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Abstract. The existence of a Kodaira fibration, i.e., of a fibration of a com-
pact complex surface S onto a complex curve B which is a differentiable but
not a holomorphic bundle, forces the geographical slope ν(S) = c21(S)/c2(S)
to lie in the interval (2, 3). But up to now all the known examples had slope
ν(S) ≤ 2 + 1/3. In this paper we consider a special class of surfaces ad-
mitting two such Kodaira fibrations, and we can construct many new exam-
ples, showing in particular that there are such fibrations attaining the slope
ν(S) = 2 + 2/3. We are able to explicitly describe the moduli space of such
class of surfaces, and we show the existence of Kodaira fibrations which yield
rigid surfaces. We observe an interesting connection between the problem of
the slope of Kodaira fibrations and a ’packing’ problem for automorphisms of
algebraic curves of genus ≥ 2.
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1. Introduction.

It is well known that the topological Euler characteristic e is multiplicative for
fibre bundles and in 1957 Chern, Hirzebruch and Serre ([CHS57]) showed that
the same holds true for the signature σ if the fundamental group of the base acts
trivially on the (rational) cohomology of the fibre.

In 1967 Kodaira [Kod67] constructed examples of fibrations of a complex al-
gebraic surface over a curve which are differentiable fibre bundles for which the
multiplicativity of the signature does not hold true. In his honour such fibrations
are nowadays called Kodaira fibrations.

Definition 1.1 A Kodaira fibration is a smooth holomorphic fibration ψ : S → B
of a compact complex surface over a compact complex curve, which is not a (locally
trivial) holomorphic fibre bundle.

The hypothesis that ψ is a fibration means that every fibre F is connected, that
ψ is smooth means that every fibre F is nonsingular. We denote by g the genus of
F , respectively by b the genus of the base curve B.
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Note that by [F-G65] ψ is a holomorphic fibre bundle if and only if all the fibres
are isomorphic.

It is well known that one has a holomorphic bundle if the fibre genus g is ≤ 2,
and there are no singular fibres. Likewise the genus b of the base curve of a Kodaira
fibration has to be ≥ 2.

Atiyah and Hirzebruch ([At69], [Hirz69] ) presented variants of Kodaira’s con-
struction analysing the relation of the monodromy action to the non multiplicativity
of the signature.

Other constructions of Kodaira fibrations have been later given by Gonzalez-Diez
and Harvey and others (see [GD-H91], [Zaal95], [B-D02] and references therein) in
order to obtain fibrations over curves of small genus with fixed signature and fixed
fibre genus.

A precise quantitative measure of the non-multiplicativity of the signature is
given by the geographic slope, i.e., the ratio ν := c21(S)/c2(S) = K2

S/e(S) between
the Chern numbers of the surface: for Kodaira fibred surfaces it lies in the interval
(2, 3), in view of the well known Arakelov inequality and of the improvement by
Kefeng Liu ([Liu96]) of the Bogomolov-Miyaoka-Yau inequality K2

S/e(S) ≤ 3.
The basic problem we approach in this paper is : which are the slopes of Kodaira

fibrations?
This problem was posed by Claude Le Brun who raised the question whether

the slopes can be bounded away from 3: is it true for instance that for a Kodaira
fibration the slope is at most 2,91? In fact, the examples by Atiyah, Hirzebruch and
Kodaira have slope not greater than 2+1/3 = 2, 33 . . . (see [BHPV], page. 221) and
if one considers Kodaira fibrations obtained from a general complete intersection
curve in the moduli space Mg of curves of genus g ≥ 3, one obtains a smaller slope
(around 2,18).

Our main result in this direction is the following

Theorem A There are Kodaira fibrations with slope equal to 2 + 2/3 = 2, 66 . . . .

Our method of construction is a variant of the one used by Kodaira, and is briefly
described as follows: we consider branched coverings S → B1×B2 branched over a
smooth divisor D ⊂ B1×B2 such that the respective projections D → Bi are étale
(unramified) for i = 1, 2. We call these double étale Kodaira fibrations.

The advantage of this construction is that we are able to completely describe
the moduli spaces of these surfaces.

The starting point is the topological characterization (derived from [Kot99])
of the surfaces which admit two different Kodaira fibrations, called here double
Kodaira fibred surfaces .

Proposition 2.5 Let S be a complex surface. A double Kodaira fibration on S is
equivalent to the datum of two exact sequences

1 // Πgi
// π1(S)

ψ̄i // Πbi
// 1 i = 1, 2 ,

(here Πg denotes the fundamental group of a compact curve of genus g) such that:
(i) bi ≥ 2, gi ≥ 3,
(ii) the composition homomorphism

Πg1
// π1(S)

ψ̄2 // Πb2

is neither zero nor injective, and
(iii) the Euler characteristic of S satisfies

e(S) = 4(b1 − 1)(g1 − 1) = 4(b2 − 1)(g2 − 1).
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The above result shows that surfaces admitting a double Kodaira fibration form
a closed and open subset in the moduli spaces of surfaces of general type; since for
these one has a realization as a branched covering S → B1 × B2, branched over
a divisor D ⊂ B1 × B2, it makes sense to distinguish the étale case where D is
smooth and the two projections D → Bi are étale. It is not clear a priori that this
property is also open and closed, but we are able to prove it.

Theorem 6.4 Double étale Kodaira fibrations form a closed and open subset in the
moduli spaces of surfaces of general type.

We can speak then of the moduli spaces of double étale Kodaira fibred surfaces S:
they are given by a union of connected components of the moduli spaces of surfaces
of general type. We conjecture that these connected components are irreducible,
and we are able to prove this conjecture in the special case of standard double étale
Kodaira fibred surfaces, the case which is most interesting since we have there lots
of concrete examples.

To explain what we mean by the ‘standard’ case, the case where double étale
Kodaira fibrations are constructed starting from curves with automorphisms, let
us see how a double étale Kodaira fibration is related to a set of étale morphisms
between two fixed curves.

In fact, every component of the branch divisor D ⊂ B1×B2 is an étale covering
of each Bi, in particular of B1. Hence we can take an étale cover π : B̃1 → B1

dominating each of them; then the pullback, i.e., the fibre-product S′ := S×B1 B̃1,
‘is a double étale Kodaira fibration’ S′ → B̃1×B2 with the property that its branch
divisor D′ is composed of disjoint graphs of étale maps φi : B̃1 → B2.

The philosophy, as the reader may guess, is then: the larger the cardinality of
S = {φi} compared to the genus of B2, the bigger the slope, and conversely, once
we find such a set S we get (by the so-called tautological construction, described in
section 4) plenty of corresponding double (étale) Kodaira fibrations. If by a further
pullback we can achieve B1 = B2 = B and S ⊂ Aut(B), our question concerning
the slope of double Kodaira fibrations is related to the following question.

Question B Let B be a compact complex curve of genus b ≥ 2, and let S ⊂ Aut(B)
be a subset such that all the graphs Γs, s ∈ S are disjoint in B × B: which is the
best upper bound for |S|/(b− 1) ?

We find examples with |S|/(b− 1) = 3, and in this way we obtain the slope 8/3.
Conversely, it is interesting to observe that the cited upper bound for the slope
(ν(S) < 3) implies that |S|/(b− 1) < 8.

It would be desirable to find examples with |S|/(b−1) > 3, for instance examples
with |S|/(b−1) = 4 would yield a slope equal to 2, 75. Even more interesting would
be to find sharper upper bounds for the slope of Kodaira fibrations.

The consideration of double étale Kodaira fibrations related to curves with many
automorphisms enables us also to prove the following interesting

Corollary 6.6 There are double Kodaira fibred surfaces S which are rigid.

In the last section we interpret the above corollary as an existence result for rigid
curves in the moduli stack of genus 7 curves.

The moduli space of some special Kodaira fibrations were described by Kas
[Ks68] and Jost/Yau [J-Y83]; here, we prove the following general

Theorem 6.5 The subset of the moduli space corresponding to standard double
étale Kodaira fibred surfaces S (those admitting a pullback branched in a union
of graphs of automorphisms), is a union of connected components which are irre-
ducible, and indeed isomorphic to the moduli space of pairs (B,G), where B is a
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curve of genus b at least two and G is a group of biholomorphisms of B of a given
topological type.

2. General set-up.

Definition 2.1 A Kodaira fibration is a smooth fibration ψ1 : S → B1 of a compact
complex surface over a compact complex curve, which is not a holomorphic fibre
bundle.
S is called a double Kodaira fibred surface if it admits a double Kodaira fibra-

tion, i.e., a surjective holomorphic map ψ : S → B1 × B2 yielding two Kodaira
fibrations ψi : S → Bi (i = 1, 2).
Let D ⊂ B1 × B2 be the branch divisor of ψ. If D is smooth and both projections
prBj |D : D → Bj are étale we call ψ : S → B1 × B2 a double étale Kodaira
fibration.

Remark 2.2 — Observe that S admits a double Kodaira fibration, if and only
if S admits two distinct Kodaira fibrations. If S admits two Kodaira fibrations
ψi : S → Bi, i = 1, 2 then we can consider the product morphism ψ := ψ1 × ψ2 :
S → B1 × B2. Let R be the ramification divisor of ψ and D its branch locus. We
observe here R and D are not necessarily smooth, as shown by the following local
computation.

Take in fact a point P of the ramification divisor R: since ψ1 is of maximal
rank, there are local holomorphic coordinates (x, y) on S and ti on Bi such that P
corresponds to the origin and, t1(ψ1(x, y)) = x, and t2(ψ2(0, 0)) = 0.

Hence, since P is a ramification point, we may assume without loss of generality
that ψ2(x, y) = x+ f(x, y). The local equation of R is ∂f

∂y (x, y) = 0, while the local

equation of B is given by the resultant Resy
(
∂f
∂y (t1, y), t1 + f(t1, y)− t2

)
.

For instance, if f(x, y) = yx2−1/4y4 , R is singular at P , with equation y3 = x2,
and D is singular at the image point, with equation 33t81 = 43t32.

Observe finally that a surface S could admit three or more different Kodaira
fibrations.

Remark 2.3 — Arnold Kas remarked in [Ks68] that, if φ : S → B is a Kodaira
fibration, then the genus of the base is at least two and the genus g of the fibre is
at least three.

In the case of a double Kodaira fibration the genus of the fibre is easily seen to
be at least four by Hurwitz’ formula, since a fibre of ψi is a branched covering of a
curve of genus at least two, namely the base curve of the other fibration.

In particular, S cannot contain rational or elliptic curves, since no such curve is
contained in a fibre or admits a non-constant map to the base curve. Hence S is
minimal and one sees, using the superadditivity of Kodaira dimension, that S is an
algebraic surface of general type.

Lemma 2.4 Let S be a surface admitting two different smooth fibrations ψi : S →
Bi where bi := genus (Bi) ≥ 2 and where the fibre genus also satisfies gi ≥ 2.
If e.g. ψ1 is a holomorphic fibre bundle map, then S has an étale covering which
is isomorphic to a product of curves, S → B1 × B2 is étale, and also ψ2 is a
holomorphic fibre bundle.

Proof. Let F be a fibre of ψ1. Since the genus of F is at least two, the automor-
phism group of F is finite. Hence we can pull back S by an étale map f : B̃1 → B1
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to obtain a trivial bundle resulting in the diagram

B̃1 × F
φ //

²²

S
ψ //

ψ1

²²

B1 ×B2

{{wwwwwwwww

B̃1

f // B1

where ψ := ψ1 × ψ2.
The composition ψ ◦ φ maps {b̃} × F to {f(b̃)} ×B2 and we infer from [Cat00],

Rigidity-Lemma 3.8, that this map does not depend on b̃ ∈ B̃1. In other words,
there exists a map g : F → B2 such that ψ ◦ φ = f × g.

Now we pick x ∈ F and set g(x) := y, Sy := ψ−1
2 (y). In the diagram

B̃1 × {x}
φ //

f &&LLLLLLLLLL
Sy

ψ|Sy

²²
B1 × {y}

φ and f are étale and consequently also ψ|Sy
is étale. Since this holds ∀x ∈ F ,

whence ∀y ∈ B2, we see that ψ and g are étale. Now any fibre of ψ2 is an étale
covering of B1 of fixed degree, corresponding to a fixed subgroup of π1(B1). Thus
the fibres are all isomorphic and we have a holomorphic bundle (by [F-G65]). ¤

We can now give a topological characterization of double Kodaira fibrations. We
denote by Πg the fundamental group of a compact complex curve of genus g.

Proposition 2.5 Let S be a complex surface. A double Kodaira fibration on S is
equivalent to the datum of two exact sequences

1 // Πgi
// π1(S)

ψ̄i // Πbi
// 1 i = 1, 2 ,

(here Πg denotes the fundamental group of a compact curve of genus g) such that:
(i) bi ≥ 2, gi ≥ 3,
(ii) the composition homomorphism

Πg1
// π1(S)

ψ̄2 // Πb2

is neither zero nor injective, and
(iii) the Euler characteristic of S satisfies

e(S) = 4(b1 − 1)(g1 − 1) = 4(b2 − 1)(g2 − 1).

Proof. Let us make a preliminary remark. Note that a holomorphic map f :
C ′ → C between algebraic curves of genus at least 1 is étale if and only if the
induced map f∗ on the fundamental groups is injective. In fact, in this case there
is a covering space g : D → C corresponding to the subgroup f∗(π1(C ′)) in π1(C)
and by the lifting theorem we have a holomorphic map f̃ : C ′ → D which induces
an isomorphism of the fundamental groups. Hence C ′, D have the same genus and
f̃ is an isomorphism by Hurwitz’ s formula if the genus of D is ≥ 2, while if D has
genus 1, then it is étale, whence an isomorphism since it induces an isomorphism
of fundamental groups. The conclusion is that also f = g ◦ f̃ is étale.

Given now a double Kodaira fibration, the above exact sequences are just the
homotopy exact sequences of the two differentiable fibre bundles ψi. We observed
already that (i) holds, while (iii) is the multiplicativity of the topological Euler
number for fibre bundles (in algebraic geometry, it is called the Zeuthen-Segre
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formula). Since the two fibrations are different, the map in (ii) cannot be zero.
Furthermore, it cannot be injective by Lemma 2.4, hence (ii) holds.

Assume conversely that we have two exact sequences satisfying the above con-
ditions (i), (ii) and (iii). Using theorem 6.3 of [Cat03] (i) and (iii) guarantee the
existence of two curves Bi of genus bi and of holomorphic submersions ψi : S → Bi
with ψi∗ = ψ̄i whose fibres have respective genera g1, g2.

Condition (ii) implies that the two fibrations are different and it remains to see
that neither of the ψi’s can be a holomorphic bundle. But if it were so, by Lemma
2.4, then S → B1 ×B2 would be étale and the map in (ii) would be injective. ¤

Remark 2.6 — Double Kodaira fibrations which are not double étale were con-
structed in [GD-H91] and [Zaal95], essentially with the same method. The map
F : B×B → Jac(B), (x, y) 7→ x− y contracts the diagonal ∆B ⊂ B×B and maps
B × B to Y := B − B ⊂ Jac(B). One takes Γ ⊂ Y to be a general very ample
divisor, and D ⊂ Γ × B as D := ∪x∈ΓF

−1(x). The projection of D to Γ is étale
of degree 2, while the projection of D to B is of degree equal to b := genus(B)
but is not étale. The pair D ⊂ Γ × B yields, as we shall explain in a forthcoming
section, a ’logarithmic Kodaira fibration’, and from it one can construct, via the
tautological construction, an actual Kodaira fibration.

We shall be primarily interested in the case of double étale Kodaira fibrations.
Given a holomorphic map φ between two curves let us denote by Γφ its graph.

Definition 2.7 A double étale Kodaira fibration S → B1 ×B2 is said to be simple
if there exist étale maps φ1, . . . , φm from B1 to B2 such that D =

⋃̇m

k=1Γφk
; i.e., if

each component of D is the graph of one of the φk’s.
We say that S is very simple if B1 = B2 and all the φk’s are automorphisms.

Lemma 2.8 Every double étale Kodaira fibration admits an étale pullback which is
simple.

Proof. Let S → B1×B2 be a double étale Kodaira fibration. The branch divisor
D is smooth and we can consider the monodromy map µ : π1(B1, b1) → Sm1 of the
étale map p1 : D → B1. Let f : B → B1 the (finite) covering associated to the
kernel of µ1. By construction the monodromy of the pullback f∗D → B is trivial,
hence every component maps to B with degree 1 and the corresponding pullback
f∗S := B ×B1 S is a simple Kodaira fibration. ¤

Remark 2.9 — Kollár claimed that it should be possible to construct double étale
Kodaira fibrations which do not admit any étale pullback which is very simple. But
up to now we do not know any example of this situation.

This motivates the following:

Definition 2.10 A double étale Kodaira fibration is called standard if there exist
étale Galois covers B → Bi, i = 1, 2, such that the étale pullback

S′ := S ×(B1×B2) (B ×B),

induced by B ×B → B1 ×B2, is very simple.

3. Invariants of double étale Kodaira fibrations

In this section we want to calculate some invariants of a double étale Kodaira
fibration. First we need to fix the notation.

Let S be a double étale Kodaira fibration as in Definition 2.1. Let d be the
degree of ψ : S → B1 × B2, let D ⊂ B1 × B2 be the branch locus of ψ and let
D1, . . . , Dm be the connected components of D.
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By assumption, the composition map

Di ↪→ B1 ×B2
prj→ Bj

is étale and we denote by dij its degree. Then the degree of prj |D : D → Bj is
dj =

∑m
i=1 dij and we get two formulae for the Euler characteristic of Di,

e(Di) = di1e(B1) = di2e(B2).

The canonical divisor KB1×B2 of B1 ×B2 is numerically (indeed, algebraically)
equivalent to −e(B1)B2− e(B2)B1, where we denote by B1 any divisor of the form
B1 × {y} (similarly for B2), and we calculate

KB1×B2 ·Di = −e(B1)B2 ·Di − e(B2)B1 ·Di

= −e(B1)di1 − e(B2)di2 = −2e(Di)

so that by adjunction

D2
i = deg(KDi)−KB1×B2 ·Di

= −e(Di) + 2e(Di) = e(Di).

We write

ψ−1(Di) =
ti⋃

j=1

Rij

as a union of disjoint curves and denote by nij the degree of ψ|Rij
: Rij → Di

and by rij the branching order of ψ along Rij (i.e., the multiplicity of the reduced
divisor Rij in the full transform of Di). Then

KS = ψ∗KB1×B2 +
∑

i,j

(rij − 1)Rij and d =
ti∑

j=1

nijrij .

To summarize the situation we label the arrows in the following diagram by the
degrees of the corresponding maps:

RijÄ _

²²

nij // DiÄ _

²²

di1 // B1

S
d // B1 ×B2

;;vvvvvvvvv

Proposition 3.1 In the above situation we have the following formulae
(i) Setting βi :=

∑ti
j=1 nij(rij − 1)

c2(S) = d c2(B1 ×B2)−
m∑

i=1

βie(Di)

c21(S) = 2c2(S)−
m∑

i=1

ti∑

j=1

nij(rij − 1)(rij + 1)
rij

e(Di)

thus the signature is

σ(S) =
1
3
(c21(S)− 2c2(S)) = −1

3

m∑

i=1

ti∑

j=1

nij(rij − 1)(rij + 1)
rij

e(Di)

(ii) (a) If ψ : S → B1 ×B2 is a Galois covering then rij = ri and

c21(S)
c2(S)

= 2 +
−∑m

i=1
r2i−1

r2i
e(Di)

e(B1)e(B2)−
∑m
i=1

ri−1
ri

e(Di)
.
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(b) If in addition D is composed of graphs of étale maps from B1 to B2,
i.e., S is simple, we have

c21(S)
c2(S)

= 2 +
1− 1

m

∑m
i=1

1
r2i

2g−2
m + 1− 1

m

∑m
i=1

1
ri

where g is the genus of B2.

Proof. The first formula can be obtained by calculating the genus of a fibre F of
S → B1 using the Riemann-Hurwitz formula and using c2(S) = e(S) = e(B1)e(F ).

For the second one a rather tedious calculation of intersection numbers is needed
so that we prefer to cite [Iz03]1 which gives us

c21(S) = d c21(B1 ×B2)−
m∑

i=1


2 bi e(Di) +

ti∑

j=1

nij(rij − 1)(rij + 1)
rij

D2
i




= 2d e(B1)e(B2)−
m∑

i=1

2bi e(Di)−
m∑

i=1

ti∑

j=1

nij(rij − 1)(rij + 1)
rij

e(Di)

= 2c2(S)−
m∑

i=1

ti∑

j=1

nij(rij − 1)(rij + 1)
rij

e(Di).

The formula for the signature is now obvious.
Let’s look at (ii). If the covering ψ is Galois the stabilizers of Rik and Ril are

conjugate in the covering group and consequently nij = ni and rij = ri do not
depend on j. Hence for every i

d = tiniri ⇔ tini
d

=
1
ri

and βi = tini(ri − 1) = d− tini

Plugging this into the above formulae we get (a):

c21(S)
c2(S)

− 2 =
−∑m

i=1
tini(ri−1)(ri+1)

ri
e(Di)

de(B1 ×B2)−
∑m
i=1 βie(Di)

=
−∑m

i=1
ritini(ri−1)(ri+1)

r2i
e(Di)

d
(
e(B1 ×B2)− 1

d

∑m
i=1(d− tini)e(Di)

)

=
−∑m

i=1
r2i−1

r2i
e(Di)

e(B1)e(B2)−
∑m
i=1

ri−1
ri

e(Di)

For (b) we further assume the components of D to have all the same genus as B2,
i.e. e(Di) = e(B2) for all i. Then

c21(S)
c2(S)

− 2 =
−∑m

i=1
r2i−1

r2i
e(B2)

e(B1)e(B2)−
∑m
i=1

ri−1
ri

e(B2)

=
m−∑m

i=1
1
r2i

−e(B1) +m−∑m
i=1

1
ri

.

=
1− 1

m

∑m
i=1

1
r2i

2g−2
m + 1− 1

m

∑m
i=1

1
ri

¤

1Note that we have a slightly different notation.
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The above formulae will allow us to give upper bounds for the slope of double
étale Kodaira fibrations under some conditions.

4. Tautological construction

Definition 4.1 A log-Kodaira fibration is a pair (S,D) consisting of

(i) a smooth fibration ψ : S → B with fibres Ft and
(ii) a divisor D ⊂ S such that

(a) the projection D → B is étale and
(b) the fibration of pointed curves (Ft, Ft \ D) is not isotrivial, i.e., the

fibres are not all isomorphic (as pointed curves).

Our typical example of the above situation will be a product of curves S :=
B1 × B2 together with a divisor D such that the first projection D → B1 is étale
and the second projection D → B2 is finite.

We shall now see that in order to construct Kodaira fibrations it suffices to
construct log-Kodaira fibrations.

Proposition 4.2 Let (S,D) → B be a log-Kodaira fibration and let f : F̃ → F be a
Galois-covering of a fibre F , with Galois group G, and branched over D ∩F . Then
we can extend f to a ramified covering of surfaces f̄ : S̃′ → S̃ obtaining a diagram

F̃

f

²²

Â Ä // S̃′

f̄

²²
F

Â Ä // S̃ := g∗S

²²{{wwwwwwwww

F
Â Ä // S

²²

B̃

g
zzvvvvvvvvvv

B

where

• g : B̃ → B is an étale covering,
• S̃ is the pullback of S via g,
• f̄ is a ramified covering with Galois group G branched over D̃ := g∗D and

such that f̄ |F̃ = f .

Proof. First we translate the problem into a group-theoretical question by looking
at the above desired situation in terms of fundamental groups.

Set for convenience F̂ := F \ D, Ŝ := S \ D, F := π1(F̂ ), Γ := π1(Ŝ) and
Γ̃ = π1(S̃ \ D̃). Then the fibre bundle Ŝ → B and its étale pullback via g give rise
to a diagram

1 // F // Γ̃ //
Ä _

²²

π1(B̃) //
Ä _

g∗

²²

1

1 // F // Γ // π1(B) // 1.



10 FABRIZIO CATANESE AND SÖNKE ROLLENSKE

The ramified coverings of F and S̃ with Galois group G then would yield a
diagram of exact sequences of group homomorphisms:

1

²²

1

²²
1 // F̃ //

f∗

²²

π1(S̃
′ \ f̄−1D′) //

f̄∗
²²

π1(B̃) // 1

1 // F //

ρ

²²

Γ̃ //

ρ̃

²²

π1(B̃) // 1

G

²²

G

²²
1 1

In other words, in order to prove the proposition we have to find a subgroup of
finite index Γ̃ < Γ such that F C Γ̃ and such that the homomorphism ρ : F → G
extends to a homomorphism ρ̃ : Γ̃ → G.

We will need several étale pullbacks in order to

• (1) make the pullback D′ of the divisor D a union of sections,
• (2) kill the monodromy which prevents us from extending the homomor-

phism,
• (3) make the selfintersection of each component of D′ divisible by the

exponent of the group G (the minimal integer k such that gk = 1 ∀g ∈ G).

Step (1) is achieved by induction on the intersection number D · F , since
(i) the pull-back of a section is always a section, while
(ii) if D1 is a component of D which is not a section, the pull-back of D under

the covering D1 → B contains a new section (namely, the diagonal of D1 ×D1 ⊂
D1 ×B S).

For step (2), since F is a normal subgroup, γ ∈ Γ operates on F by conjugation
and hence on Hom(F, G) via φ 7→ γ(φ) = φ ◦ Intγ−1 .

Let Γρ be the stabilizer of ρ under this action. For γ ∈ Γρ it holds ρ(γxγ−1) =
ρ(x) and in particular γ normalizes F̃, the kernel of ρ (this should certainly be true
for elements in Γ̃). Let Γ′ be the subgroup of Γ generated by F and Γρ.

Note that since F is normal in Γ we can write every element γ′ ∈ Γ′ as a product
γ′ = fg where f ∈ F and g ∈ Γρ.

The subgroup Γ′ < Γ gives rise to an exact sequence

1 → F→ Γ′ → Π′ → 1

(where Π′ is a subgroup of finite index of π(B)), hence to an étale pullback π :
S′ → S.

Let D0 be a component of π−1D, the pullback of the branch divisor, and let N0

be a tubular neighbourhood of D0. Let γ0 be a small loop around D0 contained
in N0 ∩ F . We consider γ0 also as an element of F and regard N0 as a small
neighbourhood of the zero section in the normal bundle ND0/S .

The idea is to extend the homomorphism ρ to the surface by moving along D0.
Observe that, since D0 is a section, the fundamental group π1(D0) is equal to

Π′.
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Lemma 4.3 Let Π′ := π1(D0) = 〈αi, βi |
∏
i[αi, βi] = 1〉. Then Γ′′ := π1(N0 \D0)

is a central extension

1 → Z→ Γ′′ → Π′ → 1

where
∏
i[αi, βi] = γk0 and k = −D2

0.

Proof. (See [Cat06], page 139) Pick a point P ∈ D0 and write D0 = (D0 \P )∪∆P

where ∆P is a small disk around P . The S1 bundle (homotopically equivalent to)
N0 \ D0 restricted to these two open subsets is trivial and the C∞ -cocycle of N0

with regard to this trivialisation can be given as zk, where z is a local coordinate in
P and k = −c1(ND0/S) = −D2

0. The fundamental group of N0 is then calculated
using the Seifert-van Kampen theorem. ¤

By a further base change we may assume that γk0 is in F̃ (i.e., ρ(γ0)k = 1). In
fact, since D0 is a section, its pull-back under an étale base change (with base that
we shall denote by B̃) of order d yields a new section D′0 whose selfintersection
−D′02 = −dD2

0, and it suffices to choose d divisible by the the order of G (the
exponent of G indeed suffices).

Defining Π′′ as the fundamental group π1(B̃) of the base curve obtained by the
above procedure, and Γ̃ as the inverse image of Π′′ in Γ, we obtain a new diagram:

1 // Z //

²²

Γ′′′ //

²²

Π′′ // 1

1 // F // Γ̃ // Π′′ // 1

and may finally extend ρ to Γ̃ as follows: after choosing arbitrary images ρ′′(αi) =
ρ′′(βi) in the centre of G and setting ρ′′(γ0) := ρ(γ0), we get a homomorphism
ρ′′ : Γ′′ → G which coincides with ρ on γ0 (Every such assignment is compatible
with the relations in the group).

We are now in the situation

Γ′′′

ÃÃ@
@@

@@
@@

@
ρ′′

''OOOOOOOOOOOOOO

Z

>>~~~~~~~~

ÃÃA
AA

AA
AA

A Γ̃
ρ̃ //___ G

F.

>>}}}}}}}}
ρ

77ooooooooooooooo

Writing each γ̃ ∈ Γ̃ as a product γ̃ = fg with f ∈ F and g ∈ Γ′′′ we define

ρ̃(γ̃) := ρ(f) · ρ′′(g).

To see that this is well defined let f1g1 = f2g2. Then f2−1f1 = g2g1
−1 is an element

of F and of Γ′′′, i.e., a multiple of γ0. Hence, applying ρ and ρ′′ respectively, we get
ρ(f2)

−1
ρ(f1) = ρ′′(g2)ρ′′(g1)

−1 since the two homomorphisms act in the same way
on γ0. This implies ρ(f1g1) = ρ(f2g2).

It remains to check that this defines a homomorphism. We consider two elements
f1g1, f2g2 as above. Since Γ′′′ is contained in Γ′ we can actually assume that the
gi’s can be written as a combination of the αi’s, βi’s and are contained in Γρ, hence
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they stabilize ρ. Now

ρ(f1g1f2g2) = ρ(f1g1f2(g1−1g1)g2)

= ρ(f1g1f2g1−1)ρ′′(g1g2)

= ρ(f1)ρ(g1f2g1−1)ρ′′(g1)ρ′′(g2)

= ρ(f1)ρ(f2)ρ′′(g1)ρ′′(g2)

= ρ(f1)ρ′′(g1)ρ(f2)ρ′′(g2) = ρ(f1g1)ρ(f2g2)

where the last line follows because we have chosen the images of the αi’s, βi’s in
the centre of G.

Hence we have extended ρ to a finite index subgroup Γ̃ of Γ and the Kodaira fi-
bration S̃′ arises as the ramified Galois cover of S̃ associated to this homomorphism.

¤

If S is a double étale Kodaira fibration or a product of curves, one can easily see
that also S′ is a double étale Kodaira fibration, provided that the restriction of the
second projection to D is étale. Moreover the following holds:

Lemma 4.4 Assume that we have a curve B of genus at least two and a subset
S = {φ1, . . . , φm} ⊂ AutB such that the graphs of these automorphisms are disjoint
subsets of B × B. If we construct a Kodaira fibration applying the tautological
construction to this log-Kodaira fibration, then the resulting surface is in fact a
standard Kodaira fibration.

Proof. Without loss of generality we may assume that φ1 = idB , i.e., we identify
the vertical and the horizontal part of the product B×B via the automorphism φ1.
We fix a base point x0 in B. It suffices to prove the following: for any étale Galois
covering B′ → B there exists another étale covering map f : B′′ → B′ → B such
that the pullback of D := Γφ1 ∪ · · · ∪Γφm under the map f × f : B′′×B′′ → B×B
is composed of graphs of automorphisms of B′′.

The fundamental group π1(B, x0) can be considered as a subgroup of a Fuchsian
group which acts on the upper half plane. Let Γ be the maximal Fuchsian group
which contains π1(B, x0) as a normal subgroup. Then we have an exact sequence

1 → π1(B, x0) → Γ → Aut(B) → 1.

The Galois covering B′ → B corresponds to an inclusion π1(B′, y0) ⊂ π1(B, x0)
where y0 maps to x0. Consider the Galois covering B′′ → B′ → B associated to the
subgroup π(B′′, z0) :=

⋂
γ∈Γ γπ1(B′, y0)γ−1 which is the largest normal subgroup

of Γ contained in π1(B′, y0). It is in fact a finite index subgroup of π1(B′, y0) since
π1(B′, y0) is of finite index in Γ. We have exact sequences

1

1 // π1(B, x0) // Γ // Aut(B) //

OO

1

1 // π1(B′′, z0)
?Â

OO

// Γ // G //

α

OO

1

Gal(B′′ → B)

OO

1

OO
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where G is a group of automorphisms of B′′.
Let d be the degree of the covering f : B′′ → B. Then the degree of the map

f×f : B′′×B′′ → B×B is d2 and it suffices to exhibit for any given automorphism
φ of B a set of d automorphisms of B′′ such that their graphs map d to 1 to Γφ
under the map f × f . In order to do so pick ψ ∈ G such that α(ψ) = φ which
means f ◦ ψ = φ ◦ f . Then for any σ ∈ Gal(B′′ → B) we have

(f × f)(Γσ◦ψ) = (f × f)({(x, y) ∈ B′′ ×B′′ | y = σ ◦ ψ(x)})
= {(f(x), f(σ ◦ ψ(x))) | x ∈ B′′}
= {(f(x), f ◦ ψ(x)) | x ∈ B′′}
= {(f(x), φ(f(x))) | x ∈ B′′} = Γφ

and this map has in fact the same degree as f . ¤

The reason why the monodromy problems mentioned in 2.9 do not occur in this
case is that the horizontal and the vertical curve in the product are in fact identified
via φ1 and therefore, once we fix a basepoint on the curve during the tautological
contruction, there is no ambiguity in the choice of the basepoint on the other curve.

5. Slope of double étale Kodaira fibrations

Kefeng Liu proved in [Liu96] that the slope ν of a Kodaira fibration S satisfies

ν :=
c21(S)
c2(S)

< 3

and Le Brun asked whether the better bound c21(S) < 2.91c2(S) would hold.
We will now address the question about what can be said for double étale Kodaira

fibrations. Our purpose here is twofold: to find effective estimates from below for
the maximal slope via the construction of explicit examples and then to see whether
one can prove also an upper bound for the slope of double Kodaira fibrations, using
their explicit description.

To separate the numerical considerations from the geometrical problems we pose
the following

Definition 5.1 Let B1, B2 be curves of genus at least two. An admissible configu-
ration for B1 ×B2 is a tuple A = (D, d, {(ti, {rij , nij}}) consisting of

• a smooth curve D = D1 ∪ · · · ∪Dm ⊂ B1 × B2 such that each connected
component Di maps in an étale fashion to each of the factors,

• a positive integer d, and positive integers ti, for all i = 1, . . . ,m,
• for all i = 1, . . . ,m, a ti-tuple {(rij , nij)}j=1,...,ti of pairs of positive inte-

gers with rij ≥ 2, and such that

d =
ti∑

j=1

nijrij .

We call the configuration Galois if rij and nij do not depend on j, and we then
write A = (D, d, {(ti, ri, ni)}). If moreover D is consists of graphs of étale maps
φk : B1 → B2 (automorphisms if B1

∼= B2) we call A simple (resp.: very simple).
Setting βi :=

∑ti
j=1 nij(rij − 1) we define the abstract slope of A by

a(A) = 2 +
−∑m

i=1

∑ti
j=1

nij(rij−1)(rij+1)
rij

e(Di)

d e(B1 ×B2)−
∑m
i=1 βi e(Di)

.
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We have seen in section 3 that a double étale Kodaira fibration S gives rise
to an admissible configuration A(S). If A is any admissible configuration and S
a double étale Kodaira fibration with A(S) = A we say that S realizes A. In
this case the abstract slope a(A) coincides with the slope of S by Proposition 3.1.
Note that we also calculated formulae for the abstract slope of (very) simple Galois
configurations.

To attain a bound from above for the slope we can now independently study the
questions

• Which is the maximal possible abstract slope for an admissible configura-
tion?

• How to realize a given configuration?

We already addressed the second problem in section 4 and we shall proceed by
analysing the case of very simple configurations.

5.1. Packings of graphs of automorphisms. In this section we let B be a curve
of genus g and G = Aut(B) its automorphism group.We want to study subsets of
G such that the corresponding graphs do not intersect. We can translate this into
a group-theoretical condition:

Lemma 5.2 Let P1, . . . , Pn be the points in B which have a non trivial stabilizer
ΣPi < G. Let πi : G→ G/ΣPi be the map that sends φ ∈ G to the left coset φΣPi .

(i) Two automorphisms φ 6= φ′ ∈ G have intersecting graphs if and only if
πi(φ) = πi(φ′) for some i ∈ {1, . . . , n}.

(ii) A subset S ⊂ G of cardinality m has non-intersecting graphs if and only
if for each i ∈ {1, . . . , n} the image of S under the map

πi : G→ G/ΣPi g 7→ gΣPi

has cardinality m. In particular:

m ≤ Minimum{|G/ΣPi |}i=1,...,n .

Proof. To prove the first claim let φ, φ′ be two automorphisms of B. Their
graphs intersect in some point (P1, P2) ∈ B ×B iff φ(P1) = φ′(P1) = P2. But this
means φ−1 ◦ φ′(P1) = P1, i.e., φ−1 ◦ φ′ ∈ ΣP1 or equivalently φΣP1 = φ′ΣP1 .

The second claim is now an easy consequence. ¤

Note that, if Q1, . . . , Qr are the branch points of the quotient map B → B/G
and P ′i (∀i = 1, . . . r) is an arbitrary point in the inverse image of Qi , then the
non trivial stabilizers of points are exactly all the subgroups conjugated to the
stabilizers ΣP ′i (i = 1, . . . , r).

It is now a natural question to ask for the maximal possible m that one can
realize, given a curve B, or given a fixed genus b (of B).

For the formulation of a partial result we introduce the following notation: we
say that B is of type (ν1, . . . , νk) if B/G has genus zero and the map B → B/G is
a ramified covering, branched over k points with respective multiplicities νi.

We always order the branch points so that ν1 ≤ · · · ≤ νk.

Proposition 5.3 (i) If the genus g of B is at least two, the maximal cardi-
nality m of a subset with non-intersecting graphs is smaller or equal to
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3(g − 1) unless the type of B occurs in the following table:
type upper bound for m |G|
(2,2,2,3) 4(g − 1) 12(g − 1)
(2,3,7) 12(g − 1) 84(g − 1)
(2,3,8) 6(g − 1) 48(g − 1)
(2,3,9) 4(g − 1) 36(g − 1)
(2,4,5) 8(g − 1) 40(g − 1)
(2,4,6) 4(g − 1) 24(g − 1)
(2,5,5) 4(g − 1) 20(g − 1)
(3,3,4) 6(g − 1) 24(g − 1)

(ii) If the genus of B is small we get the following list:
type upper bound for m up to genus
(2,2,2,3) 2(g − 1) 30
(2,3,7) 3(g − 1) 23
(2,3,8) 3(g − 1) 23
(2,3,9) 2(g − 1) 23
(2,4,5) 2(g − 1) 23
(2,4,6) 2(g − 1) 50
(2,5,5) 4/3(g − 1) 50
(3,3,4) 3(g − 1) 50

If the genus of the curve is one, we can clearly produce an arbitrarily large
number of automorphisms with pairwise disjoint graphs by choosing appropriate
translations.

Proof. Part (i) is a case by case analysis using the previous Lemma. Let B
be a curve of genus g ≥ 2, let G be its automorphism group and let h be the
genus of B/G. Let P1, . . . , Pk ∈ B/G be the branch points and ν1 ≤ · · · ≤ νk
be the corresponding indices (branching multiplicities). Then we have the Hurwitz
formula

2g − 2 = |G|
(

2h− 2 +
k∑

i=1

(1− 1
νi

)

)

and by the lemma a maximal subset as above has at most cardinality

µ :=
|G|
νk

=
2g − 2

νk

(
2h− 2 +

∑k
i=1(1− 1

νi
)
) ,

where we set ν1 = 1 if there is no ramification. Note that the denominator can
never be zero since this would imply g = 1. We distinguish the following cases:
h ≥ 2: Clearly

µ ≤ 2g − 2

νk

(
2 +

∑k
i=1(1− 1

νi
)
) ≤ g − 1.

h = 1: We have
µ ≤ 2g − 2

νk
∑k
i=1(1− 1

νi
)
≤ 2(g − 1)

h = 0: Also in this case we necessarily have ramification and

µ ≤ 2g − 2

νk

(
−2 +

∑k
i=1(1− 1

νi
)
) ,

hence we have to check in which cases holds

0 < λ := νk

(
−2 +

k∑

i=1

(1− 1
νi

)

)
<

2
3
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Since k ≥ 5 implies λ ≥ 1 we have k at most 4, and νk > 2. If k = 4
then λ ≥ (1/2)νk−1 thus νk = 3 and one sees immediately that (2, 2, 2, 3)
is the only possibility. If k = 3 one can check that 1 − ∑3

i=1 1/νi ≥
1− 1/2− 1/3− 1/7 = 1/42, (which corresponds to |G| = 84(g− 1)), hence
there are only finitely many cases for νk which are easy to consider and
which yield exactly the remaining cases in the above table.

For part (ii) note that a finite group G can occur as an automorphism group of
a curve of type (ν1, . . . , νk) iff there are distinct elements g1, . . . , gk in G such that
g1, . . . , gk−1 generate G,

∏k
i=1 gi = 1 and the order of gj is νj . (cf. section 5.2 for

a construction.) For all possible combinations of groups and generators up to the
given genus, maximal subsets satisfying the conditions of the above Lemma were
calculated using the program GAP and its database of groups of small order (cf.
[GAP04]). ¤

Remark 5.4 — The bounds in the second table are sharp, that is, there exist
examples that realize the given upper bound. The smallest group realizing 3(g− 1)
is Sl(2,Z/3Z) acting on a curve of genus 2 of type (3, 3, 4).

We will see in Remark 5.10 that the slope inequality obtained by Liu implies in
fact the better bound m < 8(g − 1).

Question 5.5 — It is clear that we can realize the bound m = 3(g−1) for arbitrary
large genera g by taking Galois étale coverings of the examples we have obtained.

Can one prove that 3(g − 1) is an upper bound for all curves?

5.2. Bounds for the slope. Since the slope of a Kodaira fibration does not change
under étale pullback, by Lemma 2.8 it suffices to treat the slope for a simple con-
figuration. We do this here for the Galois case.

Proposition 5.6 Let A = (D1 ∪ · · · ∪ Dm, d, {ti, ri, ni}) be a simple, Galois con-
figuration and let g be the genus of the target curve B2. If m ≤ 3(g − 1) then
a(A) ≤ 2 + 2/3 with equality if and only if m = 3(g − 1) and all the branching
multiplicities ri are equal to three.

Remark 5.7 — i) We believe that the same result should hold also in the non-
Galois case.

ii) We do not know any example of a possible (very) simple configuration with
m > 3(g − 1).

Proof. First of all let us assume that m = 3(g−1) and let us calculate a(A)−8/3
in this case.

a(A)− 8/3 =
1− 1

m

∑m
i=1

1
r2i

2
3 + 1− 1

m

∑m
i=1

1
ri

− 2
3

=
3− 3

m

∑m
i=1

1
r2i
− 10

3 + 2
m

∑m
i=1

1
ri

5− 3
m

∑m
i=1

1
ri

and if we denote by mk the number of components Di of D which have branching
multiplicity ri = k

=
− 1

3 + 1
m

∑
k

(
2mk

k − 3mk

k2

)

5− 3
m

∑
k
mk

k

=
− 1

3 + 1
m

∑
kmk

2k−3
k2

5− 3
m

∑
k
mk

k

The expression 2k−3
k2 has a global maximum in k = 3 and which yields the

inequality

−1
3

+
1
m

∑

k

mk
2k − 3
k2

≤ −1
3

+
1
m

∑

k

mk
3
9

= 0
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for the numerator. Equalitiy holds if and only if m3 = m and all other mk ’s are
zero.

Since the denominator is always positive we conclude a(A) − 8/3 ≤ 0 with
equality if and only if m3 = m and all other mk ’s are zero.

It remains to show that the abstract slope can only decrease if m < 3(g − 1):
this follows by induction from the next lemma. ¤

Lemma 5.8 Let A = (D1 ∪ · · · ∪ Dm+1, d, {ti, ri, ni}) be a simple configuration,
Galois and with m ≤ 4(g(B2) − 1). Let A′ = (D1 ∪ · · · ∪Dm, d, {ti, ri, ni}) be the
configuration obtained by omitting the last component. Then a(A′) < a(A).

Proof. Using again the formulae from proposition 3.1 we calculate

a(A′)− 2 < a(A)− 2

⇔
(
m−

m∑

i=1

1
r2i

)(
2g − 2 +m+ 1−

m+1∑

i=1

1
ri

)
<

(
m+ 1−

m+1∑

i=1

1
r2i

)(
2g − 2 +m−

m∑

i=1

1
ri

)

⇔
(
m−

m∑

i=1

1
r2i

) (
1− 1

rm+1

)
<

(
1− 1

r2m+1

) (
2g − 2 +m−

m∑

i=1

1
ri

)

⇔ a(A′)− 2 =
1− 1

m

∑m
i=1

1
r2i

2g−2
m + 1− 1

m

∑m
i=1

1
ri

<
1− 1

r2m+1

1− 1
rm+1

= 1 +
1

rm+1

The denominator on the left is bigger or equal to one since 2g−2
m ≥ 1

2 and ri ≥ 2.
Hence the left hand side is smaller than one which is strictly smaller than the right
hand side and we are done. ¤

Example 5.9 — We want now to construct an example of a double Kodaira fibra-
tion which actually realizes the slope 8/3 thereby proving Theorem A. First of all
we construct the curve mentioned in Remark 5.4.

Let P1, P2, P3 be distinct points in P1 and let γ1, γ2, γ3 be simple geometrical
loops around these points. The fundamental group π1(P1\{P1, P2, P3}) is generated
by the γi’s with the relation γ1γ2γ3 = 1.

Consider in Sl(2,Z/3Z) the elements

g1 =
(

0 2
1 2

)
, g2 =

(
0 1
2 2

)
, g3 =

(
2 2
2 1

)

and define ρ : π1(P1 \ {P1, P2, P3}) → Sl(2,Z/3Z) by γi 7→ gi. This map is well
defined and surjective, because g1 and g2 generate Sl(2,Z/3Z) and g1g2g3 = 1.

We define B to be the ramified Galois cover of P1 associated to the kernel of ρ.
By construction Sl(2,Z/3Z) acts on B as the Galois group of the covering and by
the Riemann-Hurwitz formula

g(B) =
|Sl(2,Z/3Z)|

2

(
3∑

i=1

(
1− 1

ord(gi)

)
− 2

)
+1 =

24
2

(
1− 1

3
− 1

3
− 1

4

)
+1 = 2

The subset

S =
{
φ1 =

(
1 0
0 1

)
, φ2 =

(
2 0
1 2

)
, φ3 =

(
0 1
2 1

)}
⊂ Sl(2,Z/3Z)
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satisfies the conditions of Lemma 5.2 since φ2, φ3 and φ3 ◦φ−1
2 have no fixed points

being of order six. This gives us 3 = 3(g(B)−1) graphs of automorphisms in B×B
which do not intersect and we denote the corresponding divisor by D.

In order to use the tautological construction we have to construct a ramified
covering of a curve of genus two minus three points (which we denote for the sake
of simplicity by B\D) and Proposition 5.6 tells us that the branching indices should
all be equal to three in order to obtain the maximal possible slope.

Let α1, β1, α2, β2 be generators for π1(B) and let γ1, γ2, γ3 simple geometrical
loops around the three points. Then

π1(B \D) =< α1, β1, α2, β2, γ1, γ2, γ3 > /(Π[αi, βi] = γ1γ2γ3)

is a free group and we can define a map

ρ : π1(B \D) → Z/3Z
γi 7→ 1

αi, βi 7→ 0

which induces the desired ramified covering F → B.
At this point we use the tautological construction, but we observe that in this

case only the first étale covering B′ → B is needed.
Indeed, the divisor D = D1 + D2 + D3 has degree 3 on each fibre of the first

projection p : B × B → B and the homomorphism ρ determines a simple cyclic
covering of the fixed fibre B0 := {x0} ×B, ramified on the divisor D ∩B0.

Therefore there is a divisor M on B ∼= B0 such that the simple cyclic covering
is obtained by taking the cubic root of D in the line bundle corresponding to M ,
and in particular the following linear equivalence holds:

3M ≡ D|B0 .

This linear equivalence determines M up to 3-torsion, and the monodromy of M is
the same as the monodromy of ρ.

Therefore, if we take as before the étale covering B′ → B associated to the
stabilizer of ρ, and denote by D′ the pull back of D on B′×B, then on B′×B the
divisor D′− 3p∗2(M) is trivial on each fibre of the first projection p1, hence there is
a divisor L′ on B′ such that D − 3p∗2(M) = p∗1(L

′).
By intersecting with the fibres of the second projection we find that deg(L′) = 0,

hence there is a divisor M ′ on B′ such that L′ ≡ 3M ′, and we conclude that on
B′ ×B we have the linear equivalence

D′ ≡ 3(p∗2(M) + p∗1(L
′))

and we can take the corresponding simple cyclic covering branched on D′ inside
the line bundle corresponding to the divisor p∗2(M) + p∗1(L

′).
We obtain in this way a double étale Kodaira fibration which is in fact a Standard

Kodaira fibration by Lemma 4.4. In particular we have a Kodaira fibration with
base curve B′ and with fibre of genus g = 7 (since 2g − 2 = 3 · 2 + 3 · 2).

Since the associated ramified covering is branched exactly overD′ with branching
index three at each component, the formula for the slope of a simple configuration
calculated in Proposition 3.1 yields

c21(S)
c2(S)

= 2 +
1− 1

3

∑3
i=1

1
32

− e(B)
3 + 1− 1

3

∑3
i=1

1
3

=
8
3
.

Remark 5.10 — We can also use this construction to give a partial answer to the
question raised in 5.5. Knowing that the slope of a Kodaira fibration is strictly
smaller than 3 it follows that m < 8(g − 1). In fact, via a suitable base change we
obtain a divisor D′ ⊂ B′ ×B such that
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(i) if m is odd, then there is a component D1 mapping to B′ with degree one,
(ii) setting D′′ := D′ if m is even, and D′′ := D′ −D1 if m is odd, then
(iii) we can take a double cover branched over D′′.

The Kodaira fibration constructed in this way turns out, under the assumption
m ≥ 8(g − 1), and in view of the above formulae, to have a slope ≥ 3: this is a
contradiction.

It follows in particular as a consequence: if B is a curve of genus 2 and we have
8 étale maps from a fixed curve C of arbitrary genus to B, then two of them have
a coincidence point.

6. The moduli space

This section is devoted to the description of the moduli space of double étale
Kodaira fibrations. We start with some lemmas.

Lemma 6.1 Let B1, B2 be curves of genus bi ≥ 2 resp. and let C ⊂ B1 × B2 be
an irreducible curve. Then

• C is smooth and the restricted projections pi : C → Bi are étale if and
only if

• the negative of the selfintersection of C attains its maximum possible value,
i.e., if and only if

−C2 = 2mi(bi − 1) (i = 1, 2)

where m1 = C · {∗} ×B2 and m2 = C ·B1 × {∗}.
Proof. ”⇒” We calculated this at the beginning of section 3.1.

”⇐” Let p = p(C) be the arithmetic genus of C. Then

2p− 2 =KB1×B2 · C + C2 = 2(b1 − 1)m1 + 2(b2 − 1)m2 − 2(bj − 1)mj

=2mi(bi − 1) (i 6= j)

Let C̃ → C be the normalization and let g = g(C̃) be the geometric genus of C.
We have 2p − 2 ≥ 2g − 2 by the normalization sequence and on the other hand
2g − 2 ≥ 2mi(bi − 1) = 2p− 2 by the Hurwitz formula for the projection C → Bi.
Hence g = p, C is smooth and equality holds in the last inequality, i.e., there is no
ramification and the maps pi are étale. ¤

Remark 6.2 — In general we see that KB1×B2 · C + C2 = 2mi(bi − 1) + 2δ + ρi
where δ is the ’number of double points’ and ρi is the total ramification index of
C → Bi. So

−C2 = 2mj(bj − 1)− 2δ − ρi (i 6= j)

Lemma 6.3 Assume that we have a family of effective divisors (Dt)t∈T , Dt ⊂
(B1,t × B2,t), parametrized by a smooth curve T and such that the special fibre
D := D0 = nC with C as in Lemma 6.1. If D′ is another fibre (D′ = Dt for some
t), then D′ is of the same type D′ = nC ′ (the integer n being the same as before).

Proof. Write D′ =
∑
j rjCj as a sum of irreducible components, so that Ci ·Cj ≥

0 for i 6= j. Write also mj
1 = Cj · ({∗} ×B2,t) and mj

2 = Cj · (B1,t × {∗}).
We compare the self-intersection of the general fibre,

−D′2 =
∑

j

r2j (−C2
j )− 2

∑

i 6=j
rirjCi · Cj

≤
∑

j

r2j (−C2
j ) ≤

∑

j

r2j2m
j
i (bi − 1),
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and the central fibre (using the same notation as in Lemma 6.1),

−D′2 = −D2 = n2(−C2) = n22mi(bi − 1),

obtaining

(1)
∑

j

r2jm
j
i ≥ n2mi.

Since D and D′ have the same intersection number with a horizontal (resp.
vertical) curve we have

(2) nmi =
∑

j

rjm
j
i .

Every component of the general fibre Ci tends to a positive multiple of the curve
C underlying the special fibre D and comparing again intersection numbers yields

(3) mj
i ≥ mi

Combining (1), (2) and (3) we get

∑

j

r2jm
j
i

2 ≥ n2m2
i =


∑

j

rjm
j
i




2

≥
∑

j

r2jm
j
i

2
.

Hence equality holds which, in the last step, is only possible if there is only one
summand, i.e., D′ = n′C ′ for some irreducible curve C ′.

The (in)equalities (1), (2) and (3) read now

n2mi ≤ n′2m′
i, nmi = n′m′

i, mi ≤ m′
i.

Combining the two inequalities with the equality in the middle we get n ≤ n′ ≤ n,
hence n = n′.

Observing that C ′ fullfills the conditions of Lemma 6.1 we conclude the proof.
¤

Theorem 6.4 Being a double étale Kodaira fibration is a closed and open condition
in the moduli space.

Proof. Since we know that the property of being a double Kodaira fibration is
open and closed in the moduli space we can deduce from the previous Lemma that
the condition of being double étale is actually open.

It remains to show that it is also closed for which it suffices to show that it is
closed under holomorphic 1-parameter limits (see e.g. [Cat04], Lemma 2.8).

Assume that we have a 1-parameter family of surfaces with general fiber St a
double étale Kodaira fibration. By the topological characterization (Proposition
2.5) also the special fibre S0 is a double Kodaira fibration and we have to show
that is in fact double étale.

By Lemma 2.8, we may assume that St is a branched covering of B1,t × B2,t

branched over Dt =
∑
i kiDi,t, where the Di,t’s are disjoint graphs of étale maps

φi : B1,t → B2,t.
Now, S0 → B1,0 × B2,0 is branched over D0 :=

∑
i kiνiDi,0 where Di,t tends

to νiDi,0. Since however Di,t.(B1,t × {∗}) = 1 we have νiDi,0.(B1,0 × {∗}) = 1
which implies νi = 1. Hence Di,0 is the graph of a map φ′i : B1,0 → B2,0 and
another application of Lemma 6.1 shows that also φ′i is étale and S0 is a double
étale Kodaira fibration. ¤

We can now describe the moduli space of Standard Kodaira fibrations in detail.
Let S be a Standard Kodaira fibration: then there exists a minimal common Galois
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cover B′ of B1, B2 yielding an étale pullback S′ which is very simple. We call B′

the simplifying covering curve. We have diagrams

S′
ψ′2 //

π

ÃÃB
BB

BB
BB

B

ψ′1

²²

B′

f2

²²
S

ψ2 //

ψ1

²²

B2

B′
f1 // B1

B′ ×B′ // B1 ×B2

D′ =
⋃
φ∈S Γφ

?Â

OO

// D
?Â

OO

where D is the ramification divisor of ψ = ψ1 × ψ2 and D′ = π∗D is made of the
graphs of a set of automorphisms S ⊂ Aut(B′). If we denote the Galois group of
fi by Gi (i = 1, 2) the following holds:

Theorem 6.5 Let S be a standard Kodaira fibred surface and let N be the irreducible
(and connected) component of the moduli space containing [S]. N is then isomorphic
to the moduli space of the pair (B′, G), where B′ is the simplifying covering curve
defined above and G is the subgroup of Aut(B′) generated by G1, G2 and S.

Proof. Let us first consider the case where S = S′, i.e., where S itself is very simple.
By proposition 2.5 every deformation in the large of S′ is a branched cover of a
product surface B1 ×B2. Moreover, clearly B1 = B2 if

(∗) there is a component of the branch locus mapping to both curves
B1, B2 with degree 1.

So let (St)t∈T , be a family with connected parameter space T , having S′ as a fibre.
It is clear that the set of points of T where (∗) holds is open.

It is also closed because in the proof of theorem 6.4 we have seen that the
type of the branch divisor remains the same under specialization and therefore the
connected component N parametrizes very simple Kodaira fibrations, i.e., branched
coverings of a product B×B branched over the union of graphs of automorphisms.

The automorphisms defining the components of the branch divisors for different
surfaces in (St)t∈T are clearly pairwise isotopic to each other and therefore we
obtain a family of curves with automorphisms.

For each curve let G be the finite group generated by these automorphisms.
This group has a faithful representation on the fundamental group of the curve,
and therefore the group G remains actually constant.
G is a finite group and we have a faithful action on Teichmüller space Tb. We

use now Lemma 4.12 of [Cat00] (page 29) to the effect that the fixed locus of this
action is a connected submanifold (diffeomorphic to an Euclidean space), hence the
moduli space of such pairs (B,G) is irreducible.

Viceversa any element in this moduli space gives rise to a complex structure on
the differentiable manifold underlying S′.

Consider now the general case. It is clear that any deformation of S induces a
deformation of B′ → Bi, hence any deformation of S yields a deformation of the
pair (B′, G).

Conversely, any deformation of the pair (B′, G) yields a deformation of the pair
D′ ⊂ B′ × B′ such that the group G1 × G2 leaves D′ and the monodromy of the
unramified covering of (B′ ×B′)−D′ invariant. ¤

Corollary 6.6 There exist double étale Kodaira fibred surfaces which are rigid.

Proof. Take the fibration constructed in Example 5.9: the automorphisms cor-
responding to the ramification divisor generate the whole triangle group of type
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(3,3,4) and it is well known that pairs (B,G) yielding a triangle curve are rigid.
Similarly for the other examples in proposition 5.3 which yield m = 3(g − 1). ¤

7. Rigid maps to the moduli stack of curves

In this section we want to interpret some of our results in terms of curves in the
moduli space of curves.

One considers the moduli functor

Ψ : (Schemes) → (Sets)

X 7→ {flat families of smooth curves of genus g over X}.

This functor is not representable in the category of schemes but there exists an
algebraic stackMg which is a fine moduli space of curves of genus g (see e.g. [HM]).
In other word we have an isomorphism of functors from the category of schemes to
the category of sets

Ψ(−) ∼= Hom(−,Mg)

and there is a universal family Cg →Mg such that any flat family of smooth curves
Y → X arises via a pullback diagram

Y ∼= µ∗Cg //

²²

Cg

²²
X

µ // Mg.

We consider now the Kodaira fibration S → B′ constructed in Example 5.9 which
is a smooth fibrations of smooth curves of genus 7. By the universal property we
have a corresponding moduli map

µ : B′ →M7

which is not constant.

Proposition 7.1 The map B′
µ→ D := µ(B′) ⊂M7 is rigid in the following sense:

If

D µ̃ //

²²

M7

X

is any connected family of smooth curves in M7 such that for some point x0 ∈ X
the map µ̃x0 : Dx0 →M7 coincides with µ then µ̃x = µ for all x ∈ X and the image
of µ̃ is equal to D.

Proof. This follows directly from Corollary 6.6: The map µ̃ corresponds to a family
of curves over D and, since D → X is a family of curves, this yields a family of
smooth surfaces

S = µ̃∗C7 → X.

By our assumption the surface Sx0 over the point x0 ∈ X is isomorphic to S. Since
S is rigid we have Sx ∼= S for all x ∈ X and moduli maps coincide. ¤
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