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A co-evolutionary model

Fabian Mankat∗
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Abstract

This paper examines how societies can conserve common-pool resources (CPRs) through
the cultural transmission of norms. To this end, we introduce an evolutionary model
that endogenizes the formation of personal, social, and descriptive norms, thereby uni-
fying existing economic theories on norm evolution. By studying this model in a binary
CPR game, we also account for the dynamics of the resource stock and its interplay
with norms and behavior. We find that the resource can persist through (1) asymp-
totically stable equilibrium points where moral perceptions and behavioral routines
are either homogeneous or heterogeneous across individuals and (2) an asymptotically
stable limit cycle in which moral perceptions remain constant, but herding causes al-
ternating aggregate behavior and fluctuating resource stocks. We examine the degree
of substitutability between two key factors — (a) the active promotion of norm adop-
tion by institutions and (b) the impact of social recognition on the opinion formation
of peers — for upholding norms and thus securing the CPR. Moreover, we find that
while larger sanctions for norm violations and lower material benefits from resource
exploitation generally favor resource-conserving behavior in the short run, they may,
surprisingly, adversely affect resource conservation in the long run by interfering with
cultural dynamics and thereby threatening norm persistence.
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1 INTRODUCTION

1 Introduction

Governing common-pool resources (CPRs) is among societies’ most critical challenges, with

its failure often resulting in severe economic and ecological consequences (Ostrom, 2009). The

underlying challenge arises from the individuals’ short-term benefits of exploitation, leading

to the collective depletion and eventual erosion of the resource (Hardin, 1968). Economists

widely accept norms as a solution for societies to bridge the divergence between self- and so-

cial interests in such dilemmas (Elster, 1989; Ostrom, 2000). Scholars generally differentiate

between different types of norms (see, e.g., Bicchieri and Dimant, 2019; Dannenberg et al.,

2024). A personal (or moral) norm captures an individual’s perception of what is morally

right, guiding behavior through inner feelings such as guilt and self-disapproval (Nyborg,

2018). A social norm captures a society’s shared understanding of what is morally right,

while a descriptive norm captures what behavior is generally executed (Crawford and Os-

trom, 1995; Thøgersen, 2006; Farrow, Grolleau, and Ibanez, 2017). Individuals follow social

and descriptive norms to avoid social sanctions (Voss, 2001; Fehr and Fischbacher, 2004;

te Velde and Louis, 2022). Clearly, norms introduce incentives to abstain from self-serving

behavior and, thereby, may enable resource conservation.1 However, rather than being exoge-

nous to society, norms are endogenous constructs that evolve through social interactions and

cultural transmission processes, exposing them to the potential threat of erosion themselves.

Therefore, this paper addresses the following research questions: Under what conditions can

a society rely on norms to secure a CPR? And, more particularly, how do different cultural

and socio-economic factors affect society’s possibilities to conserve a CPR?

We introduce a novel evolutionary game theoretical model to shed light on these ques-

tions. The main contribution to the existing literature is threefold. First, to the best of

our knowledge, we present the first model that endogenizes personal, social, and descriptive

norm formation while accounting for their joint influences on behavior. To this end, we

merge existing ideas and present a general model of norms that can be applied to various
1For some theoretical contributions on how norms may affect economic outcomes see Bernheim (1994),

Nyborg (2000), Brekke, Kverndokk, and Nyborg (2003), Nyborg and Rege (2003a), Andreoni and Bernheim
(2009), Traxler (2010), Bénabou and Tirole (2011), Figuieres, Masclet, and Willinger (2013), and d’Adda,
Dufwenberg, Passarelli, and Tabellini (2020) among others.
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1 INTRODUCTION

economic problems. Second, by studying this dynamic model of norms in a CPR game, we

introduce an additional dynamic dimension and its interactions with norms and behavior,

namely the resource stock. This allows us to address the research questions and enables the

thematic insights of this paper. To this end, and this is our third contribution, we present

the first model that integrates the indirect evolutionary approach as proposed by Güth and

Yaari (1992) into a CPR game.

The model considers a continuum of individuals who recurrently interact in a binary

CPR game. Following the indirect evolutionary approach, an individual’s behavior results

from utility maximization. The behaviors of all individuals jointly determine the descriptive

norm. Resource dynamics depend on the share of individuals exploiting the resource and the

resource’s natural growth. Horizontal and oblique cultural transmission drive the adoption of

personal norms. Horizontal cultural transmission occurs through peer-to-peer interactions,

whereas oblique transmission occurs through socialization institutions. These cultural trans-

mission processes are biased in that socially successful individuals more significantly impact

the opinion-formation process of others. Social success derives from two factors, namely ma-

terial payoff and social sanctions. Additionally, institutions promote norm adoption through

oblique cultural transmission. The distribution of individuals’ moral perceptions, their per-

sonal norms, defines what society generally considers morally appropriate, namely the social

norm.

We elicit conditions for the existence and asymptotic stability of (1) a boundary equi-

librium point, where all individuals agree one should not exploit the resource, behave ac-

cordingly, and the resource stock is at the maximum sustainable level, (2) an interior equi-

librium point, where only some individuals agree one should not exploit the resource, only

these individuals behave accordingly, and the resource is below the maximum sustainable

capacity, and (3) a boundary limit cycle, where all individuals agree one should not ex-

ploit the resource, aggregate behavior alternates between everyone and no-one exploiting

the resource, and the resource stock exhibits a cyclic evolution. These equilibria are gen-

erally compatible with empirical observations of heterogeneous behavior and moral percep-

tions across individuals (see, e.g., Kotchen and Moore, 2008; Sundt and Rehdanz, 2015;

Minton, Spielmann, Kahle, and Kim, 2018) as well as resource conservation in ever-evolving
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systems (see, e.g., Folke, Colding, and Berkes, 2002; Olsson, Folke, and Berkes, 2004).

By analyzing the existence and asymptotic stability conditions of the identified equilib-

ria, we find that institutional pressure on norm adoption and the weight of social sanctions

on the cultural fitness that drives norm adoption play a crucial role in securing the CPR.

In some instances, these two factors function as substitutes, making either one dispens-

able, whereas institutional pressure cannot be substituted in others. The latter may apply,

for example, when personal norms play a subordinate role in determining behavioral out-

comes, as this generally increases institutional pressure’s relative effectiveness. Moreover,

material costs of non-exploitation and sanctions for norm violation play ambiguous roles in

securing the CPR: Changes that reduce exploitation incentives may lead society to reach a

non-favorable behavioral equilibrium in terms of norm persistence. Consequently, seemingly

favorable changes may negatively impact resource conservation in the long run.

The rest of the paper unfolds as follows. Section 2 discusses the existing literature and

how this paper relates to it. Section 3 presents the static framework. We discuss equilibrium

behavior for exogenous norms and resource stocks in Section 4. Section 5 presents the

evolutionary framework, which we study in Section 6. The results are discussed in Section

7. Finally, Section 8 concludes.

2 Related literature

This paper contributes to the theoretical literature on norms using evolutionary game theory,

particularly those dealing with CPR games. A significant contribution comes from Sethi and

Somanathan (1996), who study a model where each agent in a population belongs to one of

three strategy types: defectors, cooperators, and enforcers. Enforcers punish defectors, with

the costs of punishing and being punished depending on the distribution of strategies. Over

time, agents adapt their strategy by imitating materially successful others in the population.

Sethi and Somanathan (1996) identify two potentially stable Nash equilibria: (1) a popula-

tion of only defectors and (2) a population consisting of cooperators and enforcers. Noailly,

van den Bergh, and Withagen (2003), Noailly, Withagen, and Van den Bergh (2007), and

Tilman, Plotkin, and Akçay (2020) provide further rationalizations for resource conservation
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2 RELATED LITERATURE

when material payoff alone determines the adopted behavioral strategies. In parallel, Young

(1993, 1996, 2015), Binmore and Samuelson (1994), and Lindbeck, Nyberg, and Weibull

(1999) study similar models in public goods (PG) games.

We differ from that literature by focusing on norm-based behavioral motivations. Hence,

rather than explicit material sanctioning through peers, we focus on indirect enforcement

mechanisms such as self- and social disapproval. Osés-Eraso and Viladrich-Grau (2007)

study such behavioral mechanisms in a CPR game. Individuals either cooperate or defect

and adapt their strategies over time. Defection yields material gains, whereas cooperation

yields social approval. This social approval increases in the share of others who cooperate,

which introduces concerns for behavioral conformity. However, material gains of defection

also increase in the share of cooperators, which enables the potential existence of a sta-

ble equilibrium characterized by the coexistence of cooperators and defectors. In addition,

Osés-Eraso and Viladrich-Grau (2007) show when stable homogeneous equilibria exist. Ny-

borg and Rege (2003b), Rege (2004), and Nyborg, Howarth, and Brekke (2006) incorporate

similar concerns for behavioral conformity into PG games, which effectively turn the corre-

sponding situations into coordination games with full cooperation being a potentially stable

equilibrium.

These works provide insights into how descriptive norms may affect behavioral incentives

in dynamic settings. We expand on these contributions by also endogenizing the formation

of personal and social norms. Conceptually and methodologically, our model closely re-

lates to the literature that deals with the cultural transmission of norms using the indirect

evolutionary approach.2

Mengel (2008) offers a notable contribution to this literature. She examines the cultural
2Other theoretical studies of norm evolution in PG and CPR games encompass theories on rational

socialization (PG: Bisin and Verdier, 1998, Bisin and Verdier, 2001, Bisin, Topa, and Verdier, 2004, Tabellini,
2008; CPR: Schumacher, 2009, Schumacher, 2015, Bezin, 2019), group selection (PG: Boyd and Richerson,
1990, Boyd and Richerson, 2005, Bowles and Gintis, 1998, Mitteldorf and Wilson, 2000, Henrich, 2004; CPR:
Waring, Goff, and Smaldino, 2017), peer persuasion (PG: Panebianco, 2016), and contagious cooperation
(CPR: Richter, van Soest, and Grasman, 2013, Richter and Grasman, 2013), among others. Methodological,
our paper also closely relates to the literature that utilizes the indirect evolutionary approach in PG games
to endogenize the formation of preferences for norm-adherence (see, e.g., Fershtman and Weiss, 1998; Traxler
and Spichtig, 2011; Alger and Weibull, 2013; Alger and Weibull, 2016) and pro-social preferences in general
(see, e.g., Bester and Güth, 1998, Guttman, 2003, Guttman, 2013, Poulsen and Poulsen, 2006, Müller and
von Wangenheim, 2019).
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3 STATIC FRAMEWORK

transmission and internalization process of a pro-social norm in a partially integrated society.

The norm spreads through the imitation of successful individuals and institutional pressure.

Individuals are repeatedly matched into pairs, which then face the prisoner’s dilemma. Hav-

ing internalized the norm introduces an additional non-monetary incentive for cooperating.

Moreover, individuals who have internalized the norm are more likely to interact with each

other due to partial integration in society. In equilibrium, low levels of integration or high

institutional pressure are necessary for strict norms to persist, while high levels of integration

and low institutional pressure suffice to uphold norms of intermediate strength.

Since this paper examines a CPR game in which the entire society interacts, assortative

matching does not influence the situation. Therefore, this paper emphasizes the role of social

sanctions as a co-determinant of cultural fitness rather than that of assortative matching. In

this respect, we closely relate to Mankat (in press), who studies the co-evolution of personal

norms, social norms, and preferences for norm compliance in a binary public goods game.

He shows that if the social success that determines norm adoption depends on material and

social payoffs, an interplay of social disapproval mechanisms can explain the persistence of

cooperation-prescribing personal and social norms. This paper’s model is similar to that of

Mankat (in press), but expands on it by incorporating descriptive norms and institutional

pressure into the dynamic analysis. Moreover, we study norm evolution in a CPR rather

than a PG game.

3 Static framework

The model consists of a continuum of individuals i ∈ [0, 1] who recurrently interact in a

(binary) CPR game. An individual i’s behavior ai ∈ A = {0, 1} is closely linked to the

resource stock r ∈ [0, 1]. In particular, each individual can exploit the resource, ai = 0,

or not exploit it, ai = 1. If an individual i chooses not to exploit the resource, she incurs

material costs c(r) ≥ 0. Material costs c(r) is a continuous and differentiable function of the

resource stock r. Exploitation becomes increasingly profitable as the resource stock rises,

c′(r) > 0. We write the share of individuals who do not exploit the resource as ψ. Hence, ψ

indicates commonly executed behavior in society, the descriptive norm.
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Since we study potential resource conservation, we normalize the resource stock to

r ∈ [0, 1], where r = 1 indicates the maximum resource stock that can persist if no individual

exhibits exploitative behavior and r = 0 indicates the point of no return so that the resource

erodes irrespective of society’s behavior. We discuss resource dynamics in more detail in

Section 5.

Each individual i holds a personal norm ni ∈ {0, 1} that indicates the behavior i con-

siders morally appropriate. If ni = 1, we say that individual i holds the sustainability norm

and only considers non-exploitation to be morally appropriate. Alternatively, an individual

considers all possible actions morally appropriate. We then say an individual does not hold

the sustainability norm and write ni = 0. If an individual believes resource exploitation is

morally inappropriate but behaves contrarily, she experiences feelings such as guilt and loss

of self-esteem. We capture these feelings by personal sanctions p, where p > 0. Hence, given

behavior ai and personal norm ni, individual i experiences personal sanctions (ai − 1)pni.

In line with Cooter (1998) and Mankat (in press), we define the social norm by the

distribution of personal norms. We write the proportion of individuals i with the personal

norm ni = 1 as ϕ. If ϕ is large, the social norm is strong since many individuals agree

that non-exploitation is the only morally appropriate behavior. If an individual exploits

the resource, she is subject to social sanctions s(ϕ, ψ) in the form of disapproval. These

social sanctions depend on the social norm ϕ and the descriptive norm ψ. Specifically,

the stronger the social norm is, the more individuals disapprove of exploitation, and, thus,

the greater the social consequences for exploiting the resource, s′
ϕ(ϕ, ψ) > 0. Second, the

more individuals in society adhere to the social norm, the greater the social sanctions for

non-adherence, s′
ψ(ϕ, ψ) > 0. If the social and descriptive norms are absent, ϕ = ψ = 0,

then social sanctions are too, s(0, 0) = 0. Moreover, we assume s(ϕ, ψ) is continuous and

differentiable in both arguments.

4 Equilibrium behavior

This section analyzes equilibrium behavior for an exogenous social norm ϕ and resource stock

r. An individual i’s behavior depends on her utility function, which is, in turn, subject to
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4 EQUILIBRIUM BEHAVIOR

Equilibrium behavior Existence condition

1. ψ∗ = 0, (σ∗
1, σ

∗
0) = (0, 0) s(ϕ, 0) + p < c(r)

2. ψ∗ = ϕ, (σ∗
1, σ

∗
0) = (1, 0) s(ϕ, ϕ) < c(r) < s(ϕ, ϕ) + p

3. ψ∗ = 1, (σ∗
1, σ

∗
0) = (1, 1) c(r) < s(ϕ, 1)

Table 1: Equilibrium behavior

material payoff, personal sanctions, and social sanctions.

Definition 4.1 (Utility). ui = ai(nip+ s(ϕ, ψ) − c(r)).

Rather than employing the Nash equilibrium concept, we require a behavioral equilibrium

to be an evolutionary stable state. The underlying idea is that behavior itself is subject

to a (very fast) evolutionary process driven by utility improvements (i.e., best-response

dynamics). We write the share of individuals i with personal norm ni = n who do not

exploit the resource as σn. It follows that ψ = ϕσ1 + (1 − ϕ)σ0. Throughout, we indicate

an equilibrium share of non-exploitation by ψ∗. Moreover, the set Ψ∗(r, ϕ) contains all

equilibrium shares ψ∗ at some resource stock r and social norm ϕ. Table 1 presents all

possible behavioral equilibria and when they exist. There are three potential behavioral

equilibria: (1) everyone exploits the resource, (2) any individual exploits the resource if

and only if she does not hold the sustainability norm, and (3) no individual exploits the

resource. Since the existence conditions are not mutually exclusive, different behavioral

equilibria potentially co-exist. Moreover, the existence conditions cannot all be violated

simultaneously, implying that Ψ∗(r, ϕ) is always non-empty. Below, we discuss the results

using Figure 1.

Figure 1 depicts two cases for which s(ϕ, ψ) is linear in ψ. The red curve c(r) indicates

the costs of non-exploitation at resource stock r. The blue curve indicates personal and

social sanctions at any exploitation level ψ for the next individual willing to refrain from

exploiting the resource. The first ϕ individuals hold the sustainability norm and are, thus,

subject to personal and social sanctions, whereas the later 1−ϕ individuals are solely subject

to social sanctions. This generates the discontinuity at ϕ. At any ψ where the blue curve is

7



4 EQUILIBRIUM BEHAVIOR

𝜓1

𝑠 𝜙, 𝜓 + 𝑝

𝜙

𝑠(𝜙, 𝜓)

(a) Ψ∗(r, ϕ) = {ϕ}

𝜓1

𝑠 𝜙, 𝜓 + 𝑝

𝜙

𝑐(𝑟)

𝑠(𝜙, 𝜓)

(b) Ψ∗(r, ϕ) = {0, ϕ, 1}

Figure 1: Equilibrium behavior

above (below) the red curve, an individual must be currently (not) exploiting the resource

but prefers to behave otherwise. For example, consider Figure 1a and any ψ < ϕ. Some

individual who holds the sustainability norm exploits the resource (since ψ < ϕ). She

incurs personal and social sanctions of s(ϕ, ψ) + p while only avoiding material costs of c(r).

Consequently, she prefers to change her behavior, inducing ψ to rise. Following this line

of argument, it becomes apparent why the behavioral equilibria in Table 1 exist under the

stated conditions. Any intersection of the blue and red curve not listed in Table 1 must occur

in one of the continuous segments of the blue curve. Figure 1b provides an example of such

intersections. Following the above reasoning, such intersections constitute Nash equilibria

but cannot be evolutionary stable.3

Lastly, note that lower levels of exploitation are more likely to constitute a behavioral

equilibrium when material costs c(·) and the resource stock r are low, while personal sanctions

p, social sanctions s(·, ·), and social norm ϕ are high.
3Consider, for example, a slight increase in the share of non-exploiting individuals. Social sanctions in-

crease so that individuals previously indifferent between the two actions now prefer not to exploit the resource
and change their behavior accordingly. Society coordinates into a behavioral equilibrium characterized by a
smaller level of exploitation.
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5 EVOLUTIONARY FRAMEWORK

5 Evolutionary framework

Next, we turn to the evolutionary framework that enables us to study the co-evolution of

resource stock r, social norm ϕ, and behavior ψ. Throughout, we write the solution of the

dynamic system at time t with initial population state ρ = (r, ϕ, ψ) as ξ(ρ, t).

Assumption 5.1. (Solution to the dynamic system) For any population profile ρ = (r, ϕ, ψ),

the solution ξ(ρ, t) : [0, 1]3 × R≥0 → [0, 1]3 satisfies:

1. ξ(ρ, 0) = (r, ϕ, ψ∗) and

2. ξ(ρ, t) = ξ(limt̃→t− ξ(ρ, t̃), 0) ∀t > 0.

Condition 1 of Assumption 5.1 formalizes that behavior reaches an equilibrium before

changes in the social norm and resource stock occur. The underlying intuition is that at any

population state ρ for which behavior is (possibly) not in equilibrium, society moves into the

nearest behavioral equilibrium at infinite speed. The initial solution ξ(ρ, 0) specifies which

behavioral equilibrium society coordinates into at any ρ. Section 5.1 discusses it in more

detail. Condition 2 of Assumption 5.1 indicates that ξ(ρ, t) can always be represented as an

initial solution, implying that behavior is always in equilibrium along ξ(ρ, t).

This introduces possible discontinuities of ξ(ρ, t). If the solution approaches some state

for which behavior is not in equilibrium, limt̃→t− ξ(ρ, t̃) = (r̃, ϕ̃, ψ̃) s.t. ψ̃ /∈ Ψ∗(r̃, ϕ̃),

then it must experience an abrupt change at t for behavior to be in equilibrium at t,

ξ(ρ, t) ̸= (r̃, ϕ̃, ψ̃) = limt̃→t− ξ(ρ, t̃). Condition 2 of Assumption 5.1 implies that if the solu-

tion approaches such a discontinuity, the dynamic system behaves as if society reaches the

limit (r̃, ϕ̃, ψ̃) and then immediately jumps into state ξ((r̃, ϕ̃, ψ̃), 0) = (r̃, ϕ̃, ψ̃∗), for which be-

havior is in equilibrium ψ̃∗. Although conceptually, we can think of society being in (r̃, ϕ̃, ψ̃)

in the blink of a moment, formally, the solution ξ(ρ, t) never actually reaches this point.

While ξ(ρ, t) may exhibit discontinuities due to jumps in equilibrium behavior ψ∗, the

resource stock r and social norm ϕ are continuous along ξ(ρ, t). Their values at time t derive

from their initial values and the cumulative changes up to t.

9



5.1 Behavioral evolution 5 EVOLUTIONARY FRAMEWORK

5.1 Behavioral evolution

We continue to describe the evolution of behavior along the solution ξ(ρ, t). Section 4

already established which behavioral equilibria exist at any resource stock r and social norm

ϕ. Hence, it remains for us to identify which behavioral equilibrium society reaches.

As a starting point, consider some population profile ρ = (r, ϕ, ψ∗) for which behavior

is in equilibrium. If society experiences marginal changes in the social norm and resource

stock, the behavioral equilibrium persists, and we expect society to remain in it. For example,

suppose society is at population state ρ = (r, ϕ, ψ∗) for which s(ϕ, ψ∗) < c(r) < s(ϕ, ψ∗) + p.

Therefore, equilibrium behavior corresponds to non-exploitation by all (and only) norm

holders, ψ∗ = ϕ. For marginal changes in the resource and social norm to r̃ and ϕ̃ respectively,

the behavioral equilibrium ψ̃∗ = ϕ̃ still exists, s(ϕ̃, ϕ̃) < c(r̃) < s(ϕ̃, ϕ̃) + p ⇒ ϕ̃ ∈ Ψ∗(r̃, ϕ̃).

Since the previous level of non-exploitation ψ∗ = ϕ is close to the new behavioral equilibrium

ψ̃∗ = ϕ̃, it is in its basin of attraction. Consequently, we expect society to coordinate into

the behavioral equilibrium ψ̃∗ = ϕ̃. Alternatively, suppose that either all individuals prefer

to exploit the resource or not, c(r) > s(ϕ, ψ∗) + p or c(r) < s(ϕ, ψ∗). Hence, ψ∗ ∈ {0, 1}.

Marginal changes in the resource stock and social norm leave the behavioral equilibrium ψ∗

undisturbed, and we expect it not to change.

Consequently, behavior remains in a particular equilibrium as long as that equilibrium

persists, and the following dynamics describe it during such a period.

Definition 5.1 (Behavioral dynamics for equilibrium behavior).

ψ̇∗ =


ϕ̇ if s(ϕ, ψ∗) < c(r) < s(ϕ, ψ∗) + p

0 else

Throughout, we understand all time derivatives as right-hand derivatives. Hence, they

express how the variable changes as time proceeds.

Equilibrium behavior along the solution ξ(ρ, t) is discontinuous if it approaches some ρ̃ =

(r̃, ϕ̃, ψ̃) for which behavior is not in equilibrium, limt̃→t− ξ(ρ, t̃) = (r̃, ϕ̃, ψ̃) s.t. ψ̃ /∈ Ψ∗(r, ϕ).

Recall that Condition 2 of Assumption 5.1 implies that at any such discontinuity, the system

10
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behaves as if it reaches the limit limt̃→t− ξ(ρ, t̃) and then jumps into a population profile for

which behavior is in equilibrium, ξ(limt̃→t− ξ(ρ, t̃), 0) = (r̃, ϕ̃, ψ̃∗).4 To describe transitions

between behavioral equilibria, we thus need to specify which behavioral equilibrium the

dynamic system reaches at any ρ. For this purpose, we introduce the following assumptions

on the initial solution ξ(ρ, 0) for any ρ.

Assumption 5.2 (Initial solution). For any population profile ρ = (r, ϕ, ψ) and ψ∗ ∈

Ψ∗(r, ϕ):

1. ξ(ρ, 0) = (r, ϕ, ψ∗) if

(a) ψ∗ ≥ ψ and ∃ϵ > 0 s.t. s(x, ϕ) + p 1≤ϕ(x) ≥ c(r) ∀x ∈ (ψ − ϵ, ψ∗) ∩ [0, 1] or

(b) ψ∗ ≤ ψ and ∃ϵ > 0 s.t. s(x, ϕ) + p 1≤ϕ(x) ≤ c(r) ∀x ∈ (ψ∗, ψ + ϵ) ∩ [0, 1],

where the function 1≤ϕ(x) returns 1 if x ≤ ϕ and 0 if x > ϕ.

2. ξ(ρ, 0) ̸= (r, ϕ, ψ∗) if ϕ ∈ Ψ∗(r, ϕ) and ∃x ∈ (0, 1) s.t. xψ + (1 − x)ψ∗ = ϕ.

The intuitive reasoning for Condition 1 of Assumption 5.2 closely follows that of the

behavioral equilibria in Section 4. Recall Figure 1 and note that c(r) and s(x, ϕ) + p 1≤ϕ(x)

correspond to the red and blue curves, respectively. For illustration purposes, we focus

on Condition 1a of Assumption 5.2. The underlying reasoning for Condition 1b is The

analogous. Consider any starting point ψ so that for all levels of non-exploitation x below

the equilibrium share ψ∗, x < ψ∗, and sufficiently close to ψ, x > ψ − ϵ, the blue curve

s(x, ϕ) + p 1≤ϕ(x) lies above the red curve c(r). By similar reasoning as in Section 4, the

share of non-exploiting individuals must increase at any such x. Hence, behavior reaches

the behavioral equilibrium ψ∗. Note that for single points x ∈ (ψ − ϵ, ψ∗), we allow for

c(r) = s(x, ϕ) + p 1≤ϕ(x). Although behavior is at rest at such x, x is not a behavioral

equilibrium. Moreover, it must hold that the non-exploitation share increases for all points

in some close neighborhood around x. In the presence of constant small mutations, behavior

eventually passes x and reaches the behavioral equilibrium ψ∗. Note that Condition 1 of

Assumption 5.2 implies that if ψ is a behavioral equilibrium, then society reaches it, ψ∗ = ψ.
4Note that for all t > 0, limx→t− ξ(ρ, x) always exists since (1) r and ϕ are perfectly continuous along

ξ(ρ, t) and (2) ψ∗ can be represented in a piecewise manner, with each segment coinciding with either 0, 1,
or ϕ as described by ξ(ρ, t), all of which are perfectly continuous.
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Whenever ψ is not a behavioral equilibrium but a Nash equilibrium, ξ(ρ, 0) is possibly

not uniquely defined by Condition 1 of Assumption 5.2. If so, we remain relatively agnostic

about which behavioral equilibrium society reaches. Condition 2 of Assumption 5.2 only

requires that society does not pass through a behavioral equilibrium ϕ ∈ Ψ∗(r, ϕ) to reach

another one. For example, suppose ψ ∈ (ϕ, 1) is the Nash equilibrium of the right intersection

of the blue and red curves in Figure 1b. Constant small mutations disrupt ψ, and society

coordinates into one of the two neighboring equilibria, ψ∗ ∈ {ϕ, 1}.

For analytical purposes, we treat ξ(ρ, 0) as uniquely defined and address the possible

non-uniqueness by allowing ξ(ρ, 0) to take any value consistent with Assumption 5.2.5

5.2 Resource evolution

Resource evolution depends on equilibrium behavior ψ∗ and resource stock r.

Definition 5.2 (Resource dynamics).

ṙ = δ(r) − e(ψ∗),

where δ(1) = 0, δ(r) > 0 ∀r ∈ (0, 1), e(1) = 0, e′(ψ∗) < 0 ∀ψ∗ ∈ [0, 1], maxr∈[0,1] δ(r) < e(0),

and e(·) and δ(·) are continuous and differentiable.

The first part of the resource dynamics captures the natural growth of the resource,

δ(r). If the resource is at maximum capacity, it cannot grow further, δ(1) = 0. For all other

positive stocks, natural resource growth is positive, δ(r) > 0 ∀r ∈ (0, 1).6 The second part of

the resource dynamics captures resource extraction by society, e(ψ∗). The more individuals

behave sustainably, the smaller is resource extraction, e′(ψ∗) < 0 ∀ψ∗ ∈ [0, 1]. We assume

maxr∈[0,1] δ(r) < e(0), implying that the resource always deteriorates if everyone exploits

it.7 In the following, we discuss resource dynamics at each behavioral equilibrium of Section
5Note that for any ρ, the non-uniqueness of ξ(ρ, t) only arises at time t = 0. Hence, although Condition

1 of Assumption 5.2 sometimes does not specify where exactly ξ(ρ, t) starts off (i.e., at which behavioral
equilibrium), it unambiguously characterizes it (and all possible discontinuities) after the initial time point.

6One popular functional form corresponds to δ(r) = δ̃(r) ∗ r, where δ̃ constitutes the natural growth rate
of the resource.

7Otherwise, the situation becomes inherently uninteresting, as there is a positive resource stock r̃ > 0
below which the resource may never fall.
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Figure 2: Resource evolution

5.1. Figure 2 presents graphical illustrations for the exemplary case of δ(r) having a unique

maximum and δ(0) = 0.

First, if no individual exploits, ψ∗ = 1, then resource extraction is minimal, e(1) = 0.

If the resource stock is below maximum capacity and above the point of no return, it must

be increasing, ṙ > 0 ∀r ∈ (0, 1). Resource dynamics are at rest at maximum capacity,

ṙ = 0 if r = 1. Analogously, if all individuals exploit the resource, ψ∗ = 0, then resource

extraction is at a maximum, and the resource stock must be diminishing, ṙ < 0 ∀r ∈ [0, 1].

Lastly, we look at partial exploitation, ψ∗ = ϕ. Depending on the share of individuals who

hold the sustainability norm and, thus, do not exploit, resource extraction e(ϕ) is either

larger or smaller than the natural growth of the resource δ(r). Given equilibrium behavior

ψ∗ = ϕ, let the nullcline ϕṙ=0(r) return a social norm ϕ for each resource stock r so that

δ(r) = e(ψ∗). Hence, resource dynamics are at rest for any point on ϕṙ=0(r). Suppose that

at some resource stock r the social norm ϕ lies below ϕṙ=0(r). So few individuals hold the

sustainability norm and refrain from exploitation that resource extraction e(ϕ) outweighs

natural resource growth δ(r). The resource stock diminishes. Analogously, the resource

stock rises if the social norm exceeds ϕṙ=0(r).

5.3 Cultural evolution

Following the existing literature, we focus on norm change through horizontal and oblique

cultural transmission (Mengel, 2008; Mankat, in press). Interactions between peers and

13
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cultural imitation characterize horizontal transmission, while oblique transmission involves

a learning process facilitated by socialization institutions such as schools and media. We

assume that these transmission processes are biased regarding the cultural fitness of indi-

viduals. The underlying idea is that socially successful individuals have a more significant

influence on the opinion formation of their peers as they are more likely to be imitated (Hen-

rich and Gil-White, 2001) and have better prospects of occupying influential roles positions

such as teachers or politicians (Bowles and Gintis, 1998). In line with Traxler and Spichtig

(2011) and Mankat (in press), cultural fitness results from both material and social factors.

Definition 5.3 (Cultural fitness). An individual i’s cultural fitness is

fi = ai(κs(ϕ, ψ∗) − c(r)),

where κ > 0 is the weight of social sanctions on cultural fitness.

We model fitness-biased norm adoption using the well-known replicator dynamics. Hence,

the resulting change in the social norm at any population profile ρ is proportional to

ϕ(1 − ϕ)[(σ1 − σ0)(κs(ϕ, ψ∗) − c(r)).

In addition, institutions can promote the adoption of the sustainability norm by struc-

turing interactions, stigmatizing and promoting behavior through legal norms and policies,

and influencing perceptions through (public) communication and socialization institutions

such as schools, universities, and media (Gintis, 2003; Mengel, 2008). Following Gintis (2003)

and Mengel (2008), we capture the degree to which institutions foster norm adoption by in-

stitutional pressure γ ≥ 0. Institutional pressure induces a share of individuals to adopt

the sustainability norm as their personal one. Moreover, the effectiveness of institutional

pressure γ is proportional to the share of individuals in society who consider the behavior

morally right, the social norm.8 Formally, the change in the social norm from institutional

pressure corresponds to ϕ(1 − ϕ)γ ≥ 0. Combining the above yields the cultural dynamics

below.

8Gintis (2003) and Mengel (2008) point out that proportionality is a rather conservative assumption.
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Definition 5.4 (Cultural dynamics).

ϕ̇ = vϕ(1 − ϕ)[(σ1 − σ0)(κs(ϕ, ψ∗) − c(r)) + γ],

where v is the relative speed of cultural change.

As with resource dynamics, we discuss cultural dynamics for each possible behavioral

equilibrium ψ∗. Figure 3 presents exemplary graphical illustrations. We start with the case

of either all or no individual exploiting the resource, ψ∗ ∈ {0, 1}. Since all individuals behave

equally, all individuals incur the same material costs c(r) and social sanctions s(ϕ, ψ∗). All

individuals have the same cultural fitness, implying that cultural dynamics are solely driven

by institutional pressure γ, ϕ̇ = vϕ(1 − ϕ)γ.

Next, we turn to the behavioral equilibrium where an individual exploits the resource

if and only if she does not hold the sustainability norm, ψ∗ = ϕ. From Definition 5.4, we

can easily derive that cultural dynamics are at rest if either (1) all individuals hold the same

personal norm, ϕ ∈ {0, 1} or (2) the difference in cultural fitness of both behavioral routines

offsets institutional pressure, κs(ϕ, ψ∗) + γ = c(r). Let ϕϕ̇=0(r) be the nullcline, which for

each resource stock r ∈ (0, 1] returns a social norm ϕ solving κs(ϕ, ψ∗) + γ = c(r). Hence,

cultural dynamics are at rest at any point on the nullcline. Note that ϕϕ̇=0(r) is strictly

increasing. A larger resource stock r corresponds to greater costs of non-exploitation c(r).

This requires more social sanctions κs(ϕ, ϕ) and, thus, a stronger social norm ϕ for cultural

dynamics to be at rest. Along these lines of argument, suppose that at some resource stock

r, the social norm ϕ exceeds ϕϕ̇=0(r). Social sanctions κs(ϕ, ϕ) and institutional pressure γ

outweigh material costs of non-exploitation c(r), and the social norm strengthens, ϕ̇ > 0.

The analogous holds if ϕ is below ϕϕ̇=0(r).

6 Evolutionary analysis

In this section, we analyze the evolutionary model of Section 5. We identify different equi-

librium sets, analyze their asymptotic stability, and discuss the roles of different cultural and

socio-economic factors. Throughout, we adopt the following equilibrium notion.
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Figure 3: Cultural evolution

Definition 6.1 (Socio-ecological equilibrium). A socio-ecological equilibrium is a closed set

Ω ⊂ [0, 1]3 s.t. ∀ρ ∈ Ω,

• ξ(ρ, t) ∈ Ω for all t ≥ 0 and

• ∄Ω̂ ⊂ Ω s.t. Ω̂ is a socio-ecological equilibrium.

Hence, a socio-ecological equilibrium corresponds to a closed set Ω ⊂ [0, 1]3, for which

the dynamic system of Section 5 starting at any ρ ∈ Ω always remains in Ω. Moreover, Ω

is minimal in the sense that it does not contain a strict subset Ω̂, which is itself a socio-

ecological equilibrium. Our analysis identifies two different types of equilibria, namely: (1)

equilibrium (or rest) points and (2) limit cycles.

6.1 Boundary equilibrium point

We first analyze a socio-ecological equilibrium for which the resource stock is at maximum

capacity, r = 1, all individuals hold the sustainability norm, ϕ = 1, and all individuals do

not exploit the resource, ψ∗ = 1.

Proposition 6.1 (Boundary equilibrium point). (1, 1, 1) ∈ (0, 1]3 is a socio-ecological equi-

librium if c(1) < s(1, 1) + p.

Proof: See Appendix A.
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Figure 4: Boundary equilibrium point

Proposition 6.1 states that this point is a socio-ecological equilibrium if all individuals

not exploiting the resource is indeed a behavioral equilibrium, c(1) < s(1, 1) + p ⇒ ψ∗ =

ϕ = 1. Given this equilibrium behavior, ψ∗ = 1, resource dynamics are at rest if and only if

the resource is at maximum capacity, ṙ = 0 ⇔ r = 1. Moreover, since all individuals hold

the sustainability norm, cultural dynamics are at rest too, ϕ = 1 ⇒ ϕ̇ = 0.

Proposition 6.2 (Asymptotic stability of a boundary equilibrium point). Suppose (1, 1, 1)

is a socio-ecological equilibrium of Proposition 6.1. (1, 1, 1) is asymptotically stable if

1. s(1, 1) ≤ c(1) < κs(1, 1) + γ or

2. s(1, 1) > c(1) and γ > 0.

Proof: The proposition follows from Lemma 6.1 and Lemma 6.2.

The above proposition summarizes the results on asymptotic stability of the boundary

equilibrium point (1, 1, 1). To discuss Proposition 6.2 in more detail, we differentiate two

cases based on the material costs of non-exploitation. First, we look at the case of the

material costs of non-exploitation at maximum resource capacity exceeding social sanctions

at the perfect social norm and no exploitation, s(1, 1) ≤ c(1).
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Lemma 6.1. Suppose s(1, 1) ≤ c(1) < s(1, 1) + p. The socio-ecological equilibrium (1, 1, 1)

is asymptotically stable if κs(1, 1) + γ > c(1).

Proof: See Appendix A.

Lemma 6.1 states that a socio-ecological equilibrium (1, 1, 1) is asymptotically stable

if social sanctions on cultural fitness and institutional pressure outweigh material costs of

non-exploitation, κs(1, 1) + γ > c(1). The following discussion focuses on the case of social

sanctions being strictly smaller than material costs of non-exploitation, s(1, 1) < c(1).9

Hence, for all ρ̂ = (r̂, ϕ̂, ψ̂) in some neighborhood U of (1, 1, 1), the behavioral equilibrium

of partial exploitation exists, s(ϕ̂, ϕ̂) < c(r̂) < s(ϕ̂, ϕ̂) + p ⇒ ϕ̂ ∈ Ψ∗(r̂, ϕ̂), and society

always coordinates into it, s(ϕ̂, ψ̂) < c(r̂) < s(ϕ̂, ψ̂) + p ⇒ ξ((r̂, ϕ̂, ψ̂), 0) = (r̂, ϕ̂, ϕ̂). Thus,

an individual does not exploit the resource if and only if she holds the sustainability norm,

ψ̂∗ = ϕ̂. Moreover, if U is sufficiently small, then at any population state ρ̂ = (r̂, ϕ̂, ϕ̂) ∈

U , social sanctions and institutional pressure outweigh material costs of non-exploitation,

κs(ϕ̂, ϕ̂) + γ > c(r̂). Cultural transmission induces the norm non-holders to adopt the

sustainability norm so that the social norm strengthens, ˙̂
ϕ > 0, and returns to ϕ = 1. Since

no individual exploits the resource at the perfect social norm, ψ∗ = ϕ = 1, the resource

stock recovers and reaches its maximum capacity, r = 1. Hence, society returns to the

socio-ecological equilibrium (1, 1, 1). Figure 4a provides a graphical illustration. Note that

κs(1, 1) + γ > c(1) implies that ϕϕ̇=0(1) < 1. Next, we turn to the case of non-exploitation

being relatively cheap, c(1) < s(1, 1).

Lemma 6.2. Suppose c(1) < s(1, 1). The socio-ecological equilibrium (1, 1, 1) is asymptoti-

cally stable if and only if γ > 0.

Proof: See Appendix A.

Lemma 6.2 states that in this case, the socio-ecological equilibrium (1, 1, 1) is asymp-

totically stable if (and only if) institutional pressure exists, γ > 0. Given that material costs

of non-exploitation are small, c(1) < s(1, 1), there is some neighborhood U of (1, 1, 1) so
9The reasoning for the alternative case of s(1, 1) = c(1) is similar in intuition but somewhat more

elaborate.
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that at each population profile ρ̂ = (r̂, ϕ̂, ψ̂) in that neighborhood, the behavioral equilib-

rium of no exploitation exists, c(r̂) < s(ϕ̂, ψ̂) ⇒ 1 ∈ Ψ∗(r̂, ϕ̂), and society coordinates into

it, c(r̂) < s(ϕ̂, ψ̂) ⇒ ξ((r̂, ϕ̂, ψ̂), 0) = (r̂, ϕ̂, 1). Since all individuals refrain from resource

exploitation, ψ̂∗ = 1, the resource stock increases, ˙̂r > 0. Moreover, since all individuals

behave alike, cultural evolution is solely driven by institutional pressure. If institutional

pressure exists, γ > 0, the social norm strengthens, ˙̂
ϕ > 0. Hence, society evolves towards

the socio-ecological equilibrium (1, 1, 1). Figure 4b presents a graphical illustration.

Note that positive institutional pressure, γ > 0, is necessary for asymptotic stability

of the socio-ecological equilibrium (1, 1, 1). This holds since in the absence of institutional

pressure, γ = 0, the social norm is at rest if no individual exploits the resource, ψ∗ = 1 ⇒

ϕ̇ = 0. Hence, it is at rest at any population profile ρ̂ in some neighborhood U of the

socio-ecological equilibrium (1, 1, 1). At any such ρ̂, society only experiences an increase

in the resource stock, ˙̂r > 0. All population profiles for which the resource stock is at

maximum capacity, r̂ = 1, and non-exploitation by all individuals is a behavioral equilibrium,

1 ∈ Ψ∗(1, ϕ) ⇔ c(1) < s(ϕ, 1), form a connected set of rest points, Ω = {(1, ϕ, 1)}s(ϕ,1)>c(1).

Each point in this set is Lyapunov stable but not asymptotically stable. It appears a natural

next question to ask when Ω is (part of) a dynamically stable set. We can easily show

that the closure of Ω is never asymptotically stable. Suppose society experiences random

mutation across Ω, eventually reaching population profile ρ̃ = (1, ϕ̃, 1) at the border of Ω,

s(ϕ̃, 1) = c(r̃). No-exploitation no longer constitutes a behavioral equilibrium, 1 /∈ Ψ∗(1, ϕ̃).

Society coordinates into a new behavioral equilibrium, ψ∗ < 1, at which the resource stock

must be decreasing, r = 1 ∧ ψ∗ < 1 ⇒ ṙ < 0. The dynamic system evolves away from Ω.

The results of this section indicate that larger institutional pressure γ, weight of social

sanctions on cultural fitness κ, and personal sanctions p unambiguously favor resource con-

servation through a boundary equilibrium point. Larger p favors its existence, whereas larger

κ and γ favor asymptotic stability. The roles of social sanctions s(·, ·) and material costs

of non-exploitation c(·) are more ambiguous. Although larger s(1, 1) and smaller c(1) favor

the existence of the socio-ecological equilibrium, they may alter equilibrium behavior in its

neighborhood. In the absence of institutional pressure, γ = 0, this may harm asymptotic

stability as society moves from the case of Lemma 6.1 to that of Lemma 6.2. However, in
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the presence of institutional pressure, γ > 0, the changes in s(1, 1) and c(1) favor asymptotic

stability.

6.2 Interior equilibrium point

Next, we investigate equilibrium points for which the resource stock is (potentially) below

maximum capacity, r < 0.

Proposition 6.3 (Interior equilibrium point). Any (r, ϕ, ϕ) ∈ (0, 1]3 is a socio-ecological

equilibrium if

1. s(ϕ, ϕ) < c(r) < s(ϕ, ϕ) + p,

2. κs(ϕ, ϕ) + γ = c(r), and

3. δ(r) = e(ϕ).

Proof: See Appendix A.

Consider any point (r, ϕ, ϕ) ∈ (0, 1]3 that satisfies the conditions of Proposition 6.3. The

first condition implies that non-exploitation by all and only norm holders indeed corresponds

to a behavioral equilibrium, ψ∗ = ϕ. Given this equilibrium behavior, Section 5.2 established

that resource dynamics are at rest for any point on the nullcline ϕṙ=0(r). Formally, social

norm ϕ and resource stock r are on this nullcline if the resource growth equals resource

extraction, δ(r) = e(ϕ). Similarly, cultural dynamics are at rest on the nullcline ϕϕ̇=0(r),

which is formally equivalent to κs(ϕ, ϕ) + γ = c(r). Social sanctions on cultural fitness and

institutional pressure equal the material costs of non-exploitation. If both conditions hold,

then (r, ϕ) corresponds to an intersection of the two nullclines, and the dynamic system is at

rest. Hence, (r, ϕ, ϕ) is a socio-ecological equilibrium. Figure 5 provides multiple graphical

examples of interior equilibrium points.

Note that such an interior equilibrium point can only exist at some social norm ϕ if social

and personal sanctions exceed social sanctions on cultural fitness and institutional pressure,

which exceed social sanctions, s(ϕ, ϕ) < κs(ϕ, ϕ) + γ < s(ϕ, ϕ) + p. This is necessary for the

behavioral equilibrium of partial exploitation to exist at ϕ and cultural dynamics to be at
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rest. Graphically, the condition ensures that the nullcline ϕϕ̇=0(r) lies between the behavioral

boundaries where s(ϕ, ϕ) = c(r) and s(ϕ, ϕ) + p = c(r) in Figure 5. For any social norm ϕ,

this condition is more likely to hold if personal sanctions p are large, as this increases the

domain of points (r, ϕ) in Figure 5 for which partial exploitation corresponds to equilibrium

behavior. Moreover, the condition is more likely satisfied if the weight of social sanctions on

cultural fitness κ and institutional pressure γ jointly aggregate to an intermediate value. If

κ and γ are either very large (e.g., γ > p ∧ κ > 1 or γ > p + s(1, 1)) or very small (e.g.,

γ = 0 ∧ κ < 1), the condition may not hold for any social norm. Suppose the condition does

hold at some social norm ϕ. In that case, we can easily show that if the social norm lies

above some lower bound (i.e., ϕ ≥ min(ϕṙ=0(r))), then there are cost curves c(·) for which

an interior equilibrium point with social norm ϕ exists.

Proposition 6.4 (Asymptotic stability of an interior equilibrium point). Any socio-ecological

equilibrium (r, ϕ, ϕ) ∈ (0, 1]3 of Proposition 6.3 is asymptotically stable if

1. 0 < δ′(r)
e′(ϕ) <

c′(r)
κ(s′

ϕ
(ϕ,ϕ)+s′

ψ
(ϕ,ϕ)) and

2. vϕ(1 − ϕ)κ (s′
ϕ(ϕ, ϕ) + s′

ψ(ϕ, ϕ)) < −δ′(r).

Proof: See Appendix A.

Proposition 6.4 introduces conditions that ensure asymptotic stability of an interior

equilibrium point of Proposition 6.3. Recall that at such an equilibrium point (r, ϕ, ϕ),

individuals exploit the resource if and only if they do not hold the sustainability norm,

ψ∗ = ϕ ⇔ s(ϕ, ϕ) < c(r) < s(ϕ, ϕ) + p. For all ρ̂ = (r̂, ϕ̂, ψ̂) in some neighborhood U

of a socio-ecological equilibrium (r, ϕ, ϕ), the behavioral equilibrium of partial exploitation

exists, s(ϕ̂, ϕ̂) < c(r̂) < s(ϕ̂, ϕ̂) + p ⇒ ϕ̂ ∈ Ψ∗(r̂, ϕ̂), and society coordinates into it, s(ϕ̂, ψ̂) <

c(r̂) < s(ϕ̂, ψ̂) + p ⇒ ξ((r̂, ϕ̂, ψ̂), 0) = (r̂, ϕ̂, ϕ̂). Below, we focus on the dynamic system in

that neighborhood U . Hence, throughout, all individuals exploit the resource if and only

if they do not hold the sustainability norm, ψ̂∗ = ϕ̂. Moreover, recall that the interior

equilibrium point corresponds to an intersection of the two nullclines ϕϕ̇=0(r) and ϕṙ=0(r).

Their respective derivatives are ϕ′
ṙ=0(r) = δ′(r)

e′(ϕ) and ϕ′
ϕ̇=0(r) = c′(r)

κ (s′
ϕ

(ϕ,ϕ)+s′
ψ

(ϕ,ϕ)) .
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Condition 1 of Proposition 6.4 requires that the socio-ecological equilibrium constitutes

an intersection of the two nullclines in the increasing segment of ϕϕ̇=0(r), 0 < δ′(r)
e′(ϕ) . Recall

from Section 5.3 that the social norm evolves away from the nullcline ϕϕ̇=0(r). Moreover,

Section 5.2 shows that the resource evolves away from the decreasing segment of the null-

cline ϕṙ=0(r). Since aggregate resource extraction decreases in the share of non-exploiting

individuals, e′(ϕ) < 0, the nullcline ϕṙ=0(r) is decreasing at resource stock r if and only

if an increase (decrease) in the resource stock leads to greater (lower) resource growth,

ϕ′
ṙ=0(r) < 0 ⇔ δ′(r) > 0. If the socio-ecological equilibrium was not an intersection of the

two nullclines in the increasing segment of ϕṙ=0(r), resource and cultural evolution would

favor a move away from it at any ρ̂ in some close neighborhood U , implying that (r, ϕ, ϕ) is

asymptotically unstable. The left intersection in Figure 5a presents a corresponding example.

Furthermore, the first condition also requires that ϕϕ̇=0(r) intersects ϕṙ=0(r) from below,
δ′(r)
e′(ϕ) <

c′(r)
κ (s′

ϕ
(ϕ,ϕ)+s′

ψ
(ϕ,ϕ)) . For illustration purposes, suppose that this was not the case. The

right intersection in Figure 5a constitutes a graphical example. Large values of −δ′(r) imply

that an increase (decrease) in the resource stock drastically decreases (increases) resource

growth below (above) zero. Moreover, if e′(ϕ) is close to zero, then marginal changes in

the social norm, and thus the share of individuals not exploiting the resource ψ∗, only

affect resource extraction slightly. Hence, at any population profile (r̂, ϕ̂, ψ̂) close to (r, ϕ, ϕ),

resource evolution drives society towards some stock relatively close to r. Graphically, ϕṙ=0(r)

is steep. In conjunction with the costs of non-exploitation being relatively insensitive to

changes in the resource stock, so c′(r) is small, material costs of non-exploitation remain

relatively steady. However, a large value of κs′(ϕ) corresponds to social sanctions being very

responsive to changes in the social norm. Hence, at any (r̂, ϕ̂, ϕ̂) close to (r, ϕ, ϕ), there is

a strong cultural push away from the social norm ϕ. Combining these insights implies that

(r, ϕ, ϕ) is a saddle point.

Lastly, suppose Condition 1 of Proposition 6.4 holds. Figure 5b illustrates this case

graphically. If Condition 1 of Proposition 6.4 holds, then the socio-ecological equilibrium

is asymptotically stable if resource dynamics change more drastically for marginal changes

in the resource than cultural dynamics change for marginal changes in the social norm.

Condition 2 of Proposition 6.4 captures this. Recall that cultural evolution favors a move
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Figure 5: Interior equilibrium points

away, whereas resource evolution favors a move towards the socio-ecological equilibrium. If

Condition 2 of Proposition 6.4 holds, then, after slight changes in the resource stock and

social norm, the stabilizing resource dynamics dominate the destabilizing cultural dynamics.

The system spirals inwards. Alternatively, if the second condition in the lemma is violated,

the evolutionary force driving society away from the socio-ecological equilibrium dominates,

and the dynamic system spirals outwards.

The above results offer insights into when society may conserve the CPR through an

interior equilibrium point. An interior equilibrium point more likely exists for large personal

sanctions p. Moreover, the weight of social sanctions on cultural fitness κ and institutional

pressure γ must balance the costs of non-exploitation c(r). Proposition 6.4 sheds light

onto when an existing interior equilibrium point is likely asymptotically stable, namely if

culture evolves relatively slow (v is small), social sanctions are relatively non-responsive to

changes in the social and descriptive norms (s′
ϕ and s′

ψ are small), material costs are relatively

responsive to changes in the resource stock (c′(r) is large), and the weight of social sanctions

on cultural fitness is small (κ is small). The last bit implies that an interior equilibrium

point is more likely asymptotically stable if cultural transmission mainly occurs through

institutional pressure γ. For illustration purposes, suppose that social sanctions do not
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affect cultural fitness, κ = 0. In that case, changes in the social norm do not impact cultural

evolution. The social norm spreads due to institutional pressure γ and erodes due to cultural

fitness differences, which entirely derive from material costs c(r). These two forces balance

at an interior equilibrium point, γ = c(r). Graphically, ϕϕ̇=0(r) corresponds to a vertical line

passing through the socio-ecological equilibrium. For resource stocks r̂ above (below) the

equilibrium value r, the material costs exceed (fall short of) institutional pressure, c(r̂) > γ

(c(r̂) < γ), implying a norm decrease (increase). As long as the socio-ecological equilibrium

occurs in the increasing segment of ϕṙ=0(r), it is asymptotically stable.

6.3 Boundary limit cycle

Finally, we discuss a socio-ecological equilibrium resulting from the existence of a limit cycle.

Proposition 6.5 describes such a limit cycle with orbit ΩBLC . Consequently, the minimal

closed set containing ΩBLC , cl(ΩBLC), constitutes a socio-ecological equilibrium.10

Proposition 6.5 (Boundary limit cycle). If c(0) < s(1, 0) + p < s(1, 1) + p ≤ c(1), then

there is some r̂, ř ∈ (0, 1] s.t.

• ∀ρ ∈ ΩBLC := {(r, 1, 1)}ř≤r<r̂ ∪ {(r, 1, 0)}ř<r≤r̂, ∃t > 0 s.t. ξ(ρ, 0) = ξ(ρ, t) and

• cl(ΩBLC) = {(r, 1, 1)}ř≤r≤r̂ ∪ {(r, 1, 0)}ř≤r≤r̂ is a socio-ecological equilibrium.

Proof: See Appendix A.

Proposition 6.5 specifies that the limit cycle exists in the case of (1) the costs of non-

exploitation at the full resource stock outweighing personal and social sanctions at the perfect

social norm and no exploitation, s(1, 1) + p ≤ c(1), and (2) personal and social sanctions

at the perfect social norm and full exploitation outweighing the costs of non-exploitation

at the minimum resource stock, c(0) < p + s(1, 0). Throughout the course of evolution, all

individuals hold the sustainability norm, ϕ = 1, implying that cultural dynamics are always
10Note that further limit cycles are possible, depending on the exact specifications of the dynamic system.

We require extensive information about the dynamic system to ensure the existence and stability of such
limit cycles. Due to the general approach taken, the detailed investigation of these limit cycles is beyond
the scope of this paper.
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at rest, ϕ̇ = 0. Since all individuals hold the same personal norm, ϕ = 1, society can only

reach behavioral equilibria for which all individuals behave alike, ψ∗ ∈ {0, 1}. Whenever

no individual exploits, ψ∗ = 1, the resource stock grows, ṙ > 0. Eventually, the resource

stock reaches some level r̂ for which the costs of non-exploitation equal personal and social

sanctions when no individual exploits, s(1, 1) + p = c(r̂) ≤ c(1). Non-exploitation by all

individuals is no longer a behavioral equilibrium, 1 /∈ Ψ∗(r̂, 1). Society transits into the

behavioral equilibrium where all individuals exploit the resource, ψ∗ = 0. The resource

stock diminishes, ṙ < 0, until it reaches some level ř for which the costs of non-exploitation

equal personal and social sanctions when all individuals exploit, c(0) < c(ř) = s(1, 0) + p.

Full exploitation is no longer a behavioral equilibrium, 0 /∈ Ψ∗(ř, 1), and society transits into

the behavioral equilibrium where no individual exploits the resource, ψ∗ = 1. The above

process repeats.

Figure 6 presents a graphical illustration of such a limit cycle in the case of personal

sanctions exceeding differences in social sanctions for all and no individuals exploiting the

resource, s(1, 1) − s(0, 1) < p. Figures 6a and 6b depict norm and resource evolution at

each behavioral equilibrium ψ∗ ∈ {0, 1}. Figure 6c depicts the whole dynamic system in a

three-dimensional graph.

We can rephrase Proposition 6.5 to state that the limit cycle exists only if material

costs of non-exploitation are more responsive to extreme changes in the resource stock than

social sanctions are to extreme changes in behavior, s(1, 1) − s(1, 0) < c(1) − c(0). Another

interesting observation is that the limit cycle can only exist if the boundary equilibrium

point of Proposition 6.1 does not exist and vice versa.

Proposition 6.6 (Asymptotic stability of a boundary limit cycle). For any specification of

the model:

1. If γ + κs(1, 1) > s(1, 1) + p, then any cl(ΩBLC) of Proposition 6.5 is asymptotically

stable, provided it exists.

2. If γ > 0, then ∃p̄ > 0 s.t. (p < p̄ and cl(ΩBLC) of Proposition 6.5 exists) ⇒ cl(ΩBLC)

is asymptotically stable.

Proof: The Proposition follows from Lemmas A.5 and A.8 in Appendix A.
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Figure 6: Boundary limit cycle
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Proposition 6.6 above provides insights into when a boundary limit cycle of proposition

6.5 is asymptotic stable.11 Below, we discuss each condition of the proposition individually.

Condition 1 states that the boundary limit cycle is asymptotically stable if at the perfect

social norm ϕ = 1 and no exploitation ψ = 1, social sanctions on cultural fitness κs(1, 1) and

institutional pressure γ jointly exceed social and personal sanctions s(1, 1) + p. Hence, we

can infer from the condition that (a) the boundary limit cycle is asymptotically stable if the

weight of social sanctions on cultural fitness κ and institutional pressure γ are sufficiently

large and (b) lower personal sanctions p might positively affect asymptotic stability.

Reconsider figure 6 and recall that in the specific example, it is the case that s(1, 1) <

s(1, 0) + p. Hence, at any population profile ρ̃ = (r̃, ϕ̃, ψ̃) in a sufficiently close neighbor-

hood U of the limit cycle, society is either in the behavioral equilibrium of full or partial

exploitation, ψ̃∗ ∈ {0, ϕ̃}. When all individuals exploit the resource, ψ̃∗ = 0, the resource

stock diminishes, ˙̃r < 0. If a decrease in the resource stock renders full exploitation no longer

a behavioral equilibrium, society transits to the behavioral equilibrium of partial exploita-

tion. Similarly, at any population profile ρ̃ with equilibrium behavior of partial exploitation,

ψ̃∗ = ϕ̃, we experience an increase in the resource stock, ˙̃r > 0. When an increase in the

resource stock renders partial exploitation no longer a behavioral equilibrium, equilibrium

behavior transits. Hence, the cyclic tendencies of the dynamic system remain present in the

boundary limit cycle’s neighborhood.

The boundary limit cycle is asymptotically stable if the dynamic system approaches

it in these cyclic movements. When all individuals exploit the resource, cultural transmis-

sion solely derives from institutional pressure γ and, hence, the social norm unambiguously

strengthens. When equilibrium behavior corresponds to partial exploitation, the social norm

strengthens above the nullcline ϕϕ̇=0(r) and diminishes below it. Greater institutional pres-

sure γ and weight of social sanctions on cultural fitness κ lower the nullcline and, hence,

increase the area for which there is a move towards the boundary limit cycle, thereby favoring

asymptotic stability.

A decrease in personal sanctions p shifts the behavioral boundaries by moving the
11For ease of writing, we speak of asymptotic stability of the limit cycle, although technically, we consider

asymptotic stability of the minimal closed set that contains it.
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nullclines solving s(ϕ, 0) + p = c(r) and s(ϕ, ϕ) + p = c(r) to the left. Hence, the limit

cycle moves to the left, and society transits between behavioral equilibria at smaller resource

stocks. The nullcline ϕϕ̇=0(r), however, is unaffected by such changes. Moving the behavioral

boundaries to the left increases the area for which society is above the nullcline ϕϕ̇=0(r) at

any neighborhood of the limit cycle and, hence, experiences a strengthening of the social

norm — consequently, the decrease in personal sanctions p favors asymptotic stability.

Condition 2 of Proposition 6.6 adds to the insights on lower personal sanctions favoring

asymptotic stability of the limit cycle. It states that in the mere presence of institutional

pressure, γ > 0, sufficiently small personal sanctions p render the limit cycle asymptoti-

cally stable. The underlying intuition is that as we decrease personal sanctions p, the set

of points for which the dynamic system is in the behavioral equilibrium ψ∗ = ϕ decreases.

If the system exhibits this behavioral equilibrium less often, it more often exhibits a behav-

ioral equilibrium where institutional pressure γ alone determines cultural evolution. Hence,

institutional pressure becomes more effective in stabilizing the limit cycle. Consider, for

example, the limit case where personal sanctions are absent, p = 0. The limit cycle exists if

c(0) < s(1, 0) < s(1, 1) < c(1). In the neighborhood of the limit cycle, all individuals always

behave alike, ψ∗ ∈ {0, 1}, and cultural dynamics derive fully from institutional pressure,

ϕ̇ = ϕ(1 − ϕ)γ. The mere existence of institutional pressure, γ > 0, drives society back

to the perfect social norm ϕ = 1, thereby ensuring asymptotic stability of the limit cycle.

Note that in this limit case of p = 0, the limit cycle is asymptotically stable if and only if

institutional pressure exists.

Finally, we briefly discuss how changes in the costs of non-exploitation c(·) and social

sanctions s(·, ·) might affect asymptotic stability of a boundary limit cycle. The following

observation captures two opposing effects of such changes verbally, while Lemma A.13 in

Appendix A provides a more formal description.

Observation 6.1. The consequence of raising (lowering) material costs c(·) and lowering

(raising) social sanctions s(·, ·) for asymptotic stability of a boundary limit cycle of Proposi-

tion 6.5 is ambiguous. In particular, two opposing effects exist that affect cultural dynamics

in some neighborhood U of the limit cycle:
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1. The changes may have a positive (negative) effect on cultural dynamics ϕ̇ at some

population profiles ρ ∈ U by changing equilibrium behavior.

2. The changes may have a negative (positive) effect on cultural dynamics ϕ̇ at some

population profiles ρ ∈ U by decreasing (increasing) the cultural fitness of non-exploiting

norm holders.

First, similar to a decrease in personal sanctions p in Condition 1 of Proposition 6.2,

raising the costs c(·) or lowering social sanctions s(·, ·) may shift the boundaries of the be-

havioral equilibria and, hence, the whole limit cycle to the left in Figure 6. Suppose cultural

dynamics and, thus, the nullcine ϕϕ̇=0(r) were unaffected by these changes. Consequently,

by the same reasoning as for personal sanctions, the shifts of the behavioral boundaries

favor asymptotic stability of the boundary limit cycle. Second, and contrary to personal

sanctions, the described changes in c(·) and s(·, ·) also impact cultural evolution. The higher

c(·) and lower s(·, ·) affect differences in cultural fitness in the norm non-holders favor when-

ever behavior is in the partial exploitation equilibrium ψ∗ = ϕ, and thereby weakens norm

dynamics. The changes move the nullcline ϕϕ̇=0(r) to the left. This effect generally harms

asymptotic stability of the limit cycle. Whether the changes in c(·) and s(·, ·) are beneficial

for asymptotic stability depends on which of these two effects dominates, which is, in turn,

subject to the exact changes that occur.

In summary, the results of this section show that resource conservation through a bound-

ary limit cycle is possible if the costs of non-exploitation at the maximum resource stock c(1)

are too high for a boundary equilibrium point of Proposition 6.1 to exist, s(1, 1) + p ≤ c(1),

but relatively responsive to changes in the resource stock as compared to social sanctions for

behavioral non-conformity, s(1, 1)−s(1, 0) < c(1)−c(0). Although larger personal sanctions

p may aid the existence of a limit cycle (by ensuring that full exploitation is not a behavioral

equilibrium as society approaches the point of no return r = 0), smaller personal sanctions

p favor asymptotic stability of an existing one. This adverse effect of personal sanctions

on asymptotic stability becomes even more prominent when observing that institutional

pressure γ is especially effective in stabilizing the limit cycle when personal sanctions are

low. Social sanctions s(·, ·) and material costs c(·) play similar ambiguous roles. Changes in

29



7 DISCUSSION

these factors shift the boundaries of behavioral equilibria and alter cultural dynamics at the

behavioral equilibrium of partial exploitation. Finally, greater institutional pressure γ and

weight of cultural fitness κ generally positively affect asymptotic stability.

7 Discussion

Our analysis suggests that if the costs of non-exploitation at the maximum resource stock

are small, c(1) < s(1, 1), society can conserve the CPR through an asymptotically stable

boundary equilibrium point with minimal levels of institutional pressure, γ > 0. For in-

termediate costs of non-exploitation, s(1, 1) ≤ c(1) < s(1, 1) + p, society requires jointly

sufficiently large institutional pressure and weight of social sanctions on cultural fitness to

do so, κs(1, 1)+γ > c(1). However, contrary to the previous case, institutional pressure is no

longer necessary for asymptotic stability. If non-exploitation is very costly at the maximum

resource stock, s(1, 1) + p ≤ c(1), but relatively cheap as the resource approaches the point

of no return and behavioral conformity plays a relatively minor role in determining sanc-

tions for norm violation, c(0) < s(1, 0) + p, then society may conserve the CPR through an

asymptotically stable boundary limit cycle if the weight of social sanctions on cultural fitness

κ and institutional pressure γ are again sufficiently large. Alternatively, there may exist an

interior equilibrium point at social norm ϕ and resource stock r if only all norm holders

not exploiting the resource is a behavioral equilibrium, s(ϕ, ϕ) < c(r) < s(ϕ, ϕ) + p, and

institutional pressure and the weight of social sanctions on cultural fitness balance material

costs of non-exploitation, κs(ϕ, ϕ) +γ = c(r). Society is more likely to conserve the resource

through such an asymptotically stable interior equilibrium point if institutional pressure γ

plays a more significant role than the weight κ in balancing material costs c(r).

The discussion above indicates that, at times, institutional pressure γ and the weight of

social sanctions on cultural fitness κ constitute substitutes for securing the CPR. In contrast,

sometimes γ cannot be substituted by κ. In these latter cases, a (relatively) large κ either

does not affect cultural evolution (at the boundary equilibrium point if s(1, 1) > c(1)) or

harms asymptotic stability (at the interior equilibrium point).

Moreover, our results suggest that the substitutability for upholding a perfect social

30



7 DISCUSSION

norm ϕ = 1 weakens if personal sanctions p are relatively unimportant in the sense that

either social sanctions s(ϕ, ψ) suffice to motivate non-exploitative behavior (at the boundary

equilibrium point) or personal sanctions p are small (at the boundary limit cycle and in

general). In these instances, institutional pressure is especially effective in promoting norm

adoption. Moreover, the weight of social sanctions on cultural fitness becomes less effective:

If personal sanctions play a subordinate role, norm holders and non-holders behave alike,

in which case no difference in social sanctions that could affect cultural evolution exists.

Hence, our findings suggest that, in these instances, policies that foster norm adoption

through institutions prove especially effective and may, therefore, be desirable.

Despite the above discussion, there also exist instances for which too much institutional

pressure γ might be non-favorable in terms of resource conservation, as it may hinder the

existence of an interior equilibrium point (e.g., if γ > p + s(1, 1)). If material costs at the

maximum resource stock are too large for a boundary equilibrium point to exist, s(1, 1) +

p < c(1), and the descriptive social norm plays a relatively large role in determining total

sanctions for exploitation, so that a boundary limit cycle does also not exist, s(1, 0)+p < c(0),

then society could benefit from sufficiently low levels of institutional pressure that enable

an interior equilibrium point. This line of argument easily extends to the weight of social

sanctions on cultural fitness κ.

Beyond institutional pressure γ and the weight of social sanctions on cultural fitness

κ, we can draw conclusions regarding the further variables. We have already touched upon

personal sanctions p, for which small values may favor asymptotic stability of a boundary

limit cycle. However, larger values of p increase the non-exploitation incentives of norm

holders, which, in turn, favors the existence of such a limit cycle as well as that of boundary

and interior equilibrium points. Hence, personal sanctions play a somewhat ambiguous role.

The ambiguity arises because, although an increase in personal sanctions favors norm holders

refraining from exploitation, it also does so if this behavior is sub-optimal from a cultural

fitness perspective, potentially harming the persistence of the social norm.

We can accredit a similar ambiguous role to social sanctions s(·, ·) and material costs

of non-exploitation c(·). Larger social sanctions s(·, ·) and smaller material costs c(·) gen-

erally favor the existence of a boundary equilibrium point or limit cycle as they correspond
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to greater incentives to refrain from exploitation. However, for an existing boundary equi-

librium, the magnitudes of these variables have an ambiguous effect on stability. For the

boundary equilibrium point, for example, high social sanctions s(·, ·) and low material costs

c(·) are favorable in the presence of institutional pressure and potentially non-favorable in its

absence. Similar to personal sanctions, the adverse effects arise due to shifts in equilibrium

behavior that are sub-optimal in terms of cultural dynamics.

These insights highlight the complexity of the dynamic system and the importance

of understanding norms in a dynamic context, accounting for the interplay of behavioral

incentives and cultural dynamics. For example, when designing and implementing policies

targeting behavioral incentives, these policies must account for potentially adverse effects on

norms.

Our findings also suggest that a strong sensitivity of material costs to variations in the

resource stock is favorable for securing the CPR. The existence of a boundary limit cycle is

contingent upon the material costs being responsive to extreme changes in the resource stock,

and an existing interior equilibrium point is asymptotically stable when marginal changes

in the resource stock induce a significant alteration in material costs. In both cases, highly

responsive material costs induce a decrease in the resource stock to be met by a significant

decrease in exploitation, either directly through all individuals changing their behavior when

exploiting is no longer worth it (at the boundary limit cycle) or indirectly through individ-

uals adopting a new personal norm and adapting their behavior in response (at the interior

equilibrium point). Similarly, weakly responsive social sanctions favor resource conservation

through an interior equilibrium point or boundary limit cycle. This holds since weak re-

sponsiveness ensures that even after a decrease in the social and descriptive norms, social

sanctions still significantly impact behavioral incentives (at the boundary equilibrium limit

cycle) and cultural evolution (at the interior equilibrium point).

Finally, note that, in addition to the exploratory insights that the analysis provides,

the equilibrium findings are compatible with several real-world observations: (1) The in-

terior point aligns with heterogeneous behavior and moral perceptions regarding resource

conservation across individuals (see, e.g., Kotchen and Moore, 2008; Sundt and Rehdanz,

2015), (2) the multitude of socio-ecological equilibria matches the variety of outcomes in
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different (but possibly structurally similar) situations and societies (see, e.g., Minton et al.,

2018; Dannenberg et al., 2024), and (3) the boundary limit cycle is consistent with the

conservation of resources in constantly evolving systems through resource-stock-responsive

adaptions (see, e.g., Folke et al., 2002; Olsson et al., 2004). These alignments suggest that

the model provides some theoretical rationales for the observed phenomena and, to some

extent, contributes to a better understanding of them.

8 Concluding remarks

This paper introduces and studies an evolutionary model that endogenizes the formation

of behavior, personal, social, and descriptive norms, and the resource stock. We find that,

under certain conditions, society can secure a positive resource stock through (a) an asymp-

totically stable equilibrium point where the social and descriptive norms align, and personal

norms and behavior are either homogeneous or heterogeneous across individuals or (b) an

asymptotically stable limit cycle in which personal and social norms remain constant, but

herding causes alternating descriptive norms and a fluctuating resource stock. These results

are consistent with real-world observations (e.g., heterogeneous behavior and moral percep-

tions across individuals, varying outcomes across situations and societies, time-varying norms

and resource stocks), which suggests that the model provides some theoretical rationales.

The analysis highlights the importance of institutional pressure and the weight of social

sanctions on cultural fitness for upholding the social norm and, consequently, conserving

the CPR. In some cases, these two factors function as substitutes, whereas, in other cases,

institutional pressure cannot be substituted. In the latter cases, the active promotion of

norm adoption by institutions becomes particularly effective in upholding the social norm

and is thus likely to be desirable.

Additionally, behavioral incentives to avoid exploitation must be in place to secure the

resource. However, we find that overly large incentives can interfere with cultural dynamics,

leading to adverse outcomes that harm resource conservation in the long run. These ad-

verse effects have significant policy implications, highlighting the importance of well-tailored

policies that account for the complex dynamics at play.
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Future research may complement this paper by expanding on the equilibrium analyses

and discussing how a society can transition from one equilibrium point to a socially preferred

one. Such analyses would require, among others, social welfare comparisons of the different

socio-ecological equilibria. Closely related, further research could analyze how different poli-

cies perform when accounting for the complex dynamic interactions of behavior, norms, and

resources. Lastly, the analysis should be expanded to account for other mechanisms influ-

encing norm evolution (e.g., cognitive dissonance, normative conformity concerns, network

effects) to draw a more complete picture of the dynamic system.
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A PROOFS

A Proofs

This section presents the formal analysis. The variables r(ρ, t), ϕ(ρ, t), and ψ∗(ρ, t) represent

solution values as described by ξ(ρ, t). We denote their respective (right-hand) time deriva-

tives as ṙ(ρ, t), ϕ̇(ρ, t), and ψ̇∗(ρ, t). In line with the main text of the paper, we often use

abbreviated notation for simplicity (e.g., ϕ̇). Throughout the analysis, we use the Chebyshev

distance as the metric on [0, 1]3.

Lemma A.1.

1. If ψ∗(ρ, t0) = ϕ(ρ, t0) ∈ (0, 1), then (a) ψ∗(ρ, t0) is right-continuous, and if t̄ := inf{t >

t0 : ψ∗(ρ, t0) ̸= ϕ(ρ, t0)} exists, then (b) t̄ = min{t > t0 : ψ∗(ρ, t0) ̸= ϕ(ρ, t0)}.

2. If ψ∗(ρ, t0) = a ∈ {0, 1}, then (a) ψ∗(ρ, t0) is right-continuous, and if t̄ := inf{t > t0 :

ψ∗(ρ, t0) ̸= ϕ(ρ, t0)} exists, then (b) t̄ = min{t > t0 : ψ∗(ρ, t0) ̸= a}.

Proof. We start with the first condition. Suppose ψ∗(ρ, t0) = ϕ(ρ, t0) ∈ (0, 1).

ϕ(ρ, t0) ∈ (0, 1) and the asymptotic nature of ϕ̇(ρ, t) as ϕ(ρ, t0) approaches 0 or 1

imply ϕ(ρ, t) ∈ (0, 1) ∀t ≥ t0. ψ∗(ρ, t0) = ϕ(ρ, t0) ∈ (0, 1) ⇒ s(ϕ(ρ, t0), ϕ(ρ, t0)) <

c(r(ρ, t0)) < s(ϕ(ρ, t0), ϕ(ρ, t0)) + p. Continuity of r(ρ, t0) and ϕ(ρ, t0) imply ∃ϵ > 0 s.t.

s(ϕ(ρ, t), ϕ(ρ, t)) < c(r(ρ, t)) < s(ϕ(ρ, t), ϕ(ρ, t)) + p ∀t ∈ [t0, t0 + ϵ). s(ϕ(ρ, t), ϕ(ρ, t)) <

c(r(ρ, t)) < s(ϕ(ρ, t), ϕ(ρ, t))+p ∀t ∈ [t0, t0+ϵ) ⇒ ϕ(ρ, t) ∈ Ψ∗(r(ρ, t), ϕ(ρ, t)) ∀t ∈ [t0, t0+ϵ).

(ψ∗(ρ, t0) = ϕ(ρ, t0) ∧ ϕ(ρ, t) ∈ Ψ∗(r(ρ, t), ϕ(ρ, t)) ∀t ∈ [t0, t0 + ϵ)) ⇒ ψ∗(ρ, t) = ϕ(ρ, t) ∀t ∈

[t0, t0 + ϵ). Since ϕ(ρ, t) is continuous, ψ∗(ρ, t) is right-continuous at t0.

Suppose ∃t > t0 s.t. ψ∗(ρ, t) ̸= ϕ(ρ, t). ∃t > t0 s.t. ψ∗(ρ, t) ̸= ϕ(ρ, t) ⇒ ∃t > t0 s.t.

ϕ(ρ, t) /∈ Ψ∗(r(ρ, t), ϕ(ρ, t)) ⇒ ∃t > t0 s.t. s(ϕ(ρ, t), ϕ(ρ, t)) ≥ c(r(ρ, t)) ∨ s(ϕ(ρ, t), ϕ(ρ, t)) +

p ≤ c(r(ρ, t)). Let t̄ := min{t > t0 : s(ϕ(ρ, t), ϕ(ρ, t)) = c(r(ρ, t)) ∨ s(ϕ(ρ, t), ϕ(ρ, t)) +

p = c(r(ρ, t))}, which must exist by continuity. Note that s(ϕ(ρ, t), ϕ(ρ, t)) < c(r(ρ, t)) <

s(ϕ(ρ, t), ϕ(ρ, t)) + p ∀t ∈ [t0, t̄) and ψ∗(ρ, t̄) ̸= ϕ(ρ, t̄). s(ϕ(ρ, t), ϕ(ρ, t)) < c(r(ρ, t)) <

s(ϕ(ρ, t), ϕ(ρ, t)) + p ∀t ∈ [t0, t̄) ⇒ ϕ(ρ, t) ∈ Ψ∗(r(ρ, t), ϕ(ρ, t)) ∀t ∈ [t0, t̄). (ψ∗(ρ, t0) =

ϕ(ρ, t0) ∧ ϕ(ρ, t) ∈ Ψ∗(r(ρ, t), ϕ(ρ, t)) ∀t ∈ [t0, t̄)) ⇒ ψ∗(ρ, t) = ϕ(ρ, t) ∀t ∈ [t0, t̄) ⇒ t̄ =

min{t > t0 : ψ∗(ρ, t) ̸= ϕ(ρ, t)}.
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We continue with Condition 2. For the case where ψ∗(ρ, t0) = a ∈ {0, 1}, we need

to differentiate whether (a) ϕ(ρ, t0) ∈ (0, 1) or (b) ϕ(ρ, t0) ∈ {0, 1}. (a): In the former,

ϕ(ρ, t) ∈ (0, 1) ∀t ≥ 0 by similar reasoning as above. For ψ∗(ρ, t0) = 1 we can proceed

analogously to the above to show that ψ(ρ, t) is right-continuous at t0, and if t̄ exists,

t̄ = min{t > t0 : ψ(ρ, t0) ̸= 1} = min{t > t0 : s(ϕ(ρ, t), 1) = c(r(ρ, t))}. For ψ∗(ρ, t0) = 0 we

can proceed analogously to the above to show that ψ(ρ, t) is right-continuous at t0, and if t̄

exists, t̄ = min{t > t0 : ψ(ρ, t0) ̸= 0} = min{t > t0 : s(ϕ(ρ, t), 0) + p = c(r(ρ, t))}. (b): In

the latter, ϕ(ρ, t0) = b ∈ {0, 1}. ϕ(ρ, t0) = b ∈ {0, 1} ⇒ ϕ̇(ρ, t0) = 0 ⇒ ϕ(ρ, t0) = b ∀t ≥ t0.

For ϕ(ρ, t0) = 1 and ψ∗(ρ, t0) = a ∈ {0, 1} we can proceed analogously to the above to

show that ψ(ρ, t) is right-continuous at t0, and if t̄ exists, t̄ = min{t > t0 : ψ(ρ, t0) ̸= 1} =

min{t > t0 : s(1, a) + p = c(r(ρ, t))}. For ϕ(ρ, t0) = 0 and ψ∗(ρ, t0) = a ∈ {0, 1} we can

proceed analogously to the above to show that ψ(ρ, t) is right-continuous at t0, and if t̄ exists,

t̄ = min{t > t0 : ψ(ρ, t0) ̸= 0} = min{t > t0 : s(0, a) = c(r(ρ, t))}.

Lemma A.2. Consider any ρ = (r, ϕ, ψ) s.t. ξ(ρ, t) = ρ ∀t ≥ 0 and there is a neighborhood

U of ρ s.t. (a) ψ∗(ρ̂, 0) = 1 ∀ρ̂ = (r̂, ϕ̂, ψ̂) ∈ U or (b) ψ∗(ρ̂, 0) = ϕ̂ ∀ρ̂ = (r̂, ϕ̂, ψ̂) ∈ U .

• If (a) holds, then asymptotic stability of ρ in the reduced dynamic system consisting of

(1) ṙr(ρ, t) = δ(rr(ρ, t)) − e(1), (2) ϕ̇r(ρ, t) = ϕr(ρ, t)(1 −ϕr(ρ, t))vγ and (3) ψ∗
r(ρ, t) =

1 ∀t ≥ 0 implies asymptotic stability of ρ in the original (non-reduced) dynamic system.

• If (b) holds, then asymptotic stability of ρ in the reduced dynamic system consisting of

(1) ṙr(ρ, t) = δ(rr(ρ, t))−e(ϕ), (2) ϕ̇r(ρ, t) = ϕr(ρ, t)(1−ϕr(ρ, t))v(κs(ϕ, ϕ)+γ−c(r)),

and (3) ψ∗
r(ρ, t) = ϕr(ρ, t) ∀t ≥ 0 implies asymptotic stability of ρ in the original

(non-reduced) dynamic system.

Proof. Consider ρ̌ = (ř, ϕ̌, ψ̌) s.t. ξ(ρ̌, t) = ρ̌ ∀t ≥ 0 and suppose (a) holds. Consider any

U of ρ̌. Let Z ⊂ U be s.t. ψ∗(ρ̂, 0) = 1 ∀ρ̂ = (r̂, ϕ̂, ψ̂) ∈ Z. Let ξr(ρ, t) be the solution

of the reduced dynamic system, described by rr(ρ̂, t), ϕr(ρ̂, t), and ψ∗
r(ρ, t) = 1 ∀t ≥ 0.

Suppose ρ̌ is asymptotically stable in the reduced dynamic system. Let Ũ ⊂ Z be s.t. for

all ρ̂ ∈ Ũ , ξr(ρ̂, t) ∈ Z ⊂ U ∀t ≥ 0 and limt→∞ ξr(ρ̂, t) = ρ̌. Consider any ρ̂ = (r̂, ϕ̂, ψ̂) ∈

Ũ . For the original (non-reduced) dynamic system, ξ(ρ̂, 0) = (r̂, ϕ̂, 1). For all t̃ > 0 s.t.

ψ∗(ρ̂, t) = 1 ∀t ∈ [0, t̃], ξ(ρ̂, t) = ξr(ρ̂, t) ∀t ∈ [0, t̃] as both solutions are described by the
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same system of equations on this interval (and no discontinuities occur). ξr(ρ̂, t) ∈ Z ∀t ≥

0 ⇒ s(ϕr(ρ̂, t), 1) > c(rr(ρ, t)) ∀t ≥ 0 ⇒ ∄t̃ > 0 s.t. 1 /∈ Ψ∗(limt→t̃ rr(ρ̂, t), limt→t̃ ϕr(ρ̂, t̃)) =

Ψ∗(limt→t̃ r(ρ̂, t), limt→t̃ ϕ(ρ̂, t̃)) ⇒ ψ∗(ρ̂, t) = 1 ∀t ≥ 0 ⇒ ξ(ρ̂, t) = ξr(ρ̂, t) ∀t ≥ 0 ⇒

(ξ(ρ̂, t) ∈ Z ⊂ U ∀t ≥ 0 ∧ limt→∞ ξ(ρ̂, t) = ρ̌). Since U and ρ̂ ∈ Ũ were chosen arbitrarily,

ρ̌ is asymptotically stable in the original (non-reduced) dynamic system. The proof of the

second condition works analogously, so we refrain from writing it out.

Proof of Proposition 6.1

Proof. (r, ϕ, ψ) = (1, 1, 1) is a rest point if ξ((1, 1, 1), 0) = (1, 1, 1), ψ̇∗ = 0,

ϕ̇ = 0, and ṙ = 0. (s(1, 1) + p > c(1) ∧ ϕ = 1) ⇒ 1 ∈ Ψ∗(1, 1). (1 ∈

Ψ∗(1, 1) ∧ Condition 1 of Assumption 5.2) ⇒ ξ((1, 1, 1), 0) = (1, 1, 1), ϕ = 1 ⇒ ϕ̇ = 0,

(ψ̇∗ ∈ {0, ϕ̇} ∧ ϕ̇ = 0) ⇒ ψ̇∗ = 0, and (ψ∗ = 1 ∧ r = 1) ⇒ ṙ = 0.

Proof of Lemma 6.1

Proof. Suppose s(1, 1) ≤ c(1) < min{s(1, 1) + p, κs(1, 1) + γ}. Consider any neighborhood

U of (1, 1, 1) with distance ϵ > 0: U := [1 − ϵ]3. Let ϵ̃ψ ∈ (0, ϵ) be s.t. ∀ρ ∈ [1 − ϵ̃ψ]3,

s(ϕ, ψ) + p > c(1). Such ϵ̃ψ exists since s(1, 1) + p > c(1) and s(·, ·) is continuous. Let

ϵ̃ϕ ∈ (0, ϵ̃ψ) be s.t. ∀x ∈ [1 − ϵ̃ϕ, 1], (a) κs(x, x) + γ > c(1) and (b) e(x) < maxr∈[0,1] δ(r).

Such ϵ̃ϕ exists since κs(1, 1) + γ > c(1), e(1) = 0 < δ(y) ∀y ∈ (0, 1), and all involved

functions are continuous. Let ϵ̃r > 0 be s.t. e(1 − ϵ̃ϕ) < δ(1 − ϵ̃r). Such ϵ̃r exists since

e(1 − ϵ̃ϕ) < maxr[0,1] δ(r). Since e(·) is strictly decreasing, e(x) < δ(1 − ϵ̃r) ∀x ∈ [1 − ϵ̃ϕ, 1].

Let Z := [1 − ϵ̃r] × [1 − ϵ̃ϕ]2. Throughout the following analysis, we consider a neighborhood

Ũ ⊂ Z of (1, 1, 1) and ρ = (r, ϕ, ψ) ∈ Ũ . Note that for any t ≥ 0, (ψ∗(ρ, t) = ϕ(ρ, t)∧ϕ(ρ, t) ∈

[1 − ϵ̃ϕ, 1)) ⇒ κs(ϕ(ρ, t), ϕ(ρ, t)) + γ > c(1) ≥ c(r(ρ, t)) ⇒ ϕ̇(ρ, t) > 0.

Lyapunov stability: We continue to show that ξ(ρ, t) ∈ Z ⊂ U ∀t ≥ 0. First, we establish

that ϕ(ρ, t) ≥ 1 − ϵ̃ϕ ∀t ≥ 0. Suppose by contradiction this was not the case: ∃ť ≥ 0

s.t. ϕ(ρ, ť) < 1 − ϵ̃ϕ. By continuity of ϕ(ρ, t) w.r.t. t, ∃t̂ < ť s.t. (a) ϕ(ρ, t̂) = 1 − ϵ̃ϕ

and (b) ϕ(ρ, t) < 1 − ϵ̃ϕ ∀t ∈ (t̂, ť). ϕ̇(ρ, t̂) ≥ 0, since ψ∗(ρ, t̂) ∈ {0, 1} ⇒ ϕ̇(ρ, t̂) ≥ 0 and

(ψ∗(ρ, t̂) = ϕ(ρ, t̂) ∧ ϕ(ρ, t̂) = 1 − ϵ̃ϕ) ⇒ ϕ̇(ρ, t̂) > 0. ϕ̇(ρ, t̂) ≥ 0 ⇒ ∃h > 0 s.t. ϕ(ρ, t) ≥

ϕ(ρ, t̂) = 1 − ϵ̃ϕ ∀t ∈ (t̂, t̂+ h), which is a contradiction. Hence, ϕ(ρ, t) ≥ 1 − ϵ̃ϕ ∀t ≥ 0.
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Second, we show ψ∗(ρ, t) ≥ 1 − ϵ̃ϕ ∀t ≥ 0. Suppose by contradiction that ∃ť > 0 s.t.

ψ∗(ρ, ť) < 1−ϵ̃ϕ. (ψ∗(ρ, ť) < 1−ϵ̃ϕ∧ψ∗(ρ, ť) ∈ {0, ϕ(ρ, ť), 1}∧ϕ(ρ, ť) ≥ 1−ϵ̃ϕ) ⇒ ψ∗(ρ, ť) = 0.

Let t̄ := min{t ≥ 0 : ψ∗(ρ, t) = 0}. ρ ∈ Ũ ⇒ (s(ϕ, ϕ) + p > c(r) ∧ s(ϕ, ψ) + p > c(r)).

Lemma A.3. ∀ρ = (r, ϕ, ψ), (s(ϕ, ϕ) + p > c(r) ∧ s(ϕ, ψ) + p > c(r)) ⇒ ψ∗(ρ, 0) ̸= 0.

Proof. First, suppose s(ϕ, ϕ) < c(r). Hence, ϕ ∈ Ψ∗(r, ϕ). If ψ ≥ ϕ, then Condition 2 of

Assumption 5.2 implies ψ∗(ρ, 0) ̸= 0. If ψ < ϕ, then (ψ < ϕ∧s(ϕ, ψ)+p > c(r)) ⇒ ∃ϵ >

0 s.t. s(ϕ, x)+p > c(r) ∀x ∈ (ψ−ϵ, ϕ)∩[0, 1] ⇒ ψ∗(ρ, 0) = ϕ, where the last implication

follows from Condition 1 of Assumption 5.2. Second, suppose s(ϕ, ϕ) ≥ c(r). If ϕ = 1,

then ϕ ∈ Ψ∗(r, ϕ) and ψ∗(ρ, 0) ̸= 0 by analogous reasoning to the above. If ϕ < 1, then

s(ϕ, ϕ) ≥ c(r) ⇒ s(ϕ, 1) > c(r) ⇒ 1 ∈ Ψ∗(r, ϕ). (s(ϕ, ψ) + p > c(r) ∧ s(ϕ, ϕ) ≥ c(r) ∧

s(ϕ, 1) > c(r)) ⇒ ∃ϵ > 0 s.t. s(ϕ, x)+p1≤ϕ > c(r) ∀x ∈ (ψ−ϵ, 1)∩[0, 1] ⇒ ψ∗(ρ, 0) = 1,

where the last implication follows from Condition 1 of Assumption 5.2.

(s(ϕ, ψ) + p > c(r) ∧ s(ϕ, ϕ) + p > c(r)) ⇒ ψ∗(ρ, 0) ̸= 0 ⇒ t̄ ̸= 0. ψ∗(ρ, t) ̸=

0 ∀t < t̄ ⇒ ψ∗(ρ, t) ≥ ϕ(ρ, t) ≥ 1 − ϵ̃ϕ ∀t < t̄ ⇒ s(limt→t̄− ϕ(ρ, t), limt→t̄− ψ
∗(ρ, t)) ≥

s(limt→t̄− ϕ(ρ, t), limt→t̄− ϕ(ρ, t)) + p ≥ s(1 − ϵ̃ϕ, 1 − ϵ̃ϕ) + p > c(1) ≥ c(limt→t̄− r(ρ, t)) ⇒

s(limt→t̄− ϕ(ρ, t), limt→t̄− ψ
∗(ρ, t)) + p ≥ s(limt→t̄− ϕ(ρ, t), limt→t̄− ϕ(ρ, t)) + p >

c(limt→t̄− r(ρ, t)) ⇒ ψ∗(ρ, t̄) ̸= 0 (by analogous reasoning as Lemma A.3). We have reached

a contradiction. Hence, ψ∗(ρ, t) ≥ 1 − ϵ̃ϕ ∀t ≥ 0.

Third, we show r(ρ, t) ≥ 1 − ϵ̃r ∀t ≥ 0. Suppose by contradiction this was not the case:

∃ť > 0 s.t r(ρ, ť) < 1 − ϵ̃r. Since r(ρ, t) is continuous w.r.t t, ∃t̂ ∈ (0, ť) s.t. r(ρ, t̂) = 1 − ϵ̃r

and r(ρ, t) < 1 − ϵ̃r ∀t ∈ (t̂, ť). ψ∗(ρ, t̂) ≥ 1 − ϵ̃ϕ ⇒ ṙ(ρ, t̂) > 0 ⇒ ∃h > 0 s.t. r(ρ, t) ≥

r(ρ, t̂) = 1 − ϵ̃ϕ ∀t ∈ (t̂, t̂ + h), which is a contradiction. Hence, r(ρ, t) ≥ 1 − ϵ̃r ∀t ≥ 0.

Combining the above yields that ξ(ρ, t) ∈ Z ⊂ U ∀t ≥ 0. Since U and ρ ∈ Ũ were arbitrarily

chosen, (1, 1, 1) is Lyapunov stable.

Convergence: Next, we show that limt→∞ ξ(ρ, t) = (1, 1, 1). First, we show that

limt→∞ ϕ(ρ, t) = 1. Note that ξ(ρ, t) ∈ Z ⊂ U ∀t ≥ 0 ⇒ ϕ̇(ρ, t) ≥ 0 ∀t ≥ 0 ⇒ limt→∞ ϕ(ρ, t)

exists. Before proceeding, we establish the following lemma.

Lemma A.4. ∀t ≥ 0, ϕ(ρ, t) < 1 ⇒ ∃ť ≥ t s.t. ϕ̇(ρ, ť) > 0.
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Proof. Consider any t̂ ≥ 0 and suppose ϕ(ρ, t̂) < 1. Assume by contradiction that the

lemma does not hold. Thus, ϕ(ρ, t) = ϕ < 1 ∀t ≥ t̂. For all t ≥ t̂, (ψ∗(ρ, t) = ϕ(ρ, t) ⇒

ϕ̇(ρ, t) > 0) ⇒ ψ∗(ρ, t) ̸= ϕ(ρ, t) = ϕ ⇒ ψ∗(ρ, t) = 1 ⇒ ṙ(ρ, t) > 0. Let z be s.t.

s(ϕ, 1) = c(z) and note that z < 1 since s(ϕ, 1) < c(1) and c(·) is strictly increasing.

For all t ≥ t̂ s.t. r(ρ, t) < z, ṙ(ρ, t) > bl > 0, where bl = miny∈[1−ϵ̃r,z] δ(y) > 0. Since

ṙ(ρ, t) is bounded below by a positive number if r(ρ, t) < z, ∃t̄ ≥ t̂ s.t. r(ρ, t̄) ≥ z.

r(ρ, t̄) ≥ z ⇒ s(ϕ, 1) ≤ c(r(ρ, t̄)) ⇒ ψ∗(ρ, t̄) ̸= 1 ⇒ ψ∗(ρ, t̄) ∈ {0, ϕ}, which is a

contradiction.

Suppose by contradiction that limt→∞ ϕ(ρ, t) = x for some x < 1. ϕ̇(ρ, t) ≥ 0 ∀t ≥

0 ⇒ ϕ(ρ, t) ∈ [ϕ, x] ∀t ≥ 0. limt→∞ ϕ(ρ, t) = x only if limt→∞ ϕ̇(ρ, t) = 0. However,

limt→∞ ϕ̇(ρ, t) ̸= 0, since Lemma A.4 holds and ϕ̇(ρ, t) has a strictly positive lower

bound bn > 0 for all t s.t. ϕ̇(ρ, t) > 0 and ϕ(ρ, t) ∈ [ϕ, x]. Particularly: If γ = 0, then

ϕ̇(ρ, t) > 0 ⇒ ψ∗(ρ, t) = ϕ(ρ, t). (ψ∗(ρ, t) = ϕ(ρ, t) ∧ϕ(ρ, t) ≥ 1 − ϵ̃ϕ) ⇒ κs(ϕ(ρ, t), ϕ(ρ, t)) >

c(1) ⇒ ϕ̇(ρ, t) = vϕ(ρ, t)(1 − ϕ(ρ, t))(κs(ϕ(ρ, t), ϕ(ρ, t)) − c(r(ρ, t))) > vϕ(ρ, t)(1 −

ϕ(ρ, t))(κs(ϕ(ρ, t), ϕ(ρ, t)) − c(1)) > 0 ⇒ bn = vminy∈[ϕ,x][y(1 − y)(κs(y, y) − c(1))] > 0.

If γ > 0, then ((ψ∗(ρ, t) = ϕ(ρ, t) ⇒ ϕ̇(ρ, t) > vϕ(ρ, t)(1 − ϕ(ρ, t))(κs(ϕ(ρ, t), ϕ(ρ, t)) +

γ − c(1)) > 0) ∧ (ψ∗(ρ, t) ∈ {0, 1} ⇒ ϕ̇(ρ, t) > vϕ(ρ, t)(1 − ϕ(ρ, t))γ > 0)) ⇒

bn = vmin{miny∈[ϕ,x][y(1 − y)(γ + κs(y, y) − c(1))],miny∈[ϕ,x][y(1 − y)γ]} > 0.

Hence, limt→∞ ϕ(ρ, t) ̸= x for x < 1, implying that limt→∞ ϕ(ρ, t) = 1. Note that

(limt→∞ ϕ(ρ, t) = 1 ∧ ψ∗(ρ, t) ∈ {ϕ(ρ, t), 1} ∀t ≥ 0) ⇒ limt→∞ ψ∗(ρ, t) = 1.

It remains for us to argue that the solution also converges to (1, 1, 1) on the r-dimension:

limt→∞ r(ρ, t) = 1. This holds if ∀α > 0 ∃t̄ > 0 s.t. t > t̄ ⇒ 1 − α < r(ρ, t). Consider

any arbitrary α > 0. Let λr ∈ (0,min{α, ϵ̃r}). Let λϕ > 0 be s.t. δ(y) > e(1 − λϕ)∀y ∈

[1 − ϵ̃r, 1 − λr]. Such λϕ exists since δ(y) > 0 ∀y ∈ [1 − ϵ̃r, 1 − λr], e(1) = 0, and e(·) is

continuous. Let t̂ > 0 be s.t. ϕ(ρ, t) > 1 − λϕ ∀t > t̂. Such t̂ exists since limt→∞ ϕ(ρ, t) = 1.

(ψ∗(ρ, t) ∈ {ϕ(ρ, t), 1} ∧ r(ρ, t) ≤ 1 − λr) ⇒ ṙ(ρ, t) > miny∈[1−ϵ̃r,1−λr] δ(y) − e(1 − λϕ) > 0.

ṙ(ρ, t) is bounded below by a positive number if r(ρ, t) ≤ 1 − λr and t > t̂. Hence, ∃t̄ ≥ t̂

s.t. r(ρ, t̄) ≥ 1 − λr. Moreover, for any t̄ ≥ t̂ s.t. r(ρ, t̄) ≥ 1 − λr, continuity of r(ρ, t)

and (∀t ≥ t̄ ≥ t̂, r(ρ, t) = 1 − λr ⇒ ṙ(ρ, t) > 0) imply ∄t > t̄ s.t. r(ρ, t) < 1 − λr.

Thus, r(ρ, t) ≥ 1 − λr > 1 − α ∀t > t̄, which proves limt→∞ r(ρ, t) = 1. Consequently,
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limt→∞ ξ(ρ, t) = (1, 1, 1), which, coupled with Lyapunov stability, proves that (1, 1, 1) is

asymptotically stable.

Proof of Lemma 6.2

Proof. Suppose s(1, 1) > c(1). Note that s(1, 1) > c(1) implies (1, 1, 1) is a socio-ecological

equilibrium of Proposition 6.1. Consider any neighborhood U of (1, 1, 1) s.t. s(ϕ, ψ) >

c(r) ∀ρ = (r, ϕ, ψ) ∈ U . Such U exists due to s(1, 1) > c(1) and continuity of all involved

functions. For all ρ = (r, ϕ, ψ) ∈ U , s(ϕ, ψ) > c(r) ⇒ ξ(ρ, 0) = (r, ϕ, 1) (by Condition 1 of

Assumption 5.2).

Only if: Suppose γ = 0 and consider some ρ = (1, ϕ, 1) ∈ U \ {(1, 1, 1)}. s(ϕ, ψ) > c(r) ⇒

ξ(ρ, 0) = (1, ϕ, 1) ⇒ (ψ∗ = 1 ∧ ψ̇∗ = 0). (r = 1 ∧ ψ∗ = 1) ⇒ ṙ = 0. (γ = 0 ∧ ψ∗ = 1) ⇒ ϕ̇ =

vϕ(1 − ϕ)γ = 0. Hence, the dynamic system remains at rest, and the solution ξ(ρ, t) does

not converge to (1, 1, 1).

If: Suppose γ > 0. Since ξ(ρ, 0) = (r, ϕ, 1) ∀ρ = (r, ϕ, ψ) ∈ U , we can restrict our attention to

the reduced dynamic system consisting of (1) ṙ = δ(r)−e(ϕ) and (2) ϕ̇ = vϕ(1−ϕ)(κs(ϕ, ϕ)+

γ − c(r)), while ψ∗ = 1 throughout (see Lemma A.2).

ψ∗ = 1 ⇒ ṙ ≥ 0. (ψ∗ = 1 ∧ r < 1) ⇒ ṙ > 0. Moreover, ϕ = 1 ⇒ ϕ̇ = 0 and

(ψ∗ = 1 ∧ ϕ < 1) ⇒ ϕ̇ = vϕ(1 − ϕ)γ > 0. Hence, ξ(ρ, t) moves towards (1, 1, 1) at any

ρ ∈ U \ {(1, 1, 1)}. Moreover, dynamics (1) and (2) above are continuous. It follows that

(1, 1, 1) is asymptotically stable in the reduced dynamic system and, hence, in the original

(non-reduced) one.

Proof of Proposition 6.3

Proof. (r, ϕ, ϕ) is a rest point if ξ((r, ϕ, ϕ), 0) = (r, ϕ, ϕ), ψ̇∗ = 0, ϕ̇ = 0, and ṙ = 0.

s(ϕ, ϕ) < c(r) < s(ϕ, ϕ) + p ⇒ ξ((r, ϕ, ϕ), 0) = (r, ϕ, ϕ) (by Condition 1 of Assumption 5.2),

ξ((r, ϕ, ϕ), 0) = (r, ϕ, ϕ) ⇒ ψ∗ = ϕ ⇒ ψ̇∗ = ϕ̇, (κs(ϕ, ϕ) + γ = c(r) ∧ ψ∗ = ϕ) ⇒ ϕ̇ = 0 = ψ̇∗,

and (δ(r) = e(ϕ) ∧ ψ∗ = ϕ) ⇒ ṙ = 0.

Proof of Proposition 6.4

VI



A PROOFS

Proof. Consider any (r, ϕ, ϕ) ∈ (0, 1]3 of Proposition 6.3. Consider some neighborhood U of

(r, ϕ, ϕ) s.t. for all ρ̂ = (r̂, ϕ̂, ψ̂) ∈ U , s(ϕ̂, ψ̂) < c(r̂) < s(ϕ̂, ψ̂) + p. Such U exists due to

the continuity of all involved functions. Hence, ξ(ρ̂, 0) = (r̂, ϕ̂, ϕ̂) ∀ρ̂ ∈ U . Since ξ(ρ̂, 0) =

(r̂, ϕ̂, ϕ̂) ∀ρ̂ ∈ U , we can restrict our attention to the reduced dynamic system consisting of

(1) ˙̂r = δ(r̂)−e(ϕ̂) and (2) ˙̂
ϕ = vϕ̂(1−ϕ̂)(κ s(ϕ, ϕ)+γ−c(r̂)) to analyze asymptotic stability of

(r, ϕ, ϕ) (recall Lemma A.2). Linearization of this reduced system around equilibrium point

(r, ϕ, ϕ) yields the Jacobian matrix J = ( δ′(r) −e′(ϕ)
−vϕ(1−ϕ)c′(r) vϕ(1−ϕ)κ (s′

ϕ(ϕ,ϕ)+s′
ψ(ϕ,ϕ)) ). We obtain

determinant det(J) = δ′(r)∗vϕ(1−ϕ)κ (s′
ϕ(ϕ, ϕ)+s′

ψ(ϕ, ϕ))−e′(ϕ)∗vϕ(1−ϕ)c′(r) and trace

tr(J) = δ′(r) + vϕ(1 − ϕ)κ (s′
ϕ(ϕ, ϕ) + s′

ψ(ϕ, ϕ)). The equilibrium point is asymptotically

stable if det(J) > 0 and tr(J) < 0, which is equivalent to δ′(r)
e′(ϕ∗) < c′(r)

κ (s′
ϕ

(ϕ,ϕ)+s′
ψ

(ϕ,ϕ)) and

vϕ(1 − ϕ)κ (s′
ϕ(ϕ, ϕ) + s′

ψ(ϕ, ϕ)) < −δ′(r). The conditions of Proposition 6.4 imply this

holds. It follows that (r, ϕ, ϕ) is asymptotically stable in the reduced dynamic system and,

hence, in the original (non-reduced) one, which proves the proposition.

Proof of Proposition 6.5

Proof. Suppose c(0) < s(1, 0) + p < s(1, 1) + p ≤ c(1) and let 0 < rmin < rmax ≤ 1

s.t. c(rmin) = s(1, 0) + p < s(1, 1) + p = c(rmax). First, consider any ρ = (r, ϕ, ψ) ∈

{(r, 1, 1)}rmin≤r<rmax . ϕ = 1 ⇒ ϕ̇ = 0. s(1, 1) + p > c(r) ⇒ ψ∗ = 1. (ψ∗ = 1 ∧ r < 1) ⇒

ṙ ≥ minx∈[rmin,rmax] δ(x) > 0. (ψ̇∗ ∈ {0, ϕ̇} ∧ ϕ̇ = 0) ⇒ ψ̇∗ = 0. Hence, ϕ̇ = 0, ψ̇∗ = 0, and

ṙ ≥ minx∈[rmin,rmax] δ(x) > 0. It follows that when starting at any ρ ∈ {(r, 1, 1)}rmin≤r<rmax ,

the dynamic system moves across {(r, 1, 1)}rmin≤r<rmax , with r moving towards rmax, while

ϕ = 1 and ψ∗ = 1 remain unaltered. Since ṙ is bounded below by a strictly positive

number, minx∈[rmin,rmax] δ(x) > 0, the system eventually reaches rmax. However, s(1, 1) +

p = c(rmax) ⇒ 1 /∈ Ψ∗(rmax, 1) ⇒ ξ((rmax, 1, 1), 0) ̸= (rmax, 1, 1). (ξ((rmax, 1, 1), 0) ̸=

(rmax, 1, 1) ∧ ϕ = 1) ⇒ ξ((rmax, 1, 1), 0) = (rmax, 1, 0). When the resource reaches rmax,

equilibrium behavior transits to ψ∗ = 0.

Second, consider any ρ = (r, ϕ, ψ) ∈ {(r, 1, 0)}rmin<r≤rmax . ϕ = 1 ⇒ ϕ̇ = 0. s(1, 0) + p <

c(r) ⇒ ψ∗ = 0, (ψ∗ = 0∧r > 0) ⇒ ṙ ≤ maxx∈[rmin,rmax] δ(x)−e(0) < 0, and (ψ̇∗ ∈ {0, ϕ̇}∧ϕ̇ =

0) ⇒ ψ̇∗ = 0. Hence, ϕ̇ = 0, ψ̇∗ = 0, and ṙ < maxx∈[rmin,rmax] δ(x)−e(0) < 0. Hence, starting

at any ρ ∈ {(r, 1, 0)}rmin<r≤rmax , the dynamic system moves across ρ ∈ {(r, 1, 0)}rmin<r≤rmax ,
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with r moving towards rmin, while ϕ = 1 and ψ∗ = 0 remain unaltered. Since ṙ is bounded

above by a strictly negative number, minx∈[rmin,rmax] δ(x) − e(0) < 0, the system eventually

reaches rmin. However, s(1, 0) + p = c(rmin) ⇒ 0 /∈ Ψ∗(rmin, 1) ⇒ ξ((rmin, 1, 0), 0) ̸=

(rmin, 1, 0). ξ((rmin, 1, 0), 0) ̸= (rmin, 1, 0) ⇒ ξ((rmin, 1, 0), 0) ∈ {(rmin, 1, ϕ), (rmin, 1, 1)}.

ϕ = 1 ⇒ ξ((rmin, 1, 0), 0) = (rmin, 1, 1). When the resource stock reaches rmin, equilibrium

behavior transits to ψ∗ = 1.

The above implies a cyclic movement across ΩBLC , which, in turn, implies that (a) for

all ρ ∈ ΩBLC and t ≥ 0, ξ(ρ, t) ∈ ΩBLC and (b) ∀ρ̂, ρ̌ ∈ ΩBLC , ∃t > 0 s.t. ξ(ρ̂, t) = ρ̌. (a)

and (b) jointly imply that cl(ΩBLC) is a socio-ecological equilibrium, and (a) implies the first

bullet point of Proposition 6.5.

Lemma A.5. Suppose cl(ΩBLC) of Proposition 6.5 exists. κs(1, 1) + γ > s(1, 1) + p ⇒

cl(ΩBLC) is asymptotically stable.

Proof. Assume γ + κs(1, 1) > s(1, 1) + p and ΩBLC of Proposition 6.5 exists. Let rmax and

rmin be the maximum and minimum resource levels of ΩBLC , respectively. Consider any

neighborhood U of cl(ΩBLC) with distance ϵ > 0. Let ϵ̃r ∈ (0, ϵ) be s.t. (1) 0 < rmin − ϵ̃r

and (2) c(y) ∈ (s(1, 1) + p, κs(1, 1) + γ) ∀y ∈ (rmax, rmax + ϵ̃r] ∩ [0, 1]. Such ϵ̃r exists due to

continuity of all involved functions as well as (1) rmin > 0 and (2) c(rmax) = s(1, 1) + p <

κs(1, 1) + γ. Let ϵ̃ϕ ∈ (0, ϵ) be s.t. for all x ∈ [1 − ϵ̃ϕ, 1], (1) e(x) < δ(z) ∀z ∈ [rmin −

ϵ̃r, rmin], (2) c(rmin − ϵ̃r) < p + s(x, 0), and (3) κs(x, x) + γ > s(x, x) + p > s(x, 1). Such

ϵ̃ϕ exists due to continuity of all involved functions and (1) e(1) < δ(r) ∀r ∈ (0, 1), (2)

c(rmin − ϵ̃r) < c(rmin) = p + s(1, 0), and (3) κs(1, 1) + γ > s(1, 1) + p > s(1, 1). Since

max{ϵ̃ϕ, ϵ̃r} < ϵ, Z := [rmin − ϵ̃r,min{rmax + ϵ̃r, 1}] × [1 − ϵ̃ϕ, 1] × ([0, ϵ̃ϕ] ∪ [1 − ϵ̃ϕ, 1]) ⊂ U .

Note, [rmin − ϵ̃r,min{rmax + ϵ̃r, 1}] = [rmin − ϵ̃r, rmax + ϵ̃r] ∩ [0, 1]. Throughout the following

analysis, we consider any neighborhood Ũ ⊂ Z of cl(ΩBLC) and ρ = (r, ϕ, ψ) ∈ Ũ . Before

proceeding, we establish results we use repeatedly at later stages of the proof.

Lemma A.6. ∀t > 0 s.t. ξ(ρ, t) ∈ Z: (a) ψ∗(ρ, t) = ϕ(ρ, t) < 1 ⇒ ϕ̇(ρ, t) > 0, (b)

ϕ̇(ρ, t) ≥ 0, (c) (ψ∗(ρ, t) ∈ {ϕ(ρ, t), 1} ∧ r(ρ, t) ∈ [rmin − ϵ̃r, rmin]) ⇒ ṙ(ρ, t) ≥ bl for

some bl > 0, and (d) ψ∗(ρ, t) = 0 ⇒ ṙ(ρ, t) ≤ bu for some bu < 0.
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Proof. Consider any ξ(ρ, t) ∈ Z. (a) follows from: ξ(ρ, t) ∈ Z ⇒ ϕ(ρ, t) ≥ 1 −

ϵ̃ϕ ⇒ p + s(ϕ(ρ, t), ϕ(ρ, t)) < γ + κs(ϕ(ρ, t), ϕ(ρ, t)) ⇒ (ψ∗(ρ, t) = ϕ(ρ, t) < 1 ⇒

c(r(ρ, t)) < p + s(ϕ(ρ, t), ϕ(ρ, t)) < γ + κs(ϕ(ρ, t), ϕ(ρ, t)) ⇒ ϕ̇(ρ, t) > 0). (b) fol-

lows from (a) and ψ∗(ρ, t) ̸= ϕ(ρ, t) ⇒ ϕ̇(ρ, t) ≥ 0. (c) holds since ∀x ∈ [1 − ϵ̃ϕ, 1]

and z ∈ [rmin − ϵ̃r, rmin], e(x) < δ(z), with an obvious candidate for the lower bound

being bl = min(z,x)∈[rmin−ϵ̃r,rmin]×[1−ϵ̃ϕ,1][δ(z) − e(x)] > 0. (d) holds due to the spec-

ifications of e(0) and δ(·), with an obvious example of the upper bound being bu =

maxy∈[0,1][δ(y) − e(0)] < 0.

Lyapunov stability: We show that ρ ∈ Ũ ⇒ ξ(ρ, t) ∈ Z ⊂ U ∀t ≥ 0. Suppose by contradic-

tion that it is not true: ∃ρ ∈ Ũ and t̂ > 0 s.t. ξ(ρ, t̂) = (r̂, ϕ̂, ψ̂∗) /∈ Z. ((r̂, ϕ̂, ψ̂∗) /∈ Z ∧ ψ̂∗ ∈

{0, ϕ̂, 1}) ⇒ (ϕ̂ < 1 − ϵ̃ϕ ∨ r̂ /∈ [rmin − ϵ̃r,min{rmax + ϵ̃r, 1}]). Since r(ρ, t) and ϕ(ρ, t) are

continuous w.r.t. t, there is t̄ ∈ (0, t̂) s.t.: (1) for all t ∈ (t̄, t̂], ϕ(ρ, t) < 1 − ϵ̃ϕ ∨ r(ρ, t) /∈

[rmin − ϵ̃r,min{rmax + ϵ̃r, 1}] and (2) (a) ϕ(ρ, t̄) = 1 − ϵ̃ϕ ∨ r(ρ, t̄) ∈ {rmin − ϵ̃r, rmax + ϵ̃r} and

(b) ϕ(ρ, t̄) ≥ 1 − ϵ̃ϕ ∧ r(ρ, t̄) ∈ [rmin − ϵ̃r,min{rmax + ϵ̃r, 1}]. Consider such t̄. Note that (2)

implies ξ(ρ, t̄) ∈ Z. We can derive the following: (A) (ξ(ρ, t̄) ∈ Z ∧ (b) of Lemma A.6 ) ⇒

ϕ̇(ρ, t̄) ≥ 0 ⇒ (∃hϕ > 0 s.t. ∀t ∈ (t̄, t̄ + hϕ), ϕ(ρ, t) ≥ 1 − ϵ̃ϕ ∧ ψ∗(ρ, t) ∈ {0} ∪ [1 − ϵ̃ϕ, 1]).

Consider such hϕ. And (B) (i) (r(ρ, t̄) = rmax + ϵ̃r ∧ ϕ(ρ, t̄) ≥ 1 − ϵ̃ϕ) ⇒ c(rmax + ϵ̃r) >

c(rmax) ≥ s(1, 1) + p ≥ s(ϕ(ρ, t̄), ϕ(ρ, t̄)) + p > s(ϕ(ρ, t̄), 1) ⇒ ψ∗(ρ, t̄) = 0 ⇒ ṙ(ρ, t̄) < 0 and

(ii) (r(ρ, t̄) = rmin − ϵ̃r ∧ ϕ(ρ, t̄) ≥ 1 − ϵ̃ϕ) ⇒ c(rmin − ϵ̃r) ≤ s(ϕ(ρ, t̄), 0) + p ⇒ ψ∗(ρ, t̄) ̸= 0.

(ψ∗(ρ, t̄) ̸= 0 ∧ (c) of Lemma A.6 ) ⇒ ṙ(ρ, t̄) > 0. (i) and (ii) imply r(ρ, t̄) ∈ {rmin −

ϵ̃r, rmax + ϵ̃r} ⇒ (hr > 0 s.t. ∀t ∈ (t̄, t̄ + hr), r(ρ, t) ∈ (rmin − ϵ̃r,min{rmax + ϵ̃r, 1})). Con-

sider such hr. (A) and (B) imply that for h := min{hr, hϕ} and all t ∈ (t̄, t̄+ h), ξ(ρ, t) ∈ Z.

This is a contradiction to (1), implying that ∀ρ ∈ Ũ , ξ(ρ, t) ∈ Z ⊂ U ∀t ≥ 0. Since U was

arbitrarily chosen, this proves that cl(ΩBLC) is Lyapunov stable.

Convergence: Next, we show that for any ρ ∈ Ũ , the solution ξ(ρ, t) converges to ΩBLC .

Consider any ρ = (r, ϕ, ψ) ∈ Ũ .

Lemma A.7. ∀t > 0, ϕ(ρ, t) < 1 ⇒ ∃t̂ > t s.t. ϕ̇(ρ, t̂) > 0.

Proof. To see why the lemma holds, suppose by contradiction that it does not and

ϕ < 1. Thus, ϕ(ρ, t) = ϕ < 1 ∀t ≥ 0. This is possible only if ∄t̃ s.t. ψ∗(ρ, t̃) = ϕ,
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since (ψ∗(ρ, t̃) = ϕ(ρ, t̃) ∧ ξ(ρ, t̃) ∈ Z) ⇒ ϕ̇(ρ, t̃) > 0 (see (a) of Lemma A.6). ∀t ≥ 0

s.t. ψ∗(ρ, t) = 0, ∃t̃ > t s.t. ψ∗(ρ, t̃) ̸= 0, due to the following contradiction: ψ∗(ρ, t) =

0 ∀t > 0 ⇒ ṙ(ρ, t) < bu for some bu < 0 ∀t > 0 (i.e. ṙ(ρ, t) is bounded above

by a negative value for all r(ρ, t) ∈ [rmin − ϵ̃r, rmax + ϵ̃r] due to (d) of Lemma A.6)

⇒ ∃t̃ > 0 s.t. r(ρ, t̃) = rmin − ϵ̃r ⇒ ∃t̃ > 0 s.t. s(ϕ, 0) + p = c(rmin) > c(r(ρ, t̃)) =

c(rmin − ϵ̃r) ⇒ ∃t̃ > 0 s.t. ψ∗(ρ, t̃) ̸= 0. Thus, ∀t > 0 ∃t̃ > t s.t. ψ∗(ρ, t̃) ̸= 0. Clearly,

this implies ∃t̃ > 0 s.t. ψ∗(ρ, t̃) ̸= 0. Consider any such t̃. Since ψ∗(ρ, t̃) ̸= 0 and

ψ∗(ρ, t̃) ̸= ϕ, ψ∗(ρ, t̃) = 1. Let us now investigate what happens after t̃. By similar

reasoning as above and considering rmax + ϵ̃r instead of rmin − ϵ̃r, we can show: ∀t̃ ≥ 0

s.t. ψ∗(ρ, t̃) = 1, ∃t > t̃ s.t. ψ∗(ρ, t) ̸= 1. Let t̄ := min{t > 0 : ψ∗(ρ, t) ̸= 1}. Note,

limt→t̄− ψ
∗(ρ, t) = 1. ψ∗(ρ, t) = 1 ∀t ∈ (t̃, t̄) ⇒ (ψ∗(ρ, t̄) ̸= 1 ⇒ 1 /∈ Ψ∗(r(ρ, t̄), ϕ) ⇒

s(ϕ, 1) ≤ c(r(ρ, t̄)). ψ∗(ρ, t) = 1∀t ∈ (t̃, t̄) ⇒ s(ϕ, 1) > c(r(ρ, t)) ∀t ∈ (t̃, t̄). By

continuity of r(ρ, t) and c(·), s(ϕ, 1) = c(r(ρ, t̄)). (s(ϕ, 1) = c(r(ρ, t̄))∧s(ϕ, ϕ) < s(ϕ, 1)∧

s(ϕ, 1) < s(ϕ, ϕ) + p) ⇒ s(ϕ, ϕ) < c(r(ρ, t̄)) < s(ϕ, ϕ) + p ⇒ ϕ ∈ Ψ∗(r(ρ, t̄), ϕ). (ϕ ∈

Ψ∗(r(ρ, t̄), ϕ) ∧ limt→t̄− ψ
∗(ρ, t) = 1 > ϕ ∧ condition 2 of Assumption 5.2) ⇒ ξ(ρ, t̄) =

ξ(limt→t̄− ξ(ρ, t), 0) = ξ((r(ρ, t̄), ϕ, 1), 0) ̸= (r(ρ, t̄), ϕ, 0) ⇒ ψ∗(ρ, t̄) = ϕ, which is a

contradiction. Hence, if ϕ < 1, then ∃t̄ > 0 s.t. ϕ̇(ρ, t̄) > 0. From the above follows

that ∀t > 0, ϕ(ρ, t) < 1 ⇒ ∃t̄ > t s.t. ϕ̇(ρ, t̄) > 0.

We now show that limt→∞ ϕ(ρ, t) = 1. Since ϕ̇(ρ, t) ≥ 0 ∀t ≥ 0 (recall Lemma

A.6), limt→∞ ϕ(ρ, t) exists. Suppose by contradiction that limt→∞ ϕ(ρ, t) = x for some

x < 1. ϕ̇(ρ, t) ≥ 0 ∀t ≥ 0 implies ϕ(ρ, t) ≤ x ∀t > 0. limt→∞ ϕ(ρ, t) = x only if

limt→∞ ϕ̇(ρ, t) = 0. However, limt→∞ ϕ̇(ρ, t) ̸= 0, since (1) ϕ̇(ρ, t) has a strictly posi-

tive lower bound bn > 0 for all t s.t. ϕ̇(ρ, t) > 0 and ϕ(ρ, t) ∈ [ϕ, x] and (2) Lemma

A.7. Particularly: If γ = 0, then ϕ̇(ρ, t) > 0 ⇒ ψ∗(ρ, t) = ϕ(ρ, t). (ψ∗(ρ, t) = ϕ(ρ, t) ∧

ϕ(ρ, t) ≥ 1 − ϵ̃ϕ) ⇒ κs(ϕ(ρ, t), ϕ(ρ, t)) > s(ϕ(ρ, t), ϕ(ρ, t)) + p > c(r(ρ, t)) ⇒ ϕ̇(ρ, t) =

vϕ(ρ, t)(1−ϕ(ρ, t))(κs(ϕ(ρ, t), ϕ(ρ, t))−c(r(ρ, t))) > vϕ(ρ, t)(1−ϕ(ρ, t))(κs(ϕ(ρ, t), ϕ(ρ, t))−

s(ϕ(ρ, t), ϕ(ρ, t)) − p) > 0 ⇒ bn = vminy∈[ϕ,x][y(1 − y)(κs(y, y) − s(y, y) − p)] > 0. If

γ > 0, then ((ψ∗(ρ, t) = ϕ(ρ, t) ⇒ ϕ̇(ρ, t) > vϕ(ρ, t)(1 − ϕ(ρ, t))(κs(ϕ(ρ, t), ϕ(ρ, t)) + γ −

s(ϕ(ρ, t), ϕ(ρ, t))−p) > 0)∧(ψ∗(ρ, t) ∈ {0, 1} ⇒ ϕ̇(ρ, t) > vϕ(ρ, t)(1−ϕ(ρ, t))γ > 0)) ⇒ bn =

vmin{miny∈[ϕ,x][y(1−y)(γ+κs(y, y)−s(y, y)−p)],miny∈[ϕ,x][y(1−y)γ]} > 0. Hence, ∄x < 1
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s.t. limt→∞ ϕ(ρ, t) = x ⇒ limt→∞ ϕ(ρ, t) = 1. Note that (limt→∞ ϕ(ρ, t) = 1 ∧ ψ∗(ρ, t) ∈

{0, ϕ(ρ, t), 1}) ⇒ ψ∗(ρ, t) converges to {0, 1}.

It remains for us to argue that the solution also converges to cl(ΩBLC) on the r-

dimension: ∀α > 0 ∃t̄ > 0 s.t. t > t̄ ⇒ r(ρ, t) ∈ [rmin − α, rmax + α]. Consider any α > 0.

r(ρ, t) ≥ rmax ⇒ c(r(ρ, t)) ≥ c(rmax) = s(1, 1) + p ≥ s(ϕ(ρ, t), ϕ(ρ, t)) + p > s(ϕ(ρ, t), 1) ⇒

ψ∗(ρ, t) = 0. In combination with (d) of Lemma A.6, it follows that ṙ(ρ, t) has an upper

bound bu < 0 whenever r(ρ, t) ≥ rmax. Hence, ∃t̄1 s.t. r(ρ, t̄1) ≤ rmax. Consider such t̄1.

Continuity of r(ρ, t) and (r(ρ, t) = rmax ⇒ ṙ(ρ, t) < 0) imply ∄t > t̄1 s.t. r(ρ, t) > rmax.

Hence, r(ρ, t) ≤ rmax < rmax + α, ∀t ≥ t̄1.

Next, consider any λ ∈ (0,min{ϵ̃r, α}) Let z be s.t. c(rmin − λ) < s(z, 0) + p, which

exists since c(rmin − λ) < c(rmin) ≤ s(1, 0) + p and all involved functions are continuous.

Note that for all x ≥ z and y ≤ rmin − λ, c(y) < s(x, 0) + p. Let t̂ be s.t. ϕ(ρ, t) > z ∀t ≥ t̂.

Such t̂ exists since limt→∞ ϕ(ρ, t) = 1. (t ≥ t̂ ∧ r(ρ, t) ≤ rmin − λ) ⇒ s(ϕ(ρ, t), 0) + p ≥

s(ϕ(ρ, t̂), 0)+p > c(rmin−λ) ≥ c(r(ρ, t)) ⇒ ψ∗(ρ, t) ̸= 0 ⇒ ψ∗(ρ, t) ∈ {ϕ(ρ, t), 1} ⇒ ṙ(ρ, t) >

miny∈[rmin−ϵ̃r,rmin] δ(y) − e(ϕ(ρ, t̂)) > 0. ṙ(ρ, t) is bounded below by a positive number if

r(ρ, t) ≤ 1 − λr and t > t̂. Hence, ∃t̄2 ≥ t̂ s.t. r(ρ, t̄2) ≥ 1 − λr. Moreover, for any t̄2 ≥ t̂ s.t.

r(ρ, t̄2) ≥ 1 − λr, continuity of r(ρ, t), and (∀t ≥ t̄2 ≥ t̂, r(ρ, t) = 1 − λ ⇒ ṙ(ρ, t) > 0) imply

∄t > t̄2 s.t. r(ρ, t) < 1 − λ. Thus, r(ρ, t) ≥ 1 − λ > 1 − α ∀t ≥ t̄2.

Combining the above yields for t̄ = min{t̄1, t̄2}, t > t̄ ⇒ r(ρ, t) ∈ [rmin − λ, rmax + λ] ⊂

[rmin − α, rmax + α]. Since α was chosen arbitrarily, r(ρ, t) converges to [rmin, rmax] and,

thus, ξ(ρ, t) to cl(ΩBLC). Coupled with Lyapunov stability, this proves that cl(ΩBLC) is

asymptotically stable.

Lemma A.8. For any specification of the model: If γ > 0, then ∃p̄ > 0 s.t. (p < p̄ and

cl(ΩBLC) of Proposition 6.5 exists) ⇒ cl(ΩBLC) is asymptotically stable.

Proof. Consider any specification of the model s.t. s(1, 1) < c(1). Otherwise, ∄p > 0 s.t. the

boundary limit cycle exists. Suppose s(1, 0) > c(0). Otherwise, ∃p̄ s.t. p < p̄ ⇒ cl(ΩBLC)

of Proposition 6.5 does not exist, which renders the lemma never not true. Throughout,

let r1 < r2 be s.t. s(1, 0) < c(r1) < c(r2) < s(1, 1). Such r1 and r2 exist by continuity.

Consider any p̄1 s.t. s(1, 0) + p̄1 < c(r1) < s(1, 1) + p̄1 < c(1), which exists since s(1, 0) <
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c(r1) < s(1, 1) < c(1). Let [c−1](·) be the inverse of c(·) and note that it must be (uniquely)

defined on the domain [c(0), c(1)] due to monotonicity of c(·). Consider any α > 0 s.t.

0 < [c−1](s(1, 0)) − α < [c−1](s(1, 1) + p̄1) + α < 1. Such α > 0 exists since c(0) < s(1, 0) <

s(1, 1) + p̄1 < c(1). Let R̄ := [[c−1](s(1, 0)) −α, [c−1](s(1, 1) + p̄1) +α] ⊂ (0, 1). Let β > 0 be

s.t. (1) miny∈R̄ δ(y) > e(1 − β) and (2) c(r2) < s(1 − β, 1 − β), which must exist since (1)

δ(r) > 0 ∀r ∈ (0, 1) and (2) c(r2) < s(1, 1). Let ∆tϕ↑ > 0 be s.t. r1 − r2 = −
∫ ∆tϕ↑

0 e(0)dτ .

Given some p > 0, let Br := maxz∈[0,1]{[c−1](s(z, z) + p) − [c−1](s(z, z)) : c(0) ≤ s(z, z) <

s(z, z) + p ≤ c(1)} > 0. Let ∆tϕ↓ > 0 be s.t. Br =
∫ ∆tϕ↓

0 miny∈R̄ δ(y) − e(1 − β)dτ . Let

p̄ < p̄1 be s.t. p < p̄ ⇒ ∆tϕ↓vc(1) < ∆tϕ↑vγ. Such p̄ exists: As p approaches 0, so does Br,

and, since miny∈R̄ δ(y) − e(1 − β) > 0, so does ∆tϕ↓.

Consider any p < p̄ and suppose ΩBLC of proposition 6.5 exists. We denote the minimum

and maximum resource levels of ΩBLC by rmin and rmax, respectively. Note that p < p̄1 ⇒

[r1, r2] ⊂ (rmin, rmax). We proceed to show that cl(ΩBLC) is asymptotically stable. For this

purpose, consider an arbitrary neighborhood U of cl(ΩBLC) with distance ϵ. Consider any

λr ∈ (0,min{ϵ, α}) and λϕ ∈ (0,min{ϵ, β}) s.t. s(1 − λϕ, 0) > c(rmin − λr) and s(1 − λϕ, 1 −

λϕ) + p > s(1 − λϕ, 1). Such λϕ exists since s(1, 0) > c(rmin − λr) and s(1, 1) + p > s(1, 1).

Let Z := [rmin − λr, rmax + λr] × [1 − λϕ] × ([0, λϕ] ∪ [1 − λϕ, 1]). Let ϵ̃ ∈ (0,min{λr, λϕ})

be so small that (1−ϵ̃) exp(−vc(1)∆tϕ↓)
(1−ϵ̃) exp(−vc(1)∆tϕ↓)+ϵ̃ > 1 − λϕ, which must exist since the term approaches

1 from below as ϵ̃ approaches 0. Let Ũ be the neighborhood of cl(ΩBLC) with distance ϵ̃.

Note that λϕ < β and λr < α imply: (a) s(x, 1) < s(x, x) + p ∀x ∈ [1 − λϕ, 1], (b)

c(r2) < s(x, x) + p ∀x ∈ [1 − λϕ, 1], (c) [rmin − λr, rmax + λr] ⊂ R̄ ⊂ [0, 1], (d) δ(z) − e(x) >

miny∈R̄ δ(y) − e(1 − β) ∀z ∈ [rmin − λr, rmax + λr], x ∈ [1 − λϕ, 1], and (e) s(1 − λϕ, 0) >

c(rmin − λr).

Throughout, consider any ρ ∈ Ũ ⊂ Z. Below, we show ξ(ρ, t) always remains in Z ⊂ U

and converges to cl(ΩBLC). For any t > 0 s.t. ξ(ρ, t) ∈ Z, (a) r(ρ, t) = rmin − λr ⇒

s(ϕ(ρ, t), 0) + p > c(r(ρ, t)) ⇒ ψ∗(ρ, t) ̸= 0 ⇒ ṙ(ρ, t) ≥ miny∈R̄ δ(y) − e(1 − λϕ) > 0 and

(b) r(ρ, t) = rmax + λr ⇒ s(ϕ(ρ, t), 0) < s(ϕ(ρ, t), ϕ(ρ, t)) + p < c(r(ρ, t)) ⇒ ψ∗(ρ, t) = 0 ⇒

ṙ(ρ, t) ≤ miny∈R̄ δ(y)−e(0) < 0. Analogously to the proof of Proposition 6.6, the above allows

us to infer that for any t̃ s.t. ϕ(ρ, t) > 1 − λϕ ∀t ≤ t̃, r(ρ, t) ∈ [rmin − λr, rmax + λr] ∀t ≤ t̃.

Moreover, if ϕ(ρ, t) converges to 1, then ψ∗(ρ, t) converges to {0, 1} and, analogously to
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the proof of Proposition 6.6, we can show r(ρ, t) converges to [rmin, rmax]. Hence, to prove

asymptotic stability, it suffices to show that ϕ(ρ, t) > 1 − λϕ > 1 − ϵ ∀t ≥ 0 (ensuring

Lyapunov stability) and limt→∞ ϕ(ρ, t) = 1 (ensuring convergence).

ϕ(ρ, 0) = 1 ⇒ ϕ̇(ρ, t) = 0 ∀t ≥ 0 ⇒ ϕ(ρ, t) = 1 ∀t ≥ 0. Hence, ξ(ρ, t) stays close and

converges to cl(ΩBLC). Below, we study the other case: ϕ(ρ, 0) < 1. Due to the asymptotic

nature of ϕ̇(ρ, t) when ϕ(ρ, t) approaches 1, ∄t > 0 s.t. ϕ(ρ, t) = 1. In the following, we

present Lemmas A.9, A.10, A.11, and A.12 and their corresponding proofs, which we then

use to complete the proof of this proposition.

Lemma A.9. For any t0 ≥ 0 s.t. ξ(ρ, t0) ∈ Ũ and ϕ(ρ, t0) < 1, there is t̄ ≥ t0 s.t.

ψ∗(ρ, t̄) = ϕ(ρ, t̄).

Proof. Recall that ϕ(ρ, t0) < 1 ⇒ ϕ(ρ, t) < 1 ∀t > t0. Let t̂ := min{t ≥ t0 : ψ∗(ρ, t̂) ̸=

0}. Such t̂ exists since otherwise ṙ(ρ, t) < maxy∈[0,1] δ(y)−e(0) < 0 ∀t ≥ 0 and ϕ̇(ρ, t) ≥

0 ∀t ≥ 0, which imply ∃t̃ s.t. r(ρ, t̃) < rmin − λr and ϕ(ρ, t) ≥ ϕ(ρ, t0) > 1 − λϕ ∀t ≤ t̃,

which contradicts the results on r(ρ, t). Let ť := min{t ≥ t̂ : ψ∗(ρ, t̂) ̸= 1}. Such ť exists

since otherwise ṙ(ρ, t) ≥ miny∈[rmin−λr,rmax+λr] δ(y) > 0 ∀t ≥ t̂ s.t. r(ρ, t) ≤ rmax + λr

and ϕ̇(ρ, t) ≥ 0 ∀t ≥ t̂, which imply ∃t̃ s.t. r(ρ, t̃) > rmax+λr and ϕ(ρ, t) ≥ ϕ(ρ, t0) > 1−

λϕ ∀t ≤ t̃, which is also a contradiction. If ť = t̂, then ψ∗(ρ, t̂) = ϕ(ρ, t̂). Alternatively,

suppose ť > t̂. Hence, ψ∗(ρ, t) = 1 ∀t ∈ [t̂, ť) ⇒ s(ϕ(ρ, t), 1) > c(r(ρ, t)) ∀t ∈ [t̂, ť).

ψ∗(ρ, ť) ̸= 1 ⇒ s(ϕ(ρ, ť), 1) ≤ c(r(ρ, ť)), and, by continuity, s(ϕ(ρ, ť), 1) = c(r(ρ, ť)).

ψ∗(ρ, t) ∈ {0, 1} ∀t ∈ [t0, ť) ⇒ ϕ̇(ρ, t) = 0 ∀t ∈ [t0, ť) ⇒ ϕ(ρ, ť) ≥ ϕ(ρ, t0) > 1 − λϕ ⇒

s(ϕ(ρ, ť), ϕ(ρ, ť))+p > s(ϕ(ρ, ť), 1) ⇒ s(ϕ(ρ, ť), ϕ(ρ, ť)) < c(r(ρ, ť)) < s(ϕ(ρ, ť), ϕ(ρ, ť))+

p. Hence, ϕ(ρ, ť) ∈ Ψ∗(r(ρ, ť), ϕ(ρ, ť)). Assumption 5.2 implies ψ∗(ρ, ť) = ϕ(ρ, ť), which

proves the lemma.

Lemma A.10. Consider some t1 s.t. ξ(ρ, t1) ∈ Ũ and ψ∗(ρ, t1) = ϕ(ρ, t1) < 1, let

t2 := min{t > t1 : ψ∗(ρ, t) ̸= ϕ(ρ, t)}. It holds that

1. such t2 exists,

2. ψ∗(ρ, t2) = 0,

3. r(ρ, t2) > r2, and
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4. ϕ(ρ, t) ≥ ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t1) > 1 − λϕ ∀t ∈ [t1, t2].

Proof. Consider any situation as described in the lemma. Before proving the four con-

ditions, we establish that for any ť > t1 s.t. ψ∗(ρ, t) = ϕ(ρ, t) ∀t ∈ [t1, ť), ϕ(ρ, t) >

1 − λϕ ∀t ∈ [t1, ť]. Note that such ť exists due to ψ∗(ρ, t1) = ϕ(ρ, t1) and the piecewise

nature of ξ(ρ, t). Assume by contradiction that ∃t ∈ [t1, ť] s.t. ϕ(ρ, t) ≤ 1 −λϕ. Let t̄ :=

min{t ∈ (t1, ť] : ϕ(ρ, t) = 1−λϕ}. Such t̄ exists by continuity of ϕ(ρ, t). For all t ∈ [t1, t̄],

ϕ̇(ρ, t) is bounded below by −ϕ(ρ, t)(1 − ϕ(ρ, t))vc(1) < 0, implying that f(t) s.t. (a)

f(t1) = ϕ(ρ, t1) and (b) ḟ(t) = −f(t)(1−f(t))vc(1) is a lower bound of ϕ(ρ, t) for all t ∈

[t1, t̄]. Solving the initial value problem for f(t) and substituting f(t1) = ϕ(ρ, t1) yields

f(t) = ϕ(ρ,t1) exp(−vc(1)(t̄−t1))
ϕ(ρ,t1) exp(−vc(1)(t̄−t1))+1−ϕ(ρ,t1) . ϕ(ρ, t̄) = 1 − λϕ = ϕ(ρ, t1) +

∫ t̄
t1
ϕ̇(ρ, τ)dτ ≥ f(t1) −

vc(1)
∫ t̄
t1
f(τ)(1 − f(τ))dτ = ϕ(ρ,t1) exp(−vc(1)(t̄−t1))

ϕ(ρ,t1) exp(−vc(1)(t̄−t1))+1−ϕ(ρ,t1) . Recall, 1 − ϵ̃ < ϕ(ρ, t1) ⇒

1 − λϕ <
ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)

ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t1) . Hence, ( ϕ(ρ,t1) exp(−vc(1)(t̄−t1))
ϕ(ρ,t1) exp(−vc(1)(t̄−t1))+1−ϕ(ρ,t1) ≤ 1 − λϕ <

ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t1)) ⇒ ∆tϕ↓ < t̄ − t1. (t1 + ∆tϕ↓ < t̄ ∧ ψ∗(ρ, t) = ϕ(ρ, t) ≥

1 − λϕ ∀t ∈ [t1, t̄]) ⇒ r(ρ, t̄) = r(ρ, t1) +
∫ t̄
t1
ṙ(ρ, τ)dτ ≥ r(ρ, t1) +

∫ t̄
t1

miny∈R̄[δ(y) − e(1 −

β)]dτ ≥ r(ρ, t1)+
∫ t1+∆tϕ↓
t1 miny∈R̄[δ(y)−e(1−β)]dτ = r(ρ, t1)+Br ⇒ r(ρ, t̄)−r(ρ, t1) ≥

Br. However, (a) [c−1](s(ϕ(ρ, t1), ϕ(ρ, t1)) + p) − [c−1](s(ϕ(ρ, t1), ϕ(ρ, t1))) ≤ Br by

definition of Br, (b) ϕ(ρ, t1) = ψ∗(ρ, t1) ⇒ r(ρ, t1) > [c−1](s(ϕ(ρ, t1), ϕ(ρ, t1))), (c)

ϕ(ρ, t̄) ≤ ϕ(ρ, t1) ⇒ [c−1](s(ϕ(ρ, t̄), ϕ(ρ, t̄)) + p) ≤ [c−1](s(ϕ(ρ, t1), ϕ(ρ, t1)) + p), and (d)

ϕ(ρ, t̄) = ψ∗(ρ, t̄) ⇒ r(ρ, t̄) < [c−1](s(ϕ(ρ, t̄), ϕ(ρ, t̄)) + p) imply: ϕ(ρ, t1) = ψ∗(ρ, t1) >

ϕ(ρ, t̄) = ψ∗(ρ, t̄) ⇒ r(ρ, t̄) − r(ρ, t1) < Br. We reached a contradiction. We continue to

prove the conditions of the lemma.

(1) ∃t2 > t1 s.t. ψ∗(ρ, t2) ̸= ϕ(ρ, t2), since otherwise ϕ(ρ, t) ≥ 1 − λϕ ∀t ≥ t1 and,

hence, ṙ(ρ, t) > miny∈[rmin−λr,rmax+λr] δ(y)−e(1−λϕ) > 0 ∀t ≥ t1 s.t. r(ρ, t) ≤ rmax+λr,

which implies ∃t̃ s.t. r(ρ, t̃) > rmax + λr and ϕ(ρ, t) > 1 − λϕ ∀t ∈ [t1, t̃], which is a

contradiction to our results on r. Throughout the following, we consider such t2. (2)

ψ∗(ρ, t) = ϕ(ρ, t) < 1 ∀t ∈ [t1, t2) ⇒ s(ϕ(ρ, t), ϕ(ρ, t)) < c(r(ρ, t)) < s(ϕ(ρ, t), ϕ(ρ, t)) +

p ∀t ∈ [t1, t2). (ψ∗(ρ, t) = ϕ(ρ, t) ∀t ∈ [t1, t2) ∧ ψ∗(ρ, t2) ̸= ϕ(ρ, t2)) ⇒ ϕ(ρ, t2) /∈

Ψ∗(r(ρ, t2), ϕ(ρ, t2)). (ϕ(ρ, t2) /∈ Ψ∗(r(ρ, t2), ϕ(ρ, t2)) ∧ ϕ(ρ, t1) ∈ Ψ∗(r(ρ, t1), ϕ(ρ, t1)) ∧

ϕ(ρ, t2) < ϕ(ρ, t1) ∧ r(ρ, t2) > r(ρ, t1)) ⇒ s(ϕ(ρ, t2), ϕ(ρ, t2)) < s(ϕ(ρ, t2), ϕ(ρ, t2)) + p ≤

c(r(ρ, t2)). ϕ(ρ, t2) > 1 − λϕ ⇒ s(ϕ(ρ, t2), 1) < s(ϕ(ρ, t2), ϕ(ρ, t2)) + p ≤ c(r(ρ, t2)) ⇒
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1 /∈ Ψ∗(r(ρ, t2), ϕ(ρ, t2)). (1 /∈ Ψ∗(r(ρ, t2), ϕ(ρ, t2)) ∧ ϕ(ρ, t2) /∈ Ψ∗(r(ρ, t2), ϕ(ρ, t2))) ⇒

ψ∗(ρ, t2) = 0. (3) r2 < r(ρ, t2) follows from s(1−λϕ, 1−λϕ)+p > c(r2), ϕ(ρ, t2) > 1−λϕ,

s(ϕ(ρ, t2), ϕ(ρ, t2))+p ≤ c(r(ρ, t2)), and s(·, ·) and c(·) being increasing. (4) If ϕ(ρ, t1) ≤

ϕ(ρ, t2), Condition 4 of the lemma is true since ϕ(ρ, t1) ≥ ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t1) >

1 − λϕ. In the following, we suppose ϕ(ρ, t1) > ϕ(ρ, t2). To prove the condition, we

first show that t2 < t1 + ∆tϕ↓. (ψ∗(ρ, t) = ϕ(ρ, t) > 1 − λϕ ∧ r(ρ, t) ≤ rmax + λr ∀t ∈

[t1, t2)) ⇒ ṙ(ρ, t) > miny∈[rmin−λr,rmax+λr] δ(y) > 0 ∀t ∈ [t1, t2) ⇒ r(ρ, t1) < r(ρ, t2).

By analogous reasoning to the last implication in the first paragraph of this lemma’s

proof, ψ∗(ρ, t2) = ϕ(ρ, t2) < ψ∗(ρ, t1) = ϕ(ρ, t1) ⇒ r(ρ, t2) − r(ρ, t1) < Br. t2 is

s.t. r(ρ, t2) − r(ρ, t1) =
∫ t2
t1
ṙ(ρ, τ)dτ . Hence, t2 increases in r(ρ, t2) − r(ρ, t1) and

decreases in ṙ(ρ, t) (for any t ∈ [t1, t2)). Consequently, Br > r(ρ, t2) − r(ρ, t1) and

miny∈R̄[δ(y)−e(1−β)] < ṙ(ρ, t) ∀t ∈ [t1, t2] imply t2−t1 < ∆tϕ↓ (recall ∆tϕ↓ solves Br =∫ ∆tϕ↓
0 miny∈R̄ δ(y) − e(1 − β)dτ) and, thus, t < t1 + ∆tϕ↓ ∀t ∈ [t1, t2]. Recall that for all

t ∈ [t1, t2], ϕ(ρ, t) is bounded below by f(t) = ϕ(ρ,t1) exp(−vc(1)(t−t1))
ϕ(ρ,t1) exp(−vc(1)(t−t1))+1−ϕ(ρ,t1) ∀t ∈ [t1, t2].

For all t ∈ [t1, t2], ϕ(ρ, t) = ϕ(ρ, t1) +
∫ t
t1
ϕ̇(ρ, τ)dτ ≥ f(t) = f(t1) − vc(1)

∫ t
t1
f(τ)(1 −

f(τ))dτ = ϕ(ρ,t1) exp(−vc(1)(t−t1))
ϕ(ρ,t1) exp(−vc(1)(t−t1))+1−ϕ(ρ,t1) ≥ ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)

ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t1) . Lastly, ϕ(ρ, t1) >

1 − ϵ̃ ⇒ ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t1) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t1) > 1 − λϕ.

Lemma A.11. Consider t2 > 0 s.t. ψ∗(ρ, t2) ̸= ϕ(ρ, t2) ∈ (1−λϕ, 1), limt→t−2
ψ∗(ρ, t) =

ϕ(ρ, t2), and r(ρ, t2) ∈ (r2, rmax + λr]. Let t3 := min{t > t2 : ψ∗(ρ, t2) = ϕ(ρ, t2)}. It

holds that

1. such t3 exists

2. t3 − t2 > ∆tϕ↑, and

3. ϕ(ρ, t3) ≥ ϕ(ρ,t2) exp(vγ∆tϕ↑)
ϕ(ρ,t2) exp(vγ∆tϕ↑)+1−ϕ(ρ,t2) > ϕ(ρ, t2).

Proof. By analogous reasoning as in Lemma A.10, ψ∗(ρ, t2) = 0. Lemma A.9 implies t3
exists. Let t̂ := min{t > t2 : ψ∗(ρ, t) ̸= 0}. Such t̂ exists since t3 exists. t̂ = min{t >

t2 : ψ∗(ρ, t) ̸= 0} ⇒ ψ∗(ρ, t) = 0 ∀t ∈ [t2, t̂) ⇒ s(ϕ(ρ, 0)) + p < c(r(ρ, t)) ∀t ∈ [t2, t̂) and

ψ∗(ρ, t̂) ̸= 0 ⇒ s(ϕ(ρ, t̂), 0) + p ≥ c(r(ρ, t̂)). By continuity, s(ϕ(ρ, t̂), 0) + p = c(r(ρ, t̂)).

(rmin = s(1, 0) + p ∧ ϕ(ρ, t̂) < 1) ⇒ r(ρ, t̂) < rmin. Continuity of r(ρ, t), ṙ(ρ, t) < 0 ∀t ∈
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[t2, t̂), and r(ρ, t̂) < rmin < r1 < r2 < r(ρ, t2)) imply ∃t̃1, t̃2 ∈ (t2, t̂) s.t. r(ρ, t̃1) = r2,

r(ρ, t̃2) = r1, and t̃2 > t̃1. 0 > r(ρ, t̃2) − r(ρ, t̃1) =
∫ t̃2
t̃1
ṙ(ρ, τ)dτ , which indicates that t̃2

decreases in ṙ(ρ, t) (for any t ∈ [r1, r2]). Since −e(0) ≤ ṙ(ρ, t) ∀t ≥ 0, ∆tϕ↑ provides a

lower bound on t̃2 − t̃1 < t̂− t2 < t3 − t2, which proves the second condition. Moreover,

ϕ(ρ, t3) = ϕ(ρ, t2) +
∫ t3
t2
ϕ̇(ρ, τ)dτ ≥ ϕ(ρ, t2) +

∫ t̂
t2
ϕ̇(ρ, τ)dτ = ϕ(ρ, t2) +

∫ t̂
t2
vγϕ(ρ, τ)(1 −

ϕ(ρ, τ))dτ = ϕ(ρ,t2) exp(vγ(t̂−t2))
ϕ(ρ,t2) exp(vγ(t̂−t2))+1−ϕ(ρ,t2) ≥ ϕ(ρ,t2) exp(vγ∆tϕ↑)

ϕ(ρ,t2) exp(vγ∆tϕ↑)+1−ϕ(ρ,t2) > ϕ(ρ, t2), where we

obtain ϕ(ρ,t2) exp(vγ(t̂−t2))
ϕ(ρ,t2) exp(vγ(t̂−t2))+1−ϕ(ρ,t2) by solving the differential equation.

Lemma A.12. Consider some t1 s.t. ξ(ρ, t1) ∈ Ũ and ψ∗(ρ, t1) = ϕ(ρ, t1) < 1. Let

• t2 := min{t > t1 : ψ∗(ρ, t) ̸= ϕ(ρ, t)},

• t3 := min{t > t2 : ψ∗(ρ, t) = ϕ(ρ, t)}, and

• t4 := min{t > t3 : ψ∗(ρ, t) ̸= ϕ(ρ, t)}.

The following is true:

1. ϕ(ρ, t4) ≥ ϕ(ρ,t2) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)
ϕ(ρ,t2) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)+1−ϕ(ρ,t2) > ϕ(ρ, t2) > 1 − λϕ,

2. ϕ(ρ, t) > ϕ(ρ, t2) ∀t ∈ [t2, t4], and

3. t4 − t2 > ∆tϕ↑.

Proof. Consider any t1, t2, t3, t4 as described. The previous lemmas im-

ply their existence. Moreover, we know that ϕ(ρ, t2) ≥ 1 − λϕ (from

Lemma A.10), ϕ(ρ, t3) ≥ ϕ(ρ,t2) exp(vγ∆tϕ↑)
ϕ(ρ,t2) exp(vγ∆tϕ↑)+1−ϕ(ρ,t2) (from Lemma A.11), and

ϕ(ρ, t) ≥ ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t3) ∀t ∈ (t3, t4] (from Lemma A.10). Since

ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t3) increases in ϕ(ρ, t3) and we know ϕ(ρ, t3) ≥

ϕ(ρ,t2) exp(vγ∆tϕ↑)
ϕ(ρ,t2) exp(vγ∆tϕ↑)+1−ϕ(ρ,t2) , we can substitute ϕ(ρ,t2) exp(vγ∆tϕ↑)

ϕ(ρ,t2) exp(vγ∆tϕ↑)+1−ϕ(ρ,t2) for ϕ(ρ, t3)

into ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t3) to obtain a lower bound for ϕ(ρ, t) ∀t ∈ (t3, t4].

Doing so and simplifying yields ϕ(ρ,t2) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)
ϕ(ρ,t2) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)+1−ϕ(ρ,t2) , which is strictly

larger than ϕ(ρ, t2) since vγ∆tϕ↑ − vc(1)∆tϕ↓ > 0. Hence, the first state-

ment of the Lemma is true. ϕ(ρ, t) > ϕ(ρ, t2) ∀t ∈ [t2, t4] follows since (a)

ψ∗(ρ, t) ̸= ϕ(ρ, t) ∀t ∈ [t2, t3) ⇒ ϕ̇(ρ, t) > 0 ∀t ∈ [t2, t3) ⇒ ϕ(ρ, t) ≥ ϕ(ρ, t2) ≥

∀t ∈ [t2, t3), (b) ϕ(ρ, t3) ≥ ϕ(ρ,t2) exp(vγ∆tϕ↑)
ϕ(ρ,t2) exp(vγ∆tϕ↑)+1−ϕ(ρ,t2) > ϕ(ρ, t2), and (c) ϕ(ρ, t) ≥
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ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)
ϕ(ρ,t3) exp(−vc(1)∆tϕ↓)+1−ϕ(ρ,t3) >

ϕ(ρ,t2) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)
ϕ(ρ,t2) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)+1−ϕ(ρ,t2) > ϕ(ρ, t2) ∀t ∈ (t3, t4].

The last condition follows from t4 − t2 > t3 − t2 and t3 − t2 > ∆tϕ↑ (see Lemma

A.11).

Recall ρ ∈ Ũ . Lemma A.9 implies there is t1 := min{t ≥ 0 : ψ∗(ρ, t̄) = ϕ(ρ, t̄)}. If

t1 = 0, then ψ∗(ρ, t1) = ϕ(ρ, 0) > 1 − λϕ. If t1 > 0, then for all t ∈ [0, t1), ψ∗(ρ, t) ̸=

ϕ(ρ, t) ⇒ ϕ̇(ρ, t) ≥ 0 ⇒ ϕ(ρ, t1) ≥ ϕ(ρ, 0) > 1 − λϕ.

Let T be the set of all discontinuities ti of ψ∗(ρ, t) s.t. limx→ti ψ
∗(ρ, x) = ϕ(ρ, ti) ̸=

ψ∗(ρ, t1) (such as t2 and t4 in Lemma A.12), where the elements of T are indexed in ascending

order with elements from the set of even integers 2Z (e.g., t2 < t4 < t6 < ...). Note

that T is infinite, since Lemma A.10 and ϕ(ρ, t1) > 1 − λϕ imply ∃t2 ∈ T and Lemmas

A.10 and A.11 imply that for each ti ∈ T there is ti+2 ∈ T . Condition 3 of Lemma A.12

implies that ti tends to infinity as i does. Lemma A.12 states that for all ti, ti+2 ∈ T ,

ϕ(ρ, t) ≥ ϕ(ρ, ti) ∀t ∈ [ti, ti+2]. It follows that ϕ(ρ, t) ≥ ϕ(ρ, ti) ∀t ≥ ti. Moreover, since

ϕ(ρ, t) > 1 − λϕ ∀t ∈ [0, t2], it must hold that ϕ(ρ, t) > 1 − λϕ ∀t ≥ 0. Hence, cl(ΩBLC)

is Lyapunov stable. Lemma A.12 also states that for all ti, ti+2 ∈ T , ϕ(ρ, ti) − ϕ(ρ, ti+2) ≥
ϕ(ρ,ti) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)

ϕ(ρ,ti) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)+1−ϕ(ρ,ti) − ϕ(ρ, ti) > 0. ϕ(ρ,ti) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)
ϕ(ρ,ti) exp(vγ∆tϕ↑−vc(1)∆tϕ↓)+1−ϕ(ρ,ti) − ϕ(ρ, ti)

approaches 0 only as ϕ(ρ, ti) converges to 1. Hence, as i ∈ 2Z approaches infinity, ϕ(ρ, ti)

converges to 1. Since ϕ(ρ, t) ≥ ϕ(ρ, ti) ∀t ≥ ti, ϕ(ρ, t) converges to 1. Coupled with Lyapunov

stability, we can infer that cl(ΩBLC) is asymptotically stable.

Lemma A.13. Consider two specifications of the dynamic model that differ only in social

sanctions and material costs: ŝ(·, ·), ĉ(·) and š(·, ·), č(·). Let ξ̂(ρ, t) and ξ̌(ρ, t) be the solutions

to the dynamic systems with ŝ(·, ·), ĉ(·) and š(·, ·), č(·) respectively. Suppose (1) Ω̂BLC of

Proposition 6.5 exists at ŝ(·, ·), ĉ(·), (2) Ω̌BLC of Proposition 6.5 exists at š(·, ·), č(·), and (3)

š(ϕ, ψ) ≥ ŝ(ϕ, ψ) ∀ϕ, ψ ∈ [0, 1] and č(r) ≤ ĉ(r) ∀r ∈ (0, 1].

1. Suppose that for some N < 1 and all ϕ > N , (a) [ĉ−1](κŝ(ϕ, ϕ) + γ) = [č−1](κš(ϕ, ϕ) +

γ) ∈ (0, 1) and (b) x < κx + γ < x + p ∀x ∈ {ŝ(ϕ, ϕ), š(ϕ, ϕ)}. There is U of

Ω̂BLC ∪ Ω̌BLC s.t.

(a) {ρ ∈ U : ξ̌(ρ, 0) = (r, ϕ, ϕ) ∧ ϕ̇ > 0 at š(·, ·), č(·)} ⊆ {ρ ∈ U : ξ̂(ρ, 0) = (r, ϕ, ϕ) ∧

ϕ̇ > 0 at ŝ(·, ·), ĉ(·)} and
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(b) {ρ ∈ U : ξ̂(ρ, 0) = (r, ϕ, ϕ) ∧ ϕ̇ < 0 at ŝ(·, ·), ĉ(·)} ⊆ {ρ ∈ U : ξ̌(ρ, 0) = (r, ϕ, ϕ) ∧

ϕ̇ < 0 at š(·, ·), č(·)}.

2. For all ρ s.t. ξ̂(ρ, 0) = ξ̌(ρ, 0) = (r, ϕ, ϕ), ϕ̇ is larger at ŝ(ϕ, ψ), ĉ(r) than at š(ϕ, ψ), č(r).

Proof. First, consider N < 1 and suppose that for all ϕ > N , (a) [ĉ−1](κŝ(ϕ, ϕ) + γ) =

[č−1](κš(ϕ, ϕ) + γ) and (b) x < κx + γ < x + p ∀x ∈ {ŝ(ϕ, ϕ), š(ϕ, ϕ)}. Let us look at

Condition 1a. Consider some U of Ω̌BLC ∪ Ω̂BLC s.t. ϕ > N ∀ρ ∈ U . Consider some ρ ∈ U

s.t. ξ̌(ρ, 0) = (r, ϕ, ϕ) and ϕ̇ > 0 at š(·, ·), č(·). Note that ϕ̇ > 0 ⇒ ϕ < 1. (ψ∗ = ϕ ∧ ϕ̇ > 0

at š(·, ·), č(·)) ⇒ κš(ϕ, ϕ) + γ > č(r) ⇒ κŝ(ϕ, ϕ) + γ > ĉ(r). To see why this holds,

consider r̄ s.t. κš(ϕ, ϕ) + γ = č(r̄). Since [ĉ−1](κŝ(ϕ, ϕ) + γ) = [č−1](κš(ϕ, ϕ) + γ), it follows

κŝ(ϕ, ϕ) + γ = ĉ(r̄). κš(ϕ, ϕ) + γ > č(r) ⇒ r < r̄ ⇒ κŝ(ϕ, ϕ) + γ > ĉ(r). κŝ(ϕ, ϕ) + γ >

ĉ(r) ⇒ ŝ(ϕ, ϕ) + p > ĉ(r). ξ̌(ρ, 0) = (r, ϕ, ϕ) ⇒ č(r) > š(ϕ, ϕ) ⇒ ĉ(r) > ŝ(ϕ, ϕ). Combining

these insights, yields ŝ(1, 1) < ĉ(r) < ŝ(1, 1) + p and κŝ(1, 1) + γ > ĉ(r), which imply

ξ̂(ρ, 0) = (r, ϕ, ϕ) and ϕ̇ > 0 at ŝ(·, ·), ĉ(·). The proof for Condition 1b is analogous. Lastly,

Condition 2 follows straightaway from how ϕ̇ depends on s(ϕ, ψ) and c(r) for equilibrium

behavior ψ∗ = ϕ.
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