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Abstract 

A wealth of recent studies have demonstrated that predictive cues involved in a linearly solvable 

component discrimination gain associability in subsequent learning relative to non-predictive cues. 

In contrast, contradictory findings have been reported about the fate of cues involved in learning 

biconditional discriminations in which the cues are relevant but none are individually predictive of 

a specific outcome. In three experiments we examined the transfer of learning from component and 

biconditional discriminations in a within-subjects design. The results show a greater benefit in 

associability for cues that had previously served as predictive cues in a component discrimination 

than cues previously used in a biconditional discrimination. Further, new biconditional 

discriminations were learned faster when they were composed of cues that were previously trained 

in separate biconditional discriminations. Similarly, new component discriminations were learned 

faster when they were composed of cues that were previously trained in a separate component 

discriminations irrespective of whether they were previously predictive or previously non-

predictive. These results provide novel evidence that cue-specific learning of relational structure 

affects subsequent learning, suggesting changes in cue processing that go beyond simple changes in 

cue associability based on learned predictiveness.  
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Transfer of associability and relational structure in human associative learning. 

Many theories of learning make the assumption that acquiring knowledge about the relationship 

between a cue and its consequences will change the manner in which this cue is processed in the 

future. For instance, several prominent theories propose that selective attention is directed towards 

cues that have been useful predictors of meaningful outcomes in the past (Kruschke, 2001; Le 

Pelley, 2004; Mackintosh, 1975; Pearce & Mackintosh, 2010). This selective processing of 

previously predictive cues leads to changes in their associability, the rate at which those cues enter 

into new associations, for instance, when the outcomes that they predict change. 

 Theories of associative learning that appeal to learned changes in selective attention have 

received considerable support from demonstrations of the learned predictiveness (LP) effect. This 

effect, first reported by Lochman and Wills (2003) and Le Pelley and McLaren (2003), 

demonstrates that the rate at which people learn about predictive cues depends on whether those 

cues have been predictive of other task-relevant outcomes in the past.  In Le Pelley and McLaren's 

(2003) procedure (the design of which is shown in Table 1), participants completed a causal 

learning task in which they played the role of an allergist determining the cause of a patient's 

allergic reactions.  For instance, a participant may have learned that when their patient ate cheese 

and apple or cheese and bread, they suffered from fever, and when they ate chicken and apple or 

chicken and bread, they suffered from rash. In this example, two of the cues, cheese and chicken, 

are perfectly predictive of the outcomes, fever and rash, respectively. In contrast, apple and bread 

are less predictive (for simplicity, we will say non-predictive) as they do not inform the participant 

whether the outcome will be fever or rash. In a second stage, participants then learn about foods 

eaten by a different fictitious patient. New cue combinations consisting of one predictive and one 

non-predictive cue are paired with a new outcome, but unlike the first stage, all food cues are 

equally relevant and predictive of the symptoms. Despite having objectively equivalent 

relationships with the outcome, the previously predictive and previously non-predictive cues are not 
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learned about equally in this phase. Participants learn more and faster about the previously 

predictive cues than the previously non-predictive cues. That is, these cues possess greater 

associability as a consequence of their predictive status in Stage 1. 

Table 1 

Stage 1 training, Stage 2 training, and test trials used by Le Pelley & McLaren (2003). 

Stage 1 Stage 2 Test LP effect 

    

AW – O1 AY – O3 AD Prediction of O3: 

AX – O1 BZ – O4 BC AD > XY 

BW – O2 CW – O4 XY  

BX – O2 DX – O3 WZ Prediction of O4: 

   BC > WZ 

CY – O1 JK – O3 JM  

CZ – O1 LM – O4 KL  

DY – O2 NO – O3 NO  

DZ – O2 PQ – O4 PQ  

    

Note: Letters refer to individual cues, A-D: predictive components, W-Z: non-predictive 

components, J-Q: novel filler cues in Stage 2. O1, O2, O3, and O4 refer to four outcomes. 

 

 The LP effect was inspired by predictions of attention-based learning models. Mackintosh 

(1975) in particular, and has been interpreted as being broadly consistent with several of these 

models. The central operation of the Mackintosh model is a competitive change in attention based 

on relative predictiveness. During Stage 1, predictive cues gain associability by virtue of being the 

most predictive stimuli present on each trial and non-predictive cues lose associability by virtue of 

being poorer predictors.  

 Considerable research has now been devoted to the LP effect (for a recent review, see Le 

Pelley et al., 2016). Interestingly, contrary to the predictions of Mackintosh's (1975) theory, 

competition between potential predictors is not necessary to drive attention change in the manner 

that the model anticipates. Le Pelley et al. (2010) found that training with individually presented 

cues during the initial learning phase is sufficient to produce stronger learning for predictive than 
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non-predictive cues when they were subsequently presented in new predictive cue-outcome 

relationships, also presented individually. In addition, Livesey et al. (2011) found that relative 

predictiveness, within a trial, produced by presenting a predictive and non-predictive cue 

simultaneously on each learning trial, was no more or less effective at generating LP effects than 

absolute predictiveness produced by presenting two equally predictive cues together or two equally 

non-predictive cues together, a result replicated with a similar design by Kattner (2015). This 

suggests that the processes responsible for the LP effect are still yet to be fully determined. 

 In one of the experiments reported by Livesey et al. (2011; Experiment 2), the associability 

of previously predictive and non-predictive cues was tested against control cues that were used in a 

biconditional discrimination. In a biconditional discrimination, pairs of cues predict the outcome on 

each trial but the cues are arranged in such a way that no single cue is correlated with a particular 

outcome (e.g. AB-O1, BC-O2, CD-O1, DA-O2). This control provides a condition in which the 

cues are equally relevant to the discrimination and thus must continue to be attended in order to 

learn the solution but do not individually predict a particular outcome. Livesey et al. found that 

there was more evidence of learning about predictive cues than biconditional cues when they were 

paired together in Stage 2. In contrast, non-predictive and biconditional cues appeared to be learned 

about to the same extent when they were paired together in Stage 2. These results were assessed by 

recombining cues in a subsequent test, as shown in Table 2, in which participants provided 

predictive ratings for each of the possible outcomes.  

 These results suggest that, despite being relevant to the discrimination, biconditional cues do 

not retain their associability in the same way as predictive cues that are individually associated with 

an outcome. In subsequent experiments, Livesey et al. (2011; and Kattner, 2015) also found that 

associability change is not based on relative predictiveness; cues occurring in compounds where 

each cue equally predicted the outcome were found to be just as associable as predictive cues 

trained with non-predictive competitor cues. Therefore the difference in associability between 
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predictive and biconditional cues is unlikely to be a consequence of the two biconditional cues 

being equally relevant and thus neither winning out over the other in competition for attention. The 

result suggests that it is the strong association with a specific outcome rather than relevance to 

solving the task that maintains high associability for predictive cues. 

Table 2 

Design used by Livesey et al. (2011, Experiment 2) 

Stage 1 Stage 2 Test Effect on  

Component Biconditional  (Summation trials) Summation trials 

     

AW – O1 JN – O1 AJ – O3 AD Prediction of O3: 

AX – O1 JO – O2 BK – O4 BC AD > JM 

BW – O2 KN – O2 CL – O4 JM Prediction of O4: 

BX – O2 KO – O1 DM – O3 KL BC > KL 

     

CY – O1 LP – O1 WN – O3 WZ Prediction of O3: 

CZ – O1 LQ – O2 XO – O4 XY WZ = NQ 

DY – O2 MP – O2 YP – O4 OP Prediction of O4: 

DZ – O2 MQ – O1 ZQ – O3 NQ XY = OP 

     

Note: Letters refer to individual cues, A-D: predictive components, W-Z: non-predictive 

components, J-Q: equally relevant stimuli from biconditional discrimination. O1, O2, O3, and O4 

refer to four neutral outcomes. The experiment contained three types of test trials (trained, 

summation and negation) but for simplicity we only show the summation trials here. 

 

 A different conclusion can be drawn from a study by Uengoer and Lachnit (2012). Their 

results indicated that associability is higher for biconditional cues than non-predictive cues, while 

predictive and biconditional cues did not seem to differ in their associability (see also, Kruschke, 

1996). Uengoer and Lachnit trained participants to categorize stimuli that varied on two dimensions 

(e.g., colour and shape). In Stage 1, participants either received a “component” discrimination for 

which cues belonging to one dimension were predictive of category membership and cues from the 

other dimension were non-predictive, or were trained with a biconditional discrimination in which 

category membership depended on the combination of cues from both dimensions. In Stage 2, all 

participants were trained with a component discrimination in which the stimuli were characterized 
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by novel cues from one of the previously trained dimensions and cues from a novel dimension (e.g., 

orientation). In this second discrimination, either the novel or previously trained dimension was 

predictive, and the other non-predictive, manipulated between experiments. In Experiment 1, the 

previously trained dimension was predictive in Stage 2 and the novel dimension was non-

predictive. Under these transfer conditions, the Stage 2 discrimination was acquired more rapidly 

when the previously trained dimension had formed part of a biconditional discrimination in Stage 1 

rather than the non-predictive dimension in a component discrimination. This result suggests that it 

was easier to attend to the Stage 1 biconditional dimension than to the Stage 1 non-predictive 

component dimension. In Experiment 2, the novel dimension was predictive in Stage 2 and the 

previously trained dimension was non-predictive. In contrast to Experiment 1, now acquisition of 

the second discrimination proceeded faster when the previously trained dimension constituted the 

Stage 1 non-predictive component dimension than when it was part of the Stage 1 biconditional 

discrimination. This result suggests that it was easier to learn to ignore the Stage 1 non-predictive 

component dimension than the Stage 1 biconditional dimension.  In both of their experiments, 

acquisition of the second discrimination was independent of whether one of the dimensions was 

previously trained as predictive for a component discrimination or as part of a biconditional 

discrimination (that is, the Stage 1 predictive component dimension and the Stage 1 biconditional 

dimension appeared to be equally easy to attend and equally easy to ignore). These results suggest 

that the relevance of a cue to solving the discrimiantion, rather than its correlation with a particular 

outcome, determines the associability of a cue in new learning (for a similar result in animal 

learning, see George & Pearce, 1999). 

 At face value, the results reported by Uengoer and Lachnit (2012; see also, Kruschke, 1996) 

and Livesey et al. (2011) appear to be in direct conflict. However, there are several important 

methodological differences between these studies (see Table 3 for a summary). Uengoer and 

Lachnit used cues that could be grouped according to particular dimensions, and different cues 
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belonging to the same dimension served the same functional role for the discrimination problem 

(predictive, non-predictive, or biconditional). In contrast, Livesey et al. used discrete cues (line 

drawings of objects) that were not easily grouped in this way. Uengoer and Lachnit also used a 

between-subjects design in which participants were only exposed to one type of discrimination 

during Stage 1, whereas Livesey et al. used a within-subjects design in which participants solved 

biconditional and component discriminations simultaneously. Importantly, Uengoer and Lachnit 

used accuracy during a Stage 2 learning task designed to result in positive versus negative transfer 

to test for associability changes whereas Livesey et al. used a subsequent ratings phase. This is 

noteworthy because the rating test trials differed to those used during Stage 2 learning and it is 

possible that generalization to these test trials might be affected by factors other than the strength of 

the associations of the individual cues.  

 To provide an example, take two Stage 2 compound trials presented in Livesey et al.’s 

(2011) Experiment 2, AJ - O3 and DM - O3, as shown in Table 2. On test, there were stronger 

learning scores for the compound AD than for JM because participants gave higher O3 predictive 

ratings and lower O4 predictive ratings when presented with AD. From this result we may infer that 

participants learned more about A and D than about J and M during Stage 2, as is the typical 

learned predictiveness conclusion. However this relies on an assumption that learning generalises 

equally to AD and JM. An alternative possibility is that participants recall that the solutions to the 

biconditional discriminations involving J and M in Stage 1 were not linearly solvable (i.e. the 

precise configurations of cues mattered for the solution) and thus they display less confidence in 

their predictions for JM than for AD. Participants may also infer that they should make the opposite 

prediction (that O4 should occur, following the structural properties of a biconditional 

discrimination) or that they should not make a differential prediction at all (either O3 or O4 could 

occur with equal likelihood since the compound has not been seen previously). The learning of the 

relational structure of the problems in Stage 1 could therefore produce this result without there 
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being a material difference in the attention paid to, or associability of, individual cues during 

learning. 

 

Table 3. 

Summary of methodology and results from Livesey et al. (2011) and Uengoer & Lachnit (2012) 

Study Design Cues Measure Associability results 

Livesey et al. (2011) Within-

subjects 

Discrete Subsequent 

test phase 

Predictive > Biconditional = Non-predictive 

Uengoer & Lachnit (2012) Between-

subjects 

Dimensions Subsequent 

learning phase 

Predictive = Biconditional > Non-predictive 

 

 In summary then, there are two issues with basing conclusions solely on the test phases used 

in the Livesey et al. (2011) experiments. The first is that participants may learn some or all of the 

relational structure of the biconditional discrimination, which may affect the way that the learner 

generalises new information that is subsequently learned about those cues. Second, there may be a 

more general reduction in confidence in using new information learned about previous 

biconditional cues because the biconditional discrimination is more difficult and more complex to 

solve. The effect reported by Livesey et al. thus requires replication using a test that does not 

involve generalization of new learning to novel compounds. It also remains to be seen whether 

participants readily learn the structural properties of the biconditional discrimination and generalize 

them to new learning. 

 In three experiments, we investigated transfer of learning from component and biconditional 

discriminations. Participants first learned several linearly solvable component discriminations, in 

which one of the cues in each compound is predictive of the correct outcome and the other cue was 

non-predictive, as well as biconditional discriminations, where only the configuration of both cues 

is predictive of the correct outcome.  In Experiment 1, this Stage 1 training, which is conceptually 

equivalent to the design used by Livesey et al. (2011), was followed by different Stage 2 tasks 
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designed to test for transfer effects using a similar logic to those employed by Uengoer and Lachnit 

(2012). In Experiments 2 and 3, we then tested directly for the possibility of changes in 

generalization and performance based on learning the relational structure of the biconditional and 

component discriminations. For instance, in Experiment 2, we were interested in whether learning 

that a cue was involved in a biconditional discrimination in Stage 1 made it relatively easy to learn 

about that cue in a new biconditional discrimination in Stage 2, compared to a cue that was instead 

involved in a component discrimination in Stage 1. Experiment 3 then provided a complementary 

test of transfer to linearly solvable component discriminations in Stage 2. In each experiment, we 

tested outcome prediction accuracy as well as prediction confidence throughout Stage 2 training. As 

noted above, differences in relative confidence about certain cues may impact upon how they are 

learned in the second task. Additionally, some recent studies have focused on the effects of 

prediction error and uncertainty on the attention paid to predictive cues (e.g. Beesley, Nguyen, 

Pearson, & Le Pelley, 2015; Griffiths, Johnson & Mitchell, 2011). While all the relationships in this 

task were objectively deterministic (that is, in all instances, pairs of cues perfectly predicted one 

outcome), they may not be experienced with equally certainty, especially since we anticipated that 

biconditional discriminations would be more difficult than component discriminations. We expect 

transfer effects that are driven by subjective uncertainty to be accompanied by distinct differences 

in confidence, particularly early in Stage 2 learning. In contrast, transfer effects based on simple 

attentional changes or relational structure may not have a clear relationship with differences in 

confidence.  

 

Experiment 1 

Experiment 1 re-examined the difference in associability between predictive, non-predictive and 

biconditional cues reported by Livesey et al. (2011), but this time using performance in Stage 2 
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learning as the critical test, to be consistent with past studies that have found positive transfer for 

stimuli relevant to the solution of a biconditional discrimination (Kruschke, 1996; Uengoer & 

Lachnit, 2012). Participants first completed typical learned predictiveness component 

discriminations and biconditional discriminations, which were intermixed. In Stage 2, all 

participants learned four new component discriminations, in which predictive and non-predictive 

cues from the Stage 1 component discriminations were trained in new compounds with cues used in 

the Stage 1 biconditional discriminations.  In two of these discriminations, the Stage 1 biconditional 

cues were now the predictive cues to which participants must attend to learn the new outcome 

associations, and the cues from the Stage 1 component discriminations (either predictive or non-

predictive) were uninformative. In the other two discriminations, the cues used in the Stage 1 

component discrimination (either predictive or non-predictive) were now the relevant cues and the 

biconditional cues were uninformative.  

 

Table 4.  

Stage 1 and Stage 2 training contingencies used in Experiment 1. 

Stage 1 Stage 2 

Component Biconditional  

Stage 1 

component is 

now predictive 

Stage 1 

biconditional is 

now predictive  

     

AW – O1 JN – O1 Stage 1 predictive AJ – O3 BK – O3 

AX – O1 JO – O2 components and AL – O3 BM – O4 

BW – O2 KN – O2 Stage 1 biconditional CJ – O4 DK – O3 

BX – O2 KO – O1  CL – O4 DM – O4 

     

CY – O1 LP – O1 Stage 1 non-predictive WN – O4 XO – O4 

CZ – O1 LQ – O2 components and WP – O4 XQ – O3 

DY – O2 MP – O2 Stage 1 biconditional YN – O3 ZO – O4 

DZ – O2 MQ – O1  YP – O3 ZQ – O3 

     

Note: Letters refer to individual cues, A-D: predictive components, W-Z: non-predictive 

components, J-Q: equally relevant stimuli from biconditional discrimination. O1, O2, O3, and O4 

refer to four neutral outcomes. 
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Method 

 Participants. A total of 61 undergraduate students from the University of Sydney (n=33) 

and the University of Marburg (n=28) participated in the experiment in return for course credit or 

payment. In this and the subsequent experiments, we applied a Stage 1 performance criterion to 

ensure that only participants who learned about both the component and biconditional 

discriminations were used in the final analysis (we would not expect to see transfer effects in Stage 

2 from participants who did not learn these discriminations in Stage 1).  If a participant did not 

reach at least 60% mean accuracy on both the component and biconditional discriminations in the 

final quarter of Stage 1 then they were excluded from the analysis. Eleven participants failed to 

reach one or both of these 60% cut-offs. Data collection continued until there were 50 participants 

who passed both of these criteria (41 female, mean age = 22.4 years). Ethical approval for the 

methods used all experiments was obtained from the University of Sydney Human Research Ethics 

Committee. 

 Stimuli, Apparatus and Design. The learning task was presented in the context of a food 

allergist scenario. Each food cue was presented as a 300 x 300 pixel colour image, with the name of 

the food printed underneath. The foods used were Apple, Avocado, Banana, Bread, Cheese, 

Chicken, Coffee, Corn, Eggs, Fish, Garlic, Lemon, Milk, Mushrooms, Pasta, and Peanuts, randomly 

allocated to serve as cues A-Z for each participant. The four allergic reaction outcomes were Fever, 

Headache, Nausea, and Rash randomly allocated to serve as O1-O4 for each participant. The food 

cue and allergy outcome names, as well as all other text and instructions, were presented in English 

for the University of Sydney students and in German for the University of Marburg students. 

 The design of the experiment, which is shown in Table 4, was completely within-subjects. 

In Stage 1, there were four discriminations (two component, two biconditional), and each 

discrimination involved four compounds with overlapping sets of cues such that each cue appeared 

in two different compounds. Thus the only difference between the component discriminations and 

the biconditional is that the component discriminations are linearly solvable (e.g. A predicts O1, B 
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predicts O2) whereas the biconditional discriminations are only solvable on the basis of the 

compounds (e.g. JN predicts O1, JO predicts O2, KN predicts O2, KO predicts O1). In Stage 2, a 

further four discriminations were presented, each comprising a recombined set of the cues used in 

Stage 1. This time, all four were linearly solvable component discriminations with two predictive 

and two non-predictive cues. The four discriminations differed in terms of the roles that the 

predictive and non-predictive cues served in Stage 1. 

 Procedure. Participants were first given typical "allergist task" instructions asking them to 

play the role of a doctor trying to predict a patient's allergic reactions based on the foods that they 

have eaten. On each trial of Stage 1, they observed two foods eaten by Patient X and were asked to 

predict which allergic reaction the patient would suffer as a consequence. Each trial began with a 

blank intertrial interval of 0.5 seconds, followed by the presentation of the food cues, then followed 

0.5 seconds later by the presentation of the two outcome choices (O1 and O2). Participants used the 

mouse to click on their preferred option. The outcome options then disappeared and the allergic 

reaction suffered by Patient X was shown along with corrective feedback ("correct" / "incorrect"), 

which was presented for 2 seconds. Participants completed 16 blocks of trials in Stage 1, with each 

of the 16 Stage 1 trial types shown in Table 4 presented once per block in a randomised order. 

Participants were thus learning two component discriminations and two biconditional 

discriminations concurrently, with 64 trials presented for each discrimination. 

 At the beginning of Stage 2, participants were told that they now have a new Patient Y who 

is suffering from different allergic reactions. They were instructed that they would again be trying 

to predict which allergic reactions Patient Y would suffer after eating foods but that the reactions 

would be different, and that the way in which they made outcome predictions would also be 

different. In Stage 2, instead of choosing between two vertically positioned outcomes, participants 

indicated both their prediction and confidence using a split ratings scale. The scale was displayed 

horizontally, with confident choices in O3 and O4 at the left and right extremes, and unconfident 

guess responses in the middle of the scale. However, the scale was split in half in the middle to 
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make it clear that participants were still predicting O3 or O4 even if they were just guessing (see 

Figure 1). Instructions and visual examples showing how to make ratings were shown at the 

beginning of Stage 2. Participants then completed 12 blocks of the Stage 2 trials, with each block 

containing one presentation of each of the Stage 2 trial types shown in Table 4 in a randomised 

order. 

 
 

Figure 1. Example of stimulus presentation and response scales used in Stage 2 of each experiment. 

Participants used the scale to indicate both their outcome prediction and their confidence in that 

prediction. 

 

Results 

Figure 2 shows the prediction accuracy for each type of discrimination in Stage 1 averaged into four 

equal blocks of training. Each of these blocks thus contains four repeats of each trial type, which 

amounts to 32 trials when collapsed into Component versus Biconditional in Stage 1. Figure 3 

displays prediction accuracy and confidence in Stage 2 averaged into four equal blocks for four 

within-subjects conditions. As noted above, in addition to outcome predictions, in Stage 2 we also 

measured confidence using continuous ratings, where ratings in the centre of the scale indicated 

lowest confidence and ratings at the left or right extremes indicated maximum confidence. We 

converted these confidence ratings, irrespective of accuracy, to a simple from 0-100. Accordingly, 
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mean confidence ratings across Stage 2 are also shown in Figure 3.1 Discriminations involving 

Stage 1 Predictive Component and Biconditional cues, where the Component is predictive in Stage 

2 and discriminations involving Stage 1 Predictive Component and Biconditional cues, where the 

Biconditional is predictive in Stage 2, are shown in panels A (prediction accuracy) and C 

(confidence ratings). Discriminations involving Stage 1 Non-Predictive Component and 

Biconditional cues, where the Component is predictive in Stage 2, and discriminations involving 

Stage 1 Non-predictive Component and Biconditional cues, where the Biconditional is predictive in 

Stage 2 are shown in panels B (prediction accuracy) and D (confidence ratings). Each of these 

blocks contains three repeats of each trial type, which amounts to 12 trials for each of the four 

conditions. 

Stage 1 prediction accuracy. Looking at Figure 2, and consistent with past results (e.g. 

Livesey et al., 2011; Saavedra, 1975), prediction accuracy in Stage 1 was consistently higher for the 

Component discriminations than for the Biconditional discriminations. A 2 x 4 repeated measures 

ANOVA with discrimination (Component vs Biconditional) and Block (1-4) as factors confirmed 

that this difference between the Stage 1 discriminations was significant, F(1,49) = 28.34, p < .001, 

𝜂𝑝
2 = .366. In this and all subsequent ANOVA, we report the linear and quadratic trends across 

Block rather than the main effect, as these trends are more readily interpretable as evidence of 

improvement across trials. The linear and quadratic trends across Block were both highly 

significant, F(1,49) = 432.37, p < .001, 𝜂𝑝
2 = .898, F(1,49) = 10.31, p = .002, 𝜂𝑝

2 = .174, 

respectively. The quadratic trend in block also interacted with Discrimination, F(1,49) = 7.67, p = 

.008, 𝜂𝑝
2 = .135. 

                                                        
1 We also used the combination of prediction accuracy and confidence to create a continuous 

learning score, as has been used in some previous studies. However, since the results from this 

learning score yielded essentially the same pattern as prediction accuracy alone, we have not 

reported them here. 
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Figure 2. Prediction accuracy for component and biconditional discriminations across Stage 1 of 

Experiment 1, divided into four equal blocks. Within-subjects error bars were calculated here and in 

all subsequent figures following Cousineau (2005). 

  

 Stage 2 analysis. In Stage 2, a comparison between the discriminations in which Stage 1 

biconditional cues are now predictive and the discriminations in which the Stage 1 component cues 

are now predictive provides the critical indication of transfer effects caused by the learning history 

of the cues in each type of discrimination. We will refer to this as an effect of Stage 1 

Discrimination. A learned predictiveness effect manifests as positive transfer for previously 

predictive cues and/or negative transfer for previously non-predictive cues (e.g. Livesey & 

McLaren, 2007; Lochman & Wills, 2003). We thus have reason to expect an interaction between 

Stage 1 Discrimination and whether the component cue included in each Stage 2 compound was 

previously predictive or previously non-predictive. We will refer to this second factor as Stage 1 

Component Predictiveness. Based on Livesey et al.'s (2011) results, we would expect to see an 

interaction between these two factors, and in particular, higher accuracy for the Stage 2 

discrimination in which the Component cue was predictive in Stage 1 and predictive again in Stage 
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2. For both prediction accuracy and confidence, we tested this interaction using 2 x 2 x 4 repeated 

measures ANOVAs with Stage 1 Discrimination (Component vs Biconditional), Stage 1 

Component Predictiveness (Predictive vs Non-predictive) and block (1-4) as factors. 

 

Figure 3. Prediction accuracy (panels A & B) and confidence (panels C & D) in Stage 2 of 

Experiment 1. Each panel shows one condition in which Stage 1 component cues were predicitve 

and one condition in which Stage 1 biconditional cues were predictive. Panels A & C show 

conditions containing a Stage 1 predictive component, panels B & D show conditions containing a 

Stage 1 non-predictive component. Error bars indicate within-subjects error (Cousineau, 2005). 
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 Stage 2 prediction accuracy. Examining Figure 3A, accuracy was consistently higher for 

the discrimination in which the Component cue was predictive in both Stage 1 and Stage 2. There 

were significant linear and quadratic trends in block, F(1,49) = 229.09, p < .001, 𝜂𝑝
2 = .824, F(1,49) 

= 32.21, p < .001, 𝜂𝑝
2 = .397, respectively. These trends did not interact with the other factors, Fs < 

1. Importantly, while neither the main effect of Stage 1 Discrimination nor Stage 1 Component 

Predictiveness were significant on their own, larger F(1,49) = 1.34, p = .252, there was an 

interaction between these factors, F(1,49) = 5.86, p = .019, 𝜂𝑝
2 = .107. This indicates that the 

relative difficulty of a discrimination in which the Stage 1 Component cue was predictive versus a 

discrimination in which the Stage 1 Biconditional cue was predictive depended on whether the 

Stage 1 Component cue had been predictive or non-predictive. Analysis of simple effects showed 

an effect of Stage 1 Discrimination when the Component cue was predictive, F(1,49) = 5.89, p = 

.019, 𝜂𝑝
2 = .107, indicating the Stage 2 discrimination was easier when the Stage 1 Component cue 

was predictive and the Stage 1 Biconditional cue was non-predictive. In contrast, when the Stage 1 

component cue had been non-predictive there was no effect of Stage 1 Discrimination, F(1,49) = 

1.02, p = .318, 𝜂𝑝
2 = .02. We ran a follow up Bayes Factor (BF) t-test using Rouder et al.'s (2009) 

suggested JZS prior with scaling factor r = .707 (all BFs reported below use these same 

assumptions), to compare mean accuracy for the two discriminations that included Stage 1 non-

predictive component cues. This yielded a BF of 4.09 in favor of the null hypothesis, that the two 

discriminations were solved at the same rate.  

 Stage 2 confidence. Confidence followed the same pattern as accuracy. There were 

significant linear and quadratic trends in block, F(1,49) = 176.77, p < .001, 𝜂𝑝
2 = .783, F(1,49) = 

35.73, p < .001, 𝜂𝑝
2 = .422, respectively, and interaction between Stage 1 Discrimination and Stage 

1 Component Predictiveness, F(1,49) = 5.36, p = .025, 𝜂𝑝
2 = .025. There was an effect of Stage 1 

Discrimination when Component was previously predictive, F(1,49) = 5.93, p = .019, 𝜂𝑝
2 = .108, but 
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no difference when component was previously non-predictive, F(1,49) = .83, p = .366, BF = 4.39 in 

favor of the null. 

 Relationship with Stage 1 performance. As expected, there was a notable difference in 

Stage 1 accuracy for learning the component and biconditional discriminations. This raises the 

possibility that the advantage observed in Stage 2, when a previously predictive component cue 

again served as the predictive cue, is a direct consequence of this difference in mastering the Stage 

1 task. For reasons that will become clearer in the context of Experiment 2, we were also interested 

in how the Stage 2 transfer effects related to overall performance in Stage 1. To examine these 

relationships, we computed a difference score that reflects the key finding from Stage 2; for each 

participant, we took the mean difference, collapsing across blocks, between the two lines illustrated 

in Figure 3A. That is, we took the mean accuracy for the Stage 2 discrimination in which the 

predictive cues had also been predictive in Stage 1, and subtracted mean accuracy for the Stage 2 

discrimination in which the predictive cues had been biconditional cues in Stage 1 and the non-

predictive cues had been predictive in Stage 1. We ran two simple liner regressions with this Stage 

2 difference score as the dependent variable regressed against 1) the difference in mean accuracy for 

Stage 1 component and Stage 1 biconditional discriminations and 2) overall mean accuracy for all 

Stage 1 discriminations. Difference in accuracy for component and biconditional discriminations in 

Stage 1 did not predict the magnitude of the critical transfer effect, F(1,48) < 0.1, R2 < .001, nor did 

overall mean accuracy, F(1,48) = 0.948, p = .335, R2 = .019. It thus appears that the associability 

advantage observed here for previously predictive cues over biconditional cues is not closely related 

to overall Stage 1 performance. 

Discussion 

The result of main interest in Experiment 1 is the relative difficulties of the Stage 2 discriminations, 

especially those evident in Figure 3A. Accuracy was relatively high for the Stage 2 discrimination 

in which the predictive components had also served as predictive components in Stage 1, and the 
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non-predictive components had served as biconditional cues in Stage 1. This discrimination 

generated significantly higher performance than one in which the functional role of these cues in 

Stage 2 was swapped (i.e. the predictive components in Stage 2 had been biconditional cues in 

Stage 1 and the non-predictive components had been predictive components in Stage 1). This result, 

which suggests higher associability for predictive components than for biconditional cues, was not 

apparent in the discriminations containing other Stage 1 biconditional cues paired with Stage 1 non-

predictive components. For these discriminations, we found equivalent performance on the 

discrimination in which the Biconditional cues now served as predictive components relative to the 

discrimination in which the Biconditional cues now served as non-predictive components. 

 These results are consistent with those of Livesey et al. (2011, Experiment 2), which found a 

similar advantage in Stage 2 learning for Stage 1 predictive components trained with Stage 1 

biconditional cues, but equivalent learning for Stage 1 non-predictive components trained with 

Stage 1 biconditional cues. However, whereas their result relied upon predictive ratings made at test 

in response to new combinations of cues, here we have demonstrated the effect in performance 

during learning. In doing so, we can rule out an explanation in terms of the participant generalising 

differently to new compounds at test depending on the functional roles of the cues in Stage 1. As 

noted in the introduction, learning the relational structure of the component and biconditional 

discriminations may provide an impetus to be more cautious or even to make completely different 

inferences about the recombination of biconditional cues compared to component cues, even though 

the Stage 2 discriminations are linearly solvable and can be learned via a simple summation of the 

associations of the cues with the outcomes. 

 The differences between discriminations in Stage 2 reveal transfer effects caused by the 

functional role that cues played in Stage 1. Specifically, what differed between the predictive and 

non-predictive cues was whether they had been used in a component or biconditional discrimination 

in Stage 1 and, if a component discrimination, whether they were predictive or non-predictive in 
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Stage 1. But in Stage 2, all four discriminations were linearly solvable component discriminations 

with two predictive cues and two non-predictive cues. This is important to note because it is still 

possible that learning the structure of the biconditional discrimination at a more relational level may 

hinder later learning about the cues on which that structure is based. For instance, learning that cue 

J is involved in a biconditional discrimination in Stage 1 and that its predictive properties are 

complex and conditional may hinder the individual's ability to use that cue as a predictive 

component in Stage 2. For this reason, it is important to examine whether relational learning is 

widespread in this task and whether we can find direct evidence that it affects subsequent learning 

about specific cues. 

 Thus while the main result from Experiment 1 strongly suggests differences in the rate of 

learning about previously predictive component cues compared to biconditional cues, it does not 

rule out the possibility that participants learn something about the relational structure of these 

discriminations, and that this affects the way they learn and make predictions during Stage 2 

training. This possibility was investigated in the following two experiments.  

 Experiments 2 and 3 were designed to test for positive transfer based on the relational 

structure of the discriminations in Stage 1 rather than the associability of the individual cues. The 

two experiments tested complementary questions. First, are Stage 1 biconditional cues easier to 

learn about than Stage 1 component cues when used in separate biconditional discriminations in 

Stage 2? Second, are Stage 1 component cues (irrespective of their functional role as predictive or 

non-predictive) easier to learn about than Stage 1 biconditional cues when used in separate 

component discriminations in Stage 2? These questions are addressed by Experiments 2 and 3, 

respectively. In both experiments, Stage 1 cues were recombined into novel compounds in Stage 2. 

Two discriminations in Stage 2 were composed solely of Stage 1 biconditional cues, and two 

discriminations were composed solely of Stage 1 component cues, one of which contained 

predictive component cues, and the other non-predictive component cues.   
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Experiment 2 

 In Experiment 2, Stage 2 comprised four biconditional discriminations, as shown in Table 5. 

If participants have learned about the structural qualities of the solution that is necessary for the 

biconditional discrimination then we might observe positive transfer for the discriminations that 

contain Stage 1 biconditional cues. This learning may be complex and relational in a true sense, for 

instance an understanding that the cues are organised in groups of four and that the correct outcome 

is determined by the individual combinations within those groups, or it could be based on a more 

simple heuristic, for instance, "I can't assume that cheese eaten in one food combination will cause 

the same allergic reaction as cheese eaten in a different combination, I need to learn about the 

combinations".  

 Importantly, in this study, evidence of positive transfer in Stage 2 necessitates that structural 

learning is cue-specific to some degree. Other studies have examined the learning and use of 

structural knowledge of this form in patterning and biconditional discriminations (e.g. Cobos et al., 

2017; Don et al., 2015, 2016; Harris & Livesey, 2008; Shanks & Darby, 1998; Wills et al., 2011a, 

2011b), but usually in a context in which all cues in the initial stage of learning abide by (or at least 

are potentially consistent with) the underlying relational rules of the complex discrimination. 

Understanding of the structural rules is assessed by examining how well participants transfer these 

rules to new cues that may or may not relate to one another in the same way. Thus there is an 

assumption that such learning is abstracted and does not rely on the specific cues in question. In 

these experiments, we are testing for cue-specific transfer, which may differentially affect how 

Stage 1 biconditional and Stage 1 component cues are learned about. While it is clear from previous 

studies that healthy adults are capable of learning transferrable relational knowledge about the 

structure of complex discriminations, in this case any relational knowledge that is completely 

abstract would be equally applicable to all cues in Stage 2 and thus transfer effects would not be 
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observed because each of the three classes of biconditional discrimination would benefit equally 

from that knowledge.  

 

Table 5 

Stage 1 and Stage 2 training contingencies used in Experiment 2. 

Stage 1 Stage 2 

Component Biconditional  
Component to 

biconditional 

Biconditional to 

biconditional  

     

AW – O1 JN – O1 (predictive AB – O3 JK – O3 

AX – O1 JO – O2 components) AD – O4 JM – O4 

BW – O2 KN – O2  CB – O4 LK – O4 

BX – O2 KO – O1  CD – O3 LM – O3 

     

CY – O1 LP – O1 (non-predictive WX – O4 NO – O4 

CZ – O1 LQ – O2 components) WZ – O3 NQ – O3 

DY – O2 MP – O2  YX – O3 PO – O3 

DZ – O2 MQ – O1  YZ – O4 PQ – O4 

     

Note: Letters refer to individual cues, A-D: predictive components, W-Z: non-predictive 

components, J-Q: equally relevant stimuli from biconditional discrimination. O1, O2, O3, and O4 

refer to four neutral outcome 

 

 Regardless of the potential for this type of learning and transfer, we can assume that 

individual cue associability will be different for predictive, non-predictive and biconditional cues. 

However, because the cues are recombined in independent discriminations, these differences do not 

predict transfer effects in the same way as in Experiment 1. It is possible that cues of higher 

associability (e.g. Stage 1 predictive component) may be faster to learn about than cues of lower 

associability (e.g. Stage 1 non-predictive component cues) but since the individual cues do not 

predict a specific outcome in Stage 2, this will not necessarily benefit acquisition or performance 

and, indeed, could have the opposite effect if attention to individual cues interferes with learning 

about cue compounds. Importantly, any direct influence of individual cue associability on the 

learning of the biconditional discrimination should be evident in a difference in performance 
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between the Stage 2 discriminations using Stage 1 predictive versus Stage 1 non-predictive cues. If 

these two discriminations yield equal performance but learning is faster for the discrimination using 

Stage 1 biconditional cues then it suggests positive transfer based on the learning of something 

other than simple cue predictiveness.  

Work on relational rule discovery in other learning paradigms has clearly demonstrated that 

not all individuals identify abstract relations or transfer them to new situations to the same degree 

(e.g. Goldwater et al., 2018; McDaniel et al., 2014). Indeed, Shanks & Darby (1998) found that 

efficiency in learning patterning discriminations during initial training predicted the transfer of the 

structural patterning rule to new cues. Efficient learners, who performed well during training 

showed much stronger evidence of rule transfer. Other studies using the Shanks-Darby patterning 

task have found that the learning of relational patterning rules is associated with higher working 

memory capacity, stronger cognitive reflection, and greater model-based choice on instrumental 

decision tasks (Don et al., 2015, 2016; Wills et al., 2011a, 2011b). The structural transfer effect that 

we tested for in this experiment may have different properties since it is necessarily cue-specific 

rather than completely abstract. Nevertheless an effect may be confined to a subset of individuals 

who engage in the task differently (or alternatively, simply learn faster) than others. To investigate 

this, we ran a simple regression testing for the relationship between Stage 2 transfer and Stage 1 

accuracy, similar to that performed in Experiment 1, but for illustrative purposes, we also examined 

groups divided by a median split based on performance in Stage 1. 

Method 

Participants. For each of Experiments 2 and 3, we continued testing until we had data from 

52 usable participants. In Experiment 2, a total of 62 undergraduate students (31 from the 

University of Marburg and 31 from the University of Sydney) participated in the experiment. Ten 

participants failed to satisfy the Stage 1 learning criteria used in the previous experiments (60% 
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accuracy in the final quarter for both component and biconditional discriminations). All analyses 

were run on the resulting sample of 52 participants (34 female, mean age = 20.9 years). 

Stimuli, Apparatus, Design and Procedure. Experiment 2 used the same stimuli and 

apparatus as Experiment 1. The design was the same with the exception that cues were grouped 

differently in Stage 2. Following Table 5, four biconditional discriminations were constructed by 

recombining either Stage 1 biconditional cues or Stage 1 component cues. For the recombined 

component cues, one discrimination was composed of previously predictive component cues and 

the other was composed of previously non-predictive component cues. Participants completed the 

experiment following the same procedure used in Experiment 1. 

 

Results 

Stage 1 prediction accuracy. Looking at Figure 4A, prediction accuracy in Stage 1 was 

again consistently higher for the Component discriminations than for the Biconditional 

discriminations. A 2 x 4 repeated measures ANOVA with Discrimination (Component vs 

Biconditional) and Block (1-4) as factors confirmed this, with a significant main effect of 

Discrimination F(1,51) = 68.28, p < .001, 𝜂𝑝
2 = .572. The linear and quadratic trends across Block 

were both highly significant, F(1,51) = 394.69, p < .001, 𝜂𝑝
2 = .886, F(1,49) = 8.48, p = .005, 𝜂𝑝

2 = 

.143. The quadratic trend in block also interacted with Discrimination, F(1,49) = 5.14, p = .028, 𝜂𝑝
2 

= .092. 
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Figure 4. Stage 1 prediction accuracy (panel A), Stage 2 prediction accuracy (Panel B) and 

confidence (Panel C) in Experiment 2. Error bars indicate within-subjects error (Cousineau, 2005). 

 

Stage 2 analysis. In Stage 2, there were three classes of discrimination defined in terms of 

the functional role that the cues had played in Stage 1 (predictive component cues, non-predictive 

component cues, and biconditional cues). Analyses were organised to test the hypothesis that a 

biconditional discrimination in Stage 2 would be easier to learn if based on cues that were 

previously involved in a biconditional discrimination in Stage 1, but also to test whether the 
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individual cue associability changes led to differences in the difficulty of learning a biconditional 

discrimination. We constructed two orthogonal contrasts for Stage 2 discrimination, the first 

comparing performance on Stage 1 biconditional to the other two, the second comparing Stage 1 

Predictive component to Stage 1 non-predictive component. These contrasts were applied to each of 

the Stage 2 dependent variables. 

Stage 2 prediction accuracy. Examining Figure 4B, accuracy was initially higher for the 

biconditional discrimination comprising cues that had also served as biconditional cues in Stage 1, 

however this effect disappeared relatively quickly. There were significant linear and quadratic 

trends in Block, F(1,51) = 132.45, p < .001, 𝜂𝑝
2 = .722, and F(1,51) = 10.43, p = .002, 𝜂𝑝

2 = .17, 

respectively. The contrast comparing Stage 1 Biconditional cues to the Stage 1 Predictive and Non-

predictive component cues significantly interacted with linear trend in block, F(1,51) = 10.75, p = 

.002, 𝜂𝑝
2 = .174, reflecting the pattern in Figure 4B in which Stage 1 Biconditional discrimination 

was initially learned about faster in Block 1 before the other discriminations caught up later in 

training. Indeed, follow-up block by block contrast analyses indicated that Stage 1 Biconditional 

accuracy was significantly higher in Block 1, F(1,51) = 7.96, p = .007, 𝜂𝑝
2 = .135, BF = 5.16 in 

favor of the alternative hypothesis that the conditions differ, but did not differ from the others in 

any other block, Fs <= 1.53, ps >= .222, BFs > 3.22 in favor of the null. The second contrast 

comparing Stage 1 Predictive and Stage 1 Non-predictive did not interact with the linear trend in 

block, F < 1. When averaged across blocks, neither of the contrasts on Stage 1 Discrimination 

approached statistical significance, Fs < 1. Taken together, these results suggest that there was an 

early advantage for learning the new biconditional discrimination if the cues had been involved in a 

biconditional discrimination in Stage 1, but that this advantage was transient, and not seen 

throughout the middle and later stages of training. 

 Stage 2 confidence. Confidence ratings are shown in Figure 4C and show a subtly different 

pattern. Confidence in the Stage 1 Biconditional discrimination was slightly lower than the other 
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two, despite accuracy being initially better on these trials. Again, linear and quadratic trends across 

Block were significant, F(1,51) = 99.37, p < .001, 𝜂𝑝
2 = .661, and F(1,51) = 22.41, p < .001, 𝜂𝑝

2 = 

.305, respectively. This time, however, there was a significant contrast comparing Stage 1 

Biconditional to the other two, F(1,51) = 6.48, p = .014, 𝜂𝑝
2 = .113, indicating that confidence in the 

Stage 2 discriminations containing biconditional cues was generally lower. The contrast comparing 

Stage 1 Predictive to Stage 1 Non-predictive cues was not significant, F(1,51) = 2.61, p = .112, 𝜂𝑝
2 

= .049, BF = 1.97 in favor of the null. 

The contrast comparing Stage 1 Biconditional to the other two discriminations interacted 

with linear trend in block, F(1,51) = 6.30, p = .015, 𝜂𝑝
2 = .11, this time indicating that the reduced 

confidence for Stage 1 Biconditional relative to the other discriminations actually increased across 

Stage 2 training. The contrast comparing Stage 1 Predictive and Stage 1 Non-predictive did not 

interact with block, F < 1. 

 Relationship with Stage 1 performance. We were again interested in whether the critical 

transfer effects observed in Stage 2 were related to overall performance in Stage 1, or the 

differences in performance on component and biconditional discriminations in Stage 1. Following 

the analyses conducted on Experiment 1, we ran two simple liner regressions with a Stage 2 

difference score as the dependent variable regressed against the difference in mean accuracy for 

Stage 1 component and Stage 1 biconditional discriminations and overall mean accuracy for all 

Stage 1 discriminations. The critical transfer effect in Stage 2 was the contrast reflecting the 

difference between Stage 1 biconditional, and the mean of Stage 1 predictive and Stage 1 non-

predictive conditions, which was strongest in Block 1. The Stage 2 difference score was therefore 

calculated as this difference in accuracy for Stage 1 biconditional and Stage 1 component cues in 

the first block of Stage 2. The difference in accuracy for component and biconditional 

discriminations in Stage 1 did not predict the magnitude of this difference score, F(1,50) = 2.28, p = 

.137, R2 = .044. The effect of overall Stage 1 mean accuracy was marginal, though still falling short 
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of statistical significance, F(1,50) = 3.79, p = .057, R2 = .071, β = .266, providing tentative evidence 

that mastery of the Stage 1 discriminations may be positively related to the magnitude of the 

transfer effect observed at the beginning of Stage 2.  Figure 5 displays the Stage 2 data from 

Experiment 2 split into two groups based on Stage 1 accuracy (median = 72.66%); a Low Stage 1 

Performance group who performed at or worse than the median (n=28) and a High Stage 1 

Performance group who performed above the median (n=24). The critical interaction effect was 

strongly significant in the High Stage 1 Performance group, F(1,23) = 21.88, p < .001, 𝜂𝑝
2 = .488, 

and did not approach significance in the Low Stage 1 Performance group, F < 1. 
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Figure 5. Stage 2 results for Experiment 2 split according to overall performance (mean prediction 

accuracy) in Stage 1. Error bars indicate within-subjects error (Cousineau, 2005). 

Discussion 

Experiment 2 revealed a cue-specific positive transfer effect between biconditional discriminations 

used in the first and second training stage. Performance on a biconditional discrimination in Stage 2 

was enhanced when the cues were involved in a biconditional discrimination in Stage 1, relative to 

biconditional discriminations involving previously predictive or previously non-predictive cues that 

were involved in linearly solvable component discriminations in Stage 1. To the best of our 

knowledge, this is the only demonstration of a within-participant (and thus completely cue-specific) 
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structural transfer effect of this nature. The positive transfer effect was transient, disappearing early 

in training, and was not accompanied by stronger confidence in the Stage 1 Biconditional 

discrimination relative to the other two. 

 In contrast, the Stage 2 biconditional discriminations comprising predictive component cues 

from Stage 1 were learned at the same rate as discriminations comprising non-predictive component 

cues from Stage 1. Thus, if these discriminations suffered from negative transfer then they did so at 

the same rate. If these cues acquired different properties as a consequence of their roles in Stage 1, 

for instance enhanced associability for predictive over non-predictive cues, then this had a neglible 

effect overall on participants' ability to learn about the cues in a biconditional discrimination. 

 Like other relational learning effects, it appears that the key structural transfer result from 

Experiment 2 was produced entirely by a subset of participants, namely the stronger learners who 

performed relatively well during Stage 1. We will return to the possible cause and implication of 

these results in the General Discussion. First, however, Experiment 3 provides a complement to this 

experiment, in which cues were transferred to linearly solvable component discriminations in Stage 

2. 

Experiment 3 

Experiment 3 provided a similar test to Experiment 2 but this time involved recombining the cues 

for use in component discriminations rather than biconditional. This design differed from that used 

in Experiment 1 in that rather than putting cues from different Stage 1 discriminations in direct 

competition for learning, they were grouped according to their functional role in Stage 1, just as 

they had been in Experiment 2. This is shown in Table 6. We used four possible recombinations of 

the Stage 1 predictive component cues. This is because the consistent associations of these cues 

with particular Stage 1 outcomes (i.e. O1 and O2) can create the potential for outcome equivalence 

effects (e.g. see Le Pelley & McLaren, 2003). 
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Table 6 

Stage 1 and Stage 2 training contingencies used in Experiment 3. 

Stage 1 Stage 2 

Component Biconditional 
Component to 

component 

Biconditional to 

component 

       

  
(four possible recombinations for                 

the predictive components) 
 

AW – O1 JN – O1 AC – O3 AC – O4 AB – O3 AB – O4 JK – O3 

AX – O1 JO – O2 AD – O3 AD – O3 AD – O3 AD – O3 JM – O3 

BW – O2 KN – O2 BC – O4 BC – O4 CB – O4 CB – O4 LK – O4 

BX – O2 KO – O1 BD – O4 BD – O3 CD – O4 CD – O3 LM – O4 

       

CY – O1 LP – O1    WX – O3 NO – O4 

CZ – O1 LQ – O2    WZ – O3 NQ – O4 

DY – O2 MP – O2    YX – O4 PO – O3 

DZ – O2 MQ – O1    YZ – O4 PQ – O3 

       

Note: Letters refer to individual cues, A-D: predictive components, W-Z: non-predictive 

components, J-Q: equally relevant stimuli from biconditional discrimination. O1, O2, O3, and O4 

refer to four neutral outcomes. 

Method 

Participants. A total of 68 undergraduate students (29 from the University of Marburg and 

39 from the University of Sydney) participated in the experiment. 16 participants failed to satisfy 

the Stage 1 learning criteria used in the previous experiments (60% accuracy in the final quarter for 

both component and biconditional discriminations). Testing continued until each of four 

counterbalancing conditions contained 13 participants who satisfied the learning criteria. All 

analyses were run on the resulting sample of 52 participants (38 female, mean age = 21.0 years). 

Stimuli, Apparatus, Design and Procedure. Experiment 3 used the same stimuli and 

apparatus as Experiments 1 and 2. The design was the same with the exception that cues and 

outcomes were again grouped differently in Stage 2. Following Table 6, four component 

discriminations were constructed by recombining cues in the same groups of four cues used in 

Experiment 2. Thus one discrimination was composed of previously predictive component cues, 

one composed of previously non-predictive component cues, and two composed of previously 
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biconditional cues. Four different recombinations of the predictive cues were used, counterbalanced 

between participants.2 The procedure was the same as that used in Experiments 1 and 2. 

Results 

Stage 1 prediction accuracy. Looking at Figure 6A, accuracy in Stage 1 was again 

consistently higher for the Component discriminations than for the Biconditional discriminations, 

with a significant main effect of Stage 1 Discrimination, F(1,51) = 86.07, p < .001, 𝜂𝑝
2 = .628. There 

was also a significant linear and quadratic trends in Block, F(1,51) = 486.88, p < .001, 𝜂𝑝
2 = .905, 

F(1,51) = 19.32, p < .001, 𝜂𝑝
2 = .275, respectively. The linear and quadratic trends in block both 

interacted with Stage 1 Discrimination, F(1,51) = 12.62, p = .001, 𝜂𝑝
2 = .198, F(1,51) = 4.53, p = 

.038, 𝜂𝑝
2 = .082, respectively. 

 Stage 2 analysis. The analyses of Stage 2 data in Experiment 3 were conducted in an 

identical fashion to those in Experiment 2. 

                                                        
2 These counterbalancing conditions fall into functionally equivalent pairs, two in which predictors 

of different outcomes in Stage 1 again predict different outcomes in Stage 2, and two in which 

predictors of the same outcome in Stage 1 predict different outcomes in Stage 2. The former pair 

have a higher potential for outcome equivalence effects. Therefore, it is worth noting that none of 

the effects of interest in Stage 2 learning interacted with counterbalancing condition when it was 

added as an additional between-subjects variable (either as a factor with 4 levels or a factor with 

two levels, grouping for this functional equivalence). 
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Figure 6. Stage 1 prediction accuracy (Panel A), Stage 2 prediction accuracy (Panel B) and 

confidence (Panel C) in Experiment 3. Error bars indicate within-subjects error (Cousineau, 2005). 

 

Stage 2 prediction accuracy.  Examining Figure 6B, Stage 2 accuracy for the different 

Stage 1 Discrimination conditions began and ended at roughly the same levels of performance, 

however there appeared to be at least some reduction in performance for the Stage 1 Biconditional 

condition relative to the other two through the middle of Stage 2, which may indicate a slower rate 

of acquisition. There were significant linear and quadratic trends in Block, F(1,51) = 197.05, p < 

.001, 𝜂𝑝
2 = .794, and F(1,51) = 27.04, p < .001, 𝜂𝑝

2 = .346, respectively. The contrast comparing 
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Stage 1 Biconditional cues to the Stage 1 Predictive and Non-predictive component cues 

significantly interacted with quadratic trend in block, F(1,51) = 4.832, p = .033, 𝜂𝑝
2 = .087, 

reflecting the pattern in Figure 6B in which performance on Stage 1 Biconditional discrimination 

was weaker in the middle blocks of Stage 2 but not the beginning or end. Follow-up contrast 

analyses taking an average of performance over the middle two blocks indicated that Stage 1 

Biconditional accuracy was significantly lower, F(1,51) = 5.52, p = .023, 𝜂𝑝
2 = .098, BF = 1.84 in 

favor of the alternative hypothesis, but did not differ from the others in the first and last blocks, F < 

1, BF = 5.47 in favor of the null. The second contrast comparing Stage 1 Predictive and Stage 1 

Non-predictive also produced a marginal but non-significant interaction with this quadratic trend in 

block, F(1,51) = 3.03, p = .088, 𝜂𝑝
2 = .056. Neither of the Stage 1 Discrimination contrasts 

interacted with linear trend in block, Fs < 1. When averaged across blocks, the contrast comparing 

Stage 1 Biconditional to the other two was marginal but non-significant, F(1,51) = 3.18, p = .08, 𝜂𝑝
2 

= .059, while the second contrast comparing Stage 1 Predictive and Stage 1 Non-predictive did not 

approach significance, F < 1. Taken together, these results suggest that there was at least some 

disadvantage for learning the new linearly solvable component discrimination in Stage 2 if the cues 

had been involved in a biconditional discrimination in Stage 1. This effect was transient, and only 

seen through the middle stages of training. 

Stage 2 confidence. Confidence ratings are shown in Figure 6C and appear to be very 

similar for the different Stage 1 Discrimination conditions. There were significant linear and 

quadratic trends for Block, F(1,51) = 152.67, p < .001, 𝜂𝑝
2 = .750 and F(1,51) = 49.40, p < .001, 𝜂𝑝

2 

= .492 respectively. However, these did not interact with either of the Stage 1 Discrimination 

contrasts, largest F(1,51) = 2.54, p = .117, 𝜂𝑝
2 = .047 for the interaction between Contrast 1 (Stage 1 

Biconditional vs others) and quadratic trend in Block. The Stage 1 Discrimination contrasts 

averaging across blocks were also non-significant, larger F(1,51) = 2.59, p = .113, 𝜂𝑝
2 = .048 for 

Contrast 2 (Stage 1 Predictive vs Stage 1 Non-predictive). 
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 Relationship with Stage 1 performance. As with the previous two experiments, we ran 

two simple liner regressions of a Stage 2 difference score based on the critical transfer effect 

regressed against the difference in mean accuracy for Stage 1 component and Stage 1 biconditional 

discriminations and overall mean accuracy for all Stage 1 discriminations. For Experiment 3, we 

calculated the difference score for the critical Stage 2 transfer effect using accuracy in the middle 

two blocks of Stage 2 and took the difference between the Stage 1 biconditional condition and the 

mean of the Stage 1 predictive and Stage 1 non-predictive conditions (i.e. again selecting the 

contrast that revealed strongest evidence of a transfer effect).  Difference in accuracy for component 

and biconditional discriminations in Stage 1 did not predict the magnitude of the difference score, 

F(1,50) < .01, R2 < .001, nor did overall mean accuracy, F(1,50) = 1.38, p = .246, R2 = .027. 

Therefore, similar to Experiment 1, it appears that the associability advantage observed here for 

previously predictive cues over biconditional cues is not closely related to Stage 1 performance. 

Discussion 

As in Experiment 2, we found evidence that cues involved in a Biconditional discrimination were 

treated differently during Stage 2 learning compared to cues involved in a linearly solvable 

component discrimination. This time, accuracy for the Stage 1 Biconditional condition was slightly 

worse during the middle two blocks of Stage 2 training. This negative transfer effect suggests at 

least some (albeit fairly transient) transfer of learning the structural properties of the discriminations 

in Stage 1. 

General Discussion 

This study confirmed that stimuli which have previously served as predictive cues in a linearly 

solvable component discrimination appear to gain greater associability than stimuli which have 

previously served as relevant cues in a biconditional discrimination. However, we also found novel 

evidence that knowledge about the relational structure of these learning tasks influences subsequent 

learning, in a way that might explain some of this difference in cue associability. As far as we 
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know, this result is novel in that it demonstrates cue-specific learning of structural relations in a 

within-subjects design. Other studies concerning relational discovery in this form of associative 

learning task have examined the propensity for such effects to be learned in abstract form and thus 

transferrable to other stimuli. We will first summarise the key findings before discussing their 

implications.  

 In each of three experiments, participants were initially trained with the same Stage 1 

learning tasks, comprising component discriminations, for which one set of cues was predictive of 

trial outcome and another set of cues was non-predictive, as well as biconditional discriminations 

for which trial outcome was signalled by the particular configurations of cues (all cues are relevant 

but none are predictive in isolation). In Experiment 1, we arranged new Stage 2 component 

discriminations composed of a cue that had previously served as a predictive component in Stage 1 

and a cue that had previously served as a biconditional cue in Stage 1. Acquisition proceeded faster 

when the Stage 2 predictive components had also been predictive components in Stage 1 compared 

to the Stage 2 discrimination in which predictive components had been biconditional cues in Stage 

1. In contrast, when Stage 2 components were composed of a cue that had previously served as a 

non-predictive component in Stage 1 and a cue that had previously served as a biconditional cue in 

Stage 1, learning appeared to be unaffected by the prior functional role of the cues. These 

discriminations were learned at an equal rate regardless of whether the predictive components were 

Stage 1 biconditional cues or Stage 1 non-predictive components. 

In Experiment 2, Stage 1 training was followed by several biconditional discriminations in 

Stage 2, each discrimination organised using cues that were solely from one functional class from 

Stage 1 (i.e. all predictive components, all non-predictive components, or all biconditional cues). In 

Stage 2, acquisition occurred at the same rate for a biconditional discrimination composed of Stage 

1 predictive cues and a biconditional discrimination composed of Stage 1 non-predictive cues. 

However, relative to these discriminations, we observed facilitation in Stage 2 for biconditional 
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discriminations composed of Stage 1 biconditional cues. This transfer effect occurred in the initial 

blocks of Stage 2 training and post hoc analyses suggested that those individuals with higher 

accuracy in Stage 1 were primarily responsible for producing it.  Experiment 3 used a conceptually 

very similar design except that participants received linearly solvable component discriminations in 

Stage 2 rather than biconditional discriminations. Like Experiment 2, in Stage 2, a component 

discrimination comprising previously predictive component cues was learned at the same rate as a 

component discrimination comprising previously non-predictive component cues. However, 

relative to these conditions, acquisition was slightly impaired when the component discrimination 

was created by recombining cues from the Stage 1 biconditional discriminations. This subtle 

transfer effect manifested in the middle of Stage 2 training and was not related to Stage 1 

performance. Thus although it is complementary to the transfer effect observed in Experiment 2, its 

characteristics were different. 

What do these results mean for changes in cue associability and their transfer to the learning 

of new associative relationships? The conflicting observations that motivated this study were 1) that 

learning a biconditional discrimination results in relatively low cue associability in subsequent 

learning, equivalent to that afforded to non-predictive component cues and less than that of 

predictive component cues (Livesey et al., 2011), and 2) that learning a biconditional discrimination 

results in relatively high associability of the relevant stimulus dimension, equivalent to that afforded 

to the predictive dimension in a component discrimination and more than that of a non-predictive 

dimension (Uengoer & Lachnit, 2012). There were substantial differences in the way these two 

prior studies tested for associability changes, Livesey et al. using a further test phase to separate the 

different types of cues that competed for association in Stage 2, Uengoer and Lachnit using relative 

difficulty of different Stage 2 discriminations to draw inferences about associability. The results of 

Experiment 1 were consistent with the Livesey et al. finding despite using relative difficulty of 

Stage 2 as the key indicator of associability and thus this experiment confirms that the discrepancy 
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in the results is not due to these different test methods. This is important because the test phase used 

by Livesey et al. assessed learning about individual cues by testing generalisation to new 

compounds, and thus cue-specific differences in generalization rather than associability could have 

produced an apparent deficit in learning about cues previously used in a biconditional 

discrimination. 

Although cue associability appeared to be relatively low for previously non-predictive 

component cues and previous biconditional cues, the reasons for this low associability may not be 

the same for both classes of cue. Experiments 2 and 3 suggest that other properties of the task such 

as structural aspects of the discriminations are also learned and may affect subsequent learning 

about the cues involved in those discriminations. The experiments suggest that, relative to cues that 

are predictive or non-predictive in a straightforward way, a cue that has been involved in a 

biconditional discrimination may be easier to learn about in subsequent biconditional 

discriminations and harder to learn about in linearly solvable component discriminations. While 

these effects were relatively fleeting compared to the consistent difference in cue associability 

observed in Experiment 1, they provide evidence suggestive of processing changes that are 

qualitatively different from those described by Mackintosh (1975) and other theories based on 

learned predictiveness principles.  

Recent literature has focused on the effects of uncertainty as a causal factor in generating 

enhanced attention for partially- or even non-predictive cues (e.g. Beesley et al., 2015; Griffiths, 

Johnson & Mitchell, 2011). The rationale, often invoked in conjunction with learning models in 

which attention to cues is proportional to prediction-error (Pearce & Hall, 1980), is that explorative 

learning processes should direct the individual's attention to cue-outcome relationships that still 

need to be learned rather than simply relying on exploiting those that are already learned well. 

Although the cues presented in the biconditional discrimination do not convey objective uncertainty 

about the outcome (the outcome is completely predictable based on the configuration of the cues), 
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performance was less than perfect and was worse on biconditional discrimination than on 

component discriminations in Stage 1. To the extent that prediction accuracy is proportional to the 

prediction error experienced by participants during Stage 1, participants would have experienced 

greater prediction error on biconditional discrimination trials than on the component discrimination 

trials. Could this difference have caused relative impairment for Stage 1 biconditional cues when 

used in Stage 2? For a number of reasons, we do not favour an explanation of these results in these 

terms. First, confidence ratings at the beginning of Stage 2 did not reveal any differences across any 

experiments. Second, in Experiments 1 and 3, any effect caused by reduced certainty about Stage 1 

biconditional cues that transfers to Stage 2 would have to have an effect on attention that runs 

opposite to the conventional prediction of such models.  

Two other proposed changes in cue processing are relevant to the results from these 

experiments. First, relational learning of the structural properties of a discrimination is well 

documented for other nonlinear problems, particularly positive and negative patterning. As noted, 

Shanks and Darby (1998) and several others since have found that a subset of generally high-

performing participants identified an abstract "opposites" rule that efficiently describes the 

structural relations involved in patterning discriminations and generalised this rule to new 

predictive cues in a way that dramatically changed their predictions on test. It is possible that 

similar structural characteristics are learned by some individuals when completing a biconditional 

discrimination. Humans and other animals typically find biconditional discriminations more 

difficult to acquire than patterning discriminations (Harris, et al., 2008; Harris & Livesey, 2008). 

The relations between cues in a biconditional discrimination are more complex and difficult to 

describe via a simple heuristic like the opposites rule (see Baetu et al., 2018). Thus it is debatable 

whether learning the relations involved in the structure of the biconditional task is as useful as in 

patterning, where it may be advantageous for overcoming the deleterious effects of summation on 

negative patterning, in particular (e.g. see Livesey, Thorwart & Harris, 2011; Thorwart et al., 2017). 
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Nevertheless, it is still possible that such learning occurs and that it could affect future processing of 

those cues in new learning tasks. It is worth noting that the evidence for these relational transfer 

effects comes from tasks where there are no contingencies that directly conflict with the relations in 

question. The current experiments differ in that the relations are specific to a subset of 

discriminations and, in fact, only a cue-specific transfer of such learning would result in differential 

performance in Stage 2 in Experiments 2 and 3. 

We have focused much of our discussion on how learning the relational structures present in 

Stage 1 might alter subsequent learning of those cues initially involved in biconditional 

discriminations. Of course, the component discrimination also follows a relational structure that 

could potentially be learned and transferred to new situations. It is worth considering whether all of 

the transfer effects observed across these experiments could be explained in terms of learning 

relational structure. We observed a considerably stronger transfer effect in Experiment 1 than in 

Experiment 3, which suggests that individuals do not learn a completely abstract relation such as "in 

any given pair, one cue is predictive and the other is irrelevant" that is retrieved when presented 

with a cue from a component discrimination. This would generate transfer effects in Experiment 3 

but not Experiment 1, where a component cue is present in all Stage 2 discriminations and thus the 

trial types in every discrimination could, in principle, retrieve the abstract relation. Alternatively, 

participants might retrieve cue-specific relational information on observing a previously predictive 

component that suggests that the other presented cue is irrelevant, regardless of its prior functional 

role. That is, observing cue A retrieves information that the learner should attend to A and ignore 

whatever else is presented. This would be more consistent with the transfer effect observed in 

Experiment 1, and potentially also the weaker pattern observed in Experiment 3, since information 

of this kind might cancel itself out if both of the cues presented in stage 2 combinations were 

previously predictive. But it is worth noting that this account is difficult to distinguish from the 
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conventional feature-driven explanation that learned predictiveness enhances attention paid to 

predictive stimuli, potentially at the cost of learning about other features presented at the same time. 

The second proposed change in cue processing that may result from learning complex 

discriminations is a change from elemental to configural processing. For instance, in reviewing a 

range of evidence from animal and human learning, Melchers, Shanks, and Lachnit (2008) argued 

that learning could shift dynamically between relying on elemental and configural cue 

representations, and that these shifts might be motivated by the functional role that cues served in 

prior learning or the subject's experience with configural (i.e. not linearly solvable) learning 

problems in similar contexts. Some criticism of this proposal was raised essentially because 

elemental models of associative learning do learn nonlinear problems (e.g. see Harris, 2006; Harris 

& Livesey, 2010; Thorwart, Livesey & Harris, 2012), and thus it is difficult to claim that experience 

with these problems should encourage configural processing, or that improvement on these 

problems constitutes evidence for configural processing (Livesey & Harris, 2008). Nevertheless a 

theoretically more neutral version of this hypothesis would put it that experience with nonlinear 

problems might change the extent to which learning about a cue among one set of stimuli 

generalises to the same cue among other sets of stimuli. This learning could also be stimulus-

specific, as would be necessary to explain the current results. Thus, perhaps experience learning 

about a cue in a configural problem affects processing of that cue such that it is treated in a more 

configural way in future learning episodes.  

Either of these two changes in the processing of cues and cue-outcome relationships could 

be relevant to the transfer effects observed in Experiments 2 and 3. In either case, it is interesting 

that the effects observed in Experiment 2, where a positive transfer effect was observed for Stage 1 

biconditional cues, were confined to high performing individuals whereas the effect observed in 

Experiment 3, where a negative transfer effect was observed for Stage 1 biconditional cues was 

general to high- and low-performing participants. The former result is consistent with previous 
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studies linking rule transfer to fast acquisition of patterning discriminations (Shanks & Darby, 

1998). It is not clear why these transfer effects should only be linked to Stage 1 performance in 

Experiment 2 and not Experiment 3 but we suggest that using relational knowledge to improve 

performance on a relatively difficult task (like the Stage 2 biconditional discriminations in 

Experiment 2) is cognitively more challenging and requires deliberate effort on the part of the 

participant. This assumes that the structural transfer effect we see in Experiment 2 is under high 

cognitive control, which is consistent with literature on the Shanks-Darby patterning task that 

suggests rule transfer is associated with working memory, cognitive reflection and other 

deliberative processes (Don et al., 2015; 2016; Wills et al., 2011a; 2011b). In contrast, the cue 

associability changes associated with the learned predictiveness effect do not appear to load on 

cognitive resources in the same way (Pinto, Vogel & Núñez, 2017). Although Mitchell et al. (2012) 

found that the learned predictiveness in one experiment was completely reversible by instructions, 

others have reported persistent resistance to instructed reversal (Don et al., 2015; Shone et al., 

2015). Baetu et al. (2018) found that improvements in performance completing the second of two 

successive biconditional discriminations were predicted by measures of fluid ability. Rather than 

concluding that this effect was based on rule-learning, they argued that this demonstrates flexible 

use of configural processing amongst individuals with higher cognitive capacities. Thus it is 

possible, for instance, that fast learners in our task engage more flexible stimulus representations in 

ways that are not related to rule learning per se. The learning tasks that we present here involve 

relatively complex designs, for instance, using more cue-outcome contingencies than most other 

studies we are aware of that examine the learning of biconditional discriminations. We can only 

speculate as to whether engaging in flexible stimulus processing to represent configurations of cues 

ought to require additional cognitive resources but, if this were the case, then we would expect 

individuals with stronger learning capacity to show the most pronounced transfer effects. 
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There are, of course, other important differences in the methodology used by this study and 

by Uengoer and Lachnit (2012). These experiments (and those reported by Livesey et al., 2011) 

were run completely within-subjects whereas Uengoer and Lachnit used a between subjects design. 

Unegoer and Lachnit also used features organised along coherent stimulus dimensions such that 

whole dimensions were relevant or irrelevant to the discrimination. The fact that these properties of 

the experiment make an important difference to the outcome highlights the need to better 

understand the underlying processes that lead to associability changes as the conventional 

theoretical approaches offered by formal models of attention-based associative learning do not 

speak to these issues directly. 
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