5,018 2,510 2,008 1,005 0,502 0,251 0,101 

Percentage Error 0,299 0,351 0,398 0,412 0,454 0,493 0,529 0,574 

 

If the USD/EUR daily returns were actually Gaussian distributed, neglecting the negative mean return 

would mean that, for example, the 99% VaR (i.e. alpha = 1%) would actually be set at the 98.995% 

VaR (i.e. alpha = 1.005%). The mass of the fat tail up to this quantile is thus overestimated by 0,454%. 

Thus, a smaller capital buffer would be held than actually required, but the VaR forecast would be 

exceeded more frequently. 
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Table 2 VaR forecast error due to a neglected mean if Bitcoin returns were normally 

distributed 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

Quantiles of Bitcoin returns and fitted distributions 

actual -4,33 -6,80 -9,89 -10,94 -13,03 -16,41 -18,94 -26,78 

Gaussian -5,50 -7,11 -8,51 -8,92 -10,13 -11,24 -12,26 -13,52 

Student t -3,84 -6,07 -9,04 -10,22 -14,77 -21,13 -30,07 -47,76 

Skew Student t -3,79 -5,97 -8,89 -10,04 -14,49 -20,71 -29,44 -46,70 

Underestimated quantile values when neglecting the positive mean value 

actual -4,51 -6,98 -10,07 -11,12 -13,21 -16,59 -19,12 -26,96 

Gaussian -5,68 -7,29 -8,69 -9,10 -10,31 -11,42 -12,44 -13,70 

Student t -4,02 -6,25 -9,22 -10,40 -14,95 -21,31 -30,26 -47,96 

Skew Student t -3,97 -6,15 -9,06 -10,21 -14,66 -20,87 -29,60 -46,83 

Forecast error (%) of exceedance probability if returns were Gaussian distributed 

Prob.-Gaussian 9,30 4,59 2,27 1,81 0,90 0,44 0,22 0,09 

Percentage Error -6,98 -8,15 -9,18 -9,48 -10,38 -11,21 -11,98 -12,92 

 

If bitcoin daily returns were actually normally distributed, neglecting the high mean return would 

result in, for example, the 99% VaR (i.e. alpha = 1%) actually being set at the 99.1% VaR (i.e. alpha = 

0.9%). Thus, a higher capital buffer would be held than actually required. However, the VaR forecast 

would be exceeded less frequently. The number of trading days with exceedances would decrease by 

10.38%. 
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Value-at-Risk forecasts based on growing time windows - 

 ordinary GARCH(g,a) model 

ARMA(p,q)- GARCH(g,a) model -- Skew Student-T distribution 

One day-ahead Value-at-risk forecasts with maximum lags of two for g and a in GARCH(g,a) volatility 

equations and five for p and q in ARMA(p,q) mean equations: 

For the GBP/EUR and CHF/EUR exchange rates, the ordinary GARCH function did not produce a result 

for some time series segments. Due to the repeatedly interrupted estimation algorithm, the VaR 

forecasts were also not produced for the entire period of the time series in consideration. 

Table 3 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 9,885 5,195 2,667 2,115 0,690 0,230 0,046 0,046 

ETH 9,291 6,083 3,543 2,741 1,136 0,535 0,267 0,134 

USD 9,914 4,919 2,666 2,009 1,108 0,563 0,338 0,131 

GBP 9,409 4,961 2,126 1,535 0,748 0,354 0,197 0,118 

CHF 11,805 6,607 3,813 3,212 1,645 0,914 0,522 0,366 

JPY 9,951 5,332 2,647 2,140 1,051 0,544 0,225 0,094 

CNY 9,725 4,467 2,332 1,819 1,067 0,573 0,356 0,099 

Oil 10,515 5,453 2,936 2,265 1,314 0,699 0,364 0,168 

Gold 10,069 4,876 2,530 2,082 0,843 0,474 0,237 0,158 

Silver 10,341 5,223 2,362 1,916 1,024 0,420 0,184 0,079 

 

Table 4 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -1,1 3,9 6,7 5,7 -31,0 -54,0 -81,6 -54,0  -3,2 9,7 5,4 -16,1 

ETH -7,1 21,7 41,7 37,0 13,6 7,0 7,0 33,7  21,4 24,2 28,5 -7,1 

USD -0,9 -1,6 6,6 0,5 10,8 12,7 35,2 31,4  3,1 4,1 6,0 -1,2 

GBP -5,9 -0,8 -15,0 -23,2 -25,2 -29,1 -21,3 18,1  -14,0 14,0   -14,0 

CHF 18,0 32,1 52,5 60,6 64,5 82,8 108,9 265,6  45,6 45,6 45,6   

JPY -0,5 6,6 5,9 7,0 5,1 8,9 -9,9 -6,1  4,8 5,0 6,2 -0,5 

CNY -2,7 -10,7 -6,7 -9,1 6,7 14,6 42,3 -1,2  -4,5 7,2 6,7 -7,3 

Oil 5,1 9,1 17,4 13,3 31,4 39,8 45,4 67,8  15,3 15,3 15,3   

Gold 0,7 -2,5 1,2 4,1 -15,7 -5,1 -5,1 58,1  -2,4 4,8 2,0 -9,1 

Silver 3,4 4,5 -5,5 -4,2 2,4 -16,0 -26,5 -21,3  0,1 4,0 3,4 -4,9 
              

Mean 0,9 6,2 10,5 9,2 6,3 6,2 9,4 39,2  6,6    

M Abs 4,6 9,3 15,9 16,5 20,7 27,0 38,3 55,7   13,4   

M Pos 6,8 13,0 18,9 18,3 19,2 27,6 47,8 79,1    15,2  

M Neg -3,0 -3,9 -9,1 -12,2 -24,0 -26,1 -28,9 -20,6     -10,4 
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Table 5 Mean Excess Loss for selected VaR quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC -3,31 -3,41 -2,82 -2,55 -3,00 -3,74 -5,89 -2,71 

ETH -4,41 -3,99 -3,62 -3,73 -4,70 -5,21 -5,00 -4,71 

USD -0,32 -0,32 -0,32 -0,35 -0,36 -0,42 -0,41 -0,50 

GBP -0,21 -0,18 -0,17 -0,18 -0,18 -0,19 -0,18 -0,10 

CHF -0,24 -0,26 -0,27 -0,27 -0,31 -0,34 -0,38 -0,27 

JPY -0,44 -0,42 -0,43 -0,43 -0,47 -0,48 -0,65 -0,95 

CNY -0,31 -0,33 -0,34 -0,36 -0,34 -0,37 -0,33 -0,56 

Oil -1,16 -1,08 -1,04 -1,10 -1,02 -1,02 -1,03 -0,98 

Gold -0,78 -0,85 -0,88 -0,88 -1,23 -1,45 -2,00 -1,74 

Silver -1,49 -1,61 -2,00 -2,07 -2,12 -2,71 -3,73 -6,25 

 

Table 6 Median Excess Loss for selected VaR quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC -1,95 -2,85 -1,87 -1,58 -1,49 -2,19 -5,89 -2,71 

ETH -2,95 -2,62 -1,79 -1,98 -2,96 -2,53 -2,47 -4,71 

USD -0,22 -0,20 -0,21 -0,21 -0,21 -0,28 -0,21 -0,20 

GBP -0,16 -0,12 -0,09 -0,14 -0,10 -0,14 -0,16 -0,03 

CHF -0,14 -0,15 -0,14 -0,14 -0,18 -0,19 -0,36 -0,18 

JPY -0,31 -0,27 -0,24 -0,25 -0,31 -0,26 -0,27 -0,38 

CNY -0,20 -0,22 -0,22 -0,23 -0,23 -0,24 -0,18 -0,28 

Oil -0,80 -0,74 -0,72 -0,77 -0,72 -0,74 -0,60 -0,75 

Gold -0,49 -0,56 -0,49 -0,44 -0,55 -0,64 -1,77 -1,29 

Silver -0,88 -0,84 -1,23 -1,26 -1,01 -1,26 -1,04 -4,57 
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Table 7 Mean Not Exhausted VaR for selected quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 5,45 7,43 9,99 10,98 14,64 19,52 25,94 37,70 

ETH 8,32 10,61 13,18 14,08 17,31 21,33 26,25 34,51 

USD 0,84 1,02 1,21 1,27 1,47 1,67 1,89 2,19 

GBP 0,65 0,78 0,90 0,94 1,08 1,22 1,36 1,56 

CHF 0,38 0,48 0,60 0,64 0,78 0,95 1,15 1,47 

JPY 1,00 1,25 1,50 1,58 1,85 2,14 2,44 2,87 

CNY 0,83 1,01 1,20 1,26 1,46 1,67 1,88 2,17 

Oil 2,78 3,43 4,11 4,33 5,05 5,80 6,57 7,64 

Gold 1,58 2,00 2,47 2,63 3,16 3,75 4,41 5,38 

Silver 2,61 3,39 4,29 4,61 5,72 6,98 8,45 10,78 

 

Table 8 Median Not Exhausted VaR for selected quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 4,32 6,15 8,50 9,39 12,64 17,02 22,59 32,68 

ETH 6,42 8,52 10,94 11,82 14,67 18,21 22,52 29,83 

USD 0,76 0,94 1,13 1,19 1,39 1,59 1,80 2,09 

GBP 0,55 0,67 0,80 0,83 0,96 1,09 1,23 1,40 

CHF 0,29 0,37 0,47 0,51 0,62 0,75 0,91 1,16 

JPY 0,87 1,11 1,34 1,42 1,68 1,94 2,23 2,62 

CNY 0,73 0,92 1,11 1,17 1,37 1,57 1,78 2,07 

Oil 2,37 3,02 3,68 3,90 4,58 5,29 6,01 6,99 

Gold 1,34 1,77 2,22 2,37 2,88 3,42 4,01 4,90 

Silver 2,24 3,01 3,85 4,14 5,16 6,31 7,64 9,68 
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ARMA(p,q)- GARCH(g,a) model -- Student-T distribution 

For the CHF/EUR exchange rates, the ordinary GARCH function did not produce a result for some 

time series segments. 

Table 9 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 9,931 5,333 3,034 2,483 0,920 0,322 0,138 0,092 

ETH 8,757 5,414 2,741 2,072 0,735 0,468 0,267 0,000 

USD 9,557 4,281 2,197 1,727 0,976 0,488 0,244 0,131 

GBP 9,144 4,675 2,028 1,633 0,845 0,469 0,207 0,113 

CHF 13,508 7,697 4,563 3,925 2,190 1,126 0,639 0,426 

JPY 10,383 5,652 2,967 2,347 1,145 0,676 0,376 0,113 

CNY 9,705 4,467 2,293 1,858 1,028 0,593 0,277 0,099 

Oil 11,074 5,928 3,244 2,657 1,706 0,867 0,447 0,196 

Gold 10,965 5,825 3,084 2,399 1,186 0,474 0,290 0,185 

Silver 11,759 6,404 3,228 2,520 1,522 0,761 0,289 0,105 

 

Table 10 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -0,7 6,7 21,4 24,1 -8,0 -35,6 -44,8 -8,0  8,7 12,2 17,4 -4,4 

ETH -12,4 8,3 9,6 3,6 -26,5 -6,4 7,0 -100,0  -3,5 12,1 7,2 -19,5 

USD -4,4 -14,4 -12,1 -13,6 -2,4 -2,4 -2,4 31,4  -9,4 9,4   -9,4 

GBP -8,6 -6,5 -18,9 -18,3 -15,5 -6,1 -17,4 12,7  -13,6 13,6   -13,6 

CHF 35,1 53,9 82,5 96,2 119,0 125,1 155,6 325,9  77,4 77,4 77,4   

JPY 3,8 13,0 18,7 17,3 14,5 35,2 50,2 12,7  13,5 13,5 13,5   

CNY -2,9 -10,7 -8,3 -7,1 2,8 18,6 10,7 -1,2  -5,2 6,4 2,8 -7,2 

Oil 10,7 18,6 29,8 32,8 70,6 73,4 79,0 95,7  32,5 32,5 32,5   

Gold 9,6 16,5 23,4 19,9 18,6 -5,1 16,0 84,5  17,6 17,6 17,6   

Silver 17,6 28,1 29,1 26,0 52,2 52,2 15,5 5,0  30,6 30,6 30,6   

              

Mean 4,8 11,4 17,5 18,1 22,5 24,9 26,9 45,9  14,9    

M Abs 10,6 17,7 25,4 25,9 33,0 36,0 39,8 67,7   22,5   

M Pos 15,4 20,7 30,6 31,4 46,3 60,9 47,7 81,1    28,9  

M Neg -5,8 -10,5 -13,1 -13,0 -13,1 -11,1 -21,5 -36,4     -11,1 
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ARMA(p,q)- GARCH(g,a) model -- Gaussian distribution 

For the CHF/EUR exchange rates, the ordinary GARCH function did not produce a result for some 

time series segments. 

Table 11 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 7,494 4,828 3,816 3,494 2,437 1,793 1,195 0,966 

ETH 7,086 4,612 2,941 2,406 1,738 1,070 0,869 0,602 

USD 8,825 4,281 2,516 2,103 1,427 0,826 0,544 0,338 

GBP 8,374 4,431 2,197 1,840 1,202 0,732 0,507 0,282 

CHF 9,819 5,272 3,783 3,219 2,093 1,529 1,127 0,684 

JPY 9,294 5,407 3,136 2,629 1,690 1,070 0,770 0,488 

CNY 8,757 4,250 2,550 1,996 1,364 0,850 0,613 0,316 

Oil 10,487 6,096 3,663 3,216 2,013 1,482 0,895 0,587 

Gold 8,408 4,902 3,057 2,609 1,950 1,054 0,791 0,474 

Silver 8,556 4,987 3,123 2,677 1,995 1,654 1,181 0,919 

 

Table 12 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -25,1 -3,4 52,6 74,7 143,7 258,6 378,2 865,5  48,5 59,9 90,3 -14,3 

ETH -29,1 -7,8 17,6 20,3 73,8 113,9 247,6 501,6  15,0 29,7 37,3 -18,4 

USD -11,8 -14,4 0,6 5,1 42,7 65,2 117,8 238,0  4,5 14,9 16,2 -13,1 

GBP -16,3 -11,4 -12,1 -8,0 20,2 46,5 102,8 181,6  -5,5 13,6 20,2 -11,9 

CHF -1,8 5,4 51,3 61,0 109,3 205,8 350,7 584,1  45,0 45,8 56,7 -1,8 

JPY -7,1 8,1 25,4 31,4 69,0 114,0 207,9 388,2  25,4 28,2 33,5 -7,1 

CNY -12,4 -15,0 2,0 -0,2 36,4 70,0 145,1 216,3  2,2 13,2 19,2 -9,2 

Oil 4,9 21,9 46,5 60,8 101,3 196,4 257,9 487,2  47,1 47,1 47,1   

Gold -15,9 -2,0 22,3 30,5 95,0 110,9 216,3 374,4  26,0 33,1 49,3 -8,9 

Silver -14,4 -0,3 24,9 33,9 99,5 230,7 372,4 818,6  28,7 34,6 52,8 -7,3 

              

Mean -12,9 -1,9 23,1 31,0 79,1 141,2 239,7 465,6  23,7    

M Abs 13,9 9,0 25,6 32,6 79,1 141,2 239,7 465,6   32,0   

M Pos 4,9 11,8 27,0 39,7 79,1 141,2 239,7 465,6    32,5  

M Neg -14,9 -7,7 -12,1 -4,1             -9,7 
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Table 13 Mean Excess Loss for selected VaR quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC -3,38 -3,53 -3,08 -2,97 -2,97 -2,96 -3,49 -3,40 

ETH -4,25 -4,02 -4,04 -4,35 -4,26 -5,15 -4,86 -5,22 

USD -0,32 -0,34 -0,33 -0,34 -0,32 -0,37 -0,40 -0,45 

GBP -0,26 -0,24 -0,27 -0,27 -0,26 -0,29 -0,30 -0,38 

CHF -0,16 -0,18 -0,17 -0,18 -0,20 -0,20 -0,21 -0,24 

JPY -0,43 -0,41 -0,42 -0,43 -0,43 -0,46 -0,46 -0,47 

CNY -0,32 -0,34 -0,33 -0,36 -0,34 -0,37 -0,35 -0,44 

Oil -1,14 -1,06 -1,05 -1,02 -1,06 -0,95 -1,10 -1,08 

Gold -0,81 -0,83 -0,86 -0,89 -0,82 -1,11 -1,18 -1,57 

Silver -1,54 -1,65 -1,84 -1,94 -1,96 -1,81 -1,96 -1,83 

 

Table 14 Median Excess Loss for selected VaR quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC -2,30 -2,64 -2,16 -2,00 -1,83 -1,94 -2,03 -1,64 

ETH -2,72 -2,59 -2,12 -2,35 -2,26 -3,64 -3,86 -3,60 

USD -0,20 -0,22 -0,23 -0,23 -0,15 -0,20 -0,25 -0,24 

GBP -0,18 -0,14 -0,18 -0,17 -0,15 -0,15 -0,14 -0,14 

CHF -0,10 -0,11 -0,10 -0,09 -0,11 -0,09 -0,10 -0,19 

JPY -0,29 -0,26 -0,24 -0,24 -0,26 -0,31 -0,24 -0,20 

CNY -0,19 -0,22 -0,21 -0,22 -0,20 -0,26 -0,21 -0,29 

Oil -0,79 -0,74 -0,70 -0,71 -0,76 -0,58 -0,80 -0,80 

Gold -0,54 -0,53 -0,52 -0,47 -0,31 -0,46 -0,54 -0,74 

Silver -0,80 -0,89 -1,11 -1,23 -1,18 -1,00 -0,99 -0,92 

 

Table 15 Mean Not Exhausted VaR for selected quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 6,00 7,31 8,52 8,87 9,89 10,85 11,73 12,87 

ETH 9,57 11,67 13,51 14,04 15,72 17,23 18,69 20,48 

USD 0,88 1,05 1,22 1,27 1,43 1,57 1,70 1,87 

GBP 0,71 0,86 0,99 1,03 1,15 1,27 1,38 1,51 

CHF 0,35 0,42 0,48 0,50 0,56 0,62 0,67 0,73 

JPY 1,04 1,25 1,44 1,50 1,68 1,85 2,01 2,20 

CNY 0,85 1,02 1,19 1,24 1,39 1,53 1,66 1,82 

Oil 2,79 3,33 3,84 4,00 4,46 4,91 5,32 5,84 

Gold 1,66 2,01 2,34 2,43 2,73 2,99 3,25 3,57 

Silver 2,81 3,42 3,97 4,14 4,65 5,13 5,57 6,11 
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Value-at-Risk forecasts based on growing time windows -  

MS(k)-GARCH(1,1) model 

ARMA(p,q) - MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 16 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 10,437 5,517 3,356 2,805 1,517 0,736 0,276 0,138 

ETH 10,361 6,684 4,011 3,409 1,471 0,936 0,468 0,134 

USD 9,820 4,957 2,478 1,990 1,070 0,582 0,376 0,131 

GBP 9,763 5,238 2,666 2,084 1,239 0,620 0,300 0,169 

CHF 9,895 4,694 2,347 1,971 1,014 0,582 0,319 0,207 

JPY 9,444 4,863 2,328 1,915 0,920 0,563 0,207 0,094 

CNY 9,231 4,151 2,234 1,819 1,008 0,593 0,395 0,158 

Oil 10,431 5,509 3,104 2,573 1,510 0,923 0,531 0,252 

Gold 9,673 4,692 2,451 2,056 0,817 0,422 0,211 0,158 

Silver 10,131 5,066 2,283 1,942 1,102 0,420 0,184 0,079 

 

Table 17 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC 4,4 10,3 34,3 40,2 51,7 47,1 10,3 37,9  28,2 28,2 28,2   

ETH 3,6 33,7 60,4 70,5 47,1 87,2 87,2 33,7  43,0 43,0 43,0   

USD -1,8 -0,9 -0,9 -0,5 7,0 16,4 50,2 31,4  0,6 2,2 7,0 -1,0 

GBP -2,4 4,8 6,6 4,2 23,9 23,9 20,2 69,0  7,4 8,4 9,9 -2,4 

CHF -1,1 -6,1 -6,1 -1,4 1,4 16,4 27,7 106,5  -2,7 3,2 1,4 -3,7 

JPY -5,6 -2,7 -6,9 -4,2 -8,0 12,7 -17,4 -6,1  -5,5 5,5   -5,5 

CNY -7,7 -17,0 -10,7 -9,1 0,8 18,6 58,1 58,1  -8,7 9,0 0,8 -11,1 

Oil 4,3 10,2 24,2 28,6 51,0 84,6 112,5 151,7  23,7 23,7 23,7   

Gold -3,3 -6,2 -2,0 2,8 -18,3 -15,7 -15,7 58,1  -5,4 6,5 2,8 -7,4 

Silver 1,3 1,3 -8,7 -2,9 10,2 -16,0 -26,5 -21,3  0,3 4,9 4,3 -5,8 

              

Mean -0,8 2,7 9,0 12,8 16,7 27,5 30,7 51,9  8,09    

M Abs 3,5 9,3 16,1 16,4 21,9 33,9 42,6 57,4   13,46   

M Pos 3,4 12,1 31,4 29,3 24,1 38,4 52,3 68,3    20,05  

M Neg -3,6 -6,6 -5,9 -3,6 -13,1 -15,8 -19,9 -13,7     -6,56 
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Table 18 Mean Excess Loss for selected VaR quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC -3,19 -3,46 -3,17 -3,07 -2,97 -3,17 -4,91 -5,11 

ETH -4,28 -4,06 -4,01 -3,91 -4,97 -4,44 -4,47 -7,04 

USD -0,32 -0,32 -0,34 -0,35 -0,37 -0,43 -0,43 -0,68 

GBP -0,25 -0,24 -0,25 -0,27 -0,26 -0,30 -0,41 -0,50 

CHF -0,22 -0,26 -0,35 -0,37 -0,54 -0,75 -1,19 -1,62 

JPY -0,44 -0,42 -0,45 -0,44 -0,51 -0,47 -0,71 -1,00 

CNY -0,32 -0,35 -0,35 -0,36 -0,37 -0,39 -0,37 -0,53 

Oil -1,18 -1,14 -1,08 -1,08 -1,04 -1,01 -1,03 -1,13 

Gold -0,80 -0,86 -0,88 -0,86 -1,22 -1,53 -2,19 -1,93 

Silver -1,49 -1,60 -1,98 -1,95 -1,86 -2,58 -3,74 -6,81 

 

Table 19 Median Excess Loss for selected VaR quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC -1,83 -2,40 -2,08 -2,05 -1,57 -1,19 -3,40 -3,29 

ETH -2,80 -2,71 -2,39 -2,25 -3,61 -3,10 -2,12 -7,04 

USD -0,22 -0,20 -0,21 -0,20 -0,22 -0,27 -0,22 -0,73 

GBP -0,18 -0,15 -0,17 -0,17 -0,15 -0,12 -0,19 -0,44 

CHF -0,11 -0,11 -0,13 -0,12 -0,17 -0,21 -0,25 -0,24 

JPY -0,30 -0,26 -0,25 -0,28 -0,32 -0,21 -0,42 -0,46 

CNY -0,19 -0,24 -0,21 -0,22 -0,26 -0,28 -0,14 -0,27 

Oil -0,82 -0,80 -0,71 -0,72 -0,64 -0,60 -0,68 -0,80 

Gold -0,52 -0,58 -0,44 -0,43 -0,60 -0,67 -1,95 -1,42 

Silver -0,87 -0,84 -1,21 -1,17 -0,80 -1,12 -0,79 -4,73 

 

Table 20 Mean Not Exhausted VaR for selected quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 5,22 6,79 8,58 9,19 11,19 13,38 15,76 19,15 

ETH 7,90 9,80 11,84 12,55 14,87 17,62 20,65 25,06 

USD 0,85 1,02 1,20 1,26 1,45 1,64 1,84 2,10 

GBP 0,68 0,82 0,95 0,99 1,14 1,28 1,42 1,61 

CHF 0,42 0,52 0,63 0,67 0,80 0,94 1,09 1,30 

JPY 1,02 1,27 1,52 1,61 1,89 2,18 2,48 2,89 

CNY 0,84 1,02 1,20 1,27 1,46 1,65 1,84 2,10 

Oil 2,77 3,38 3,99 4,18 4,78 5,37 5,94 6,68 

Gold 1,58 2,01 2,49 2,66 3,19 3,78 4,42 5,32 

Silver 2,63 3,43 4,36 4,70 5,84 7,12 8,56 10,70 
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ARMA(p,q) - MS(k)-GARCH(1,1) model -- Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 21 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 10,575 5,563 3,494 2,943 1,609 0,736 0,276 0,138 

ETH 9,893 5,682 3,275 2,406 1,070 0,602 0,267 0,134 

USD 9,538 4,375 2,347 1,765 1,033 0,526 0,319 0,150 

GBP 9,388 4,600 2,065 1,784 0,976 0,451 0,207 0,131 

CHF 10,308 5,163 2,572 2,159 1,258 0,601 0,394 0,225 

JPY 9,707 5,276 2,722 2,234 1,051 0,620 0,357 0,131 

CNY 9,211 4,032 2,194 1,779 0,988 0,553 0,376 0,178 

Oil 10,654 5,845 3,691 3,104 1,874 1,091 0,727 0,364 

Gold 10,253 5,324 3,005 2,293 1,081 0,501 0,264 0,158 

Silver 10,630 5,643 2,808 2,231 1,312 0,656 0,315 0,105 

 

Table 22 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC 5,7 11,3 39,8 47,1 60,9 47,1 10,3 37,9  33,0 33,0 33,0   

ETH -1,1 13,6 31,0 20,3 7,0 20,3 7,0 33,7  14,2 14,6 18,0 -1,1 

USD -4,6 -12,5 -6,1 -11,8 3,3 5,1 27,7 50,2  -6,3 7,7 3,3 -8,7 

GBP -6,1 -8,0 -17,4 -10,8 -2,4 -9,9 -17,4 31,4  -8,9 8,9   -8,9 

CHF 3,1 3,3 2,9 8,0 25,8 20,2 57,7 125,3  8,6 8,6 8,6   

JPY -2,9 5,5 8,9 11,7 5,1 23,9 42,7 31,4  5,7 6,8 7,8 -2,9 

CNY -7,9 -19,4 -12,2 -11,0 -1,2 10,7 50,2 77,9  -10,3 10,3   -10,3 

Oil 6,5 16,9 47,7 55,2 87,4 118,1 190,8 263,5  42,7 42,7 42,7   

Gold 2,5 6,5 20,2 14,7 8,1 0,2 5,4 58,1  10,4 10,4 10,4   

Silver 6,3 12,9 12,3 11,5 31,2 31,2 26,0 5,0  14,9 14,9 14,9   

              

Mean 0,2 3,0 12,7 13,5 22,5 26,7 40,0 71,5  10,38    

M Abs 4,7 11,0 19,8 20,2 23,2 28,7 43,5 71,5   15,79   

M Pos 4,8 10,0 23,3 24,1 28,6 30,8 46,4 71,5    18,15  

M Neg -4,5 -13,3 -11,9 -11,2 -1,8 -9,9 -17,4       -8,54 
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ARMA(p,q) - MS(k)-GARCH(1,1) model -- Gaussian distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 23 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 10,345 5,241 3,080 2,805 1,747 1,057 0,552 0,276 

ETH 8,890 4,612 2,406 2,005 1,203 0,869 0,468 0,267 

USD 8,562 4,149 2,385 2,028 1,220 0,657 0,469 0,300 

GBP 8,731 4,525 2,234 1,859 1,127 0,620 0,319 0,169 

CHF 8,111 4,074 2,572 2,065 1,296 0,789 0,526 0,338 

JPY 9,181 5,407 3,023 2,478 1,202 0,601 0,451 0,225 

CNY 8,401 3,914 2,332 1,917 1,127 0,672 0,573 0,297 

Oil 10,347 5,817 3,719 3,132 1,902 1,202 0,755 0,475 

Gold 9,568 4,955 2,768 2,214 1,292 0,685 0,527 0,395 

Silver 9,554 5,171 2,808 2,257 1,391 0,735 0,420 0,367 

 

Table 24 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC 3,4 4,8 23,2 40,2 74,7 111,5 120,7 175,9  29,3 29,3 29,3   

ETH -11,1 -7,8 -3,7 0,3 20,3 73,8 87,2 167,4  -0,4 8,6 10,3 -7,5 

USD -14,4 -17,0 -4,6 1,4 22,0 31,4 87,8 200,4  -2,5 11,9 11,7 -12,0 

GBP -12,7 -9,5 -10,6 -7,1 12,7 23,9 27,7 69,0  -5,4 10,5 12,7 -10,0 

CHF -18,9 -18,5 2,9 3,3 29,6 57,7 110,3 238,0  -0,3 14,6 11,9 -18,7 

JPY -8,2 8,1 20,9 23,9 20,2 20,2 80,2 125,3  13,0 16,3 18,3 -8,2 

CNY -16,0 -21,7 -6,7 -4,1 12,7 34,4 129,3 196,5  -7,2 12,2 12,7 -12,1 

Oil 3,5 16,3 48,8 56,6 90,2 140,5 202,0 375,4  43,1 43,1 43,1   

Gold -4,3 -0,9 10,7 10,7 29,2 37,1 110,9 295,4  9,1 11,2 16,9 -2,6 

Silver -4,5 3,4 12,3 12,9 39,1 47,0 68,0 267,5  12,7 14,4 16,9 -4,5 

              

Mean -8,3 -4,3 9,3 13,8 35,1 57,7 102,4 211,1  9,12    

M Abs 9,7 10,8 14,5 16,0 35,1 57,7 102,4 211,1   17,21   

M Pos 3,5 8,2 19,8 18,7 35,1 57,7 102,4 211,1    17,03  

M Neg -11,3 -12,6 -6,4 -5,6             -8,96 
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Value-at-Risk forecasts based on growing time windows -  

MS(k)-GARCH(1,1) model 

AR(1)- MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 25 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 10,161 5,609 3,356 2,851 1,471 0,828 0,276 0,092 

ETH 10,561 6,551 4,078 3,342 1,537 0,869 0,535 0,134 

USD 9,839 4,919 2,610 2,009 1,051 0,601 0,376 0,131 

GBP 9,857 5,238 2,572 2,122 1,202 0,620 0,300 0,188 

CHF 9,970 4,694 2,328 1,971 1,033 0,544 0,338 0,207 

JPY 9,407 4,900 2,385 1,934 0,920 0,563 0,207 0,094 

CNY 9,132 4,230 2,313 1,858 1,048 0,613 0,395 0,178 

Oil 10,487 5,425 3,104 2,489 1,454 0,867 0,531 0,280 

Gold 9,647 4,718 2,557 2,030 0,791 0,422 0,211 0,158 

Silver 10,052 4,987 2,205 1,864 1,024 0,446 0,184 0,079 

 

Table 26 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC 1,6 12,2 34,3 42,5 47,1 65,5 10,3 -8,0  27,5 27,5 27,5   

ETH 5,6 31,0 63,1 67,1 53,7 73,8 113,9 33,7  44,1 44,1 44,1   

USD -1,6 -1,6 4,4 0,5 5,1 20,2 50,2 31,4  1,4 2,6 3,3 -1,6 

GBP -1,4 4,8 2,9 6,1 20,2 23,9 20,2 87,8  6,5 7,1 8,5 -1,4 

CHF -0,3 -6,1 -6,9 -1,4 3,3 8,9 35,2 106,5  -2,3 3,6 3,3 -3,7 

JPY -5,9 -2,0 -4,6 -3,3 -8,0 12,7 -17,4 -6,1  -4,8 4,8   -4,8 

CNY -8,7 -15,4 -7,5 -7,1 4,8 22,6 58,1 77,9  -6,8 8,7 4,8 -9,7 

Oil 4,9 8,5 24,2 24,4 45,4 73,4 112,5 179,6  21,5 21,5 21,5   

Gold -3,5 -5,6 2,3 1,5 -20,9 -15,7 -15,7 58,1  -5,3 6,8 1,9 -10,0 

Silver 0,5 -0,3 -11,8 -6,8 2,4 -10,8 -26,5 -21,3  -3,2 4,4 1,4 -6,3 

              

Mean -0,9 2,5 10,0 12,3 15,3 27,4 34,1 54,0  7,9    

M Abs 3,4 8,7 16,2 16,1 21,1 32,7 46,0 61,1   13,1   

M Pos 3,2 14,1 21,8 23,7 22,7 37,6 57,2 82,2    17,1  

M Neg -3,6 -5,2 -7,7 -4,7 -14,5 -13,2 -19,9 -11,8     -7,1 
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Value-at-Risk forecasts based on growing time windows -  

MS(k)-GARCH(1,1) model 

Constant - MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 27 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 10,207 5,563 3,264 2,851 1,471 0,782 0,276 0,138 

ETH 10,160 6,551 4,011 3,409 1,471 0,936 0,468 0,134 

USD 9,839 4,938 2,478 1,990 1,070 0,582 0,376 0,131 

GBP 9,745 5,220 2,666 2,084 1,239 0,620 0,300 0,169 

CHF 10,045 4,769 2,422 2,047 1,033 0,601 0,357 0,207 

JPY 9,407 4,863 2,328 1,915 0,920 0,563 0,207 0,094 

CNY 9,231 4,151 2,234 1,819 1,008 0,593 0,395 0,158 

Oil 10,319 5,537 2,908 2,545 1,398 0,923 0,531 0,252 

Gold 9,647 4,665 2,478 2,082 0,817 0,422 0,211 0,158 

Silver 9,974 4,882 2,283 1,942 1,024 0,420 0,184 0,079 

 

Table 28 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC 2,1 11,3 30,6 42,5 47,1 56,3 10,3 37,9  26,7 26,7 26,7   

ETH 1,6 31,0 60,4 70,5 47,1 87,2 87,2 33,7  42,1 42,1 42,1   

USD -1,6 -1,2 -0,9 -0,5 7,0 16,4 50,2 31,4  0,6 2,2 7,0 -1,1 

GBP -2,6 4,4 6,6 4,2 23,9 23,9 20,2 69,0  7,3 8,3 9,8 -2,6 

CHF 0,5 -4,6 -3,1 2,3 3,3 20,2 42,7 106,5  -0,3 2,8 2,0 -3,9 

JPY -5,9 -2,7 -6,9 -4,2 -8,0 12,7 -17,4 -6,1  -5,6 5,6   -5,6 

CNY -7,7 -17,0 -10,7 -9,1 0,8 18,6 58,1 58,1  -8,7 9,0 0,8 -11,1 

Oil 3,2 10,7 16,3 27,2 39,8 84,6 112,5 151,7  19,5 19,5 19,5   

Gold -3,5 -6,7 -0,9 4,1 -18,3 -15,7 -15,7 58,1  -5,1 6,7 4,1 -7,4 

Silver -0,3 -2,4 -8,7 -2,9 2,4 -16,0 -26,5 -21,3  -2,4 3,3 2,4 -3,5 

              

Mean -1,4 2,3 8,3 13,4 14,5 28,8 32,2 51,9  7,4    

M Abs 2,9 9,2 14,5 16,8 19,8 35,1 44,1 57,4   12,6   

M Pos 1,8 14,4 28,5 25,1 21,4 40,0 54,5 68,3    18,2  

M Neg -3,6 -5,8 -5,2 -4,2 -13,1 -15,8 -19,9 -13,7     -6,4 
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Constant - MS(k)-GARCH(1,1) model -- Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 29 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 10,207 5,379 3,448 2,943 1,609 0,736 0,276 0,138 

ETH 9,759 5,682 3,275 2,406 1,070 0,602 0,267 0,134 

USD 9,557 4,375 2,347 1,765 1,033 0,526 0,319 0,150 

GBP 9,388 4,600 2,065 1,784 0,976 0,451 0,207 0,131 

CHF 10,364 5,051 2,572 2,122 1,220 0,638 0,338 0,225 

JPY 9,670 5,257 2,722 2,234 1,051 0,620 0,357 0,131 

CNY 9,211 4,052 2,194 1,779 0,988 0,553 0,376 0,178 

Oil 10,626 5,817 3,523 2,880 1,790 1,119 0,755 0,336 

Gold 10,200 5,271 3,005 2,319 1,107 0,501 0,264 0,158 

Silver 10,446 5,591 2,730 2,283 1,312 0,604 0,315 0,105 

 

Table 30 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1% 

BTC 2,1 7,6 37,9 47,1 60,9 47,1 10,3 37,9  31,1 31,1 31,1  

ETH -2,4 13,6 31,0 20,3 7,0 20,3 7,0 33,7  13,9 14,9 18,0 -2,4 

USD -4,4 -12,5 -6,1 -11,8 3,3 5,1 27,7 50,2  -6,3 7,6 3,3 -8,7 

GBP -6,1 -8,0 -17,4 -10,8 -2,4 -9,9 -17,4 31,4  -8,9 8,9  -8,9 

CHF 3,6 1,0 2,9 6,1 22,0 27,7 35,2 125,3  7,1 7,1 7,1  

JPY -3,3 5,1 8,9 11,7 5,1 23,9 42,7 31,4  5,5 6,8 7,7 -3,3 

CNY -7,9 -19,0 -12,2 -11,0 -1,2 10,7 50,2 77,9  -10,3 10,3  -10,3 

Oil 6,3 16,3 40,9 44,0 79,0 123,7 202,0 235,6  37,3 37,3 37,3  

Gold 2,0 5,4 20,2 16,0 10,7 0,2 5,4 58,1  10,9 10,9 10,9  

Silver 4,5 11,8 9,2 14,2 31,2 20,7 26,0 5,0  14,2 14,2 14,2  

              

Mean -0,6 2,1 11,5 12,6 21,6 27,0 38,9 68,7  9,45    

M Abs 4,3 10,0 18,7 19,3 22,3 28,9 42,4 68,7   14,91   

M Pos 3,7 8,7 21,6 22,8 27,4 31,1 45,2 68,7    16,83  

M Neg -4,8 -13,2 -11,9 -11,2 -1,8 -9,9 -17,4      -8,57 
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Value-at-Risk forecasts based on growing time windows - MS(k)-GARCH(1,1) 

model 

No mean equation - MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 31 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 8,874 4,828 2,943 2,391 1,195 0,552 0,276 0,092 

ETH 8,824 5,481 3,275 2,741 1,003 0,802 0,401 0,134 

USD 10,008 5,107 2,610 2,028 1,089 0,582 0,357 0,131 

GBP 9,895 5,351 2,666 2,084 1,239 0,601 0,282 0,169 

CHF 10,514 5,051 2,554 2,103 1,051 0,526 0,357 0,188 

JPY 9,407 5,051 2,403 1,971 0,976 0,563 0,225 0,094 

CNY 9,330 4,072 2,273 1,838 1,008 0,593 0,395 0,158 

Oil 9,927 5,285 2,768 2,405 1,370 0,867 0,503 0,224 

Gold 8,935 4,270 2,214 1,687 0,712 0,343 0,211 0,158 

Silver 9,291 4,514 2,021 1,706 0,840 0,341 0,157 0,079 

 

Table 32 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -11,3 -3,4 17,7 19,5 19,5 10,3 10,3 -8,0  8,4 14,3 18,9 -7,4 

ETH -11,8 9,6 31,0 37,0 0,3 60,4 60,4 33,7  13,2 17,9 19,5 -11,8 

USD 0,1 2,1 4,4 1,4 8,9 16,4 42,7 31,4  3,4 3,4 3,4   

GBP -1,1 7,0 6,6 4,2 23,9 20,2 12,7 69,0  8,1 8,6 10,4 -1,1 

CHF 5,1 1,0 2,1 5,1 5,1 5,1 42,7 87,8  3,7 3,7 3,7   

JPY -5,9 1,0 -3,9 -1,4 -2,4 12,7 -9,9 -6,1  -2,5 2,9 1,0 -3,4 

CNY -6,7 -18,6 -9,1 -8,1 0,8 18,6 58,1 58,1  -8,3 8,6 0,8 -10,6 

Oil -0,7 5,7 10,7 20,2 37,0 73,4 101,3 123,7  14,6 14,9 18,4 -0,7 

Gold -10,6 -14,6 -11,4 -15,7 -28,8 -31,5 -15,7 58,1  -16,2 16,2   -16,2 

Silver -7,1 -9,7 -19,2 -14,7 -16,0 -31,8 -37,0 -21,3  -13,3 13,3   -13,3 

              

Mean -5,0 -2,0 2,9 4,8 4,8 15,4 26,6 42,6  1,11    

M Abs 6,0 7,3 11,6 12,7 14,3 28,0 39,1 49,7   10,39   

M Pos 2,6 4,4 12,1 14,6 13,7 27,1 46,9 66,0    9,48  

M Neg -6,9 -11,6 -10,9 -10,0 -15,7 -31,6 -20,8 -11,8     -11,0 
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No mean equation - MS(k)-GARCH(1,1) model -- Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 33 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 9,241 5,149 3,126 2,621 1,471 0,736 0,322 0,138 

ETH 8,690 5,147 2,607 2,273 1,070 0,535 0,334 0,134 

USD 9,876 4,431 2,328 1,802 1,014 0,526 0,338 0,150 

GBP 9,444 4,788 2,140 1,765 0,976 0,469 0,207 0,131 

CHF 10,965 5,389 2,760 2,178 1,202 0,657 0,376 0,225 

JPY 9,688 5,370 2,779 2,216 1,070 0,620 0,357 0,131 

CNY 9,192 4,111 2,214 1,739 0,988 0,553 0,395 0,158 

Oil 10,291 5,705 3,328 2,796 1,734 1,035 0,727 0,336 

Gold 9,278 4,797 2,688 2,188 1,054 0,501 0,237 0,185 

Silver 9,921 5,354 2,651 2,231 1,286 0,604 0,315 0,105 

 

Table 34 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -7,6 3,0 25,1 31,0 47,1 47,1 28,7 37,9  19,7 22,8 26,6 -7,6 

ETH -13,1 2,9 4,3 13,6 7,0 7,0 33,7 33,7  2,9 8,2 7,0 -13,1 

USD -1,2 -11,4 -6,9 -9,9 1,4 5,1 35,2 50,2  -5,6 6,2 1,4 -7,3 

GBP -5,6 -4,2 -14,4 -11,8 -2,4 -6,1 -17,4 31,4  -7,7 7,7   -7,7 

CHF 9,7 7,8 10,4 8,9 20,2 31,4 50,2 125,3  11,4 11,4 11,4   

JPY -3,1 7,4 11,2 10,8 7,0 23,9 42,7 31,4  6,6 7,9 9,1 -3,1 

CNY -8,1 -17,8 -11,4 -13,0 -1,2 10,7 58,1 58,1  -10,3 10,3   -10,3 

Oil 2,9 14,1 33,1 39,8 73,4 106,9 190,8 235,6  32,7 32,7 32,7   

Gold -7,2 -4,1 7,5 9,4 5,4 0,2 -5,1 84,5  2,2 6,7 7,5 -5,6 

Silver -0,8 7,1 6,0 11,5 28,6 20,7 26,0 5,0  10,5 10,8 13,3 -0,8 

              

Mean -3,4 0,5 6,5 9,0 18,7 24,7 44,3 69,3  6,25    

M Abs 5,9 8,0 13,0 16,0 19,4 25,9 48,8 69,3   12,45   

M Pos 6,3 7,0 13,9 17,9 23,8 28,1 58,2 69,3    13,78  

M Neg -5,8 -9,4 -10,9 -11,6 -1,8 -6,1 -11,2       -7,88 
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No mean equation - MS(k)-GARCH(1,1) model -- Gaussian distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 35 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 9,471 4,782 3,034 2,575 1,655 1,103 0,506 0,276 

ETH 7,487 4,011 2,072 1,604 1,003 0,668 0,535 0,334 

USD 8,900 4,243 2,385 2,009 1,258 0,676 0,526 0,300 

GBP 8,750 4,656 2,272 1,878 1,127 0,620 0,300 0,169 

CHF 8,280 4,225 2,610 2,178 1,352 0,807 0,526 0,338 

JPY 9,313 5,464 3,098 2,497 1,220 0,620 0,451 0,225 

CNY 8,440 3,874 2,313 1,957 1,146 0,672 0,573 0,297 

Oil 9,983 5,677 3,356 2,880 1,790 1,091 0,755 0,391 

Gold 8,672 4,481 2,530 2,161 1,212 0,580 0,422 0,316 

Silver 9,003 4,856 2,756 2,310 1,444 0,761 0,446 0,315 

 

Table 36 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -5,3 -4,4 21,4 28,7 65,5 120,7 102,3 175,9  21,2 25,1 38,5 -4,8 

ETH -25,1 -19,8 -17,1 -19,8 0,3 33,7 113,9 234,2  -16,3 16,4 0,3 -20,5 

USD -11,0 -15,1 -4,6 0,5 25,8 35,2 110,3 200,4  -0,9 11,4 13,1 -10,3 

GBP -12,5 -6,9 -9,1 -6,1 12,7 23,9 20,2 69,0  -4,4 9,5 12,7 -8,7 

CHF -17,2 -15,5 4,4 8,9 35,2 61,5 110,3 238,0  3,2 16,2 16,2 -16,4 

JPY -6,9 9,3 23,9 24,9 22,0 23,9 80,2 125,3  14,6 17,4 20,0 -6,9 

CNY -15,6 -22,5 -7,5 -2,2 14,6 34,4 129,3 196,5  -6,6 12,5 14,6 -11,9 

Oil -0,2 13,5 34,2 44,0 79,0 118,1 202,0 291,5  34,1 34,2 42,7 -0,2 

Gold -13,3 -10,4 1,2 8,1 21,2 16,0 68,7 216,3  1,4 10,8 10,2 -11,8 

Silver -10,0 -2,9 10,2 15,5 44,4 52,2 78,5 215,0  11,4 16,6 23,4 -6,4 

              

Mean -11,7 -7,5 5,7 10,2 32,1 52,0 101,6 196,2  5,77    

M Abs 11,7 12,0 13,4 15,9 32,1 52,0 101,6 196,2   17,01   

M Pos   11,4 15,9 18,6 32,1 52,0 101,6 196,2    19,50  

M Neg -11,7 -12,2 -9,6 -9,4             -10,7 
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Summary of key findings on the accuracy of Value-at-Risk forecasts 

The following tables summarise major results, which give an indication of the effects of alternative 

formulations of the mean equation or the use of the MS-GARCH instead of the ordinary GARCH 

model on the Value-at-Risk forecast accuracy. 

The (mean absolute) percentage deviations (i.e. forecast error MAPE) of the actual percentage 

exceedance frequencies from their target exceedance frequencies (i.e. alpha in %) are reported. 

Measured by Mean Absolute Deviation (MAD) of 10.4%, the MS(k) GARCH(1,1) model (i.e. without 

fitting a mean equation) performs best for 90-99% VaR forecasts. On average, the target alpha is only 

exceeded or undercut by 10.4%. Measured against the 90% VaR (alpha = 10%), this would mean that 

the percentage exceedance frequency is on average 1.04 percentage points above or below the 

desired 10%. 

Table 37 Percentage deviation of exceedance rate from alpha: All Series - Skew 

Student-T 

 All Series  - Skew Student-T : Mean Absolute Percentage Deviation 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) 4,6 9,3 15,9 16,5 20,7 27,0 38,3 55,7 0,0 13,4 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
3,5 9,3 16,1 16,4 21,9 33,9 42,6 57,4 0,0 13,5 

AR(1)-MS(k)-GARCH(1,1) 3,4 8,7 16,2 16,1 21,1 32,7 46,0 61,1 0,0 13,1 

const-MS(k)-GARCH(1,1) 2,9 9,2 14,5 16,8 19,8 35,1 44,1 57,4 0,0 12,6 

0-MS(k)-GARCH(1,1) 6,0 7,3 11,6 12,7 14,3 28,0 39,1 49,7 0,0 10,4 

 

Table 38 Percentage deviation of exceedance rate from alpha: All Series - Student-T 

 All Series  - Student-T : Mean Absolute Percentage Deviation 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) 10,6 17,7 25,4 25,9 33,0 36,0 39,8 67,7 0,0 22,5 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
4,7 11,0 19,8 20,2 23,2 28,7 43,5 71,5 0,0 15,8 

AR(1)-MS(k)-GARCH(1,1) 4,5 10,7 19,4 18,8 23,9 27,6 40,1 74,0 0,0 15,5 

const-MS(k)-GARCH(1,1) 4,3 10,0 18,7 19,3 22,3 28,9 42,4 68,7 0,0 14,9 

0-MS(k)-GARCH(1,1) 5,9 8,0 13,0 16,0 19,4 25,9 48,8 69,3 0,0 12,5 

 

Table 39 Percentage deviation of exceedance rate from alpha: All Series - Gaussian 

 All Series  - Gaussian : Mean Absolute Percentage Deviation 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) 13,9 9,0 25,6 32,6 79,1 141,2 239,7 465,6 0,0 32,0 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
9,7 10,8 14,5 16,0 35,1 57,7 102,4 211,1 0,0 17,2 

AR(1)-MS(k)-GARCH(1,1) 10,2 11,3 14,4 17,5 35,4 64,2 110,1 203,1 0,0 17,8 

const-MS(k)-GARCH(1,1) 10,0 10,6 13,5 14,9 34,1 58,9 100,0 200,4 0,0 16,6 

0-MS(k)-GARCH(1,1) 11,7 12,0 13,4 15,9 32,1 52,0 101,6 196,2 0,0 17,0 
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Table 40 Percentage deviation of exceedance rate from alpha: Bitcoin returns - Skew 

Student-T 

 USD / BTC - Skew Student-T : Percentage deviation of exceedance rate from alpha 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) -1,1 3,9 6,7 5,7 -31,0 -54,0 -81,6 -54,0 -3,2 9,7 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
4,4 10,3 34,3 40,2 51,7 47,1 10,3 37,9 28,2 28,2 

AR(1)-MS(k)-GARCH(1,1) 1,6 12,2 34,3 42,5 47,1 65,5 10,3 -8,0 27,5 27,5 

const-MS(k)-GARCH(1,1) 2,1 11,3 30,6 42,5 47,1 56,3 10,3 37,9 26,7 26,7 

0-MS(k)-GARCH(1,1) -11,3 -3,4 17,7 19,5 19,5 10,3 10,3 -8,0 8,4 14,3 

 

Table 41 Percentage deviation of exceedance rate from alpha: Bitcoin returns - 

Student-T 

 USD / BTC - Student-T : Percentage deviation of exceedance rate from alpha 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) -0,7 6,7 21,4 24,1 -8,0 -35,6 -44,8 -8,0 8,7 12,2 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
5,7 11,3 39,8 47,1 60,9 47,1 10,3 37,9 33,0 33,0 

AR(1)-MS(k)-GARCH(1,1) 1,6 10,3 37,9 51,7 60,9 56,3 28,7 37,9 32,5 32,5 

const-MS(k)-GARCH(1,1) 2,1 7,6 37,9 47,1 60,9 47,1 10,3 37,9 31,1 31,1 

0-MS(k)-GARCH(1,1) -7,6 3,0 25,1 31,0 47,1 47,1 28,7 37,9 19,7 22,8 

 

Table 42 Percentage deviation of exceedance rate from alpha: Bitcoin returns - 

Gaussian 

 USD / BTC - Gaussian : Percentage deviation of exceedance rate from alpha 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) -25,1 -3,4 52,6 74,7 143,7 258,6 378,2 865,5 48,5 59,9 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
3,4 4,8 23,2 40,2 74,7 111,5 120,7 175,9 29,3 29,3 

AR(1)-MS(k)-GARCH(1,1) 4,8 8,5 26,9 40,2 79,3 148,3 175,9 175,9 32,0 32,0 

const-MS(k)-GARCH(1,1) 4,4 4,8 25,1 40,2 74,7 139,1 139,1 175,9 29,8 29,8 

0-MS(k)-GARCH(1,1) -5,3 -4,4 21,4 28,7 65,5 120,7 102,3 175,9 21,2 25,1 
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Table 43 Percentage deviation of exceedance rate from alpha: USD / EUR exchange 

rate returns - Skew Student-T 

 USD / EUR - Skew Student-T : Percentage deviation of exceedance rate from 

alpha 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) -0,9 -1,6 6,6 0,5 10,8 12,7 35,2 31,4 3,1 4,1 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
-1,8 -0,9 -0,9 -0,5 7,0 16,4 50,2 31,4 0,6 2,2 

AR(1)-MS(k)-GARCH(1,1) -1,6 -1,6 4,4 0,5 5,1 20,2 50,2 31,4 1,4 2,6 

const-MS(k)-GARCH(1,1) -1,6 -1,2 -0,9 -0,5 7,0 16,4 50,2 31,4 0,6 2,2 

0-MS(k)-GARCH(1,1) 0,1 2,1 4,4 1,4 8,9 16,4 42,7 31,4 3,4 3,4 

 

Table 44 Percentage deviation of exceedance rate from alpha: USD / EUR exchange 

rate returns - Student-T 

 USD / EUR - Student-T : Percentage deviation of exceedance rate from alpha 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) -4,4 -14,4 -12,1 -13,6 -2,4 -2,4 -2,4 31,4 -9,4 9,4 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
-4,6 -12,5 -6,1 -11,8 3,3 5,1 27,7 50,2 -6,3 7,7 

AR(1)-MS(k)-GARCH(1,1) -4,1 -11,4 -5,4 -8,9 5,1 5,1 27,7 50,2 -4,9 7,0 

const-MS(k)-GARCH(1,1) -4,4 -12,5 -6,1 -11,8 3,3 5,1 27,7 50,2 -6,3 7,6 

0-MS(k)-GARCH(1,1) -1,2 -11,4 -6,9 -9,9 1,4 5,1 35,2 50,2 -5,6 6,2 

 

Table 45 Percentage deviation of exceedance rate from alpha: USD / EUR exchange 

rate returns - Gaussian 

 USD / EUR - Gaussian : Percentage deviation of exceedance rate from alpha 

VaR 90,0 95,0 97,5 98,0 99,0 99,5 99,8 99,9 Mean MAD 

alpha 10,0 5,0 2,5 2,0 1,0 0,5 0,3 0,1 10-1 10-1 

ARMA(p,q)-GARCH(g,a) -11,8 -14,4 0,6 5,1 42,7 65,2 117,8 238,0 4,5 14,9 

ARMA(p,q)-MS(k)-

GARCH(1,1) 
-14,4 -17,0 -4,6 1,4 22,0 31,4 87,8 200,4 -2,5 11,9 

AR(1)-MS(k)-GARCH(1,1) -14,4 -17,4 -3,1 4,2 25,8 35,2 87,8 238,0 -1,0 13,0 

const-MS(k)-GARCH(1,1) -14,2 -17,0 -3,9 3,3 23,9 31,4 87,8 181,6 -1,6 12,5 

0-MS(k)-GARCH(1,1) -11,0 -15,1 -4,6 0,5 25,8 35,2 110,3 200,4 -0,9 11,4 
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Value-at-Risk forecasts based on rolling time windows (300 trading days each) 

- ordinary GARCH(g,a) model 

ARMA(p,q)- GARCH(g,a) model -- Skew Student-T distribution 

One day-ahead Value-at-risk forecasts with maximum lags of two for g and a in GARCH(g,a) volatility 

equations and five for p and q in ARMA(p,q) mean equations: 

For the CHF/EUR-, JPY/EUR- exchange rates and Oil- and Silver US dollar prices, the ordinary GARCH 

function did not produce a result for some time series segments. Due to the repeatedly interrupted 

estimation algorithm, the VaR forecasts were also not produced for the entire period of the time 

series in consideration. 

Table 46 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 9,922 5,351 2,805 2,286 1,039 0,519 0,260 0,104 

ETH 10,353 6,340 3,050 2,568 1,043 0,562 0,321 0,080 

USD 10,303 4,768 2,344 1,911 0,906 0,473 0,217 0,138 

GBP 9,161 4,827 2,463 1,832 0,946 0,374 0,197 0,138 

CHF 10,362 5,162 2,581 2,226 1,379 0,847 0,512 0,256 

JPY 10,518 5,338 2,836 2,206 1,083 0,453 0,276 0,079 

CNY 9,877 4,554 2,308 1,913 1,040 0,499 0,208 0,104 

Oil 10,909 5,455 3,010 2,504 1,401 0,745 0,328 0,179 

Gold 10,617 5,393 2,878 2,431 1,090 0,475 0,279 0,084 

Silver 11,067 5,899 2,725 2,303 1,264 0,618 0,365 0,169 

 

Table 47 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -0,8 7,0 12,2 14,3 3,9 3,9 3,9 3,9  7,3 7,6 9,4 -0,8 

ETH 3,5 26,8 22,0 28,4 4,3 12,4 28,4 -19,7  17,0 17,0 17,0   

USD 3,0 -4,6 -6,2 -4,5 -9,4 -5,4 -13,3 37,9  -4,3 5,5 3,0 -6,2 

GBP -8,4 -3,5 -1,5 -8,4 -5,4 -25,1 -21,2 37,9  -5,4 5,4   -5,4 

CHF 3,6 3,2 3,2 11,3 37,9 69,4 104,9 156,1  11,9 11,9 11,9   

JPY 5,2 6,8 13,5 10,3 8,3 -9,4 10,3 -21,2  8,8 8,8 8,8   

CNY -1,2 -8,9 -7,7 -4,3 4,0 -0,2 -16,8 4,0  -3,6 5,2 4,0 -5,5 

Oil 9,1 9,1 20,4 25,2 40,1 49,0 31,1 78,8  20,8 20,8 20,8   

Gold 6,2 7,9 15,1 21,5 9,0 -5,0 11,8 -16,2  11,9 11,9 11,9   

Silver 10,7 18,0 9,0 15,2 26,4 23,6 46,1 68,5  15,8 15,8 15,8   
              

Mean 3,1 6,2 8,0 10,9 11,9 11,3 18,5 33,0  8,01    

M Abs 5,2 9,6 11,1 14,3 14,9 20,3 28,8 44,4   11,01   

M Pos 5,9 11,2 13,6 18,0 16,7 31,7 33,8 55,3    13,11  

M Neg -3,5 -5,7 -5,1 -5,7 -7,4 -9,0 -17,1 -19,0     -5,48 
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Value-at-Risk forecasts based on rolling time windows (300 trading days each) 

- MS(k)-GARCH(1,1) model 

No mean equation - MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 48 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 10,234 5,766 3,740 3,065 1,610 0,935 0,571 0,364 

ETH 9,872 6,019 3,531 2,970 1,525 1,204 0,803 0,321 

USD 10,165 4,768 2,384 1,970 1,143 0,630 0,315 0,177 

GBP 9,377 4,886 2,463 2,049 1,162 0,552 0,315 0,197 

CHF 10,638 5,536 2,975 2,482 1,517 0,827 0,512 0,433 

JPY 9,968 5,339 2,758 2,187 1,103 0,709 0,453 0,236 

CNY 10,127 4,824 2,433 2,017 1,185 0,707 0,374 0,187 

Oil 10,553 5,292 2,916 2,375 1,443 0,902 0,541 0,241 

Gold 10,673 5,393 2,962 2,263 1,257 0,643 0,475 0,279 

Silver 11,039 6,264 3,174 2,472 1,376 0,899 0,618 0,393 

 

Table 49 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC 2,3 15,3 49,6 53,2 61,0 87,0 128,6 263,6  36,3 36,3 36,3   

ETH -1,3 20,4 41,3 48,5 52,5 140,8 221,0 221,0  32,3 32,8 40,7 -1,3 

USD 1,7 -4,6 -4,6 -1,5 14,3 26,1 26,1 77,3  1,0 5,3 8,0 -3,6 

GBP -6,2 -2,3 -1,5 2,4 16,2 10,3 26,1 97,0  1,7 5,7 9,3 -3,3 

CHF 6,4 10,7 19,0 24,1 51,7 65,5 104,9 333,4  22,4 22,4 22,4   

JPY -0,3 6,8 10,3 9,3 10,3 41,8 81,2 136,4  7,3 7,4 9,2 -0,3 

CNY 1,3 -3,5 -2,7 0,9 18,5 41,4 49,7 87,1  2,9 5,4 6,9 -3,1 

Oil 5,5 5,8 16,7 18,8 44,3 80,4 116,5 140,5  18,2 18,2 18,2   

Gold 6,7 7,9 18,5 13,2 25,7 28,5 90,0 179,4  14,4 14,4 14,4   

Silver 10,4 25,3 27,0 23,6 37,6 79,8 147,2 293,3  24,8 24,8 24,8   
              

Mean 2,6 8,2 17,3 19,2 33,2 60,2 99,1 182,9  16,13    

M Abs 4,2 10,3 19,1 19,5 33,2 60,2 99,1 182,9   17,27   

M Pos 4,9 13,2 26,0 21,6 33,2 60,2 99,1 182,9    19,78  

M Neg -2,6 -3,5 -2,9 -1,5             -2,63 
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Value-at-Risk forecasts based on rolling time windows (1000 trading days 

each) - ordinary GARCH(g,a) model 

ARMA(p,q)- GARCH(g,a) model -- Skew Student-T distribution 

One day-ahead Value-at-risk forecasts with maximum lags of two for g and a in GARCH(g,a) volatility 

equations and five for p and q in ARMA(p,q) mean equations: 

For the USD/EUR-, GBP/EUR-, CHF/EUR-, JPY/EUR, CNY/EUR- exchange rates, the ordinary GARCH 

function did not produce a result for some time series segments. Due to the repeatedly interrupted 

estimation algorithm, the VaR forecasts were also not produced for the entire period of the time 

series in consideration. 

Table 50 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 9,878 4,898 2,857 1,959 0,898 0,327 0,082 0,082 

ETH 10,806 6,410 3,480 2,381 1,282 0,733 0,366 0,000 

USD 9,803 4,525 2,125 1,828 0,891 0,388 0,251 0,069 

GBP 9,506 4,936 2,422 1,828 0,914 0,366 0,229 0,114 

CHF 10,719 5,346 2,647 2,206 1,116 0,675 0,337 0,130 

JPY 10,032 5,073 2,537 2,057 0,983 0,548 0,183 0,114 

CNY 9,589 4,186 2,239 1,777 0,973 0,414 0,268 0,073 

Oil 10,206 5,255 2,932 2,285 1,142 0,724 0,381 0,152 

Gold 10,386 5,141 2,744 2,292 1,007 0,556 0,208 0,174 

Silver 9,860 5,175 2,378 1,853 1,049 0,455 0,245 0,070 

 

Table 51 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -1,2 -2,0 14,3 -2,0 -10,2 -34,7 -67,3 -18,4  -0,2 6,0 14,3 -3,9 

ETH 8,1 28,2 39,2 19,0 28,2 46,5 46,5 -100,0  24,5 24,5 24,5   

USD -2,0 -9,5 -15,0 -8,6 -10,9 -22,3 0,5 -31,4  -9,2 9,2   -9,2 

GBP -4,9 -1,3 -3,1 -8,6 -8,6 -26,9 -8,6 14,3  -5,3 5,3   -5,3 

CHF 7,2 6,9 5,9 10,3 11,6 35,0 35,0 29,8  8,4 8,4 8,4   

JPY 0,3 1,5 1,5 2,8 -1,7 9,7 -26,9 14,3  0,9 1,6 1,5 -1,7 

CNY -4,1 -16,3 -10,4 -11,2 -2,7 -17,3 7,1 -27,0  -8,9 8,9   -8,9 

Oil 2,1 5,1 17,3 14,2 14,2 44,7 52,3 52,3  10,6 10,6 10,6   

Gold 3,9 2,8 9,8 14,6 0,7 11,1 -16,6 73,7  6,4 6,4 6,4   

Silver -1,4 3,5 -4,9 -7,3 4,9 -9,1 -2,1 -30,1  -1,0 4,4 4,2 -4,5 
              

Mean 0,8 1,9 5,4 2,3 2,6 3,7 2,0 -2,3  2,60    

M Abs 3,5 7,7 12,1 9,9 9,4 25,7 26,3 39,1   8,52   

M Pos 4,3 8,0 14,6 12,2 11,9 29,4 28,3 36,9    10,22  

M Neg -2,7 -7,3 -8,4 -7,5 -6,8 -22,0 -24,3 -41,4     -6,54 
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Value-at-Risk forecasts based on rolling time windows (1000 trading days 

each) - MS(k)-GARCH(1,1) model 

No mean equation - MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

One day-ahead Value-at-Risk forecasts with up to five regimes (i.e. the k optimised according to the 

BIC criterion is between 1 and 5). 

Results from the estimation algorithm were obtained for all time series sections. 

Table 52 Exceedance rates for selected Value-at-Risk quantiles 

VaR 90 95 97,5 98 99 99,5 99,75 99,9 

alpha 10 5 2,5 2 1 0,5 0,25 0,1 

BTC 9,633 5,306 3,265 2,857 1,388 0,735 0,245 0,245 

ETH 9,890 6,410 3,846 2,930 1,282 0,916 0,733 0,183 

USD 9,621 4,479 2,331 1,851 0,868 0,526 0,297 0,091 

GBP 9,621 5,096 2,377 1,828 1,028 0,526 0,274 0,183 

CHF 10,923 5,439 2,765 2,080 1,257 0,686 0,411 0,229 

JPY 9,575 4,867 2,559 1,988 1,005 0,594 0,343 0,206 

CNY 9,783 4,332 2,239 1,801 0,973 0,560 0,292 0,097 

Oil 9,977 5,560 3,085 2,628 1,371 0,838 0,533 0,190 

Gold 10,038 4,828 2,709 2,292 1,007 0,556 0,382 0,278 

Silver 9,615 5,175 2,587 1,958 1,119 0,524 0,245 0,070 

 

Table 53 Percentage deviation of exceedance rate from alpha 

VaR 90 95 97,5 98 99 99,5 99,75 99,9  Mean M Abs M Pos M Neg 

alpha 10 5 2,5 2 1 0,5 0,25 0,1  alpha 10% to 1%  

BTC -3,7 6,1 30,6 42,9 38,8 46,9 -2,0 144,9  22,9 24,4 29,6 -3,7 

ETH -1,1 28,2 53,8 46,5 28,2 83,2 193,0 83,2  31,1 31,6 39,2 -1,1 

USD -3,8 -10,4 -6,8 -7,4 -13,2 5,1 18,8 -8,6  -8,3 8,3   -8,3 

GBP -3,8 1,9 -4,9 -8,6 2,8 5,1 9,7 82,8  -2,5 4,4 2,4 -5,8 

CHF 9,2 8,8 10,6 4,0 25,7 37,1 64,5 128,5  11,7 11,7 11,7   

JPY -4,3 -2,7 2,4 -0,6 0,5 18,8 37,1 105,7  -0,9 2,1 1,5 -2,5 

CNY -2,2 -13,4 -10,4 -10,0 -2,7 11,9 16,8 -2,7  -7,7 7,7   -7,7 

Oil -0,2 11,2 23,4 31,4 37,1 67,6 113,3 90,4  20,6 20,7 25,8 -0,2 

Gold 0,4 -3,4 8,4 14,6 0,7 11,1 52,8 177,9  4,1 5,5 6,0 -3,4 

Silver -3,8 3,5 3,5 -2,1 11,9 4,9 -2,1 -30,1  2,6 5,0 6,3 -3,0 
              

Mean -1,3 3,0 11,1 11,1 13,0 29,2 50,2 77,2  7,36    

M Abs 3,2 9,0 15,5 16,8 16,2 29,2 51,0 85,5   12,13   

M Pos 4,8 10,0 19,0 27,9 18,2 29,2 63,3 116,2    15,96  

M Neg -2,9 -7,5 -7,4 -5,7 -7,9   -2,1 -13,8     -6,27 
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Descriptive Statistics 

The following tables show means, standard deviations, minima, first quartiles, medians, third 

quartiles and maxima of the time series used. The descriptive statistics are given for different time 

periods, with the shortest time series in a compilation defining the period. 

Table 54 Descriptive statistics for the period from 13 January 2000 to 3 January 2020 

 USD/EUR JPY/EUR CNY/EUR GBP/EUR CHF/EUR 

Mean 0,0016 0,0020 -0,0018 0,0060 -0,0078 

Std. Dev. 0,6136 0,7364 0,6000 0,5093 0,4260 

Minimum -4,7354 -6,1232 -4,4871 -2,9686 -15,5539 

1st Quartile -0,3322 -0,3750 -0,3267 -0,2739 -0,1428 

Median 0,0082 0,0237 0,0014 0,0000 0,0000 

3rd Quartile 0,3447 0,4042 0,3252 0,2783 0,1381 

Maximum 4,2041 5,3963 4,2050 5,2826 7,9967 

 

Table 55 Descriptive statistics for the period from 3 January 2006 to 3 January 2020 

 USD/Gold USD/Silver USD/Oil USD/EUR 

Mean 0,0302 0,0192 0,0046 -0,0018 

Std. Dev. 1,2028 2,0708 2,0818 0,5912 

Minimum -8,9535 -20,5324 -10,9455 -4,7354 

1st Quartile -0,5592 -0,8958 -1,0337 -0,3077 

Median 0,0452 0,0772 0,0605 0,0075 

3rd Quartile 0,6941 1,0998 1,0512 0,3169 

Maximum 10,4371 13,9472 13,6392 4,0377 

 

Table 56 Descriptive statistics for the period from 1 October 2013 to 3 January 2020 

 USD/BTC USD/Gold USD/Silver USD/Oil USD/EUR 

Mean 0,2608 0,0128 -0,0104 -0,0292 -0,0127 

Std. Dev. 5,0656 0,9781 1,5004 2,0425 0,5040 

Minimum -28,4480 -3,6556 -7,1942 -7,9309 -3,6820 

1st Quartile -1,5588 -0,5349 -0,7536 -1,0488 -0,2798 

Median 0,1638 -0,0024 0,0000 0,0638 -0,0088 

3rd Quartile 2,3628 0,5477 0,7792 1,0047 0,2528 

Maximum 30,6376 7,5871 6,3932 13,6392 2,4664 

 

Table 57 Descriptive statistics for the period from 10 August 2015 to 3 January 2020 

 USD/BTC USD/ETH USD/Gold USD/Silver USD/Oil USD/EUR 

Mean 0,3048 0,4862 0,0334 0,0155 0,0281 0,0016 

Std. Dev. 4,7750 8,1631 0,9870 1,4859 2,1525 0,4933 

Minimum -26,8290 -55,2192 -3,6556 -7,1942 -7,9309 -2,8771 

1st Quartile -1,4573 -2,9211 -0,5503 -0,7657 -1,0796 -0,2814 

Median 0,2502 0,0000 0,0035 0,0566 0,1861 -0,0088 

3rd Quartile 2,3767 3,6261 0,5725 0,8304 1,1355 0,2613 

Maximum 23,6982 43,2697 7,5871 5,5707 13,6392 2,4664 
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Autocorrelation Coefficients 

The following tables provide information on the autocorrelation structures of the exchange rate 

returns for the time series period 13 January 2000 to 3 January 2020: 

Table 58 Autocorrelation Function (ACF) 

ACF USD/EUR JPY/EUR CNY/EUR GBP/EUR CHF/EUR 

1 -0,0063 -0,0097 -0,0138 0,0271 0,0553 

2 -0,0161 -0,0094 -0,0090 -0,0327 -0,0261 

3 0,0087 0,0090 0,0103 -0,0072 -0,0215 

4 0,0052 0,0042 0,0052 -0,0213 -0,0049 

5 0,0064 -0,0085 0,0073 0,0035 0,0141 

6 -0,0046 -0,0243 0,0007 0,0253 0,0095 

7 0,0207 0,0037 0,0128 -0,0055 -0,0401 

 

Table 59 Partial Autocorrelation Function (PACF) 

PACF USD/EUR JPY/EUR CNY/EUR GBP/EUR CHF/EUR 

1 -0,0063 -0,0097 -0,0138 0,0271 0,0553 

2 -0,0162 -0,0095 -0,0092 -0,0335 -0,0293 

3 0,0085 0,0089 0,0100 -0,0054 -0,0185 

4 0,0051 0,0043 0,0054 -0,0221 -0,0034 

5 0,0067 -0,0083 0,0077 0,0043 0,0135 

6 -0,0044 -0,0244 0,0009 0,0237 0,0074 

7 0,0208 0,0030 0,0128 -0,0069 -0,0406 

 

Table 60 Ljung-Box test statistics and p-values 

 Lag USD/EUR JPY/EUR CNY/EUR GBP/EUR CHF/EUR 

LB 1 0,2 0,5 1,0 3,8 15,6 

p   0,653 0,490 0,323 0,052 0,000 

LB 2 1,5 0,9 1,4 9,2 19,1 

p   0,464 0,629 0,499 0,010 0,000 

LB 3 1,9 1,3 1,9 9,5 21,5 

p   0,588 0,718 0,587 0,023 0,000 

LB 4 2,1 1,4 2,1 11,8 21,6 

p   0,724 0,838 0,723 0,019 0,000 

LB 5 2,3 1,8 2,3 11,9 22,6 

p   0,810 0,875 0,800 0,036 0,000 

LB 6 2,4 4,8 2,3 15,2 23,1 

p   0,882 0,567 0,885 0,019 0,001 

LB 7 4,6 4,9 3,2 15,3 31,3 

p   0,711 0,673 0,868 0,032 0,000 
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The following tables provide information on the autocorrelation structures of the exchange rate 

returns for the time series period 3 January 2006 to 3 January 2020: 

Table 61 Autocorrelation Function (ACF) 

ACF USD/Gold USD/Silver USD/Oil USD/EUR 

1 -0,0438 -0,0404 -0,0669 -0,0070 

2 -0,0323 -0,0157 0,0107 -0,0035 

3 0,0151 0,0198 0,0069 0,0113 

4 0,0061 -0,0121 0,0255 0,0024 

5 0,0292 0,0144 -0,0285 0,0116 

6 -0,0378 -0,0031 0,0136 -0,0100 

7 -0,0036 -0,0055 -0,0048 0,0075 

 

Table 62 Partial Autocorrelation Function (PACF) 

PACF USD/Gold USD/Silver USD/Oil USD/EUR 

1 -0,0438 -0,0404 -0,0669 -0,0070 

2 -0,0343 -0,0174 0,0062 -0,0036 

3 0,0122 0,0185 0,0081 0,0112 

4 0,0063 -0,0108 0,0266 0,0025 

5 0,0307 0,0142 -0,0253 0,0117 

6 -0,0350 -0,0027 0,0096 -0,0100 

7 -0,0051 -0,0049 -0,0033 0,0074 

 

Table 63 Ljung-Box test statistics and p-values 

 Lag USD/Gold USD/Silver USD/Oil USD/EUR 

LB 1 6,8 5,8 16,0 0,2 

p   0,009 0,016 0,000 0,674 

LB 2 10,6 6,7 16,4 0,2 

p   0,005 0,035 0,000 0,895 

LB 3 11,4 8,1 16,5 0,7 

p   0,010 0,044 0,001 0,879 

LB 4 11,5 8,6 18,9 0,7 

p   0,021 0,071 0,001 0,952 

LB 5 14,5 9,4 21,7 1,2 

p   0,012 0,095 0,001 0,947 

LB 6 19,7 9,4 22,4 1,5 

p   0,003 0,152 0,001 0,957 

LB 7 19,7 9,5 22,5 1,7 

p   0,006 0,218 0,002 0,973 
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The following tables provide information on the autocorrelation structures of the exchange rate 

returns for the time series period 10 August 2015 to 3 January 2020: 

Table 64 Autocorrelation Function (ACF) 

ACF USD/BTC USD/ETH USD/Gold USD/Silver USD/Oil USD/EUR 

1 -0,0148 0,0575 -0,1490 -0,0692 -0,0373 -0,0307 

2 0,0430 0,0026 -0,0109 -0,0094 0,0267 -0,0389 

3 0,0297 0,0183 -0,0250 0,0218 0,0040 -0,0484 

4 0,0097 -0,0019 0,0473 -0,0410 -0,0142 0,0616 

5 0,0232 0,0022 -0,0375 -0,0025 -0,0105 -0,0614 

6 0,0106 0,0182 0,0316 0,0323 0,0221 -0,0185 

7 -0,0263 0,0399 -0,0240 -0,0449 -0,0007 0,0465 

 

Table 65 Partial Autocorrelation Function (PACF) 

PACF USD/BTC USD/ETH USD/Gold USD/Silver USD/Oil USD/EUR 

1 -0,0148 0,0575 -0,1490 -0,0692 -0,0373 -0,0307 

2 0,0428 -0,0007 -0,0339 -0,0143 0,0253 -0,0399 

3 0,0310 0,0183 -0,0325 0,0202 0,0059 -0,0510 

4 0,0087 -0,0040 0,0391 -0,0384 -0,0145 0,0570 

5 0,0209 0,0025 -0,0263 -0,0076 -0,0118 -0,0621 

6 0,0097 0,0177 0,0241 0,0305 0,0221 -0,0201 

7 -0,0285 0,0381 -0,0156 -0,0395 0,0016 0,0468 

 

Table 66 Ljung-Box test statistics and p-values 

 Lag USD/BTC USD/ETH USD/Gold USD/Silver USD/Oil USD/EUR 

LB 1 0,2 3,6 23,9 5,2 1,5 1,0 

p   0,628 0,059 0,000 0,023 0,222 0,315 

LB 2 2,2 3,6 24,0 5,2 2,3 2,6 

p   0,328 0,168 0,000 0,072 0,323 0,267 

LB 3 3,2 3,9 24,7 5,8 2,3 5,2 

p   0,365 0,270 0,000 0,124 0,517 0,160 

LB 4 3,3 3,9 27,1 7,6 2,5 9,2 

p   0,512 0,416 0,000 0,109 0,646 0,055 

LB 5 3,9 3,9 28,6 7,6 2,6 13,3 

p   0,570 0,559 0,000 0,181 0,760 0,021 

LB 6 4,0 4,3 29,7 8,7 3,1 13,7 

p   0,679 0,637 0,000 0,191 0,792 0,033 

LB 7 4,7 6,0 30,3 10,9 3,1 16,0 

p   0,693 0,538 0,000 0,144 0,872 0,025 
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Correlation Coefficients 

The following tables show correlation coefficients of daily exchange rate returns: 

Table 67 Euro exchange rates of major currencies:  

Correlation coefficients for the period from 13 January 2000 to 3 January 2020 

/EUR JPY CNY GBP CHF 

USD 0,60 0,97 0,45 0,18 

JPY  0,59 0,22 0,34 

CNY   0,46 0,18 

GBP    0,09 

 

Table 68 US dollar rates for gold, silver, crude oil and the euro:  

Correlation coefficients for the period from 3 January 2006 to 3 January 2020 

USD/ Silver Oil EUR 

Gold 0,75 0,19 0,16 

Silver  0,30 0,20 

Oil   0,14 

 

Table 69 US dollar rates for the bitcoin, gold, silver, crude oil and the euro: Correlation 

coefficients for the period from 1 October 2013 to 3 January 2020 

USD/ Gold Silver Oil EUR 

BTC 0,01 0,01 0,01 -0,02 

Gold   0,60 0,01 0,11 

Silver    0,14 0,13 

Oil       0,04 

 

Table 70 US dollar rates for bitcoin, ethereum, gold, silver, crude oil and the euro: 

Correlation coefficients for the period from 10 August 2015 to 3 January 2020 

USD/ ETH Gold Silver Oil EUR 

 BTC 0,45 0,02 0,01 0,01 -0,03 

ETH  0,06 0,04 -0,04 0,02 

Gold   0,56 -0,03 0,14 

Silver    0,12 0,15 

Oil         0,01 
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Default Correlations 

ARMA(p,q)- GARCH(g,a) model -- Skew Student-T distribution 

Default correlations are calculated for the joint period of two time series in each case. 

The following tables show the results for Value-at-Risk predictions with ARMA(p,q)-GARCH(g,a) 

models and assuming Skew Student-T distributed innovations. 53 

Table 71 Default correlations for 90%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY 

BTC 0,49 0,02 0,02 0,00 -0,01   USD 0,36 0,82 

ETH   0,03 0,01 0,02 0,00   JPY   0,34 

Gold    0,52 0,09 0,11  
   

Silver     0,12 0,13  
   

Oil         0,07     
 

Table 72 Default correlations for 95%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY 

BTC 0,45 -0,01 0,03 0,02 0,00   USD 0,31 0,79 

ETH   -0,01 0,02 0,01 0,01   JPY   0,30 

Gold    0,41 0,07 0,06  
   

Silver     0,11 0,10  
   

Oil         0,11     
 

Table 73 Default correlations for 99%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY 

BTC 0,41 -0,01 -0,01 0,04 -0,01   USD 0,29 0,80 

ETH   -0,01 -0,01 0,05 -0,01   JPY   0,25 

Gold    0,37 0,12 0,02  
   

Silver     0,13 0,06  
   

Oil         0,06     
 

 

  

                                                           
53 An AR(p,q) model is fitted to the return series before a GARCH(g,a) model is fitted to the resulting residual 

series. 
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ARMA(p,q) - MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

Default correlations are calculated for the joint period of two time series in each case. 

The following tables show the results for Value-at-Risk predictions with ARMA(p,q) - MS(k)-

GARCH(1,1) models and assuming Skew Student-T distributed innovations.54 

Table 74 Default correlations for 90%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,44 0,01 0,03 0,00 0,00   USD 0,37 0,81 0,30 0,12 

ETH  0,02 -0,01 0,03 -0,01   JPY  0,34 0,17 0,07 

Gold   0,51 0,10 0,10   CNY   0,27 0,10 

Silver    0,15 0,12   GBP       0,03 

Oil         0,07       
 

Table 75 Default correlations for 95%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,45 0,00 0,04 0,03 0,00   USD 0,29 0,78 0,25 0,10 

ETH  0,00 0,02 0,00 0,01   JPY  0,29 0,13 0,07 

Gold   0,43 0,09 0,07   CNY   0,25 0,10 

Silver    0,13 0,10   GBP       0,02 

Oil         0,12       
 

Table 76 Default correlations for 99%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,52 -0,01 -0,01 0,02 -0,01   USD 0,26 0,78 0,22 0,06 

ETH  -0,01 0,06 0,04 -0,01   JPY  0,24 0,15 0,04 

Gold   0,36 0,12 0,02   CNY   0,18 0,07 

Silver    0,15 0,06   GBP       0,01 

Oil         0,10       

 

  

                                                           
54 A volatility equation is fitted to the residuals of an ARMA(p,q) model with p and q of up to 5 each and 

optimised according to the BIC criterion. 
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AR(1)- MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

Default correlations are calculated for the joint period of two time series in each case. 

The following tables show the results for Value-at-Risk predictions with AR(1)- MS(k)-GARCH(1,1) 

models and assuming Skew Student-T distributed innovations. 55 

Table 77 Default correlations for 90%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,45 0,02 0,04 0,00 -0,01   USD 0,37 0,82 0,29 0,14 

ETH  0,02 0,01 0,02 -0,01   JPY  0,34 0,17 0,22 

Gold   0,52 0,09 0,11   CNY   0,26 0,13 

Silver    0,13 0,11   GBP       0,07 

Oil         0,08       
 

Table 78 Default correlations for 95%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,42 0,00 0,05 0,02 -0,02   USD 0,29 0,80 0,25 0,10 

ETH  0,01 0,03 0,01 0,01   JPY  0,29 0,13 0,17 

Gold   0,41 0,10 0,07   CNY   0,24 0,12 

Silver    0,12 0,10   GBP       0,07 

Oil         0,12       
 

Table 79 Default correlations for 99%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,49 -0,01 0,04 0,02 -0,01   USD 0,26 0,77 0,23 0,10 

ETH  -0,01 0,15 0,04 -0,01   JPY  0,25 0,15 0,23 

Gold   0,32 0,12 0,02   CNY   0,20 0,14 

Silver    0,18 0,05   GBP       0,08 

Oil         0,08       
 

  

                                                           
55 An AR(1) model is fitted to the return series before an MS(k)-GARCH(1,1) model is fitted to the resulting 

residual series. 
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Constant- MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

Default correlations are calculated for the joint period of two time series in each case. 

The following tables show the results for Value-at-Risk predictions with Constant- MS(k)-GARCH(1,1) 

models and assuming Skew Student-T distributed innovations.56 

Table 80 Default correlations for 90%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,45 0,02 0,04 0,00 0,00   USD 0,37 0,81 0,30 0,11 

ETH  0,02 0,01 0,04 -0,01   JPY  0,34 0,18 0,07 

Gold   0,51 0,09 0,10   CNY   0,27 0,11 

Silver    0,13 0,11   GBP       0,03 

Oil         0,07       
 

Table 81 Default correlations for 95%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,43 0,00 0,04 0,02 -0,02   USD 0,29 0,78 0,25 0,09 

ETH  0,00 0,03 0,00 0,01   JPY  0,29 0,13 0,07 

Gold   0,41 0,09 0,07   CNY   0,25 0,09 

Silver    0,12 0,10   GBP       0,02 

Oil         0,12       
 

Table 82 Default correlations for 99%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,50 -0,01 0,04 0,03 -0,01   USD 0,26 0,78 0,22 0,04 

ETH  -0,01 0,15 0,05 -0,01   JPY  0,24 0,15 0,02 

Gold   0,34 0,12 0,02   CNY   0,18 0,04 

Silver    0,16 0,05   GBP       0,01 

Oil         0,10       
 

 

  

                                                           
56 "Constant" means that the mean estimated over the constant is subtracted from the return series, before 

adjustment of MS(k) GARCH(1,1) models. 
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No mean equation - MS(k)-GARCH(1,1) model -- Skew Student-T distribution 

Default correlations are calculated for the joint period of two time series in each case. 

The following tables show the results for Value-at-Risk predictions with MS(k)-GARCH(1,1) models 

and assuming Skew Student-T distributed innovations.57 

Table 83 Default correlations for 90%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,46 0,03 0,04 -0,01 -0,02   USD 0,37 0,81 0,31 0,10 

ETH  0,03 0,01 0,02 -0,01   JPY  0,34 0,17 0,06 

Gold   0,50 0,10 0,10   CNY   0,27 0,10 

Silver    0,13 0,10   GBP       0,02 

Oil         0,08       
 

Table 84 Default correlations for 95%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,42 -0,01 0,03 0,03 -0,01   USD 0,30 0,80 0,26 0,09 

ETH  0,01 0,02 0,01 0,02   JPY  0,29 0,13 0,08 

Gold   0,43 0,09 0,05   CNY   0,24 0,09 

Silver    0,13 0,09   GBP       0,01 

Oil         0,11       
 

Table 85 Default correlations for 99%-VaR 

USD/ ETH Gold Silver Oil EUR   /EUR JPY CNY GBP CHF 

BTC 0,42 -0,01 -0,01 0,03 -0,01   USD 0,25 0,76 0,22 0,05 

ETH  -0,01 -0,01 0,05 -0,01   JPY  0,24 0,14 0,02 

Gold   0,33 0,13 0,08   CNY   0,18 0,05 

Silver    0,09 0,05   GBP       0,02 

Oil         0,08       

 

 

 

  

                                                           
57 The modelling of the dynamics of the expected value is dispensed with, so that a volatility equation is fitted 

directly to the return series. 
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Temporal Dynamics of Default Correlations 

Default correlations were calculated for growing time windows. The first time window comprises 500 

Value-at-Risk predictions up to 4 March 2008 (or 7 January 2016 for Bitcoin and 8 November 2017 for 

Ethereum). The time window was successively extended by one day until 3 January 2020. 

The VaR forecasts were obtained using the MS(k)-GARCH(1,1) model, i.e. without fitting a mean 

equation. The Skew Student-T distribution was assumed for the residuals. 

 

Figure 3 Default Correlations with USD / EUR -exchange rates for 90 % -VaR 

 

 

 

 

Date

-0.05

0.00

0.05

0.10

0.15

0.20

2008-03-04 2010-06-08 2012-08-31 2014-12-04 2017-03-07 2019-06-13

USD / BTC
USD / ETH

USD / Gold
USD / Silver

USD / Oil



Gohs, A.M. (2022) The Choice of GARCH Models to Forecast Value-at-Risk 

73 

 

Figure 3 for example displays default correlations between 90% VaR forecasts for USD / EUR -

exchange rate returns on the one hand and 90% VaR forecasts for Bitcoin or Ethereum, Gold, Silver 

and Crude Oil (Brent) price returns in US Dollars on the other. 

 

 

 

Figure 4 Default Correlations with USD / EUR -exchange rates for 95 % -VaR 

 

 

 

 

Date

-0.05

0.00

0.05

0.10

0.15

0.20

2008-03-04 2010-06-08 2012-08-31 2014-12-04 2017-03-07 2019-06-13

USD / BTC
USD / ETH

USD / Gold
USD / Silver

USD / Oil



Gohs, A.M. (2022) The Choice of GARCH Models to Forecast Value-at-Risk 

74 

 

 

 

 

 

 

Figure 5 Default Correlations with USD / EUR -exchange rates for 99 % -VaR 
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Figure 6 Default Correlations with USD / EUR -exchange rates for 90 % -VaR 
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Figure 7 Default Correlations with USD / EUR -exchange rates for 95 % -VaR 
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Figure 8 Default Correlations with USD / EUR -exchange rates for 99 % -VaR 
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Dynamics of Correlation Coefficients 

Results for growing time windows 

In the literature it is considered to replace the default correlation by the ordinary correlation (i.e. 

Pearson's correlation coefficient). 

Pearson's correlation coefficients are plotted below, with one of the two time series being the USD / 

EUR exchange rate. 

Figure 9 Pearson correlation coefficients with USD/EUR -exchange rates, growing time 

window 
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period from 4 March 2008 to 3 January 2020.58 I.e. for the calculation of a correlation coefficient 

shown for the date 4 March 2008, all pairwise return values up to this date are included. For Bitcoin 

and Ethereum, the first correlation coefficients are displayed for return values up to 24 September 

2015. Earlier correlation coefficients are not presented for these two time series as they are based 

on less than 30 return values. 

Figure 10 Pearson correlation coefficients with USD/EUR -exchange rates, growing 

time window 

 

 

 

 

                                                           
58 While in the present study default correlations were calculated for time windows with at least 500 

observations due to the rarity of VaR exceedances, the usual correlation coefficient gets by with significantly 

fewer - for example 30 - return values. This should also be relevant for considerations of approximating the 

default correlation by the ordinary Pearson's correlation coefficient when only few daily data are available for a 

new asset. 
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Results for rolling time windows 

Correlation coefficients were calculated for a rolling time window covering 300 trading days, which 

are shown in the following figure. The dates again refer to the upper end of a time window. 

Figure 11 Pearson correlation coefficients with USD / EUR -exchange rates, rolling time 

window (300 trading days each) 
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Figure 12 Pearson correlation coefficients with USD / EUR -exchange rates, rolling time 

window (300 trading days each) 
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Time Series 

The following figures each show the exchange rate time series used in the study in their levels (top 

left) as well as on a logarithmic scale (top right), which were available in daily periodicity. In addition, 

the daily exchange rate changes (i.e. first differences, bottom left) as well as the exchange rate 

returns (i.e. first differences of the logarithmised exchange rates, bottom right) are presented. 

Figure 13 Bitcoin-Price (in US-Dollar) 
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Figure 1 Ethereum-Price (in US-Dollar) 
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Figure 2 CHF / EUR – Exchange Rate 
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Figure 14 CNY / EUR – Exchange Rate 
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Figure 15 GBP / EUR – Exchange Rate 

 

Exchange Rate

Trading Day

G
B

P
 /

 E
U

R

0
.6

0
.7

0
.8

0
.9

04.01.1999 15.06.2005 23.11.2011 14.05.2018

Exchange Rate (Logarithmic Scale)

Trading Day
G

B
P

 /
 E

U
R

0
.6

0
.7

0
.8

0
.9

04.01.1999 15.06.2005 23.11.2011 14.05.2018

Exchange Rate Difference

Trading Day

G
B

P
 /

 E
U

R

-0
.0

2
0
.0

0
0
.0

2
0
.0

4

05.01.1999 16.06.2005 24.11.2011 15.05.2018

Exchange Rate Return

Trading Day

G
B

P
 /

 E
U

R

-0
.0

2
0
.0

0
0
.0

2
0
.0

4

05.01.1999 16.06.2005 24.11.2011 15.05.2018



Gohs, A.M. (2022) The Choice of GARCH Models to Forecast Value-at-Risk 

87 

 

Figure 16 JPY / EUR – Exchange Rate 
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Figure 17 USD / EUR – Exchange Rate 
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Figure 18 Gold Price in US Dollars per Fine Ounce 
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Figure 19 Silver Price in US Dollars per Fine Ounce 
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Figure 20 Oil Price in US Dollars per Barrel (Brent) 
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