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Preface

This book is an introduction to Hopf algebras in braided monoidal categories
with applications to Hopf algebras in the usual sense, that is, in the category of
vector spaces. By now there exists a wide variety of deep results in this area, and
we don’t aim to provide a complete overview. We will discuss some of these topics
in Chapter 17.

Our main goal is to present from scratch and with complete proofs the theory of
Nichols algebras (or quantum symmetric algebras) and the surprising relationship
between Nichols algebras and (generalized) root systems. Hopefully our book makes
the vast literature in the area more accessible, and it is useful for future research.

Since its beginnings some 70 years ago, the theory of Hopf algebras has de-
veloped rapidly into various directions. Its origins came from algebraic topol-
ogy, algebraic and formal groups, and operator algebras. The influential book
of Sweedler from 1969 [Swe69] laid the foundations of a general theory of ab-
stract (non-commutative and non-cocommutative) Hopf algebras. After the work
of Drinfeld and Jimbo on quantum groups, and Drinfeld’s report “Quantum groups”
[Dri87] at the International Congress of Mathematicians 1986, the interest in the
topic drastically increased.

Quantum groups are prominent examples of pointed Hopf algebras (their irre-
ducible comodules are one-dimensional). Several years after their discovery, general
classification results for pointed Hopf algebras were obtained ([AS02]; [AS04],
[AA08], [AS10] depending on [Ros98], [Kha99], [Hec06], [Hec08]). In these
papers, the classical theory of quantum groups and of the small quantum groups
as developed in [Lus93] is applied.

Although quantum groups are intrinsically related to Lie theoretical structures,
it is not at all obvious to which extent this is true for general pointed Hopf algebras.
The lifting method introduced in [AS98] showed that the classification of Nichols
algebras is an essential step in the classification theory of pointed Hopf algebras.
And here, in the theory of Nichols algebras, the combinatorics of root systems and
Weyl groups, or better Weyl groupoids, plays an important role. Weyl groupoids
were introduced in [Hec06] for diagonal braidings using Kharchenko’s PBW basis
[Kha99] based on the theory of Lyndon words, and in [AHS10] in general.

Nichols algebras as a special class of braided pointed Hopf algebras are studied
in great detail in this book. They appeared first in [Nic78], independently as
braided algebras in [Wor89]. It follows from the work of Lusztig [Lus93] that
U+
q (g), g symmetrizable Kac-Moody Lie algebra, q transcendental, is a Nichols

algebra; see [Ros98] (where a dual description of Nichols algebras as quantum
shuffle algebras is used), [Gre97], and [Sch96].

xi
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xii PREFACE

We emphasize categorical constructions and one-sided coideal subalgebras. The
introduction of Nichols systems, which are generalizations of Nichols algebras to-
gether with a grading by a free abelian group, allows us to develop the theory in
a very general setting. We do not use the theory of Lyndon words, and we do
not assume results from quantum groups. Our theory can be applied to quantum
groups, and some of our results on right coideal subalgebras are new also in the
special case of quantum groups.

Prerequisites. The reader is expected to be familiar with linear algebra and
algebra on the graduate level including tensor products of modules, basic non-
commutative algebra, and the language of categories, functors, and natural trans-
formations. For a better understanding, a course in semisimple Lie algebras would
be helpful but is not strictly necessary.

We now describe the contents of the book in more detail.

(1) Foundations. We begin in Chapter 1 with a quick introduction to Nichols
algebras. Our goal is to give a complete exposition of the basics of Nichols algebras
which are scattered over various papers.

The most important example of a braided monoidal category in this book is the
category H

HYD of Yetter-Drinfeld modules over some Hopf algebra H with bijective
antipode. If H = kG is the group algebra of a group G over a field k, then an
object in H

HYD is a G-graded vector space V =
⊕

g∈G Vg with a G-action such that

for all g, h ∈ G, g · Vh = Vghg−1 . The braiding cV,W between objects V,W ∈ H
HYD

is given by

cV,W : V ⊗W → W ⊗ V, v ⊗ w �→ g · w ⊗ v, v ∈ Vg, w ∈ W.

The maps cV,W are G-graded and G-linear, where the monoidal structure is given
by the usual grading and diagonal action on the tensor product V ⊗W . For any
object V ∈ H

HYD, the Nichols algebra B(V ) is defined as follows. We want an
N0-graded Hopf algebra R in the braided category H

HYD in which the elements of
V are primitive and generators of the algebra. Moreover, R should be minimal in
the sense that there are no other primitive elements than those in V . Of course,
the tensor algebra T (V ) is an N0-graded Hopf algebra generated by V , where the
elements of V are primitive. But in general there are more primitive elements in
higher degrees. We define the Nichols algebra B(V ) by

B(V ) = T (V )/I(V ), I(V ) the largest coideal in degree ≥ 2.

This is an N0-graded braided quotient Hopf algebra of the tensor algebra. Thus the
Nichols algebra is defined by a universal property, which means that it is very often
quite difficult to really compute B(V ). In Corollary 1.9.7 we prove that the relations
of the Nichols algebra can be described by the quantum symmetrizer maps defined
by the action of the braid group. This is an important theoretical result. However,
it does not immediately help, for example, to decide which Nichols algebras are
finite-dimensional.

Let A be a Hopf algebra whose coradical A0 = H is a Hopf subalgebra, and
let grA be the associated N0-graded Hopf algebra with respect to the coradical
filtration. Then the Nichols algebra over H appears naturally as a subalgebra of
grA (see Corollary 7.1.17). Hence Nichols algebras are essential for the classification
problem of such Hopf algebras A.
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PREFACE xiii

Chapter 2 is a collection of fairly standard results in the theory of Hopf algebras
which we will need later on or which motivate more general constructions later.

In Chapter 3 the theory of Hopf algebras in braided (strict) monoidal cate-
gories C is presented, partly with new proofs. To our knowledge, this theory didn’t
appear so far in a textbook. Sections 3.8 and 3.10 contain detailed proofs of the
Radford-Majid-Bespalov theory of bosonization and Hopf algebras with a projec-
tion in braided categories. Theorem 3.10.6 on left and right coinvariant subobjects
seems to be new; it is used to prove the existence of the Hopf algebra isomorphism T
in Theorem 12.3.3, which in this book plays the role of the Lusztig automorphisms
of quantum groups.

In Chapter 4 we specialize Chapter 3 to the braided category H
HYD. By The-

orem 4.4.11, a finite-dimensional Hopf algebra in H
HYD has bijective antipode and

is a Frobenius algebra. This was shown in the pioneering paper [LS69] for usual
Hopf algebras.

In Chapter 5 a fairly general theory of filtrations by abelian monoids is pre-
sented, which will be applied in particular to Nθ

0, θ ≥ 2, to obtain appropriate
gradings of Nichols algebras. In addition we study the coradical filtration assuming
standard results from the theory of the Jacobson radical of algebras.

Chapters 6 and 7 deal with general braided vector spaces and their Nichols
algebras. They are rather independent of the remaining parts of the book. In
Corollary 7.2.8 we establish the fundamental non-degenerate pairing betweenB(V ∗)
and B(V ), where V is a finite-dimensional object in H

HYD.
In Chapter 8 we discuss quantized enveloping algebras and, more generally,

linkings of Nichols algebras. We define Hopf algebras U(D, λ) which generalize the
quantum groups Uq(g); they are given by the Serre relations in each connected com-
ponent of the Dynkin diagram and linking relations such as the relations between
the Ei and Fi for quantum groups (introduced in [AS02]).

(2) The main motivating problem. Lusztig in [Lus93] defines the positive
part U+

q of the deformed universal enveloping algebra of a Kac-Moody Lie algebra
by a universal property which is easily seen to be an alternative description of the
Nichols algebra of the degree one part V of U+

q . In this case V is a Yetter-Drinfeld
module over the group algebra of a free abelian group G with basis K1, . . . ,Kn,
and

V =
n⊕

i=1

kEi, Ei ∈ VKi
, Ki · Ej = qdiaij for all i, j.

Here, q is not a root of unity, and (diaij)1≤i,j≤n is the symmetrized Cartan matrix.
(In Lusztig’s book, q is transcendental, and char(k) = 0.) The Nichols algebras
of the summands kEi are simply polynomial algebras in the variable Ei. Much
later in his book, Lusztig shows that U+

q is explicitly given by the quantum Serre
relations.

Assume more generally that

V =
θ⊕

i=1

Mi ∈ H
HYD

is a finite direct sum of finite-dimensional irreducible objects Mi ∈ H
HYD, where

H is a Hopf algebra with bijective antipode. If H is the group algebra of a finite
group, and if the characteristic of the field does not divide the order of the group,
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then any finite-dimensional object V in H
HYD is semisimple. The Nichols algebra

B(V ) has an additional important structure. It is an Nθ
0-graded Hopf algebra in

H
HYD. We denote the standard basis of Zθ by α1, . . . , αθ, and define the degree of
Mi as αi. Suppose we know the B(Mi). Which additional information is needed
to understand B(V )? For example, when is B(V ) finite-dimensional? Is there an
analog of Lusztig’s PBW-basis depending on the longest element in the Weyl group
of a semisimple Lie algebra?

Note that in our general situation no Cartan matrix is given a priori. The key to
the missing information will be the root system and the Weyl groupoid of the tuple
M = (M1, . . . ,Mθ). We define the Nichols algebra of the tuple by B(M) = B(V ).

(3) The combinatorics of Cartan graphs and their Weyl groupoids.
This is a generalization of the notion of a Cartan matrix and its Weyl group to a
family of Cartan matrices. Right now there are several approaches to this theory.
Nevertheless we restrict ourselves in Part 2 of the book to a presentation based
on families of Cartan matrices, since this approach appears to be most useful to
explain the combinatorics in the theory of Nichols algebras. Part 2 is independent
of the theory of Nichols algebras.

Let θ ≥ 1 be a natural number, I = {1, . . . , θ}, X a non-empty set, (ri)i∈I

a family of maps ri : X → X , and (AX)X∈X a family of (generalized) Cartan
matrices. The quadruple G = G(I,X , (ri), (A

X)) is called a semi-Cartan graph
if the following axioms hold.

(CG1) For all i ∈ I, r2i = idX .

(CG2) For all i ∈ I, X ∈ X , AX and Ari(X) have the same i-th row.
For all X ∈ X and i ∈ I let sXi ∈ Aut(Zθ) be the reflection map defined by
sXi (αj) = αj − aXijαi for all j ∈ I. Let W(G) be the groupoid with objects X
and morphisms generated by formal maps sXi : X → ri(X). Composition of such
morphism is given by multiplication in Aut(Zθ). Note that W(G) is a groupoid (a

category where every morphism is an isomorphism), since s
ri(X)
i is inverse to sXi .

The real roots of X are the elements in Zθ which can be written as w(αi) for some
morphism w : Y → X and i ∈ I (w(αi) = f(αi), where w is given by f ∈ Aut(Zθ)).

The axioms of a semi-Cartan graph are not yet strong enough to be useful. For
example, we want that the real roots are positive or negative, that is, in Nθ

0 or in
−Nθ

0. We define in Definition 9.1.14 a Cartan graph by two additional axioms
(CG3) and (CG4). If G is a Cartan graph, we call W(G) the Weyl groupoid of
G. The importance of the axioms of a Cartan graph G comes from Theorem 9.4.8,
where we show that the Weyl groupoid of a Cartan graph G is aCoxeter groupoid
(in a different language this is a result of [HY08]), that is, the Weyl groupoid has
defining relations of the same type as Coxeter groups have.

Most of the results in Part 2 have been already published in [HY08], [CH09b],
[CH09a], and [CH12]. However, in Section 9.2 we present new axioms (CG3’) and
(CG4’) of a Cartan graph in terms of reduced sequences. These axioms are those
appearing most naturally for semi-Cartan graphs of Nichols systems.

(4) The Cartan graph of a Nichols algebra. Let M = (M1, . . . ,Mθ) as
above. First we have to define reflection operators on tuples of Yetter-Drinfeld
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PREFACE xv

modules. For each i ∈ I let Ri(M) = (M ′
1, . . . ,M

′
θ), where

M ′
j =

{
M∗

i if j = i,

(adMi)
−aM

ij (Mj) if j �= i,

and where we assume that aMij = −max{m ∈ N0 | (adMi)
m(Mj) �= 0} exists. The

i-th component is the dual Yetter-Drinfeld module M∗
i , and ad is the braided

adjoint action in the Nichols algebra B(M) = B
(⊕θ

i=1 Mi

)
. By Lemma 13.4.4,

(aMij )i,j∈I is a (generalized) Cartan matrix, when we set aMii = 2. By Corol-
lary 13.4.3, the components of Ri(M) are again irreducible. Note the formal simi-
larity with Lusztig’s isomorphisms Ti of quantum groups, where

Ti(Ej) =

{
−FiKi if j = i,

(adEi)
(−aij)(Ej) if j �= i.

The set of points X of G(M) is the set of isomorphism classes of all Rin · · ·Ri1(M),
n ≥ 0, which we assume to exist. We have attached to each X = [M ] ∈ X a Cartan
matrix AX = (aMij )i,j∈I, and we have defined maps ri : X → X , [M ] �→ [Ri(M)]
([M ] denotes the isomorphism class of M). By Theorem 13.6.2, G(M) is a semi-
Cartan graph. This result was first obtained in [AHS10] with a different proof.

In order to implement the remaining axioms of a Cartan graph, sequences of
graded right coideal subalgebras of Nichols algebras and their compatibility with
reflections are studied in Chapter 14. Important results in this respect are Theo-
rem 14.1.4, and in particular Theorem 14.1.9. The latter relates sequences of right
coideal subalgebras of Nichols algebras to reduced sequences in the semi-Cartan
graph. In Section 14.2 we introduce the notion of an exact factorization of bial-
gebras and Nichols systems. With this tool we prove in Theorem 14.2.12 that the
semi-Cartan graph of a Nichols algebra admitting all reflections is indeed a Cartan
graph. This is a new result; it was first shown in [HS10b] for finite semi-Cartan
graphs G(M). It is more general than what was shown in the existing approaches,
where the root system of the Nichols algebra, usually based on the theory of Lyndon
words, was assumed.

(5) Categorical tools, and the role of the Lusztig isomorphisms. The
proofs of these results on the Cartan graph G(M) depend on Chapters 12 and 13.

For all i ∈ I, let K
B(M)
i be the set of right coinvariant elements of the canonical

projection B(M) → B(Mi). By the braided version of the Theorem of Radford

on projections of Hopf algebras, K
B(M)
i is a Hopf algebra in the braided category

B(Mi)
B(Mi)

YD(C)rat, where C = H
HYD, and B(M) is isomorphic to the smash product

Hopf algebra K
B(M)
i #B(Mi). In Theorem 12.3.2 (which first appeared in [HS13b]

in an equivalent version and with a very different proof) we show that there is a
braided isomorphism

(Ω, ω) :
B(Mi)
B(Mi)

YD(C)rat → B(M∗
i )

B(M∗
i )
YD(C)rat.

Hence Ω(K
B(M)
i ) is a Hopf algebra in

B(M∗
i )

B(M∗
i )
YD(C)rat, and we may consider its

bosonization Ω(K
B(M)
i )#B(M∗

i ). By Theorem 13.4.9, this bosonization is isomor-
phic to B(Ri(M)). The deeper results on B(Ri(M)) depend on this isomorphism.
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Theorem 12.3.3 is another categorical result on the isomorphism (Ω, ω). It
implies a very close relationship between B(M) and B(Ri(M)). There is an isomor-
phism of braided Hopf algebras

T
B(M)
i : L

B(Ri(M))
i → K

B(M)
i

between the left coinvariants L
B(Ri(M))
i of the projection

B(Ri(M)) ∼= Ω(K
B(M)
i )#B(M∗

i )→ B(M∗
i )

and the right coinvariants (K
B(M)
i )cop of B(M). To make sense, this Hopf algebra

isomorphism has to be understood in the formulation of Theorem 12.3.3 which did
not appear in print before.

The isomorphisms T
B(M)
i play the role of the Lusztig automorphisms to con-

struct a PBW basis of U+
q . Since the maps T

B(M)
i can be seen as isomorphisms

of Hopf algebras, they can be used in Theorem 14.1.9 to construct right coideal
subalgebras in B(M) stepwise (Lusztig’s isomorphisms are maps of algebras not of
coalgebras).

If the Cartan graph G(M) is finite, that is, there are only finitely many real
roots, then we obtain by this procedure in Corollary 14.5.3 a tensor decomposition

B(Mβm
)⊗ · · · ⊗ B(Mβ1

) ∼= B(M),(0.0.1)

depending on the longest element in Hom(W(M), [M ]), where Mβm
, . . . ,Mβ1

are
irreducible subobjects of B(M) in H

HYD which correspond to the higher root vectors
of quantum groups, and deg(Mβi

) = βi ∈ Nθ
0 for all i. For all 1 ≤ l ≤ m, the image

of B(Mβl
)⊗ · · · ⊗ B(Mβ1

) in B(M) is a right coideal subalgebra.
Assume that the components Mi of M are one-dimensional. Then the Mβl

in
(0.0.1) are one-dimensional, the algebras B(Mβl

) are polynomial rings or truncated
polynomial rings. Thus we have constructed a PBW basis of B(M). In particular,
we obtain Lusztig’s PBW basis of U+

q (g), g a semisimple Lie algebra, without any
case by case considerations; see also Remark 16.2.6. The Levendorskii-Soibelman
commutation relations are also shown in the general context of Nichols algebras
over any field; see Theorem 14.1.12 and Theorem 16.3.16.

In Corollary 14.5.3 we prove that G(M) must be finite if B(M) is finite-
dimensional.

Assume that G(M) is finite. In Corollary 14.6.8 we prove that the construction
of right coideal subalgebras mentioned above defines a bijection

Hom(W(M), [M ])→ K(B(M))

between morphisms in the Weyl groupoid ending in [M ] and the set of all graded
right coideal subalgebras of B(M). Kharchenko [Kha11] conjectured that the num-
ber of such right coideal subalgebras in U+

q (g) (for simple Lie algebras) is equal to
the order of the Weyl group. Our work on right coideal subalgebras in [HS13a]
was motivated by this conjecture, which is now proved as a special case of Corol-
lary 14.6.8. As a novelty, in Theorem 14.6.6 we generalize the correspondence in
Corollary 14.6.8 to tuples with not necessarily finite Cartan graph.

The categorical results in Chapter 12 are very general. They can be applied to

any Hopf algebra K in
B(Mi)
B(Mi)

YD(C)rat, not just to K
B(M)
i . This leads to a new and

substantial extension of the theory of Nichols algebras in Section 13.5. There we
introduce Nichols systems and define reflection operators for Nichols systems. The
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stepwise construction of right coideal subalgebras in Section 14.1 works for Nichols
systems.

We use Nichols systems to establish criteria when a given pre-Nichols algebra
is Nichols. By Theorem 14.5.4, any pre-Nichols system admitting all reflections
and having a finite Cartan graph is in fact a Nichols algebra. Theorem 14.5.4 is
fundamental for several proofs later on in the book. We would like to highlight The-
orem 15.5.1 (finite-dimensional pre-Nichols algebras of diagonal type are Nichols),
Theorem 16.2.5(2) (the positive part U+

q of a quantum group attached to a Cartan
matrix of finite type, q not a root of 1, is a Nichols algebra), Theorem 16.4.23(2) (a
pre-Nichols algebra with finite Gelfand-Kirillov dimension of a braided vector space
of quasi-generic Cartan type is the Nichols algebra U+

q ), and Corollary 16.4.24 (a
braided vector space of diagonal type with a Nichols algebra being a domain of
finite Gelfand-Kirillov dimension is quasi-generic of finite Cartan type); see below
for more details.

(6) Applications. After some basic observations on reflections of Yetter-
Drinfeld modules of diagonal type in Section 15.1, we study root vector sequences
in pre-Nichols systems. In the special case of usual quantum groups, the root vec-
tors of Lusztig are shown later in Remark 16.2.6 to form root vector sequences.
This has advantages for both approaches: Lusztig’s root vectors satisfy integrality
properties, and root vector sequences are defined by defining properties which can
be used to develop new methods (such as braided commutators associated to Lyn-
don words) to construct them. Further important differences in the two approaches
to quantum groups are that our root vectors are only unique up to scalar multi-
ples, we don’t use an analog of the braid relations for Lusztig’s automorphisms,
and we don’t need to perform case by case analysis (except in Remark 16.2.6 to
prove the correspondence). Note that root vector sequences, similarly to Lusztig’s
root vectors, are defined for any reduced decomposition of an element of the Weyl
group(oid).

Using root vector sequences, Theorem 15.2.7 describes a basis of any right
coideal subalgebra of a Nichols system attached to a reduced decomposition of an
element of the Weyl groupoid.

Following [HW15], in Theorem 15.3.1 we classify two-dimensional braided vec-
tor spaces of diagonal type which have a finite Cartan graph, where the field k has
characteristic 0. This classification uses explicitly the combinatorics of finite Cartan
graphs of rank two from Section 10.3. The classification in [Hec09] of all finite-
dimensional braided vector spaces of diagonal type and with finite Cartan graph is
beyond the scope of this book.

Angiono in [Ang15] (using the results on right coideal subalgebras in Corol-
lary 14.6.8) and [Ang13] found a celebrated presentation of the Nichols algebras
appearing in [Hec09] in terms of generators and relations, where the ground field
is algebraically closed of characteristic 0.

A conjecture in [AS00a] says that any finite-dimensional pointed Hopf algebra
H over an algebraically closed field of characteristic 0 is generated as an algebra
by group-like and skew-primitive elements. In Theorem 15.5.1 we prove that finite-
dimensional pre-Nichols algebras of diagonal type over a field of characteristic 0 are
Nichols algebras. This proves the conjecture when the group of group-like elements
of H is abelian. This theorem was originally proved by I. Angiono in [Ang13]
using his list of defining relations of the finite-dimensional Nichols algebras classified
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in [Hec09]. In contrast, our proof is based on the aforementioned Theorem 14.5.4
and some results in rank two and partially in rank three.

In Chapter 16, especially in Theorems 16.2.5 and 16.3.17, we recover the results
of Angiono on generators and relations for Nichols algebras of finite Cartan type
(which include the algebras studied by Lusztig when the Cartan matrix is of finite
type) except for a few cases with parameters of small order. In the discussed cases
the Nichols algebras are presented by the quantum Serre relations and by root vector
relations. The proof of Theorem 16.2.5, where the braiding matrix is quasi-generic,
is a more or less direct application of Theorem 14.5.4. A proof of Theorem 16.3.17
along the same line, where the entries of the braiding matrix are roots of unity,
appears to be problematic since the root vector relations depend on the choice of
a presentation of the longest element of the Weyl group. Instead, we provide first
in Theorem 16.3.14 a basis of the Hopf algebra U+

q defined by the quantum Serre
relations by analyzing root vector sequences. This together with an easy dimension
argument yields the claim.

It is known that for the excluded exceptional cases additional defining relations
are needed.

In Section 16.4 we study Nichols algebras of diagonal type, which are domains
of finite Gelfand-Kirillov dimension. By Corollary 16.4.24, these are the Nichols
algebras of finite Cartan type, where the diagonal entries of the braiding are 1 (only
in characteristic 0) or not roots of 1.

In Theorem 16.5.10 we show that the pointed Hopf algebras with abelian corad-
ical, generic infinitesimal braiding, and finite Gelfand-Kirillov dimension are exactly
the Hopf algebras U(D, λ) defined in Section 8.3 generalizing the quantum groups
Uq(g). This was shown in [AS04] for positive braidings using [Ros98], and ex-
tended in [AA08] to the general case using [Hec06].

In Chapter 17 Nichols algebras over non-abelian groups are studied. Among
others we prove in Corollary 17.1.5 (partly following [HS10b]) that the Nichols
algebra of a non-zero non-simple Yetter-Drinfeld module over a finite simple group
is necessarily infinite-dimensional. A similar result for the symmetric groups Sn
with n ≥ 3 is shown in Corollary 17.1.8.

The theory of reflections does not give direct information about Nichols alge-
bras of irreducible Yetter-Drinfeld modules over groups. However, it can be helpful
to prove that a given Nichols algebra of an irreducible Yetter-Drinfeld module is
infinite-dimensional by finding a braided subspace which can be realized over some
other group with decomposable Yetter-Drinfeld module and which has infinite-
dimensional Nichols algebra. This is demonstrated in Corollary 17.1.11 which led
to the definition of racks of type D. The rack theoretical formulation of Corol-
lary 17.1.11 (finite racks of type D collapse) was used for example in [AF+11a]
to show that any finite-dimensional pointed Hopf algebra H over C with group
G(H) ∼= An, n ≥ 5, is isomorphic to the group algebra CAn of the alternating
group. (Racks of type D were not used for A5.)

We collect the known finite-dimensional examples of Nichols algebras of ir-
reducible Yetter-Drinfeld modules over groups in characteristic 0 in Section 17.2
without proofs. Finally, in Section 17.3 the finite-dimensional Nichols algebras of
direct sums of two simple Yetter-Drinfeld modules are listed without proof; this clas-
sification uses the finiteness of the corresponding Cartan graph by Corollary 14.5.3.
For references, see Chapter 17.
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CHAPTER 1

A quick introduction to Nichols algebras

The structure theory of Nichols algebras is a central theme throughout the
book. In this chapter we introduce the concepts which are needed to deal with
Nichols algebras of group type and also in the general case later in Chapters 6 and
7.

In Section 1.3 we study N0-graded connected coalgebras which are strictly
graded, that is, the only primitive elements are in degree 1. For any N0-graded
connected coalgebra C, let IC(n) be the kernel of

C(n) ⊆ C
Δn−1

−−−−→ C⊗n π⊗n
1−−−→ C(1)⊗n.

Then IC =
⊕

n≥2 IC(n) is the largest coideal of C in degree ≥ 2, and B(C) = C/IC
is a universally defined strictly graded coalgebra quotient of C which coincides with
C in degree 0 and 1.

The tensor algebra of a Yetter-Drinfeld module V (over a group algebra or in
the general case in Chapter 7) is a braided Hopf algebra, where the elements in V
are primitive. In Section 1.6 we define the Nichols algebra of V by

B(V ) = B(T (V )) = T (V )/IT (V ).

This is a braided Hopf algebra quotient of the tensor algebra. In Section 1.9 we
describe the comultiplication of the tensor algebra T (V ) by braided shuffle maps,
and the relations of the Nichols algebra as the kernels of the braided symmetrizer
maps.

In the last section we will discuss several important examples and mention
others with reference to a proof.

1.1. Algebras, coalgebras, modules and comodules

Convention. The ground field is denoted by k. This is an arbitrary field. If
we use additional assumptions on the field, we will say so explicitly.

We write k× for the subgroup of non-zero elements of k. Vector spaces are
vector spaces over k, and linear maps between vector spaces are k-linear maps. If
V,W are vector spaces, then Hom(V,W ) is the set of all linear maps from V to W ,
and V ⊗W = V ⊗k W is the tensor product over k. In this book we will use the
following convention. If U, V,W are vector spaces, then we will identify

(U ⊗ V )⊗W = U ⊗ (V ⊗W )

using the natural isomorphism

(U ⊗ V )⊗W
∼=−→ U ⊗ (V ⊗W ), (u⊗ v)⊗ w �→ u⊗ (v ⊗ w).

3
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4 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Hence we will omit the brackets in tensor products of several vector spaces. Occa-
sionally we will also suppress the natural isomorphisms

k⊗ V
∼=−→ V, α⊗ v �→ αv, V ⊗ k

∼=−→ V, v ⊗ α �→ αv.

Thus we will write V = k⊗ V and V = V ⊗ k.
The dual of a vector space V is denoted by V ∗ = Hom(V, k).
Let A be a vector space, and μ : A × A → A a map (called multiplication)

whose images will be denoted by μ(a, b) = ab for all a, b ∈ A. Then A together
with μ is an algebra (with unit element) if there exists an element 1A = 1 ∈ A
such that for all a, b, c ∈ A and α ∈ k,

a(bc) = (ab)c,

a(b+ c) = ab+ ac, (a+ b)c = ac+ bc,

α(ab) = (αa)b = a(αb),

1a = a = a1.

The unit element 1A of an algebra is uniquely determined. It defines a linear map
η : k → A, α �→ α1A. The multiplication map μ is a k-bilinear map. Hence it is
given by a linear map

μ : A⊗A→ A, a⊗ b �→ ab.

Let V,W be vector spaces. The linear map

τV,W : V ⊗W → W ⊗ V, v ⊗ w �→ w ⊗ v,

is called the flip map of V and W .
Let A,B be algebras. The tensor product of vector spaces A⊗B is an algebra

with unit 1⊗ 1 and multiplication given by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′(1.1.1)

for all a, a′ ∈ A, b, b′ ∈ B. Thus the multiplication map of A⊗B is the composition

(A⊗B)⊗ (A⊗B)
idA⊗τB,A⊗idB−−−−−−−−−−→ (A⊗A)⊗ (B ⊗B)

μA⊗μB−−−−−→ A⊗B.(1.1.2)

This algebra structure on A⊗B is called the tensor product of the algebras A
and B. Note that for algebras A,B,C, the canonical isomorphism

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

is an isomorphism of algebras, and following our convention, we will identify these
algebras.

The opposite algebra Aop is A as a vector space, where the elements are
denoted by aop = a ∈ A, and where the multiplication is given by

aopbop = (ba)op

for all a, b ∈ A.
An algebra homomorphism (or algebra map) ρ : A → B is a linear map

satisfying ρ(1) = 1 and ρ(ab) = ρ(a)ρ(b) for all a, b ∈ A. An algebra anti-
homomorphism ρ : A → B is an algebra homomorphism ρ : A → Bop. We write
Alg(A,B) for the set of algebra homomorphisms from A to B.
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 5

An algebra can equivalently be defined as a triple (A, μ, η), where A is a vector
space and μ : A ⊗ A → A and η : k → A are linear maps such that the following
diagrams commute.

A⊗A⊗A

idA⊗μ

��

μ⊗idA �� A⊗A

μ

��

A⊗A
μ

�� A

(associativity)(1.1.3)

A⊗ k
idA⊗η

��

=
���

��
��

��
��

� A⊗A

μ

��

A

k⊗A
η⊗idA ��

=
���

��
��

��
��

� A⊗A

μ

��

A

(unit)(1.1.4)

Let A and B be algebras. An algebra homomorphism ρ : A → B is a linear map
such that the following diagrams commute.

A⊗A
ρ⊗ρ

��

μA

��

B ⊗ B

μB

��

A
ρ

�� B

(1.1.5)

A
ρ

�� B

k

ηA

���������� ηB

����������
(1.1.6)

We introduce coalgebras by formally inverting the arrows in the definiton of an
algebra.

Definition 1.1.1. Let C be a vector space, and let Δ : C → C ⊗C, ε : C → k
be linear maps called comultiplication and counit. Then (C,Δ, ε) or simply C
is a coalgebra if the following diagrams commute.

C

Δ

��

Δ �� C ⊗ C

idC⊗Δ

��

C ⊗ C
Δ⊗idC �� C ⊗ C ⊗ C

(coassociativity)(1.1.7)

C
Δ ��

=
���

��
��

��
��

C ⊗ C

idC⊗ε

��

C ⊗ k

C
Δ ��

=
���

��
��

��
��

C ⊗ C

ε⊗idC

��

k⊗ C

(counit)(1.1.8)

A subspace D of a coalgebra C is called a subcoalgebra if Δ(D) ⊆ D ⊗D.
Let C,D be coalgebras. The vector space C ⊗ D is a coalgebra with counit

εC ⊗ εD and comultiplication

C ⊗D
ΔC⊗ΔD−−−−−−→ C ⊗ C ⊗D ⊗D

idC⊗τC,D⊗idD−−−−−−−−−−→ (C ⊗D)⊗ (C ⊗D).(1.1.9)
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6 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

This coalgebra structure on C⊗D is called the tensor product of the coalgebras
C and D.

A linear map ϕ : C → D is a coalgebra homomorphism or a coalgebra
map if the following diagrams commute.

C

ΔC

��

ϕ
�� D

ΔD

��

C ⊗ C
ϕ⊗ϕ

�� D ⊗D

(1.1.10)

C
ϕ

��

εC
��
��

��
��

��
D

εD
		��
��
��
��

k

(1.1.11)

We denote by Coalg(C,D) the set of all coalgebra homomorphisms from C to D.
The coalgebra C is called cocommutative if the diagram

C
Δ ��

Δ
���

��
��

��
��

C ⊗ C

τC,C

��

C ⊗ C

(cocommutativity)(1.1.12)

commutes.
The coopposite coalgebra Ccop is C as a vector space with comultiplication

τC,CΔ and counit ε. A coalgebra anti-homomorphism f : C → D is a coalgebra
homomorphism f : C → Dcop.

Example 1.1.2. Let Γ be a set and kΓ the vector space with basis Γ. Then
kΓ is a coalgebra with Δ(g) = g ⊗ g, ε(g) = 1 for all elements g ∈ Γ.

Example 1.1.3. Let C be a 3-dimensional vector space with basis g, h, x. De-
fine linear maps Δ : C → C ⊗ C and ε : C → k on the basis of C by

Δ(g) = g ⊗ g, Δ(h) = h⊗ h, Δ(x) = g ⊗ x+ x⊗ h,

ε(g) = 1, ε(h) = 1, ε(x) = 0.

It is easily checked by direct computation that C is a coalgebra.

Definition 1.1.4. Let C be a coalgebra.

(1) An element g ∈ C is called group-like if Δ(g) = g ⊗ g and ε(g) = 1. Let
G(C) = {g ∈ C | g is group-like}.

(2) Let g, h ∈ G(C). Let Pg,h(C) = {x ∈ C | x is (g, h)-primitive}, where
x ∈ C is called (g, h)-primitive if Δ(x) = g ⊗ x+ x⊗ h.

(3) An element x ∈ C is called skew-primitive if there are group-like ele-
ments g, h ∈ G(C) with x ∈ Pg,h(C).

Note that g ∈ C is group-like if Δ(g) = g ⊗ g and g �= 0, since g = ε(g)g. The
sets Pg,h(C) with g, h ∈ G(C) are subspaces of C. If x ∈ Pg,h(C), then ε(x) = 0,
since x = ε(g)x+ ε(x)h because of the counit axiom.

Example 1.1.5. Let n ∈ N and let C = Mn(k)∗ denote the dual space of
the vector space of n by n matrices. Let (uij)1≤i,j≤n be the dual basis of the
standard basis (Eij)1≤i,j≤n of Mn(k), where Eij is a matrix having entry 1 in the
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 7

i-th row and j-th column, and zeros elsewhere. Then C together with the linear
maps Δ : C → C ⊗ C and ε : C → k,

Δ(uij) =
n∑

k=1

uik ⊗ ukj , ε(uij) = δij

for all i, j ∈ {1, . . . , n}, is a coalgebra.

The next result is a version of Dedekind’s Lemma in Galois theory on the linear
independency of characters.

Proposition 1.1.6. Let C be a coalgebra. Then G(C) is a linearly independent
subset of C.

Proof. We show by induction on n that each subset of G(C) of n elements
is linearly independent. This is clear for n = 1. Assume that each subset of
G(C) of n elements is linearly independent. Let g1, . . . , gn+1 ∈ G(C) be pairwise
distinct elements. Assume that there are non-zero scalars α1, . . . , αn+1 ∈ k with∑n+1

i=1 αigi = 0. Then gn+1 =
∑n

i=1 βigi, where βi = − αi

αn+1
for all 1 ≤ i ≤ n. By

applying Δ to this equation we get∑
1≤i≤n

βigi ⊗ gi =Δ
( ∑

1≤i≤n

βigi

)
=Δ(gn+1) = gn+1 ⊗ gn+1 =

∑
1≤i,j≤n

βiβjgi ⊗ gj .

Hence n = 1 and β1 = 1 by linear independency of g1, . . . , gn. This is a contradiction
to g1 �= g2. Hence g1, . . . , gn+1 are linearly independent. �

Lemma 1.1.7. Let C,D be vector spaces and let A ⊆ C, B ⊆ D be subspaces.
Then

A⊗B = {t ∈ C ⊗D | (idC ⊗ g)(t) ∈ A for all g ∈ D∗,

(f ⊗ idD)(t) ∈ B for all f ∈ C∗}.
Proof. The inclusion ⊆ is clear. Conversely, any t ∈ C ⊗ D can be written

as t =
∑n

i=1 ci ⊗ di with n ∈ N0, c1, . . . , cn ∈ C, and d1, . . . , dn ∈ D. Take such a
presentation of t for a minimal n. Then both c1, . . . , cn and d1, . . . , dn are linearly
independent. If (f ⊗ idD)(t) ∈ B for all f ∈ C∗, then di ∈ B for all i ∈ {1, . . . , n}.
Similarly, if (idC ⊗ g)(t) ∈ A for all g ∈ D∗ then ci ∈ A for all i. This implies the
inclusion ⊇. �

Lemma 1.1.8. A subspace D of a coalgebra C is a subcoalgebra if and only if
(idC ⊗ f)Δ(x) ∈ D, (f ⊗ idC)Δ(x) ∈ D for all x ∈ D, f ∈ C∗.

Proof. The subspace D of C is a subcoalgebra if and only if Δ(x) ∈ D ⊗D
for all x ∈ D. Thus the claim follows from Lemma 1.1.7. �

Proposition 1.1.9. The intersection of subcoalgebras of a given coalgebra is a
subcoalgebra.

Proof. Apply Lemma 1.1.8 with D the intersection of subcoalgebras. �
If X ⊆ C is a subspace of a coalgebra C, by Proposition 1.1.9 we can define

the subcoalgebra of C generated by X as the intersections of all subcoalgebras
of C containing X.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



8 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Remark 1.1.10. For all elements c in a coalgebra C it is useful to symbolically
write

Δ(c) = c(1) ⊗ c(2). (Sweedler notation)

In this notation the axioms of a coalgebra are equivalent to the equations

Δ(c(1))⊗ c(2) = c(1) ⊗Δ(c(2)), (coassociativity)(1.1.13)

ε(c(1))c(2) = c = c(1)ε(c(2)) (counit)(1.1.14)

for all c ∈ C. Let c ∈ C. Choose finitely many elements c1i, c2i ∈ C, 1 ≤ i ≤ n,
with Δ(c) =

∑n
i=1 c1i ⊗ c2i. Then the symbolic equations (1.1.13) and (1.1.14) say

that
n∑

i=1

Δ(c1i)⊗ c2i =
n∑

i=1

c1i ⊗Δ(c2i),

n∑
i=1

ε(c1i)c2i = c =
n∑

i=1

c1iε(c2i).

Let C be a coalgebra. The iterations Δn, n ≥ 0, of Δ are defined inductively by

Δ0 = idC : C → C, Δn = (idC ⊗Δn−1)Δ : C → C⊗(n+1)(1.1.15)

for all n ≥ 1. We extend the symbolic notation above to the iterations of Δ. For
all c ∈ C and n ≥ 1, we write

Δ(c) = c(1) ⊗ c(2),

Δ2(c) = c(1) ⊗ c(2) ⊗ c(3), . . .

Δn(c) = c(1) ⊗ · · · ⊗ c(n+1).

This notation is useful since implicitly it expresses the axiom of coassociativity.
Thus for an element c in a coalgebra,

Δ(c(1))⊗ c(2) = c(1) ⊗Δ(c(2)) = c(1) ⊗ c(2) ⊗ c(3).

Note that c(1) alone does not make sense. But if F : C × · · · × C︸ ︷︷ ︸
n

→ V is an n-fold

multilinear function to a vector space V , where n ≥ 2, then

F (c(1), . . . , c(n)) = f(Δn−1(c))

is a well-defined expression, where f : C⊗n → V is the linear map defined by F .
Let C,D be coalgebras. The formulas for the comultiplication and counit of

the tensor product coalgebra C ⊗D are

Δ(c⊗ d) = (c(1) ⊗ d(1))⊗ (c(2) ⊗ d(2)), ε(c⊗ d) = ε(c)ε(d)(1.1.16)

for all c ∈ C, d ∈ D.

Quotients of algebras are described by ideals. We define coideals to describe
coalgebra quotients.

We first note a lemma on the tensor product of linear maps.

Lemma 1.1.11. Let f : V → X, g : W → Y be linear maps between vector
spaces V,W,X, Y . Then ker(f ⊗ g) = V ⊗ ker(g) + ker(f)⊗W .
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 9

Proof. Choose subspaces V ′ ⊆ V , W ′ ⊆ W such that V = ker(f) ⊕ V ′ and
W = ker(g)⊕W ′. Then

V ⊗W = (V ⊗ ker(g))⊕ (ker(f)⊗W ′)⊕ (V ′ ⊗W ′),

and the restriction of f ⊗ g to V ′ ⊗W ′ is injective. �

Definition 1.1.12. Let C be a coalgebra. A vector subspace I ⊆ C is a
coideal if

Δ(I) ⊆ I ⊗ C + C ⊗ I, ε(I) = 0.

Proposition 1.1.13. Let C,D be coalgebras, f : C → D a coalgebra map.

(1) If I ⊆ C is a coideal, then f(I) ⊆ D is a coideal, and the quotient vector
space C/I is a coalgebra with

Δ(x) = x(1) ⊗ x(2), ε(x) = ε(x)

for all x ∈ C, where x = x + I is the residue class of x in C/I. The
quotient map C → C/I is a coalgebra homomorphism.

(2) Let I = ker(f), and let f : C/I → D be the map induced by f . Then I is
a coideal of C, and f is an injective coalgebra homomorphism.

(3) If J ⊆ D is a coideal, then f−1(J) ⊆ C is a coideal.

Proof. (1) is clear from the definition, and (2) follows from Lemma 1.1.11,
since Δ(ker(f)) ⊆ ker(f ⊗ f). (3) follows from (2) applied to the composition

C
f−→ D → D/J . �

The next lemma demonstrates another setting in which coideals appear natu-
rally.

Lemma 1.1.14. Let C be a coalgebra and let B ⊆ C be a subspace satisfying
Δ(B) ⊆ B ⊗ C or Δ(B) ⊆ C ⊗ B. Then B+ = ker(ε : B → k) is a coideal of C,
and B �= B+ if B �= 0.

Proof. Assume that B �= 0 and Δ(B) ⊆ B ⊗ C. By the counit axiom there
exists b ∈ B with ε(b) = 1. Hence B = kb⊕B+. Let x ∈ B+. Then

Δ(x) ∈ b⊗ y +B+ ⊗ C

for some y ∈ C, and y = x by applying ε ⊗ idC to the above formula. Thus
Δ(B+) ⊆ C⊗B++B+⊗C. If Δ(B) ⊆ C⊗B, then the claim is shown similarly. �

Let V be a vector space, (A, μ, η) an algebra, and λ : A⊗V → V a linear map.
The pair (V, λ) is a left A-module if the following diagrams commute.

A⊗A⊗ V

idA⊗λ

��

μ⊗idV �� A⊗ V

λ

��

A⊗ V
λ �� V

k⊗ V
η⊗idV ��

=


�

��
��

��
��

� A⊗ V

λ

��

V

(1.1.17)
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10 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Let V,W be left A-modules. An A-module homomorphism f : V → W is a linear
map such that the following diagram commutes.

A⊗ V
idA⊗f

��

λV

��

A⊗W

λW

��

V
f

�� W

(1.1.18)

We denote the category of left A-modules with A-linear maps as morphisms by

AM. The category of right A-modules, defined analogously, is denoted by MA.
We introduce comodules over a coalgebra by formally inverting the diagrams

defining a module over an algebra.

Definition 1.1.15. Let (C,Δ, ε) be a coalgebra, V a vector space, and let
δ : V → C ⊗ V be a linear map. Then (V, δ) or simply V is a left C-comodule if
the following diagrams commute.

V

δ

��

δ �� C ⊗ V

Δ⊗idV

��

C ⊗ V
idC⊗δ

�� C ⊗ C ⊗ V

(coassociativity)(1.1.19)

V
δ ��

=
���

��
��

��
��

C ⊗ V

ε⊗idV

��

k⊗ V

(counit)(1.1.20)

If (V, δV ) and (W, δW ) are left C-comodules, and f : V → W is a linear map, then f
is a left C-comodule homomorphism or a left C-colinear map if the following
diagram commutes.

V
f

��

δV

��

W

δW
��

C ⊗ V
idC⊗f

�� C ⊗W

(1.1.21)

Let (V, δ) be a left C-comodule. A subcomodule of V is a subspace U ⊆ V with
δ(U) ⊆ C ⊗ U .

The category of left C-comodules with C-colinear maps as morphisms is de-
noted by CM. Right C-comodules and right C-colinear maps are defined similarly.
Their category is denoted by MC .

We write HomC(V,W ) for the set of all left (or right) C-colinear maps between
two left (or right) C-comodules V,W .

Remark 1.1.16. Comodules over a coalgebra C form an abelian category like
modules over an algebra. In particular, let (V, δV ) ∈ CM, and let U ⊆ V be a
subcomodule. Let V/U be the quotient vector space, and let π : V → V/U be
the quotient map. Then (V/U, δV/U ) is a left C-comodule, where the comodule
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 11

structure is uniquely defined by the commutative diagram

V

π

��

δV �� C ⊗ V

id⊗π

��

V/U
δV/U

�� C ⊗ V/U

If V,W ∈ CM, and f : V → W is left C-colinear, then ker(f) ⊆ V and im(f) ⊆ W

are subcomodules, and V/ker(f)
∼=−→ im(f), v �→ f(v), is an isomorphism in CM.

Let Γ be a set. Comodules over kΓ are given by Γ-graded vector spaces. A
Γ-grading of a vector space V is a family V = (V (g))g∈Γ of subspaces of V such
that

V =
⊕
g∈Γ

V (g).

A Γ-graded vector space is a pair (V,V), where V is a vector space with a
grading (or a gradation) V . For a graded vector space V = (V,V) we denote by
πV
g : V → V (g), g ∈ Γ, the canonical projection. An element v ∈ V is called

homogeneous of degree g ∈ Γ if v ∈ V (g). We write deg(v) = g, if v ∈ V (g).
We also use the notation Vg = V (g), in particular, when G is a monoid or a

group.
Let Γ-GrMk be the category of Γ-graded vector spaces, where a morphism

f : (V,V) → (W,W) is a graded map or a homogeneous map (of degree 0),
that is a k-linear map with f(V (g)) ⊆ W (g) for all g ∈ Γ.

Proposition 1.1.17. Let Γ be a set. The functor

F : Γ-GrMk → kΓM, (V, (V (g))g∈Γ) �→
(⊕

g∈Γ

V (g), δ
)
,

where δ(v) = g ⊗ v for all v ∈ V (g), g ∈ Γ, and where morphisms f are mapped
onto f , is an isomorphism of categories. The inverse functor maps a comodule
(V, δ) onto V with grading V (g) = Vg = {v ∈ V | δ(v) = g ⊗ v} for all g ∈ Γ.

Proof. Let (V, δ) be a left kΓ-comodule. We prove that V =
⊕

g∈Γ Vg, where

Vg = {v ∈ V | δ(v) = g ⊗ v} for all g ∈ Γ.

For any v ∈ V there are elements vg ∈ V , g ∈ Γ, such that vg �= 0 only for finitely
many g ∈ Γ and such that δ(v) =

∑
g∈Γ g ⊗ vg. By coassociativity,∑

g∈Γ

g ⊗ δ(vg) =
∑
g∈Γ

g ⊗ g ⊗ vg.

Hence δ(vg) = g ⊗ vg for all g ∈ Γ. Moreover, v =
∑

g∈Γ ε(g)vg =
∑

g∈Γ vg. Hence

V =
∑

g∈Γ Vg. Let now (vg)g∈Γ be a family of elements of V , where vg ∈ V (g)

for all g ∈ Γ and vg �= 0 only for finitely many g ∈ Γ. Assume that
∑

g∈Γ vg = 0.

Applying δ gives
∑

g∈Γ g ⊗ vg = 0, hence vg = 0 for all g ∈ Γ.
The isomorphism of categories now follows easily. �

Remark 1.1.18. If (V, δ) is a right C-comodule, we define inductively

δn : V → V ⊗ C⊗n for all n ≥ 0
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12 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

by δ0 = idV , δ
1 = δV , and δn = (δ ⊗ idC⊗(n−1))δn−1 for all n ≥ 2. Extending the

Sweedler notation to comodules we write

δ(v) = v(0) ⊗ v(1),

δ2(v) = v(0) ⊗Δ(v(1)) = v(0) ⊗ v(1) ⊗ v(2), . . .

δn(v) = v(0) ⊗ v(1) ⊗ · · · ⊗ v(n)

for all v ∈ V . For left C-comodules (V, δ) we use negative indices.

δ(v) = v(−1) ⊗ v(0),

δ2(v) = Δ(v(−1))⊗ v(0) = v(−2) ⊗ v(−1) ⊗ v(0), . . .

δn(v) = v(−n) ⊗ · · · ⊗ v(−1) ⊗ v(0)

for all v ∈ V .

1.2. Bialgebras and Hopf algebras

We continue with the introduction of bialgebras, Hopf algebras, quotients of
them, and their graded versions.

Definition 1.2.1. Let H be a vector space, and let

μ : H ⊗H → H, η : k→ H, Δ : H → H ⊗H, ε : H → k

be linear maps. Then (H,μ, η,Δ, ε) is a bialgebra if (H,μ, η) is an algebra,
(H,Δ, ε) is a coalgebra, and Δ and ε are algebra maps.

Let H,H ′ be bialgebras. A bialgebra homomorphism ϕ : H → H ′ is
an algebra and a coalgebra homomorphism. A subbialgebra of a bialgebra is a
subalgebra and a subcoalgebra.

Proposition 1.2.2. Let H be a vector space, and let

μ : H ⊗H → H, η : k→ H, Δ : H → H ⊗H, ε : H → k

be linear maps. Assume that (H,μ, η) is an algebra and (H,Δ, ε) is a coalgebra.
Then the following are equivalent.

(1) Δ and ε are algebra maps.
(2) μ and η are coalgebra maps.

Proof. By definition, (1) is equivalent to the commutativity of the diagrams
(1.1.5) and (1.1.6) for Δ and ε, and (2) is equivalent to the commutativity of the
diagrams (1.1.10) and (1.1.11) for μ and η.

Let τ = τH,H : H ⊗H → H ⊗H be the flip map. Then

μH⊗H(Δ⊗Δ) = (μ⊗ μ)(id⊗ τ ⊗ id)(Δ⊗Δ) = (μ⊗ μ)ΔH⊗H .

Hence (1.1.5) for Δ and (1.1.10) for μ coincide. Obviously, the diagrams (1.1.6) for
Δ and (1.1.10) for η, (1.1.5) for ε and (1.1.11) for μ, as well as (1.1.6) for ε and
(1.1.11) for η coincide. �

Example 1.2.3. Let G be a monoid, that is a set G together with an associative
map G × G → G and a unit element e. The monoid algebra kG (or group
algebra, if G is a group) is the vector space with basis G. Its algebra structure
μ : kG ⊗ kG → kG, η : k → kG, is given by μ(g, h) = gh (the product of g and h
in G) for all g, h ∈ G and by η(1) = e. Then kG is a bialgebra where the elements
of G are group-like. The bialgebra axioms are trivially verified on the basis.
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1.2. BIALGEBRAS AND HOPF ALGEBRAS 13

Definition 1.2.4. Let H be a bialgebra.

(1) Let V,W ∈ HM. The map

H ⊗ V ⊗W → V ⊗W, h⊗ v ⊗ w �→ h(1)v ⊗ h(2)w,

is called the diagonal action of H on V ⊗W . The trivial action of H
on k is defined by H ⊗ k→ k, h⊗ 1 �→ ε(h).

(2) Let V,W ∈ HM. The map

V ⊗W → H ⊗ V ⊗W, v ⊗ w �→ v(−1)w(−1) ⊗ v(0) ⊗ w(0),

is called the diagonal coaction of H on V ⊗W . The trivial coaction
of H on k is defined by k→ H ⊗ k, 1 �→ η(1)⊗ 1.

For modules over kG, G a monoid, the diagonal action is given by the familiar
formulas from representation theory of groups:

g(v ⊗ w) = gv ⊗ gw, gα = α,

for all v ∈ V , w ∈ W , α ∈ k.
It is a fundamental consequence of the axioms of a bialgebra that modules

and comodules over a bialgebra can be multiplied in the sense of the following
proposition.

Proposition 1.2.5. Let H be a bialgebra. The tensor product of two left H-
(co)modules is a left H-(co)module with diagonal (co)action. Moreover, for all
U, V,W ∈ HM (for all U, V,W ∈ HM, respectively) the canonical isomorphisms

(U ⊗ V )⊗W → U ⊗ (V ⊗W ), k⊗ V → V, V ⊗ k→ V,

are left H-(co)linear.

Proof. This is easily checked using the Sweedler notation. �

Of course, the same result holds for right modules and right comodules where
the diagonal action and coaction is defined in a similar way.

The next remark shows that in fact the last proposition gives a natural expla-
nation of the axioms of a bialgebra.

Remark 1.2.6. Let H be an algebra together with algebra maps

Δ : H → H ⊗H, ε : H → k.

We will again write Δ(h) = h(1) ⊗ h(2) for all h ∈ H.
The trivial one-dimensional left H-module is the vector space k with H-action

h1k = ε(h) for all h ∈ H.
Let V,W be left H-modules. Then V ⊗W is a left H ⊗H-module by

(x⊗ y)(v ⊗ w) = xv ⊗ yw

for all x, y ∈ H, v ∈ V , w ∈ W . Hence V ⊗W is a left H-module induced by the
algebra map Δ. Thus

h(v ⊗ w) = h(1)v ⊗ h(2)w

for all h ∈ H, v ∈ V , w ∈ W .
The coalgebra axioms in the definition of a bialgebra can now be explained in

a very natural way.
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14 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

(1) The map Δ satisfies (1.1.7) if and only if for all left H-modules U, V,W
the canonical isomorphism

(U ⊗ V )⊗W → U ⊗ (V ⊗W )

is left H-linear.
(2) The map ε satisfies (1.1.8) if and only if for all left H-modules V the

canonical isomorphisms V ⊗ k→ V and k⊗ V → V are left H-linear.

Definition 1.2.7. Let Γ be a monoid and let V,W be Γ-graded vector spaces.
Then V ⊗W is a Γ-graded vector space by

(V ⊗W )(g) =
⊕

(a,b)∈Γ2

ab=g

V (a)⊗W (b), for all g ∈ Γ.

This grading on V ⊗W is called the diagonal Γ-grading. The trivial grading on
a vector space V is defined by V (e) = k, e the unit element of Γ, that is, V (g) = 0
for all e �= g ∈ Γ.

Remark 1.2.8. Let Γ be a monoid.
(1) For all Γ-graded vector spaces U, V,W the canonical isomorphisms

(U ⊗ V )⊗W → U ⊗ (V ⊗W ), k⊗ V → V, V ⊗ k→ V,

are Γ-graded. The flip maps τV,W : V ⊗W → W ⊗ V are only graded for all V,W
if Γ is commutative.

(2) The category isomorphism F : Γ-GrMk → kΓM of Proposition 1.1.17
preserves the trivial objects and the tensor product with diagonal structure, that
is, F (k) = k, and for all Γ-graded vector spaces V,W ,

F (V ⊗W ) = F (V )⊗ F (W ) in kΓM.

The following algebra structure on Hom(C,A) for a coalgebra C and an algebra
A will be an important tool to study the existence of the antipode of a bialgebra.

Definition 1.2.9. Let C be a coalgebra, A an algebra, and f, g ∈ Hom(C,A)
linear maps. The convolution f ∗ g ∈ Hom(C,A) of f and g is defined by

(f ∗ g)(c) = f(c(1))g(c(2))

for all c ∈ C, that is by the composition

f ∗ g = (C
Δ−→ C ⊗ C

f⊗g−−−→ A⊗ A
μ−→ A).

The coassociativity of the comultiplication Δ of C and the associativity of the
multiplication map μ of A imply that the convolution product of Hom(C,A) is
associative. Thus Hom(C,A) is an algebra with unit element ηε.

In the next proposition we will identify Hom(C,A) with an algebra of endomor-
phisms. This will give very useful information about the structure of the inverse of
an element in Hom(C,A). We define

EndCA(A⊗ C) = {f : A⊗ C → A⊗ C | f left A-linear and right C-colinear},

where A⊗ C is a left A-module by μ⊗ idC , and a right C-comodule by idA ⊗Δ.
Then EndCA(A⊗C) becomes an algebra with composition of maps as multiplication.
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Lemma 1.2.10. Let C be a coalgebra, and X a vector space. For any right
C-comodule V , the map

HomC(V,X ⊗ C)
∼=−→ Hom(V,X), f �→ (id⊗ ε)f,

is bijective with inverse given by ϕ �→ (ϕ⊗id)δV . Here, X⊗C is a right C-comodule
with comodule structure idX ⊗Δ.

Proof. Let f ∈ HomC(V,X ⊗ C). Then f(v(0)) ⊗ v(1) = (idX ⊗ Δ)f(v) for
all v ∈ V , since f is C-colinear. By applying id ⊗ ε ⊗ id to this equation we
obtain ϕ(v(0))⊗ v(1) = f(v), where ϕ = (id ⊗ ε)f . Conversely, let ϕ ∈ Hom(V,X)

and define f = (ϕ ⊗ id)δV . Then f ∈ HomC(V,X ⊗ C) by coassociativity of δV .
Moreover, ((id⊗ ε)f)(v) = ϕ(v(0))ε(v(1)) = ϕ(v) for all v ∈ V . �

Lemma 1.2.10 implies that the functor Mk → MC , X �→ X ⊗ C, is right
adjoint to the forgetful functor MC →Mk.

Proposition 1.2.11. Let C be a coalgebra and A an algebra.

(1) The map Φ : Hom(C,A)
∼=−→ EndCA(A⊗ C) given by

f �→ (A⊗ C
id⊗Δ−−−→ A⊗ C ⊗ C

id⊗f⊗id−−−−−→ A⊗A⊗ C
μ⊗id−−−→ A⊗ C)

is an algebra anti-isomorphism, where Hom(C,A) is an algebra with con-
volution as multiplication.

(2) Let f ∈ Hom(C,A). Then f is invertible if and only if Φ(f) is an iso-
morphism. If Φ(f) is an isomorphism with inverse map Φ(f)−1, then

f−1 = (C = k⊗ C
η⊗idC−−−−→ A⊗ C

Φ(f)−1

−−−−−→ A⊗ C
id⊗ε−−−→ A)

is the inverse of f in Hom(C,A).

Proof. (1) Let V = A⊗C and X = A in Lemma 1.2.10. Since the comodule
structure δV = id ⊗ Δ of V is left A-linear, the isomorphism in Lemma 1.2.10
restricts to an isomorphism Φ1 : HomC

A(A⊗ C,A⊗ C)→ HomA(A⊗ C,A). Let

Φ : Hom(C,A)
∼=−→ HomA(A⊗ C,A)

Φ−1
1−−−→ HomC

A(A⊗ C,A⊗ C)

be the composition of Φ−1
1 with the isomorphism

Hom(C,A)
∼=−→ HomA(A⊗ C,A), f �→ (a⊗ c �→ af(c)).

Then

Φ(f)(a⊗ c) = af(c(1))⊗ c(2) for all f ∈ Hom(C,A), a ∈ A, c ∈ C.

Hence for all f, f ′ ∈ Hom(C,A) and a ∈ A, c ∈ C,

(Φ(f)Φ(f ′)) (a⊗ c) = Φ(f)(af ′(c(1))⊗ c(2))

= af ′(c(1))f(c(2))⊗ c(3) = Φ(f ′ ∗ f)(a⊗ c).

The inverse of Φ is given by

Φ−1 : EndCA(A⊗ C)→ Hom(C,A), F �→ (id⊗ ε)F (ηA ⊗ idC).

(2) follows from (1). �
Let C be a coalgebra. The algebra C∗ = Hom(C, k) in Definition 1.2.9 with

A = k is called the dual algebra of C. It is easy to see that for any coalgebra map
ϕ : C → D the map ϕ∗ : D∗ → C∗, f �→ f ◦ ϕ, is an algebra homomorphism.
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16 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Example 1.2.12. Let G = {g1, . . . , gn} be a finite set of n elements. The vector
space kG with basis G is a coalgebra with Δ(g) = g ⊗ g, ε(g) = 1 for all g ∈ G.
Let (ei)1≤i≤n be the dual basis of (gi)1≤i≤n. Then eiej = δijei for all i, j, and∑n

i=1 ei = 1. Hence C∗ ∼= kn as algebras.

Example 1.2.13. Let C = Mn(k)∗ be the coalgebra in Example 1.1.5. For all
i, j ∈ {1, . . . , n} consider Eij ∈ Mn(k) as an element in C∗ via the natural iso-
morphism Mn(k)∗∗ ∼= Mn(k), that is, Eij(ukl) = δikδjl for all i, j, k, l ∈ {1, . . . , n}.
Then

(Eij ∗ Ekl)(urs) =
n∑

m=1

Eij(urm)Ekl(ums) = δirδjkδls = δjkEil(urs)

for all i, j, k, l, r, s ∈ {1, 2, . . . , n}. Hence the natural isomorphism

C∗ → Mn(k)

is an algebra isomorphism, where the multiplication in C∗ is the convolution prod-
uct.

Definition 1.2.14. A Hopf algebra H is a bialgebra such that idH is in-
vertible in the convolution algebra Hom(H,H). The inverse S (or SH) of idH is
called the antipode of H. A Hopf algebra homomorphism between two Hopf
algebras is a bialgebra homomorphism. A Hopf subalgebra of a Hopf algebra H
is a subbialgebra H ′ ⊆ H such that S(H ′) ⊆ H ′.

Remark 1.2.15. Let H be a bialgebra. Then H is a Hopf algebra (with an-
tipode S) if there is a linear map S : H → H such that

h(1)S(h(2)) = ε(h)1 = S(h(1))h(2) (antipode)(1.2.1)

for all h ∈ H, or equivalently such that the following diagrams commute.

H
Δ ��

ηε

��

H ⊗H

S⊗idH

��

H H ⊗H
μ

��

H
Δ ��

ηε

��

H ⊗H

idH⊗S
��

H H ⊗H
μ

��

(antipode)(1.2.2)

By uniqueness of inverses, each bialgebra has at most one antipode.

Example 1.2.16. Let G be a group. Then the bialgebra kG of the monoid G
in Example 1.2.3 is a Hopf algebra with antipode defined by S(g) = g−1 for all
g ∈ G.

Proposition 1.2.17. Let H be a Hopf algebra with antipode S.
(1) The antipode S is an algebra anti-homomorphism and a coalgebra anti-

homomorphism, that is, for all x, y ∈ H
(a) S(xy) = S(y)S(x), S(1) = 1,
(b) Δ(S(x)) = S(x(2))⊗ S(x(1)), ε(S(x)) = ε(x).

(2) Let H ′ be a Hopf algebra, and let ϕ : H → H ′ be a bialgebra map. Then
SH′ϕ = ϕSH .

Proof. (1) (a) Define F,G ∈ Hom(H ⊗H,H) by

F (x⊗ y) = S(xy), G(x⊗ y) = S(y)S(x)
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1.2. BIALGEBRAS AND HOPF ALGEBRAS 17

for all x, y ∈ H. Then both F and G are convolution inverses of μH . Indeed,
μH ∗ F = ηε and μH ∗G = ηε since

x(1)y(1)S(x(2)y(2)) = ε(x)ε(y),

x(1)y(1)S(y(2))S(x(2)) = ε(x)ε(y)

for all x, y ∈ H. Similarly, F ∗μH = G∗μH = ηε. Hence F = G. Further, S(1) = 1
since 1S(1) = ε(1)1.

(b) Define F,G ∈ Hom(H,H ⊗H) by

F (x) = Δ(S(x)), G(x) = S(x(2))⊗ S(x(1))

for all x ∈ H. Then both F and G are convolution inverses of ΔH . Indeed,
Δ ∗ F = (η ⊗ η)ε and Δ ∗G = (η ⊗ η)ε since

Δ(x(1))F (x(2)) = Δ(x(1)S(x(2))) = ε(x)1⊗ 1,

Δ(x(1))G(x(2)) = x(1)S(x(4))⊗ x(2)S(x(3)) = x(1)S(x(2))⊗ 1 = ε(x)1⊗ 1

for all x ∈ H. Similarly, F ∗ Δ = G ∗ Δ = (η ⊗ η)ε. Hence F = G. Further,
ε ◦ S = ε, since both are convolution inverses of ε.

(2) Both SH′ϕ and ϕSH are convolution inverses of ϕ ∈ Hom(H,H ′). �

Remark 1.2.18. Let H be a bialgebra, and S : H → H an algebra anti-
homomorphism. For any left H-module V , the dual space V ∗ = Hom(V, k) is a
right H-module in the natural way by (fh)(v) = f(hv) for all h ∈ H, f ∈ V ∗,
v ∈ V . Since S is an algebra anti-homomorphism, V ∗ becomes a left H-module by

(hf)(v) = f(S(h)v)

for all h ∈ H, f ∈ V ∗, v ∈ V . If V is a right H-module, then the dual vector space
V ∗ is a right H-module by

(fh)(v) = f(vS(h))
for all h ∈ H, f ∈ V ∗, v ∈ V .

The map S satisfies (1.2.1) if and only if for all left H-modules V and all right
H-modules W the evaluation maps

V ∗ ⊗ V → k, p⊗ v �→ p(v), W ⊗W ∗ → k, w ⊗ q �→ q(w),

are left H-linear and right H-linear, respectively.

Bialgebras are generalizations of monoids and Hopf algebras are generalizations
of groups. Proposition 1.2.17(1) says that (gh)−1 = h−1g−1 for all elements g, h
of a group. By Proposition 1.2.17(2), a monoid homomorphism between groups
preserves inverses.

However, the rule (g−1)−1 = g for the elements g of a group does not generalize
to Hopf algebras. In general, the antipode S of a Hopf algebra does not satisfy
S2 = id. There are (rather pathological) Hopf algebras whose antipode is not
bijective. If the antipode is bijective, then its order as a vector space automorphism
could be infinite.

A monoid M is a group if and only if the canonical map

M ×M → M ×M, (x, y) �→ (xy, y),

is bijective. We note the corresponding characterization for Hopf algebras.
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18 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Proposition 1.2.19. Let H be a bialgebra. We denote the “Galois map” by

G = (H ⊗H
id⊗Δ−−−→ H ⊗H ⊗H

μ⊗id−−−→ H ⊗H).

(1) The following are equivalent.
(a) H is a Hopf algebra.
(b) G : H ⊗H → H ⊗H is an isomorphism.

(2) If G is an isomorphism with inverse G−1, then

S = (H
η⊗id−−−→ H ⊗H

G−1

−−→ H ⊗H
id⊗ε−−−→ H)

is the antipode of H.

Proof. Note that G ∈ EndHH(H ⊗H). The isomorphism

Φ : Hom(H,H)
∼=−→ EndHH(H ⊗H)

of Proposition 1.2.11 maps the identity onto G. Hence the claim follows from
Proposition 1.2.11(2). �

By slight altering of the multiplication or comultiplication one can get new
bialgebras and Hopf algebras. We will discuss this phenomenon in a more general
setting in Proposition 3.2.15.

Definition 1.2.20. Let H be a bialgebra. Then Hop with comultiplication
ΔH and counit εH is called the opposite bialgebra. Similarly, Hcop with multi-
plication μH and unit ηH is called the coopposite bialgebra.

It is easy to check that for any bialgebra H, Hop and Hcop are again bialgebras.
Moreover, if H is a Hopf algebra then Hop and Hcop are Hopf algebras if and only
if S is bijective. In this case, S−1 is the antipode of Hop and of Hcop.

To define quotients of bialgebras and Hopf algebras we introduce the subobjects
which are the kernels of the corresponding quotient maps.

An ideal or two-sided ideal I in an algebra A is a linear subspace I ⊆ A
such that ax ∈ I and xa ∈ I for all x ∈ I and a ∈ A.

Definition 1.2.21. Let H be a bialgebra. A subspace I ⊆ H is a bi-ideal of
H if I ⊆ H is an ideal and a coideal.

Let H be a Hopf algebra. AHopf ideal of H is a bi-ideal I of H with S(I) ⊆ I.

Proposition 1.2.22. Let H and H ′ be bialgebras, I ⊆ H a bi-ideal, and let
ϕ : H → H ′ a morphism of bialgebras.

(1) The quotient coalgebra and quotient algebra H = H/I is a bialgebra. If H
is a Hopf algebra, and I ⊆ H is a Hopf ideal, then H is a Hopf algebra
with antipode SH(x) = SH(x) for all x ∈ H.

(2) ker(ϕ) ⊆ H is a bi-ideal, and the natural map ϕ : H/ker(ϕ) → H ′ is an
injective bialgebra homomorphism. If H and H ′ are Hopf algebras, then
ker(ϕ) is a Hopf ideal of H.

Proof. (1) follows directly from the definitions, and (2) follows from Propo-
sition 1.1.13 and 1.2.17(2). �

It can be quite difficult or impossible to verify the axioms of a Hopf algebra on
a vector space basis, since usually there is no easy formula for the comultiplication
on all elements of a basis.
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1.2. BIALGEBRAS AND HOPF ALGEBRAS 19

However, it is sufficient to check the axioms on algebra generators. We say that
a subset M of an algebra A is a set of algebra generators, or that M generates A
as an algebra, if any element of A is a k-linear combination of products of elements
of M . We write A = k[M ] if M is a set of algebra generators.

Proposition 1.2.23. Let H be an algebra and M ⊆ H a set of algebra gener-
ators. Let

Δ : H → H ⊗H, ε : H → k, S : H → Hop

be algebra maps. Assume that the diagrams (1.1.7), (1.1.8) and (1.2.2) commute
for all h ∈ M . Then (H,Δ, ε,S) is a Hopf algebra.

Proof. In the diagrams in (1.1.7) and (1.1.8) for (H,Δ, ε) all maps are algebra
maps. Hence the diagrams commute, since they commute when applied to elements
of M .

But the maps in the diagrams in (1.2.2) are in general not algebra maps. Let H ′

be the subset of all elements of H on which the first diagram in (1.2.2) commutes.
Thus H ′ = {h ∈ H | S(h(1))h(2) = ε(h)1} is a subspace of H containing the unit
element 1 of H. Let x, y ∈ H ′. Then xy ∈ H ′, since

S((xy)(1))(xy)(2) = S(x(1)y(1))x(2)y(2) (Δ is an algebra map)

= S(y(1))S(x(1))x(2)y(2)

= S(y(1))ε(x)y(2) (since x ∈ H ′)

= ε(x)ε(y) (since y ∈ H ′)

= ε(xy), (ε is an algebra map)

where the second equality holds since S is an algebra anti-homomorphism.
Hence H ′ is a subalgebra of H. This shows that H ′ = H, since M ⊆ H ′. In

the same way it follows that the second diagram in (1.2.2) commutes. �

For the next example we need the notion of shuffle permutations. We will study
them in more detail in Section 1.8.

Let n be a natural number, and i ∈ {0, 1, . . . , n}. A permutation w ∈ Sn is
called an (i, n− i)-shuffle or simply an i-shuffle if

w(1) < · · · < w(i), and w(i+ 1) < · · · < w(n).

Note that any (0, n)- or (n, 0)-shuffle is the identity.

Example 1.2.24. Let X be a set which we view as an alphabet. Let k〈X〉
be the free algebra in the alphabet X. If X = {a1, . . . , am} is a finite set of m
elements, we write k〈X〉 = k〈a1, . . . , am〉.

The formal words

x1 · · ·xn, where x1, . . . , xn ∈ X, n ∈ N0,

form a basis of the vector space k〈X〉, and the multiplication is defined by con-
catenation of words. By definition, the length of the word x1 · · ·xn is n, where
x1, . . . , xn ∈ X, n ∈ N0. The empty word is the unit element.

The free algebra has the following universal property: Let A be an algebra
and (ax)x∈X a family of elements ax ∈ A. Then there is exactly one algebra map
ϕ : k〈X〉 → A such that ϕ(x) = ax for all x ∈ X.
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20 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Using the universal property, we define algebra maps

Δ : k〈X〉 → k〈X〉 ⊗ k〈X〉, ε : k〈X〉 → k, S : k〈X〉 → k〈X〉op

with

Δ(x) = 1⊗ x+ x⊗ 1, ε(x) = 0, S(x) = −x

for all x ∈ X. It follows from Proposition 1.2.23 that (k〈X〉, Δ, ε,S) is a Hopf
algebra. Explicitly, one obtains for all x1, . . . , xn ∈ X, n ≥ 1,

Δ(x1 · · ·xn) = (1⊗ x1 + x1 ⊗ 1) · · · (1⊗ xn + xn ⊗ 1)

=
n∑

i=0

∑
w i-shuffle

xw(1) · · ·xw(i) ⊗ xw(i+1) · · ·xw(n).

This formula follows easily since the elements 1⊗xi and xj⊗1 commute for all i, j.

Example 1.2.25. Let V be a vector space. For all natural numbers n ≥ 0 let
V ⊗n = V ⊗ · · · ⊗ V︸ ︷︷ ︸

n

, where V ⊗0 = k. The tensor algebra of V is the vector space

T (V ) =
⊕
n≥0

V ⊗n

with multiplication given by

V ⊗m ⊗ V ⊗n → V ⊗(m+n), x⊗ y �→ x⊗ y,

for all m,n ≥ 0. We also write Tn(V ) for V ⊗n for all n ≥ 0. Up to an isomorphism
depending on the choice of a basis (xi)i∈I of V , the tensor algebra is the free algebra
in X = {xi | i ∈ I}. The algebra map

k〈X〉 → T (V ), xi �→ xi, i ∈ I,

is an isomorphism.
As in Example 1.2.24, T (V ) is a Hopf algebra with

Δ(v) = 1⊗ v + v ⊗ 1, ε(v) = 0, S(v) = −v

for all v ∈ V .

We end this section with some general definitions.

Definition 1.2.26. (1) An N0-graded coalgebra is a pair (C, C), where
C is a coalgebra, (C, C) is an N0-graded vector space, and

Δ(C(n)) ⊆
⊕

r+s=n

C(r)⊗ C(s) for all n ≥ 0,(1.2.3)

ε(C(n)) = 0 for all n > 0.(1.2.4)

We write

Δm,n : C(m+ n) ⊆ C
Δ−→ C ⊗ C

πC
m⊗πC

n−−−−−→ C(m)⊗ C(n), m, n ∈ N0,

for the components of the comultiplication Δ.
(2) An N0-graded algebra is a pair (A,A), where A is an algebra, (A,A) is

an N0-graded vector space, and

A(m)A(n) ⊆ A(m+ n) for all m,n ≥ 0,(1.2.5)

1A ∈ A(0).(1.2.6)
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The components of the multiplication are

μm,n : A(m)⊗A(n)→ A(m+ n), x⊗ y �→ xy, m, n ≥ 0.

(3) An N0-graded bialgebra H is a bialgebra and an N0-graded vector space
(H,H) such that H is an N0-graded algebra and an N0-graded coalgebra
with respect to H. An N0-graded Hopf algebra is an N0-graded bial-
gebra which is a Hopf algebra.

Corollary 1.2.27. Let C be an N0-graded coalgebra, and A an N0-graded
algebra. If f ∈ Hom(C,A) is an invertible graded map, then its inverse f−1 is
graded.

Proof. By Proposition 1.2.11, Φ(f) and f−1 are graded. �

By Corollary 1.2.27, the antipode of an N0-graded Hopf algebra is graded.
We note that in Example 1.2.25, T (V ) is an N0-graded Hopf algebra with

grading (Tn(V ))n≥0.

1.3. Strictly graded coalgebras

Definition 1.3.1. An N0-filtered coalgebra is a pair (C,F(C)), where C is
a coalgebra and F(C) = (Fn(C))n≥0 is a family of subspaces Fn(C) ⊆ C, n ≥ 0,
such that

Fm(C) ⊆ Fn(C) for all 0 ≤ m ≤ n,(1.3.1)

C =
⋃
n≥0

Fn(C),(1.3.2)

Δ(Fn(C)) ⊆
∑

r+s≤n

Fr(C)⊗ Fs(C) for all n ≥ 0.(1.3.3)

Note that the subspaces Fn(C) ⊆ C, n ≥ 0, of a filtered coalgebra are subcoal-
gebras. If (C, (C(n))n≥0) is an N0-graded coalgebra, then (C,F(C)) is an N0-filtered
coalgebra with Fn(C) =

⊕n
m=0 C(m) for all n ≥ 0.

We want to prove two useful results about filtered coalgebras. We first look at
their simple subcoalgebras. A coalgebra C is called simple if C �= 0, and if 0 and
C are the only subcoalgebras of C.

Proposition 1.3.2. Let (C,F(C)) be an N0-filtered coalgebra. Then any simple
subcoalgebra of C is contained in F0(C).

Proof. Let D ⊆ C be a simple subcoalgebra. Since F0(C) ∩D is a subcoal-
gebra of C by Proposition 1.1.9, it is enough to prove that F0(C) ∩D is non-zero.
Let n ≥ 0 be minimal such that Fn(C) ∩ D �= 0, and let x ∈ Fn(C) ∩ D with
x �= 0. If Δ(x) ∈ F0(C)⊗D, then x = (id⊗ ε)Δ(x) ∈ F0(C), and we are done. If
Δ(x) /∈ F0(C)⊗D, then there exists f ∈ C∗ = Hom(C, k) such that f(x(1))x(2) �= 0
and f(F0(C)) = 0. Since f(x(1))x(2) ∈ Fn−1(C) ∩D, we obtain a contradiction to
the minimality of n. �

We introduce at this point a basic coalgebra notion.

Definition 1.3.3. A coalgebra C is called pointed if every simple subcoalge-
bra of C is one-dimensional.
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If C is a one-dimensional coalgebra, then there is a unique group-like element
1C in C, and C = k1C . In this section we study pointed coalgebras with a unique
group-like element.

The main examples of coalgebras and Hopf algebras which appear in this book
are pointed. We will say more on pointed coalgebras and Hopf algebras in Sec-
tions 2.4 and 5.4.

Corollary 1.3.4. Let (C,F(C)) be an N0-filtered coalgebra. If F0(C) is one-
dimensional, then F0(C) is the unique simple subcoalgebra of C. The coalgebra C
then has a unique group-like element which spans F0(C).

Proof. The subcoalgebra F0(C) is one-dimensional, hence simple. Thus the
claim follows from Proposition 1.3.2. �

We prove Takeuchi’s criterion for invertibility in Hom(C,A).

Proposition 1.3.5. Let (C,F) be a filtered coalgebra and assume that F0(C)
is one-dimensional with unique group-like element 1C . Let A be an algebra and
f : C → A a linear map with f(1C) = 1. Then f is invertible in Hom(C,A) with
respect to convolution, and its inverse is

f−1 =
∑
n≥0

(ηε− f)n.

Proof. Let g = ηε − f . We first show that
∑

n≥0 g
n is well-defined. Let

m ≥ 0, and x ∈ Fm(C). Then for all n > m,

gn(x) ∈
∑

k1+···+kn≤m

g(Fk1
(C)) · · · g(Fkn

(C)) = 0,

since g(F0(C)) = 0. Hence
∑

n≥0 g
n(x) =

∑m
n=0 g

n(x). Then in the algebra

Hom(C,A), (
f
∑
n≥0

(ηε− f)n
)
(x) =

(
(ηε− g)

∑
n≥0

gn
)
(x)

= (ε(x(1))− g(x(1)))

m∑
n=0

gn(x(2))

=

m∑
n=0

gn(x)−
m∑

n=0

gn+1(x)

= ηε(x).

The equation (
∑

n≥0(ηε− f))f = ηε follows in the same way. �

Let C be a coalgebra with exactly one group-like element, which we call 1C = 1.
The space of primitive elements of C is defined by

P (C) = P1,1(C) = {x ∈ C | Δ(x) = 1⊗ x+ x⊗ 1}.
Note that ε(x) = 0 for each x ∈ P (C) by the counit axiom.

The primitive elements of a bialgebra H are the elements in

P (H) = P1,1(H) = {x ∈ H | Δ(x) = 1⊗ x+ x⊗ 1}.
Let C be an N0-graded coalgebra. We call C connected if C(0) is one-

dimensional. Then Fn(C) =
⊕n

i=0 C(i), n ≥ 0, is a coalgebra filtration of C
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with one-dimensional F0(C) = k1, and 1 is the unique group-like element of C. If
C is connected, then P (C) ⊆ C is a graded subspace, since P (C) is the kernel of
the graded map C → C ⊗ C, x �→ Δ(x)− 1⊗ x− x⊗ 1.

Lemma 1.3.6. (1) Let (C,F(C)) be an N0-filtered coalgebra. Assume that
F0(C) = k1 is one-dimensional. Let n ≥ 1 and x ∈ Fn(C). Then

Δ(x) ∈ 1⊗ x+ x⊗ 1 + Fn−1(C)⊗ Fn−1(C).

(2) Let C be a connected N0-graded coalgebra. Then

Δ(x) ∈ 1⊗ x+ x⊗ 1 +
n−1⊕
i=1

C(i)⊗ C(n− i)

for all n ≥ 1 and x ∈ C(n). In particular, C(1) ⊆ P (C).
(3) Let C be an N0-graded coalgebra. Then the maps Δ0,n and Δn,0 are in-

jective for all n ≥ 0.

Proof. (1) Since F(C) is a coalgebra filtration with F0(C) = k1, there exist
y, z ∈ Fn(C) such that Δ(x)− 1⊗ y − z ⊗ 1 ∈ Fn−1(C)⊗ Fn−1(C). Then

Δ(x)− 1⊗ x− x⊗ 1− 1⊗ (y − x)− (z − x)⊗ 1 ∈ Fn−1(C)⊗ Fn−1(C).

By the counit axioms, x−y− ε(z)1 ∈ Fn−1(C) and x− z− ε(y)1 ∈ Fn−1(C). Since
n ≥ 1, this implies (1).

(2) Let n ≥ 1 and x ∈ C(n). Since C is a connected graded coalgebra, there

exist y, z ∈ C(n), w ∈
⊕n−1

i=1 C(i)⊗ C(n− i) such that Δ(x) = 1 ⊗ y + z ⊗ 1 + w.
By applying id⊗ ε and ε⊗ id to this equation we see that x = y = z. In particular,
C(1) ⊆ P (C).

(3) Let n ≥ 0 and x ∈ C(n). Then Δ(x) =
∑n

i=0 Δi,n−i(x), hence

x = (idC ⊗ ε)Δ(x) = (idC ⊗ ε)(Δn,0(x)) = (ε⊗ idC)(Δ0,n(x))

since ε(C(i)) = 0 for all i ≥ 1. This implies the claim. �

In general, a connected N0-graded coalgebra has non-zero primitive elements
in degrees ≥ 2.

Example 1.3.7. If H is a bialgebra, then for all x, y ∈ P (H), the commutator
[x, y] = xy − yx is a primitive element in H. In particular, in the free algebra in
Example 1.2.24 iterated commutators of the primitive generators are primitive.

Example 1.3.8. Let H = k[x] be the polynomial algebra in one variable x.
Then H is an N0-graded coalgebra (and bialgebra) with

H(n) = kxn, Δ(xn) =
n∑

i=0

(
n

i

)
xi ⊗ xn−i, ε(xn) = δ0n for all n ≥ 0.

Note that H is the universal enveloping algebra of the one-dimensional abelian Lie
algebra. Assume that the characteristic of k is 0. Then it is easy to see (and
follows from the Theorem of Poincaré, Birkhoff, Witt) that P (H) = H(1). But if

the characteristic of k is p > 0, then for all m ≥ 1 the binomial coefficients
(
pm

i

)
are zero for all 1 ≤ i ≤ pm − 1, hence xpm

is primitive.

Definition 1.3.9. ([Swe69, Section 11.2]) An N0-graded coalgebra is called
strictly graded if it is connected with P (C) = C(1).
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The next proposition is a very special case of the following theorem of Heyne-
mann and Radford: If f : C → D is a homomorphism of coalgebras such that the
restriction of f to the first part C1 of the coradical filtration is injective, then f is
injective. See [Mon93, Theorem 5.3.1] for a proof of this result.

Proposition 1.3.10. Let (C,F(C)) be an N0-filtered coalgebra and assume that
F0(C) = k1 is one-dimensional.

(1) Let 0 �= I ⊆ C be a coideal. Then I ∩ P (C) �= 0.
(2) Let D be a coalgebra, and f : C → D a coalgebra homomorphism such

that f |P (C) is injective. Then f is injective.

Proof. The homomorphism theorem for coalgebras, Proposition 1.1.13, im-
plies that (1) and (2) are equivalent. We prove (2). We show by induction on
n that f |Fn(C) is injective for all n. If n = 0, then f |F0(C) is injective, since
1 = ε(f(1)). Let n ≥ 1 and assume that f |Fn−1(C) is injective. Let x ∈ Fn(C)
with f(x) = 0. By Lemma 1.3.6(1) there is an element w ∈ Fn−1(C) ⊗ Fn−1(C)
such that Δ(x) = 1⊗ x+ x⊗ 1 + w. Then

0 = Δ(f(x)) = f(1)⊗ f(x) + f(x)⊗ f(1) + (f ⊗ f)(w).

Thus (f⊗f)(w) = 0, and hence w = 0 by Lemma 1.1.11 and by induction. Therefore
x ∈ P (C) and then x = 0 by the injectivity of f |P (C). �

Corollary 1.3.11. Let C be a strictly graded coalgebra.

(1) Let 0 �= I ⊆ C be a coideal. Then I ∩ C(1) �= 0.
(2) Let D be a coalgebra, and f : C → D a coalgebra homomorphism such

that f |C(1) is injective. Then f is injective.
(3) Let 0 �= E ⊆ C be a subspace with E ∩C(1) = 0. Assume Δ(E) ⊆ E ⊗ C

or Δ(E) ⊆ C ⊗ E. Then E = k1C .

Proof. (1) and (2) follow from Proposition 1.3.10 using the coalgebra filtration
F(C) with Fn(C) =

⊕n
i=0 C(n) for all n ≥ 0, since P (C) = C(1).

(3) By Lemma 1.1.14, E ∩ ker(ε) is a coideal of C and E �⊆ ker(ε). Then
E ∩ ker(ε) = 0 by (1), and hence E is one-dimensional. Since C is connected, we
conclude that E = k1C . �

We will characterize strictly graded coalgebras in terms of the components of
the graded map Δ and of its iterations.

Definition 1.3.12. Let C =
⊕

n∈N0
C(n) be a graded coalgebra with projec-

tions πn = πC
n for all n ≥ 0. For all n ≥ 1 we denote the (1, . . . , 1)-th component

of Δn−1 by

(1.3.4) Δ1n : C(n) ⊆ C
Δn−1

−−−−→ C⊗n π⊗n
1−−−→ C(1)⊗n.

Let IC(n) = ker(Δ1n) for all n ≥ 1, and

IC =
⊕
n≥1

IC(n) =
⊕
n≥2

IC(n).

Note that IC(1) = 0 since Δ1 = id.

Lemma 1.3.13. Let C be an N0-graded coalgebra.
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(1) (a) Let n ≥ 1 and m ≥ 0. Then

π⊗n
1 Δn−1|C(m) =

{
Δ1n if m = n;

0 if m �= n.

(b) Let 1 ≤ i ≤ n− 1. Then Δ1n = (Δ1i ⊗Δ1n−i)Δi,n−i.
(2) Assume that C is connected. Then IC ⊆ C is a coideal of C.

Proof. (1)(a) Since Δ is graded,

Δn−1(C(m)) ⊆
⊕

i1+···+in=m

C(i1)⊗ · · · ⊗ C(in).

Thus π⊗n
1 Δn−1|C(m) = 0 if m �= n.

To prove (1)(b) let n ≥ 2 and x ∈ C(n). Then Δ(x) =
∑n

j=0 Δj,n−j(x) by

definition of the components of Δ. Note that Δn−1 = (Δi−1 ⊗ Δn−i−1)Δ for all
1 ≤ i ≤ n− 1 by coassociativity. Hence

Δ1n(x) = π⊗n
1 Δn−1(x)

= π⊗n
1 (Δi−1 ⊗Δn−i−1)

( n∑
j=0

Δj,n−j(x)
)

=
n∑

j=0

(π⊗i
1 Δi−1 ⊗ π

⊗(n−i)
1 Δn−i−1)(Δj,n−j(x))

= (Δ1i ⊗Δ1n−i)Δi,n−i(x),

where the last equality holds by (1)(a).
(2) Let n ≥ 2, x ∈ IC(n) and i ∈ {1, . . . , n− 1}. By (1)(b),

0 = Δ1n(x) = (Δ1i ⊗Δ1n−i)Δi,n−i(x).

Hence Δi,n−i(x) ∈ ker(Δ1i ⊗ Δ1n−i) = C(i) ⊗ IC(n − i) + IC(i) ⊗ C(n − i) by
Lemma 1.1.11. Therefore

Δ(x) = 1⊗ x+ x⊗ 1 +

n−1∑
i=1

Δi,n−i(x) ∈ C ⊗ IC + IC ⊗ C

by Lemma 1.3.6(2). �

Proposition 1.3.14. Let C be an N0-graded coalgebra.

(1) The following are equivalent.
(a) For all n ≥ 2, Δ1n : C(n)→ C(1)⊗n is injective.
(b) For all i, j ≥ 0, Δi,j : C(i+ j)→ C(i)⊗ C(j) is injective.
(c) For all n ≥ 2, Δn−1,1 : C(n)→ C(n− 1)⊗ C(1) is injective.
(d) For all n ≥ 2, Δ1,n−1 : C(n)→ C(1)⊗ C(n− 1) is injective.

(2) Assume that C is connected. Then the following are equivalent.
(a) C is strictly graded.
(b) Conditions (a) – (d) in (1).
(c) IC = 0.

Proof. (1) (a) ⇒ (b): By Lemma 1.3.13(1b), Δi,j is injective for all i, j ≥ 1.
This proves (b) by Lemma 1.3.6(3).

(b) ⇒ (c) and (b) ⇒ (d) are trivial.
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(d) ⇒ (a) follows by induction on n, since by Lemma 1.3.13(1b),

Δ1n = (idC(1) ⊗Δ1n−1)Δ1,n−1

for all n ≥ 2. The implication (c) ⇒ (a) is shown similarly.
(2) By definition of IC , (1a) holds if and only if IC = 0. Assume that C is

strictly graded. By Lemma 1.3.13(2), IC is a coideal of C. Hence IC = 0 by
Corollary 1.3.11(1). Conversely, assume that IC = 0. Then for all n ≥ 2 and
x ∈ C(n)∩P (C), Δn−1,1(x) = 0, and x = 0 by (1c). Thus C is strictly graded. �

Definition 1.3.15. Let C be a connected N0-graded coalgebra. The coalgebra
B(C) = C/IC is called the associated strictly graded coalgebra to C. Let
πC : C → B(C) denote the canonical graded coalgebra map.

The next theorem gives a characterization of the coalgebra B(C).

Theorem 1.3.16. Let C be a connected N0-graded coalgebra.

(1) The coideal IC is the only graded coideal I of C such that
(a) C/I is strictly graded, and
(b) π(1) : C(1) → (C/I)(1) is bijective, where π : C → C/I is the

canonical map.
(2) The coideal IC is the largest coideal of C contained in

⊕
n≥2 C(n).

(3) The coideal IC is the only coideal I of C contained in
⊕

n≥2 C(n) such

that P (C/I) = C(1).
(4) Let D be an N0-graded coalgebra and π : C → D a surjective graded

coalgebra map such that π(1) : C(1) → D(1) is bijective. Then there is
exactly one graded coalgebra map π̃ : D → B(C) with πC = π̃π.

Proof. We first show that IC satisfies (1)(a) and (1)(b). By Lemma 1.3.13(2),
IC ⊆ C is a graded coideal of C. By definition, the grading of B(C) is given by
B(C) = k1⊕ C(1)⊕

⊕
n≥2 C(n)/IC(n). Thus (1)(b) holds. To prove that B(C) is

strictly graded we use Proposition 1.3.14(2). We show that Δ
B(C)
1n is injective for

all n ≥ 2. Let n ≥ 2. Since πC : C → B(C) = C/IC is a graded coalgebra map and
C(1) = B(C)(1),

ΔC
1n =

(
C(n)

πC(n)−−−−→ C(n)/IC(n)
Δ

B(C)

1n−−−−→ C(1)⊗n

)
.

Hence Δ
B(C)
1n is injective, since by definition, IC(n) = ker(ΔC

1n).
(2) Let J ⊆ C be the sum of all coideals of C contained in

⊕
n≥2 C(n). Then J

is the largest coideal of C contained in
⊕

n≥2 C(n). Hence IC ⊆ J , and the induced

map f : C/IC → C/J is a coalgebra map which is injective when restricted to
C/IC(1) = C(1). Since C/IC is strictly graded, f is injective by Corollary 1.3.11(2).
Thus IC = J .

(3) By the first paragraph of the proof, P (C/IC) = C(1). Let I be a coideal of
C contained in

⊕
n≥2 C(n) with P (C/I) = C(1). Then I ⊆ IC by (2). The induced

coalgebra homomorphism C/I → C/IC is injective by Proposition 1.3.10(2), since
it is injective on P (C/I). Note that the image of the natural filtration of C is a
coalgebra filtration of C/I with one-dimensional F0(C/I).

(4) Let I = ker(π). Then I ⊆ C is a graded coideal. By assumption, I(1) = 0.
Further, I(0) = 0 since C is connected and ε(1C) = 1. Hence I ⊆ IC by (2). This
proves existence and the uniqueness of π̃, since π is surjective.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



1.4. YETTER-DRINFELD MODULES OVER A GROUP ALGEBRA 27

To finish the proof of (1), we have to show that each coideal I of C satisfying
(a) and (b) coincides with IC . Let I ⊆ C be such a coideal. Then I ⊆ IC by
(2), and the induced map C/I → C/IC is bijective by Corollary 1.3.11(2). Hence
I = IC . �

We finally note a useful property of the tensor product of strictly graded coal-
gebras.

Proposition 1.3.17. Let C,D be strictly N0-graded coalgebras. Assume that
the tensor product C ⊗D of the vector spaces C,D has a coalgebra structure with
comultiplication ΔC⊗D and counit εC⊗D = εC ⊗ εD such that

(1) (C ⊗D,ΔC⊗D, εC⊗D) is an N0-graded coalgebra with grading

(C ⊗D)(n) =
⊕

i+j=n

C(i)⊗D(j) for all n ≥ 0,

(2) (idC ⊗ εD ⊗ εC ⊗ idD)ΔC⊗D = idC⊗D,
(3) idC ⊗ εD : C ⊗D → C ⊗ k ∼= C and εC ⊗ idD : C ⊗D → k⊗D ∼= D are

coalgebra maps.

Then C ⊗D is a strictly graded coalgebra.

Proof. Let n ≥ 2 and x ∈ (C ⊗D)(n) a primitive element. We write

x = 1C ⊗ d+ y + c⊗ 1D, c ∈ C(n), d ∈ D(n), y ∈
n−1⊕
i=1

C(i)⊗D(n− i).

By assumption,

Δ(x) = x⊗ 1C ⊗ 1D + 1C ⊗ 1D ⊗ x ∈ C ⊗D ⊗ C ⊗D.

We apply f = idC ⊗ εD ⊗ εC ⊗ idD to both sides of this equation. Then by (2),
fΔ(x) = x. Hence x = 1C ⊗ d+ c⊗ 1D. Moreover, c = (idC ⊗ εD)(x) ∈ P (C) and
d = (εC ⊗ idD)(x) ∈ P (C) by (3). Hence c = 0, d = 0 and x = 0, since C and D
are strictly graded. �

Proposition 1.3.17 can be applied to the usual tensor product of coalgebras,
but also to more general “braided tensor products”.

1.4. Yetter-Drinfeld modules over a group algebra

In this section, let G be a group. We write g � h = ghg−1, g, h ∈ G, for the
adjoint action of G on itself. The center of G is denoted by Z(G).

If V is a left kG-module, and χ ∈ Ĝ = Gr (G, k×) is a character of G, we define
V χ = {v ∈ V | gv = χ(g)v for all g ∈ G}.

Definition 1.4.1. A Yetter-Drinfeld module over the group algebra
kG is a G-graded vector space V =

⊕
g∈G Vg, and a left kG-module with module

structure kG⊗ V → V, g ⊗ v �→ g · v, where g ∈ G, such that

g · Vh ⊆ Vg�h for all g, h ∈ G.(1.4.1)

We denote the category of Yetter-Drinfeld modules over the group algebra kG by
G
GYD. Objects of G

GYD are the Yetter-Drinfeld modules over kG, morphisms are

the G-graded and G-linear maps. Let G
GYDfd be the full subcategory of G

GYD of
finite-dimensional objects.
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If V is a Yetter-Drinfeld module over kG, then g · Vh = Vg�h for all g, h ∈ G,
since g·Vh ⊆ Vg�h and g−1·Vg�h ⊆ Vh. IfG is abelian, then Yetter-Drinfeld modules
over kG are G-graded vector spaces and G-modules such that each homogeneous
component is stable under the action of G.

Example 1.4.2. Assume that G is abelian. Let h ∈ G. Then any kG-module
U is a Yetter-Drinfeld module over kG with U = Uh. On the other hand, let V
be a non-zero Yetter-Drinfeld module over kG. Then there is an h ∈ G such that
Vh �= 0. Moreover, for any h ∈ G the subspace Vh is a Yetter-Drinfeld submodule
of V and any subspace of Vh is a kG-submodule of Vh if and only if it is a Yetter-
Drinfeld submodule. In particular, the set of isomorphism classes of irreducible
Yetter-Drinfeld modules over kG is in bijection to G× IrrepG, where IrrepG is the
set of isomorphism classes of simple kG-modules.

Example 1.4.3. Let us determine one-dimensional Yetter-Drinfeld modules
V = kx ∈ G

GYD. The action on V and the degree of x are given by a character

χ ∈ Ĝ = Gr (G, k×) and an element g ∈ G with

h · x = χ(h)x, x ∈ Vg,

for all h ∈ G. The Yetter-Drinfeld condition (1.4.1) holds if and only if for all
h ∈ G, hgh−1 = deg(h · x) = deg(χ(h)x) = g, that is, if and only if g ∈ Z(G).
Thus there is a bijection between the set of isomorphism classes of one-dimensional

Yetter-Drinfeld modules in G
GYD and Z(G)× Ĝ.

Example 1.4.4. Assume that G is abelian, and k is algebraically closed. Let
V be a finite-dimensional irreducible kG-module, and let ρ : kG → End(V ) be
the representation of V . Then there is a common eigenvector for the set ρ(kG) of
pairwise commuting endomorphisms. Hence V is one-dimensional.

It follows from the two previous examples that the finite-dimensional irreducible

objects in G
GYD are one-dimensional and given by elements in G× Ĝ.

Lemma 1.4.5. Let G be an abelian group and V ∈ G
GYD. Then the following

are equivalent:

(1) V is a direct sum of one-dimensional Yetter-Drinfeld modules in G
GYD.

(2) V is a direct sum of one-dimensional G-modules.

Proof. Clearly, (1) implies (2). Assume now (2). Since G is abelian, the
comodule decomposition V =

⊕
g∈G Vg is a decomposition of G-modules. By (2),

all direct summands Vg, g ∈ G, are direct sums of one-dimensional Yetter-Drinfeld
modules. �

Proposition 1.4.6. Let G be a finite abelian group and V ∈ G
GYDfd. Assume

that k is algebraically closed and that char(k) does not divide the order of G.

(1) Any finite-dimensional kG-module is a direct sum of one-dimensional kG-
modules.

(2) Any V ∈ G
GYDfd is the direct sum of one-dimensional Yetter-Drinfeld

modules.

Proof. (1) is well-known (and follows from the Theorem of Maschke and Ex-
ample 1.4.4), and (2) follows from (1) and Lemma 1.4.5. �
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Example 1.4.7. We denote the symmetric group of n elements {1, . . . , n} by
Sn. Let O2 = {(i j) | 1 ≤ i < j ≤ n} be the set of all transpositions in Sn, n ≥ 3.

Let Vn be the Yetter-Drinfeld module in Sn

Sn
YD with basis xt, t ∈ O2, and

deg(xt) = t, s · xt = sign(s)xs�t for all t ∈ O2, s ∈ Sn.

Note that Vn is irreducible in Sn

Sn
YD, since any non-zero subobject contains xt for

some t, and the elements g · xt with g ∈ Sn span Vn, since O2 is a conjugacy class
of Sn.

Remark 1.4.8. Yetter-Drinfeld modules V in G
GYD can equivalently be defined

as left kG-modules with a left kG-comodule structure

δ : V → kG⊗ V, v �→ v(−1) ⊗ v(0), such that

δ(g · v) = gv(−1)g
−1 ⊗ g · v(0)

for all v ∈ V , g ∈ G. This follows from the category isomorphism between G-graded
vector spaces and kG-comodules in Proposition 1.1.17.

Let V,W ∈ G
GYD. Note that V ⊗W is an object in G

GYD with diagonal action
and diagonal coaction of G. The trivial object k with grading k = ke and G-action
g · 1 = 1 for all g ∈ G is an object in G

GYD.

Proposition 1.4.9. (1) Let V,W, V ′,W ′ ∈ G
GYD. Then for all mor-

phisms f : V → V ′ and g : W → W ′ in G
GYD, the tensor product

f ⊗ g : V ⊗W → V ′ ⊗W ′ is a morphism in G
GYD.

(2) For all U, V,W ∈ G
GYD the canonical isomorphisms

(U ⊗ V )⊗W
∼=−→ U ⊗ (V ⊗W ), k⊗ V

∼=−→ V, V ⊗ k
∼=−→ V

are morphisms in G
GYD.

Proof. (1) is clear from the definition, and (2) is a special case of Proposi-
tion 1.2.5. �

Let H be a bialgebra. Suppose that the canonical isomorphism of vector spaces

τV,W : V ⊗W
∼=−→ W ⊗ V, v ⊗ w �→ w ⊗ v,

is H-linear for all left H-modules V,W and the diagonal action. Then H is co-
commutative. Similarly, H is commutative, if τV,W is H-colinear for all left H-
comodules V,W with the diagonal coaction.

Hence it is quite remarkable that a commutativity rule for objects in G
GYD does

exist. It is not the flip map τV,W , but it is a natural isomorphism in G
GYD which

behaves like a commutativity law.

Definition 1.4.10. For all V,W ∈ G
GYD the linear map

cV,W : V ⊗W → W ⊗ V(1.4.2)

defined by cV,W (v ⊗ w) = g · w ⊗ v for all g ∈ G, v ∈ Vg, and w ∈ W , is called the
braiding of V,W .

Proposition 1.4.11. (1) For all V,W ∈ G
GYD, cV,W : V ⊗W → W ⊗ V

is an isomorphism in G
GYD.
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(2) For all objects U, V,W, V ′,W ′ in G
GYD and all morphisms f : V → V ′,

g : W → W ′ in G
GYD, the following diagrams commute.

V ⊗W

f⊗g

��

cV,W
�� W ⊗ V

g⊗f

��

V ′ ⊗W ′ cV ′,W ′
�� W ′ ⊗ V ′

(1.4.3)

U ⊗ V ⊗W
cU,V ⊗W

��

cU,V ⊗id
����

���
���

���
� V ⊗W ⊗ U

V ⊗ U ⊗W

id⊗cU,W



������������
(1.4.4)

U ⊗ V ⊗W
cU⊗V,W

��

id⊗cV,W ����
���

���
���

� W ⊗ U ⊗ V

U ⊗W ⊗ V

cU,W⊗id



������������
(1.4.5)

k⊗ V

∼=
��

ck,V
�� V ⊗ k

∼=
��

V
= �� V

V ⊗ k

∼=
��

cV,k
�� k⊗ V

∼=
��

V
= �� V

(1.4.6)

(Note that Proposition 1.4.9 is used in the formulation of (2).)

We will meet the diagrams of Proposition 1.4.11 later in Section 3.2 in the
axioms of a braided monoidal category.

Proof. (1) To see that cV,W is G-linear and G-graded, let g, h ∈ G, and let
v ∈ Vg, w ∈ Wh be homogeneous elements. Then for all a ∈ G,

cV,W (a · (v ⊗ w)) = cV,W (a · v ⊗ a · w)

= aga−1a · w ⊗ a · v = a · cV,W (v ⊗ w),

deg(cV,W (v ⊗ w)) = deg(g · w ⊗ v) = ghg−1g = deg(v ⊗ w).

The map cV,W is an isomorphism with inverse

c−1
V,W : W ⊗ V → V ⊗W, w ⊗ v �→ v ⊗ g−1 · w,

for all v ∈ Vg, g ∈ G, and w ∈ W .
(2) The commutativity of the diagrams is easily checked on homogeneous ele-

ments. �

Definition 1.4.12. Let G be an abelian group, and χ : G×G→ k× a bichar-
acter of G, that is, a mapping χ such that for all f, g, h ∈ G

χ(f + g, h) = χ(f, h)χ(g, h), χ(f, g + h) = χ(f, g)χ(f, h).

Let G
χYD be the full subcategory of G

GYD whose objects are G-graded vector spaces
V =

⊕
g∈G Vg with G-action defined by g · v = χ(g, h)v for all v ∈ Vh, g, h ∈ G.
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Note that a bicharacter χ satisfies χ(g, 0) = 1 = χ(0, g) for all g ∈ G.
Let G be a free abelian group with basis (αi)i∈I , and let (qij)i,j∈I be a family

of non-zero scalars in k. Then

χ : G×G→ k×, (αi, αj) �→ qij for all i, j ∈ I,

defines a bicharacter of G.

Proposition 1.4.13. Let G be an abelian group and χ a bicharacter of G. Let
V,W ∈ G

χYD.

(1) V ⊗W ∈ G
χYD with diagonal G-grading and G-action. The trivial object

k of G
GYD is an object of G

χYD.

(2) The braiding c = cV,W : V ⊗W → W ⊗ V in G
GYD is given by

c(v ⊗ w) = χ(g, h)w ⊗ v

for all v ∈ Vg, w ∈ Wh, g, h ∈ G.

Proof. Let f, g, h ∈ G, and v ∈ Vg, w ∈ Wh. Then

f · (v ⊗ w) = f · v ⊗ f · w = χ(f, g)v ⊗ χ(f, h)w = χ(f, g + h)v ⊗ w.

This proves that V ⊗W ∈ G
χYD, and the remaining claims are obvious. �

If χ is a bicharacter of an abelian group, then Proposition 1.4.13 says that the
subcategory G

χYD ⊆ G
GYD is closed under tensor products.

Example 1.4.14. Let G = Z/(2) and χ : Z/(2) × Z/(2) → k× the non-trivial
bicharacter with χ(i, j) = (−1)ij , i, j ∈ {0, 1}. Assume that char(k) �= 2. Then
S = G

χYD is called the category of super vector spaces. Objects of S are Z/(2)-
graded vector spaces V = V0 ⊕ V1, where Vi = Vi, i ∈ {0, 1}. For a homogeneous
element v ∈ Vi we write |v| = i. If V,W ∈ S, then the grading of V ⊗W is given
by

(V ⊗W )0 = V0 ⊗W0 ⊕ V1 ⊗W1, (V ⊗W )1 = V0 ⊗W1 ⊕ V1 ⊗W0,

and the braiding cV,W : V ⊗W → W ⊗ V by

c(v ⊗ w) = (−1)|v||w|w ⊗ v

for homogeneous elements v ∈ V , w ∈ W .

In the remainder of this section, we want to construct the objects in G
GYD

explicitly for arbitrary groups.
For an element g ∈ G we denote the centralizer of g by

Gg = {h ∈ G | hg = gh},
and the conjugacy class of g by

Og = {h � g | h ∈ G}.
Let {Ol | l ∈ L} be the set of all conjugacy classes of G, and assume that Ok �= Ol

for all k �= l in L.
Any Yetter-Drinfeld module M ∈ G

GYD has a decomposition

(1.4.7) M =
⊕
l∈L

⊕
s∈Ol

Ms

into a direct sum of Yetter-Drinfeld modules
⊕

s∈Ol
Ms, l ∈ L.
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We first consider one conjugacy class O ⊆ G. We denote by G
GYD(O) the full

subcategory G
GYD(O) of G

GYD consisting of all M ∈ G
GYD with M =

⊕
s∈O Ms.

Choose an element g ∈ G. Thus O = Og, and the map

G/Gg → Og, h = hGg �→ h � g,

is bijective. Recall that Mh�g = h ·Mg for all M ∈ H
HYD(Og) and h ∈ G. We will

see that M is completely determined by the Gg-module Mg.

Definition 1.4.15. Let g ∈ G, and let V be a left kGg-module. Define

M(g, V ) = kG⊗kGg V

as an object in G
GYD(Og), where M(g, V ) is the induced kG-module, and the

G-grading is given by

deg(h⊗ v) = h � g for all h ∈ G, v ∈ V.

Note that the grading is well-defined and M(g, V ) is a Yetter-Drinfeld module
over G, since for all v ∈ V , h ∈ G and a ∈ Gg,

deg(ha⊗ v) = (ha) � g = h � g = deg(h⊗ a · v),

and since for all v ∈ V and h, h′ ∈ G,

deg(h′ · (h⊗ v)) = deg(h′h⊗ v) = (h′h) � g = h′ � deg(h⊗ v).

Let V,W be left kGg-modules, and f : V → W a left kGg-linear map. Then
id⊗ f : M(g, V )→ M(g,W ) is a morphism in G

GYD.
Thus we have defined a functor

Fg : kGgM→ G
GYD(Og)

with Fg(V ) = M(g, V ) and Fg(f) = id ⊗ f for all left kGg-modules V,W and all
left kGg-linear maps f : V → W .

Lemma 1.4.16. Let g ∈ G, V ∈ kGgM, and M ∈ G
GYD(Og).

(1) The decomposition of M(g, V ) into G-homogeneous components is given
by

M(g, V ) =
⊕
s∈Og

M(g, V )s, M(g, V )h�g = h⊗ V for all h ∈ G.

(2) V
∼=−→ M(g, V )g, v �→ 1⊗ v, is a left kGg-linear isomorphism.

(3) M(g,Mg)
∼=−→ M , h ⊗m �→ h · m, is an isomorphism of Yetter-Drinfeld

modules in G
GYD.

Proof. Let (hx)x∈X be a complete set of representatives of the cosets in G/Gg,
where X is a set of the same cardinality as Og. We can assume that hx0

= 1 for
some x0 ∈ X. Since kG is a free right kGg-module with basis (hx)x∈X ,

(1.4.8) M(g, V ) = kG⊗kGg V =
⊕
x∈X

hx ⊗ V.

By (1.4.8), M(g, V )hx�g = hx ⊗ V , since hx ⊗ V ⊆ M(g, V )hx�g for all x ∈ X.

In particular, M(g, V )g = 1 ⊗ V , and V
∼=−→ 1 ⊗ V , v �→ 1 ⊗ v, is a kGg-linear

isomorphism. This proves (1) and (2).
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(3) The map f : M(g,Mg) = kG⊗kGg Mg → M , h⊗m �→ h ·m, is a morphism
in H

HYD(Og). By (2), f induces an isomorphism

fg : M(g,Mg)g → Mg

of left Gg-modules. Hence for all h ∈ G, f induces a bijection

fh�g : M(g,Mg)h�g = hM(g,Mg)g → Mh�g = h ·Mg,

since f(h ·m) = h · f(m) for all m ∈ M(g,Mg)g. Thus f is bijective. �
Proposition 1.4.17. Let g ∈ G. Then Fg : kGgM→ G

GYD(Og) is an equiva-
lence of categories with quasi-inverse functor given by M �→ Mg.

Proof. Let F ′
g : G

GYD(Og) → kGgM be the functor given by F ′
g(M) = Mg

for all M ∈ G
GYD(Og). Since the isomorphisms in Lemma 1.4.16(2) and (3) are

natural transformations in V ∈ kGgM and in M ∈ G
GYD(Og), F ′

gFg
∼= id and

FgF
′
g
∼= id. �

We choose for any conjugacy class Ol, l ∈ L, an element gl ∈ Ol. It follows
from Proposition 1.4.17 and (1.4.7) that there is a category equivalence

(1.4.9)
∏
l∈L

kGglM
∼=−→ G

GYD.

Corollary 1.4.18. There is a bijection between the disjoint union of the iso-
morphism classes of the simple left kGgl-modules, l ∈ L, and the set of isomorphism
classes of the simple Yetter-Drinfeld modules in G

GYD.

Proof. This follows from Proposition 1.4.17 and (1.4.7), where for all l ∈ L
and all simple left kGgl-module Vl, the isomorphism class of Vl is mapped onto the
isomorphism class of M(gl, Vl). �

Example 1.4.19. Let G = Z and let g be a generator of G. For any λ ∈ k×

and any k ≥ 2, there is a kG-module V = V (λ, k) with dimV = k such that
(g − λ)kV = 0, (g − λ)k−1V �= 0, and any two such modules are isomorphic. Note
that V is cyclic, indecomposable, and not irreducible as a kG-module, since any
non-zero submodule of V contains the one-dimensional eigenspace to the eigenvalue
λ of the action of g. SinceG is abelian, Fg(V ) = V as aG-module and theG-grading
of Fg(V ) is given by Fg(V ) = Fg(V )g. By Proposition 1.4.17, Fg(V (λ, k)) ∈ Z

Z
YD

is an indecomposable but not irreducible Yetter-Drinfeld module.

Proposition 1.4.20. Let G be a finite group, and assume that the characteristic
of k does not divide the order of G. Then G

GYD is a semisimple category. For any
M ∈ G

GYD,

M ∼=
⊕
λ∈Λ

M(gλ, Vλ) in G
GYD,

where Λ is an index set, gλ ∈ G, and Vλ is a simple left kGgλ-module for all λ ∈ Λ.

Proof. Let M ∈ G
GYD. It follows from Proposition 1.4.17 and (1.4.7) that M

is a direct sum of Yetter-Drinfeld modules of the form M(g, V ), where g ∈ G and
V ∈ kGgM. By our assumption and the Theorem of Maschke, the group algebra
kGg is semisimple. Hence V is a direct sum of simple left kGg-modules. The functor
Fg commutes with direct sums by the additivity of the tensor product. Hence M
is a direct sum of Yetter-Drinfeld modules of the form M(g, V ), where g ∈ G and
V is a simple left kGg-module. This proves the claim by Corollary 1.4.18. �
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We end the section with an invariant of irreducible Yetter-Drinfeld modules.

Proposition 1.4.21. Assume that k is an algebraically closed field. Let V be a
finite-dimensional irreducible object in G

GYD. Then there exists qV ∈ k× such that
g · v = qV v for all g ∈ G and v ∈ Vg.

Proof. We may assume that V �= 0. Let h ∈ G with Vh �= 0. Since V is
irreducible, V ∈ G

GYD(Oh). Since Vh is finite-dimensional and k is algebraically
closed, there exists qV ∈ k× and v ∈ Vh with v �= 0, h · v = qV v. Let

W = {w ∈ Vh | h · w = qV w}.
Then W ∈ kGhM. Proposition 1.4.17 implies that kG · W is a Yetter-Drinfeld
submodule of V . Thus W = Vh since V is irreducible and (kG ·W )h = W . Finally,
for all g ∈ G and v ∈ Vh,

ghg−1 · (g · v) = gh · v = qV g · v
which implies the claim. �

1.5. Braided vector spaces of group type

Let V be a vector space and c : V ⊗ V → V ⊗ V a linear endomorphism. For
any natural number n ≥ 2 and 1 ≤ i ≤ n− 1 we define ci ∈ End(V ⊗n) by applying
c at the i-th position, that is

(1.5.1) ci =

⎧⎪⎨⎪⎩
c⊗ idV ⊗(n−2) , if i = 1,

idV ⊗(i−1) ⊗ c⊗ idV ⊗(n−i−1) , if 2 ≤ i ≤ n− 2,

idV ⊗(n−2) ⊗ c, if i = n− 1.

Note that ci depends on n. It will be clear from the context which n is meant.

Definition 1.5.1. A braided vector space (V, c) is a pair consisting of a
vector space V and a linear automorphism c : V ⊗ V → V ⊗ V satisfying

c1c2c1 = c2c1c2 in End(V ⊗3).

If (V, c) is a braided vector space, the automorphism c is called a braiding (or a
Yang-Baxter operator). If (V, c) and (W,d) are braided vector spaces, a braided
linear map (or a morphism of braided vector spaces) f : (V, c)→ (W,d) is a linear
map f : V → W with (f ⊗ f)c = d(f ⊗ f).

Clearly, the inverse of a bijective braided linear map is braided linear.

Corollary 1.5.2. Let V ∈ G
GYD. Then (V, cV,V ) is a braided vector space.

Proof. By (1.4.5), c1c2 = cV⊗V,V . Hence we have to show that

cV⊗V,V c1 = c2cV⊗V,V .

Since c1 = c⊗ idV and c2 = idV ⊗c, this follows since by (1.4.3), cV⊗V,V is a natural
transformation with respect to endomorphisms of V ⊗ V . �

Example 1.5.3. Assume that G is abelian. If V ∈ G
GYD, and g ∈ G, χ ∈ Ĝ,

we define

(1.5.2) V χ
g = {v ∈ Vg | h · v = χ(h)v}.

Then V χ
g ⊆ V is a subobject in G

GYD.
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An important class of Yetter-Drinfeld modules over G is constructed as follows.
Let I be an index set, and V a vector space with basis xi, i ∈ I. For all i ∈ I, let

gi ∈ G, χi ∈ Ĝ. Then

V =
⊕
i∈I

kxi ∈ G
GYD, where kxi ∈ V χi

gi for all i ∈ I.(1.5.3)

By Definition 1.4.10, the braiding cV,V is given by

(1.5.4) cV,V (xi ⊗ xj) = qijxj ⊗ xi, qij = χj(gi) for all i, j ∈ I.

Remark 1.5.4. Let I be an index set, and let (qij)i,j∈I be a family of non-zero
scalars in k. Let V be a vector space with basis xi, i ∈ I. We define a linear map
c : V ⊗ V → V ⊗ V by

(1.5.5) c(xi ⊗ xj) = qijxj ⊗ xi for all i, j ∈ I.

Then c is a linear automorphism of V ⊗ V , and for all i, j, k ∈ I,

c1c2c1(xi ⊗ xj ⊗ xk) = qijc1c2(xj ⊗ xi ⊗ xk) = qijqikqjkxk ⊗ xj ⊗ xi,

c2c1c2(xi ⊗ xj ⊗ xk) = qjkc2c1(xi ⊗ xk ⊗ xj) = qjkqikqijxk ⊗ xj ⊗ xi.

Thus (V, c) always is a braided vector space. One says that (V, c) is a braided vector
space of diagonal type, and that c is a diagonal braiding. The matrix (qij)i,j∈I

is called the braiding matrix of (V, c) with respect to the basis xi, i ∈ I.
The braiding of a braided vector space (V, c) of diagonal type can be realized

as the braiding of a Yetter-Drinfeld module over an abelian group. For example,

let G be a free abelian group with basis gi, i ∈ I. Define characters χi ∈ Ĝ by
χj(gi) = qij for all i, j ∈ I. Then V ∈ G

GYD by (1.5.3) and cV,V = c by (1.5.4).

The following class of braided vector spaces was introduced by Takeuchi to
characterize braidings of Yetter-Drinfeld modules over groups.

Definition 1.5.5. Let (V, c) be a braided vector space. We call (V, c) of group
type if there are a basis (xi)i∈I of V and elements gi(xj) ∈ V for all i, j ∈ I such
that

(1.5.6) c(xi ⊗ xj) = gi(xj)⊗ xi for all i, j ∈ I.

Note that it follows from the bijectivity of c, that the family of elements gi(xj),
i, j ∈ I, defines linear automorphisms gi ∈ Aut(V ) for all i ∈ I.

Proposition 1.5.6. Let (V, c) be a braided vector space. Then the following
are equivalent:

(1) (V, c) is of group type.
(2) There are a group G and a kG-module and a kG-comodule structure on

V such that V ∈ G
GYD and c = cV,V .

Proof. We prove first that (1) implies (2). Let (xi)i∈I be a basis of V and let
(gi)i∈I be a family of linear automorphisms of V satisfying (1.5.6). For all i, j, k ∈ I
we compute

c1c2c1(xi ⊗ xj ⊗ xk) = c(gi(xj)⊗ gi(xk))⊗ xi,

c2c1c2(xi ⊗ xj ⊗ xk) = gigj(xk)⊗ gi(xj)⊗ xi.

Since (V, c) is a braided vector space, we obtain that

(1.5.7) c(gi(xj)⊗ gi(xk)) = gigj(xk)⊗ gi(xj) for all i, j, k ∈ I.
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Let G ⊆ Aut(V ) be the subgroup generated by the automorphisms gi, i ∈ I. Hence
V is a G-module. We define a G-grading on V by

deg(xi) = gi for all i ∈ I.

Then V is a Yetter-Drinfeld module over G if

(1.5.8) gi(xj) ∈ Vgigjg
−1
i

for all i, j ∈ I.

Let i, j ∈ I, and write gi(xj) =
∑

l∈I′ αl
ijxl, where I ′ ⊆ I is a non-empty finite

subset, and 0 �= αl
ij ∈ k for all l ∈ I ′. Then for all k ∈ I,

c(gi(xj)⊗ gi(xk)) = c
(∑

l∈I′

αl
ijxl ⊗ gi(xk)

)
=
∑
l∈I′

αl
ijglgi(xk)⊗ xl.

Hence by (1.5.7), glgi(xk) = gigj(xk) for all k ∈ I, l ∈ I ′. Thus for all l ∈ I ′,

gl = gigjg
−1
i , and gi(xj) ∈ Vgigjg

−1
i

.

The equality c = cV,V is clear from the definition of V ∈ G
GYD.

Now we prove that (2) implies (1). Let G be a group and let V ∈ G
GYD be

such that c = cV,V . Choose a basis (xi)i∈I of V of G-homogeneous elements, that
is, with xi ∈ Vgi for all i ∈ I, where gi ∈ G for all i ∈ I. Then

c(xi ⊗ xj) = gi · xj ⊗ xi

for all i, j ∈ I by Definition 1.4.10. This proves (1). �

In order to describe braided vector spaces of group type without referring to
the group, the notions of racks and two-cocycles are very useful.

Definition 1.5.7. Let X be a non-empty set and � : X × X → X a map
denoted by (x, y) �→ x � y for all x, y ∈ X. The pair (X, �) is called a rack if

(1) For all x ∈ X, the map ϕx : X → X, y �→ x � y, is bijective.
(2) The map � is left self-distributive, that is, for all x, y, z ∈ X,

x � (y � z) = (x � y) � (x � z).

A rack (X, �) is called a quandle if x�x = x for all x ∈ X. Two racks (or quandles)
(X, �) and (Y, �′) are called isomorphic if there is a bijection f : X → Y such that
f(x � z) = f(x) �′ f(z) for all x, z ∈ X.

Example 1.5.8. Let G be a group. The union X of any non-empty set of
conjugacy classes of G is a quandle, where x � y = xyx−1 for all x, y ∈ X is the
adjoint action of the group. The pair (G, �′) with g �′ h = gh−1g for all g, h ∈ G is
a quandle.

Example 1.5.9. Let A be an abelian group. Let σ be an automorphism of A
and let � : A×A → A, x � y = x+ σ(y− x). Then (A, �) is a quandle and is called
an affine rack or affine quandle. Indeed, for any x ∈ A the inverse of ϕx is given
by

ϕ−1
x (y) = x+ σ−1(y − x).

Moreover,

ϕxϕy(z) = ϕx(y + σ(z − y)) = x+ σ(y − x) + σ2(z − y) = ϕx�yϕx(z)

for all x, y, z ∈ A.
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Example 1.5.10. Let G be a group, g ∈ G and V a left kGg-module. As in the
proof of Lemma 1.4.16, let (hx)x∈X be a complete set of representatives of G/Gg.
For all x, y ∈ X, define x � y ∈ X and u(x, y) ∈ Gg by the equation

(hx � g)hy = hx�yu(x, y).

Then (X, �) is a rack.
Condition (1) of Definition 1.5.7 clearly holds, since G/Gg is a left G-space,

and left multiplication with hx � g is bijective. To check (2), let x, y, z ∈ X. By
definition,

(hx � g)hz = hx�zu(x, z), (hx � g)hy�z = hx�(y�z)u(x, y � z),

(hy � g)hz = hy�zu(y, z), (hx�y � g)hx�z = h(x�y)�(x�z)u(x � y, x � z).

Hence

hx�(y�z)u(x, y � z)u(y, z) = (hx � g)(hy � g)hz,

h(x�y)�(x�z)u(x � y, x � z)u(x, z) = (hx�y � g)(hx � g)hz

= (((hx � g)hyu(x, y)
−1) � g)(hx � g)hz

= (hx � g)(hy � g)hz,

where the last equality holds since u(x, y) ∈ Gg. This proves (2). Moreover,

u(x � y, x � z)u(x, z) = u(x, y � z)u(y, z)(1.5.9)

for all x, y, z ∈ X.
The braiding of M(g, V ) = kG⊗kGg V can hence be written as

c(hx ⊗ v, hy ⊗ w) = (hx � g)hy ⊗ w ⊗ hx ⊗ v

= hx�y ⊗ u(x, y) · w ⊗ hx ⊗ v

= hx�y ⊗ qx,y(w)⊗ hx ⊗ v

for all x, y ∈ X, v, w ∈ V , where qx,y ∈ Aut(V ), qx,y(w) = u(x, y) ·w for all w ∈ V .

The braiding in Example 1.5.10 can easily be formulated for any rack.

Definition 1.5.11. Let (X, �) be a rack, and let q : X × X → H for some
group H be a map which we write as q(x, y) = qx,y for all x, y ∈ X. Then q is
called a two-cocycle if

qx�y,x�zqx,z = qx,y�zqy,z(1.5.10)

for all x, y, z ∈ X. We say that q is constant if H = Aut(V ) for some vector space
V and there exists λ ∈ k such that qx,y = λidV for all x, y ∈ X.

A constant map q : X ×X → Aut(V ) is always a two-cocycle. The map u in
Example 1.5.10 is a two-cocycle with values in Gg by (1.5.9).

Proposition 1.5.12. Let X be a non-empty set, V be a vector space, and

� : X ×X → X, q : X ×X → Aut(V )

be maps. Let M = kX ⊗ V and let cq : M ⊗M → M ⊗M be the linear map with

cq((x⊗ v)⊗ (y ⊗ w)) = ((x � y)⊗ qx,y(w))⊗ (x⊗ v)(1.5.11)

for all x, y ∈ X, v, w ∈ V . Then (M, cq) is a braided vector space if and only if
(X, �) is a rack and q is a two-cocycle. In this case, (M, cq) is of group type.
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Proof. In the proof we write xv instead of x ⊗ v for all x ∈ X, v ∈ V . Let
x, y, z ∈ X and v, w, u ∈ V . Then

c1c2c1(xv ⊗ yw ⊗ zu) = (x � y) � (x � z)qx�y,x�z(qx,z(u))⊗ (x � y)qx,y(w)⊗ xv,

c2c1c2(xv ⊗ yw ⊗ zu) = (x � (y � z))qx,y�z(qy,z(u))⊗ (x � y)qx,y(w)⊗ xv.

This implies the first part of the claim. The rest is clear. �
Example 1.5.13. Let X = {1, 2, 3, 4} and let ϕi, i ∈ X, be the permutations

ϕ1 = (2 3 4), ϕ2 = (1 4 3), ϕ3 = (1 2 4), ϕ4 = (1 3 2).

Then (X, �) is a quandle, where x � y = ϕx(y) for all x, y ∈ X. More precisely,
consider the affine quandle structure on the field F4 with 4 elements and the auto-
morphism determined by left multiplication with an element of multiplicative order
3 in F4. This quandle and (X, �) are isomorphic.

Let V be a one-dimensional vector space, (X, �) a rack, M = kX⊗V ∼= kX, and
let cq be as in Proposition 1.5.12, where λ ∈ k× and q is the constant two-cocycle
with qx,y = λ for all x, y ∈ X. Then

cq(x⊗ y) = λ(x � y)⊗ x

for all x, y ∈ X.

Example 1.5.14. Let m ≥ 2 be a positive integer and let 1 ≤ i < m with
gcd(m, i) = 1. Multiplication with i in Z/(m) is an automorphism. Hence

Aff(m, i) = (Z/(m), �), x � y = x+ i(y − x),

is an affine quandle. For i = 1, x � y = y for all x, y ∈ Z/(m).

1.6. Braided Hopf algebras and Nichols algebras over groups

Let again G be a group. To simplify the notation, we write C = G
GYD.

The tensor product of two objects in C is an object in C, the tensor product
of two morphisms in C is a morphism in C, and the canonical isomorphisms in
Proposition 1.2.5 for U, V,W ∈ C are morphisms in C by Proposition 1.4.9.

Let A ∈ C, and let μ : A ⊗ A → A, η : k → A be morphisms in C. Then
(A, μ, η) is an algebra in C if the diagrams (1.1.3) and (1.1.4) commute. If A,B
are algebras in C, and ρ : A → B is a morphism in C, then ρ is a morphism of
algebras in C, if the diagrams (1.1.5) and (1.1.6) commute.

Let C ∈ C, and let Δ : C → C ⊗ C, ε : C → k be morphisms in C. The triple
(C,Δ, ε) is a coalgebra in C if the diagrams (1.1.7) and (1.1.8) commute. If C,D
are coalgebras in C, and ϕ : C → D is a morphism in C, then ϕ is a morphism of
coalgebras in C, if the diagrams (1.1.10) and (1.1.11) commute.

Thus algebras and coalgebras in C are algebras and coalgebras in the sense of
Section 1.1 whose structure maps are morphisms in C. In the same waymodules in
C and comodules in C are modules and comodules, respectively, whose structure
maps are morphisms in C.

Corollary 1.6.1. Let C be a coalgebra in C, A an algebra in C, and f an
invertible map in Hom(C,A). If f is a morphism in C, then so is f−1.

Proof. This is another application of Proposition 1.2.11. �
Proposition 1.6.2. Let V ∈ C, and T (V ) =

⊕
n≥0 T

n(V ) the tensor algebra
of the vector space V .
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(1) T (V ) is an algebra in C, where Tn(V ) = V ⊗n, n ≥ 0, is the n-fold tensor
product in C.

(2) For any algebra A in C and any morphism f : V → A in C, there is exactly
one algebra morphism ϕ : T (V )→ A in C extending f .

Proof. This is clear from the universal property of the tensor algebra (or the

free algebra), since for all n ≥ 2, V ⊗n f⊗n

−−−→ A⊗n μn−1

−−−→ A is a morphism in C, where
μn−1 is the (n− 1)-fold iteration of the multiplication map μ. �

Definition 1.6.3. (1) Let (A, μA, ηA) and (B, μB, ηB) be algebras in C.
Define μA⊗B and ηA⊗B by

(A⊗B)⊗ (A⊗B)
id⊗cB,A⊗id−−−−−−−−→ (A⊗A)⊗ (B ⊗B)

μA⊗μB−−−−−→ A⊗B,

k ∼= k⊗ k
ηA⊗ηB−−−−−→ A⊗B.

Then (A⊗B, μA⊗B, ηA⊗B) is called the tensor product of algebras in
C.

(2) Let (C,ΔC , εC) and (D,ΔD, εD) be coalgebras in C. Define ΔC⊗D and
εC⊗D by

C ⊗D
ΔC⊗ΔD−−−−−−→ (C ⊗ C)⊗ (D ⊗D)

id⊗cC,D⊗id−−−−−−−−→ (C ⊗D)⊗ (C ⊗D),

C ⊗D
εC⊗εD−−−−−→ k⊗ k ∼= k.

Then (C⊗D,ΔC⊗D, εC⊗D) is called the tensor product of coalgebras
in C.

By Definition 1.4.10, the product μA⊗B is defined for elements a, x ∈ A and
b ∈ Bg, y ∈ B, g ∈ G, by

(a⊗ b)(x⊗ y) = a(g · x)⊗ by.(1.6.1)

The unit element of A⊗B is 1A ⊗ 1B.

Proposition 1.6.4. Let A,B,C,D be algebras in C.
(1) (A⊗B, μA⊗B, ηA⊗B) is an algebra in C.
(2) The canonical isomorphism (A⊗B)⊗C ∼= A⊗(B⊗C) is an isomorphism

of algebras in C.
(3) Let ϕ : A → C and ψ : B → D be morphisms of algebras in C. Then

ϕ⊗ ψ : A⊗B → C ⊗D is a morphism of algebras in C.

Proof. (1) It is clear from the definition that μA⊗B and ηA⊗B are morphisms
in C. To check associativity, consider elements a, u, x ∈ A and b ∈ Bg, v ∈ Bh,
y ∈ B, where g, h ∈ G. Then deg(bv) = gh, since the multiplication map B⊗B → B
is G-graded. Hence

((a⊗ b)(u⊗ v))(x⊗ y) = (a(g · u)⊗ bv)(x⊗ y) = a(g · u)((gh) · x)⊗ bvy,

(a⊗ b)((u⊗ v)(x⊗ y)) = (a⊗ b)(u(h · x)⊗ vy) = a(g · (u(h · x)))⊗ bvy.

This proves associativity, since the multiplication map A⊗A → A is left G-linear,
hence (g · u)((gh) · x) = g · (u(h · x)).
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(2) Let a, x ∈ A, b ∈ Bg, y ∈ B, c ∈ Ch, z ∈ C, where g, h ∈ G. We compute
in A⊗ (B ⊗ C) and then in (A⊗B)⊗ C,

(a⊗ (b⊗ c))(x⊗ (y ⊗ z)) = a((gh) · x)⊗ (b⊗ c)(y ⊗ z)

= a((gh) · x)⊗ b(h · y)⊗ cz,

((a⊗ b)⊗ c)((x⊗ y)⊗ z) = (a⊗ b)(h · x⊗ h · y)⊗ cz

= a((gh) · x)⊗ b(h · y)⊗ cz.

(3) Let a, u ∈ A, b, v ∈ B, and assume that b ∈ Bg, g ∈ G. Then

(ϕ⊗ ψ)((a⊗ b)(u⊗ v)) = ϕ(a(g · u))⊗ ψ(bv)

= ϕ(a)(g · ϕ(u))⊗ ψ(b)ψ(v)

= (ϕ(a)⊗ ψ(b))(ϕ(u)⊗ ψ(v)).

This implies the claim. �

Proposition 1.6.5. Let C,D,E, F be coalgebras in C.
(1) (C ⊗D,ΔC⊗D, εC⊗D) is a coalgebra in C.
(2) The canonical isomorphism (C⊗D)⊗E ∼= C⊗(D⊗E) is an isomorphism

of coalgebras in C.
(3) Let ϕ : C → E and ψ : D → F be morphisms of coalgebras in C. Then

ϕ⊗ ψ : C ⊗D → E ⊗ F is a morphism of coalgebras in C.

Proof. This can be shown as in the proof of Proposition 1.6.4 by direct
computation using the comodule description of Yetter-Drinfeld modules in Re-
mark 1.4.8. �

We will see in Section 3.2 that Propositions 1.6.4 and 1.6.5 formally follow
from the properties of the braiding in Proposition 1.4.11. Proposition 1.6.4 holds
in braided monoidal categories, and Proposition 1.6.5 is Proposition 1.6.4 in the
dual category.

Definition 1.6.6. (1) Let R be an object in C, and let

μ : R⊗R → R, η : k→ R, Δ : R → R⊗R, ε : R → k

be morphisms in C. Then (R, μ, η,Δ, ε) is a bialgebra in C if (R, μ, η) is an algebra
in C, (R,Δ, ε) is a coalgebra in C, and Δ and ε are algebra maps in C.

(2) Let R be a bialgebra in C, and S : R → R a morphism in C. Then (R,S)
is a Hopf algebra in C with antipode S, if the diagrams (1.2.2) commute.

(3) Let R,R′ be bialgebras in C, and ϕ : R → R′ a morphism in C. Then ϕ
is a bialgebra morphism in C, if ϕ is a morphism of algebras and coalgebras in
C. A Hopf algebra morphism in C between Hopf algebras in C is a bialgebra
morphism in C.

Proposition 1.6.7. Let R be an object in C, and let

μ : R⊗R → R, η : k→ R, Δ : R → R⊗R, ε : R → k

be morphisms in C. Assume that (R, μ, η) is an algebra and (R,Δ, ε) is a coalgebra
in C. Then the following are equivalent.

(1) Δ and ε are morphisms of algebras in C.
(2) μ and η are morphisms of coalgebras in C.
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Proof. Replace in the proof of Proposition 1.2.2 the flip map τR,R by the
braiding cR,R. �

Remark 1.6.8. (1) Let (R,S) be a Hopf algebra in C. Then S is uniquely
determined as the inverse of id in Hom(R,R).

(2) If R is a bialgebra in C, and the inverse S of id in Hom(R,R) exists, then
S is a morphism in C by Corollary 1.6.1, hence (R,S) is a Hopf algebra in C.

(3) Let R,R′ be Hopf algebras in C an ϕ : R → R′ a bialgebra morphism in C.
Then ϕSR = SR′ϕ by the proof of Proposition 1.2.17(2).

Lemma 1.6.9. Let R be a bialgebra in C. Then P (R) ⊆ R is a subobject in C.

Proof. By definition, P (R) is the kernel of the morphism

R → R⊗R, x �→ Δ(x)− (x⊗ 1 + 1⊗ x)

in C. This implies the claim. �

An N0-graded object in C is an object V ∈ C with a family of subobjects
V (n) ⊆ V , n ≥ 0, in C such that V =

⊕
n≥0 V (n) in C. The category of N0-graded

objects in C with graded morphisms in C as morphisms is denoted by N0-Gr(C).
An N0-graded algebra, coalgebra, bialgebra and Hopf algebra in C

is an algebra, coalgebra, bialgebra and Hopf algebra, respectively, in C with an
N0-grading of subobjects in C such that the structure maps are graded.

For V ∈ C, the tensor algebra T (V ) is an algebra in C by Proposition 1.6.2.
The usual N0-grading with T (V )(n) = Tn(V ) = V ⊗n for all n ≥ 0 turns T (V ) into
an N0-graded algebra in C by construction.

Corollary 1.6.10. Let R be an N0-graded connected bialgebra in C. Then R
is an N0-graded Hopf algebra in C.

Proof. Since R is an algebra and a coalgebra, Hom(R,R) is an algebra with
convolution product. The identity map in Hom(R,R) is invertible by Proposi-
tion 1.3.5. Hence the claim follows from Remark 1.6.8. �

Definition 1.6.11. Let V ∈ C, and T (V ) the tensor algebra of V in C. By
Proposition 1.6.2, there are uniquely determined algebra morphisms in C

Δ : T (V )→ T (V )⊗ T (V ), ε : T (V )→ k

such that

Δ(v) = v ⊗ 1 + 1⊗ v, ε(v) = 0

for all v ∈ V , where T (V )⊗ T (V ) is the tensor product of algebras in C.

Example 1.6.12. Let V =
⊕

i∈I kxi ∈ G
GYD, where xi ∈ V χi

gi , χj(gi) = qij for
all i, j ∈ I. Then in T (V ) for all i, j ∈ I,

Δ(xixj) = (xi ⊗ 1 + 1⊗ xi)(xj ⊗ 1 + 1⊗ xj)

= xixj ⊗ 1 + xi ⊗ xj + qijxj ⊗ xi + 1⊗ xixj .

Proposition 1.6.13. Let V ∈ C.
(1) The tensor algebra T (V ) is an N0-graded Hopf algebra in C with comulti-

plication Δ and counit ε of Definition 1.6.11.
(2) Let R be a bialgebra in C, and f : V → P (R) a morphism in C. Then

there is exactly one bialgebra map ϕ : T (V )→ R in C extending f .
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(3) Let R be an N0-graded connected bialgebra in C, and f : V → R(1) a
morphism in C. Then there is exactly one bialgebra map ϕ : T (V ) → R
in C extending f , and ϕ is N0-graded.

Proof. (1) Since Δ and ε are homogeneous on V , they are N0-graded algebra
morphisms in C. Then (T (V ),Δ, ε) is an N0-graded coalgebra in C, since by Propo-
sition 1.6.4(2), the diagrams (1.1.7) and (1.1.8) are diagrams of algebra morphisms
which commute on the generators v ∈ V . Thus T (V ) is an N0-graded bialgebra in
C. Then T (V ) is a Hopf algebra in C by Corollary 1.6.10.

(2) By Proposition 1.6.2, there is a unique algebra map ϕ : T (V ) → R in C
extending f : V → R. It remains to show that ϕ is a coalgebra map, that is, the
diagrams

T (V )
ϕ

��

Δ

��

R

Δ

��

T (V )⊗ T (V )
ϕ⊗ϕ

�� R⊗R

T (V )
ϕ

��

ε
���

��
��

��
�

R

ε
��		
		
		
		

k

commute. All maps in the diagrams are algebra maps, and it is enough to prove
commutativity on the generators in V . It is clear from the assumption on f that
both diagrams commute on elements of V .

(3) This follows from (2), since R(1) ⊆ P (R) by Lemma 1.3.6(2). �

Ideals, coideals, bi-ideals and Hopf ideals in C are subobjects in C which
are ideals, coideals, bi-ideals and Hopf ideals, respectively. They describe quotients
of algebras, coalgebras, bialgebras and Hopf algebras in C as in Propositions 1.1.13
and 1.2.22.

Lemma 1.6.14. Let A be a bialgebra in C, and I ⊆ A a coideal in C. Then AI
and IA are coideals of A in C.

Proof. Since the multiplication map A⊗A → A is a morphism in C, AI is a
subobject of A in C. Since ε is an algebra map, ε(AI) ⊆ ε(A)ε(I) = 0. Since Δ is
an algebra map,

Δ(AI) ⊆ Δ(A)Δ(I) ⊆ (A⊗A)(I ⊗A+A⊗ I)

= Ac(A⊗ I)A+Ac(A⊗A)I = AI ⊗A+A⊗AI.

Hence AI is a coideal of A in C. Similarly, IA ⊆ A is a coideal of A in C. �

Corollary 1.6.15. Let R =
⊕

n≥0 R(n) be an N0-graded connected Hopf al-

gebra in C, and let IR ⊆ R be the largest coideal contained in
⊕

n≥2 R(n). Then

R/IR is an N0-graded connected quotient Hopf algebra in C with

P (R/IR) = (R/IR)(1) ∼= R(1).

Proof. By Theorem 1.3.16, IR =
⊕

n≥2 ker(Δ1n), and R/IR is strictly graded,

that is, P (R/IR) = (R/IR)(1) ∼= R(1). For all n ≥ 2, the maps ΔR
1n are N0-graded

morphisms in C. Hence IR ⊆ R is an N0-graded subobject in C, and R/IR is
an N0-graded coalgebra quotient of R in C. By the maximality of IR and by
Lemma 1.6.14, IR is a bi-ideal of R. Then R/IR is an N0-graded Hopf algebra in C
by Corollary 1.6.10. �
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Definition 1.6.16. Let V ∈ C. An N0-graded connected Hopf algebra R in C
is a pre-Nichols algebra of V , if

(N1) R(1) ∼= V in C,
(N2) R is generated as an algebra by R(1).

A pre-Nichols algebra of V is a Nichols algebra of V , if

(N3) R is strictly graded, that is, P (R) = R(1).

It is a remarkable fact that by Theorem 1.6.18 below the structure of a Nichols
algebra of V ∈ C is completely determined by V . This is somewhat similar to
the situation of irreducible cocommutative Hopf algebras U over a field of charac-
teristic 0. The structure of U is completely determined by the Lie algebra of its
primitive elements. In this analogy, the Nichols algebra corresponds to the universal
enveloping algebra of a Lie algebra.

The Nichols algebra can be constructed as the smallest N0-graded Hopf algebra
quotient of T (V ) which is isomorphic to V in degree one. Recall from Proposi-
tion 1.6.13 that T (V ) is an N0-graded connected coalgebra.

Definition 1.6.17. Let V ∈ C. Let I(V ) be the largest coideal of T (V ) con-
tained in

⊕
n≥2 T

n(V ). The Nichols algebra of V is defined by

B(V ) = T (V )/I(V ).

Note that I(V ) =
⊕

n≥2 ker(Δ
T (V )
1n ) = IT (V ) by Theorem 1.3.16.

Theorem 1.6.18. Let V ∈ C.
(1) B(V ) is a Nichols algebra of V .

(2) Let R be a pre-Nichols algebra of V , f : R(1)
∼=−→ V an isomorphism in C.

(a) There is exactly one morphism π : R → B(V ) of N0-graded Hopf
algebras in C such that f is the restriction of π to R(1), and π is
surjective.

(b) π is bijective if and only if R is a Nichols algebra of V .

Proof. (1) follows from Corollary 1.6.15.
(2) (a) Let ϕ : T (V ) → R be the surjective N0-graded braided bialgebra map

extending f−1 by Proposition 1.6.13(3). Then ker(ϕ) ⊆ I(V ), since ϕ is bijective
in degree 0 and 1. The induced map

π : R ∼= T (V )/ker(ϕ)→ T (V )/I(V ) = B(V )

is a surjective map of N0-graded braided Hopf algebras with π(1) = f .
(b) If P (R) = R(1), then π in (1) is bijective by Proposition 1.3.10(2). Con-

versely, if R ∼= B(V ), then P (R) = R(1) by (1). �

Remark 1.6.19. Let U, V ∈ C, and f : U → V a morphism in C. Then f
induces a morphism T (f) : T (U) → T (V ) of N0-graded Hopf algebras in C. Since
T (f) is a coalgebra morphism, T (f)(I(U)) ⊆ I(V ). Hence the construction of the
Nichols algebra is a functor from C to the category of N0-graded Hopf algebras in
C. Clearly, f is surjective if and only if B(f) is surjective.

Suppose that f is injective. Then T (f)−1(I(V )) ⊆
⊕

n≥2 T
n(U). Hence

T (f)−1(I(V )) = I(U), and B(f) is injective.
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Remark 1.6.20. Direct sum decompositions of Yetter-Drinfeld modules give
rise to important gradings of the Nichols algebra, see Corollary 7.1.15.

Let θ ≥ 1 be an integer. Then Nθ
0 is a monoid with componentwise addition

of natural numbers. The standard basis of Zθ is denoted by α1, . . . , αθ. Thus for

α = (a1, . . . , aθ) ∈ Nθ
0, α =

∑θ
i=1 aiαi.

Let V ∈ C with subobjects Vi ⊆ V in C such that V =
⊕

1≤i≤θ Vi. Then B(V )

is an Nθ
0-graded Hopf algebra in C, where for all 1 ≤ i ≤ θ, deg(Vi) = αi.

1.7. Braid group and braided vector spaces

We begin by recalling some general facts about the symmetric group. Let W
be a group and S ⊆ W a subset of elements of order 2. In particular, S does not
contain the identity element 1 of W . For all s, s′ ∈ S let m(s, s′) be the order of ss′.
The pair (W,S) is called a Coxeter system, and W is called a Coxeter group
[Bou68, Ch. IV, §1, 1.3], if

〈S | (ss′)m(s,s′) = 1 for all s, s′ ∈ S with m(s, s′) < ∞〉
∼=−→ W, s �→ s,

is a group isomorphism, that is, if W is generated by the set S with (only) relations

(ss′)m(s,s′) = 1 for all s, s′ ∈ S with m(s, s′) < ∞.
Let n ≥ 2. We denote the elementary transpositions of the symmetric group

Sn by si = (i i+ 1) for all 1 ≤ i ≤ n− 1. Note that

ord(sisj) =

⎧⎪⎨⎪⎩
1, if i = j,

3, if |i− j| = 1,

2, if |i− j| > 1.

Theorem 1.7.1. For all n ≥ 2, (Sn, {s1, . . . , sn−1}) is a Coxeter system, that
is, Sn is generated by s1, . . . , sn−1 with defining relations

sisi+1si = si+1sisi+1 for all 1 ≤ i ≤ n− 2,(1.7.1)

sisj = sjsi for all 1 ≤ i, j ≤ n− 1, |i− j| > 1,(1.7.2)

s2i = 1 for all i.(1.7.3)

Proof. For n = 2 the claim is trivial. Assume that n ≥ 3. Let Wn denote the
Coxeter group given by generators s1, . . . , sn−1 and relations (1.7.1)–(1.7.3). The
elementary transpositions of Sn satisfy Equations (1.7.1)–(1.7.3), hence there is a
surjective map Wn → Sn. On the other hand,

Wn = {w,wsn−1, wsn−1sn−2, . . . , wsn−1sn−2 · · · s1 |w ∈ 〈s1, . . . , sn−2〉}.
Indeed, let i, j ∈ {1, . . . , n− 1}. Then

(sn−1sn−2 · · · si)sj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sj−1(sn−1sn−2 · · · si) if j > i,

sn−1sn−2 · · · si+1 if j = i,

sn−1sn−2 · · · si−1 if j = i− 1,

sj(sn−1sn−2 · · · si) if j < i− 1.

Hence {w,wsn−1, wsn−1sn−2, . . . , wsn−1sn−2 · · · s1 | w ∈ 〈s1, . . . , sn−2〉} is a sub-
group of Wn containing all generators of Wn and hence coincides with Wn. We
conclude that |Wn| ≤ n|Wn−1| and hence |Wn| ≤ n! by induction on n. Therefore
Wn

∼= Sn since |Sn| = n!. �

The preliminary version made available with permission of the publisher, the American Mathematical Society.



1.7. BRAID GROUP AND BRAIDED VECTOR SPACES 45

Let

Δ = {(a, b) ∈ N2 | 1 ≤ a, b ≤ n, a �= b},
Δ+ = {(a, b) ∈ Δ | a < b},
Δ− = {(a, b) ∈ Δ | a > b},

and define

α1 = (1, 2), α2 = (2, 3), . . . , αn−1 = (n− 1, n) ∈ Δ+.

The symmetric group Sn acts on Δ by

Sn ×Δ→ Δ, (w, (a, b)) �→ (w(a), w(b)).

For w ∈ Sn let

Δw = {α ∈ Δ+ | w(α) ∈ Δ−}.
The elements of Δw are called inversions of w.

The length �(w) of a permutation w ∈ Sn is defined as the smallest natural
number l ∈ N0 such that there exist 1 ≤ i1, . . . , il ≤ n − 1 with w = si1 · · · sil . A
sequence (i1, . . . , il) with 1 ≤ i1, . . . , il ≤ n−1 is called a reduced decomposition
of w if w = si1 · · · sil , and if l = �(w).

In practice, the length of a permutation is computed by counting the number
of its inversions.

Theorem 1.7.2. Let w ∈ Sn and let i ∈ N with i ≤ n− 1.

(1) �(wsi) = �(w) + 1 if and only if w(i) < w(i+ 1).
(2) �(wsi) = �(w)− 1 if and only if w(i) > w(i+ 1).
(3) For any reduced decomposition (i1, . . . , il) of w,

Δw = {sil · · · si2(αi1), sil · · · si3(αi2), . . . , sil(αil−1
), αil}

and l = �(w) = |Δw|.

Proof. (a) Let v ∈ W , 1 ≤ m < n, and 1 ≤ j < k ≤ n − 1. If j = m and
k = m+1, then (j, k) is an inversion of v if and only if it is not an inversion of vsm.
Otherwise, (j, k) is an inversion of v if and only if (sm(j), sm(k)) is an inversion of
vsm. Therefore

αm ∈ Δv ⇒ Δvsm = sm(Δv \ {αm}), |Δvsm | = |Δv| − 1,(1.7.4)

αm /∈ Δv ⇒ Δvsm = sm(Δv) ∪ {αm}, |Δvsm | = |Δv|+ 1.(1.7.5)

(b) Clearly, w = idSn if and only if Δw = ∅. By induction on �(w), it follows
from (1.7.4) and (1.7.5) that |Δw| ≤ �(w). On the other hand, if Δw �= ∅ then
there exists 1 ≤ m < n such that w(m) > w(m + 1). Then |Δwsm | = |Δw| − 1 by
(1.7.4). By induction on |Δw| it follows that there exist j1, . . . , jl with l = |Δw|
such that Δwsj1 ···sjl = ∅, and hence w = sjl · · · sj1 . Thus �(w) ≤ |Δw|. Therefore

�(w) = |Δw|.
(c) Since �(w) = |Δw| by (b), (1) and (2) follow from (1.7.4) and (1.7.5) with

v = w, m = i. Finally, (3) follows by induction on �(w) from (1) and (1.7.5). �

Definition 1.7.3. Let n ≥ 1 be a natural number. The Artin braid group
Bn is the group generated by elements σ1, . . . , σn−1 with relations

σiσi+1σi = σi+1σiσi+1 for all 1 ≤ i ≤ n− 2,(1.7.6)

σiσj = σjσi for all 1 ≤ i, j ≤ n− 1, |i− j| > 1.(1.7.7)
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Thus B1 is the trivial group with one element, and B2
∼= Z.

It follows from the description of Sn in Theorem 1.7.1 that

Bn → Sn, σi �→ si, 1 ≤ i ≤ n− 1,

defines a surjective group homomorphism.
The following Theorem, attributed to Matsumoto, is a special case of an im-

portant tool in the theory of Coxeter groups. Here it will be used to describe the
components of the comultiplication of the tensor algebra of a braided vector space,
see e. g. Theorem 1.9.1.

Theorem 1.7.4. Let n ≥ 2. Then

σ : Sn → Bn, w = si1 · · · sil �→ σi1 · · ·σil ,

where (i1, . . . , il) is a reduced decomposition of w, is a well-defined map.

Proof. Let w ∈ Sn, l = �(w), and let (i1, . . . , il), (j1, . . . , jl) be two reduced
decompositions of w. We have to show that

σi1 · · ·σil = σj1 · · ·σjl .(1.7.8)

We proceed by induction on l. If l ≤ 1 then (1.7.8) clearly holds. Assume that
l ≥ 2. If il = jl then (i1, . . . , il−1) and (j1, . . . , jl−1) are reduced decompositions of
wsil and hence (1.7.8) holds by induction hypothesis.

Assume that il < jl − 1. Then (il, il+1) and (jl, jl+1) are inversions of w.
Theorem 1.7.2(2) implies that w = usjlsil = usilsjl for some u ∈ Sn �(u) = l − 2.
Therefore

σi1 · · ·σil = σ(u)σjlσil = σ(u)σilσjl = σj1 · · ·σjl

by induction hypothesis and by (1.7.7).
Assume that jl = il + 1. Then (il, il+1) and (il+1, il+2) are inversions of w.

Hence (il, il+2) ∈ Δw. Theorem 1.7.2(2) implies that w = usilsjlsil for some
u ∈ Sn such that �(u) = l − 3. Then w = usjlsilsjl and

σi1 · · ·σil = σ(u)σilσjlσil = σ(u)σjlσilσjl = σj1 · · ·σjl .

by induction hypothesis and by (1.7.6). �

The map σ in Theorem 1.7.4 is a section of the canonical map π : Bn → Sn,
that is, πσ = idSn . It is called the Matsumoto section.

Recall the notation ci : V ⊗n → V ⊗n, n ≥ 2, 1 ≤ i ≤ n − 1, in (1.5.1) for a
vector space V with endomorphism c : V ⊗ V → V ⊗ V . By abuse of notation we
thus identify ci with ci ⊗ idV ⊗m for all m ≥ 0.

Lemma 1.7.5. Let (V, c) be a braided vector space, and n ≥ 2. Then

Bn → Aut(V ⊗n), σi �→ ci, 1 ≤ i ≤ n− 1,

defines a group homomorphism.

Proof. This follows from the definition of the braid group, since the automor-
phisms ci satisfy the relations of the generators σi of Bn. �

The action of Bn on V ⊗n defined in Lemma 1.7.5 will be denoted by

kBn ⊗ V ⊗n → V ⊗n, σ ⊗ x �→ σx,(1.7.9)

for all σ ∈ Bn, x ∈ V ⊗n.
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Definition 1.7.6. Let (V, c) be a braided vector space, and n ≥ 2. For all
w ∈ Sn we denote the image of w under the composition

Sn
σ−→ Bn → Aut(V ⊗n)

by cw = ci1 · · · cil , if (i1, . . . , il) is a reduced decomposition of w.

Corollary 1.7.7. Let (V, c) be a braided vector space, and n ≥ 2. Then
cid = idV ⊗n , csi = ci for all 1 ≤ i ≤ n− 1, and cw1w2

= cw1
cw2

for any w1, w2 ∈ Sn
with �(w1w2) = �(w1) + �(w2).

Proof. This follows from Lemma 1.7.5 and Theorem 1.7.4. �

If c is the flip map, Definition 1.7.6 describes the natural left action of the
symmetric group Sn on V ⊗n with

cw(x1 ⊗ · · · ⊗ xn) = xw−1(1) ⊗ · · · ⊗ xw−1(n)

for all n ≥ 2 and xi ∈ V for all 1 ≤ i ≤ n. More generally, there is an explicit
formula for cw in the case of diagonal braidings.

Proposition 1.7.8. Let V be a vector space with basis (xi)i∈I and braiding c
given by

c(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I,

where the qij, i, j ∈ I, are non-zero scalars in k. Then for all n ≥ 1, w ∈ Sn and
all functions k : {a ∈ N | 1 ≤ a ≤ n} → I,

cw(xk(1) ⊗ · · · ⊗ xk(n)) =
∏
a<b,

w(a)>w(b)

qk(a),k(b)xk(w−1(1)) ⊗ · · · ⊗ xk(w−1(n)).

Proof. For w = si, 1 ≤ i ≤ n − 1, the claim holds by definition of csi = ci,
and since Δsi = {(i, i+ 1)}. If the length of w is l ≥ 2, let (i1, . . . , il) be a reduced
decomposition of w. Write w = si1u, u = si2 · · · sil . By induction on the length of
w we may assume that the formula holds for u. Let

xk = xk(1) ⊗ · · · ⊗ xk(n), k : {a ∈ N | 1 ≤ a ≤ n} → I.

We know from Theorem 1.7.2(3) that Δw = Δu ∪ {(u−1(i1), u
−1(i1 + 1))} and

|Δw| = |Δu|+ 1. Therefore

cw(xk) = ci1cu(xk) = ci1

( ∏
a<b,

u(a)>u(b)

qk(a),k(b)xku−1

)

=
∏
a<b,

u(a)>u(b)

qk(a),k(b)qku−1(i1),ku−1(i1+1)xku−1si1

=
∏
a<b,

w(a)>w(b)

qk(a),k(b)xkw−1 .

This proves the claim. �

We introduce the following useful notation. For all natural numbers 2 ≤ m ≤ n
and 0 ≤ i ≤ n−m there are embeddings of groups

shim,n : Sm → Sn, sj �→ sj+i, 1 ≤ j ≤ m− 1.(1.7.10)
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We will write

shim,n(w) = w↑i, w ∈ Sm.(1.7.11)

Thus we identify Sm with {w ∈ Sn | w(j) = j for all m + 1 ≤ j ≤ n}. The
shift operators ↑ i can also be defined for the braid group. There are group
homomorphisms shim,n : Bm → Bn, σj �→ σj+i, 1 ≤ j ≤ m − 1. These maps are
embeddings, but we will not use this fact. However, we will write

shim,n(σ) = σ↑i, σ ∈ Bm.(1.7.12)

Another type of shift operators are defined for automorphisms:

Aut(V ⊗m)→ Aut(V ⊗n), f �→ f↑i = idV ⊗i ⊗ f ⊗ idV ⊗n−m−i .(1.7.13)

Then cj
↑i = cj+i and cw

↑i = cw↑i for all 1 ≤ j ≤ m− 1 and w ∈ Sm.

Definition 1.7.9. Let (V, c) be a braided vector space. For m,n ≥ 1 let

sm,n =
(

1 2 ... m m+1 m+2 ... m+n
n+1 n+2 ... n+m 1 2 ... n

)
∈ Sm+n,

cm,n = csm,n
∈ Aut(V ⊗m+n).

We write k = V ⊗0, and denote for all n ≥ 0 by cn,0 : V ⊗n ⊗ k → k ⊗ V ⊗n and
c0,n : k ⊗ V ⊗n → V ⊗n ⊗ k the canonical isomorphisms. By abuse of notation we
again identify cm,n with cm,n ⊗ idV ⊗p for all p ≥ 0.

Corollary 1.7.10. Let (V, c) be a braided vector space, and l,m, n ≥ 1. Then

(1) cm,n = (cncn−1 · · · c1)(cncn−1 · · · c1)↑1 · · · (cncn−1 · · · c1)↑m−1,
(2) cm,n = (c1c2 · · · cm)↑n−1(c1c2 · · · cm)↑n−2 · · · (c1c2 · · · cm),
(3) (cm,n)

−1 = (c−1)n,m,
(4) cl+m,n = cl,ncm,n

↑l,
(5) cl,m+n = cl,n

↑mcl,m.

In particular, for all n ≥ 1 we obtain that

c1,n = cncn−1 · · · c1, cn,1 = c1c2 · · · cn.(1.7.14)

Proof. By counting the inversions of sm,n we see that �(sm,n) = mn. Hence

(n, n− 1, . . . , 1, n+ 1, n, . . . , 2, . . . , n+m− 1, n+m− 2, . . . ,m),

(n, n+ 1, . . . , n+m− 1, . . . , 2, 3, . . . ,m+ 1, 1, 2, . . . ,m)

are reduced decompositions of sm,n. Thus (1) and (2) follow from Theorem 1.7.4.
The equality in (3) follows by computing the left-hand side with (1) and the right-
hand side with (2). The equations in (4) and (5) follow from the formulas in (1)
and (2). �

For any group G and any V ∈ G
GYD (or V in a braided strict monoidal category,

see Section 3.2), the braid group acts on tensor powers of V as in Lemma 1.7.5.
The maps cm,n arise naturally in this context.

Lemma 1.7.11. Let G be a group, and V ∈ G
GYD with braiding c = cV,V . Then

for all m,n ≥ 1,

cV ⊗m,V ⊗n = cm,n.
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Proof. By Corollary 1.7.10(2) it suffices to show that for all m,n ≥ 1,

cV ⊗m,V ⊗n = (cncn+1 · · · cn+m−1) · · · (c2c3 · · · cm+1)(c1c2 · · · cm).

(1) By induction on m we first prove that cV ⊗m,V = c1c2 · · · cm for all m ≥ 1. This
is clear for m = 1. Let m ≥ 1. Then

cV ⊗m+1,V =cV ⊗m⊗V,V = (cV ⊗m,V ⊗ idV )cm+1

by (1.4.5), and the claim follows by induction.
(2) Now we show for fixed m by induction on n that cV ⊗m,V ⊗n = cm,n for all

n ≥ 1. For n = 1 this holds by (1). Let n ≥ 1. Then by (1) and (1.4.4),

cV ⊗m,V ⊗(n+1) = (idV ⊗n ⊗ cV ⊗m,V )(cV ⊗m,V ⊗n ⊗ idV )

= (cn+1cn+2 · · · cn+m)(cV ⊗m,V ⊗n ⊗ idV ),

and the claim follows by induction. �

1.8. Shuffle permutations and braided shuffle elements

Recall the notion of a shuffle permutation from Section 1.2.

Definition 1.8.1. Let n be a natural number, and 0 ≤ i ≤ n. A permutation
w ∈ Sn is called an (i, n− i)-shuffle or simply an i-shuffle if

w(1) < · · · < w(i), and w(i+ 1) < · · · < w(n).

Let Si,n−i denote the set of all i-shuffles in Sn.

Note that S0,n = {id} = Sn,0. The cardinality of Si,n−i is
(
n
i

)
. To obtain all

(n− 1, 1)- and (1, n− 1)-shuffles, one looks at the image of n and 1, respectively.
Let 1 ≤ i ≤ n. Then

sisi+1 · · · sn−1 = (i i+ 1 . . . n) =
(
1 2 ... i−1 i i+1 ... n−1 n
1 2 ... i−1 i+1 i+2 ... n i

)
is an (n− 1, 1)-shuffle of length n− i, and

si−1si−2 · · · s1 = (i i− 1 . . . 1) =
(
1 2 3 ... i−1 i i+1 ... n
i 1 2 ... i−2 i−1 i+1 ... n

)
is a (1, n− 1)-shuffle of length i− 1. Thus

Sn−1,1 = {id} ∪ {sisi+1 · · · sn−1 | 1 ≤ i ≤ n− 1},(1.8.1)

S1,n−1 = {id} ∪ {sisi−1 · · · s1 | 1 ≤ i ≤ n− 1}.(1.8.2)

Shuffle permutations can be described inductively.

Proposition 1.8.2. Let n ≥ 2 and 1 ≤ i ≤ n− 1.

(1) Si,n−i = Si,n−1−i ∪ Si−1,n−isn−1sn−2 · · · si (disjoint union).
(2) Let w ∈ Sn−1. Then �(wsn−1sn−2 · · · si) = �(w) + n− i.

Proof. Let u ∈ Si,n−i. If u(n) = n, then u ∈ Si,n−1−i. If u(n) �= n, then
u(i) = n, since u is an i-shuffle. Note that sn−1sn−2 · · · si = (nn− 1 · · · i). Define
u1 = u(i i+ 1 . . . n). Then u1(n) = n,

u1(1) < u1(2) < · · · < u1(i− 1)

and

u1(i) = u(i+ 1) < u1(i+ 1) = u(i+ 2) < · · · < u1(n− 1) = u(n).

Hence u = u1sn−1sn−2 · · · si, and u1 ∈ Si−1,n−i. This proves the inclusion ⊆ in (1),
and the other inclusion follows similarly.
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We prove (2) by induction on n−i. Let u1 = wsn−1 · · · si+1 and u = u1si. Then
�(u1) = �(w) + n− i− 1 by induction hypothesis. As u1(i) = w(i) < n = u1(i+ 1),
we conclude that �(u) = �(u1)+1 by Theorem 1.7.2(1). This implies the claim. �

In the next Proposition we show that the i-shuffles are a complete set of rep-
resentatives of Sn modulo the subgroup

〈si+1, . . . , sn−1〉〈s1, . . . , si−1〉 ∼= Sn−i × Si.

Proposition 1.8.3. Let n ≥ 2 and 1 ≤ i ≤ n− 1.

(1) The map

Si,n−i × Sn−i × Si → Sn, (u, s, t) �→ us↑it,

is bijective.
(2) Let u ∈ Si,n−i, s ∈ Sn−i, t ∈ Si. Then �(us↑it) = �(u) + �(s) + �(t).

Proof. (1) Let w ∈ Sn. Total orderings of the sets {w(l) | 1 ≤ l ≤ i} and
{w(l) | i+ 1 ≤ l ≤ n} define permutations v1 of {1, . . . , i} and v2 of {i + 1, . . . , n}
with

wv1(1) < · · · < wv1(i) and wv2(i+ 1) < · · · < wv2(n).

Thus v1 ∈ 〈s1, . . . , si−1〉, v2 ∈ 〈si+1, . . . , sn−1〉, and wv1v2 ∈ Si,n−i. Set u = wv1v2,

t = v−1
1 and s ∈ Sn−i such that s↑i = v−1

2 . Then w = us↑it. Hence the map
Si,n−i × Sn−i × Si → Sn in (1) is surjective. It is bijective since

|Si,n−i × Sn−i × Si| = n! = |Sn|.
To prove (2), we count the inversions of w = us↑it. Let 1 ≤ k < l ≤ n. We
distinguish three cases. If l ≤ i, then (k, l) is an inversion of w if and only if (k, l)
is an inversion of t. If i+ 1 ≤ k, then (k, l) is an inversion of w if and only if (k, l)
is an inversion of s↑i. If k ≤ i < l, then (k, l) is an inversion of w if and only if
(t(k), s↑i(l)) is an inversion of u. This implies (2) by Theorem 1.7.2(3). �

Corollary 1.8.4. Let n ≥ 2.

(1) The multiplication map Sn−1,1 × Sn−2,1 × · · · × S1,1 → Sn is bijective.
(2) Let wi ∈ Si,1 for all 1 ≤ i ≤ n− 1. Then

�(wn−1wn−2 · · ·w1) = �(wn−1) + �(wn−2) + · · ·+ �(w1).

Proof. By Proposition 1.8.3, the multiplication map Sn−1,1 × Sn−1 → Sn is
bijective, and �(ut) = �(u) + �(t) for all u ∈ Sn−1,1 and t ∈ Sn−1. Hence the claim
follows by induction on n. �

Corollary 1.8.5. Let n ≥ 2. Then Si,n−iSn−i
↑i = Sn−1,1Sn−2,1 · · ·Si,1 for

any 1 ≤ i < n.

Proof. Both subsets Si,n−iSn−i
↑i and Sn−1,1Sn−2,1 · · ·Si,1 of Sn have cardi-

nality n(n− 1) · · · (i+1) by Proposition 1.8.3(1) and Corollary 1.8.4(1). Moreover,
both sets consist of representatives of minimal length of the left Si cosets of Sn by
Proposition 1.8.3(2) and Corollary 1.8.4. �

Remark 1.8.6. Using Corollary 1.8.4 together with (1.8.1) one obtains reduced
decompositions for any element of Sn. In particular,

(1, 2, . . . , n− 1, 1, 2, . . . , n− 2, . . . , 1, 2, 1)
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is a reduced decomposition of the unique longest element

w0 =
(
1 2 ··· n
n n−1 ··· 1

)
in Sn, and w0 has length n(n−1)

2 and order two. Conjugation with w0 in Sn is the
inner automorphism

αn : Sn → Sn, si �→ sn−i, 1 ≤ i ≤ n− 1.(1.8.3)

Since the map αn permutes the elementary reflections, it preserves the length of
elements in Sn.

Theorem 1.7.2(1) implies that any reduced decomposition of an element w ∈ Sn
can be extended to a reduced decomposition of w0. Hence

�(w0) = �(w) + �(w−1w0)(1.8.4)

for all w ∈ Sn.

We introduce the following important elements in the group algebra ZBn of the
braid group with integer coefficients. Recall the Matsumoto section σ : Sn → Bn

of Theorem 1.7.4.

Definition 1.8.7. Let n ≥ 2 and 0 ≤ i ≤ n. We define the braided sym-
metrizer and the braided shuffle elements in ZBn by

Sn =
∑
w∈Sn

σ(w), Si,n−i =
∑

w∈Si,n−i

σ(w−1).

Note that S0,n = 1 = Sn,0, and by (1.8.1) and (1.8.2),

S1,n−1 = 1 + σ1 + σ1σ2 + · · ·+ σ1σ2 · · ·σn−1,(1.8.5)

Sn−1,1 = 1 + σn−1 + σn−1σn−2 + · · ·+ σn−1 · · ·σ2σ1.(1.8.6)

We define an algebra automorphism of ZBn by

αn : ZBn → ZBn, σi �→ σn−i, 1 ≤ i ≤ n− 1,(1.8.7)

and an algebra antiautomorphism by

βn : ZBn → ZBn, σi �→ σi, 1 ≤ i ≤ n− 1.(1.8.8)

Applying αn, βn or βnαn gives new representations of elements in ZBn. In partic-
ular, by (1.8.5) and (1.8.6), αn(S1,n−1) = Sn−1,1.

For all natural numbers 2 ≤ m ≤ n, and 0 ≤ i ≤ n −m the shift operation of
the braid groups extends to an algebra map

ZBm → ZBn, σj �→ σi+j , 1 ≤ j ≤ m− 1.

Let x↑i denote the image of x ∈ ZBm under this map. For i = 0 we write x instead
of x↑0. With this convention, expressions like SiSn−i

↑iSi,n−i for 1 ≤ i ≤ n−1 make
sense in ZBk for all k ≥ n, see Corollary 1.8.8 below.

By Theorem 1.7.4, the reduced decompositions of permutations we have ob-
tained above translate directly into equalities in the group algebra ZBn.

Corollary 1.8.8. Let n ≥ 2 and 1 ≤ i < n. Then

(1) Si,n−i = Si,n−1−i + σiσi+1 · · ·σn−1Si−1,n−i,
(2) Sn = SiSn−i

↑iSi,n−i,
(3) Sn = S1,1S2,1 · · ·Sn−1,1,
(4) Sn−i

↑iSi,n−i = Si,1Si+1,1 · · ·Sn−1,1.
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Proof. (1), (2), and (3) follow from Proposition 1.8.2, Proposition 1.8.3, and
Corollary 1.8.4, respectively. (4) follows from Corollary 1.8.5, Proposition 1.8.3(2),
and Corollary 1.8.4(2). �

Remark 1.8.9. By applying αn, βn and βnαn to the product decomposition of
Sn in Corollary 1.8.8(3) we obtain three more formulas. In particular,

S1 = 1,

S2 = 1 + σ1,

S3 = (1 + σ1)(1 + σ2 + σ2σ1),

= (1 + σ2)(1 + σ1 + σ1σ2),

= (1 + σ2 + σ1σ2)(1 + σ1),

= (1 + σ1 + σ2σ1)(1 + σ2),

S4 = (1 + σ1)(1 + σ2 + σ2σ1)(1 + σ3 + σ3σ2 + σ3σ2σ1),

= (1 + σ3)(1 + σ2 + σ2σ3)(1 + σ1 + σ1σ2 + σ1σ2σ3),

= (1 + σ3 + σ2σ3 + σ1σ2σ3)(1 + σ2 + σ1σ2)(1 + σ1),

= (1 + σ1 + σ2σ1 + σ3σ2σ1)(1 + σ2 + σ3σ2)(1 + σ3).

The braided symmetrizer and the braided shuffle elements in ZBn define en-
domorphism on n-fold tensor products of braided vector spaces (V, c). Recall the
ZBn-module structure

ZBn ⊗ V ⊗n → V ⊗n, σi �→ ci, 1 ≤ i ≤ n,

of V ⊗n in Lemma 1.7.5.

Definition 1.8.10. Let (V, c) be a braided vector space. Let n ≥ 2, and

1 ≤ i ≤ n − 1. The braided shuffle map S
(V,c)
i,n−i = Si,n−i : V

⊗n → V ⊗n and the

braided symmetrizer map S
(V,c)
n = Sn : V ⊗n → V ⊗n are defined by

Si,n−i =
∑

w∈Si,n−i

cw−1 , Sn =
∑
w∈Sn

cw.

The inductive description of the braided shuffle map and the braided sym-
metrizer map in the next corollary is an immediate consequence of Corollary 1.8.8(1)
and (2).

Corollary 1.8.11. Let (V, c) be a braided vector space. Let 1 ≤ i < n. Then
the following equations hold in End(V ⊗n):

Si,n−i = Si,n−1−i ⊗ idV + cici+1 · · · cn−1(Si−1,n−i ⊗ idV ),(1.8.9)

Sn = (Si ⊗ Sn−i)Si,n−i.(1.8.10)

The braided shuffle elements Sn−1,1 in ZBn have an interesting description as
rational functions. For the proof we need an easy commutation rule in the braid
group.

Lemma 1.8.12. Let n ≥ 2, and pn−1 = σn−1σn−2 · · ·σ1 ∈ Bn. Then

σi−1pn−1 = pn−1σi

for all 2 ≤ i ≤ n− 1.
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Proof. Using the relations of the braid group we compute

pn−1σi = σn−1 · · ·σi+1σiσi−1σi−2 · · ·σ1σi

= σn−1 · · ·σi+1σiσi−1σiσi−2 · · ·σ1 (by (1.7.7))

= σn−1 · · ·σi+1σi−1σiσi−1σi−2 · · ·σ1 (by (1.7.6))

= σi−1pn−1. (by (1.7.7))

This proves the Lemma. �

Proposition 1.8.13. Let n ≥ 2. Then

(1) Sn−1,1(1− σn−1σn−2 · · ·σ1) = (1− σ2
n−1σn−2 · · ·σ1)Sn−2,1

↑1.
(2) Sn−1,1(1− σn−1σn−2 · · ·σ1)(1− σn−1σn−2 · · ·σ2) · · · (1− σn−1)

= (1− σ2
n−1σn−2 · · ·σ1)(1− σ2

n−1σn−2 · · ·σ2) · · · (1− σ2
n−1).

Proof. (1) Let pn−1 = σn−1σn−2 · · ·σ1. It follows from (1.8.6) that

σn−1Sn−2,1 = Sn−1,1 − 1,(1.8.11)

Sn−2,1
↑1 + pn−1 = Sn−1,1.(1.8.12)

It follows from Lemma 1.8.12 that

pn−1Sn−2,1
↑1 = Sn−2,1pn−1.(1.8.13)

Then

(1− σn−1pn−1)Sn−2,1
↑1 = Sn−2,1

↑1 − σn−1Sn−2,1pn−1 (by (1.8.13))

= Sn−2,1
↑1 − (Sn−1,1 − 1)pn−1 (by (1.8.11))

= Sn−2,1
↑1 − Sn−1,1pn−1 + pn−1

= Sn−1,1(1− pn−1) (by (1.8.12)).

(2) follows from (1). �

Corollary 1.8.14. For all n ≥ 1 let pn = σnσn−1 · · ·σ1 and

Tn = (1− σ2
nσn−1 · · ·σ1) · · · (1− σ2

nσn−1)(1− σ2
n) ∈ ZBn+1,(1.8.14)

ϕn = βn+1(S1,n−1)− βn+1(Sn−1,1)σnpn ∈ ZBn+1.(1.8.15)

Let ϕ0 = 0. Then the following hold for all n ≥ 1.

(1) Tn = Sn,1(1− σnσn−1 · · ·σ1) · · · (1− σnσn−1)(1− σn).
(2) SnTn = Sn+1(1− σnσn−1 · · ·σ1) · · · (1− σnσn−1)(1− σn).
(3) ϕn = 1− βn+1(pn)pn + ϕn−1

↑1σ1.
(4) Sn+1Tn+1 = ϕn+1Sn

↑1Tn
↑1 = ϕn+1ϕn

↑1 · · ·ϕ1
↑n.

Remark 1.8.15. For 1 ≤ n ≤ 3 the definition of ϕn says that

ϕ1 = 1− σ2
1 ,

ϕ2 = 1 + σ1 − σ2
2σ1 − σ1σ

2
2σ1,

ϕ3 = 1 + σ1 + σ2σ1 − σ2
3σ2σ1 − σ2σ

2
3σ2σ1 − σ1σ2σ

2
3σ2σ1.

Proof of Corollary 1.8.14. (1) holds by Proposition 1.8.13(2), and (2) fol-
lows from (1), since Sn+1 = SnSn,1 by Corollary 1.8.8(2).
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(3) holds for n = 1 by definition, since ϕ1 = 1 − σ2
1 . For n ≥ 2 the claim is

obtained from (1.8.11) and (1.8.12) using the maps αn and βn. Indeed,

ϕn = βn+1αn(Sn−1,1)− βn+1(Sn−1,1)σnpn

= βn+1αn(1 + σn−1Sn−2,1)− βn+1(Sn−2,1
↑1 + pn−1)σnpn

= 1 + βn+1(S1,n−2
↑1)σ1

− βn+1(Sn−2,1
↑1)(σn−1pn−1)

↑1σ1 − βn+1(σnpn−1)pn

= 1− βn+1(pn)pn + ϕn−1
↑1σ1.

(4) To prove the first equation, by definition of Tn+1 it suffices to show that
Sn+1(1− σn+1pn+1) = ϕn+1Sn

↑1. We obtain that

Sn+1(1− σn+1pn+1) = βn+1(S1,n)Sn
↑1 − βn+1(Sn,1)Snσn+1pn+1

= βn+1(S1,n)Sn
↑1 − βn+1(Sn,1)σn+1pn+1Sn

↑1 = ϕn+1Sn
↑1,

where the first equation follows from Corollary 1.8.8(2), the second equation from
Lemma 1.8.12, and the third from (1.8.15).

The second equation in (4) follows by induction from the first one and from
S1T1 = 1− σ2

1 = ϕ1. �

1.9. Braided symmetrizer and Nichols algebras

In this section we fix a braided vector space (V, c), where V ∈ G
GYD, G a group,

and c = cV,V . In Section 6.4 we will see that the results in this section hold for any
braided vector space (V, c) with exactly the same proofs.

Recall that by Proposition 1.6.13 the tensor algebra T (V ) is an N0-graded Hopf
algebra in G

GYD with braiding given for all m,n ≥ 0 by

cm,n : V ⊗m ⊗ V ⊗n → V ⊗n ⊗ V ⊗m.

In the next theorem we prove an explicit formula for the components of the co-
multiplication in terms of the braiding of V . This formula is similar to the one
for the usual comultiplication of T (V ) in Example 1.2.24. However, the case of a
non-trivial braiding is more involved.

Theorem 1.9.1. For all n ≥ 2 and 1 ≤ i ≤ n− 1,

Δi,n−i = Si,n−i : T
n(V ) = V ⊗n → T i(V )⊗ Tn−i(V ) = V ⊗n,

where Δ is the comultiplication of T (V ).

Proof. Let n ≥ 1 and v1, . . . , vn ∈ V . For clarity we will write v1v2 · · · vn for
the element v1 ⊗ v2 ⊗ · · · ⊗ vn ∈ V ⊗n. We show by induction on n that

Δ(v1 · · · vn) = 1⊗ v1 · · · vn +
n−1∑
i=1

Si,n−i(v1 · · · vn) + v1 · · · vn ⊗ 1.(1.9.1)

For n = 1 the formula clearly holds.
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Let n ≥ 2 and v1, . . . , vn ∈ V . By induction hypothesis,

Δ(v1 · · · vn) = Δ(v1 · · · vn−1)Δ(vn)

=
(
1⊗ v1 · · · vn−1 +

n−2∑
i=1

Si,n−1−i(v1 · · · vn−1) + v1 · · · vn−1 ⊗ 1
)

× (1⊗ vn + vn ⊗ 1).

Multiplication of the first factor with 1⊗ vn gives the sum

1⊗ v1 · · · vn +

n−2∑
i=1

Si,n−1−i(v1 · · · vn−1)vn + v1 · · · vn−1 ⊗ vn.

For the multiplication with vn ⊗ 1 we need the braiding. First,

(v1 · · · vn−1 ⊗ 1)(vn ⊗ 1) = v1 · · · vn ⊗ 1,

and by Lemma 1.7.11 and (1.7.14),

(1⊗ v1 · · · vn−1)(vn ⊗ 1) = c1 · · · cn−1(v1 ⊗ · · · ⊗ vn).

To compute the middle terms

Si,n−1−i(v1 · · · vn−1)(vn ⊗ 1) ∈ (T i(V )⊗ Tn−1−i(V ))(T 1(V )⊗ 1)

for 1 ≤ i ≤ n− 2, we note that by Lemma 1.7.11 and (1.7.14) in T (V )⊗ T (V ) for
all x ∈ T i(V ), y ∈ Tn−1−i(V ),

(x⊗ y)(vn ⊗ 1) = cn−1−i,1
↑i(x⊗ y ⊗ vn) = ci+1ci+2 · · · cn−1(x⊗ y ⊗ vn).

Hence
n−2∑
i=1

Si,n−1−i(v1 · · · vn−1)(vn ⊗ 1)

=

n−2∑
i=1

ci+1ci+2 · · · cn−1(Si,n−1−i ⊗ idV )(v1 ⊗ · · · ⊗ vn)

=

n−1∑
i=2

cici+1 · · · cn−1(Si−1,n−i ⊗ idV )(v1 ⊗ · · · ⊗ vn).

By adding up and reordering the summands we obtain

Δ(v1 · · · vn) = 1⊗ v1 · · · vn + v1 · · · vn ⊗ 1 +A+B + C,

where

A =

n−2∑
i=2

(
Si,n−1−i ⊗ idV + ci · · · cn−1(Si−1,n−i ⊗ idV )

)
(v1 · · · vn),

B = (S1,n−2 ⊗ idV )(v1 · · · vn) + c1 · · · cn−1(v1 · · · vn),
C = v1 · · · vn−1 ⊗ vn + cn−1(Sn−2,1 ⊗ idV )(v1 · · · vn).

By (1.8.9),

A =

n−2∑
i=2

Si,n−i(v1 · · · vn), B = S1,n−1(v1 · · · vn), C = Sn−1,1(v1 · · · vn)

which implies (1.9.1). �
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We note that Theorem 1.9.1 is related to the q-binomial formula.

Definition 1.9.2. Let Q(v) be the field of rational functions in the indetermi-
nate v over the rational numbers. For all natural numbers n ≥ 0 and 0 ≤ i ≤ n
define elements in Q(v) by

(n)v = 1 + v + v2 + · · ·+ vn−1 =
vn − 1

v − 1
,

(n)!v = (1)v(2)v · · · (n)v, (0)!v = 1,(
n

i

)
v

=
(n)!v

(i)!v(n− i)!v
.

For all i < 0 and all i > n let
(
n
i

)
v
= 0.

Lemma 1.9.3. Let n ≥ 0.

(1) For all 0 ≤ i ≤ n,
(
n
i

)
v
=
(

n
n−i

)
v
=
(
n−1
i−1

)
v
+ vi

(
n−1
i

)
v
.

(2) For all 0 ≤ i ≤ n,
(
n
i

)
v
= vn−i

(
n−1
i−1

)
v
+
(
n−1
i

)
v
.

(3) For all 0 ≤ i ≤ n,
(
n
i

)
v
∈ Z[v].

Proof. The first equation in (1) holds by definition, and the second is clear
for i = 0 and for i = n. For 0 < i < n, (1) follows by direct computation:(

n− 1

i− 1

)
v

+ vi
(
n− 1

i

)
v

=
(n− 1)!v(i)v
(i)!v(n− i)!v

+ vi
(n− 1)!v(n− i)v
(i)!v(n− i)!v

=
(n− 1)!v

(i)!v(n− i)!v

(
(i)v + vi(n− i)v

)
which clearly equals

(
n
i

)
v
. (2) follows from (1) with i replaced by n − i, and (3)

follows from (1) by induction on n. �
Let q be any element in k, and let n, i ∈ N0 with i ≤ n. Lemma 1.9.3 allows us

to define the q-numbers and q-binomial numbers (n)q and
(
n
i

)
q
in k as the images

of (n)v and
(
n
i

)
v
under the ring homomorphism Z[v]→ k mapping v onto q.

Lemma 1.9.4. Let n ≥ 2 and let q ∈ k be a primitive n-th root of unity. Then(
n
i

)
q
= 0 for all 0 < i < n.

Proof. By assumption, q �= 1. Hence (m)q = (qm−1)/(q−1) for any m ∈ N0.
Let 0 < i < n. Then (i)!q, (n− i)!q �= 0 in k by assumption. Hence(

n

i

)
q

=
(n)!q

(i)!q(n− i)!q
= 0

in k, since (n)q = 0. �
For any ring A, let Z(A) = {a ∈ A | ax = xa for all x ∈ A} denote its center.

Proposition 1.9.5. Let A be an algebra, q ∈ Z(A), and x, y ∈ A. Assume
that yx = qxy. For all 0 ≤ i ≤ n, let

(
n
i

)
q
∈ A be the image of

(
n
i

)
v
under the ring

homomorphism Z[v]→ A mapping v onto q. Then for all n ≥ 0,

(x+ y)n =
∑n

i=0

(
n
i

)
q
xiyn−i =

∑n
i=0

(
n
i

)
q
xn−iyi.

Proof. This follows by induction on n as in the proof of the usual binomial
formula using yxi = qixiy for all i ≥ 0, and Lemma 1.9.3(1). �
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Example 1.9.6. Let us consider the special case of Theorem 1.9.1 when V = kx
is one-dimensional. Then there is a non-zero scalar q ∈ k such that the braiding is
given by c(x⊗x) = qx⊗x. Let n ≥ 2 and w ∈ Sn. The linear map cw : V ⊗n → V ⊗n

is multiplication with the scalar q�(w), and by (1.8.9) we see that

Si,n−i = Si,n−i−1 + qn−iSi−1,n−i

in End(V ⊗n) for all 1 ≤ i ≤ n − 1. These formulas are the recursion formulas for
the q-binomial coefficients, see Lemma 1.9.3(2). Hence

Si,n−i =

(
n
i

)
q

id for all 0 ≤ i ≤ n,(1.9.2)

Sn = (n)!q id,(1.9.3)

where the second formula follows from (1.8.10).
By Theorem 1.9.1,

Δi,n−i(x
n) = Si,n−i(x

n) =

(
n
i

)
q

xi ⊗ xn−i.

The same result follows from the q-binomial formula in Proposition 1.9.5. Indeed,
(1⊗ x)(x⊗ 1) = q(x⊗ 1)(1⊗ x) and hence

Δ(xn) = (x⊗ 1 + 1⊗ x)n =

n∑
i=0

(
n

i

)
q

xi ⊗ xn−i.(1.9.4)

We will now see that explicit relations of the Nichols algebra are given by the
braided symmetrizer maps.

Corollary 1.9.7. Let n ≥ 2, and let Sn = S
(V,c)
n : V ⊗n → V ⊗n be the braided

symmetrizer map.

(1) Δ1n = Sn in End(V ⊗n), where Δ is the comultiplication of the tensor
algebra T (V ).

(2) B(V ) = k⊕ V ⊕
⊕

n≥2 V
⊗n/ker(Sn).

Proof. (1) We proceed by induction on n. The case when n = 1 is trivial.
Let n ≥ 2, and assume that Δ1n−1 = Sn−1. Then

Δ1n = (Δ1 ⊗Δ1n−1)Δ1,n−1 = (S1 ⊗ Sn−1)S1,n−1 = Sn,

where the first equation holds by Lemma 1.3.13(1b), the second by induction and
Theorem 1.9.1, and the third was shown in (1.8.10).

(2) follows from (1) and Definition 1.6.17. �

Corollary 1.9.8. Let n ≥ 2, 1 ≤ i ≤ n − 1, and for all 1 ≤ j ≤ n let
πj : V

⊗j → V ⊗j/ ker(Sj) be the canonical map. Then

ker(Δ
T (V )
1n ) = ker

(
(πi ⊗ πn−i)Si,n−i

)
.

Proof. The claim follows directly from Corollary 1.9.7 and (1.8.10), since
ker(Si ⊗ Sn−i) = ker(πi ⊗ πn−i). �

It is important to note that the Nichols algebra B(V ) = T (V )/I(V ) as an
algebra and a coalgebra only depends on the braided vector space (V, c). Let G′ be
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another group, and V ′ ∈ G′

G′YD such that there is a linear isomorphism f : V → V ′

with

(f ⊗ f)cV,V = (f ⊗ f)cV ′,V ′ .

Then f induces an isomorphism B(V )→ B(V ′) of algebras and coalgebras.

1.10. Examples of Nichols algebras

We are going to describe several examples of Nichols algebras.
Throughout we will use the following notation for algebras given by generators

and relations. Let X be a set, and let fi, gi ∈ k〈X〉, i ∈ I, be elements in the
free algebra, where I is some index set. Let (fi − gi | i ∈ I) be the ideal of k〈X〉
generated by the elements fi − gi, i ∈ I. Then

k〈X | fi = gi for all i ∈ I〉 = k〈X〉/(fi − gi | i ∈ I)

is the algebra generated by X with relations fi = gi, i ∈ I. By abuse of notation
we denote the residue class of x ∈ X in k〈X | fi = gi for all i ∈ I〉 by the same
symbol x.

In the whole section let G be a group.
The Nichols algebra of a one-dimensional object V ∈ G

GYD is easy to compute.

Example 1.10.1. Let V ∈ G
GYD be one-dimensional with basis x ∈ V , and

c = cV,V . Then there is a non-zero scalar q such that c(x⊗ x) = qx⊗ x. Let

N(q) =

⎧⎪⎨⎪⎩
ord(q) if q �= 1 and ord(q) is finite,

p if q = 1 and char(k) = p > 0,

∞ otherwise.

(1.10.1)

Thus if (m)q = 0 for some natural number m ≥ 2, then N(q) is the smallest
such m; otherwise N(q) = ∞. We have seen in (1.9.3) that Sn = (n)!qid. Hence
I(V ) =

⊕
n≥N kxn in T (V ) = k[x], and

B(V ) ∼=
{
k[x]/(xN(q)) if N(q) �=∞,

k[x] otherwise.

Example 1.10.2. Let V ∈ G
GYD be finite-dimensional with basis x1, . . . , xθ and

xi ∈ V χ
gi , gi ∈ G, χi ∈ Ĝ for all 1 ≤ i ≤ θ. Assume that char(k) = 0, and that

B(V ) is finite-dimensional. Then for all 1 ≤ i ≤ θ, χi(gi) �= 1. This follows from
Example 1.10.1 and Remark 1.6.19.

In the next two examples we discuss Nichols algebras of irreducible but not
one-dimensional Yetter-Drinfeld modules over non-abelian groups.

Example 1.10.3. Let Vn, n ≥ 3, be the irreducible Yetter-Drinfeld module
in Sn

Sn
YD in Example 1.4.7 with basis xt, t ∈ O2. Then the quadratic relations of

B(Vn) in ker(idV ⊗2 + c) are

x2
t = 0 for all t ∈ O2,

xsxt + xtxs = 0 for all s, t ∈ O2 with st = ts, s �= t,

xsxt + xtxt�s + xt�sxs = 0 for all s, t ∈ O2 with st �= ts.
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Let B̃(Vn) = T (Vn)/(x ∈ V ⊗2
n | c(x) = −x) be the algebra generated by xt, t ∈ O2,

with the above quadratic relations of the Nichols algebra only. It is known that

dim B̃(V3) = 12, dim B̃(V4) = 576, dim B̃(V5) = 8,294,400,

and that B(Vn) = B̃(Vn) for n = 3, 4, 5. For n = 3, 4 this was shown in [MS00],
and for n = 5 by M. Graña (with help by J.-E. Roos). But for n ≥ 6, the Nichols

algebra of Vn is a mystery. It is not even known whether B̃(Vn) is finite-dimensional
for one n ≥ 6.

Example 1.10.4. Let (X, �) and q be the rack and constant two-cocycle in
Example 1.5.13 with X = {1, 2, 3, 4} and λ = −1. We write xi for the basis vector
of kX corresponding to i ∈ X. Then (kX, cq) is a braided vector space of group
type by Proposition 1.5.12. By Proposition 1.5.6, kX ∈ G

GYD for some group G.
The Nichols algebra of kX appeared first in [Gn00b]. We follow the presentation in
[HV18]. The Nichols algebra B(kX) can be presented as an algebra by generators
xi, i ∈ X, and relations

x2
1 = x2

2 = x2
3 = x2

4 =0,

x1x2 + x2x3 + x3x1 =0,

x1x3 + x3x4 + x4x1 =0,

x1x4 + x4x2 + x2x1 =0,

x2x4 + x4x3 + x3x2 =0,

(x1 + x2 + x3)
6 =0.

Let y = x1x3 + x3x2 + x2x1 ∈ B(kX). The elements

xn1
1 (x1 + x2)

n2xn3
3 yn0xn4

4 , where n1, n3, n4 ∈ {0, 1}, n2, n0 ∈ {0, 1, 2},

form a basis of B(kX). In particular, dimB(kX) = 72. Note that the quadratic
relations of B(kX) can easily be obtained using Corollary 1.9.8.

For the next example we need the logarithm of an automorphism.

Lemma 1.10.5. Assume that char(k) = 0. Let V be a vector space and let
μ : V × V → V , μ(u, v) = uv, be a bilinear map. Let σ be an automorphism of
(V, μ). Assume that σ− id is locally nilpotent, that is, for all v ∈ V there is m ≥ 0
with (σ − id)m(v) = 0. Then

log(σ) =

∞∑
m=1

(−1)m+1

m
(σ − id)m ∈ End(V )

is a derivation of (V, μ), that is, log(σ)(uv) = log(σ)(u)v + u log(σ)(v) for all
u, v ∈ V .

Proof. Let x = σ − id. First note that for any k ≥ 1,

σk
∞∑

n=0

(−1)n
(
n+ k − 1

k − 1

)
xn = idV(1.10.2)

in End(V ). Indeed the claim is true for k = 1, and for k > 1 it follows by induction
on k by substituting σk = σk−1(x+ idV ).
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For any v ∈ V , log(σ)(v) is well-defined since x is locally nilpotent. More-
over, x(uv) = x(u)σ(v) + ux(v) for all u, v ∈ V . Since x and σ are commuting
endomorphisms, it follows for any u, v ∈ V that

log(σ)(uv) =

∞∑
m=1

(−1)m+1

m
xm(uv)

=

∞∑
m=1

(−1)m+1

m

m∑
k=0

(
m

k

)
xk(u)σkxm−k(v)

=u log(σ)(v) +

∞∑
k=1

xk(u)

∞∑
m=k

(−1)m+1

m

(
m

k

)
σkxm−k(v)

=u log(σ)(v) +

∞∑
k=1

(−1)k+1

k
xk(u)

∞∑
n=0

(−1)n
(
n+ k − 1

k − 1

)
σkxn(v)

=u log(σ)(v) +

∞∑
k=1

(−1)k+1

k
xk(u)v

=u log(σ)(v) + log(σ)(u)v,

where (1.10.2) is used in the fifth equation. This proves the claim. �

Example 1.10.6. Assume that char(k) = 0. Let J+ = Fg(V (1, 2)) ∈ Z

Z
YD

be the Yetter-Drinfeld module in Example 1.4.19. Thus J+ = J+
g , where g is a

generator of Z, and there is a basis v1, v2 of J+ such that g ·v1 = v1, g ·v2 = v2+v1.
We prove that

B(J+) = k〈v1, v2〉/
(
v2v1 − v1v2 +

1

2
v21

)
and that the monomials

vk1v
l
2, k, l ≥ 0,(1.10.3)

form a basis of B(J+).
Let x = v2v1 − v1v2 +

1
2v

2
1 ∈ T (J+). Then

ΔT (J+)(x) =x⊗ 1 + 1⊗ x+ v2 ⊗ v1 + v1 ⊗ v2

− v1 ⊗ v2 − (v1 + v2)⊗ v1 + v1 ⊗ v1

=x⊗ 1 + 1⊗ x.

Hence x = 0 in B(J+). Hence B(J+) is spanned by the monomials vk1v
l
2, k, l ≥ 0.

Let σ be the automorphism of the algebra B(J+) with σ(v) = g ·v for all v ∈ B(J+).
Then σ − id is locally nilpotent, and hence ∂ = log(σ) is a derivation of B(J+) by
Lemma 1.10.5. By definition, ∂(v1) = 0, ∂(v2) = v1. Let i1, . . . , im ∈ {1, 2},m ≥ 1.
Then by induction on n it follows that

∂n(vi1 · · · vim) = n!vm1

where n = i1 + · · ·+ im −m. Let (al)0≤l≤m ∈ km+1 with
∑m

l=0 alv
m−l
1 vl2 = 0, and

let 0 ≤ l0 ≤ m such that al = 0 for all l > l0. Then

∂l0

(
m∑
l=0

alv
m−l
1 vl2

)
= al0 l0!v

m
1 .
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Since vm1 �= 0 by Example 1.10.1, it follows that al0 = 0, and hence al = 0 for all
0 ≤ l ≤ m by induction on m − l. Hence the monomials in (1.10.3) are linearly
independent in B(J+).

Example 1.10.7. Assume that char(k) = 0. Let J− = Fg(V (−1, 2)) ∈ Z

Z
YD

be the Yetter-Drinfeld module in Example 1.4.19. Thus J− = J−
g , where g is a

generator of Z, and there is a basis v1, v2 of J− with g · v1 = −v1, g · v2 = −v2+ v1.
We prove that

B(J−) = k〈v1, v2〉/(v21 , v22v1 − v1v
2
2 − v1v2v1)

and that the monomials

va1
1 (v2v1)

a2va3
2 , a1 ∈ {0, 1}, a2, a3 ≥ 0,(1.10.4)

form a basis of B(J−).
For all k ≥ 2 let πk : (J−)⊗k → (J−)⊗k/ ker(Sk) be the canonical map. Since

gv1 = −v1, it follows that c(v1 ⊗ v1) = −v1 ⊗ v1 and hence v21 = 0 in B(J−). Let
x = v22v1 − v1v

2
2 − v1v2v1 ∈ T (J−). By Corollary 1.9.8, x ∈ ker(Δ13) if and only if

(idJ− ⊗ π2)S1,2(x) = 0. Since S1,2 = id + c1 + c1c2 by (1.8.9), it follows that

(idJ− ⊗ π2)S1,2(x) = v2 ⊗ v2v1 + gv2 ⊗ v2v1 + g2v1 ⊗ v22 − v1 ⊗ v22

− gv2 ⊗ v1v2 − g2v2 ⊗ v1v2 − v1 ⊗ v2v1 − gv2 ⊗ v21 − g2v1 ⊗ v1v2

= 0

because of v21 ∈ ker(π2). Hence x = 0 in B(J−), and therefore B(J−) is spanned by
the monomials in (1.10.4). Below we will further need that

v2(v2v1)
k = (v1v2)

kv2 + k(v1v2)
kv1(1.10.5)

for all k ≥ 1 which follows from x = 0 by induction on k.
Assume that there is a non-trivial linear combination of the monomials in

(1.10.4) which is zero in B(J−). By multiplying this with v1 from the left or v2
from the right if necessary, it follows that there is m ≥ 2, m even, and a non-trivial
linear combination of the monomials v1(v2v1)

avm−1−2a
2 , 0 ≤ a ≤ (m− 1)/2, which

is zero in B(J−).
Let σ be the automorphism of the algebra B(J−), where σ(v) = (−1)ngv for

all v ∈ B(J−)(n), n ≥ 0. Then σ(v1) = v1, σ(v2) = v2 − v1, and the map σ − id is
locally nilpotent. Hence ∂ = − log(σ) is a derivation of B(J−) by Lemma 1.10.5.
By definition, ∂(v1) = 0, ∂(v2) = v1. For any n ≥ 1 let

Mn = {(i1, i2, . . . , i2n) ∈ {1, 2}2n | i1 = 1, ∀1 ≤ k ≤ n : i2k = 2}.
Since v21 , x ∈ I(J−), it follows by induction on n that

∀n ≥ 1, (1, i2, . . . , i2n) ∈ {1, 2}2n \Mn : v1vi2 · · · vi2n = 0(1.10.6)

in B(J−). Then by induction on k it follows from (1.10.6) that

∂k(vi1 · · · vi2n) = k!(v1v2)
n, ∂k+1(vi1 · · · vi2n) = 0(1.10.7)

in B(J−) for any (i1, . . . , i2n) ∈ Mn, where k =
∑n

j=1 i2j−1 − n is the number of

2’s at the odd positions. Let (al)0≤l<m/2 ∈ km/2 be such that

m/2−1∑
l=0

al(v1v2)
m/2−lv2l2 = 0
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in B(J−), and let 0 ≤ l0 < m/2 with al = 0 for all l > l0. Then

∂l0

⎛⎝m/2−1∑
l=0

al(v1v2)
m/2−lv2l2

⎞⎠ = al0 l0!(v1v2)
m/2

by (1.10.7). We prove that for any n ≥ 1, (v1v2)
n and (v2v1)

n are linearly indepen-
dent in B(J−). Then it follows that al0 = 0, and hence al = 0 for all 0 ≤ l < m/2
by induction on m/2− l. Hence the monomials in (1.10.4) are linearly independent
in B(J−).

Since

S1,1(v1v2) = v1 ⊗ v2 + (−v2 + v1)⊗ v1,(1.10.8)

S1,1(v2v1) = v2 ⊗ v1 − v1 ⊗ v2,(1.10.9)

the monomials v1v2 and v2v1 are linearly independent in B(J−). Let now n ≥ 1
and assume that (v1v2)

n and (v2v1)
n are linearly independent. Then

(id⊗ π2n)S1,2n((v1v2)
nv1) = v1 ⊗ (v2v1)

n + g2nv1 ⊗ (v1v2)
n

by (1.10.6), and hence (v1v2)
nv1 �= 0 by (1.8.9).

Let now λ1, λ2 ∈ k. Then

(id⊗ π2n+1)S1,2n+1(λ1(v1v2)
n+1 + λ2(v2v1)

n+1)

= λ1

(
v1 ⊗ (v2v1)

nv2 + g2nv1 ⊗ (v1v2)
nv2 + g2n+1v2 ⊗ (v1v2)

nv1
)

+ λ2

(
v2 ⊗ (v1v2)

nv1 + gv1 ⊗ v2(v2v1)
n + g2n+1v1 ⊗ (v2v1)

nv2
)

= (λ2 − λ1)v2 ⊗ (v1v2)
nv1 + (λ1 − λ2)v1 ⊗ (v2v1)

nv2

+ (λ1 − λ2)v1 ⊗ (v1v2)
nv2 + (λ1(2n+ 1)− λ2n)v1 ⊗ (v1v2)

nv1,

where the first equation follows from (1.10.6), and the second from (1.10.5). Since
(v1v2)

nv1 �= 0, we conclude from (1.8.9) that (v1v2)
n+1 and (v2v1)

n+1 are linearly
independent. This finishes the proof.

As Example 1.10.1 shows, it can happen that the tensor algebra of an object
V ∈ G

GYD is strictly graded, or equivalently that I(V ) = 0. In the next proposition
we find general necessary conditions for I(V ) �= 0.

Lemma 1.10.8. Let (V, c) be a braided vector space, n ≥ 2, and assume that

S
(V,c)
n−1,1 �= 0 is not an isomorphism. Then

ker(idV ⊗m − c2m−1cm−2 · · · c1) �= 0

for some 2 ≤ m ≤ n.

Proof. The identity of Proposition 1.8.13(2) in the group algebra of the braid
group implies the following equation in Aut(V ⊗n), n ≥ 2.

Sn−1,1(idV ⊗n − cn−1cn−2 · · · c1)(idV ⊗n − cn−1cn−2 · · · c2) · · · (idV ⊗n − cn−1)

= (idV ⊗n − c2n−1cn−2 · · · c1)(idV ⊗n − c2n−1cn−2 · · · c2) · · · (idV ⊗n − c2n−1).

Thus ker(idV ⊗n − c2n−1cn−2 · · · ci) �= 0 for some 1 ≤ i ≤ n − 1, since Sn−1,1 is not
an isomorphism. The lemma follows with m = n− i+ 1. �

Proposition 1.10.9. Let V ∈ G
GYD be finite-dimensional with dimV = d,

c = cV,V , and assume that I(V ) �= 0.
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(1) There exists n ≥ 2, such that ker(idV ⊗n − c2n−1cn−2 · · · c1) �= 0.
(2) If the braiding is diagonal with matrix (qa,b)1≤a,b≤d, then there is an in-

teger n ≥ 2 and a sequence (k1, . . . , kn) ∈ {1, . . . , d}n such that∏
1≤i<j≤n

qki,kj
qkj ,ki

= 1.

Proof. (1) The tensor algebra T (V ) is not strictly graded, since I(V ) �= 0.
Hence by Proposition 1.3.14 and Theorem 1.9.1,

Δn−1,1 = Sn−1,1 : V ⊗n → V ⊗n

is not injective for some n ≥ 2. Thus (1) follows from Lemma 1.10.8.
(2) By (1) there is an integer n ≥ 2 and a non-zero element x ∈ V ⊗n such that

c2n−1cn−2 · · · c1(x) = x. Let x1, . . . , xd be a basis of V such that

c(xa ⊗ xb) = qa,bxb ⊗ xa for all a, b ∈ {1, . . . , d}.
Then there is a unique presentation of x, x =

∑
k=(k1,...,kn)∈{1,...,d}n αkxk with

αk ∈ k for all k ∈ {1, . . . , d}n, where xk = xk1
⊗ · · · ⊗ xkn

. Now

c2n−1cn−2 · · · c1(xk1
⊗ · · · ⊗ xkn

) =

qk1,k2
qk1,k3

· · · qk1,kn−1
qk1,kn

qkn,k1
xk2

⊗ xk3
⊗ · · · ⊗ xkn−1

⊗ xk1
⊗ xkn

,

(c2n−1cn−2 · · · c1)n−1(xk1
⊗ · · · ⊗ xkn

) =
∏

1≤i<j≤n

qki,kj
qkj ,ki

xk1
⊗ · · · ⊗ xkn

.

Since c2n−1cn−2 · · · c1(x) = x, it follows that (c2n−1cn−2 · · · c1)n−1(x) = x, which
implies (2) by the above equations. �

Example 1.10.10. Let 0 �= V ∈ G
GYD be finite-dimensional, c = cV,V , such

that c(x⊗ y) = qy ⊗ x for all x, y ∈ V , where 0 �= q ∈ k. Then by Example 1.10.1
and Proposition 1.10.9(2), the following are equivalent.

(1) B(V ) = T (V ).
(2) (a) q is not a root of 1, or

(b) q = 1, dimV = 1, and char(k) = 0.

One of the main problems we want to discuss in this book is the structure of
the Nichols algebra of a direct sum of objects in G

GYD.
We now study the easy case of a direct sum V1 ⊕ V2 of subobjects V1, V2 of V

in G
GYD such that

idVi⊗Vj
= (Vi ⊗ Vj

cVi,Vj−−−−→ Vj ⊗ Vi

cVj,Vi−−−−→ Vi ⊗ Vj)

for all i �= j.
For a Hopf algebra H in G

GYD let

ad = (H ⊗H
ΔH⊗idH−−−−−−→ H ⊗H ⊗H

idH⊗cH,H−−−−−−−→ H ⊗H ⊗H

idH⊗idH⊗SH−−−−−−−−−→ H ⊗H ⊗H
μr(idH⊗μH)−−−−−−−−→ H)

be the braided adjoint action.
For elements x, y ∈ H, we write

ad (x⊗ y) = adx(y) = ad cx(y), where c = cH,H .
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If x ∈ P (H), y ∈ H, then adx(y) = xy − (x(−1) · y)x(0) is the braided
commutator of x and y. If x ∈ P (H) is homogeneous of degree g ∈ G, then

adx(y) = xy − (g · y)x.

Lemma 1.10.11. Let H be a Hopf algebra in G
GYD with braiding c = cH,H , and

x, y ∈ P (H). Then

Δ(adx(y)) = adx(y)⊗ 1 + 1⊗ adx(y) + (idH⊗H − c2)(x⊗ y)

Proof. Let x be homogeneous of degree g ∈ G. Then

Δ(adx(y)) = Δ(x)Δ(y)− (g ·Δ(y))Δ(x)

= (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)

− (g · y ⊗ 1 + 1⊗ g · y)(x⊗ 1 + 1⊗ x)

= xy ⊗ 1 + x⊗ y + g · y ⊗ x+ 1⊗ xy

− (g · y)x⊗ 1− g · y ⊗ x− c(g · y ⊗ x)− 1⊗ (g · y)x
= adx(y)⊗ 1 + 1⊗ adx(y) + (idH⊗H − c2)(x⊗ y).

�

Proposition 1.10.12. Let V1, V2 ∈ G
GYD, V = V1 ⊕ V2, and c = cV,V . For all

1 ≤ i ≤ 2, identify B(Vi) with the image of the injective map B(Vi)→ B(V ) induced
by the inclusion Vi ⊆ V (see Remark 1.6.19).

(1) The multiplication map B(V1) ⊗ B(V2)
μ12−−→ B(V ) is an injective map of

N0-graded coalgebras in G
GYD, where B(V1)⊗ B(V2) is the tensor product

of coalgebras in G
GYD.

(2) The following are equivalent.
(a) μ12 is bijective.
(b) c2|V2 ⊗ V1 = idV2⊗V1

.
(c) B(V1) ⊗ B(V2) is a Hopf algebra in G

GYD, where the coalgebra and
algebra structure is the tensor product of coalgebras and of algebras
in G

GYD.
If (c) holds, then μ12 is an isomorphism of Hopf algebras in G

GYD.

Proposition 1.10.12 and its proof below generalize directly to pairs of Yetter-
Drinfeld modules over Hopf algebras with bijective antipode using the definitions
in Section 7.1.

Proof. (1) By Remark 1.6.19, the inclusion maps Vi ⊆ V , 1 ≤ i ≤ 2, define
injective mophisms of N0-graded Hopf algebras B(Vi) → B(V ) in G

GYD which we
view as inclusions. The map

μ12 =
(
B(V1)⊗ B(V2) ⊆ B(V )⊗ B(V )

μ−→ B(V )
)

is a coalgebra homomorphism by Proposition 1.6.7. Hence the tensor product
coalgebra B(V1)⊗B(V2) in

G
GYD is an N0-graded subcoalgebra of B(V )⊗B(V ). By

Proposition 1.3.17, the coalgebra B(V1)⊗ B(V2) is strictly graded with

P (B(V1)⊗ B(V2)) = V1 ⊗ 1 + 1⊗ V2.

Since μ12 defines an isomorphism V1 ⊗ 1 + 1 ⊗ V2 → V1 ⊕ V2, we conclude with
Corollary 1.3.11 that μ12 is injective.
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(2) (a) ⇒ (b). By (a), B(V1)B(V2) = B(V ), and V1V2 + V 2
1 + V 2

2 = B2(V ). By
Definition 1.6.17 and Corollary 1.9.7, the symmetrizer maps Sn : Tn(V )→ Tn(V )
factorize over the Nichols algebra B(V ). Thus there are linear maps π, ϕ such that

T 2(V )
S2 ��

π
��
















T 2(V )

B2(V )

ϕ

�����������

commutes, where π is the second component of the quotient map T (V ) → B(V ).
Then S2(T

2(V )) = S2(V1 ⊗ V2 + V1 ⊗ V1 + V2 ⊗ V2).
Recall that S2 = id + c. Let a ∈ V2 ⊗ V1. Then

(id− c2)(a) = S2(id− c)(a) = S2(b+ u1 + u2)

for some b ∈ V1 ⊗ V2, u1 ∈ V1 ⊗ V1, u2 ∈ V2 ⊗ V2. Since c2(a) ∈ V2 ⊗ V1 and
c(b) ∈ V2 ⊗ V1, it follows that b = 0 and (id− c2)(a) = 0.

(b) ⇒ (c). Assume that c2|V2 ⊗ V1 = idV2⊗V1
. Let x ∈ V1, y ∈ V2. By

Lemma 1.10.11, ad y(x) is primitive, hence

0 = ad y(x) = yx− μB(V )c(y ⊗ x)

in B(V ), and μ12 : B(V1)⊗B(V2)→ B(V ) is an algebra map, where B(V1)⊗B(V2)
is the tensor product algebra. Then μ12 is an isomorphism, since the algebra B(V )
is generated by V1 and V2. This proves (c).

(c)⇒ (a). By (c), R = B(V1)⊗B(V2) is a pre-Nichols algebra of V1⊗1⊕1⊗V2.
By Theorem 1.6.18, there is a surjective map π : R → B(V ) of Hopf algebras in
G
GYD, where π(1) is the isomorphism V1 ⊗ 1 ⊕ 1 ⊗ V2

∼= V . Then π = μ12 is
surjective. �

We combine Example 1.10.1 with Proposition 1.10.12.

Example 1.10.13. Let (qij)1≤i,j≤n, n ≥ 2, be a family of non-zero scalars in
k with qijqji = 1 for all i �= j. For all 1 ≤ i ≤ n, we define Ni = N(qii). Let
V ∈ G

GYD be a vector space with basis x1, . . . , xn and diagonal braiding given by
c(xi ⊗ xj) = qijxj ⊗ xi for all 1 ≤ i, j ≤ n. Assume that the elements x1, . . . , xn

span one-dimensional subobjects of V in G
GYD. The braided vector space (V, c) is

called a quantum linear space. Note that c2(xi ⊗ xj) = xi ⊗ xj for all i �= j, and
adxi(xj) = xixj − qijxjxi for all i, j. Hence for all i �= j, xixj = qijxjxi in B(V )
by Lemma 1.10.11. Let

A = k〈x1, . . . , xn |xixj = qijxjxi, xNk

k = 0 for all i, j, k, i < j,Nk < ∞〉.

By Example 1.10.1, there is a well-defined algebra map

ϕ : A → B(V ), xi �→ xi for all 1 ≤ i ≤ n.

It is clear from the relations that the elements xt1
1 · · ·xtn

n , 0 ≤ ti < Ni, 1 ≤ i ≤ n,
span the vector space A. (Here, t < ∞ for all t ∈ N0.) Their images under ϕ are
a basis of B(V ), since the multiplication map B(kx1) ⊗ · · · ⊗ B(kxn) → B(V ) is
bijective by Proposition 1.10.12. Hence ϕ is an isomorphism.
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Example 1.10.14. Assume in Example 1.10.13 that qij = 1 for all i, j, that is,
c(x⊗ y) = y ⊗ x for all x, y ∈ V . Then by Example 1.10.13,

B(V ) ∼=
{
S(V ), the symmetric algebra of V, if char(k) = 0;

S(V )/(vp | v ∈ V ), if char(k) = p > 0.

Example 1.10.15. (a) Assume in Example 1.10.13 that qij = −1 for all i, j,
that is, c(x⊗ y) = −y ⊗ x for all x, y ∈ V . By Example 1.10.13,

B(V ) ∼= k〈x1, . . . , xn | x2
i = 0, xixj + xjxi = 0 for all i �= j〉 ∼= Λ(V )

is the exterior algebra of V of dimension 2n. By Example 1.4.14, the braiding can
be realized by a Yetter-Drinfeld module V over the group G of order 2.

(b) Let char(k) = 0, G = {1, g} the group with two elements, and Ĝ = {ε, χ},
where χ(g) = −1. Let V ∈ G

GYD. Then V = V ε ⊕ V χ as kG-module. Assume that
B(V ) is finite-dimensional. Then, by Example 1.10.2, V = V χ

g as Yetter-Drinfeld
module. Hence B(V ) ∼= Λ(V ) by (a).

Example 1.10.16. Let char(k) = 0, and let V = V0⊕V1 be a finite-dimensional
super vector space. By Example 1.4.14, V ∈ G

GYD, where G = Z/(2), and the
braiding is given by

cV0,V = τ : V0 ⊗ V → V ⊗ V0, cV,V0
= τ : V ⊗ V0 → V0 ⊗ V,

cV1,V1
= −τ : V1 ⊗ V1 → V1 ⊗ V1,

where τ is the flip map. Then by Examples 1.10.13, 1.10.14 and 1.10.15,

B(V ) ∼= S(V0)⊗ Λ(V1)

is the graded-symmetric algebra of V0 ⊕ V1.

If the assumption on the braiding in Proposition 1.10.12(2) is not satisfied, then
the description of B(V1 ⊕ V2) is much more difficult.

Without proof we mention the fundamental example of a Nichols algebra B(V )
coming from the theory of quantum groups. Here, the braiding of V is given by a
Yetter-Drinfeld structure over a free abelian group of finite rank, and V is a direct
sum of finitely many one-dimensional Yetter-Drinfeld modules Vi. The Nichols
algebras of each summand Vi are simply polynomial algebras in one variable, but
B(V ) is given by the complicated quantum Serre relations.

Definition 1.10.17. Let I be a non-empty finite set. Recall from [Kac90, §1.1]
that a (generalized) Cartan matrix A = (aij)i,j∈I is a matrix in ZI×I such that

(1) aii = 2 and ajk ≤ 0 for all i, j, k ∈ I with j �= k,
(2) if i, j ∈ I and aij = 0, then aji = 0.

A Cartan matrix A = (aij)i,j∈I is called symmetrizable, if there are integers
di ≥ 1 for all i ∈ I such that diaij = djaji for all i, j ∈ I. A Cartan matrix (aij)i,j∈I

is called of finite type if it is symmetrizable and if the symmetric bilinear form
(·, ·) : RI × RI → R, (x, y) �→

∑
i,j∈I xidiaijyj , is positive definite.

The classification of Cartan matrices of finite type is well-known and is easily
obtained from the definition by induction on the cardinality of I. We follow the
convention in [Kac90, §4.8].
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Theorem 1.10.18. Let l ≥ 1. Then up to a bijection of the index set, the
indecomposable Cartan matrices of finite type in Zl×l, see Definition 10.1.15, are
the following.

(1) Type Al, l ≥ 1: aij =

{
−1, if |i− j| = 1,

0, if |i− j| ≥ 2.

Then di = 1 for all 1 ≤ i ≤ l.

(2) Type Bl, l ≥ 2: aij =

⎧⎪⎨⎪⎩
−1, if |i− j| = 1, i �= l,

−2, if i = l, j = l − 1,

0, if |i− j| ≥ 2.
Then di = 2 for all 1 ≤ i ≤ l − 1 and dl = 1.

(3) Type Cl, l ≥ 3: aij =

⎧⎪⎨⎪⎩
−1, if |i− j| = 1, j �= l,

−2, if i = l − 1, j = l,

0, if |i− j| ≥ 2.
Then di = 1 for all 1 ≤ i ≤ l − 1 and dl = 2.

(4) Type Dl, l ≥ 4: aij = −1 if |i − j| = 1, i, j < l; al−2 l = al,l−2 = −1;
aij = 0 otherwise, whenever i �= j. Then di = 1 for all 1 ≤ i ≤ l.

(5) Type El, 6 ≤ l ≤ 8: aij = −1 if |i − j| = 1, i, j < l; al−3 l = al l−3 = −1;
aij = 0 otherwise, whenever i �= j. Then di = 1 for all 1 ≤ i ≤ l.

(6) Type F4, l = 4: aij =

{
−1, if |i− j| = 1, (i, j) �= (3, 2),

0, if |i− j| ≥ 2,

a32 = −2. Then d1 = d2 = 2, d3 = d4 = 1.
(7) Type G2, l = 2: a12 = −1, a21 = −3. Then d1 = 3, d2 = 1.

In particular, for any such Cartan matrix A there exist unique integers di, 1 ≤ i ≤ r,
such that diaij = djaji for all 1 ≤ i, j ≤ r, and {di | 1 ≤ i ≤ r} is one of the sets
{1}, {1, 2}, {1, 3}.

The following example is an immediate consequence of Theorem 1.10.18.

Example 1.10.19. A Cartan matrix A ∈ Z2×2 is of finite type if and only
if a12a21 ∈ {0, 1, 2, 3}. An indecomposable Cartan matrix A ∈ Z3×3 is of finite
type if there exist i, j, k ∈ {1, 2, 3} such that aik = aki = 0, aij = aji = −1, and
ajkakj ∈ {1, 2}.

Example 1.10.20. Let q ∈ k be non-zero and not a root of one, G = Zn a
free abelian group of rank n ≥ 1 with basis K1, . . . ,Kn, and (aij)1≤i,j≤n a Cartan
matrix of finite type, where (diaij) is symmetric and di ∈ {1, 2, 3} for all i. We
define a Yetter-Drinfeld module V ∈ G

GYD with basis xi ∈ V χi

Ki
, 1 ≤ i ≤ n, where

χ1, . . . , χn are characters of Zn with

χi(Kj) = qdiaij for all 1 ≤ i, j ≤ n,

that is

deg(xi) = Ki, g · xi = χi(g)xi for all g ∈ G, 1 ≤ i ≤ n.

Then V = kx1 ⊕ · · · ⊕ kxn is the direct sum of one-dimensional Yetter-Drinfeld
modules kxi. We prove in Theorem 16.2.5 that

B(V ) ∼= k〈x1, . . . , xn | (adxi)
1−aij (xj) = 0 for all i �= j〉

is given by the quantum Serre relations. Thus B(V ) = U+
q (g), where g is the

semisimple Lie algebra defined by the matrix (aij)1≤i,j≤n.
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We note that the elements (adxi)
1−aij (xj) ∈ T (V ), i �= j, are primitive by

Proposition 4.3.12, hence k〈x1, . . . , xn | (adxi)
1−aij (xj) = 0 for all i �= j〉 is a Hopf

algebra in G
GYD.

Remark 1.10.21. Nichols algebras of Yetter-Drinfeld modules play an impor-
tant role in the classification theory of Hopf algebras. They appear naturally as
subalgebras of graded Hopf algebras associated to the coradical filtration, see Corol-
lary 7.1.17.

1.11. Notes

1.1. The first comultiplication appeared in a paper by Heinz Hopf [Hop41]
written in German and published in the Ann. of Math. in 1941.

1.4. Yetter-Drinfeld modules over a Hopf algebra, in particular over a group
algebra, together with their braiding were introduced 1990 by Yetter in [Yet90].

The explicit description of Yetter-Drinfeld modules over groups was given in
the equivalent category of Hopf bimodules in several early papers, beginning with
[Nic78] over finite abelian groups in the semisimple case, [DPR90] over finite
groups over the complex numbers as modules over the Drinfeld double of the group
algebra, and in the general case in [CR97].

1.5. The fruitful idea to describe braided vector spaces of group type by racks
was introduced in [AGn03].

1.6. Nichols defined in [Nic78] a bialgebra of type one as the image of a
canonical map from the tensor algebra to the cotensor algebra of a Hopf bimodule.
Bialgebras of type one contain Nichols algebras as subalgebras. Hopf bimodules
are equivalent to Yetter-Drinfeld modules, see Notes to Section 3.7. It was shown
independently in several papers ([Sch96], [Ros95], [Róż96], [BD97]) that the
Nichols algebra can be seen as the image of a canonical map from the tensor algebra
to the shuffle algebra of the braided vector space. See the notes to Section 6.4 for
the definition of the shuffle algebra which is dual to the braided tensor algebra.

1.7. We have found the notation ↑ i for the shift operator in [IO09].

1.8. The equations in Proposition 1.8.13 appeared in [DK+97, Lemma 6.12].

1.9. Theorem 1.9.1 about the comultiplication of the tensor algebra already
was shown in [HH92, Proposition 4.8].

The braided (anti)symmetrizer map was introduced byWoronowicz in [Wor89],
where he defined the braiding for Hopf bimodules (which he called bicovariant bi-
modules). Corollary 1.9.7 describing the relations of the Nichols algebra as a Hopf
algebra by the braided symmetrizer map was shown in the papers mentioned in the
notes to Section 1.6, since the canonical map from the tensor algebra to the shuffle
algebra is given by the quantum symmetrizer.
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1.10. Proposition 1.10.9(2) is shown in [Fd+01, Corollary (5.2.b)], by a differ-
ent method. Example 1.10.10 is a very special case of the main result of [HZ18],
where the finite-dimensional braided vector spaces V of diagonal type satisfying
B(V ) = T (V ) are determined.

Proposition 1.10.12 also holds for the general braidings in Chapter 7. The
equivalence of (a) and (b) was first shown in [Gn00a] for finite-dimensional Nichols
algebras.
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CHAPTER 2

Basic Hopf algebra theory

In the book we will need many basic properties of coalgebras and Hopf algebras,
which are collected mainly in this chapter. In particular, module and comodule alge-
bras will appear frequently. Two-cocycle deformations of bialgebras are a standard
tool in the theory which we will use later in the discussion of quantized enveloping
algebras and of linkings of Nichols algebras.

2.1. Finiteness properties of coalgebras and comodules

We start with a characterization of right comodules.

Lemma 2.1.1. Let C be a coalgebra, V a vector space, and δV : V → V ⊗ C
a linear map. Let (vi)i∈I be a basis of V , and δV (vj) =

∑
i∈I vi ⊗ cij for all j,

where (cij)i,j∈I is a family of elements of C such that for all j ∈ I, cij �= 0 only
for finitely many indices i ∈ I. Then the following are equivalent.

(1) (V, δV ) is a right C-comodule.

(2) For all i, j ∈ I, Δ(cij) =
∑

k∈I cik ⊗ ckj , ε(cij) = δij =

{
1 if i = j,

0 if i �= j.

The subspace C(V ) ⊆ C spanned by the elements cij, i, j ∈ I, is the smallest
subspace C ′ ⊆ C such that δV (V ) ⊆ V ⊗ C ′, and it is a subcoalgebra of C.

Proof. By definition, (V, δV ) is a right C-comodule, if for all j ∈ I,∑
i∈I

δV (vi)⊗ cij =
∑
i∈I

vi ⊗Δ(cij),∑
i∈I

viε(cij) = vj .

Since δV (vi) =
∑

l∈I vl ⊗ cli for all i ∈ I, the equivalence of (1) and (2) follows by
comparing coefficients. The claim about C(V ) is obvious. �

Note the special case of Lemma 2.1.1 when V is finite-dimensional with basis
v1, . . . , vn. By Lemma 2.1.1 there is a bijection

{δV | (V, δV ) is a right C-comodule } ∼= Coalg(Mn(k)
∗, C),

where Mn(k)∗ is the coalgebra in Example 1.1.5.

Lemma 2.1.2. Let C be a coalgebra and (V, δV ) a right C-comodule. Let v ∈ V ,
and let (ci)i∈I be a basis of C. Write

Δ(ci) =
∑
j∈I

cij ⊗ cj for all i ∈ I, δV (v) =
∑
i∈I

vi ⊗ ci,

71
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where for all i, j ∈ I, cij ∈ C, vi ∈ V , such that for all i ∈ I, cij �= 0 only for
finitely many j ∈ I, and where vi �= 0 only for finitely many i ∈ I. Then

δV (vj) =
∑
i∈I

vi ⊗ cij for all j ∈ I.

Proof. By coassociativity of δV ,∑
i∈I

δV (vi)⊗ ci = (δV ⊗ id)δV (v) =
∑
i∈I

vi ⊗Δ(ci) =
∑
i,j∈I

vi ⊗ cij ⊗ cj .

The claim follows by comparing coefficients. �
Coalgebras and comodules over coalgebras are easier objects than algebras and

modules over algebras, since they satisfy the following finiteness property.

Theorem 2.1.3 (Finiteness Theorem). Let C be a coalgebra and V a right C-
comodule. Then V is the union of its finite-dimensional subcomodules, and C is
the union of its finite-dimensional subcoalgebras.

Proof. We have to show the following.

(1) Any element of V is contained in a finite-dimensional subcomodule.
(2) Any element of C is contained in a finite-dimensional subcoalgebra.

(1) Let v ∈ V . By Lemma 2.1.2, the vector space V ′ spanned by the elements vi,
i ∈ I, is a finite-dimensional subcomodule of V . Moreover, v =

∑
i∈I viε(ci) ∈ V ′.

(2) Let c ∈ C. By (1) applied to C as a right C-comodule via Δ, there is a
finite-dimensional subspace V ⊆ C with c ∈ V , Δ(V ) ⊆ V ⊗ C. By Lemma 2.1.1,
Δ(V ) ⊆ V ⊗C(V ), and C(V ) is a finite-dimensional subcoalgebra of C. Moreover,
c ∈ C(V ) since c = (ε⊗ idC)(Δ(c)). �

The unions in Theorem 2.1.3 are ascending unions, that is, finitely many finite-
dimensional subcomodules, respectively subcoalgebras, are always contained in a
finite-dimensional subcomodule, respectively subcoalgebra, namely in their sum.
Thus comodules and coalgebras are direct limits of finite-dimensional subob-
jects.

An algebra A is called residually finite-dimensional if there exists a family
of ideals of A of finite codimension whose intersection is zero.

Corollary 2.1.4. Let C be a coalgebra.

(1) The dual algebra C∗ is residually finite-dimensional.
(2) Let f ∈ C∗, and assume that for all finite-dimensional subcoalgebras D of

C, the image of f under the restriction map C∗ → D∗ is invertible in D∗.
Then f is invertible in C∗.

Proof. (1) For all finite-dimensional subcoalgebras D ⊆ C the kernel of the
restriction map πD : C∗ → D∗ is an ideal of C∗ of finite codimension, and by
Theorem 2.1.3,⋂

{ker(πD) | D ⊆ C a finite-dimensional subcoalgebra} = 0.

(2) For all finite-dimensional subcoalgebras D ⊆ C let gD ∈ D∗ be the inverse of
f |D. Let g : C → k, x �→ gF (x), where F ⊆ C is a finite-dimensional subcoalgebra
containing x which exists by Theorem 2.1.3. Then g is well-defined since for all
finite-dimensional subcoalgebras E ⊆ F , gF |E = gE by uniqueness of the inverse.
Hence f is invertible in C∗ with inverse g. �
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It is clear from Corollary 2.1.4 that not any algebra is of the form C∗ for some
coalgebra C. In particular, infinite-dimensional algebras which are simple, that is,
have no proper non-zero ideals, are not residually finite-dimensional. Examples of
infinite-dimensional simple algebras are infinite field extensions or the Weyl algebra
over a field of characteristic zero (see Example 2.6.16).

2.2. Duality

If A is an algebra and V is a right A-module, then the dual vector space
V ∗ = Hom(V, k) is a left A-module in a natural way. This also works for comodules
which are finite-dimensional.

Lemma 2.2.1. Let X,Y be vector spaces. The linear map

ϕX,Y : X∗ ⊗ Y → Hom(X,Y ), f ⊗ y �→ (x �→ f(x)y),

is injective, and it is bijective if X is finite-dimensional.

Proof. We leave the elementary proof to the reader. �

For a coalgebra C, we denote the category of finite-dimensional right or left C-
comodules with C-colinear maps as morphisms by Mfd,C and CMfd, respectively.
A duality between categories is a contravariant equivalence.

Proposition 2.2.2. Let C be a coalgebra.

(1) Let V ∈ Mfd,C . Then V ∗ = Hom(V, k) is a left C-comodule, where the
comodule structure δV ∗ : V ∗ → C ⊗ V ∗, f �→ f(−1) ⊗ f(0), is defined by
the equations

f(−1)f(0)(v) = f(v(0))v(1) for all v ∈ V.

(2) The functor

Mfd,C → CMfd, (V, δV ) �→ (V ∗, δV ∗),

where comodule maps f are mapped onto f∗, is a duality.

Proof. (1) By Lemma 2.2.1, the map

C ⊗ V ∗ → Hom(V,C), c⊗ f �→ (v �→ f(v)c),

is bijective. For any f ∈ V ∗ let δV ∗(f) = f(−1) ⊗ f(0) ∈ C ⊗ V ∗ with

f(−1)f(0)(v) = f(v(0))v(1)

for all v ∈ V . This defines a linear map δV ∗ : V ∗ → C⊗V ∗. To prove that (V ∗, δV ∗)
is a left C-comodule, we have to show for all f ∈ V ∗,

f(−1) ⊗ δV ∗(f(0)) = Δ(f(−1))⊗ f(0) ∈ C ⊗ C ⊗ V ∗,(2.2.1)

ε(f(−1))f(0) = f.(2.2.2)

Using Lemma 2.2.1, we check the equality (2.2.1) by evaluating on elements of V .
By evaluation of the left-hand side of (2.2.1) on v ∈ V we get

f(−1) ⊗ f(0)(v(0))v(1) = f(v(0))v(1) ⊗ v(2).

On the other hand

Δ(f(−1))f(0)(v) = Δ(f(−1)f(0)(v)) = Δ(f(v(0))v(1)) = f(v(0))v(1) ⊗ v(2).
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Finally,

ε(f(−1))f(0)(v) = ε(f(−1)f(0)(v)) = ε(f(v(0))v(1)) = f(v(0))ε(v(1)) = f(v)

for all v ∈ V , which proves (2.2.2).
(2) follows easily from (1), since for all V ∈Mfd,C the natural isomorphism

V → V ∗∗, v �→ (f �→ f(v)),

is an isomorphism of right C-comodules. �

Lemma 2.2.3. Let X,Y be vector spaces. Then the map

ϕX,Y : X∗ ⊗ Y ∗ → (X ⊗ Y )∗, f ⊗ g �→ (x⊗ y �→ f(x)g(y)),

is injective, and a natural transformation in both variables X and Y . If X or Y
are finite-dimensional, then ϕX,Y is an isomorphism.

Proof. The proof of this Lemma is rather elementary as well, and is left to
the reader. �

We note that in the cases when the maps ϕX,Y of Lemma 2.2.1 and Lemma 2.2.3
are isomorphisms, there is no natural way (that is, without using bases) to write
down a formula for their inverses.

In the next proposition we write Cfd for the category of finite-dimensional coal-
gebras with coalgebra homomorphisms as morphisms, and Afd for the category of
finite-dimensional algebras with algebra maps as morphisms.

Proposition 2.2.4. (1) For any finite-dimensional algebra A, the dual
vector space A∗ is a coalgebra with ε(f) = f(1), Δ(f) = f(1) ⊗ f(2),
f(1)(x)f(2)(y) = f(xy) for all f ∈ A∗, x, y ∈ A. It is called the dual
coalgebra of A.

(2) For any algebra map ρ : A → B between finite-dimensional algebras A,B,
the map ρ∗ : B∗ → A∗, f �→ f ◦ ρ, is a coalgebra map.

(3) The functor Cfd → Afd mapping a coalgebra C to its dual algebra C∗,
and a coalgebra homomorphism f to f∗, is a duality. The inverse functor
Afd → Cfd sends an algebra A to its dual coalgebra A∗, and an algebra
map ρ to the coalgebra map ρ∗.

Proof. (1) By definition, the comultiplication of A∗ is defined by

A∗ μ∗
A−−→ (A⊗A)∗

ϕ−1
A,A−−−→ A∗ ⊗A∗,

where ϕA,A is the isomorphism in Lemma 2.2.3. To check coassociativity of Δ, we
use the isomorphism

A∗ ⊗A∗ ⊗A∗ → (A⊗A⊗ A)∗, f ⊗ g ⊗ h �→ (x⊗ y ⊗ z �→ f(x)g(y)h(z)),

which is a consequence of Lemma 2.2.3. Let f ∈ A∗ and x, y, z ∈ A. Then

f(1)(1)(x)f(1)(2)(y)f(2)(z) = f(1)(xy)f(2)(z) = f(xyz),

f(1)(x)f(2)(1)(y)f(2)(2)(z) = f(1)(x)f(2)(yz) = f(xyz).

The counit axioms are checked similarly.
(2) For any f ∈ B∗, x, y ∈ A, one has

ρ∗(f)(xy) = f(ρ(xy)) = f(ρ(x)ρ(y)) = ρ∗(f(1))ρ
∗(f(2))

and ρ∗(f)(1) = f(ρ(1)) = f(1).
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(3) The functorial isomorphism X → X∗∗, x �→ (f �→ f(x)), for finite-
dimensional vector spaces X defines a coalgebra isomorphism C → C∗∗ for any
finite-dimensional coalgebra C, and an algebra isomorphism A → A∗∗ for any
finite-dimensional algebra A. �

Let A be an algebra. We denote byMfd
A the category of finite-dimensional right

A-modules with A-linear maps as morphisms. Proposition 2.2.4 follows essentially
from Lemma 2.2.3. The next proposition is shown in the same way.

Proposition 2.2.5. Let C be a coalgebra and A = C∗ its dual algebra.

(1) Let (V, δV ) be a right C-comodule. Then V ∗ is a right A-module with
module structure

λV ∗ =
(
V ∗ ⊗ C∗ ϕV,C−−−→ (V ⊗ C)∗

δ∗V−−→ V ∗).
(2) Assume that C is finite-dimensional. The functor

MC,fd →Mfd
A , (V, δV ) �→ (V ∗, λV ∗),

where a comodule map f is mapped onto f∗, is a duality.

The duality functor in Proposition 2.2.4 induces a bijective correspondence
between subcoalgebras of a finite-dimensional coalgebra and ideals or quotient al-
gebras of the dual algebra.

Remark 2.2.6. For any vector space V there is a correspondence between
subspaces of V and of the dual space V ∗. If U ⊆ V and X ⊆ V ∗ are subspaces, we
define subspaces U⊥ ⊆ V ∗ and X⊥ ⊆ V with respect to the pairing V ∗ ⊗ V → k,
f ⊗ v �→ f(v), by

U⊥ = {f ∈ V ∗ | f(u) = 0 for all u ∈ U},
X⊥ = {v ∈ V | f(v) = 0 for all f ∈ X}.

By definition, U⊥ is the kernel of the restriction map V ∗ → U∗, and X⊥ is the
kernel of the map ρX : V → X∗, v �→ (f �→ f(v)). If V is finite-dimensional, then
X⊥ is canonically isomorphic to (V ∗/X)∗. The following rules are easy to check.

(1) If U ⊆ V is a subspace, then U⊥⊥ = U .
(2) Assume that V is finite-dimensional. Then

{U | U ⊆ V a subspace} → {X | X ⊆ V ∗ a subspace}, U �→ U⊥,

is bijective and inclusion reversing with inverse given by X �→ X⊥.

A non-zero coalgebra C is simple if 0 and C are the only subcoalgebras of
C. By Theorem 2.1.3, simple coalgebras are finite-dimensional, and by Proposi-
tion 2.2.4 a coalgebra C is simple if and only if C∗ is a finite-dimensional simple
algebra, that is if it has no non-trivial quotient algebras.

Example 2.2.7. The coalgebra Mn(k)∗ in Example 1.1.5 is simple since by
Example 1.2.13 its dual is isomorphic to the matrix algebra Mn(k) which is a
simple algebra.

We denote the set of all (two-sided) maximal ideals of an algebra A by Max(A).

The preliminary version made available with permission of the publisher, the American Mathematical Society.



76 2. BASIC HOPF ALGEBRA THEORY

Corollary 2.2.8. Let C be a finite-dimensional coalgebra. The maps

{D | D subcoalgebra of C} → {I | I ideal of C∗}
{D | D simple subcoalgebra of C} → Max(C∗),

defined by D �→ D⊥ are bijective.

Proof. The bijectivity of the first map in the claim follows by duality from
Proposition 2.2.4. Since the map D �→ D⊥ is inclusion reversing, simple subcoal-
gebras correspond to maximal ideals. �

Our next goal is to prove a dual version of Nakayama’s lemma using the duality
principle in Proposition 2.2.5.

Definition 2.2.9. Let C be a coalgebra, V ∈ MC , and W ∈ CM with struc-
ture maps δV : V → V ⊗ C, δW : W → C ⊗W .

(1) The cotensor product V �CW is defined as the kernel of

δV ⊗ idW − idV ⊗ δW : V ⊗W → V ⊗ C ⊗W.

(2) Let D ⊆ C be a subcoalgebra. We define V (D) = δ−1
V (V ⊗D).

Remark 2.2.10. (1) Let f : V → V ′ and g : W → W ′ be a map of right and
left C-comodules, respectively. Then f ⊗ g : V ⊗W → V ′ ⊗W ′ induces a linear
map f�Cg : V �CW → V ′�CW ′. Thus the cotensor product is a functor in two
variables �C :MC × CM→Mk.

(2) The cotensor product commutes with arbitrary direct sums in both vari-
ables, that is, if V ∈MC and (Wi)i∈I is a family of left C-comodules, then the map⊕

i∈I(V �CWi) → V �C(
⊕

i∈I Wi), defined for all i ∈ I on the summand V �CWi

by id�Cιi, is an isomorphism, where ιi : Wi →
⊕

i∈I Wi is the inclusion map; in
the same way

⊕
i∈I(Vi�CW ) ∼= (

⊕
i∈I Vi)�CW , where (Vi)i∈I is a family of right

C-comodules, and W ∈ CM.
(3) It follows from the coassociativity of δV (or from Lemma 2.1.2) that V (D) in

Definition 2.2.9(2) is a right D-comodule by restriction of δV . It is easy to see that
δV induces an isomorphism δV (D) : V (D)→ V �CD, where D is a left C-comodule
via Δ. The inverse map is induced from V ⊗D → V , v ⊗ d �→ vε(d).

(4) Let A be an algebra and V ∈ MA, W ∈ AM A-modules with structure
maps μV : V ⊗A → V , μW : A⊗W → W . Then the tensor product V ⊗A W can
be defined as the cokernel of the map

μV ⊗ id− id⊗ μW : V ⊗A⊗W → V ⊗W.

Thus the cotensor product for comodules over a coalgebra is dual to the tensor
product of modules over an algebra.

Lemma 2.2.11. Let C be a coalgebra, D ⊆ C a subcoalgebra, and V a finite-
dimensional right C-comodule. Let I be the kernel of the restriction map C∗ → D∗.
Then I is an ideal in C∗, and V (D)∗ ∼= V ∗/V ∗I as right modules over C∗/I ∼= D∗.

Proof. By definition, V (D) is the kernel of the map

V
δV−−→ V ⊗ C

idV ⊗can−−−−−→ V ⊗ C/D.

Since I ∼= (C/D)∗, the claim follows by duality using Lemma 2.2.3. �
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The following remark is a standard result in algebra. The reader may use
it as a motivation or (together with Lemma 2.2.11) for an alternative proof of
Proposition 2.2.14 below by duality.

Remark 2.2.12. LetA be a finite-dimensional algebra andM a right A-module.
By Wedderburn-Artin, there are finitely many maximal ideals P1, . . . , Pn of A, and⋂n

i=1 Pi = Rad(A) is the Jacobson radical of A. By the Chinese remainder theorem,
there is a right A-linear isomorphism

M/MRad(A) ∼=
n∏

i=1

M/MPi

given by the diagonal map.
Let M,N be finite-dimensional right A-modules, and f : M → N a right

A-linear map. By Nakayama’s Lemma, f is surjective if and only if the induced
map M/MRad(A) → N/NRad(A) is surjective. Thus by the Chinese remainder
theorem, f is surjective if and only if for all maximal ideals P ⊆ A, the induced
map M/MP → N/NP is surjective.

Proposition 2.2.13. Let C be a coalgebra, and V ∈MC .

(1) If V is simple, then C(V ) is a simple subcoalgebra of C.
(2) If V �= 0, then there is a simple subcoalgebra D ⊆ C such that V (D) �= 0.

Proof. (1) By Theorem 2.1.3, V is finite-dimensional. Let v1, . . . , vn be a
basis of V and cij ∈ C(V ) with 1 ≤ i, j ≤ n as in Lemma 2.1.1. Then Lemma 2.1.1
implies that for any 1 ≤ k ≤ n the linear map fk : V → C(V ), vi �→ cki, is a
comodule map, where C(V ) is a right C(V )-comodule via Δ. Hence C(V ) is a sum
of simple C-comodules, each of them isomorphic to V . Thus C(U) = C(V ) for all
simple subcomodules U of C(V ). It follows that C(V ) has no proper subcoalgebra.

(2) Theorem 2.1.3 implies that V has a simple subcomodule W . By (1) applied
to W , D = C(W ) is a simple subcoalgebra of C and W ⊆ V (D). �

Proposition 2.2.14. Let C be a coalgebra, V,W ∈ MC , and f : V → W a
C-colinear map. Then the following are equivalent.

(1) The map f : V → W is injective.
(2) For all simple subcoalgebras D ⊆ C, the map V (D) → W (D) induced by

f is injective.

Proof. Clearly, (1) implies (2). Assume now that ker(f) �= 0. Let U be a
simple subcomodule of ker(f). Then D = C(U) is a simple subcoalgebra of C by
Proposition 2.2.13, and U ⊆ V (D). Hence f |V (D) is not injective. �

Definition 2.2.15. Let C be a coalgebra, and V a right C-comodule with
comodule structure δV : V → V ⊗ C. Then μV : C∗ ⊗ V → V defined by

fv = μV (f ⊗ v) = f(v(1))v(0)

for all f ∈ C∗, v ∈ V , is called the adjoint C∗-module structure to δV .

It is easy to see that V is indeed a left C∗-module with the adjoint module
structure.
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Lemma 2.2.16. Let C be a finite-dimensional coalgebra, and V a vector space.
There is a bijection

{δV | (V, δV ) is a right C-comodule} → {μV | (V, μV ) is a left C∗-module}
where a right C-comodule structure is mapped onto its adjoint left C∗-module struc-
ture.

Proof. Let c1, . . . , cn be a basis of C, and f1, . . . , fn its dual basis in C∗. The
linear map

Hom(V, V ⊗ C)→ Hom(C∗ ⊗ V, V ), δV �→ μV ,

where μV (fi ⊗ v) = vi for all 1 ≤ i ≤ n and v ∈ V with δV (v) =
∑n

j=1 vj ⊗ cj , is

bijective. Note that if δV is mapped onto μV , and if we write δV (v) = v(0) ⊗ v(1),
then μV (f ⊗ v) = f(v(1))v(0) for all v ∈ V , f ∈ C∗.

Then one checks that under this bijection comodule structures correspond to
module structures. �

Let A be an algebra. A left A-module V is called locally finite if any element
of V is contained in some finite-dimensional A-submodule. The full subcategory of

AM consisting of locally finite A-modules is denoted by AMlf .

Proposition 2.2.17. Let C be a coalgebra.

(1) The functor MC → C∗Mlf , which maps a comodule V to V with the
adjoint module structure, and a comodule homomorphism f to f , is fully
faithful.

(2) If C is finite-dimensional, then the functor MC → C∗M in (1) is an
isomorphism of categories.

Proof. (1) It follows from Theorem 2.1.3 that for any right C-comodule V ,
the left C∗-module V with the adjoint module structure is locally finite.

Let V,W ∈ MC and let F : V → W be a linear map. We have to show that
F is right C-colinear if and only if F is left C∗-linear. Colinearity of F means that
F (v)(0) ⊗ F (v)(1) = F (v(0))⊗ v(1) for all v ∈ V , or equivalently

f(F (v)(1))F (v)(0) = f(v(1))F (v(0))

for all v ∈ V and f ∈ C∗. The claim follows, since

f(F (v)(1))F (v)(0) = fF (v),

f(v(1))F (v(0)) = F (f(v(1))v(0)) = F (fv).

(2) follows from (1) and Lemma 2.2.16. �
Corollary 2.2.18. Let C be a coalgebra, V ∈ MC , and X ⊆ V a subspace.

Then X ⊆ V is a right C-subcomodule if and only if it is a left C∗-submodule
with respect to the adjoint C∗-module structure of V . In particular, C∗X is the C-
subcomodule of V generated by X, that is, the smallest subcomodule containing
X.

Proof. This follows from Proposition 2.2.17. Alternatively we give a direct
proof. Let δ : V → V ⊗ C, v �→ v(0) ⊗ v(1), be the comodule structure of V . If X
is a subcomodule of V , then it is obviously a submodule. Conversely, assume that
X ⊆ V is a C∗-submodule. Then X is a subcomodule of V , that is, δ(X) ⊆ X⊗C,
since x(0)f(x(1)) = fx ∈ X for all x ∈ X, f ∈ C∗. �
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Finally we extend the duality between finite-dimensional algebras and coalge-
bras to Hopf algebras.

Proposition 2.2.19. Let H be a finite-dimensional bialgebra. Then H∗ is a
bialgebra with structure maps defined for all f, g ∈ H∗ and all x, y ∈ H by

(fg)(x) = f(x(1))g(x(2)), ε(f) = f(1), f(1)(x)f(2)(y) = f(xy), 1H∗ = εH .

If H is a Hopf algebra, then H∗ is a Hopf algebra with antipode

S(f)(x) = f(S(x))
for all f ∈ H∗ and x ∈ H.

Proof. We know from the previous section that H∗ is an algebra and a coal-
gebra. The bialgebra axiom holds, since for all f, g ∈ H∗ and x, y ∈ H,

(f(1)g(1))(x)(f(2)g(2))(y) = f(1)(x(1))g(1)(x(2))f(2)(y(1))g(2)(y(2))

= f(x(1)y(1))g(x(2)y(2))

= (fg)(xy).

Moreover, ε(fg) = (fg)(1) = f(1)g(1) = ε(f)ε(g).
If H has an antipode, then for all f ∈ H∗ and x ∈ H,

f(1)(x(1))f(2)(S(x(2))) = f(x(1)S(x(2))) = f(ε(x)1H) = ε(f)1H∗(x).

Hence f(1)S(f(2)) = ε(f)1H∗ . Similarly, S(f(1))f(2) = ε(f)1H∗ . �

Example 2.2.20. Let G be a finite group and kG the group algebra as a Hopf
algebra defined in Example 1.2.16. The dual Hopf algebra (kG)∗ can be identified
with the function algebra kG. Let eg, g ∈ G, be the dual basis in (kG)∗ of the basis
G. Then for all g ∈ G,

egeh = δgheg, Δ(eg) =
∑

a,b∈G
ab=g

ea ⊗ eb, ε(eg) = δg1, S(eg) = eg−1 ,

and 1(kG)∗ =
∑

g∈G eg.

2.3. The restricted dual

In many situations it is helpful to consider dual objects of infinite dimensional
(Hopf) algebras. In this section we discuss elements of the corresponding theory.

Lemma 2.3.1. Let X,Y be vector spaces such that X is finite-dimensional.
Then

ϕX,Y : X ⊗ Y ∗ → Hom(X,Y )∗, x⊗ f �→
(
F �→ f(F (x))

)
,

is an isomorphism.

Proof. The map ϕX,Y is the composition of the isomorphisms

X ⊗ Y ∗ ∼= X∗∗ ⊗ Y ∗ ∼= (X∗ ⊗ Y )∗ ∼= Hom(X,Y )∗,

where the first isomorphism is induced from the canonical map X → X∗∗, the
second is the isomorphism of Lemma 2.2.3, and the third is the dual of the isomor-
phisms of Lemma 2.2.1. �
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Definition 2.3.2. Let A be an algebra and V a finite-dimensional left A-
module. For all v ∈ V and f ∈ V ∗ let cVf,v = cf,v ∈ A∗ be defined by

cf,v(x) = f(xv)

for all x ∈ A. The linear function cf,v is called a matrix coefficient of V . Let
CV be the k-linear span of all matrix coefficients cf,v, f ∈ V ∗, v ∈ V .

Lemma 2.3.3. Let A be an algebra, and V a finite-dimensional left A-module
with representation ρ : A→ End(V ), x �→ (v �→ xv), and annihilator I = ker(ρ).

(1) CV = im(ρ∗) = {f ∈ A∗ | f(I) = 0} ∼= (A/I)∗.
(2) CV is a coalgebra which is isomorphic to the dual coalgebra of the finite-

dimensional algebra A/I by (1). Let F, F1i, F2i ∈ CV for all i ∈ {1, . . . , n},
n ≥ 1. Then the following are equivalent.
(a) ΔCV (F ) =

∑n
i=1 F1i ⊗ F2i.

(b) F (xy) =
∑n

i=1 F1i(x)F2i(y) for all x, y ∈ A.

Proof. (1) Note that for all v ∈ V , f ∈ V ∗, the matrix coefficient cf,v is the

image of v ⊗ f under the composition V ⊗ V ∗ ϕV,V−−−→ End(V )∗
ρ∗

−→ A∗, where ϕV,V

is the isomorphism of Lemma 2.3.1.
(2) By Proposition 2.2.4(1) and by (1), End(V )∗ and CV are coalgebras. The

rest follows from the definition of ΔCV . �

Lemma 2.3.4. Let H be an algebra, and V,W finite-dimensional left H-modules.

(1) If V ∼= W , then CV = CW . If V ⊆ W is a left A-submodule, then
CV ⊆ CW is a subcoalgebra.

(2) CV⊕W = CV + CW .
(3) Let H be a bialgebra. Then CV⊗W = CV CW , where the product in H∗ is

the convolution product.

Proof. (1) is clear by Lemma 2.3.3.
(2) Let f ∈ (V ⊕W )∗ ∼= V ∗ ⊕W ∗. Then cf,v+w = cf |V,v + cf |W,w for all v ∈ V

and w ∈ W .
(3) Let f ∈ (V ⊗ W )∗, f1, . . . , fn ∈ V ∗ and g1, . . . , gn ∈ W ∗, n ≥ 1, with

f(v ⊗ w) =
∑n

i=1 fi(v)gi(w) for all v ∈ V , w ∈ W . Then for all v ∈ V , w ∈ W ,
cf,v⊗w =

∑n
i=1 cfi,vcgi,w. Hence the claim follows from Lemma 2.2.3. �

Remark 2.3.5. Let A be an algebra and V ∈ AMfd. Let v1, . . . , vn, n ≥ 1,
be a basis of V and f1, . . . , fn the dual basis of V ∗. Then for all x ∈ A, v ∈ V ,
f ∈ V ∗, and j ∈ {1, . . . , n},

xvj =

n∑
i=1

cfi,vj (x)vi, ΔCV (cf,v) =

n∑
i=1

cf,vi ⊗ cfi,v.

Definition 2.3.6. Let H be an algebra, and C ⊆ HMfd a class of finite-
dimensional left H-modules. Let H0

C =
∑

V ∈C CV ⊆ H∗.
We define the following conditions for C, where H is assumed to be a bialgebra

for (C2) and (C3), and a Hopf algebra for (C4).
(C1) If V,W ∈ C, then V ⊕W ∈ C.
(C2) If V,W ∈ C, then V ⊗W ∈ C.
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(C3) εk ∈ C, where εk = k is the trivial H-module with x1 = ε(x)1 for all
x ∈ H.

(C4) If V ∈ C, then V ∗ ∈ C.

Proposition 2.3.7. Let H be an algebra and C a class of finite-dimensional
left H-modules.

(1) Assume that C satisfies (C1). Then H0
C is a coalgebra with comultiplication

and counit given by ΔH0
C
(F ) = ΔCV (F ), εH0

C
(F ) = F (1) for all F ∈ CV ,

V ∈ C.
(2) Let H be a bialgebra. Assume that C satisfies (C1), (C2) and (C3). Then

H0
C is a bialgebra, where H0

C ⊆ H∗ is a subalgebra of the dual algebra of
the coalgebra H, and where the coalgebra structure of H0

C is defined in (1).
(3) Let H be a Hopf algebra. Assume that C satisfies (C1) – (C4). Then H0

C is
a Hopf algebra with antipode defined by SH0

C
(F ) = F ◦SH for all F ∈ H0

C .

Proof. (1) Since the subspaces CV are coalgebras by Lemma 2.3.3, we have
to show that the definition of ΔH0

C
(F ) does not depend on the choice of V . Let

V, V ′ ∈ C with F ∈ CV and F ∈ CV ′
. By (C1) and Lemma 2.3.4(1) and (2),

W := V ⊕V ′ ∈ C, and CV and CV ′
are subcoalgebras of CW . Hence it follows that

ΔCV (F ) = ΔCW (F ) = ΔCV ′ (F ).
(2) Let F ∈ CV and G ∈ CW , where V,W ∈ C. Choose F1i, F2i ∈ CV

and G1i, G2i ∈ CW , i ∈ {1, . . . , n}, n ≥ 1 with ΔCV (F ) =
∑n

i=1 F1i ⊗ F2i and
ΔCW (G) =

∑n
i=1 G1i ⊗ G2i. Then FG,F1iG1j , F2iG2j ∈ CV⊗W for all elements

i, j in {1, . . . , n} by Lemma 2.3.4(3). The computation in the proof of Proposi-
tion 2.2.19 shows that

ΔCV ⊗W (FG) =
∑

1≤i,j≤n

F1iG1j ⊗ F2iG2j = ΔCV (F )ΔCW (G).

Hence ΔH0
C
(FG) = ΔH0

C
(F )ΔH0

C
(G). By (C3), cidk,1 = εH ∈ H0

C is the identity

element of the algebra H0
C . Since εH is an algebra map, ΔH0

C
is unitary.

(3) Let F = cVf,v, where V ∈ C, v ∈ V , and f ∈ V ∗. By (C4), V ∗ ∈ C, where for
all f ∈ V ∗, x ∈ H and v ∈ V , (xf)(v) = f(SH(x)v). Let V → V ∗∗, v �→ ϕv, be the

canonical isomorphism with ϕv(f) = f(v) for all f ∈ V ∗. Then SH0
C
(cVf,v) = cV

∗

ϕv ,f
,

and hence SH0
C
(F ) ∈ H0

C . As in the proof of Proposition 2.2.19, it follows that SH0
C

is the antipode of H0
C . �

Definition 2.3.8. Let H be an algebra, and H0 = H0
C , where C = HMfd.

The coalgebra H0 of Proposition 2.3.7(1) is called the dual coalgebra of H. If
H is a bialgebra or a Hopf algebra, H0 of Proposition 2.3.7(3) is called the dual
bialgebra or the dual Hopf algebra of H.

To characterize the elements of H0, we note

Lemma 2.3.9. Let A be an algebra. Then any left or right ideal of A of finite
codimension contains an ideal of A of finite codimension.

Proof. Let I ⊆ A be a left ideal, and assume that I is of finite codimension,
that is, dimA/I < ∞. Let ρ : A → End(A/I), a �→ (x �→ ax), be the natural
representation of A over A/I. Then the kernel of ρ is an ideal of A of finite
codimension which is contained in I. The proof for right ideals is similar. �
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Corollary 2.3.10. Let H be an algebra, and H0 the dual coalgebra.

(1) For any F ∈ H∗, F ∈ H0 if and only if F (I) = 0 for some ideal I of H
of finite codimension.

(2) Let F, F1i, F2i ∈ H0, i ∈ {1, . . . , n}, n ≥ 1. Then the following are
equivalent.
(a) ΔH0(F ) =

∑n
i=1 F1i ⊗ F2i.

(b) F (xy) =
∑n

i=1 F1i(x)F2i(y) for all x, y ∈ H.
(3) Let F, F1i, F2i ∈ H∗, i ∈ {1, . . . , n}, n ≥ 1, such that (2)(b) holds. Then

F ∈ H0.

Proof. (1) and (2) are clear from Proposition 2.3.7 and Lemma 2.3.3.
(3) Let I =

⋂n
i=1 ker(F2i). Then I has finite codimension in H, since finite

intersections of subspaces of finite codimension have finite codimension. By (2)(b),
F (HI) = 0. Hence F ∈ H0 by (1) and Lemma 2.3.9. �

For algebras A,B, a triple (M,λ, ρ) is an (A,B)-bimodule if (M,λ) ∈ AM,
(M,ρ) ∈ MB, and if ρ(λ ⊗ id) = λ(id ⊗ ρ) as maps A ⊗M ⊗ B → M , that is,
(am)b = a(mb) for all a ∈ A, b ∈ B, m ∈M .

Let A be an algebra and let M be an (A,A)-bimodule. A linear map d : A → M
is called a derivation if for all x, y ∈ A, d(xy) = xd(y) + d(x)y.

Let A,B be algebras, and σ, τ ∈ Alg(A,B). Let σBτ be the vector space B with
(A,A)-bimodule structure given by A ⊗ B → B, (a, b) �→ σ(a)b, and B ⊗ A → B,
(b, a) �→ bτ (a). A (σ, τ )-derivation (or a skew derivation) d : A → B is a
derivation from A to the (A,A)-bimodule σBτ , that is, a linear map d : A → B
such that

d(xy) = σ(x)d(y) + d(x)τ (y) for all x, y ∈ A.

Let (σ, τ )-Der(A,B) be the set of all (σ, τ )-derivations d : A → B. The next obvious
lemma is useful to construct skew derivations.

Lemma 2.3.11. Let A and B be algebras, σ, τ : A → B algebra homomorphisms,
and d : A → B a linear map. Then the following are equivalent.

(1) d is a (σ, τ )-derivation.
(2) The map

A→ M2(B), x �→
(
σ(x) d(x)
0 τ (x)

)
,

is an algebra homomorphism.

Skew derivations are related to skew-primitive elements of a coalgebra.

Corollary 2.3.12. Let H be an algebra, and H0 the dual coalgebra.

(1) G(H0) = Alg(H, k).
(2) Let σ, τ ∈ Alg(H, k). Then Pσ,τ (H

0) = (σ, τ )-Der(A, k).

Proof. This follows from Corollary 2.3.10. �

2.4. Basic Hopf algebra examples

Group-like and skew-primitive elements play a fundamental role in many Hopf
algebras. We discuss some examples and some theory from this perspective.

Proposition 2.4.1. Let H be a Hopf algebra.
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(1) The set G(H) is a subgroup of the group of invertible elements of H. The
subalgebra of H generated by G(H) is isomorphic to the group algebra of
G(H). Moreover, S(g) = g−1 for each g ∈ G(H).

(2) Let g, h ∈ G(H) and x ∈ Pg,h(H). Then S(x) = −g−1xh−1.

Proof. (1) Clearly, G(H) is a submonoid of H. Let g ∈ G(H). By definition
of the antipode, 1 = gS(g) = S(g)g. Hence g−1 = S(g) ∈ H, and g−1 ∈ G(H).
The remaining claim follows from Proposition 1.1.6.

(2) Since Δ(x) = g ⊗ x+ x⊗ h, and ε(x) = 0, we obtain that

0 = S(x(1))x(2) = g−1x+ S(x)h.

Hence S(x) = −g−1xh−1. �

Proposition 2.4.2. Let 0 �= q ∈ k. Let H be a bialgebra, g, h ∈ G(H), and
x ∈ Pg,1(H), y ∈ Ph,1(H). Then

(1) g − h ∈ Pg,h(H).
(2) If gh = hg, then hx, xh ∈ Pgh,h(H).
(3) If gy = qyg, hx = q−1xh, and gh = hg, then xy − qyx ∈ Pgh,1(H).
(4) If x, y ∈ P (H), then xy − yx ∈ P (H). If the characteristic of k is p > 0,

then xp ∈ P (H).
(5) Let n ≥ 2. If (n− 1)!q �= 0 and gx = qxg, then xn ∈ Pgn,1(H) if and only

if (n)q = 0.

Proof. (1) follows from the computation

Δ(g − h) = g ⊗ g − h⊗ h = g ⊗ (g − h) + (g − h)⊗ h.

Regarding (2), note that hx ∈ Phg,h(H) and xh ∈ Pgh,h(H).
For (3) we compute

Δ(xy − qyx) = (g ⊗ x+ x⊗ 1)(h⊗ y + y ⊗ 1)

− q(h⊗ y + y ⊗ 1)(g ⊗ x+ x⊗ 1)

= gh⊗ xy + gy ⊗ x+ xh⊗ y + xy ⊗ 1

− qhg ⊗ yx− qhx⊗ y − qyg ⊗ x− qyx⊗ 1

= gh⊗ (xy − qyx) + (xy − qyx)⊗ 1

+ (xh− qhx)⊗ y + (gy − qyg)⊗ x,

where we have used gh = hg in the last equality. This implies (3).
The first part of (4) is a special case of (3). The second part of (4) follows from

the binomial formula, since in characteristic p

Δ(xp) = (1⊗ x+ x⊗ 1)p = 1⊗ xp + xp ⊗ 1.

(5) holds by Proposition 1.9.5(2) since (g ⊗ x)(x⊗ 1) = q(x⊗ 1)(g ⊗ x). �

The next claim is an important generalization of Proposition 2.4.2(3). We
will apply it in Proposition 4.3.12 where H is the bosonization of a braided Hopf
algebra and xm � y is an iterated adjoint action. The skew-primitive elements
of the form xm � y will also be used in the construction of quantum groups, see
Proposition 8.1.3.
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Proposition 2.4.3. Let H be a bialgebra, q, r, s ∈ k, g, h ∈ G(H) with gh = hg,
and x ∈ Pg,1(H), y ∈ Ph,1(H). Assume that gx = qxg, gy = ryg, and hx = sxh.
For all m ∈ N0 let

xm � y =

m∑
k=0

(−r)kqk(k−1)/2

(
m

k

)
q

xm−kyxk.

(1) For any m ∈ N0,

Δ(xm � y) = xm � y ⊗ 1 +

m∑
k=0

(
m

k

)
q

(m−1∏
l=k

(1− qlrs)
)
xm−kgkh⊗ xk � y.

(2) Let m ∈ N0. If qmrs = 1, then xm+1 � y ∈ Pgm+1h,1.

Proof. (1) We proceed by induction on m. Clearly, x0 �y = y. Therefore the
claim holds for m = 0 since y ∈ Ph,1. Let m ∈ N0. Lemma 1.9.3(2) implies that

xm+1 � y = x(xm � y)− qmr(xm � y)x.

For 0 ≤ k ≤ m let ak =
(
m
k

)
q

(∏m−1
l=k (1−qlrs)

)
. Then induction hypothesis implies

that

(x⊗ 1)Δ(xm � y)− qmrΔ(xm � y)(x⊗ 1)

= xm+1 � y ⊗ 1 +

m∑
k=0

ak(1− qm+krs)xm+1−kgkh⊗ xk � y

and that

(g ⊗ x)Δ(xm � y)− qmrΔ(xm � y)(g ⊗ x)

=

m∑
k=0

akx
m−kgk+1h⊗ (qm−kx(xk � y)− qmr(xk � y)x)

=

m∑
k=0

akq
m−kxm−kgk+1h⊗ xk+1 � y

=
m+1∑
k=1

ak−1q
m+1−kxm+1−kgkh⊗ xk � y.

Therefore

Δ(xm+1 � y) = xm+1 � y ⊗ 1

+

m+1∑
k=0

(
ak(1− qm+krs) + ak−1q

m+1−k
)
xm+1−kgkh⊗ xk � y,
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where a−1 = 0 and am+1 = 0. From Lemma 1.9.3(1),(2) we obtain that

ak(1− qm+krs) + ak−1q
m+1−k

=

(
m

k

)
q

(1− qm+krs)

m−1∏
l=k

(1− qlrs) +

(
m

k − 1

)
q

qm+1−k
m−1∏
l=k−1

(1− qlrs)

=

((
m

k

)
q

(1− qm+krs) +

(
m

k − 1

)
q

qm+1−k(1− qk−1rs)

)m−1∏
l=k

(1− qlrs)

=

(
m+ 1

k

)
q

(1− qmrs)
m−1∏
l=k

(1− qlrs)

for 0 ≤ k ≤ m+ 1. This implies the formula for Δ(xm+1 � y).
(2) is a direct consequence of (1). �
In the next proposition we describe a standard method to construct bi-ideals

and Hopf ideals.

Proposition 2.4.4. Let H be a bialgebra, and X ⊆ H a subset of skew-
primitive elements. Let (X) denote the ideal of H generated by X. Then (X)
is a bi-ideal of H. If H is a Hopf algebra, then (X) is a Hopf ideal of H and
H/(X) is a Hopf algebra.

Proof. Any element of (X) is a sum of elements of the form axb with a, b ∈ H
and x ∈ X. To see that (X) is a bi-ideal it is enough to show that for any x ∈ X
and a, b ∈ H, Δ(axb) is contained in (X) ⊗ H + H ⊗ (X). For any x ∈ X, there
are g, h ∈ G(H) such that Δ(x) = g ⊗ x+ x⊗ h. Then

Δ(axb) = a(1)gb(1) ⊗ a(2)xb(2) + a(1)xb(1) ⊗ a(2)hb(2) ∈ H ⊗ (X) + (X)⊗H.

If H is a Hopf algebra, then Propositions 1.2.17(1) and 2.4.1(2) imply that

S(axb) = S(b)S(x)S(a)
= −S(b)g−1xh−1S(a) ∈ (X).

Hence (X) is a Hopf ideal. Finally, H/(X) is a Hopf algebra by Proposition 1.2.22.
�

Example 2.4.5. Recall that a Lie algebra is a vector space g together with
a k-bilinear map

[ , ] : g× g→ g, (x, y) �→ [x, y],

called the Lie bracket, such that

[x, x] = 0,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0

for all x, y, z ∈ g.
The universal enveloping algebra of g is the quotient algebra

U(g) = T (g)/I,

where I is the ideal of T (g) generated by the elements x ⊗ y − y ⊗ x − [x, y] with
x, y ∈ g. We view T (g) as a Hopf algebra by Example 1.2.25. Then U(g) is a
quotient Hopf algebra of the tensor algebra by Proposition 2.4.4, since I is generated
by primitive elements by Proposition 2.4.2(4).
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If g is a finite-dimensional Lie algebra with basis x1, . . . , xn and multiplication
table

[xi, xj ] =

n∑
k=1

αk
ijxk,

where αk
ij ∈ k for all i, j, k, then by definition

U(g) ∼= k〈x1, . . . , xn | xixj − xjxi =

n∑
k=1

αk
ijxk for all 1 ≤ i, j ≤ n〉,

and the elements x1, . . . , xn are primitive.

Example 2.4.6. Let sl2 be the Lie algebra of 2× 2-matrices with trace 0, and
with Lie bracket [x, y] = xy − yx for all x, y ∈ sl2. Then sl2 is 3-dimensional with
basis

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

Hence U(sl2) ∼= k〈e, f, h | ef − fe = h, he− eh = 2e, hf − fh = −2f〉.

Example 2.4.7. Let A = k[xij ]1≤i,j≤n be the commutative polynomial algebra
in n2 variables xij , 1 ≤ i, j ≤ n, where n ≥ 1. Using the universal property of A
one shows quickly that A is a bialgebra, where Δ and ε are given by

Δ(xij) =

n∑
k=1

xik ⊗ xkj , ε(xij) = δij

for all 1 ≤ i, j ≤ n. Let X,X1, X2 be the n×n-matrices with entries xij , xij⊗1 and
1⊗ xij in the i-th row and j-th column, respectively. Then Δ(X) = X1X2, where
Δ(X) = (Δ(xij))1≤i,j≤n. The determinant d = det(X) �= 0 of X is group-like.
Indeed, ϕ(det(X)) = det(ϕ(X)) for any commutative algebra B and any algebra
map ϕ : k[xij ]1≤i,j≤n → B, where ϕ(X) = (ϕ(xij))1≤i,j≤n. Hence

Δ(det(X)) = det(Δ(X))

= det(X1X2) = det(X1) det(X2) = det(X)⊗ det(X).

Thus A/(d− 1) is a bialgebra by Propositions 2.4.4 and 2.4.2(1).
For any commutative algebra R, the bijective map

Alg(A/(d− 1), R)→ SLn(R), ϕ �→ (ϕ(xij))1≤i,j≤n,

is a homomorphism of monoids, where Alg(A/(d−1), R) is a monoid under convolu-
tion, and the multiplication in SLn(R) is matrix multiplication. Hence the monoid
Alg(A/(d−1), R) is a group, since SLn(R) is. Thus idA/(d−1) is convolution invert-
ible, and A/(d− 1) is a Hopf algebra.

Example 2.4.8. Let 0 �= q ∈ k, and n ≥ 1 a natural number. The free algebra
k〈g, x〉 is a bialgebra with

Δ(g) = g ⊗ g, ε(g) = 1,

Δ(x) = g ⊗ x+ x⊗ 1, ε(x) = 0.

This is easily checked on the generators. Hence the algebras

k〈g, x | gx = qxg〉, k〈g, x | gn = 1, gx = qxg〉

The preliminary version made available with permission of the publisher, the American Mathematical Society.



2.4. BASIC HOPF ALGEBRA EXAMPLES 87

are quotient bialgebras of the free algebra by Proposition 2.4.2(1),(2). The bialgebra
k〈g, x | gx = qxg, gn = 1〉 is a Hopf algebra, since the antipode can be defined as
the algebra anti-homomorphism S with

S(g) = gn−1, S(x) = −gn−1x.

To see that S is well-defined, one has to check that

(S(g))n = 1, S(x)S(g) = qS(g)S(x).

Example 2.4.9. Let 0 �= q ∈ k. The free algebra k〈g, g−1, x〉 is a bialgebra
with

Δ(g) = g ⊗ g, Δ(g−1) = g−1 ⊗ g−1, Δ(x) = x⊗ 1 + g ⊗ x,

ε(g) = 1, ε(g−1) = 1, ε(x) = 0.

It admits an antipode, and hence a Hopf algebra structure, such that

S(g) = g−1, S(g−1) = g, S(x) = −g−1x.

The elements gg−1 − 1, g−1g − 1, and gx − qxg are skew-primitive by Proposi-
tion 2.4.2(1),(2). Therefore

Hq = k〈g, g−1, x | gg−1 = 1, g−1g = 1, gx = qxg〉

becomes a Hopf algebra by Proposition 2.4.4.

Example 2.4.10. Let n ≥ 2 be an integer, and q ∈ k a primitive n-th root of
unity. Then

Tq,n = k〈g, x | gn = 1, gx = qxg, xn = 0〉
is a Hopf algebra with

Δ(g) = g ⊗ g, ε(g) = 1, S(g) = gn−1,

Δ(x) = g ⊗ x+ x⊗ 1, ε(x) = 0, S(x) = −gn−1x

and is known as the Taft Hopf algebra. By Proposition 2.4.2(5), Tq,n is a quotient
Hopf algebra of the Hopf algebra k〈g, x | gx = qxg, gn = 1〉 in Example 2.4.8.

Example 2.4.11. Let 0 �= q ∈ k with q2 �= 1. Then

Uq(sl2) =k
〈
E,F,K,K−1 | KK−1 = 1 = K−1K,

KE = q2EK,KF = q−2FK,EF − FE =
K −K−1

q − q−1

〉
is a Hopf algebra with

Δ(K±1) = K±1 ⊗K±1, ε(K±1) = 1, S(K±1) = K∓1,

Δ(E) = K ⊗ E + E ⊗ 1, ε(E) = 0, S(E) = −K−1E,

Δ(F ) = 1⊗ F + F ⊗K−1, ε(F ) = 0, S(F ) = −FK.

As in Example 2.4.8, it follows from Proposition 2.4.2 that

Ũq(sl2) = k〈E,F,K,K−1 |KK−1 = 1 = K−1K,

KE = q2EK,KF = q−2FK〉
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is a Hopf algebra, where Δ, ε and S are defined on the generators by the same

formulas as for Uq(sl2). Let F̃ = FK in Uq(sl2). Then F̃ is (K, 1)-primitive and

EF̃ − q−2F̃E is (K2, 1)-primitive by Proposition 2.4.2. Moreover,

EF̃ − q−2F̃E = EFK − q−2FKE = EFK − FEK =
K2 − 1

q − q−1
,

and K2 − 1 is (K2, 1)-primitive by Proposition 2.4.2(1). Therefore

Uq(sl2) ∼= Ũq(sl2)

/(
EF̃ − q−2F̃E − K2 − 1

q − q−1

)
is a Hopf algebra.

The Hopf algebras in Examples 2.4.8 and 2.4.9 are special cases of the general
class of Hopf algebras Aχ in the next example.

Example 2.4.12. Let X be a set, G a group and (gx)x∈X a family of elements

in G. Assume that X ∩ G = ∅. Let Ã = k〈X ∪ G〉. By the universal property of

the tensor algebra, Ã has a unique bialgebra structure such that

Δ(x) = gx ⊗ x+ x⊗ 1, ε(x) = 0 for all x ∈ X,

Δ(g) = g ⊗ g, ε(g) = 1 for all g ∈ G.

Since products of group-like elements are group-like, the elements

1Ã − 1G, μÃ(g ⊗ h)− μG(g, h)

with g, h ∈ G are skew-primitive by Proposition 2.4.2(1). Thus the ideal Ĩ generated

by them is a bi-ideal and A = Ã/Ĩ is a bialgebra by Proposition 2.4.4. We denote

by S : Ã→ Ãop the algebra map with

S(x) = −g−1
x x, S(g) = g−1

for all x ∈ X, g ∈ G. Since S(1Ã − 1G) = 1Ã − 1G and

S(μÃ(g ⊗ h)− μG(g, h)) = μÃ(h
−1 ⊗ g−1)− μG(h

−1, g−1) ∈ Ĩ

for all g, h ∈ Ĩ, the map S induces an algebra map S : A → Aop which fulfills the
equations

S(x(1))x(2) = S(gx)x+ S(x)1 = g−1
x x− g−1

x x = 0

for all x ∈ X. Similarly, x(1)S(x(2)) = ε(x) for all x ∈ X,

g(1)S(g(2)) = μA(g ⊗ g−1) = μG(g, g
−1) = 1

and S(g(1))g(2) = ε(g)1 for all g ∈ G. Hence A is a Hopf algebra by Proposi-
tion 1.2.23. The group algebra of G is contained in A, since there is a well-defined
surjective algebra map A → kG mapping the residue classes of g ∈ G and x ∈ X
onto g and 0, respectively. Thus the images of the elements g ∈ G are linearly
independent in A.

Assume that G is abelian. Let χ : X → Ĝ, x �→ χx, be a map and let Aχ be
the quotient algebra

Aχ = A/(gx− χx(g)xg | g ∈ G, x ∈ X).
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By Proposition 2.4.2(2), for any g ∈ G, x ∈ X the element gx − χx(g)xg ∈ A is
(ggx, g)-primitive and hence Aχ is a Hopf algebra by Proposition 2.4.4. Note that

Aχ = k〈g, x | g ∈ G, x ∈ X, 1 = 1G, gh = μG(g, h) for all g, h ∈ G,

gx = χx(g)xg for all g ∈ G, x ∈ X〉
with Δ(g) = g ⊗ g, Δ(x) = gx ⊗ x+ x⊗ 1 for all g ∈ G, x ∈ X.

Remark 2.4.13. Let n ∈ N and let A = (aij)i,j∈{1,...,n} be a Cartan matrix.
Let h be a complex vector space of dimension 2n−rankA and let α∨

i ∈ h, αi ∈ h∗ for
1 ≤ i ≤ n be elements with αi(α

∨
j ) = aji. Assume that α1, . . . , αn and α∨

1 , . . . , α
∨
n

are linearly independent in h∗ and h, respectively.
Let h1, . . . , hdim h be a basis of h. Let g̃(A) be the complex Lie algebra given

by generators hj , ei, fi, where 1 ≤ j ≤ dim h, 1 ≤ i ≤ n, and relations

(1) [hj , hk] = 0,
(2) [hj , ei] = αi(hj)ei, [hj , fi] = −αi(hj)fi,
(3) [ei, fm] = δimα∨

i

for all i,m ∈ {1, . . . , n}, j, k ∈ {1, . . . , dim h}. There is a unique maximal ideal r

of g̃(A) having trivial intersection with h =
∑dim h

j=1 Chj . The quotient Lie algebra

g(A) = g̃(A)/r is called a Kac-Moody algebra.
The Lie algebra g̃(A) has a triangular decomposition

g̃(A) = ñ+ ⊕ h⊕ ñ−,

where ñ+ and ñ− are the Lie subalgebras of g̃(A) generated by e1, . . . , en and
f1, . . . , fn, respectively. Then r = (r ∩ ñ+)⊕ (r ∩ ñ−) and

r ⊆ [ñ+, ñ+]⊕ [ñ−, ñ−].

It is reasonable and fruitful to view the Hopf algebra Aχ in Example 2.4.12 as
the analog of ñ+ ⊕ h with the abelian Lie algebra h replaced by an abelian group
G. The analog of h⊕ ñ+/(r ∩ ñ+) then will be the quotient Hopf algebra of Aχ by
the maximal Hopf ideal contained in (X2).

2.5. Coinvariant elements

The main topics in this section are Hopf modules, one-sided coideal subalgebras
and coinvariant elements.

Definition 2.5.1. Let C be a coalgebra with a distinguished group-like element
1C ∈ G(C). Let V be a left C-comodule with comodule structure δV : V → C⊗V ,
and let W be a right C-comodule with comodule structure δW : W → W ⊗C. The
C-coinvariant elements of V and W with respect to 1C are defined by

coCV = {v ∈ V | δV (v) = 1C ⊗ v},
W coC = {w ∈ W | δW (w) = w ⊗ 1C}.

Lemma 2.5.2. Let C be a coalgebra with a distinguished group-like element 1C ,
and let X be a vector space. Then the linear maps

X → coC(C ⊗X), x �→ 1C ⊗ x,

X → (X ⊗ C)coC , x �→ x⊗ 1C ,
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are bijective, where the C-comodule structures of C ⊗ X and X ⊗ C are Δ ⊗ idX
and idX ⊗Δ, respectively.

Proof. We only consider C ⊗X. For all x ∈ X, 1C ⊗ x is coinvariant since
1C is group-like. Conversely, let

∑n
i=1 ci ⊗ xi ∈ coC(C ⊗X). Then

n∑
i=1

ci(1) ⊗ ci(2) ⊗ xi =

n∑
i=1

1C ⊗ ci ⊗ xi.

Applying idC ⊗ ε ⊗ idX to this equation gives
∑n

i=1 ci ⊗ xi = 1C ⊗
∑n

i=1 ε(ci)xi,
hence

∑n
i=1 ci ⊗ xi ∈ 1C ⊗X. �

If H is a bialgebra, we define H-coinvariant elements of H-comodules with
respect to the unit element 1 ∈ H.

Definition 2.5.3. Let H be a Hopf algebra, V a vector space, (V, ρ) ∈ MH ,
and (V, δ) ∈MH . Then (V, ρ, δ) is a right Hopf module over H if δ : V → V ⊗H,
v �→ v(0) ⊗ v(1), is right H-linear, that is,

δ(v · h) = v(0) · h(1) ⊗ v(1)h(2)

for all h ∈ H and v ∈ V , where ρ(v⊗ h) = v · h for all v ∈ V , h ∈ H. The category
MH

H of right Hopf modules over H has right Hopf modules over H as objects and
right H-linear and right H-colinear maps as morphisms.

Let M be a vector space. Then (M ⊗ H, idM ⊗ μ, idM ⊗ Δ) is a right Hopf
module over H.

The following result is also known as the fundamental theorem of Hopf modules.

Theorem 2.5.4 (Larson-Sweedler). Let H be a Hopf algebra, and (V, ρ, δ) a
right Hopf module over H.

(1) The map ϑ : V → V coH , v �→ v(0)S(v(1)), is well-defined.
(2) Let h ∈ H and v ∈ V . Then ϑ(vh) = ϑ(v)ε(h).
(3) The multiplication map V coH ⊗H → V, v ⊗ h �→ vh, is an isomorphism

of right Hopf modules over H with inverse given by v �→ ϑ(v(0))⊗ v(1).

Proof. (1) Let v ∈ V . Then ϑ(v) ∈ V coH , since

δ(v(0)S(v(1))) = v(0)S(v(3))⊗ v(1)S(v(2)) = v(0)S(v(1))⊗ 1.

(2) For all v ∈ V , h ∈ H,

ϑ(vh) = v(0)h(1)S(v(1)h(2)) = v(0)h(1)S(h(2))S(v(1)) = ϑ(v)ε(h).

(3) follows easily from (1) and (2). �
We note that by Theorem 2.5.4 and by Lemma 2.5.2, the functor

Mk →MH
H , M �→ M ⊗H,

mapping a linear function f onto f ⊗ idH , is an equivalence of categories.

Definition 2.5.5. Let C be a coalgebra, and B ⊆ C a subspace. Then B is
called a right coideal of C if Δ(B) ⊆ B ⊗ C (that is, B is stable under the right
coaction of C). It is called a left coideal of C if Δ(B) ⊆ C ⊗B.

Lemma 2.5.6. Let C be a coalgebra. Let I ⊆ C be a coideal with canonical
coalgebra map π : C → C/I, c �→ c, and let u ∈ C be a fixed element. Let
εu : C → C/I, c �→ ε(c)u.
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(1) Define

CcoC/I = {c ∈ C | c(1) ⊗ c(2) = c⊗ u}.

Then CcoC/I is a left coideal of C, and π|CcoC/I = εu|CcoC/I . Moreover,
any left coideal D of C such that π|D = εu|D is contained in CcoC/I .

(2) Define

coC/IC = {c ∈ C | c(1) ⊗ c(2) = u⊗ c}.

Then coC/IC is a right coideal of C, and π|coC/IC = εu|coC/IC. More-
over, any right coideal D of C such that π|D = εu|D is contained in
coC/IC.

Proof. (1) Define linear maps Δ, i1 : C → C ⊗ C/I by

Δ(c) = c(1) ⊗ c(2), i1(c) = c⊗ u

for all c ∈ C. Thus CcoC/I = ker(Δ − i1). Since Δ and i1 are left C-colinear,
CcoC/I is a left coideal of C. Note that

π(c) = π(ε(c(1))c(2)) = ε(c(1))π(c(2)) = ε(c)u = εu(c)

for any c ∈ CcoC/I .
Let now D ⊆ C be a left coideal with π|D = εu|D. Then

d(1) ⊗ d(2) = d(1) ⊗ π(d(2)) = d(1) ⊗ ε(d(2))u = d⊗ u

for any d ∈ D, and hence D ⊆ CcoC/I .
The proof of (2) is analogous to the one of (1). �

If G is a group and G′ ⊆ G is a subgroup, then the quotient set G/G′ of left
cosets is in general not a group but just a set on which G acts from the left. We now
define homogeneous spaces such as G/G′ for Hopf algebras or bialgebras. Thus we
have to define general quotient objects and dually general subobjects of a bialgebra.

Definition 2.5.7. Let A be a bialgebra and B ⊆ A a subspace. Then B is
a right (left) coideal subalgebra of A if B is a subalgebra and a right (left)
coideal of A.

There is a correspondence between right or left coideal subalgebras and quotient
coalgebras and left or right modules of a bialgebra. These are the quotients and
subobjects of a Hopf algebra which generalize homogeneous spaces for groups.

Proposition 2.5.8. Let A be a bialgebra.

(1) Let B be a right or left coideal subalgebra of A. Let B+ = ker(ε|B). Then
A/AB+ is a quotient coalgebra and a quotient left A-module of A, and
A/B+A is a quotient coalgebra and a quotient right A-module of A.

(2) Let I be a coideal and a left or right ideal of A. Then

AcoA/I = {a ∈ A | a(1) ⊗ a(2) = a⊗ 1}
is a left coideal subalgebra of A, and

coA/IA = {a ∈ A | a(1) ⊗ a(2) = 1⊗ a}
is a right coideal subalgebra of A.
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Proof. (1) By Lemma 1.1.14, B+ is a coideal of A, hence AB+ is a coideal
and a left A-submodule of A. Then A/AB+ is a quotient coalgebra and a quotient
left A-module of A. Similarly, A/B+A is a quotient coalgebra and a quotient right
A-module of A.

(2) Let I be a coideal and a left ideal of A. By Lemma 2.5.6(1), AcoA/I is a
left coideal of A. It is also a subalgebra of A. Indeed,

(aa′)(1) ⊗ (aa′)(2) = a(1)a
′
(1) ⊗ a(2)a

′
(2) = a(1)a

′
(1) ⊗ a(2)a

′
(2)

for all a, a′ ∈ A, since A/I is a left A-module. If a, a′ ∈ AcoA/I , then

(aa′)(1) ⊗ (aa′)(2) = a(1)a
′ ⊗ a(2)1 = a(1)a

′ ⊗ a(2) = aa′ ⊗ 1.

Similarly it is shown that AcoA/I is a left coideal subalgebra of A if I is a coideal
and a right ideal, and that coA/IA is a right coideal subalgebra of A if I is a coideal
and a left or right ideal of A. �

Example 2.5.9. Let G be a group, G′ ⊆ G a subgroup and G/G′ the set of left
residue classes g = gG′, g ∈ G. Then the vector space kG/G′ with basis g, g ∈ G,
is a left kG-module and a coalgebra by

xg = xg, ΔkG/G′(g) = g ⊗ g

for all x, g ∈ G.
Since (kG′)+ = ker(ε : kG′ → k) is the subspace of kG′ spanned by the elements

g′ − 1, g′ ∈ G′, we see that kG(kG′)+ = (kG′)+. Hence

kG/kG(kG′)+
∼=−→ kG/G′, g �→ g for all g ∈ G,

is an isomorphism of left kG-modules and of coalgebras.
Thus the group algebra kG′ is not only the vector space kernel of the quotient

map kG→ kG/G′, but if A = kG and B = kG′, then

B = AcoA/AB+

= coA/AB+

A.

We will see in Theorem 6.3.2 that pointed Hopf algebras have a rich quotient
theory. There is a one-to-one correspondence between all quotient objects of H and
a large class of subobjects.

In the following example we will use the notion of the coequalizer of two mor-
phisms.

Definition 2.5.10. Let C be any category and f, g : X → Y be morphisms.
An equalizer of f and g is a morphism e : E → X such that fe = ge, and for
each morphism e′ : E′ → X with fe′ = ge′ there is a unique morphism h : E′ → E
with eh = e′. The diagram

E
e �� X

f
��

g
�� Y

is called the equalizer diagram. Dually, a coequalizer of f and g is a morphism
c : Y → C such that cf = cg, and for each morphism c′ : Y → C ′ satisfying
c′f = c′g there is a unique morphism h : C → C ′ with hc = c′. The corresponding
diagram

X
f

��

g
�� Y

c �� C

is called the coequalizer diagram.
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If they exist, both equalizers and coequalizers are known to be unique up to
unique isomorphisms. Moreover, the morphism e in the equalizer diagram is a
monomorphism, that is, if d1, d2 : D → E with ed1 = ed2, then d1 = d2. Similarly,
the morphism c in the coequalizer diagram is an epimorphism.

If C is the category of abelian groups, the kernel of f − g with the inclusion
map e is an equalizer of f and g, and the cokernel of f − g with its quotient map c
is a coequalizer of f and g.

Example 2.5.11. Let A be a bialgebra and B ⊆ A a left coideal subalgebra.
Let p1 ∈ Hom(A ⊗ B,A), a ⊗ b �→ aε(b), and let μ : A ⊗ B → A denote the
multiplication map. Then the canonical map π : A → A/AB+ is the coequalizer
of p1 and μ. If A is finite-dimensional, then by duality, B∗ is a coalgebra and left
A∗-module quotient of A∗, and π∗ : (A/AB+)∗ → A∗ is the equalizer of the maps
p∗1, μ

∗ : A∗ → (A⊗B)∗ ∼= A∗⊗B∗. Thus (A/AB+)∗ is the left coideal subalgebra of
right B∗-coinvariant elements of A∗. In particular, if G is a finite group and G′ ⊆ G
is a subgroup, then kG/G′ ∼= (kG/G′)∗ is naturally embedded into kG ∼= (kG)∗ as

the left coideal subalgebra of right kG
′
-coinvariant elements of kG.

Example 2.5.12. Let n ≥ 2 be an integer and q ∈ k a primitive n-th root
of unity. The following subalgebras of the Taft Hopf algebra Tq,n are left coideal
subalgebras.

(1) R = k[x],
(2) k[gm], 1 ≤ m ≤ n, m|n,
(3) k[gm, x], 1 ≤ m < n, m|n,
(4) Rα = k[x+ αg], 0 �= α ∈ k.

The only proper Hopf subalgebras in this list are in (2). Moreover, Rα �= Rβ in (4)
for all 0 �= α, β ∈ k, α �= β. One can show that this list contains all left coideal
subalgebras of Tq,n.

2.6. Actions and coactions

Abstract groups are studied via their actions on sets, that is, as transformation
groups. Hopf algebras form the natural framework to describe actions on algebras.

Definition 2.6.1. Let H be a bialgebra, and A an algebra. Assume that A is
a left H-module with module structure λ : H ⊗A → A, h⊗ a �→ h · a. Then (A, λ)
is called a left H-module algebra if for all h ∈ H and a, b ∈ A,

h · (ab) = (h(1) · a)(h(2) · b),(2.6.1)

h · 1 = ε(h)1.(2.6.2)

If no confusion is possible, we suppress λ in the notation.

Equations (2.6.1) and (2.6.2) should be read as a very general Leibniz rule.
Indeed, according to them, primitive elements act by derivations of A.

Remark 2.6.2. Let H be a bialgebra and (A, λ) a left H-module algebra.

(1) Let g ∈ G(H). Then A → A, a �→ g · a, is an algebra homomorphism. If
g is invertible, then the same map is an algebra automorphism of A.

(2) Let g, h ∈ G(H) and define σ, τ ∈ Alg(A,A) by σ(a) = g · a, τ (a) = h · a
for all a ∈ A. If x ∈ Pg,h(H) then A → A, a �→ x ·a, is a (σ, τ )-derivation.

This follows from the explicit formulas of the comultiplication.
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Let H = kG be the group algebra of a group G. Then by (1), there is a
bijection between all left kG-module algebra structures kG⊗A→ A and all group
homomorphisms G→ Aut(A), where Aut(A) is the group of algebra automorphisms
of A.

Let H = U(g) be the universal enveloping algebra of a Lie algebra g. Then
by (2) (with g = h = 1), there is a bijection between all left U(g)-module algebra
structures on A and all Lie algebra homomorphisms g→ Der(A), where Der(A) is
the Lie algebra of derivations of A with commutator of derivations as Lie bracket.

Example 2.6.3. Let H be a Hopf algebra. Then H acts on itself via the left
adjoint action

H ⊗H → H, h⊗ x �→ adh(x) = h(1)xS(h(2)).

With this action, H becomes a left H-module algebra, since

adh(xy) = h(1)xyS(h(2)) = h(1)xS(h(2))h(3)yS(h(4)) = adh(1)(x) adh(2)(y)

for all h ∈ H and x, y ∈ A.

Example 2.6.4. Let A be an algebra, H a Hopf algebra, and γ : H → A an
algebra morphism. Define

adγ : H ⊗A→ A, h⊗ a �→ γ(h(1))aγ(S(h(2))).

Then A is a left H-module algebra with action adγ .

Proposition 2.6.5. Let H be a bialgebra and A an algebra which has a left
H-module structure H ⊗ A → A, h ⊗ a �→ h · a. Assume that the algebra H is
generated by a subset M ⊆ H such that for all h ∈ M and a, b ∈ A

h · (ab) = (h(1) · a)(h(2) · b), h · 1 = ε(h)1.

Then A is a left H-module algebra.

Proof. As in the proof of Proposition 1.2.23, let

H ′ = {h ∈ H | h · (ab) = (h(1) · a)(h(2) · b) for all a, b ∈ A, h · 1 = ε(h)1}.
Then M ⊆ H ′. We show that H ′ is a subalgebra of H. Clearly, 1 ∈ H ′ and H ′ is
a subspace of H. If g, h ∈ H ′, then gh ∈ H ′ since

(gh) · (ab) = g · (h · (ab))
= g · ((h(1) · a)(h(2) · b))
= ((g(1)h(1)) · a)((g(2)h(2)) · b)
= ((gh)(1) · a)((gh)(2) · b)

for all a, b ∈ A, and (gh) · 1 = g · (h · 1) = ε(g)ε(h)1 = ε(gh)1. �

Lemma 2.6.6. Let H be a bialgebra, A a left H-module algebra, and V ⊆ A
a subspace of A. Then the subalgebra of A generated by H · V is an H-module
subalgebra of A.

Proof. Let h1, . . . , hn ∈ H, v1, . . . , vn ∈ V, n ≥ 1, and h ∈ H. Then

h · ((h1 · v1) · · · (hn · vn)) = ((h(1)h1) · v1) · · · ((h(n)hn) · vn).
Thus the subalgebra of A generated by H · V is an H-submodule of A. �
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Lemma 2.6.7. Let H = k〈g, x〉 be the free algebra as a bialgebra in Exam-
ple 2.4.8 with g ∈ G(H) and x ∈ Pg,1(H). Let A be an algebra, σ : A → A an
algebra endomorphism, and δ : A → A a (σ, idA)-derivation. Then A is a left
H-module algebra with g · a = σ(a), x · a = δ(a) for all a ∈ A.

Proof. Since H is the free algebra in g, x, a left A-module structure on A,
that is, an algebra homomorphism H → Hom(A,A), is given by any action of g
and x. By Proposition 2.6.5, A is an H-module algebra since the axioms (2.6.1)
and (2.6.2) are satisfied for g, x ∈ H by Remark 2.6.2. �

Definition 2.6.8. Let H be a bialgebra and A a left H-module algebra. The
smash product algebra A#H is A⊗H with the algebra structure

(a#x)(b#y) = a(x(1) · b)#x(2)y, ηA#H(1) = 1#1(2.6.3)

for a, b ∈ A, x, y ∈ H, where we write a#h = a⊗h to indicate the algebra structure.

Proposition 2.6.9. Let H be a bialgebra and (A, λ) a left H-module algebra.
Then A#H is an algebra. The embeddings

A → A#H, a �→ a#1, H → A#H, h �→ 1#h,

are injective algebra homomorphisms, and the multiplication map A⊗H → A#H,
a⊗ h �→ (a#1)(1#h), is bijective.

Proof. The multiplication map A#H ⊗ A#H → A#H is well-defined since
it can be written as a composition of linear maps

A⊗H ⊗A⊗H
idA⊗Δ⊗idA⊗idH−−−−−−−−−−−→ A⊗H ⊗H ⊗A⊗H

idA⊗idH⊗τH,A⊗idH−−−−−−−−−−−−−→ A⊗H ⊗A⊗H ⊗H

idA⊗λ⊗idH⊗idH−−−−−−−−−−−→ A⊗A⊗H ⊗H
μA⊗μH−−−−−→ A⊗H.

To check associativity, let a, b, c ∈ A and x, y, z ∈ H. Then

(a#x)((b#y)(c#z)) = (a#x)(b(y(1) · c)#y(2)z)

= a(x(1) · (b(y(1) · c)))#x(2)y(2)z

= a(x(1) · b)(x(2)y(1) · c)#x(3)y(2)z,

((a#x)(b#y))(c#z) = (a(x(1) · b)#x(2)y)(c#z)

= a(x(1) · b)(x(2)y(1) · c)#x(3)y(2)z.

The remaining claims are obvious. �

Remark 2.6.10. There is a natural left action of the smash product algebra
A#H in Proposition 2.6.9 on A defined by

A#H ⊗A→ A, a#h⊗ x �→ a(h · x).

It corresponds to the natural left action of A#H on (A#H)/(A⊗H+). Thus there
is a natural algebra homomorphism

A#H → End(A),

of A#H into the algebra of linear endomorphisms of A.
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We will follow the convention to write ah instead of a#h in A#H for all a ∈ A,
h ∈ H. Thus we identify A and H with subalgebras of A#H. The multiplication
in A#H is then determined by the rule

ha = (h(1) · a)h(2)(2.6.4)

for all a ∈ A, h ∈ H.
Smash products generalize several familiar constructions in algebra.

Example 2.6.11. Let G be a group, A an algebra, and G → Aut(A) a group
homomorphism. Thus A is a left kG-module algebra. The smash product algebra
A ∗G = A#kG is called the skew group algebra.

Example 2.6.12. Let m,n ≥ 2 be natural numbers, and 0 �= q ∈ k with
qn = 1. Let G = 〈g〉 be a cyclic group of order n with generator g, and k[x] the
polynomial algebra in the indeterminate x. Then the quotient algebra k[x]/(xm) is
a left kG-module algebra with G-action given by the group homomorphism

G → Aut(k[x]/(xm)), g �→ (x �→ qx).

The algebra map

k〈g, x | gn = 1, xm = 0, gx = qxg〉 → k[x]/(xm)#k[g], g �→ 1#g, x �→ x#1,

is bijective, since the elements xigj , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1 span the
vector space on the left-hand side, and their images are a vector space basis in
k[x]/(xm)#kG.

In particular, we have found a vector space basis of n2 elements of the Taft
Hopf algebra Tq,n in Example 2.4.10. As an application, we can now prove that
the order of the linear automorphism S2 of the Taft Hopf algebra is n. Indeed,
S(x) = −g−1x and S2(x) = g−1xg = q−1x.

Example 2.6.13. The argument in Example 2.6.12 easily extends to the general
case of the Hopf algebras Aχ in Example 2.4.12. The free algebra k〈X〉 is a left
kG-module algebra by the group homomorphism

G → Aut(k〈X〉), g �→ (x �→ χx(g)x for all x ∈ X),

and the algebra map

Aχ → k〈X〉#kG, g �→ 1#g, x �→ x#1 for all g ∈ G, x ∈ X,

is bijective.

Smash products allow us to define Ore extensions and to prove their associa-
tivity in a natural way.

Remark 2.6.14. Let A be an algebra, σ : A → A an algebra endomorphism,
and δ : A → A a (σ, idA)-derivation. Let H = k〈g, x〉 be the free algebra, and
A the left H-module algebra defined in Lemma 2.6.7. Then the subalgebra of H
generated by x is the polynomial algebra k[x]. Since x is (g, 1)-primitive,

A#k[x] ⊆ A#k〈g, x〉

is a subalgebra. We define the Ore-extension A[θ;σ, δ] of A as the subalgebra
A#k[x] of the smash product, where we write θ instead of x. By Proposition 2.6.9,
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A#k[x] is a free left A-module with basis xi, i ≥ 0. With other words, the elements
of A[θ;σ, δ] can be written in a unique way as left polynomials

n∑
i=0

aiθ
i, ai ∈ A, 0 ≤ i ≤ n.

Multiplication is determined by the rule

θa = σ(a)θ + δ(a)(2.6.5)

for all a ∈ A.
In case σ is the identity of A, we write A[θ; δ] = A[θ; id, δ]. This algebra is a

formal differential operator algebra.
In case δ = 0, we write A[θ;σ] = A[θ;σ, 0].

Ore extensions, in particular iterations of them, are often suitable to construct
vector space bases of algebras.

Definition 2.6.15. Let A be an algebra, and B a subalgebra of A. Let n ≥ 1,
and x1, . . . , xn ∈ A. Let I be a subset of {1, . . . , n} and let N : I → N be a map
with N(i) ≥ 2 for each i ∈ I. If A is a free left B-module with basis

xa1
1 · · ·xan

n , a1, . . . , an ≥ 0, ai < N(i) for all i ∈ I,

then this basis is called a restricted PBW basis of A over B. If I is the empty
set, then the basis is said to be a PBW basis of A over B. If B = k1 then one talks
about a (restricted) PBW basis of A.

Example 2.6.16. Let k[t] be the polynomial algebra in the indeterminate t, and

let δ : k[t] → k[t] be the derivation δ(f) = df
dt for all f ∈ k[t]. Then A1 = k[t][θ; δ]

is the Weyl algebra. Note that

k〈x, y | xy − yx = 1〉 → A1, x �→ θ, y �→ t,

is an algebra isomorphism, since the elements xiyj , i, j ≥ 0, span the vector space
k〈x, y | xy − yx = 1〉, and their images form a PBW basis of A1. Under the action
defined in Remark 2.6.10, x acts on k[t] as the derivative d

dt , and y as multiplication
with t.

Example 2.6.17. We describe the quantum group Uq(sl2) of Example 2.4.11
as an iterated Ore extension. First let

A = k〈F,K,K−1 | KK−1 = 1 = K−1K,KFK−1 = q−2F 〉.
The algebra k[K,K−1] = k〈K,K−1 | KK−1 = 1 = K−1K〉 is the group algebra of
the infinite cyclic group generated by K. Let

σ1 : k[K,K−1]→ k[K,K−1]

be the algebra automorphism given by σ1(K) = q2K. Then the algebra homomor-
phism

A → k[K,K−1][θ;σ1], F �→ θ, K �→ K, K−1 �→ K−1,

is bijective, since the elements KiF j , i, j ∈ Z, j ≥ 0, span A as a vector space, and
their images in the Ore extension are a basis.

The map

σ : A → A, F �→ F, K±1 �→ q∓2K±1,
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is a well-defined algebra automorphism. By Lemma 2.3.11, it is easy to check that
there is a (σ, id)-derivation

δ : A → A, δ(K) = 0, δ(F ) =
K −K−1

q − q−1
.

Then the algebra homomorphism

Uq(sl2)→ A[θ;σ, δ], K±1 �→ K±1, F �→ F, E �→ θ,

is bijective. Again this follows since the elements

KiF jEk, i, j, k ∈ Z, j, k ≥ 0,

span Uq(sl2) and their images form a vector space basis of the Ore extension.
In particular, we have found a PBW basis of Uq(sl2) over k[K,K−1].

For the complete picture, in addition to actions on algebras we have to consider
coactions of bialgebras on algebras.

Definition 2.6.18. Let H be a bialgebra and A an algebra which is a right
H-comodule with structure map δ : A → A ⊗ H, a �→ a(0) ⊗ a(1). Then (A, δ)
(or simply A) is called a right H-comodule algebra if the structure map δ is an
algebra homomorphism, where A ⊗ H is the usual tensor product of algebras. In
terms of elements this means that for all a, b ∈ A,

δ(ab) = a(0)b(0) ⊗ a(1)b(1),(2.6.6)

δ(1) = 1⊗ 1.(2.6.7)

Left H-comodule algebras are defined similarly.

Remark 2.6.19. For any bialgebra H and right H-comodule algebra A,

AcoH = {a ∈ A | a(0) ⊗ a(1) = a⊗ 1}

is the set of right H-coinvariant elements. It is a subalgebra of A. If A is a left
H-comodule algebra,

coHA = {a ∈ A | a(−1) ⊗ a(0) = 1⊗ a}

is the subalgebra of left H-coinvariant elements of A.

Example 2.6.20. Let A,H be bialgebras, and π : A → H a bialgebra homo-
morphism. Then A is a right H-comodule algebra with structure map

A
Δ−→ A⊗A

idA⊗π−−−−→ A⊗H.

Example 2.6.21. Let H = k[xij ]1≤i,j≤n be the bialgebra in Example 2.4.7.
The commutative polynomial algebra k[x1, . . . , xn] is a right H-comodule algebra
with structure map

k[x1, . . . , xn]
δ−→ k[x1, . . . , xn]⊗H, xj �→

n∑
i=1

xi ⊗ xij , 1 ≤ j ≤ n.

The map δ represents multiplication of n× n-matrices on the n-dimensional affine
space, since

(δ(x1), . . . , δ(xn)) = (x1, . . . , xn)⊗ (xij)1≤i,j≤n.
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In general, actions of affine group schemes on affine schemes are given by com-
mutative comodule algebras of commutative Hopf algebras.

Smash product algebras A#H have an essential additional structure. They are
right H-comodule algebras.

Lemma 2.6.22. Let H be a bialgebra and A a left H-module algebra. Then
A#H is a right H-comodule algebra with comodule structure map

δ = idA ⊗Δ : A#H → A#H ⊗H,

and (A#H)coH = A⊗ k1 ∼= A.

Proof. To see that δ is an algebra map, let a, b ∈ A and x, y ∈ H. Then

δ((a#x)(b#y)) = δ(a(x(1) · b)#x(2)y)

= a(x(1) · b)#x(2)y(1) ⊗ x(3)y(2),

δ(a#x)δ(b#y) = (a#x(1) ⊗ x(2))(b#y(1) ⊗ y(2))

= a(x(1) · b)#x(2)y(1) ⊗ x(3)y(2).

The equality (A#H)coH = A⊗ k1 ∼= A follows from Lemma 2.5.2. �

It is easy to see that H-module algebras and H-comodule algebras can be
defined alternatively as algebras A whose structure maps μ : A ⊗ A → A and
η : k→ A are H-linear and H-colinear, respectively.

In the next theorem we formulate a necessary and sufficient condition for a
comodule algebra to be a smash product.

Theorem 2.6.23. Let H be a Hopf algebra and (A, δ) a right H-comodule
algebra with δ : A → A⊗H, a �→ a(0) ⊗ a(1).

(1) Assume that there is an algebra map γ : H → A which is right H-colinear,
where H is a right H-comodule via Δ. Then

R = AcoH = {a ∈ A | a(0) ⊗ a(1) = a⊗ 1}
is a left H-module algebra with H-action

adR : H ⊗R → R, h⊗ r �→ γ(h(1))rγ(S(h(2))).

The map

ϑ : A → R, a �→ a(0)γ(S(a(1))),
is a well-defined left R-linear map with ϑ|R = idR. The maps

Φ : R#H → A, r#h �→ rγ(h), Ψ : A → R#H, a �→ ϑ(a(0))#a(1),

are mutually inverse right H-colinear algebra isomorphisms.
(2) Conversely, assume that there is a left H-module algebra R and a right

H-colinear algebra isomorphism Φ : R#H → A. Then

γ : H → A, h �→ Φ(1#h),

is a right H-colinear algebra map.

Proof. (1) We first show that R is a left H-module algebra. By Example 2.6.4,
A is a left H-module algebra under the action adγ . For all h ∈ H,

δ(γ(h)) = γ(h(1))⊗ h(2),
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since γ is right H-colinear. Hence for all h ∈ H, r ∈ R,

δ(γ(h(1))rγ(S(h(2)))) = δ(γ(h(1)))δ(r)δ(S(h(2)))

= γ(h(1))rγ(S(h(4)))⊗ h(2)1S(h(3))

= γ(h(1))rγ(S(h(2)))⊗ 1.

Thus the map adγ : H ⊗A → A restricts to adR : H ⊗R → R.
The vector space A is a Hopf module in MH

H with H-comodule structure δ and
H-module structure A⊗H → A, a⊗ h �→ aγ(h). By Theorem 2.5.4, ϑ : A → R is
a well-defined map, and Φ,Ψ are inverse isomorphisms.

The map Φ is clearly right H-colinear, and it is an algebra map, since for all
g, h ∈ H and r, s ∈ R,

Φ(r#g)Φ(s#h) = rγ(g)sγ(h)

= rγ(g(1))sγ(S(g(2)))γ(g(3))γ(h)
= Φ(r(g(1) · s)#g(2)h)

= Φ((r#g)(s#h)).

(2) is obvious. �

Remark 2.6.24. In the situation of Theorem 2.6.23, we note the following rules
for ϑ which are easily checked. For all a ∈ A, h ∈ H,

(1) ϑ(aγ(h)) = ϑ(a)ε(h),
(2) ϑ(γ(h)a) = h · ϑ(a).

Here is a useful tool to compute R = AcoH .

Lemma 2.6.25. Under the assumptions of Theorem 2.6.23, let W ⊆ R be a
vector subspace such that A as an algebra is generated by W and γ(H). Then the
algebra R is generated by (adRγ(H))(W ).

Proof. Let R′ be the subalgebra of R generated by (adRγ(H))(W ). By
Lemma 2.6.6, R′ is an H-module subalgebra under the adjoint action. Hence R′#H
is a subalgebra of R#H. The restriction of the isomorphism Φ in Theorem 2.6.23(1)
to R′#H is surjective, since W and γ(H) generate A. Thus R′ = R. �

2.7. Cleft objects and two-cocycles

We have seen in Theorem 2.6.23 that smash products have an elegant descrip-
tion as right H-comodule algebras which admit a right H-colinear algebra map
γ : H → A. In this section we study a more general situation.

Definition 2.7.1. Let H be a Hopf algebra and (A, δ) with δ : A → A ⊗ H
a right H-comodule algebra. Then A is H-cleft if there is a right H-colinear map
γ : H → A which is invertible with respect to convolution. Then γ is called a
section if γ(1) = 1. An H-cleft object is an H-cleft right H-comodule algebra
with AcoH = k1.

We note that in the definition, γ can always be assumed to be a section by
replacing γ by γγ(1)−1. Let R be a left H-module algebra, and A = R#H the
smash product. The map H → A, h �→ 1 ⊗ h, is a right H-colinear algebra map.
Hence A is H-cleft, since any algebra map γ : H → A is invertible with inverse γS.
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The explicit description of H-cleft H-comodule algebras as an algebra structure
on R ⊗ H is much more complicated than for smash products. It involves some
kind of general two-cocycle. In this section we will only consider H-cleft objects.
They are completely described by two-cocycles defined as follows.

Definition 2.7.2. Let H be a bialgebra over a field k. A map σ : H ⊗H → k
is called a two-cocycle for H, if it is convolution invertible and satisfies

σ(x(1) ⊗ y(1))σ(x(2)y(2) ⊗ z) = σ(y(1) ⊗ z(1))σ(x⊗ y(2)z(2))(2.7.1)

for all x, y, z ∈ H. We say that σ is normalized if σ(1⊗ 1) = 1.

Remark 2.7.3. (1) By Definition 1.2.9, a linear map σ : H ⊗ H → k is con-
volution invertible if and only if there is a linear map σ−1 : H ⊗ H → k such
that

σ(x(1) ⊗ y(1))σ
−1(x(2) ⊗ y(2)) = σ−1(x(1) ⊗ y(1))σ(x(2) ⊗ y(2)) = ε(x)ε(y)

for all x, y ∈ H.
(2) For any two-cocycle σ for a Hopf algebraH and for any λ ∈ k with λ �= 0, the

map λσ is a two-cocycle for H with convolution inverse λ−1σ−1. The invertibility
of σ implies that σ(1⊗ 1) �= 0. Therefore, any two-cocycle for H is a multiple of a
normalized two-cocycle.

(3) Let H be a bialgebra and let σ be a two-cocycle for H. Then the map
σop : H ⊗ H → k, x ⊗ y �→ σ(y ⊗ x), is a two-cocycle for Hop. The convolution
inverse of σop is (σ−1)op.

(4) The inverse of a two-cocycle σ for a bialgebra H is a two-cocycle for Hcop.
Indeed, (2.7.1) is equivalent to

(σ ⊗ ε) ∗ σ(μ⊗ id) = (ε⊗ σ) ∗ σ(id⊗ μ)

in Hom(H ⊗H ⊗H, k). Convolution multiplication of the latter from the left with
ε⊗ σ−1 and from the right with σ−1(μ⊗ id) results in

σ−1(y(1) ⊗ z)σ(x⊗ y(2)) = σ(x(1) ⊗ y(1)z(1))σ
−1(x(2)y(2) ⊗ z(2))(2.7.2)

for all x, y, z ∈ H. Then additional convolution multiplication from the left with
σ−1(id⊗ μ) and from the right with σ−1 ⊗ ε yields

σ−1(x⊗ y(1)z(1))σ
−1(y(2) ⊗ z(2)) = σ−1(x(1)y(1) ⊗ z)σ−1(x(2) ⊗ y(2))

for all x, y, z ∈ H.
(5) Let σ be a two-cocycle for a bialgebra H. Then

σ(x⊗ 1) = σ(1⊗ x) = ε(x)σ(1⊗ 1),(2.7.3)

σ−1(x⊗ 1) = σ−1(1⊗ x) = ε(x)σ−1(1⊗ 1)(2.7.4)

for any x ∈ H. Indeed, σ(x⊗ 1) = ε(x)σ(1⊗ 1) by (2.7.2) with y = z = 1 and by
the definition of σ−1. Then σ(1⊗ x) = ε(x)σ(1⊗ 1) for any x ∈ H using the latter
equation for the bialgebra Hop with the two-cocycle σop. The equations in (2.7.4)
follow from (2.7.3) applied to Hcop and σ−1.

Remark 2.7.4. Let G be a group with neutral element e and kG the group
algebra. A function σ : G × G → k× is a normalized two-cocycle of the group G
(with respect to the trivial action), if for all x, y, z ∈ G,

σ(x, y)σ(xy, z) = σ(y, z)σ(x, yz),

σ(z, e) = σ(e, z) = 1.
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A linear map σ : kG ⊗ kG → k is a normalized two-cocycle for the Hopf algebra
kG if and only if the restriction of σ defines a normalized two-cocycle of the group
G. Note that for any two-cocycle σ for kG, σ(g⊗ h) �= 0 for all g, h ∈ G, since σ is
convolution invertible.

Let G be abelian. Then any bilinear form σ : G × G → k× is a normalized
two-cocycle.

LetG be a free abelian group with basis g1, . . . , gθ. Then any family (σij)1≤i,j≤θ

of non-zero elements in k defines a normalized two-cocycle σ : kG⊗ kG → k which
is determined by the bilinear form σ : G×G → k× given by σ(gi, gj) = σij for all
i, j ∈ {1, . . . , θ}.

Lemma 2.7.5. Let H be a Hopf algebra and σ a two-cocycle for H. Then for
all x ∈ H,

σ(x(1) ⊗ S(x(2)))σ
−1(S(x(3))⊗ x(4)) = ε(x).(2.7.5)

Proof. Equation (2.7.2) with x⊗ y ⊗ z = x(1) ⊗ S(x(2))⊗ x(3) yields

σ−1(S(x(3))⊗ x(4))σ(x(1) ⊗ S(x(2)))

= σ(x(1) ⊗ S(x(4))x(5))σ
−1(x(2)S(x(3))⊗ x(6))

(2.7.6)

for all x ∈ H. The left hand side of (2.7.6) is just the left hand side of (2.7.5). The
right hand side of (2.7.6) equals ε(x) because of the antipode and counit axioms
and Remark 2.7.3(5). �

Lemma 2.7.6. Let H be a Hopf algebra, and let (A, δ) be an H-cleft object with
section γ : H → A. Then

(1) δ(γ(x)) = γ(x(1))⊗ x(2) for all x ∈ H,

(2) δ(γ−1(x)) = γ−1(x(2))⊗ S(x(1)) for all x ∈ H.

Proof. (1) just says that γ is right H-colinear, and (2) follows since δ induces
an algebra map Hom(H,A) → Hom(H,A ⊗ H) with respect to convolution, and
the formula in (2) is an expression for δγ−1(x). �

Remark 2.7.7. The axiom of a two-cocycle is explained by the following equiv-
alence which is easily checked.

Let H be a bialgebra and let σ : H ⊗ H → k be a linear map. Define a new
product on the vector space H by

μ(σ) : H ⊗H → H, x⊗ y �→ σ(x(1) ⊗ y(1))x(2)y(2).

Then H with μ(σ) is an associative algebra with the old unit 1 if and only if σ
satisfies (2.7.1), (2.7.3), and if σ(1⊗ 1) = 1.

Definition 2.7.8. Let H be a bialgebra and σ a normalized two-cocycle for
H. We denote by H(σ) the vector space H with algebra structure given by

H ⊗H → H, x⊗ y �→ σ(x(1) ⊗ y(1))x(2)y(2).(2.7.7)

The next theorem shows that H-cleft objects are given by two-cocycles, and
that two-cocycles can be constructed by finding a section of an H-cleft object.

Theorem 2.7.9. Let H be a bialgebra.

(1) Let σ be a normalized two-cocycle for H. Then H(σ) is an H-cleft object
with H-comodule algebra structure Δ : H(σ) → H(σ) ⊗ H and section
γ = id : H → H(σ).
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(2) Let A be an H-cleft object with section γ and comodule algebra structure
δ : A → A⊗H, a �→ a(0) ⊗ a(1). Let

σ(x⊗ y) = γ(x(1))γ(y(1))γ
−1(x(2)y(2))

for all x, y ∈ H. Then σ is a normalized two-cocycle for H, and the map
γ : H(σ) → A is a right H-colinear algebra isomorphism.

Proof. (1) By Remark 2.7.7 and Definition 2.7.8, H(σ) is a right H-comodule
algebra. Lemma 2.7.5 implies that γ = id is invertible with inverse

γ−1(x) = σ−1(S(x(2))⊗ x(3))S(x(1))

for all x ∈ H.
(2) Using Lemma 2.7.6 it follows easily that for all x, y ∈ H and a ∈ A, the

elements σ(x⊗y) = γ(x(1))γ(y(1))γ
−1(x(2)y(2)) and a(0)γ

−1(a(1)) are in AcoH = k1.
Hence σ defines a multiplication μ′ in H(σ), and

λ : A→ H(σ), a �→ a(0)γ
−1(a(1))a(2),

is a well-defined linear map. Now it is easy to check that γλ = idA, λγ = idH , that
σ : H ⊗H → k is invertible with inverse given by

σ−1(x⊗ y) = γ(x(1)y(1))γ
−1(y(2))γ

−1(x(2))

for all x, y ∈ H. Moreover, for all x, y ∈ H(σ),

γ(μ′(x⊗ y)) = γ(σ(x(1) ⊗ y(1))x(2)y(2))

= γ(x(1))γ(y(1))γ
−1(x(2)y(2))γ(x(3)y(3)) = γ(x)γ(y)

by definition of σ. Thus, γ : H(σ) → A commutes with the multiplication. Hence
H(σ) is an associative algebra, and σ is a two-cocycle by Remark 2.7.7. This proves
(2). �

2.8. Two-cocycle deformations and Drinfeld double

Two-cocycles play an important role for the construction of new bialgebras.

Definition 2.8.1. Let H be a bialgebra and σ a two-cocycle for H. Let
Hσ = H as a coalgebra with multiplication

μσ : Hσ ⊗Hσ → Hσ, x⊗ y �→ σ(x(1) ⊗ y(1))x(2)y(2)σ
−1(x(3) ⊗ y(3)).

Theorem 2.8.2. Let H be a bialgebra and let σ be a two-cocycle for H. Then
Hσ is a bialgebra. If H is a Hopf algebra, then Hσ is a Hopf algebra with antipode
Sσ, where

Sσ(x) = σ(x(1) ⊗ S(x(2)))S(x(3)) σ
−1(S(x(4))⊗ x(5))

for all x ∈ Hσ.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



104 2. BASIC HOPF ALGEBRA THEORY

Proof. (1) We first show that Hσ is a bialgebra. For any x, y, z ∈ H we obtain
that

μσ(x⊗ μσ(y ⊗ z)) = σ(y(1) ⊗ z(1))μσ(x⊗ y(2)z(2))σ
−1(y(3) ⊗ z(3))

= σ(y(1) ⊗ z(1))σ(x(1) ⊗ y(2)z(2))x(2)y(3)z(3)

σ−1(x(3) ⊗ y(4)z(4))σ
−1(y(5) ⊗ z(5))

= σ(x(1) ⊗ y(1))σ(x(2)y(2) ⊗ z(1))x(3)y(3)z(2)

σ−1(x(4)y(4) ⊗ z(3))σ
−1(x(5) ⊗ y(5))

= μσ(σ(x(1) ⊗ y(1))x(2)y(2)σ
−1(x(3) ⊗ y(3))⊗ z)

= μσ(μσ ⊗ id)(x⊗ y ⊗ z)

by Remark 2.7.3(4). Therefore μσ is associative.
The unit 1 ∈ H is a unit for Hσ. Indeed,

μσ(x⊗ 1) = σ(x(1) ⊗ 1)x(2)σ
−1(x(3) ⊗ 1)

= ε(x(1))σ(1⊗ 1)x(2)ε(x(3))σ
−1(1⊗ 1)

= x

for all x ∈ H by Remark 2.7.3(5). Similarly, μσ(1⊗ x) = x for all x ∈ H.
Clearly, the counit of Hσ is an algebra map. Finally, the comultiplication of

Hσ is an algebra map. Indeed, for any x, y ∈ Hσ we obtain that

Δ(μσ(x⊗ y)) = σ(x(1) ⊗ y(1))Δ(x(2)y(2))σ
−1(x(3) ⊗ y(3))

= σ(x(1) ⊗ y(1))x(2)y(2) ⊗ x(3)y(3)σ
−1(x(4) ⊗ y(4))

= σ(x(1) ⊗ y(1))x(2)y(2)σ
−1(x(3) ⊗ y(3))

⊗ σ(x(4) ⊗ y(4))x(5)y(5)σ
−1(x(6) ⊗ y(6))

= μσ(x(1) ⊗ y(1))⊗ μσ(x(2) ⊗ y(2)).

(2) Now let H be a Hopf algebra. Let x ∈ H. Then

μσ(x(1) ⊗ Sσ(x(2)))

= σ(x(2) ⊗ S(x(3)))μσ(x(1) ⊗ S(x(4)))σ
−1(S(x(5))⊗ x(6))

= σ(x(4) ⊗ S(x(5)))σ(x(1) ⊗ S(x(8)))

x(2)S(x(7))σ
−1(x(3) ⊗ S(x(6)))σ

−1(S(x(9))⊗ x(10)).

The underlined factors can be simplified to ε(x(3))ε(x(4))ε(x(5))ε(x(6))1 by the def-

inition of σ−1. Therefore the expression simplifies further to

σ(x(1) ⊗ S(x(4)))x(2)S(x(3))σ
−1(S(x(5))⊗ x(6))

= σ(x(1) ⊗ S(x(2)))σ
−1(S(x(3))⊗ x(4)) = ε(x),

where the last equation holds by (2.7.5). The equation

μσ(Sσ(x(1))⊗ x(2)) = ε(x)

is proven analogously. �

The bialgebra Hσ in Theorem 2.8.2 is called a two-cocycle deformation of
H.
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Remark 2.8.3. Let H be a bialgebra, and σ0, σ1 two-cocycles for H. Using
Remark 2.7.3(4) it is easy to see that the convolution product ρ = σ1 ∗ σ−1

0 is a
two-cocycle for Hσ0

. Then, by Definition 2.8.1,

Hσ1
= (Hσ0

)ρ.

If H is the tensor product of two bialgebras, then two-cocycles can be con-
structed via skew pairings.

Definition 2.8.4. Let A,U be bialgebras over a field k. A skew pairing of
A and U is a linear map τ : A⊗ U → k satisfying the equations

τ (a⊗ 1) = ε(a), τ (1⊗ x) = ε(x),(2.8.1)

τ (ab⊗ x) = τ (a⊗ x(1))τ (b⊗ x(2)),(2.8.2)

τ (a⊗ xy) = τ (a(1) ⊗ y)τ (a(2) ⊗ x)(2.8.3)

for any a, b ∈ A and x, y ∈ U .

Remark 2.8.5. Let A,U be bialgebras. A skew pairing τ of A and U is nothing
but a bialgebra homomorphism ϕ from Acop to the dual bialgebra U0 of U . The
correspondence is given by the equation

〈ϕ(a), x〉 = τ (a⊗ x)

for any a ∈ A and x ∈ U , where 〈 , 〉 denotes evaluation. Therefore, very often skew
pairings can be constructed explicitly, if the algebra A is given by generators and
relations. We will show in Proposition 2.8.7 below that any invertible skew pairing
defines a two-cocycle. This is a very elegant way to actually find two-cocycles.

Lemma 2.8.6. Let A,U be bialgebras, and τ : A⊗U → k a skew pairing. If A is
a Hopf algebra, or U is a Hopf algebra with bijective antipode, then τ is invertible,
and for all a ∈ A, x ∈ U ,

τ−1(a⊗ x) = τ (S(a)⊗ x), τ−1(a⊗ x) = τ (a⊗ S−1(x)),

respectively.

Proof. Assume that A is a Hopf algebra. Then

τ−1(a(1) ⊗ x(1))τ (a(2) ⊗ x(2))

= τ (S(a(1))⊗ x(1))τ (a(2) ⊗ x(2)) = τ (S(a(1))a(2)1⊗ x) = ε(a)ε(x)

for all a, b ∈ A, u ∈ U , where the second and third equations follow from Defini-
tion 2.8.4. The equation ττ−1 = ε⊗ ε is proven analogously.

If U is a Hopf algebra with bijective antipode, the proof is similar. �

Proposition 2.8.7. Let A,U be bialgebras and let H = A ⊗ U . For any
invertible skew pairing τ of A and U , the map

σ : H ⊗H → k, σ((a⊗ x)⊗ (b⊗ y)) = ε(a)τ (b⊗ x)ε(y),

is a two-cocycle for H. The inverse of σ is given by

σ−1((a⊗ x)⊗ (b⊗ y)) = ε(a)τ−1(b⊗ x)ε(y)

for all a, b ∈ A and x, y ∈ U .
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Proof. Let σ−1 : H ⊗ H → k be as in the proposition. We check first that
σ−1 is the inverse of σ. For any a, b ∈ A and x, y ∈ U we obtain that

σ((a(1) ⊗ x(1))⊗ (b(1) ⊗ y(1)))σ
−1((a(2) ⊗ x(2))⊗ (b(2) ⊗ y(2)))

= ε(a(1))τ (b(1) ⊗ x(1))ε(y(1))ε(a(2))τ
−1(b(2) ⊗ x(2))ε(y(2))

= ε(a)ε(b)ε(x)ε(y)

and hence σσ−1 = ε. Similarly, σ−1σ = ε.
Now we verify (2.7.1). Let a, b, c ∈ A and x, y, z ∈ U . Then

σ((a(1) ⊗ x(1))⊗ (b(1) ⊗ y(1)))σ((a(2)b(2) ⊗ x(2)y(2))⊗ (c⊗ z))

= ε(a(1))τ (b(1) ⊗ x(1))ε(y(1))ε(a(2)b(2))τ (c⊗ x(2)y(2))ε(z)

= τ (b⊗ x(1))τ (c⊗ x(2)y)ε(a)ε(z)

= τ (b⊗ x(1))τ (c(1) ⊗ y)τ (c(2) ⊗ x(2))ε(a)ε(z).

On the other hand,

σ((b(1) ⊗ y(1))⊗ (c(1) ⊗ z(1)))σ((a⊗ x)⊗ (b(2)c(2) ⊗ y(2)z(2)))

= ε(b(1))τ (c(1) ⊗ y(1))ε(z(1))ε(a)τ (b(2)c(2) ⊗ x)ε(y(2)z(2))

= τ (c(1) ⊗ y)τ (bc(2) ⊗ x)ε(a)ε(z)

= τ (c(1) ⊗ y)τ (b⊗ x(1))τ (c(2) ⊗ x(2))ε(a)ε(z).

This proves the claim. �

Corollary 2.8.8. Let A,U be bialgebras, τ : A ⊗ U → k an invertible skew
pairing, and let σ be the two-cocycle for the bialgebra A⊗U defined by τ in Propo-
sition 2.8.7.

(1) (A⊗ U)σ is a bialgebra with the comultiplication of A⊗ U . The maps

A → (A⊗ U)σ, a �→ a⊗ 1, U → (A⊗ U)σ, x �→ 1⊗ x,

are injective bialgebra maps. For all a ∈ A, x ∈ U , in (A⊗ U)σ,

(a⊗ 1)(1⊗ x) = a⊗ x,

(1⊗ x)(a⊗ 1) = τ (a(1) ⊗ x(1))a(2) ⊗ x(2)τ
−1(a(3) ⊗ x(3)).

(2) If A and U are Hopf algebras, then (A⊗U)σ is a Hopf algebra with antipode
Sσ, and for all a ∈ A, x ∈ U ,

Sσ(a⊗ x) = τ (S(a(1))⊗ x(1))(S(a(2))⊗ S(x(2)))τ
−1(a(3) ⊗ S(x(3))).

Proof. (1) By Theorem 2.8.2 and Proposition 2.8.7, (A⊗ U)σ is a bialgebra.
For all a, b ∈ A, the product of a⊗ 1 and b⊗ 1 in (A⊗ U)σ is given by

σ((a(1) ⊗ 1)⊗ (b(1) ⊗ 1))(a(2) ⊗ 1)(b(2) ⊗ 1)σ−1((a(3) ⊗ 1)⊗ (b(3) ⊗ 1))

= τ (b(1) ⊗ 1)ab(2) ⊗ 1τ−1(b(3) ⊗ 1)

= ab⊗ 1.
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Similarly, U → (A⊗ U)σ, x �→ 1⊗ x, is an algebra map. Moreover, for any a ∈ A
and x ∈ U , (a⊗ 1)(1⊗ x) = a⊗ x, and

(1⊗ x)(a⊗ 1)

= σ((1⊗ x(1))⊗ (a(1) ⊗ 1))a(2) ⊗ x(2)σ
−1((1⊗ x(3))⊗ (a(3) ⊗ 1))

= τ (a(1) ⊗ x(1))a(2) ⊗ x(2)τ
−1(a(3) ⊗ x(3)).

(2) follows from Theorem 2.8.2 and Proposition 2.8.7. �

The bialgebra (A⊗ U)σ in Corollary 2.8.8 is known as Drinfeld’s quantum
double of A and U .

Remark 2.8.9. Let U be a finite-dimensional Hopf algebra. Then the eval-
uation map τ : U∗ ⊗ U → k is an invertible skew pairing of (U∗)cop and U by
Lemma 2.8.6. Let σ be the two-cocycle given by τ as in Proposition 2.8.7. Then
((U∗)cop ⊗ U)σ is called the Drinfeld double of U . It is a Hopf algebra by the
results of this section.

We now discuss two ways to define an algebra map on (A⊗ U)σ.

Lemma 2.8.10. Let C be an algebra and let A,U be subalgebras of C such
that the multiplication map A ⊗ U → C is bijective. Assume that A and U
are given by generators (ai)i∈IA and (bk)k∈IU and relations rj((ai)i∈IA), j ∈ JA,
and sj((bk)k∈IU ), j ∈ JU , respectively. Let VA = spank{1, ai | i ∈ IA}, and
VU = spank{1, bk | k ∈ IU}. Assume that VUVA ⊆ VAVU . Then C is canoni-
cally isomorphic to 〈ai, bk | i ∈ IA, k ∈ IU 〉/I, where I is the ideal generated by
rj((ai)i∈IA), j ∈ JA, sj((bk)k∈IU ), j ∈ JU , and the quadratic relations of C in
VUVA + VAVU .

Proof. The algebra C is generated by the set {ai, bk | i ∈ IA, k ∈ IU}. Let
C = 〈ai, bk | i ∈ IA, k ∈ IU 〉/I. Then, by construction, there is a surjective algebra
map f : C → C with f(ai) = ai, f(bk) = bk for all i ∈ IA, k ∈ IU . Let A
and U be the subalgebras of C generated by (ai)i∈IA and (bk)k∈IU , respectively.
Then f |A : A → A and f |U : U → U are bijective by construction. Moreover,
bkV

n
A ⊆ V n

AVU for all k ∈ IU and n ∈ N, and hence C = AU . Thus the diagram

A⊗ U
mult ��

f |A⊗f |U
��

C

f

��

A⊗ U
mult

�� C

of surjective maps commutes, where mult denotes the multiplication map. Hence
f : C → C is bijective. �

Proposition 2.8.11. Let A,U be bialgebras, T an algebra, ϕA : A → T and
ϕU : U → T algebra maps, and τ : A ⊗ U → k an invertible skew pairing with
corresponding two-cocycle σ for A ⊗ U . Let P ⊆ A × U be the subset of all pairs
(a, x) ∈ A× U satisfying

ϕU (x(1))ϕA(a(1))τ (a(2) ⊗ x(2)) = τ (a(1) ⊗ x(1))ϕA(a(2))ϕU (x(2)).
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Let (ak)k∈K and (xl)l∈L be generators of the algebras A and U , respectively,
and let C = spank{ak | k ∈ K}. Assume

(1) C ⊆ A is a subcoalgebra,
(2) (ak, xl) ∈ P for all k ∈ K, l ∈ L.

Then the map

ϕ : (A⊗ U)σ → T, a⊗ x �→ ϕA(a)ϕU (x),

is an algebra map. If T is a bialgebra, and ϕA, ϕU are bialgebra maps, then ϕ is a
bialgebra map.

Proof. Let D = spank{xl | l ∈ L}. Note that by (2), (a, x) ∈ P for all a ∈ C,
x ∈ D.

Let x, y ∈ U , and assume that for all a ∈ C, (a, x) ∈ P and (a, y) ∈ P. Then
for all a ∈ C, (a, xy) ∈ P, since

ϕU (x(1)y(1))ϕA(a(1))τ (a(2) ⊗ x(2)y(2))

= ϕU (x(1))ϕU (y(1))ϕA(a(1))τ (a(2) ⊗ y(2))τ (a(3) ⊗ x(2))

= ϕU (x(1))τ (a(1) ⊗ y(1))ϕA(a(2))ϕU (y(2))τ (a(3) ⊗ x(2))

= τ (a(2) ⊗ x(1))ϕA(a(3))ϕU (x(2))τ (a(1) ⊗ y(1))ϕU (y(2))

= τ (a(1) ⊗ x(1)y(1))ϕA(a(2))ϕU (x(2)y(2)),

where the first equality follows from (2.8.3), the second and the third, since the
pairs (a(1), y), (a(2), x) are elements in P, and the last again from (2.8.3).

It follows that C × U ⊆ P, since the elements (xl)l∈L generate U . Since C
generates the algebra A, a similar computation using (2.8.2) proves that A×U = P.

Hence the formula for the multiplication in (A⊗U)σ in Corollary 2.8.8(1) shows
that ϕ is an algebra map. If T is a bialgebra and ϕA, ϕU are bialgebra maps, then
ϕ is a bialgebra map, since A and U are subbialgebras of (A⊗ U)σ, and (A⊗ U)σ
is generated by A ∪ U . �

2.9. Notes

For general Hopf algebra theory, we refer to the books [Swe69], [Mon93],
[Rad12].

2.4. The Hopf algebras Tq,n in Example 2.4.10 have been introduced by Taft
in [Taf71]. The algebra Uq(sl2) in Example 2.4.11 was introduced by Kulish and
Reshetikhin in [KR81], its Hopf algebra structure in 1985 by Sklyanin. The small
quantum group uq(sl2), q a root of unity of order 3, was already defined by Nichols
in [Nic78].

2.5. Hopf modules have been introduced for abstract Hopf algebras by Larson
and Sweedler in [LS69].

2.7. For general cleft extensions, see [Mon93, Section 7.2] and the references
therein.

2.8. For the Drinfeld double of U see [Dri87], or [DT94, Remark 2.3]. We
follow the exposition by Doi and Takeuchi in [DT94].
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CHAPTER 3

Braided monoidal categories

Throughout the book, braidings of different type appear and have a strong
impact on many structures. Most of the braidings arise naturally in categories of
Yetter-Drinfeld modules of vector spaces or in other braided categories. In this
chapter we present the general theory of braided (strict) monoidal categories. We
extend basic notions and results from Chapter 1 and Chapter 2 to braided monoidal
categories. This is usually possible, but the proofs can be much more involved. In
Section 3.8 we discuss bosonization in this general context, and in Section 3.10 we
prove the important theorem of Radford, Majid and Bespalov which can be viewed
as an extension of the theory of semidirect products of groups.

3.1. Monoidal categories

Let C be a category. We write X ∈ C, if X is an object of C. The class
of morphisms f : X → Y between objects X,Y is denoted by C(X,Y ) or by
HomC(X,Y ). Let ⊗ : C × C → C be a functor. As for the tensor product of vector
spaces, we denote the image under ⊗ of a pair (X,Y ) of objects of C by X ⊗ Y ,
and the image of a pair of morphisms (f : X → X ′, g : Y → Y ′) by f ⊗ g. Let

a = (aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z))X,Y,Z∈C

be a natural isomorphism, called an associativity constraint. One says that a
satifies the pentagon axiom, if for all W,X, Y, Z ∈ C the diagram

((W ⊗X)⊗ Y )⊗ Z

aW⊗X,Y,Z

�����
���

���
���

�
aW,X,Y ⊗idZ

��




















(W ⊗X)⊗ (Y ⊗ Z)

aW,X,Y ⊗Z

��

(W ⊗ (X ⊗ Y ))⊗ Z

aW,X⊗Y,Z

��

W ⊗ (X ⊗ (Y ⊗ Z)) W ⊗ ((X ⊗ Y )⊗ Z)
idW⊗aX,Y,Z

��

(3.1.1)

commutes.
Let I ∈ C be an object, called the unit object, and let

l = (lX : I ⊗X → X)X∈C, r = (rX : X ⊗ I → X)X∈C

109
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be natural isomorphisms, called unit constraints. They satisfy the triangle
axiom with respect to I, if for all X,Y ∈ C the diagram

(X ⊗ I)⊗ Y
aX,I,Y

��

rX⊗idY ����
���

���
��

X ⊗ (I ⊗ Y )

idX⊗lY�����
���

���
�

X ⊗ Y

(3.1.2)

commutes.

Definition 3.1.1. A collection (C,⊗, I, a, l, r) consisting of a category C, a
functor ⊗ : C × C → C, a unit object I, an associativity constraint a, and unit
constraints l, r is called a monoidal category, if the pentagon axiom and the
triangle axiom hold. Occasionally, such a collection is abbreviated by C.

The pentagon and triangle axioms in a monoidal category imply the commu-
tativity of any diagram constructed from a, l, r and identity maps by tensoring and
composition. This follows from Mac Lane’s coherence theorem, see [Kas95, Theo-
rem XI.5.3].

Example 3.1.2. The category kM of vector spaces over the field k is monoidal,
where ⊗ is the tensor product of vector spaces, I = k, and a, l, r are the standard
associativity and unit constraints.

Example 3.1.3. Let H be a bialgebra. The category HM of left H-modules is
monoidal, where the tensor product of V,W ∈ HM is the tensor product V ⊗W of
the underlying vector spaces as a left H-module with the diagonal action defined in
Definition 1.2.4. The unit object is I = k with trivial action defined by hv = ε(h)v
for all h ∈ H, v ∈ V . The associativity and unit constraints are the same as for
vector spaces. In the same way, the category MH of right H-modules is monoidal.

Example 3.1.4. This example is dual to Example 3.1.3. The category MH of
right H-comodules (and similarly the category of leftH-comodules) over a bialgebra
H is monoidal, where the tensor product of right H-comodules is the underlying
vector space of the tensor product of the vector spaces with diagonal coaction
defined in Definition 1.2.4. The unit object is I = k together with the H-coaction
k → k ⊗H, 1 �→ 1⊗ 1. The associativity and unit constraints are the same as for
vector spaces.

A monoidal category (C,⊗, I, a, l, r) is called strict if the maps aX,Y,Z , lX and
rX are the identity maps for all X,Y, Z ∈ C. In this book the monoidal categories
of interest are all categories of vector spaces with an additional algebraic structure
and with associativity and unit constraints as for vector spaces. We follow the
convention to suppress the associativity and unit constraints for these examples,
that is, we view the category of vector spaces and related monoidal categories as
strict monoidal categories.

In many cases it is justified to prove a result for general monoidal categories
by assuming that the categories are strict, see [Kas95, Section XI.5].

Let (C,⊗, I) be a strict monoidal category.
The dual category Cop has the same objects as C with reversed arrows. Thus

for all objects X,Y in C, HomCop(X,Y ) = HomC(Y,X). We write fop : X → Y for
the morphism f : Y → X. Composition of morphisms is defined by

gopfop = (fg)op,
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where f : X → Y and g : Z → X are morphisms in C. The dual category
Cop is strict monoidal with the same tensor product on objects as C and with
fop ⊗ gop = (f ⊗ g)op for morphisms f, g. We call (Cop,⊗, I) the dual monoidal
category of (C,⊗, I).

The reversed tensor product ⊗rev is defined by

X ⊗rev Y = Y ⊗X, f ⊗rev g = g ⊗ f

for objects X,Y and morphisms f, g in C. The monoidal category Crev = (C,⊗rev, I)
is called the reversed category of C.

Algebras, modules, coalgebras and comodules and their morphisms in
a strict monoidal category C are defined as in Chapter 1 in the category of vector
spaces.

An algebra in C is a triple (A, μ, η), where A is an object in C with morphisms
μ : A⊗A → A, η : I → A such that the following diagrams commute.

A⊗A⊗ A
id⊗μ

��

μ⊗id

��

A⊗A

μ

��

A⊗A
μ

�� A

(3.1.3)

I ⊗A
η⊗id

��

=
���

��
��

��
��

A⊗A
μ

����
��
��
��
�

A

A⊗ I
id⊗η

��

=
���

��
��

��
��

A⊗A
μ

����
��
��
��
�

A

(3.1.4)

Let A,B be algebras in C and ρ : A → B a morphism in C. Then ρ is an algebra
morphism if the diagrams

A⊗A
ρ⊗ρ

��

μA

��

B ⊗B

μB

��

A
ρ

�� B

A
ρ

�� B

I

ηA

���������� ηB

����������

(3.1.5)

commute.
Let A be an algebra in C, V an object in C, and λ : A ⊗ V → V a morphism.

Then (V, λ) is a left A-module if the diagrams

A⊗A⊗ V
id⊗λ

��

μ⊗id

��

A⊗ V

λ

��

A⊗ V
λ �� V

I ⊗ V
η⊗id

��

=
���

��
��

��
��

A⊗ V

λ

����
��
��
��
�

V

commute. Let (V, λV ) and (W,λW ) be left A-modules, and f : V → W a morphism
in C. Then f is a morphism of left A-modules if

A⊗ V
id⊗f

��

λV

��

A⊗W

λW

��

V
f

�� W

(3.1.6)

commutes.
Right A-modules and their morphisms are defined similarly.
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A coalgebra (C,Δ, ε) in C, where C ∈ C and Δ : C → C ⊗ C, ε : C → I are
morphisms, is an algebra in Cop. If C is a coalgebra, V ∈ C, and δ : V → C ⊗ V is
a morphism in C, then (V, δ) is a left C-comodule in C if (V, δ) is a left C-module
in Cop. Right comodules are defined similarly, and morphisms of coalgebras and
comodules are defined dually to morphisms of algebras and modules.

If C is a coalgebra in C, and A is an algebra in C, we denote by CC and CC the
categories of left and of right C-comodules, and by AC and CA the categories of left
and of right A-modules in C, respectively.

Lemma 3.1.5. Let (A, μ, η), (A, μ, η′) be algebras and (C,Δ, ε), (C,Δ, ε′) coal-
gebras in C. Then η = η′ and ε = ε′.

Proof. By (3.1.4), η = μ(id ⊗ η′)(η ⊗ id) = μ(η ⊗ id)(id ⊗ η′) = η′. The
equality ε = ε′ follows by duality. �

Definition 3.1.6. Let C be a coalgebra and A an algebra in C. The convo-
lution product of morphisms f, g ∈ HomC(C,A) is defined by

f ∗ g = (C
ΔC−−→ C ⊗ C

f⊗g−−−→ A⊗A
μA−−→ A).

It follows easily from the algebra and coalgebra axioms that HomC(C,A) is a

monoid with product ∗ and unit C
ε−→ I

η−→ A.

Definition 3.1.7. Let C and D be strict monoidal categories. A monoidal
functor from C to D is a triple (F, ϕ0, ϕ) consisting of a functor F : C → D, an
isomorphism ϕ0 : ID → F (IC), and a natural isomorphism

ϕ = (ϕX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y ))X,Y ∈C

such that for all objects X,Y, Z ∈ C, the diagrams

F (X)⊗ F (Y )⊗ F (Z)
id⊗ϕY,Z−−−−−→ F (X)⊗ F (Y ⊗ Z)

ϕX,Y ⊗id

⏐⏐' ϕX,Y ⊗Z

⏐⏐'
F (X ⊗ Y )⊗ F (Z)

ϕX⊗Y,Z−−−−−→ F (X ⊗ Y ⊗ Z)

(3.1.7)

F (X)⊗ I
= ��

id⊗ϕ0

��

F (X)

=

��

F (X)⊗ F (I)
ϕX,I

�� F (X ⊗ I)

I ⊗ F (X)
= ��

ϕ0⊗id

��

F (X)

=

��

F (I)⊗ F (X)
ϕI,X

�� F (I ⊗X)

(3.1.8)

commute. The pair (ϕ0, ϕ) is called a monoidal structure of F if (F, ϕ0, ϕ) is a
monoidal functor.

A monoidal equivalence (respectively isomorphism) is a monoidal functor
(F, ϕ0, ϕ) where F is an equivalence (respectively an isomorphism) of categories.
Recall that a functor F : C → D is called an equivalence (respectively an isomor-
phism) if there is a functor G : D → C with FG ∼= idD, GF ∼= idC (respectively
FG = idD, GF = idC).

In many cases ϕ0 is the identity. Then the axioms in (3.1.8) say that

ϕI,X = idF (X) = ϕX,I .(3.1.9)
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We denote the monoidal functor (F, id, ϕ) by (F, ϕ) and call ϕ the monoidal struc-
ture of F .

A monoidal functor (F, ϕ) is called strict if ϕ = id.

If (F, ϕ) : C → D and (G,ψ) : D → E are monoidal functors, then the compo-
sition

(GF, λ) : C → E , λX,Y = G(ϕX,Y )ψF (X),F (Y ) for all X,Y ∈ C,(3.1.10)

is a monoidal functor.
Let (F, ϕ) : C → D be a monoidal isomorphism of categories with inverse

functor G : D → C. Then (G,ψ) is a monoidal functor with

ψU,V = G(ϕG(U),G(V ))
−1 : G(U)⊗G(V )→ G(U ⊗ V )(3.1.11)

for all U, V ∈ D.

Remark 3.1.8. A monoidal functor (F, ϕ0, ϕ) from C to D preserves algebraic
structures defined in terms of the tensor product, in particular algebras, coalgebras,
their modules and comodules, and the convolution product.

(1) Let (A, μ, η) be an algebra in C and (V, λ) a left A-module. Then F (A) is
an algebra in D with multiplication and unit

F (A)⊗ F (A)
ϕA,A−−−→ F (A⊗A)

F (μ)−−−→ F (A), I
ϕ0−→ F (I)

F (η)−−−→ F (A),

denoted by (F, ϕ0, ϕ)(A), and F (V ) is a left F (A)-module with module structure

F (A)⊗ F (V )
ϕA,V−−−→ F (A⊗ V )

F (λ)−−−→ F (V ),

denoted by (F, ϕ0, ϕ)(V ). For a coalgebra (C,Δ, ε) and a left C-comodule (V, δ),
F (C) is a coalgebra with comultiplication and counit

F (C)
F (Δ)−−−→ F (C ⊗ C)

ϕ−1
C,C−−−→ F (C)⊗ F (C), F (C)

F (ε)−−−→ F (I)
ϕ−1

0−−→ I,

denoted by (F, ϕ0, ϕ)(C), and F (V ) is a left F (C)-comodule with comodule struc-
ture

F (V )
F (δ)−−−→ F (C ⊗ V )

ϕ−1
C,V−−−→ F (C)⊗ F (V ),

denoted by (F, ϕ0, ϕ)(V ).
(2) Let A be an algebra and C a coalgebra in C. Then

HomC(C,A)→ HomD(F (C), F (A)), f �→ F (f),

is a monoid homomorphism with respect to convolution.

Example 3.1.9. The duality functor Mfd
k
→ Mfd

k
, V �→ V ∗, is a monoidal

equivalence with monoidal structure ϕX,Y : X∗ ⊗ Y ∗ → (X ⊗ Y )∗ in Lemma 2.2.3,
and ϕ0 : k → k∗, 1 �→ idk. This explains the duality between finite-dimensional
algebras and coalgebras.

Here is an example of a monoidal isomorphism which is far from being strict.
Let H be a bialgebra, and σ : H⊗H → k a convolution invertible linear map. Recall
from Definition 2.7.2 and Remark 2.7.3(5) that σ is a normalized two-cocycle for
H if and only if for all x, y, z ∈ H,

σ(x(1) ⊗ y(1))σ(x(2)y(2) ⊗ z) = σ(y(1) ⊗ z(1))σ(x⊗ y(2)z(2)),(3.1.12)

σ(z ⊗ 1) = σ(1⊗ z) = ε(z).(3.1.13)
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Proposition 3.1.10. Let H be a bialgebra and σ : H ⊗ H → k a normalized
two-cocycle for H. Let F : HM → HσM be the identity functor. For all X,Y in
HM let

ϕσX,Y : F (X)⊗ F (Y )→ F (X ⊗ Y ), x⊗ y �→ σ(x(−1) ⊗ y(−1))x(0) ⊗ y(0).

Then (F, ϕσ) :
HM→ HσM is a monoidal isomorphism.

Proof. LetX,Y ∈ HM. For simplicity, let ϕX,Y = ϕσX,Y . The Hσ-comodule
structures of F (X) ⊗ F (Y ) and of F (X ⊗ Y ) are denoted by δF (X)⊗F (Y ) and

δF (X⊗Y ). To prove that ϕX,Y is a morphism in HσM, let x ∈ X and y ∈ Y .
Then

δF (X)⊗F (Y )(x⊗ y) = μσ(x(−1) ⊗ y(−1))⊗ x(0) ⊗ y(0)

= σ(x(−3) ⊗ y(−3))x(−2)y(−2)σ
−1(x(−1) ⊗ y(−1))⊗ x(0) ⊗ y(0),

δF (X⊗Y )(x⊗ y) = x(−1)y(−1) ⊗ x(0) ⊗ y(0).

Hence

(idHσ
⊗ ϕX,Y )δF (X)⊗F (Y )(x⊗ y) = σ(x(−2) ⊗ y(−2))x(−1)y(−1) ⊗ x(0) ⊗ y(0)

= δF (X⊗Y )ϕX,Y (x⊗ y).

The linear map ϕX,Y is bijective with inverse

X ⊗ Y → X ⊗ Y, x⊗ y �→ σ−1(x(−1) ⊗ y(−1))x(0) ⊗ y(0).

The axioms of the monoidal structure of ϕσ are equivalent to the axioms of a
normalized two-cocycle, since the commutativity of the diagrams (3.1.7) and the
identities (3.1.9) are equivalent to (3.1.12) and (3.1.13). �

3.2. Braided monoidal categories and graphical calculus

Many important monoidal categories, in particular categories of Yetter-Drinfeld
modules, are braided. We fix here the terminology and introduce the graphical
calculus, which typically improves the clarity of proofs.

Definition 3.2.1. Let (C,⊗, I, a, l, r) be a monoidal category, and

c = (cX,Y : X ⊗ Y → Y ⊗X)X,Y ∈C

be a family of natural isomorphisms, that is, for all objects X,Y,X ′, Y ′ and mor-
phisms f : X → X ′, g : Y → Y ′ in C, cX,Y : X ⊗ Y → Y ⊗X is an isomorphism in
C and the diagram

X ⊗ Y

f⊗g

��

cX,Y
�� Y ⊗X

g⊗f

��

X ′ ⊗ Y ′ cX′,Y ′
�� Y ′ ⊗X ′

(3.2.1)
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commutes. Then c is called a braiding of (C,⊗, I, a, l, r) if for all objects X,Y, Z
in C the following diagrams commute.

X ⊗ (Y ⊗ Z)

a−1
X,Y,Z

�����
���

���
��

cX,Y ⊗Z
�� (Y ⊗ Z)⊗X

(X ⊗ Y )⊗ Z

cX,Y ⊗idZ


��

���
���

���
Y ⊗ (Z ⊗X)

a−1
Y,Z,X

�������������

(Y ⊗X)⊗ Z
aY,X,Z

�� Y ⊗ (X ⊗ Z)

idY ⊗cX,Z

�������������

(3.2.2)

(X ⊗ Y )⊗ Z

aX,Y,Z

�����
���

���
��

cX⊗Y,Z
�� Z ⊗ (X ⊗ Y )

X ⊗ (Y ⊗ Z)

idX⊗cY,Z


��

���
���

���
(Z ⊗X)⊗ Y

aZ,X,Y

�������������

X ⊗ (Z ⊗ Y )
a−1
X,Z,Y

�� (X ⊗ Z)⊗ Y

cX,Z⊗idY

�������������

(3.2.3)

Let c be a braiding of (C,⊗, I, a, l, r). Then (C,⊗, I, a, l, r, c) is called a braided
monoidal category.

We note that in a braided monoidal category C, for all X ∈ C, the following
diagrams commute.

X ⊗ I
cX,I

��

rX

��

I ⊗X

lX

��

X
idX �� X

I ⊗X
cI,X

��

lX

��

X ⊗ I

rX

��

X
idX �� X

.

(3.2.4)

For a proof, see [Kas95, Proposition XIII.1.2].
A braided strict monoidal category is a quadruple (C,⊗, I, c) such that

(C,⊗, I) is strict monoidal and c is a braiding of C. Then the axioms (3.2.2) and
(3.2.3) say that for all X,Y, Z ∈ C the diagrams

X ⊗ Y ⊗ Z
cX,Y ⊗Z

��

cX,Y ⊗idZ ���
��

��
��

��
Y ⊗ Z ⊗X

Y ⊗X ⊗ Z

idY ⊗cX,Z

�����������
(3.2.5)

X ⊗ Y ⊗ Z
cX⊗Y,Z

��

idX⊗cY,Z ���
��

��
��

��
Z ⊗X ⊗ Y

X ⊗ Z ⊗ Y

cX,Z⊗idY

�����������
(3.2.6)

commute. The commutativity of the diagrams (3.2.4) reduces to the equations

cI,X = idX = cX,I .(3.2.7)

Note that (3.2.7) follows immediately from (3.2.5) with (X,Y, Z) = (X, I, I) and
(3.2.6) with (X,Y, Z) = (I, I,X).
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In the concrete examples of braided monoidal categories in this book which
are not strict monoidal, the objects are vector spaces with additional structure and
the monoidal structure is the same as for the underlying vector spaces. In these
examples, the diagrams in (3.2.4) are clearly commutative. We will therefore view
them as braided strict monoidal categories, where the equalities in (3.2.7) are to be
interpreted as the commutative diagrams in (3.2.4).

Let (C,⊗, I, c) be a braided strict monoidal category. The dual category
of (C,⊗, I, c) is the braided strict monoidal category (Cop,⊗, I, cop) with braiding
given by copX,Y = (cCY,X)op for objects X,Y .

The mirror category of (C,⊗, I, c) is the braided strict monoidal category
C = (C,⊗, I, c), where cX,Y = (cY,X)−1 for all X,Y ∈ C.

The reversed category of (C,⊗, I, c) is the braided strict monoidal category
Crev = (C,⊗rev, I, crev) with braiding crevX,Y = cY,X for all X,Y ∈ C. We note that
by the left-right symmetry of the axioms, algebras, coalgebras, bialgebras and Hopf
algebras in C are algebras, coalgebras, bialgebras and Hopf algebras in Crev.

Definition 3.2.2. If C and D are braided strict monoidal categories, then a
monoidal functor (F, ϕ0, ϕ) is braided if for all X,Y ∈ C the diagram

F (X)⊗ F (Y )
ϕX,Y−−−−→ F (X ⊗ Y )

cF (X),F (Y )

⏐⏐' F (cX,Y )

⏐⏐'
F (Y )⊗ F (X)

ϕY,X−−−−→ F (Y ⊗X)

(3.2.8)

commutes. A braided monoidal equivalence (isomorphism, respectively) is a
monoidal equivalence (isomorphism, respectively) (F, ϕ0, ϕ) such that (F, ϕ0, ϕ) is
a braided monoidal functor.

Remark 3.2.3. Sometimes it is useful to consider a more general situation.
A prebraiding of C is a family c = (cV,W : V ⊗ W → W ⊗ V )V,W∈C of nat-
ural morphisms (not assumed to be isomorphisms) satisfying (3.2.5), (3.2.6) and
(3.2.7). Prebraided strict monoidal categories and prebraided monoidal functors,
equivalences and isomorphisms are defined in the obvious way.

Let C = (C,⊗, I, c) be a braided strict monoidal category. We use the following
convention for the graphical calculus. Diagrams are read from top to bottom. Let
f : X → Y , g : Y → Z, f ′ : X ′ → Y ′ and

h : X1 ⊗ · · · ⊗Xm → Y1 ⊗ · · · ⊗ Yn,

m, n ≥ 1, be morphisms in C. We denote the identity morphism idX : X → X, the
morphisms f, h, the tensor product f ⊗ f ′ : X ⊗ X ′ → Y ⊗ Y ′, the composition
gf : X → Z, the braiding cX,Y : X ⊗ Y → Y ⊗X and the inverse braiding cX,Y by
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idX =

X

X

, f =

Y

X

f , h =

Y1

X1

h

Xm

Yn

, f ⊗ f ′ =

Y

X

f

Y ′

X ′

f ′ ,

gf =

X

Z

f

g

, cX,Y =

X Y

Y X

, cX,Y =

X Y

Y X

.

By definition of the inverse braiding,

X Y

X Y

=

X Y

X Y

=

X Y

X Y

.(3.2.9)

By (3.2.7), the braiding acts trivially on the identity object I. Hence for any

morphisms p : X → I, q : I → X, denoted by p =

X

p

, q =

X

q

,

X Y

Y

p
=

X Y

Y

p
,

Y X

Y

p
=

Y X

Y

p
,(3.2.10)

Y

Y X

q
=

Y

Y X

q
,

Y

X Y

q
=

Y

YX

q
.(3.2.11)

Let V ∈ C. Axioms (3.2.5) and (3.2.6) and the naturality of the braiding (3.2.1)
imply the following important rules.
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V X1 Xm

Y1 Yn V

h

=

V X1 Xm

Y1 Yn V

h

,(3.2.12)

X1 Xm V

V Y1 Yn

h

=

X1 Xm V

V Y1 Yn

h

.(3.2.13)

Let U, V,W ∈ C. We note the special case of (3.2.12) with h = cV,W :

U V W

W V U

=

U

W V U

V W

.(3.2.14)

Let U = V = W . Then (3.2.14) is the braid equation c1c2c1 = c2c1c2, c1 = cV,V ⊗id,
c2 = idV ⊗ cV,V . In knot theory, (3.2.9) and (3.2.14) are known as the second and
the third Reidemeister move.

Here is an application of the rules above.

h

X1 V X2

Y1 V

=

X1 V X2

h

Y1 V

, h

X1 V X2

V Y1

=
h

X1 V X2

V Y1

.(3.2.15)

To prove the first equality in (3.2.15), apply (3.2.12) with the inverse braiding c
to the lower part of the left-hand side, and then use (3.2.9); the second equality
follows in the same way from (3.2.13).
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Finally we want to mention the case of morphisms h : X1⊗· · ·⊗Xm → I which

we denote by h =
X1

h

Xm

. By (3.2.12), (3.2.13) and (3.2.10),

V

V

h

X1 Xm

=

V X1 Xm

V

h ,

X1 Xm V

V

h

=

X1 Xm V

V

h .(3.2.16)

Moreover, by (3.2.15) and (3.2.10).

X1 V X2

h

V

=
h

X1 V X2

V

.(3.2.17)

We denote the structure maps of an algebra (A, μ, η), a left A-module (V, λl),
and a right A-module (V, λr) by

μ =

A

A A

, η =

A

, λl =

A

V

V

, λr =

A

V

V

,

respectively. Then the axioms of an algebra and a left module are

A A A

A

=

A A A

A

,

A

A

=

A

A

,

A

A

=

A

A

,(3.2.18)

A A V

V

=

A A V

V

,

V

V

=

V

V

.(3.2.19)

Proposition 3.2.4. Let A,B,C,D be algebras and ϕ : A → C, ψ : B → D
algebra morphisms in C, V a left A-module and W a left B-module in C.
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(1) (A ⊗ B, μA⊗B, ηA⊗B) is an algebra in C with unit ηA ⊗ ηB and multipli-
cation

A⊗B ⊗A⊗B
idA⊗cB,A⊗idB−−−−−−−−−−→ A⊗A⊗B ⊗ B

μA⊗μB−−−−−→ A⊗B.

(2) ϕ⊗ ψ : A⊗B → C ⊗D is an algebra morphism in C.
(3) V ⊗W is a left A⊗B-module with module structure

A⊗B ⊗ V ⊗W
idA⊗cB,V ⊗idW−−−−−−−−−−→ A⊗ V ⊗B ⊗W

λV ⊗λW−−−−−→ V ⊗W.

(4) The algebra structures on (A ⊗ B) ⊗ C and A ⊗ (B ⊗ C) defined by (1)
coincide.

Proof. (1) It is easy to see that ηA⊗B is a unit. To prove associativity we
write μ = μA⊗B. The equality μ(μ⊗ id) = μ(id⊗ μ) is shown by

A B A B A B

A B

=

A B A B A B

A B

=

A B A B A B

A B

,

where the first equality follows from associativity of A and from (3.2.13) with
h = μB, and the second from associativity of B and (3.2.12) with h = μA.

(2) follows easily from (3.2.13) with h = ψ.
(3) follows from the proof in (1) by replacing the third pair (A,B) by (V,W ),

and the multiplications (μA, μB) by the module structures (λV , λW ).
(4) The equality of the algebra structures is equivalent to the equality of the

morphisms

B ⊗ C ⊗A⊗B
id⊗cC,A⊗B−−−−−−−→ B ⊗A⊗B ⊗ C

cB,A⊗id⊗id−−−−−−−−→ A⊗B ⊗B ⊗ C,

B ⊗ C ⊗A⊗B
cB⊗C,A⊗id−−−−−−−→ A⊗B ⊗ C ⊗B

id⊗id⊗cC,B−−−−−−−−→ A⊗B ⊗B ⊗ C,

which follows easily from the axioms of a braiding. �

By Proposition 3.2.4, the category of algebras in C with algebra morphisms as
morphisms is strict monoidal with ⊗ defined in Proposition 3.2.4(1) and (2). The
unit object is the algebra (I, id, id).

We now dualize. The structure maps of a coalgebra (C,Δ, ε), a left C-comodule
(V, δl) and a right C-comodule (V, δr) are denoted by

Δ =

C C

C

, ε =

C

, δl =

C V

V

, δr =

CV

V

.
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The axioms of a coalgebra and a left comodule are

C

C C C

=

C

C C C

,

C

C

=

C

C

,

C

C

=

C

C

,(3.2.20)

C C

V

V

=

C C

V

V

,

V

V

=

V

V

.(3.2.21)

We next show that the category of coalgebras in C with coalgebra morphisms
as morphisms is strict monoidal. The unit object is (I, id, id).

Proposition 3.2.5. Let C,D,E, F be coalgebras and ϕ : C → E, ψ : D → F
coalgebra morphisms in C, V a left C-comodule and W a left D-comodule in C.

(1) (C⊗D,ΔC⊗D, εC⊗D) is a coalgebra in C with counit εC ⊗ εD and comul-
tiplication

C ⊗D
ΔC⊗ΔD−−−−−−→ C ⊗ C ⊗D ⊗D

idC⊗cC,D⊗idD−−−−−−−−−−→ C ⊗D ⊗ C ⊗D.

(2) ϕ⊗ ψ : C ⊗D → E ⊗ F is a coalgebra morphism in C.
(3) V ⊗W is a left C ⊗D-comodule with comodule structure

V ⊗W
δV ⊗δW−−−−−→ C ⊗ V ⊗D ⊗W

idC⊗cV,D⊗idW−−−−−−−−−−→ C ⊗D ⊗ V ⊗W.

(4) The coalgebra structures on (A⊗B)⊗C and A⊗ (B ⊗C) defined by (1)
coincide.

Proof. Apply Proposition 3.2.4 to the dual braided category. �

The tensor product of algebras and of coalgebras will always be equipped with
the algebra and coalgebra structure of Propositions 3.2.4 and 3.2.5.

Definition 3.2.6. LetH ∈ C. Assume that (H,μ, η) is an algebra and (H,Δ, ε)
is a coalgebra in C. Then H = (H,μ, η,Δ, ε) is a bialgebra in C if the following
equivalent conditions hold.

(1) Δ and ε are algebra morphisms in C.
(2) μ and η are coalgebra morphisms in C.

Let H,H ′ be bialgebras in C. A morphism ϕ : H → H ′ in C is a morphism of
bialgebras if it is a morphism of algebras and of coalgebras in C.
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It is clear that (1) and (2) in Definition 3.2.6 are both equivalent to

H H

H H

=

H H

H H

and(3.2.22)

H H

=

H H

,

H H

=

H H

, = idI ,(3.2.23)

where (3.2.23) are the pictures of the equations

ΔHηH = ηH⊗H , εHμH = εH⊗H , εHηH = idI .(3.2.24)

If (H,μ, η,Δ, ε) is a bialgebra in C, then (H,Δop, εop, μop, ηop) is a bialgebra in Cop.
Indeed, reading the axioms of a bialgebra in the graphical calculus from bottom to
top gives the same axioms up to a permutation.

The next proposition says that the category of left H-modules over a bialgebra
H is strict monoidal.

Proposition 3.2.7. Let H be a bialgebra in C. The category HC of left H-
modules in C is strict monoidal, where

(1) for all V,W ∈ HC, the tensor product of V,W in HC is the object V ⊗W
in C with module structure

λV⊗W =
(
H ⊗ V ⊗W

Δ⊗id−−−→ H ⊗H ⊗ V ⊗W

id⊗cH,V ⊗id−−−−−−−−→ H ⊗ V ⊗H ⊗W
λV ⊗λW−−−−−→ V ⊗W

)
,

(2) the identity object is (I, ε⊗ id), and
(3) for all morphisms f, g in HC, the tensor product f ⊗ g in C is the tensor

product of f and g in HC.
Proof. (a) Since Δ : H → H ⊗ H is an algebra morphisms, it follows from

Proposition 3.2.4(3) that (V ⊗W,λV⊗W ) is a left H-module.
(b) Let U, V,W ∈ HC. Then U ⊗ (V ⊗W ) = (U ⊗ V )⊗W as left H-modules,

since

H U V W

U V W

=

H U V W

U V W

=

H U V W

U V W

,
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where the first equality follows from (3.2.13) with h = ΔH , and the second from
coassociativity of H.

(c) Let f : V → X and g : W → Y be morphisms in HC. Then the morphism
f ⊗ g : V ⊗W → X ⊗ Y is left H-linear, since (f ⊗ idH)cH,V = cH,X(idH ⊗ f), and
since f, g are H-linear.

(d) It is easy to check that for all V ∈ HC, I ⊗ V = V = V ⊗ I, where I is the
trivial left H-module with module structure ε⊗ id. �

Conversely, the diagonal action in Proposition 3.2.7 can be used to check the
bialgebra axiom.

Proposition 3.2.8. Let H be an object of C, and (H,μ, η) an algebra and
(H,Δ, ε) a coalgebra in C. Assume that ε : H → I is an algebra morphism. Then
the following are equivalent.

(1) H is a bialgebra.
(2) Let (V, λV ), (W,λW ) ∈ HC. Then (V ⊗W,λV⊗W ) ∈ HC, where λV⊗W is

the diagonal action defined in Proposition 3.2.7.
(3) (2) holds for V = W = H with left module structure μ.

Proof. By Proposition 3.2.7, it suffices to prove that (3) implies (1). Let
V,W ∈ HC. Then λV⊗W (idH ⊗ λV⊗W ) is equal to

H H V W

V W

=

H H V W

V W

=

H H V W

V W

,

where the first equality follows from naturality of the braiding (3.2.12) with h = λV ,
and from the module axioms for V and W , and the second from (3.2.13) with h = μ.
On the other hand,

λV⊗W (μ⊗ idV ⊗ idW ) =

H H V W

V W

.

Assume (3). Then λV⊗W (idH ⊗ λV⊗W ) = λV⊗W (μ⊗ idV ⊗ idW ) for V = W = H.
Hence

λV⊗W (idH ⊗ λV⊗W )(idH ⊗ idH ⊗ η ⊗ η) =

λV⊗W (μ⊗ idV ⊗ idW )(idH ⊗ idH ⊗ η ⊗ η),
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which is the bialgebra axiom (3.2.22). The first bialgebra axiom in (3.2.23), that
is, Δ is unitary, follows since the H-module H ⊗H is unitary. �

Proposition 3.2.9. Let H be a bialgebra in C. The category HC of left H-
comodules in C is strict monoidal, where

(1) for all V,W ∈ HC, the tensor product of V,W in HC is the object V ⊗W
in C with comodule structure

δV⊗W =
(
V ⊗W

δV ⊗δW−−−−−→ H ⊗ V ⊗H ⊗W

id⊗cV,H⊗id−−−−−−−−→ H ⊗H ⊗ V ⊗W
μ⊗id−−−→ H ⊗ V ⊗W

)
,

(2) the identity object is (I, η ⊗ id), and
(3) for all morphisms f, g in HC, the tensor product f ⊗ g in C is the tensor

product of f and g in HC.
Proof. Apply Proposition 3.2.7 to the dual category. �
We note that Propositions 3.2.7 and 3.2.9 have obvious versions for right mod-

ules and for right comodules.

Definition 3.2.10. Let H be a bialgebra in C, and S : H → H a morphism in
C. Then H = (H,S) is a Hopf algebra with antipode S, if S is the convolution
inverse of idH in the monoid HomC(H,H).

The antipode S : H → H of a Hopf algebra H in C, and its inverse S−1 if S is
an isomorphism in C, are denoted by

S = +

H

H

, S−1 = –

H

H

.

Thus the axioms of the antipode are

+

H

H

=

H

H

= +

H

H

.(3.2.25)

Let (H,μ, η,Δ, ε,S) be a Hopf algebra in C. Then (H,Δop, εop, μop, ηop,Sop) is a
Hopf algebra in Cop.

Lemma 3.2.11. Let H,H ′ be Hopf algebras, and ϕ : H → H ′ a morphism of
bialgebras in C. Then SH′ϕ = ϕSH .

Proof. It is easy to see that in the convolution algebra HomC(H,H ′),

SH′ϕ ∗ ϕ = ϕ ∗ SH′ϕ = ηε,

since ϕ is a morphism of coalgebras. By duality,

ϕSH ∗ ϕ = ϕ ∗ ϕSH = ηε,

since ϕ is a morphism of algebras. Hence ϕ is invertible in the convolution algebra
with inverse SH′ϕ = ϕSH . �
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Proposition 3.2.12. Let (H,μ, η,Δ, ε,S) be a Hopf algebra in C. Then

(1) cH⊗H(S ⊗ S) = (S ⊗ S)cH,H ,
(2) Sμ = μcH,H(S ⊗ S),
(3) ΔS = (S ⊗ S)cH,HΔ,
(4) Sη = η,
(5) εS = ε.

Proof. (1) follows since the braiding is a natural transformation.
(2) We prove (2) by showing that both sides of (2) are convolution inverse to

μ in HomC(H ⊗H,H). This is easy for Sμ:

Sμ ∗ μ =

+

H H

H

=

+

H H

H

= ηεH⊗H

by (3.2.22), (3.2.25), and (3.2.23). The equality μ ∗ Sμ = ηεH⊗H follows in the
same way.

We compute μ(S ⊗ S)cH,H ∗ μ.

+ +

H H

H

=

+ +

H H

H

=
+ +

H H

H

=
+

H H

H

= +

H

H

H

= ηεH⊗H ,

where the first equality follows from (3.2.13) with h = Δ, the second from asso-
ciativity, and the third and the last from the axiom of the antipode. To prove the
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fourth equality, note that

H H

H H

=

H H

H H

by the algebra axiom for the unit and (3.2.10).
The equality μ ∗ μ(S ⊗ S)cH,H = ηεH⊗H follows similarly.
(4) In the convolution algebra HomC(I,H) with product ∗,

Sη ∗ η =
+

H

= +

H

=

H

= η

by (3.2.23) and the axiom of the antipode. Hence Sη = η, since the unit element
in the algebra HomC(I,H) is ηεI = η.

(3) and (5) follow by duality from (2) and (4). �
The pictures for the rules of the antipode in Proposition 3.2.12 are

+

H H

H

=

+ +

H H

H

, +

H

H H

=

+ +

H H

H

, +

H

=

H

, +

H

=

H

.(3.2.26)

Remark 3.2.13. Braided monoidal functors preserve bialgebras and Hopf al-
gebras. They are an important machinery for constructing new Hopf algebras.

Let D be a braided strict monoidal category, and (F, ϕ) : C → D a braided
monoidal functor.

If A,B are algebras in C, then
ϕA,B : F (A)⊗ F (B)→ F (A⊗B)

is an algebra morphisms in D, where F (A), F (B) and F (A ⊗ B) are the algebras
(F, ϕ)(A), (F, ϕ)(B), and (F, ϕ)(A⊗B), respectively. In the same way, for coalge-
bras C,D in C,

ϕC,D : F (C)⊗ F (D)→ F (C ⊗D)

is a morphisms of coalgebras in D.
If H = (H,μ, η,Δ, ε) is a bialgebra in C, then

(F, ϕ)(H) = (F (H), F (μ)ϕH,H , F (η), ϕ−1
H,HF (Δ), F (ε))
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is a bialgebra in D. If H has an antipode S, then (F, ϕ)(H) is a Hopf algebra with
antipode F (S).

We next extend the notions of the opposite algebra and coopposite coalgebra
to braided monoidal categories. This can be done in different ways. We fix one of
the possible definitions.

Definition 3.2.14. For a bialgebra H = (H,μ, η,Δ, ε) in C let

Hop = (H,μcH,H , η,Δ, ε),

Hcop = (H,μ, η, cH,HΔ, ε).

It turns out that for a bialgebra H, Hop and Hcop are not bialgebras in C but
in C.

Proposition 3.2.15. (1) Let (A, μ, η) and (C,Δ, ε) be an algebra and a
coalgebra in C. Then (A, μcA,A, η) is an algebra and (C, cC,CΔ, ε) is a
coalgebra in C.

(2) Let H be a bialgebra in C. Then Hop and Hcop are bialgebras in C.
(3) Let H be a Hopf algebra in C. Then the following are equivalent.

(a) The antipode S of H is an isomorphism in C.
(b) Hop is a Hopf algebra in C.
(c) Hcop is a Hopf algebra in C.
In this case, S−1 is the antipode of Hop and of Hcop.

Proof. (1) We prove associativity of μ′ = μcA,A.

μ′(μ′ ⊗ id) =

A A A

A

=

A A A

A

, μ′(id⊗ μ′) =

A A A

A

=

A A A

A

,

by (3.2.13) and (3.2.12) with h = μ. Hence associativity of μcA,A follows from
associativity of A and (3.2.14).

By (3.2.11), η is a unit for μcA,A, since η is a unit for μ.
The coalgebra axioms for (C, cC,CΔ, ε) follow by duality.

(2) By assumption, H is an algebra and a coalgebra in C, and hence in C. By
(1), Hop is an algebra and a coalgebra in C. We prove the bialgebra axiom (3.2.22)
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for Hop in C.

H H

H H

=

H H

H H

=

H H

H H

=

H H

H H

=

H H

H H

.

The first equality in this proof follows from the bialgebra axiom (3.2.22) for H,
the second and the third from (3.2.13) and (3.2.12) with h = μ, and the last from
(3.2.9).

The bialgebra axiom (3.2.23) for Hop is easy to check, and the claim for Hcop

follows by duality.
(3) Assume (a). We show that μcH,H(S−1 ⊗ id)Δ = ηε, which is half of the

antipode axiom for Hop. By Proposition 3.2.12(3), cH,H(S ⊗ S)Δ = ΔS. Hence
μcH,H(S−1 ⊗ id)Δ = μ(id⊗ S)ΔS−1 = ηε by the properties of the antipode of H.
The other half of the axiom of the antipode follows similarly. Thus (a) implies (b),
and S−1 is the antipode of Hop.

Assume (b) and let T be the antipode of Hop. Similar computations as in the
previous paragraph show that TS and ST are convolution inverse to S. Hence
T = S−1. Thus (b) implies (a).

The equivalence of (a) and (c) follows by duality. �
Let H be a Hopf algebra in C with antipode S, and assume that S is an

isomorphism. By Proposition 3.2.15, S−1 is the antipode of Hop. Hence

–

H

H

=

H

H

=
–

H

H

.(3.2.27)

Corollary 3.2.16. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism in C.

(1) S : Hop → Hcop is an isomorphism of Hopf algebras in C.
(2) (Hop)cop and (Hcop)op are Hopf algebras in C with antipode S, and

S : H → (Hcop)op, S : (Hop)cop → H

are isomorphisms of Hopf algebras in C.
Proof. This follows from Propositions 3.2.15 and 3.2.12. �
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Remark 3.2.17. Let A,B be bialgebras in C. Then in general A⊗B (with the
algebra and coalgebra structure of the tensor product) is not a bialgebra in C, see
Proposition 1.10.12.

3.3. Modules and comodules over braided Hopf algebras

Let C = (C,⊗, I, c) be a braided strict monoidal category.
The braiding can be used to change the sides of modules and comodules.

Proposition 3.3.1. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism in C. Then the functors

Flr : HC → CHop , (V, λ) �→ (V, λcV,H),

Frl : CH → HopC, (V, λ) �→ (V, λcH,V ),

where morphisms f are mapped onto f , are strict monoidal isomorphisms.

Proof. Let F = Flr. We first show that F is a strict monoidal functor.
Let (V, λ) be a left H-module, and λr = λcV,H . Then (V, λr) is a right Hop-

module in C (and in C), since

λr(id⊗ μ) =

V H H

V

=

V H H

V

=

V H H

V

=

V H H

V

= λr(λr ⊗ id),

where the second equality follows from (3.2.12) with h = μcH,H , the third from the
module axiom for (V, λ), and the fourth from (3.2.13), where h is the upper module
action λ. Note that (V, λr) is unitary by (3.2.11).

To show that F is strict monoidal, let V,W be left H-modules. Then

λF (V⊗W ) =

V W H

V W

=

V W H

V W

=

V W H

V W

= λF (V )⊗F (W ),

where the second equality follows from (3.2.12) with h = Δ, and the third from
(3.2.9). By (3.2.7), F (I) = I.
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In the same way it follows that Frl is a strict monoidal functor. Both functors
are isomorphisms, since Flr for H and Frl for Hop are inverse functors. �

The next proposition follows by duality from Proposition 3.3.1.

Proposition 3.3.2. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism in C. Then the functors

F lr : HC → CH
cop

, (V, δ) �→ (V, cH,V δ),

F rl : CH → HcopC, (V, δ) �→ (V, cV,Hδ),

where morphisms f are mapped onto f , are strict monoidal isomorphisms.

Let A,B be algebras in C, and ϕ : A → B an algebra morphism. We define the
obvious restriction functors

ϕ↓ : BC → AC, (V, λ) �→ (V, λ(ϕ⊗ id)),(3.3.1)

ϕ↓ : CB → CA, (V, λ) �→ (V, λ(id⊗ ϕ)).(3.3.2)

For coalgebras C,D and coalgebra morphisms ϕ : C → D in C we let

ϕ↑ : CC → DC, (V, δ) �→ (V, (ϕ⊗ id)δ),(3.3.3)

ϕ↑ : CC → CD, (V, δ) �→ (V, (id⊗ ϕ)δ).(3.3.4)

In each case, morphisms f are mapped onto f . It is clear that ϕ↓ and ϕ↑ are well-
defined functors. If A,B are bialgebras, and ϕ : A → B is a bialgebra morphism,
then the functors ϕ↓ and ϕ↑ are strict monoidal.

We use the notation c−1 = c for the braiding of C.

Definition 3.3.3. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism.

(1) For (V, λ) ∈ HC, let

λ± =
(
V ⊗H

id⊗S±1

−−−−−→ V ⊗H
(c±1)V,H−−−−−−→ H ⊗ V

λ−→ V
)
.

(2) For (V, λ) ∈ CH , let

λ± =
(
H ⊗ V

S±1⊗id−−−−−→ H ⊗ V
(c±1)H,V−−−−−−→ V ⊗H

λ−→ V
)
.

Corollary 3.3.4. Let H be a Hopf algebra in C such that the antipode S of
H is an isomorphism in C. Then the functors changing sides of modules in C,

HC
F−

lr−−→ CHcop , HcopC
F+

lr−−→ CH ,

CH
F−

rl−−→ HcopC, CHcop

F+
rl−−→ HC,

with F±
lr (V, λ) = (V, λ±) for all modules (V, λ) ∈ HC, and F±

rl (V, λ) = (V, λ±) for
all modules (V, λ) ∈ CH , and where morphisms f are mapped onto f , are strict
monoidal isomorphisms.

Proof. By Corollary 3.2.16, S−1 : Hcop → Hop is an isomorphism of Hopf
algebras in C. Since

F−
lr =

(
HC

Flr−−→ CHop

(S−1)↓−−−−→ CHcop

)
,
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it follows from Proposition 3.3.1 that F−
lr is a strict monoidal isomorphism. The

same argument works for F−
rl . It follows that F+

lr and F+
rl are strict monoidal

isomorphisms, since F+
lr and F+

rl are the functors F−
lr and F−

rl with H replaced by
Hcop. �

Definition 3.3.5. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism.

(1) For (V, δ) ∈ HC, let

δ± =
(
V

δ−→ H ⊗ V
(c±1)H,V−−−−−−→ V ⊗H

id⊗S±1

−−−−−→ V ⊗H
)
.

(2) For (V, λ) ∈ CH , let

δ± =
(
V

δ−→ V ⊗H
(c±1)V,H−−−−−−→ H ⊗ V

S±1⊗id−−−−−→ H ⊗ V
)
.

The next result follows by duality from Corollary 3.3.4.

Corollary 3.3.6. Let H be a Hopf algebra in C such that the antipode S of
H is an isomorphism in C. Then the functors changing sides of comodules in C,

HC
F lr

−−−→ CH
op

, HopC
F lr

+−−→ CH ,

CH
F rl

−−−→ HopC, CH
op F rl

+−−→ HC,

with F lr
± (V, δ) = (V, δ±) for all comodules (V, δ) ∈ HC, and F rl

± (V, δ) = (V, δ±) for

all comodules (V, δ) ∈ CH , and where morphisms f are mapped onto f , are strict
monoidal isomorphisms.

A fundamental construction in Hopf algebra theory is the module structure
over the dual algebra C∗ of a comodule over a coalgebra C in Definition 2.2.15.
This construction is based on the evaluation pairing C∗ ⊗ C → k. To generalize it
to braided categories we formulate the natural axioms for an abstract pairing.

Definition 3.3.7. Let A and B be bialgebras in C. A morphism

p : A⊗B → I

in C is called a Hopf pairing, if the following diagrams commute.

A⊗B ⊗B

ΔA⊗id⊗id

��

id⊗μB �� A⊗B

p

��

A⊗A⊗ B ⊗B

id⊗p⊗id

��

A⊗B
p

�� I

A⊗A⊗ B

id⊗id⊗ΔB

��

μA⊗id
�� A⊗B

p

��

A⊗A⊗B ⊗B

id⊗p⊗id

��

A⊗B
p

�� I

I ⊗B

εB
���

��
��

��
��

ηA⊗id
�� A⊗B

p
����
��
��
��
�

I

A⊗ I

εA
���

��
��

��
��

id⊗ηB �� A⊗B

p
����
��
��
��
�

I
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Let A,B be bialgebras in Mk, and

p : A⊗B → k, a⊗ b �→ p(a, b) = p(a⊗ b)

a linear map. In Sweedler notation the axioms of a Hopf pairing are

p(a, bb′) = p(a(1), b
′)p(a(2), b), p(1, b) = ε(b),

p(aa′, b) = p(a, b(2))p(a
′, b(1)), p(a, 1) = ε(a)

for all a, a′ ∈ A and b, b′ ∈ B. Thus for a finite-dimensional bialgebra H, the
evaluation map H∗op cop ⊗H → k is a Hopf pairing.

In Section 7.2 we will define an important Hopf pairing between the Nichols
algebra of the dual of a Yetter-Drinfeld module V and the Nichols algebra of V .

A Hopf pairing p : A⊗B → I is denoted by p = A B .

By definition of a Hopf pairing,

A B B

=

A B B

,

A A B

=

A A B

,(3.3.5)

B =
B

, A =
A

.(3.3.6)

In addition we note the rules (3.2.16) and (3.2.17) when h = p is a Hopf pairing.

Proposition 3.3.8. Let A and B be Hopf algebras in C, and p : A⊗ B → I a
Hopf pairing.

(1) p(SA ⊗ id) = p(id⊗ SB) : A⊗B → I.

(2) p+ =
(
B ⊗A

SB⊗SA−−−−−→ B ⊗A
cB,A−−−→ A⊗B

p−→ I
)
is a Hopf pairing.

(3) Assume that the antipodes of A and B are isomorphisms. Then

pcop = p(S−1
A ⊗ idB) : A

cop ⊗Bcop → I

is a Hopf pairing of Acop, Bcop in C, and pcop = p(idA ⊗ S−1
B ).

Proof. (1) For all f, g ∈ HomC(A⊗B, I) let f · g = g(id⊗ f ⊗ id)(ΔA⊗ΔB).
Since C is a monoidal category and A,B are coalgebras in C, HomC(A⊗ B, I) is a
monoid with product · and unit ε = εA⊗εB . Let p1 = p(SA⊗id) and p2 = p(id⊗SB).
Then p1 · p = εA ⊗ εB = p · p2, hence p1 = p2.

(2) See Figure 3.3.1 with p+ = B A

+
. The first equality follows from the

definition of p+ and (3.2.26), the second from (3.2.12) with h = μAcA,A, the third
from axiom (3.3.5) of a Hopf pairing, the fourth from (3.2.13) with h = ΔB and
(3.2.26), the fifth from (3.2.16) with h = p, and finally the sixth from (3.2.16) with
h = pcB,A.

The second equation in (3.3.5) is shown in the same way, and (3.3.6) is easy to
check.

(3) The first part of the claim follows from the rules of the antipode in Propo-
sition 3.2.12, and the second from (1). �
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B A A

+

=

+ + +

B A A

=

+ + +

B A A

=

+ + +

B A A

=

+ + + +

B A A

=

+ + + +

B A A

=

+ + + +

B A A

=

B A A

+

+

Figure 3.3.1. Proof that p+ is a Hopf pairing

Proposition 3.3.9. Let A and B be bialgebras in C, and p : A⊗B → I a Hopf
pairing. The functors

Dl : B
opC → AC, (V, δ) �→ (V, λ), D

l
: BC → AcopC, (V, δ) �→ (V, λ),

with λ =
(
A⊗ V

id⊗δ−−−→ A⊗B ⊗ V
p⊗id−−−→ V

)
,

Dr : CA
op

→ CB, (V, δ) �→ (V, λ), D
r
: CA → CBcop , (V, δ) �→ (V, λ),

with λ =
(
V ⊗B

δ⊗id−−−→ V ⊗A⊗B
id⊗p−−−→ V

)
,

where in all cases morphisms f are mapped onto f , are strict monoidal.

Proof. Forgetting the monoidal structure, we first show that the functor

Dl = D
l
: BC → AC

is well-defined.
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For any object (V, δ) ∈ BC, Dl(V, δ) = (V, (p⊗idV )(idA⊗δ)) is a left A-module,
since

A A V

V

=

A A V

V

=

A A V

V

by (3.3.5) and coassociativity of δ. Thus the A-action of Dl(V, δ) is associative. By
(3.3.6), Dl(V, δ) is unitary.

Let V,W ∈B C, and let f : V → W be a morphism in BC. It is easy to see that
f : Dl(V )→ Dl(W ) is a morphism in AC.

To prove that the functor Dl : Bop

(C) → AC is strict monoidal, let (V, δV ) and
(W, δW ) be objects in BC. Then

λDl(V⊗W ) =

A V W

V W

=

A V W

V W

=

A V W

V W

=

A V W

V W

=

A V W

V W

= λDl(V )⊗Dl(W ),

where the second equality follows from (3.3.5), the third and the fourth from
(3.2.17), and the fifth from (3.2.12) with h = δV .

The preliminary version made available with permission of the publisher, the American Mathematical Society.



3.4. YETTER-DRINFELD MODULES 135

By somewhat different arguments,

λ
D

l
(V⊗W )

=

A V W

V W

=

A V W

V W

=

A V W

V W

=

A V W

V W

=

A V W

V W

= λ
D

l
(V )⊗D

l
(W )

,

where the second equality follows from (3.3.5), the third from (3.2.16), the fourth
from (3.2.17), and the fifth from (3.2.12) with h = δV .

Note that Dl(I) = D
l
(I) = I by (3.3.6). We have shown that Dl and D

l
are

strict monoidal. The claims for Dr and D
r
follow in the same way. �

Corollary 3.3.10. Let A and B be Hopf algebras in C, and p : A⊗ B → I a
Hopf pairing. Then the functors

Drl =
(
CB

F rl
−−−→ BopC Dl

−−→ AC
)
,

Dlr =
(
AC

F lr
−−−→ CA

op
Dr

−−→ CB
)

are strict monoidal.

Proof. The claim follows from Proposition 3.3.9 and Corollary 3.3.6. �

3.4. Yetter-Drinfeld modules

Let C = (C,⊗, I, c) be a braided strict monoidal category.
Let H = (H,μ, η,Δ, ε) be a bialgebra in C. Yetter-Drinfeld modules over H

are left or right H-modules and left or right H-comodules satisfying a compatibility
condition. Hence there are four different types of Yetter-Drinfeld modules. We will
need two of them.

Definition 3.4.1. Let V be an object in C and let λ : H ⊗ V → V and
δ : V → H ⊗ V be morphisms. The triple (V, λ, δ) is a left Yetter-Drinfeld
module over H if (V, λ) ∈ HC, (V, δ) ∈ HC, and in HomC(H ⊗ V,H ⊗ V ),

(μ⊗ id)(id⊗ cV,H)(δλ⊗ id)(id⊗ cH,V )(Δ⊗ id) =

(μ⊗ λ)(id⊗ cH,H ⊗ id)(Δ⊗ δ), that is,
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H V

H V

=

H V

H V

.(3.4.1)

Note that (3.4.1) is upside-down symmetric.
If (V, λ, δ) is a left Yetter-Drinfeld module over H, then (V, δop, λop) is a left

Yetter-Drinfeld module over (H,Δop, εop, μop, ηop) in Cop.

Remark 3.4.2. We look at the special case of bialgebras in C = Mk. In
Sweedler notation, (3.4.1) is equivalent to the following condition. For all h ∈ H,
v ∈ V ,

(h(1) · v)(−1)h(2) ⊗ (h(1) · v)(0) = h(1)v(−1) ⊗ h(2) · v(0).(3.4.2)

If H is a Hopf algebra, then (3.4.2) is equivalent to

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0)(3.4.3)

for all h ∈ H, v ∈ V . Thus Yetter-Drinfeld modules over the group algebra in the
sense of Definition 1.4.1 and Remark 1.4.8 are left Yetter-Drinfeld modules.

Example 3.4.3. We determine one-dimensional Yetter-Drinfeld modules in the
category C = Mk. If H is a group algebra, Yetter-Drinfeld modules over H have
been determined in Example 1.4.3. Let H be a bialgebra, V a one-dimensional
vector space, and let λ : H ⊗ V → V and δ : V → H ⊗ V be maps. Let x ∈ V ,
g ∈ H, χ : H → k be such that

x �= 0, δ(x) = g ⊗ x, λ(h⊗ x) = χ(h)x for all h ∈ H.

Then (V, λ) ∈ HC if and only if λ ∈ Alg(H, k). Moreover, (V, δ) ∈ HC if and only if
Δ(g) = g ⊗ g and ε(g) = 1. Finally, (V, λ, δ) is a Yetter-Drinfeld module over H if
and only if additionally

χ(h(1))gh(2) = h(1)gχ(h(2))

for all h ∈ H.
Assume that (V, λ, δ) as above is a Yetter-Drinfeld module over H. Then

χ(h)gh = hgχ(h) for each group-like element h ∈ H. If h is an invertible group-like
element, then

1 = χ(1) = χ(hh−1) = χ(h)χ(h−1),

and hence χ(h) �= 0 and gh = hg. Let ξ ∈ Alg(H, k). Then

χ(h(1))ξ(g)ξ(h(2)) = ξ(h(1))ξ(g)χ(h(2))

and hence (χξ)(h)ξ(g) = (ξχ)(h)ξ(g) for all h ∈ H. In particular, if g is invertible
then ξ(g) �= 0 and χξ = ξχ.
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Definition 3.4.4. For all (X, δ) ∈ HC and (Y, λ) ∈ HC let

c
YD(C)
X,Y =

(
X ⊗ Y

δ⊗id−−−→ H ⊗X ⊗ Y
id⊗cX,Y−−−−−→ H ⊗ Y ⊗X

λ⊗id−−−→ Y ⊗X
)
,

c
YD(C)
X,Y = cYD

X,Y =

X Y

Y X

.(3.4.4)

The definition of cYD
X,Y is upside-down symmetric. Hence

c
YD(Cop)
Y,X = (c

YD(C)
X,Y )op.

In the next proposition we characterize the Yetter-Drinfeld condition (3.4.1) by
properties of the morphisms cYD

X,Y .

Proposition 3.4.5. Let V be an object in C, (V, λ) ∈ HC, and (V, δ) ∈ HC.
Then the following are equivalent.

(1) (V, λ, δ) is a left Yetter-Drinfeld module over H.
(2) For all X ∈ HC, cYD

V,X is a morphism in HC.
(3) cYD

V,H is a morphism in HC, where H is a left H-module by the multiplica-
tion in H.

(4) For all X ∈ HC, cYD
X,V is a morphism in HC.

Proof. (1) ⇒ (2). Let (X,λX) ∈ HC. Tensoring (3.4.1) with X from the
right and braiding of V and X and action with H gives the equation

H V X

X V

=

H V X

X V

.(3.4.5)

We will prove (2) by showing that cYD
V,XλV⊗X is equal to the left-hand side of (3.4.5),

and λX⊗V (id⊗ cYD
V,X) to the right-hand side of (3.4.5).
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By definition and (3.2.12) with h = λX ,

cYD
V,XλV⊗X =

H V X

X V

=

H V X

X V

,

which is the left-hand side of (3.4.5) since X ∈ HC.
By definition and (3.2.12) with h = λX , and then by (3.2.13) with h = λV ,

λX⊗V (id⊗ cYD
V,X) =

H V X

X V

=

H V X

X V

=

H V X

X V

.

Since X ∈ HC, the last picture is the right-hand side of (3.4.5).
(3) ⇒ (1). We have seen in the proof of (1) ⇒ (2) that (2) is equivalent to

(3.4.5) for all X ∈ HC. Let X = H as a left H-module by multiplication. Then
(3.4.5) for X = H composed with idH ⊗ idV ⊗ η implies (1).

(2)⇒ (3) is trivial, and (1)⇔ (4) follows by duality from (1)⇔ (2). �

Proposition 3.4.6. Let V,W ∈ HC and M,N ∈ HC.
(1) cYD

V,M⊗N = (idM ⊗ cYD
V,N )(cYD

V,M ⊗ idN ).

(2) cYD
V⊗W,M = (cYD

V,M ⊗ idW )(idV ⊗ cYD
W,M ).

(3) cYD
V,I = idV , cYD

I,M = idM , where the module structure of I is ε, and the
comodule structure is η, respectively.

(4) Let f : V → W and g : M → N be morphisms of left H-comodules and of
left H-modules. Then (g ⊗ f)cYD

V,M = cYD
W,N (f ⊗ g).
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Proof. (1) The composition (idM ⊗ cYD
V,N )(cYD

V,M ⊗ idN ) equals

V M N

M N V

=

V M N

M N V

=

V M N

M N V

= cYD
V,M⊗N ,

where the first equality follows from (3.2.12) with h = δV , and the second from
coassociativity of V .

(2) is shown in the same way as (1), and (3) and (4) are easy to see. �
Definition 3.4.7. Let H be a Hopf algebra in C with antipode S, and assume

that S is an isomorphism in C. For all X ∈ HC and Y ∈ HC let

cYD
X,Y =

(
X ⊗ Y

id⊗δY−−−−→ X ⊗H ⊗ Y
cX,H⊗id−−−−−→ H ⊗X ⊗ Y =

H ⊗X ⊗ Y
S−1⊗id⊗id−−−−−−−→ H ⊗X ⊗ Y

λX⊗id−−−−→ X ⊗ Y
cX,Y−−−→ Y ⊗X

)
,

The definition of cYD
X,Y does not look upside-down symmetric, but it is, and

c
YD(Cop)
Y,X = (c

YD(C)
X,Y )op, since

cYD
X,Y =

–

X Y

Y X

= –

X Y

Y X

= –

X Y

Y X

,

by first (3.2.13) with h = λX , and then (3.2.12) with h = δY .

Proposition 3.4.8. Let H be a Hopf algebra in C with antipode S, and assume
that S is an isomorphism. Let X ∈ HC, Y ∈ HC. Then cYD

X,Y is an isomorphism in

C with inverse cYD
Y,X .

Proof. We transform cYD
Y,XcYD

X,Y according to Figure 3.4.1, where the second

equality follows from (3.2.13) with h = λX , the third from (3.2.15) with h = λY ,
and the last from coassociativity and associativity of X and Y . The last picture
is the identity of X ⊗ Y by (3.2.27), counitarity and unitarity of X and Y , and
(3.2.9). The equation cYD

X,Y cYD
Y,X = idY⊗X follows by symmetry. �
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cYD
Y,XcYD

X,Y =

–

X Y

X Y

=

–

X Y

X Y

=

–

X Y

X Y

=
–

X Y

X Y

,

Figure 3.4.1. Part of proof of Proposition 3.4.8

We now discuss the right version of left Yetter-Drinfeld modules.

Definition 3.4.9. Let V be an object in C and let λ : V ⊗ H → V and
δ : V → V ⊗ H be morphisms. The triple (V, λ, δ) is a right Yetter-Drinfeld
module over H if (V, λ) ∈ CH , (V, δ) ∈ CH , and in HomC(V ⊗H,V ⊗H),

(id⊗ μ)(cH,V ⊗ id)(id⊗ δλ)(cV,H ⊗ id)(id⊗Δ) =

(λ⊗ μ)(id⊗ cH,H ⊗ id)(δ ⊗Δ),

that is,

V H

V H

=

V H

V H

.(3.4.6)

Definition 3.4.10. For all (X,λ) ∈ CH and (Y, δ) ∈ CH let

c
YD(C)
X,Y =

(
X ⊗ Y

id⊗δ−−−→ X ⊗ Y ⊗H
cX,Y ⊗id−−−−−→ Y ⊗X ⊗H

id⊗λ−−−→ Y ⊗X
)
,
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c
YD(C)
X,Y = cYD

X,Y =

X Y

Y X

.(3.4.7)

Proposition 3.4.11. Let V be an object in C, (V, λ) ∈ CH , and (V, δ) ∈ CH .
Then the following are equivalent.

(1) (V, λ, δ) is a right Yetter-Drinfeld module over H.
(2) For all X ∈ CH , cYD

X,V is a morphism in CH .

(3) cYD
H,V is a morphism in CH , where H is a right H-module by the multipli-
cation in H.

(4) For all X ∈ CH , cYD
V,X is a morphism in CH .

Proof. This follows from Proposition 3.4.5 by left-right symmetry. �
Definition 3.4.12. Let H be a bialgebra in the braided strict monoidal cat-

egory C. The category of left Yetter-Drinfeld modules (right Yetter-Drinfeld mod-
ules, respectively) is denoted by H

HYD(C) (YD(C)HH , respectively). Morphisms in
H
HYD(C) and in YD(C)HH are morphisms of H-modules and H-comodules.

Theorem 3.4.13. Let H be a bialgebra in C. Then H
HYD(C) and YD(C)HH are

prebraided strict monoidal categories, where the monoidal structure is the monoidal
structure of modules and comodules defined in Section 3.2, and for all X,Y in
H
HYD(C) (X,Y in YD(C)HH , respectively), the braiding is cYD

X,Y defined in (3.4.4) (in

(3.4.7), respectively).
If H is a Hopf algebra with antipode S, and if S is an isomorphism, then the

categories H
HYD(C) and YD(C)HH are braided strict monoidal.

Proof. Let V,W ∈ H
HYD(C). Then V ⊗ W ∈ HC, and V ⊗ W ∈ HC with

diagonal action and coaction of Section 3.2. For all X ∈ HC, cYD
W,X and cYD

V,X are left

H-module morphisms by Proposition 3.4.5. Hence by Proposition 3.4.6(2), cYD
V⊗W,X

is a morphism of left H-modules, and V ⊗W ∈ H
HYD(C) by Proposition 3.4.5.

By Proposition 3.4.5 and Proposition 3.4.6, the family (cYD
V,W )V,W∈H

HYD(C) is a

prebraiding. If H is a Hopf algebra, and the antipode of H is an isomorphism, then
the prebraiding of H

HYD(C) is a braiding by Proposition 3.4.8.
The claim for right Yetter-Drinfeld modules follows by left-right symmetry. �
To prove the next theorem we need the following easy identifications.

Remark 3.4.14. (1) Let C, C′ be braided strict monoidal categories, and let
(F, ϕ) : C → C′ be a braided monoidal functor. Let H be a Hopf algebra in C
and H ′ the Hopf algebra (F, ϕ)(H) in C′. Then (F, ϕ) induces a braided monoidal
functor YD(F, ϕ) with functor

F : YD(C)HH → YD(C′)H′

H′ ,

(V, λ, δ) �→ (F (V ), λ′, δ′) with λ′ = F (λ)ϕV,H , δ′ = ϕ−1
V,HF (δ),

(3.4.8)

where morphisms f are mapped onto F (f), and with monoidal structure ϕ.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



142 3. BRAIDED MONOIDAL CATEGORIES

(2) Let H,H ′ be Hopf algebras in C whose antipodes are isomorphisms, and let
ρ : H → H ′ be an isomorphism of Hopf algebras. Then the functor

YD(ρ) : YD(C)HH → YD(C)H′

H′ ,

(V, λ, δ) �→ (V, λ′, δ′) with λ′ = λ(idV ⊗ ρ−1), δ′ = (idV ⊗ ρ)δ,
(3.4.9)

where morphisms f are mapped onto f , is a braided strict monoidal isomorphism.
In the same way YD(ϕ) is defined for left Yetter-Drinfeld modules.

(3) Let H be a Hopf algebra whose antipode is an isomorphism. Then H is a
Hopf algebra in Crev. It is easy to see that the functors

(Crev)H → (HC)rev, (V, λ) �→ (V, λ),

(Crev)H → (HC)rev, (V, δ) �→ (V, δ),

are strict monoidal isomorphisms, and that

YD(Crev)HH → (HHYD(C))rev, (V, λ, δ) �→ (V, λ, δ),(3.4.10)

is a braided strict monoidal isomorphism, where in each case morphisms f are
mapped onto f .

(4) Let

F rev
C = (id, c) : Crev → C, F

rev

C = (id, ϕ) : C → Crev, where

ϕX,Y = cY,X : X ⊗rev Y → X ⊗ Y,
(3.4.11)

for all X,Y ∈ C. It follows from the axioms of a braiding and (3.2.14) that F rev
C and

F
rev

C are inverse braided monoidal isomorphisms. Replacing c by c defines another
pair of inverse braided monoidal isomorphisms

F rev
C,c = (id, c) : Crev → C, F

rev

C,c = (id, ϕ) : C → Crev, where

ϕX,Y = cY,X : X ⊗rev Y → X ⊗ Y,
(3.4.12)

for all X,Y ∈ C. Hence for a bialgebra (Hopf algebra, respectively) H in C,

F
rev

C (H) = (Hop)cop, F
rev

C,c(H) = (Hcop)op,

are bialgebras (Hopf algebras, respectively) in C. Note that Proposition 3.2.15 is
not used in this argument.

Recall the notations λ−, δ+ in Definitions 3.3.3 and 3.3.5 for (V, λ) ∈ CH and
(V, δ) ∈ CH .

Theorem 3.4.15. Let H be a Hopf algebra in C, and assume that the antipode
of H is an isomorphism. Then the functors

FYD
rl : YD(C)HH → H

HYD(C), (V, λ, δ) �→ (V, λ−, δ+),

FYD
lr : HHYD(C)→ YD(C)HH , (V, λ, δ) �→ (V, λ+, δ−),

and where morphisms f are mapped onto f , are inverse isomorphisms, and

(FYD
rl , ρ) : YD(C)HH → H

HYD(C), where ρX,Y = c
YD(C)HH
Y,X cX,Y ,

(FYD
lr , ψ) : HHYD(C)→ YD(C)HH , where ψU,V = c

H
HYD(C)
V,U cU,V ,

for all for all X,Y ∈ YD(C)HH and all U, V ∈ H
HYD(C), are inverse braided monoidal

isomorphisms.
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Proof. (1) We first prove the claim for (FYD
rl , ϕ). Let (F, ϕ) be the composi-

tion of the following braided monoidal isomorphisms

YD(C)HH
YD(F

rev
C )−−−−−−→ YD(Crev)(H

op)cop

(Hop)cop
YD(S)−−−−→ YD(Crev)HH

(3.4.10)−−−−−→ (HHYD(C))rev.

Recall that F
rev

C (H) = (Hop)cop. The braided strict monoidal isomorphism YD(S)
is induced from the isomorphism S : (Hop)cop → H of Hopf algebras in C in
Corollary 3.2.16.

Then for all (X,λ, δ) ∈ YD(C)HH , F (X,λ, δ) = (X,λ−, δ+), and

ϕX,Y = cY,X : F (X)⊗rev F (Y )→ F (X ⊗ Y )

for all X,Y ∈ YD(C)HH .
The theorem follows by composing (F, ϕ) and

F rev
H
HYD(C) = (id, c

H
HYD(C)) : (HHYD(C))rev → H

HYD(C).

Note that the monoidal structure of the composition is given by

ϕX,Y = cY,Xc
H
HYD(C)
F (X),F (Y ) = c

YD(C)HH
Y,X cX,Y

for all X,Y ∈ YD(C)HH , since (F, ϕ) is braided.

(2) It is clear that FYD
rl and FYD

lr are inverse functors. By (3.1.11), the inverse

of (FYD
rl , ϕ) is the monoidal functor (G,ψ), G = FYD

lr , with

ψU,V = G(ϕG(U),G(V ))
−1 = cV,U c

YD(C)HH
G(U),G(V )(3.4.13)

for all U, V ∈ H
HYD(C), where we used the definition of ϕ in (1).

Since (G,ψ) is braided, for all U, V ∈ H
HYD(C),

c
H
HYD(C)
U,V ψU,V = ψV,U c

YD(C)HH
G(U),G(V ),

hence by(3.4.13),

c
H
HYD(C)
U,V cV,U c

YD(C)HH
G(U),G(V ) = cU,V c

YD(C)HH
G(V ),G(U)c

YD(C)HH
G(V ),G(U) = cU,V , or

ψU,V = cV,U c
YD(C)HH
G(U),G(V ) = c

H
HYD(C)
V,U cU,V .

This implies the claim. �

The monoidal isomorphism in Theorem 3.4.15 is not strict. However, by the
next theorem there is a strict monoidal isomorphism between right Yetter-Drinfeld
modules over H and left Yetter-Drinfeld modules over Hcop.

Theorem 3.4.16. Let H be a Hopf algebra in C, and assume that the antipode
of H is an isomorphism. Then the functors

F
YD
rl : YD(C)HH → Hcop

HcopYD(C), (V, λ, δ) �→ (V, λ−, cV,Hδ),

F
YD
lr : H

cop

HcopYD(C)→ YD(C)HH , (V, λ, δ) �→ (V, λ+, cH,V δ),

and where morphisms f are mapped onto f , are inverse, braided strict monoidal
isomorphisms.
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Proof. (1) By Proposition 3.3.2 and Corollary 3.3.4, the functors

F1 = F−
rl : CH → HcopC, (V, λ) �→ (V, λ−),

F2 = F rl : CH → HcopC, (V, δ) �→ (V, cV,Hδ),

are strict monoidal isomorphisms.
Let (X,λX) ∈ CH , (V, δ) ∈ CH , and define

(X,λ′
X) = F1(X,λX), (V, δ′) = F2(V, δ).

We first prove the equality

cYD
(X,λ′

X),(V,δ′) = cYD
(X,λX),(V,δ),(3.4.14)

where λ′
X = (λX)− = λcH,V (S−1

H ⊗ idV ), δ
′ = cV,Hδ, and hence

cYD
(X,λ′

X),(V,δ′) =
(
X ⊗ V

id⊗δ′−−−→ X ⊗H ⊗ V
λX⊗id−−−−→ X ⊗ V

cX,V−−−→ V ⊗X
)
.

Let δ =

HV

V

, and λX =

X H

X

. Then by definition, δ′ =

V

VH

, and

cYD
(X,λ′

X),(V,δ′) =

X V

V X

=

X V

V X

= cYD
(X,λX),(V,δ),

where the second equality follows from (3.2.15).
(2) Let V ∈ C, and define

P l(V ) = {(λ, δ) | (V, λ) ∈ CH , (V, δ) ∈ CH},
Pr(V ) = {(λ′, δ′) | (V, λ′) ∈ HcopC, (V, δ′) ∈ HcopC}.

Then Φ : P l(V )→ Pr(V ), (λ, δ) �→ (λ′, δ′), where

(V, λ′) = F1(V, λ), (V, δ′) = F2(V, δ),

is bijective.
Let (λ, δ) ∈ P l(V ), and (λ′, δ′) = Φ(λ, δ).
We claim that the following are equivalent.

(a) (V, λ, δ) ∈ YD(C)HH .

(b) (V, λ′, δ′) ∈ Hcop

HcopYD(C).
(c) For all (X,λX) ∈ CH , the morphism

cYD
(X,λX),(V,δ) : (X,λX)⊗ (V, λ)→ (V, λ)⊗ (X,λX) is in CH .
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(d) For all (X,λ′
X) ∈ HcopC, the morphism

cYD
(X,λ′

X),(V,δ′) : (X,λ′
X)⊗ (V, λ′)→ (V, λ′)⊗ (X,λ′

X) is in HcopC.

By Proposition 3.4.11, (a) is equivalent to (c), and by Proposition 3.4.8 and Propo-
sition 3.4.5, (b) is equivalent to (d). The equivalence of (c) and (d) follows from
(3.4.14), since F1 is a strict monoidal isomorphism.

(3) Since F1 and F2 are strict monoidal isomorphisms, it follows from (1) and

(2) that F
YD
rl is a strict monoidal isomorphism with inverse F

YD
lr .

We finally show that the functor F = F
YD
rl is braided. Let X = (X,λX , δX)

and V = (V, λ, δ) be Yetter-Drinfeld modules in YD(C)HH , and F (X) = (X ′, λ′
X , δ′X)

and F (V ) = (V ′, λ′, δ′) their images under F .
We write

F : A = YD(C)HH → B = Hcop

HcopYD(C).

In the notation of (1), cYD
(X,λX),(V,δ) = cAX,V , and cYD

(X′,λ′
X),(V ′,δ′) = cBF (X),F (V ). By

(3.4.14), cAX,V = cBF (X),F (V ), hence

F (cAV,X) = cAV,X = cBF (V ),F (X).

�

Corollary 3.4.17. Let H be a Hopf algebra in C, and assume that the antipode
of H is an isomorphism. Then the functor

F : HHYD(C)→ Hcop

HcopYD(C), (V, λ, δ) �→ (V, λ, (S−1
H ⊗ id)c2H,V δ),

and where morphisms f are mapped onto f , is an isomorphism, and

(F, ϕ) : HHYD(C)→ Hcop

HcopYD(C), where ϕX,Y = c
H
HYD(C)
Y,X cX,Y ,

for all X,Y ∈ H
HYD(C), is a braided monoidal isomorphism.

Proof. This follows by composing the isomorphisms in Theorems 3.4.15 and

3.4.16, that is, we define (F, ϕ) = F
YD
rl (FYD

lr , ψ). �

3.5. Duality and Hopf modules

Let C be a strict monoidal category.

Definition 3.5.1. Let V ∈ C. A left dual of V is a triple (V ∗, evV , coevV ),
where V ∗ is an object in C, and evV : V ∗ ⊗ V → I and coevV : I → V ⊗ V ∗ are
morphisms in C with

(V ∗ ⊗ I
id⊗coevV−−−−−−→ V ∗ ⊗ V ⊗ V ∗ ev⊗id−−−−→ I ⊗ V ∗) = idV ∗ ,

(I ⊗ V
coevV ⊗id−−−−−−→ V ⊗ V ∗ ⊗ V

id⊗ev−−−−→ V ⊗ I) = idV .

We use the notations

evV = V ∗ V , coevV =
V V ∗

.
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Hence by definition of a left dual,

V ∗

V ∗

=

V ∗

V ∗

,

V

V

=

V

V

.(3.5.1)

Remark 3.5.2. Let V ∈ C and (V ∗, evV , coevV ) a left dual of V .
(1) For all X,Y ∈ C,

HomC(X ⊗ V, Y )→ HomC(X,Y ⊗ V ∗),(3.5.2)

F �→ (F ⊗ idV ∗)(idX ⊗ coevV ),

is bijective with inverse given by G �→ (idY ⊗ evV )(G⊗ idV ), and

HomC(V
∗ ⊗X,Y )→ HomC(X,V ⊗ Y ),(3.5.3)

F �→ (idV ⊗ F )(coevV ⊗ idX),

is bijective with inverse given by G �→ (evV ⊗ idY )(idV ∗ ⊗G).
By (3.5.2), the pair (V, evV ) satisfies the following universal property.
For all X,Y ∈ C and morphisms F : X⊗V → Y there is exactly one morphism

G : X → Y ⊗ V ∗ such that the diagram

X ⊗ V
F ��

G⊗idV ����
���

���
���

Y

Y ⊗ V ∗ ⊗ V

idY ⊗evV

������������
(3.5.4)

commutes. Explicitly, G is given by G = (F ⊗ idV ∗)(idX ⊗ coevV ).
(2) We note another universal property of the pair (V ∗, evV ) by setting Y = I

in (1).
For all X ∈ C and morphisms F : X ⊗ V → I there is exactly one morphism

G : X → V ∗ such that the diagram

(3.5.5)

X ⊗ V
F ��

G⊗idV 

��
���

���
��

I

V ∗ ⊗ V

evV

�����������

commutes. Explicitly, G is given by G = (F ⊗ idV ∗)(idX ⊗ coevV ).
(3) If f : V → W is a morphism, and if W has a left dual (W, evW , coevW ) we

define a morphism f∗ : W ∗ → V ∗ by (3.5.5) with X = W ∗ and F = evW (id⊗ f),
G = f∗, that is by the commutative diagram

W ∗ ⊗ V
idW∗⊗f

��

f∗⊗idV

��

W ∗ ⊗W

evW

��

V ∗ ⊗ V
evV �� I

.(3.5.6)

By the universal property, id∗V = idV ∗ , and (fg)∗ = g∗f∗, if g : U → V is a
morphism such that a left dual (U, evU , coevU ) exists.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



3.5. DUALITY AND HOPF MODULES 147

Example 3.5.3. Let C =Mk be the monoidal category of vector spaces.
Suppose a vector space V has a left dual (V ∗, evV , coevV ). Choose elements

vi ∈ V , fi ∈ V ∗, 1 ≤ i ≤ n, with coevV (1) =
∑n

i=1 vi ⊗ fi. Then V is finite-
dimensional, since for all v ∈ V , v =

∑n
i=1 vievV (fi ⊗ v).

A finite-dimensional vector space V has the left dual (V ∗, evV , coevV ), where
V ∗ = Hom(V, k) is the dual space, evV : V ∗ ⊗ V → k, f ⊗ v �→ f(v), is evaluation,
and coevV is defined by coevV (1) =

∑n
i=1 vi ⊗ fi, where (vi)1≤i≤n and (fi)1≤i≤n

are dual bases. If f : V → W is a linear map of finite-dimensional vector spaces,
then f∗ defined by (3.5.6) is Hom(f, id).

The left dual is uniquely determined (if it exists) in the sense of the next lemma.

Lemma 3.5.4. Let C be a strict monoidal category and let f : V → W be a
morphism in C. Assume that (V ∗, evV , coevV ) and (V ′, ev′V , coev′V ) are left duals
of V , and that (W ∗, evW , coevW ) and (W ′, ev′W , coev′W ) are left duals of W .

(1) There is exactly one morphism ϕ : V ′ → V ∗ such that the diagram

V ′ ⊗ V
ev′

V ��

ϕ⊗id


��

���
���

��
I

V ∗ ⊗ V

evV

�����������

commutes. Explicitly, ϕ = (ev′V ⊗ idV ∗)(idV ′ ⊗ coevV ), and ϕ is an iso-
morphism.

(2) (idV ⊗ ϕ)coev′V = coevV .
(3) Let ψ : W ′ → W ∗ be the isomorphism ϕ in (1) for the duals of W . Let

f∗ : W ∗ → V ∗ and f ′ : W ′ → V ′ be the morphisms defined by the diagram
(3.5.6) for the duals W ∗, V ∗ and the duals W ′, V ′. Then f∗ψ = ϕf ′.

Proof. (1) follows from the universal property (3.5.5).
(2) By definition of the dual and by (1),

idV = (idV ⊗ ev′V )(coev
′
V ⊗ idV )

= (idV ⊗ evV )(idV ⊗ ϕ⊗ idV )(coev
′
V ⊗ idV ).

Hence (idV ⊗ ϕ)coev′V = coevV by the uniqueness of G in (3.5.4) with X = I,
Y = V , and F = idV .

(3) Define f : W ′ → V ′ by the equation f∗ψ = ϕf . Then f satisfies the
defining commutative diagram for f ′. Hence f = f ′. �

Lemma 3.5.5. Let C be a braided strict monoidal category, and V,W ∈ C.
Assume that (V ∗, evV , coevV ) and (W ∗, evW , coevW ) are left duals of V and W ,
respectively.

(1) Let ẽvV = evV cV,V ∗ , c̃oevV = cV,V ∗coevV . Then (V, ẽvV , c̃oevV ) is a left
dual of V ∗.

(2) Define ẽvV,W and c̃oevV,W by the compositions

V ∗ ⊗W ∗ ⊗ V ⊗W
id⊗cW∗,V ⊗id−−−−−−−−−→ V ∗ ⊗ V ⊗W ∗ ⊗W

evV ⊗evW−−−−−−→ I and

I
coevV ⊗coevW−−−−−−−−−→ V ⊗ V ∗ ⊗W ⊗W ∗ id⊗cV ∗,W⊗id−−−−−−−−−→ V ⊗W ⊗ V ∗ ⊗W ∗.

Then (V ∗ ⊗W ∗, ẽvV,W , c̃oevV,W ) is a left dual of V ⊗W .
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Proof. In both cases we prove the first equation in (3.5.1), the second follows
by symmetry.

(1)

V

V

=

V

V

=

V

V

=

V

V

,

where the first equality follows from (the upside-down version of) (3.2.17) and the
second from (3.2.11).

(2)

V ∗ W ∗

V ∗ W ∗

=

V ∗ W ∗

V ∗ W ∗

=

V ∗

V ∗

W ∗

W ∗

,

where the first equality follows from (3.2.17) and the second from (3.2.11). �

Definition 3.5.6. A braided strict monoidal category C is called rigid, if each
object has a left dual.

Let C be a rigid braided strict monoidal category. For any V ∈ C we fix a left
dual (V, evV , coevV ). (For the left dual of I we take (I, id, id).) The contravariant
functor

( )∗ : C → C, V �→ V ∗,

where morphisms f are mapped onto f∗ is called the left duality functor.

Remark 3.5.7. Let C be a strict monoidal category, and V ∈ C. A right dual
of V is a triple (∗V, ev′V , coev′V ), where

∗V is an object in C, and ev′V : V ⊗ ∗V → I
and coev′V : I → ∗V ⊗ V are morphisms in C with

(I ⊗ ∗V
coev′

V ⊗id−−−−−−→ ∗V ⊗ V ⊗ ∗V
id⊗ev′

V−−−−−→ ∗V ⊗ I) = idV ∗ ,

(V ⊗ I
id⊗coev′

V−−−−−−→ V ⊗ ∗V ⊗ V
ev′

V ⊗id−−−−−→ I ⊗ V ) = idV .

The monoidal category C is called rigid, if each object has a left dual and a right
dual. In this sense, a rigid braided strict monoidal category is rigid, since for each
V ∈ C with left dual (V ∗, evV , coevV ) the triple (V ∗, ev′V , coev′V ) is a right dual,
where

ev′V = (V ⊗ V ∗ cV,V ∗
−−−−→ V ∗ ⊗ V

evV−−→ I),

coev′V = (I
coevV−−−−→ V ⊗ V ∗ cV,V ∗−−−−→ V ∗ ⊗ V ).
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Theorem 3.5.8. Let C be a rigid braided strict monoidal category. For all
V,W ∈ C let

ϕV,W = (ẽvV,W ⊗ id(V⊗W )∗)(idV ∗⊗W∗ ⊗ coevV⊗W ),(3.5.7)

ψV = (ẽvV ⊗ idV ∗∗)(idV ⊗ coevV ∗).(3.5.8)

Then the families

ϕ = (ϕV,W : V ∗ ⊗W ∗ → (V ⊗W )∗)V,W∈C , ψ = (ψV : V → V ∗∗)V ∈C

are natural isomorphisms, and

(( )∗, ϕ) : Cop → C

is a braided monoidal equivalence.

Proof. Let V,W ∈ C. By Lemma 3.5.5 and Lemma 3.5.4, ψV and ϕV,W are
the isomorphisms in Lemma 3.5.4(1) making the following diagrams commutative.

V ⊗ V ∗ ẽvV ��

ψV ⊗id
����

���
���

��
I

V ∗∗ ⊗ V ∗

evV ∗

������������
(3.5.9)

V ∗ ⊗W ∗ ⊗ V ⊗W
ẽvV,W

��

ϕV,W⊗id
�����

����
����

����
� I

(V ⊗W )∗ ⊗ V ⊗W

evV ⊗W

���������������

.

(3.5.10)

It follows from Lemma 3.5.4 that ψ and ϕ are natural isomorphisms.
We next show that ϕ is a monoidal structure of the duality functor. Let

U, V,W ∈ C. The equalities ϕV,I = idV ∗ = ϕI,V are obvious. To prove that
the diagram

U∗ ⊗ V ∗ ⊗W ∗ id⊗ϕV,W−−−−−−→ U∗ ⊗ (V ⊗W )∗

ϕU,V ⊗id

⏐⏐' ϕU,V ⊗W

⏐⏐'
(U ⊗ V )∗ ⊗W ∗ ϕU⊗V,W−−−−−→ (U ⊗ V ⊗W )∗

commutes, by (3.5.4) we have to show that

evU⊗V ⊗W (ϕU⊗V,W ⊗ idU⊗V⊗W )(ϕU,V ⊗ idW∗ ⊗ idU⊗V ⊗W )

=evU⊗V ⊗W (ϕU,V ⊗W ⊗ idU⊗V ⊗W )(idU∗ ⊗ ϕV,W ⊗ idU⊗V ⊗W ).

This is easily checked using the defining diagrams of the ϕ-maps, the definition of
the ẽv-maps, and the axioms of the braiding.

Finally, the diagram

V ∗ ⊗W ∗ ϕV,W−−−−→ (V ⊗W )∗

cV ∗,W∗

⏐⏐' (cW,V )∗
⏐⏐'

W ∗ ⊗ V ∗ ϕW,V−−−−→ (W ⊗ V )∗
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commutes. As before we have to prove that

evW⊗V (ϕW,V ⊗ idW⊗V )(cV ∗,W∗ ⊗ idW⊗V )

=evW⊗V ((cW,V )
∗ ⊗ idW⊗V )(ϕV,W ⊗ idW⊗V ).

By the defining diagrams of ϕW,V , of (cW,V )
∗ and of ϕV,W , the last equation is

equivalent to

ẽvW,V (cV ∗,W∗ ⊗ idW⊗V ) = ẽvV,W (idV ∗⊗W∗ ⊗ cW,V ),

and ẽvW,V (cV ∗,W∗ ⊗ idW⊗V ) is equal to

V ∗ W ∗ W V

=

V ∗ W ∗ W V

=

V ∗ W ∗ W V

= ẽvW,V (idV ∗⊗W∗ ⊗ cW,V ),

where we moved evV twice to the left using (3.2.17). �

Remark 3.5.9. Let C be a braided strict monoidal and rigid category, and let
H = (H,μ, η,Δ, ε,S) be a Hopf algebra in C. Then by Theorem 3.5.8, the dual
Hopf algebra of H is the Hopf algebra (H∗,Δ∗ϕH,H , ε∗, ϕ−1

H,Hμ∗, η∗,S∗).

Lemma 3.5.10. Let V ∈ C with left dual (V ∗, evV , coevV ), C a coalgebra and
A an algebra in C.

(1) If (V, λ) ∈ AC, then (V ∗, λr) ∈ CA, where λr is defined by

V ∗ ⊗A
id⊗id⊗coevV−−−−−−−−→ V ∗ ⊗A⊗ V ⊗ V ∗ id⊗λV ⊗id−−−−−−→ V ∗ ⊗ V ⊗ V ∗ evV ⊗id−−−−−→ V ∗.

(2) If (V, δ) ∈ CC , then (V ∗, δl) ∈ CC, where δl is defined by

V ∗ id⊗coevV−−−−−−→ V ∗ ⊗ V ⊗ V ∗ id⊗δV ⊗id−−−−−−→ V ∗ ⊗ V ⊗ C ⊗ V ∗ evV ⊗id⊗id−−−−−−−→ C ⊗ V ∗.

In graphical notation,

λr =

V ∗ A

V ∗

, δl =

V ∗

A V ∗

.(3.5.11)

Proof. (1) It is obvious that (V ∗, λr) is unitary. By (3.5.1) and associativity,

V ∗ A

V ∗

A

=

V ∗ A

V ∗

A

=

V ∗ A

V ∗

A

,

that is, λr(λr ⊗ idA) = λr(id⊗Δ).
(2) follows in the same way. �

In the remainder of this section, let C be a braided strict monoidal category.
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Definition 3.5.11. Let H be a bialgebra in C.
A left (right) H-Hopf module is a triple (V, λ, δ), where (V, λ) is a left

(right) H-module, and (V, δ) is a left (right) H-comodule such that δ : V → H ⊗V
(δ : V → V ⊗H) is a morphism of left (right) H-modules.

A left-right H-Hopf module is a triple (V, λ, δ), where (V, λ) is a left H-
module, and (V, δ) is a right H-comodule such that δ : V → V ⊗H is a morphism
of left H-modules. (Here, H is a left and right H-module by multiplication, and
H ⊗ V , V ⊗H are H-modules with diagonal action.)

We denote the categories of left, right and of left-right H-Hopf modules by H
HC,

CHH , and HCH , respectively. Their morphisms are H-module and H-comodule
morphisms.

The pictures for left, right and left-right Hopf modules are

H V

H V

=

H V

H V

,

HV

HV

=

HV

HV

,

H V

HV

=

H V

V H

.

(3.5.12)

Note that the notion of a Hopf module is self-dual. The Hopf module axiom is
equivalent to saying that the module structure is a morphism of H-comodules.

Theorem 3.5.12. Let H be a Hopf algebra in C, and (V, λ, δ) a Hopf module
in HCH . Assume that V has a left dual (V ∗, evV , coevV ). Then (V ∗, λr+, δl) is a
Hopf module in H

HC, where λr and δl are defined in (3.5.11), and

λr+ = λrcH,V ∗(SH ⊗ id).

Proof. See Figure 3.5.1, where the first equality follows from the definition of
λr+, the second from (3.2.12) with h = δl, the third from the definition of δl, the
fourth from duality (3.5.1), the fifth from the defining equation (3.5.12) of the left-
right Hopf module V , the sixth from (3.2.13) with h = ΔH and from associativity
of H, the seventh from (3.2.17), the eighth from (3.2.26) and coassociativity, and
the last equality from the definitions of δl and λr+ and duality (3.5.1). �

The next result is the fundamental theorem for one-sided Hopf modules of
Larson and Sweedler extended to the braided situation. We will state it in Theo-
rem 3.5.14 for left Hopf modules.

In the rest of the section let H be a Hopf algebra in C.

Definition 3.5.13. Let (V, δ) ∈ HC. We say that (coHV, ι) exists if

coHV
ι �� V

δ ��

η⊗idV

�� H ⊗ V

is an equalizer diagram in C.

A left H-module (V, λ) is called trivial, if λ = ε⊗ id : H⊗V → V . Any object
V ∈ C is a trivial H-module via the action of ε.
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H V ∗

H V ∗

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

+

=

H V ∗

H V ∗

Figure 3.5.1. Proof of the Hopf module axiom for the dual

Theorem 3.5.14. Let (V, λ, δ) ∈ H
HC, and assume that (coHV, ι) exists.

(1) (a) There is a uniquely determined morphism ϑ : V → coHV with

(V
ϑ−→ coHV

ι−→ V ) = (V
δ−→ H ⊗ V

SH⊗idV−−−−−→ H ⊗ V
λ−→ V ).

(b) (coHV
ι−→ V

ϑ−→ coHV ) = idcoHV .
(c) ϑ : V → coHV is left H-linear, where coHV is a trivial left H-module.
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(d) The following is a coequalizer diagram.

H ⊗ V
λ ��

ε⊗idV

�� V
ϑ �� coHV

(2) The morphisms

H ⊗ coHV
id⊗ι−−−→ H ⊗ V

λ−→ V, V
δ−→ H ⊗ V

id⊗ϑ−−−→ H ⊗ coHV

are inverse isomorphisms in H
HC, where H ⊗ coHV is a Hopf module with

module structure μH ⊗ idcoHV and comodule structure ΔH ⊗ idcoHV .

Proof. Let Θ = (V
δ−→ H ⊗ V

SH⊗idV−−−−−→ H ⊗ V
λ−→ V ).

(1)(a) To prove that ιϑ = Θ, it suffices to show that δΘ = (η ⊗ id)Θ.

δΘ = +

V

VH

=

+

V

VH

=
+

V

VH

= + +

V

VH

= (η ⊗ id)Θ,

where the second equality follows from the Hopf module axiom, the third from
coassociativity of the comodule V , the fourth from (3.2.26) and coassociativity of
H, and the last from the axiom of the antipode.

(1)(b) The equation δι = (η ⊗ id)ι implies Θι = ι. Hence ιϑι = Θι = ι by (a),
and ϑι = id, since ι is a monomorphism.

(1)(c),(d) The equation Θλ = Θ(ε⊗ id) follows by duality from (1)(a). Since ι
is a monomorphism and Θ = ιϑ, ϑλ = ϑ(ε⊗ id) = ε⊗ ϑ. Thus ϑ is left H-linear.

Let Z ∈ C and h : V → Z a morphism with hλ = h(ε ⊗ id). If there is a
morphism h′ : coHV → Z with h = h′ϑ, then hι = h′ϑι = h′. It remains to show
that h = hιϑ = hΘ. By definition of Θ, and since hλ = h(ε⊗ id),

hΘ = hλ(S ⊗ idV )δ = h(ε⊗ id)(S ⊗ idV )δ = hidV = h.

(2) By (1), associativity and coassociativity of V , and by the axiom of the
antipode,

λ(id⊗ ι)(id⊗ ϑ)δ = λ(id⊗Θ)δ = +

V

V

= +

V

V

= idV .
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Note that by definition of ι and by (1)(c),

H V

coHV

ι =

H

coHV

V

ι ,

H V

coHV

ϑ
=

H V

coHV

ϑ .(3.5.13)

Then

(id⊗ ϑ)δλ(id⊗ ι) =

H coHV

H coHV

ϑ

ι

=

H coHV

H coHV

ϑ

ι

=

H coHV

H coHV

ϑ

ι
= idH⊗coHV ,

where the second equality follows from the Hopf module axiom, the third from
(3.5.13), and the last from (1)(b).

We have shown that the morphisms in (2) are inverse isomorphisms. They are
morphisms of Hopf modules in H

HC, since λ(id⊗ ι) is left H-linear, and (id⊗ ϑ)δ is
left H-colinear. �

3.6. Smash products and smash coproducts

Let C be a braided strict monoidal category, and H a bialgebra in C.
The Yetter-Drinfeld map in Definition 3.4.4 defines a generalized smash

product algebra.

Definition 3.6.1. Let A be an algebra in HC and B an algebra in HC. Let
A#B = (A⊗B, μA#B , ηA#B), where ηA#B = ηA ⊗ ηB , and

μA#B =
(
A⊗B ⊗A⊗B

idA⊗cYD
B,A⊗idB−−−−−−−−−−→ A⊗A⊗B ⊗B

μA⊗μB−−−−−→ A⊗B
)

=

A B A B

A B

.

Proposition 3.6.2. Let A be an algebra in HC and B an algebra in HC. Then
A#B = (A⊗B, μA#B , ηA#B) is an algebra in C.
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Proof. Since μA is H-linear, and μB is H-colinear,

H A A

A

=

H A A

A

,

B B

H B

=

B B

H B

.(3.6.1)

It is easy to see that ηA#B is a unit. We prove associativity of μA#B. Let λA be
the module strucure of A and δB the comodule structure of B.

μA#B(μA#B ⊗ id) =

A B A B A B

A B

=

A B A B A B

A B

,

where the second equality follows from the second formula in (3.6.1).

μA#B(id⊗ μA#B) =

A B A B A B

A B

=

A B A B A B

A B

,
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where the second equation follows from (3.2.12) with h = μA(idA ⊗ λA). Then the
first formula in (3.6.1) gives the picture

A B A B A B

A B

=

A B A B A B

A B

,

where the last equality follows from associativity of A and B, and from the comodule
axiom for δB and the module axiom for λA. Finally, associativity of μA#B follows
from (3.2.13) by moving the lower δB = h on the left-hand side to the right and
the upper μB = h to the left in the last picture. �

We note that in Proposition 3.6.2,

ι1 = idA ⊗ ηB : A → A#B, ι2 : ηA ⊗ idB : B → A#B

are algebra morphisms, and the multiplication map

A⊗B
ι1⊗ι2−−−→ A#B ⊗A#B

μA#B−−−−→ A#B

is the identity morphism.
A left (right) H-module algebra in C is an algebra in the monoidal category

HC (in CH , respectively). A left (right) H-comodule algebra in C is an algebra
in HC (in CH , respectively).

For any monoidal category D we denote by ALG(D) the category of algebras
in D. Objects in ALG(D) are the algebras in D, and morphisms the algebra
morphisms.

Remark 3.6.3. Let A be an algebra in C, and (A, δA) a left (right) H-comodule.
Then A is a left (right) H-comodule algebra if and only if δA is a morphism of
algebras in C.

Definition 3.6.4. Let A be a left H-module algebra in C with H-module
structure λA. The smash product algebra A#H is the object A ⊗ H with
multiplication and unit morphism

μA#H = (μA ⊗ idH)(idA ⊗ λA⊗H), ηA#H = ηA ⊗ ηH .

Here, λA⊗H is the leftH-module structure on A⊗H given by the monoidal structure
of HC, where A and H are H-modules by λA and μ, respectively.
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Thus A#H is the special case of Definition 3.6.1 with left H-comodule algebra
B = H via multiplication μH and H-comodule structure ΔH , since

μA#H = (μA ⊗ μH)(idA ⊗ cYD
H,A ⊗ idH).(3.6.2)

Proposition 3.6.5. (1) Let A be a left H-module algebra in C with H-
module structure λA. Then (A⊗H,μA#H , ηA#H) is a right H-comodule
algebra in C with H-comodule structure δA#H = idA ⊗ΔH .

(2) ALG(HC) → ALG(CH), (A, λA) �→ (A#H, δA#H), and where morphisms
ϕ are mapped onto ϕ⊗ idH , is a well-defined functor.

Proof. (1) By Proposition 3.6.2, A#H is an algebra. We prove that μA#H is
right H-colinear.

δA#HμA#H =

A H A H

A H H

=

A H A H

A H H

,

where the first equality follows from the bialgebra axiom, and the second from
(3.2.13) with h = ΔH , and from coassociativity. Hence μA#H is H-colinear, since
the second picture is (μA#H ⊗ idH)δ(A#H)⊗(A#H).

(2) is easy to check. �

Proposition 3.6.6. Let A be a left H-module algebra in C. Then the functor

A(HC)→A#H C, ((V, λH), λA) �→ (V, λA(idA ⊗ λH)),

where morphisms f are mapped to f , is an isomorphism. The inverse functor is
given by (V, λA#H) �→ ((V, λH), λA), where

λH = λA#H(γ ⊗ idV ), λA = λA#H(ι1 ⊗ idV ).

Proof. This follows directly from the definitions. �

We now dualize. A left (right) H-comodule coalgebra is a coalgebra in HC
(in CH , respectively). A left (right) H-module coalgebra is a coalgebra in HC
(in CH , respectively).

For any monoidal category D we denote by COALG(D) the category of coal-
gebras in D. Objects in COALG(D) are the coalgebras in D, and morphisms the
coalgebra morphisms.

Remark 3.6.7. Let C be a coalgebra in C, and (C, λC) a left (right) H-module.
Then C is a left (right) H-module coalgebra if and only if λC is a morphism of
coalgebras in C.

Definition 3.6.8. Let C be a left H-comodule coalgebra with H-comodule
structure δC . The smash coproduct coalgebra C#H is the object C ⊗H with
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comultiplication and counit morphism

ΔC#H =
(
C ⊗H

ΔH⊗id−−−−−→ C ⊗ C ⊗H
id⊗δC⊗H−−−−−−→ C ⊗H ⊗ C ⊗H

)
,

εC#H = εC ⊗ εH .

Here, δC⊗H is the left H-comodule structure on C ⊗ H given by the monoidal
structure of HC, where C and H are H-comodules by δC and ΔH , respectively.

Dually to (3.6.2), the smash coproduct of C#H can also be written as

ΔC#H = (idC ⊗ cYD
C,H ⊗ idH)(ΔC ⊗ΔH),(3.6.3)

where H ∈ HC via μH .

Proposition 3.6.9. (1) Let C be a left H-comodule coalgebra in C with
H-comodule structure δC . Then the triple (C#H,ΔC#H , εC#H) is a right
H-module coalgebra in C with H-module structure λC#H = idC ⊗ μH .

(2) COALG(HC)→ COALG(CH), (C, δC) �→ (C#H,λC#H), and where mor-
phisms ϕ are mapped onto ϕ⊗ idC , is a well-defined functor.

Proof. Dual to Proposition 3.6.5. �
Proposition 3.6.10. Let C be a left H-comodule coalgebra in C. Then the

functor
C(HC)→ C#HC, ((V, δH), δC) �→ (V, (idC ⊗ δH)δC),

where morphisms f are mapped to f , is an isomorphism. The inverse functor is
given by (V, δC#H) �→ ((V, δH), δC), where

δH = (π ⊗ idV )δC#H , δC = (ϑ⊗ idV )δC#H .

Proof. Dual to Proposition 3.6.6. �

3.7. Adjoint action and adjoint coaction

Let C be a braided strict monoidal category, and H a Hopf algebra in C. We
discuss here the concept of the adjoint action in a general setting.

Let A be an algebra in C, V ∈ C, λl a left A-module structure and λr a right A-
module structure on V . Then (V, λl, λr) is an A-bimodule if the following diagram
commutes:

A⊗ V ⊗A

idA⊗λr

��

λl⊗idA �� V ⊗A

λr

��

A⊗ V
λl �� V

The category of A-bimodules in C is denoted by ACA.
Proposition 3.7.1. The functor

ad : HCH → HC, (V, λl, λr) �→ (V, ad),

where ad = H ⊗ V
ΔH⊗idV−−−−−−→ H ⊗H ⊗ V

idH⊗cH,V−−−−−−→ H ⊗ V ⊗H

λl⊗SH−−−−→ V ⊗H
λr−→ V,

with ad(f) = f for morphisms f of H-bimodules, is well-defined.

Note that in general the functor ad is not strict monoidal.
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Proof. (1) Let (V, λl, λr) be an H-bimodule. We show that (V, ad ) is a left
H-module. Clearly, ad is a morphism in C. The unit axiom for ad is easily checked.
We have to prove the equality ad(μH ⊗ id) = ad(idH ⊗ ad); ad(μH ⊗ id) equals

+

H H V

V

=

+

H H V

V

=

+

H H V

V

=
+

+

H H V

V

,

where the first equation follows from the bialgebra axiom for H, the second from
functoriality of the braiding (3.2.13), and the third from the rules for the antipode
(3.2.26) and the axioms of a module and a bimodule. By functoriality of the braiding
(3.2.12) with h = λr(λl ⊗ id), the last picture is equal to ad(idH ⊗ ad).

(2) Let f : V → W be a morphism of H-bimodules in C. We have to show that
f is a morphism in HC, that is, fad = ad(id ⊗ f). The latter is clear since f is a
morphism of H-bimodules in C. �

Proposition 3.7.2. (1) Let (V, λl, λr) be an H-bimodule.
(a) λl = λr(ad⊗ idH)(idH ⊗ cH,V )(ΔH ⊗ idV ), and
(b) λl(SH ⊗ ad)(ΔH ⊗ idV ) = λr(idV ⊗ SH)cH,V .

(2) Let A be an algebra, and γ : H → A an algebra morphism in C. Then
(A, λl, λr) is an H-bimodule with λl = μ(γ ⊗ idA) and λr = μ(idA ⊗ γ),
and (A, ad) is a left H-module algebra.

Proof. (1)(a) and (b) follow from associativity of λr and λl, respectively, and
from coassociativity of ΔH and the axiom of the antipode.

(2) It is easy to check that (A, λl) is a left H-module, (A, λr) is a right H-
module, the bimodule axiom holds, and that ηA is H-linear. We prove that the
multiplication map μA : A⊗ A → A is left H-linear with respect to ad, where the
action on A⊗A is the diagonal action.

Let Al = (A, λl, id⊗ ε) and Ar = (A, ε⊗ id, λr) as H-bimodules. Then

μA : Al ⊗Ar → A

is a morphism of H-bimodules by associativity of μA. Thus

μAad = ad(idH ⊗ μA) : H ⊗Al ⊗Ar → A

for the functorial action ad by Proposition 3.7.1. It remains to prove the equation
μAad = μAaddiag, where addiag is the diagonal action on A ⊗ A. The latter holds
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since

μAaddiag =

+ +

H

A

A A

γ γ

γ γ

= +

+

H A A

A

γ

γ

γ

γ
=

+

H

A

A A

γ

γ

,

where the second equation follows from coassociativity of H, associativity of A,
and (3.2.13), and the third from the axiom for the antipode of H and since γ is an
algebra map. The last picture is μAad. �

Definition 3.7.3. If A is an algebra and γ : H → A is a morphism of algebras
in C, then ad in Proposition 3.7.2(2) is called the left adjoint action of H on A
with respect to γ, and we denote it by adγ . The left adjoint action of H on H with
respect to idH is denoted by adH : H ⊗H → H.

Lemma 3.7.4. If the antipode SH of H is an isomorphism in C, then

SHadHcop = adH(id⊗ SH) : H ⊗H → H.

Proof.

–

+

H H

H

=
–

+ +

H H

H

=

+

H H

H

=

+ +

H H

H

=

+

+

H H

H

,

where the first equation follows from the rules of the antipode (3.2.26), the second
from functoriality of the braiding (3.2.12) and (3.2.9), the third again from (3.2.26),
and the fourth from associativity. �
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The monoidal structure of HC and CH defines a monoidal structure for the
category HCH of H-bimodules in C. It follows from an easy argument (using the
functoriality of the braiding) that the tensor product of two H-bimodules is in fact
an H-bimodule. The multiplication μ of H defines an H-bimodule structure on H.
Then (H,Δ, ε) is a coalgebra in HCH .

Proposition 3.7.5. The functor

H(HCH)→ H
HYD(C), ((V, λl, λr), δ) �→ (V, ad, δ),

where ad : H ⊗ V → V is the adjoint H-module structure of Proposition 3.7.1, and
where morphisms f are mapped onto f , is well-defined.

Proof. We prove that (V, ad, δ) is an object in H
HYD(C).

The module structures and the comodule structure of V are denoted by

ad = ad , λl = , λr = , δ = .

Let adV and ad(H ⊗ V ) be the left H-modules of Proposition 3.7.1(1) for the
bimodules V and H ⊗ V , respectively. By definition,

ad

H V

V

=
+

H V

V

, and

ad

H V

VH

= +

H

H V

V

,(3.7.1)

since δ : adV → ad(H ⊗ V ) is left H-linear. We prove the defining equality (3.4.1) of
left Yetter-Drinfeld modules for (V, ad, δ). By (3.7.1), the left-hand side of (3.4.1)
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is equal to

+

H

H V

V

=

+ +

H

H V

V

=

+ +

H

H V

V

,

where the first equality follows from associativity and coassociativity and the rule
for the antipode in Proposition 3.2.12(3). To prove the second equation we move the
third comultiplication across the braiding by (3.2.13) and then use coassociativity.
By definition of the antipode, the picture simplifies to

+

H

H V

V

=

+

H

H V

V

=

+

H

H

V

V

,

where the first equality follows by moving δ across the braiding by (3.2.12), and
the second by moving the second comultiplication across the braiding by (3.2.13).
The last picture is the right-hand side of (3.4.1) for (V, ad, δ). �

We dualize the previous notions. Let C be a coalgebra in C, V ∈ C, δl a left
C-comodule structure and δr a right C-comodule structure on V . Then (V, δl, δr)
is a C-bicomodule if (idC ⊗ δr)δl = (δl ⊗ idC)δr : V → C ⊗ V ⊗ C. The category
of C-bicomodules is denoted by CCC .
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Proposition 3.7.6. The functor

coad : HCH → HC , (V, δl, δr) �→ (V, coad ),

where coad =
(
V

δr−→ V ⊗H
δl⊗SH−−−−→ H ⊗ V ⊗H

idH⊗cV,H−−−−−−→ H ⊗H ⊗ V
μH⊗idV−−−−−→ H ⊗ V

)
,

with coad(f) = f for each morphism f of H-bicomodules, is well-defined.

Proposition 3.7.7. Let C be a coalgebra, and π : C → H a coalgebra morphism
in C. Then (C, δl, δr) is an H-bicomodule with δl = (π⊗idC)Δ and δr = (idC⊗π)Δ,
and (C, coad) is a left H-comodule coalgebra, where coad is the left H-comodule
structure defined in Proposition 3.7.6 based on the H-bicomodule (C, δl, δr).

Definition 3.7.8. If C is a coalgebra and π : C → H is a morphism of
coalgebras in C, then coad in Proposition 3.7.7 is called the left adjoint coaction
of H on C with respect to π, and we denote it by coadπ. If C = H and π = idH ,
then we write coadH for coadπ.

We note the dual of Proposition 3.7.5, where (H,μ, η) is an algebra in the
category HCH of H-bicomodules.

Proposition 3.7.9. The functor

H(HCH)→ H
HYD(C), ((V, δl, δr), λ) �→ (V, λ, coad ),

where coad : V → H⊗V is the coadjoint H-comodule structure of Proposition 3.7.6,
and where morphisms f are mapped onto f , is well-defined.

Remark 3.7.10. For any monoidal category C, a coalgebra C and an algebra
A in C, there are functors

C → CC, V �→ (C ⊗ V,ΔC ⊗ idV ),

C → AC, V �→ (A⊗ V, μA ⊗ idV ),

where in both cases morphisms f are mapped onto id⊗ f .
In particular, there are functors HCH → H(HCH) and HCH → H(HCH). By

composition with the functors in Propositions 3.7.5 and 3.7.9, we obtain functors

HCH → H
HYD(C), V �→ (H ⊗ V, adH⊗V ,ΔH ⊗ idV ),

HCH → H
HYD(C), V �→ (H ⊗ V, μH ⊗ idV , coadH⊗V ).

If C =Mk, then adjoint action and coaction on H are given by

adH : H ⊗H → H, h⊗ x �→ h(1)xS(h(2)),

coadH : H → H ⊗H, h �→ h(1)S(h(3))⊗ h(2).

Let V be an H-bimodule. Then H ⊗ V ∈ H
HYD with H-coaction ΔH ⊗ idV and

H-action

adH⊗V : H ⊗H ⊗ V → H ⊗ V, g ⊗ h⊗ v �→ g(1)hS(g(4))⊗ g(2)vS(g(3)),

Let V be an H-bicomodule. Then H ⊗ V ∈ H
HYD with H-action μH ⊗ idV and

H-coaction

coadH⊗V : H ⊗ V → H ⊗H ⊗ V, h⊗ v �→ h(1)v(−1)S(h(3)v(1))⊗ h(2) ⊗ v(0).
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3.8. Bosonization

Let C be a braided strict monoidal category, and H a Hopf algebra in C. We
introduce the important process of bosonization which transforms a bialgebra (or
Hopf algebra) in H

HYD(C) into a bialgebra (or Hopf algebra) in C.

Definition 3.8.1. Let R be a bialgebra in H
HYD(C). In particular, R is an

algebra in HC and a coalgebra in HC. We denote the H-action and H-coaction of
R by

λR : H ⊗R → R, δR : R → H ⊗R.

Let (R#H,μR#H , ηR#H) be the corresponding smash product algebra of Defini-
tion 3.6.4, and (R#H,ΔR#H , εR#H) the corresponding smash coproduct coalgebra
in C of Definition 3.6.8. We call

R#H = (R⊗H,μR#H , ηR#H ,ΔR#H , εR#H)

the bosonization (or the Radford biproduct) of R. Let

π = εR ⊗ idH : R#H → H, γ = ηR ⊗ idH : H → R#H,

ι = idR ⊗ ηH : R → R#H, ϑ = idR ⊗ εH : R#H → R.

We will see in Proposition 3.8.4 that R#H is in fact a bialgebra in C. The next
lemma is easily verified.

Lemma 3.8.2. Let R be a bialgebra in H
HYD(C) and R#H the bosonization.

Then R#H is an algebra and a coalgebra in C, and
(1) π and γ are algebra and coalgebra morphisms with πγ = idH .
(2) ι is an algebra and ϑ a coalgebra morphism with ϑι = idR.
(3) ϑ is right H-linear, where R#H is a right H-module induced by the algebra

morphism γ, that is, by idR ⊗ μH , and R is the trivial H-module defined
via εH .

(4) ϑ is left H-linear, where R#H is a left H-module induced by the algebra
morphism γ, that is, with H-action μR#H(γ ⊗ idR#H), and R is a left
H-module by the given H-action on R.

(5) (idR#H ⊗ π)ΔR#H = idR ⊗ΔH : R#H → R#H ⊗H.
(6) (π ⊗ idR#H)ΔR#H : R#H → H ⊗ R#H is the diagonal H-coaction on

R⊗H.

Moreover, the maps ι and μR#H satisfy the claims dual to Lemma 3.8.2(3)-(6).
The following diagram describes the situation of Lemma 3.8.2.

H

=

��

γ

����
��
��
��

R
ι ��

=

��

R#H
π ��

ϑ
����
��
��
��

H

R
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Definition 3.8.3. Let R be a bialgebra in H
HYD(C) and R#H the bosonization

of R. We define functors

F1 : R(
H
HYD(C))→ R#HC, ((V, λH , δH), λR) �→ (V, λR#H),

F2 : R(HHYD(C))→ R#HC, ((V, λH , δH), δR) �→ (V, δR#H),

where λR#H = λR(idR ⊗ λH) and δR#H = (idR ⊗ δH)δR,

and where morphisms f are mapped to f .

Note that F1 is the composition

R(
H
HYD(C))→ R(HC) ∼= R#HC,

of the forgetful functor and the isomorphism of Proposition 3.6.6. Similarly, F2 is
the composition

R(HHYD(C))→ R(HC) ∼= R#HC,
of the forgetful functor and the isomorphism of Proposition 3.6.10.

Proposition 3.8.4. Let R be a bialgebra in H
HYD(C) with bosonization R#H.

Let R ⊗H be the tensor product in H
HYD(C) of R and H, where H ∈ H

HYD(C) via
μH and coadH .

(1) (R⊗H,μR ⊗ idH) ∈ R(
H
HYD(C)), and F1(R⊗H) is the regular represen-

tation of R#H, that is, R#H as a left R#H-module via μR#H .
(2) R#H is a bialgebra in C.
(3) The functors F1 and F2 are strict monoidal.

Proof. (1) By Proposition 3.7.9, (H,μH , coadH) ∈ H
HYD(C), hence R ⊗H is

an object in R(
H
HYD(C)) with R-module structure μR ⊗ idH . It is obvious that

F1(R⊗H) is the regular representation of R#H.
(2) and (3). (a) Let V,W ∈ R(

H
HYD(C)). Then the diagonal action of R#H

on F1(V ) ⊗ F1(W ) is the action of R#H on F1(V ⊗ W ). This follows directly
from the definitions. In particular, F1(V )⊗ F1(W ) with the diagonal R#H-action
λF1(V )⊗F1(W ) is a left R#H-module.

(b) It is easy to see that εR#H is an algebra morphism, since εR is. By (1),
F1(R ⊗ H) is the regular representation of R#H. By (a), the diagonal action of
R#H on R#H ⊗R#H defines a left R#H-module. Thus R#H is a bialgebra by
Proposition 3.2.8. We have shown (2). Then (a) says that F1 is strict monoidal,
and the claim for F2 follows dually. �

Let R be a bialgebra in C, and V ∈ RC, X ∈ RC. Recall the Yetter-Drinfeld

morphism c
YD(C)
V,X : V ⊗ X → X ⊗ V in Definition 3.4.4. For clarity we will also

write c
YD(C)
V,X = c

YD(C,R)
V,X .

Lemma 3.8.5. Let R be a bialgebra in H
HYD(C), (V, δ) ∈ R(HHYD(C)), and

(V, λ), (X,λX) ∈ R(
H
HYD(C)). Define δR#H , λR#H , λR#H

X by

(V, δR#H) = F2(V, δ), (V, λR#H) = F1(V, λ), (X,λR#H
X ) = F1(X,λX).

(1) c
YD(HHYD(C),R)

(V,δ),(X,λX ) = c
YD(C,R#H)

(V,δR#H ),(X,λR#H
X )

: V ⊗X → X ⊗ V , as morphisms in

C.
(2) Let f : V ⊗ X → X ⊗ V be the morphism in (1). The following are

equivalent.
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(a) f is left R-linear.
(b) f is left R#H-linear, where V and X are left R#H-modules by λR#H

and λR#H
X .

Proof. (1) follows directly from the definitions.
(2) (a) ⇒ (b) follows by applying the strict monoidal functor F1.
(b) ⇒ (a) is clear, since for all X,Y ∈ R(

H
HYD(C)) the restriction via the

morphism ι : R → R#H of the diagonal R#H-action on F1(X) ⊗ F1(Y ) is the
diagonal R-action on X ⊗ Y . �

Lemma 3.8.6. Let R be a bialgebra in H
HYD(C) with bosonization R#H. Let

(V, λ, δ) ∈ R#H
R#H YD(C), and define

λH=λ(γ ⊗ idV ) : H ⊗ V → V, δH=(π ⊗ idV )δ : V → H ⊗ V,

λR=λ(ι⊗ idV ) : R⊗ V → V, δR=(ϑ⊗ idV )δ : V → R⊗ V.

Then (V, λH , δH) ∈ H
HYD(C), and

((V, λH , δH), λR) ∈ R(
H
HYD(C)), ((V, λH , δH), δR) ∈ R(HHYD(C)).

Proof. It is clear (see Propositions 3.6.6 and 3.6.10) that (V, λH) and (V, λR)
are modules, (V, δH) and (V, δR) are comodules, and

((V, λH), λR) ∈ R(HC), ((V, δH), δR) ∈ R(HC).
We have to prove

(1) (V, λH , δH) ∈ H
HYD(C),

(2) ((V, λH), λR) ∈ R(
HC), that is, λR is H-colinear,

(3) ((V, δH), δR) ∈ R(HC), that is, δR is left H-linear.

We denote the left-hand side of the defining equation (3.4.1) of the YD-module

(V, λ, δ) ∈ R#H
R#H YD(C) by ϕl, and the right-hand side by ϕr.

(1) follows from (π ⊗ idV )ϕl(γ ⊗ idV ) = (π ⊗ idV )ϕr(γ ⊗ idV ), since π, γ are
bialgebra morphisms with πγ = idH .

(2) Note that

(idR#H ⊗ π)ΔR#Hι = ι⊗ ηH ,(3.8.1)

(π ⊗ idR#H)ΔR#Hι = δR ⊗ ηH ,(3.8.2)

by Lemma 3.8.2(5) and (6).
Let δHR⊗V : R⊗ V → H ⊗R⊗ V be the diagonal H-coaction. (2) follows from

(π ⊗ idV )ϕl(ι⊗ idV ) = (π ⊗ idV )ϕr(ι⊗ idV ), since

(π ⊗ idV )ϕl(ι⊗ idV ) = δHλR,

(π ⊗ idV )ϕr(ι⊗ idV ) = (idH ⊗ λR)δHR⊗V ,

by (3.8.1) and (3.8.2), and since π is a bialgebra morphism.
(3) Let λH

R⊗V : H ⊗ R ⊗ V → R ⊗ V be the diagonal H-action on R ⊗H. (3)
follows from (ϑ⊗ idV )ϕl(γ ⊗ idV ) = (ϑ⊗ idV )ϕr(γ ⊗ idV ), since

(ϑ⊗ idV )ϕl(γ ⊗ idV ) = δRλH ,

(ϑ⊗ idV )ϕr(γ ⊗ idV ) = λH
R⊗V (idH ⊗ δR),

by Lemma 3.8.2(3) and (4), and since γ is a bialgebra morphism. �

The preliminary version made available with permission of the publisher, the American Mathematical Society.



3.8. BOSONIZATION 167

Theorem 3.8.7. Let R be a bialgebra in H
HYD(C) with bosonization R#H. The

functor
F : RRYD(HHYD(C))→ R#H

R#H YD(C),
((V, λH , δH), λR, δR) �→ (V, λR#H , δR#H),

where λR#H = λR(idR ⊗ λH), and δR#H = (idV ⊗ δH)δR, and where morphisms f
are mapped to f , is a prebraided strict monoidal isomorphism.

Proof. (1) We first show that the functor F is well-defined.
Let V ∈ R

RYD(HHYD(C)). Then for all X ∈ R(
H
HYD(C)), the Yetter-Drinfeld

morphism c
YD(HHYD(C),R)
V,X : V ⊗ X → X ⊗ V is left R-linear by Proposition 3.4.5.

By Lemma 3.8.5(2), the Yetter-Drinfeld morphism

c
YD(C,R#H)
F2(V ),F1(X) : V ⊗X → X ⊗ V

is left R#H-linear, where V is the left R#H-comodule F2(V ) and the left R#H-
module F1(V ). By Proposition 3.8.4(1), we can choose X such that F1(X) is

the regular representation of R#H. Hence F (V ) is an object in R#H
R#H YD(C) by

Proposition 3.4.5.

(2) Conversely, let (V, λR#H , δR#H) ∈ R#H
R#H YD(C). Define λH , δH , λR and δR

as in Lemma 3.8.6. Then by Lemma 3.8.6,

((V, λH , δH), λR) ∈ R(
H
HYD(C)), ((V, λH , δH), δR) ∈ R(HHYD(C)).

Let X ∈ R(
H
HYD(C)). Then the map c

YD(C,R#H)
F2(V ),F1(X) in Lemma 3.8.5(2)(b) is left

R#H-linear by Proposition 3.4.5, since V ∈ R#H
R#H YD(C). Hence by Lemma 3.8.5,

the map c
YD(HHYD(C),R)
V,X is left R-linear, and it follows that

((V, λH , δH), λR, δR) ∈ R
RYD(HHYD(C))

by Proposition 3.4.5.
It is clear (using Lemma 3.8.2) that the inverse functor of F is given by the

construction of ((V, λH , δH), λR, δR).
(3) The functor F is strict monoidal, since by Proposition 3.8.4, both functors

F1 and F2 are strict monoidal. Moreover, F is prebraided, that is, for all V,W in
R
RYD(HHYD(C)), the diagram

F (V )⊗ F (W )
=−−−−→ F (V ⊗W )

cYD
F (V ),F (W )

⏐⏐' F (cYD
V,W )

⏐⏐'
F (W )⊗ F (V )

=−−−−→ F (W ⊗ V )

is commutative, where cYD
F (V ),F (W ) and cYD

V,W are the braidings in R#H
R#H YD(C) and

R
RYD(HHYD(C)), respectively. This is a special case of Lemma 3.8.5(1). �

We next prove transitivity of bosonization in the following sense.

Proposition 3.8.8. Let R be a bialgebra in H
HYD(C) with bosonization R#H

in C, and K a bialgebra in R
RYD(HHYD(C)) with bosonization K#R in H

HYD(C).
Then the identity map

(K#R)#H → F (K)#(R#H)

of K ⊗R⊗H is an isomorphism of bialgebras in C.
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Proof. The multiplication of F (K)#(R#H) is defined by

K R H K R H

K R H

=

K R H K R H

K R H

.

To prove the equality, we move the second comultiplication of H across the braiding
and then use coassociativity.

The multiplication of (K#R)#H is defined by

K R H K R H

K R H

.

Note that

R H K

R K R

=

R H K

R K R

(3.8.3)

by moving the H-action of K across the braiding and then using associativity of the
H-action of K. If we modify the third picture with (3.8.3), we obtain the second
picture. We have shown that the identity is an algebra morphism.
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It follows by duality that the identity is a coalgebra morphism. �

We finally show that the bosonization of a Hopf algebra is a Hopf algebra. We
first characterize the antipode of a Hopf algebra in H

HYD(C).

Proposition 3.8.9. Let C be a coalgebra, A an algebra and R a bialgebra in
H
HYD(C).

(1) Let f ∈ HomC(C,A) be a convolution invertible map which is a morphism
in H

HYD(C). Then f−1 is a morphism in H
HYD(C).

(2) Suppose that there is a morphism S : R → R in C which is convolution
inverse to idR. Then S is a morphism in H

HYD(C), and R is a Hopf
algebra in H

HYD(C).

Proof. It is easy to see, that Proposition 1.2.11 holds for braided monoidal
categories instead of vector spaces. This version of Proposition 1.2.11(2) implies
(1), since Φ(f), hence also Φ(f)−1 and f−1 are morphisms in H

HYD(C). Finally, (2)
follows from (1). �

Theorem 3.8.10. Let R be a Hopf algebra in H
HYD(C). Then the bosonization

R#H of R is a Hopf algebra in C. The antipode of R#H is the composition

R⊗H
δ⊗idH−−−−→ H ⊗R ⊗H

idR⊗cR,H−−−−−−→ H ⊗H ⊗R
SHμH⊗SR−−−−−−−→ H ⊗R

= H ⊗R
ΔH⊗idR−−−−−−→ H ⊗H ⊗R

id⊗cH,R−−−−−→ H ⊗R⊗H
λ⊗idH−−−−→ R⊗H,

or equally, the convolution product (ηRεR ⊗ SH) ∗ (SR ⊗ ηHεH).

Proof. By Proposition 3.8.4(2), R#H is a bialgebra in C.
(a) The first claimed expression for the antipode of R#H can be rewritten as

SR#H = cYD
(H,Δ),(R,λ)(SH ⊗ SR)c

YD
(R,δ),(H,μ).(3.8.4)

(b) Equations (3.6.2) and (3.6.3) imply that

μR#H(idR ⊗ ηH ⊗ ηR ⊗ idH) = idR#H ,(3.8.5)

μR#H(ηR ⊗ idH ⊗ idR ⊗ ηH) = cYD
(H,Δ),(R,λ),(3.8.6)

(idR ⊗ εH ⊗ εR ⊗ idH)ΔR#H = idR#H ,(3.8.7)

(εR ⊗ idH ⊗ idR ⊗ εH)ΔR#H = cYD
(R,δ),(H,μ).(3.8.8)

In particular, from Equations (3.8.4), (3.8.6) and (3.8.8) we obtain that

SR#H = μR#H(ηRεR ⊗ SH ⊗ SR ⊗ ηHεH)ΔR#H

= (ηRεR ⊗ SH) ∗ (SR ⊗ ηHεH).

We proved that the two claimed formulas define the same morphism.
(c) The morphism ηRεR ⊗ SH is convolution invertible in HomC(R#H,R#H)

with convolution inverse ηRεR⊗ idH . Similarly, SR⊗ηHεH is convolution invertible
in HomC(R#H,R#H) with convolution inverse idR ⊗ ηHεH . By (b), SR#H is the
convolution inverse of (idR ⊗ ηHεH) ∗ (ηRεR ⊗ idH) in HomC(R#H,R#H). The
latter is equal to idR#H because of (3.8.5) and (3.8.7). Thus SR#H is the antipode
of R#H. �

Corollary 3.8.11. Let R be a Hopf algebra in H
HYD(C). The following are

equivalent.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



170 3. BRAIDED MONOIDAL CATEGORIES

(1) The antipode of the bosonization R#H is an isomorphism in C.
(2) The antipodes of H and of R are isomorphisms in C.

Proof. We write A = R#H. By Theorem 3.8.10, see also (3.8.4), the antipode
of R#H is SA = cYD

(H,Δ),(R,λ)(SH ⊗ SR)c
YD
(R,δ),(H,μ).

(a) Assume that the antipode SH of H is an isomorphism. Then the Yetter-
Drinfeld maps cYD

(R,δ),(H,μ) and cYD
(H,Δ),(R,λ) are isomorphisms by Proposition 3.4.8.

Hence SA is an isomorphism if and only if SR is an isomorphism.
(b) Assume that SA is an isomorphism. By Lemma 3.8.2 and Lemma 3.2.11,

πS−1
A γSH = πS−1

A SR#Hγ = idH , SHπS−1
A γ = idH .

Hence SH is an isomorphism. �

3.9. Characterization of smash products and coproducts

Let C be a braided strict monoidal category, and H a Hopf algebra in C.
Let R be a left H-module algebra. We have seen in Proposition 3.6.5 that the

smash product algebra R#H is a right H-comodule algebra with a right H-colinear
algebra morphism γ = η ⊗ idH : H → R#H, since η : k → A is a left H-module
algebra map. In this section we will show that a right H-comodule algebra with
such a morphism γ is a smash product.

The next lemma follows easily from the definitions.

Lemma 3.9.1. Let X,Y be algebras and f : X → Y , g : X → Y algebra
morphisms in C. Let (K, i) be an equalizer of (f, g). Then there is exactly one
algebra structure (K,μK , ηK) on K such that i : K → X is an algebra morphism.

With the next Theorem we generalize our result on smash product algebras
in Theorem 2.6.23. Recall the notion of the left adjoint action and left coadjoint
coaction in Definitions 3.7.3 and 3.7.8.

Theorem 3.9.2. Let A be a right H-comodule algebra in C with comodule struc-
ture δA. Assume that there is an algebra morphism γ : H → A which is right
H-colinear, where H is an H-comodule via Δ.

Assume that an equalizer (R, ι : R → A) of (δA, idA ⊗ ηH) exists in C. Then
R has a uniquely determined algebra structure such that ι is an algebra morphism.
There are uniquely determined morphisms ϑ : A→ R and λR : H ⊗R → R with

ιϑ =
(
A

δA−−→ A⊗H
id⊗γSH−−−−−→ A⊗A

μA−−→ A
)
,

ιλR =
(
H ⊗R

id⊗ι−−−→ H ⊗ A
adγ−−→ A

)
,

and the following hold.

(1) ϑι = idR.
(2) ϑ is right H-linear, where A is a right H-module by μA(idA ⊗ γ) and R

is the trivial H-module defined via ε.

(3) A⊗H
μA(idA⊗γ)

��

id⊗ε
�� A

ϑ �� R is a coequalizer diagram.

(4) (R, λR) is a left H-module algebra, λR = ϑadγ(id ⊗ ι), and ι is left H-
linear, where R and A are left H-modules by λR and adγ .

(5) ϑ : A → R is left H-linear, where A and R are left H-modules with module
structures μA(γ ⊗ idA) and λR, respectively, and λR = ϑμA(γ ⊗ ι).
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(6) Φ =
(
R#H

ι⊗γ−−→ A⊗A
μA−−→ A

)
is a right H-colinear algebra isomorphism

with inverse Ψ =
(
A

δA−−→ A⊗H
ϑ⊗idH−−−−→ R#H

)
.

Proof. Let δA =

A

A H

. Note that

A A

A H

=

A A

A H

,

A H

=

A H

,(3.9.1)

H

A H

γ =

H

A H

γ ,(3.9.2)

since μA, ηA and γ are H-colinear. By colinearity of μA,

A A A

A H

=

A A A

A H

=

A A A

A H

.(3.9.3)

(1), (2), (3) Since δA and id ⊗ ηH are algebra morphisms, by Lemma 3.9.1, R
has a uniquely determined algebra structure such that ι is an algebra morphism.
Let λA = μA(idA ⊗ γ) : A ⊗H → A. Then (A, λA, δA) is a right H-Hopf module.
By the version of Theorem 3.5.14 for right Hopf modules, ϑ exists and is uniquely
determined, and (1), (2), (3) hold.

(4) We next prove existence and uniqueness of λR, that is, the diagram

H ⊗R
id⊗ι

�� H ⊗A
adγ

�� A
δA ��

idA⊗ηH

�� A⊗H(3.9.4)
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commutes. We first compute δAadγ(idH ⊗ ι).

+

H R

A H

γ

ι

γ

= +

H R

γ

ι

γ

A H

= +

H R

A H

γ

ι

γ

=

+ +

H R

A H

γ

ι

γ

,

where the first equation follows from (3.9.3), the second from colinearity of γ, and
the equality δAι = (idA ⊗ ηH)ι, and the third from functoriality of the braiding
(3.2.13) with h = ΔHSH , then from the rules of the antipode (3.2.26) and from
coassociativity. The inner part of the last picture cancels because of the axiom of
the antipode and functoriality of the braiding. The resulting picture is the second
morphism in (3.9.4), (idA ⊗ ηH)adγ(idH ⊗ ι).

Since ι is a monomorphism, it follows from Proposition 3.7.2(2) that R is a left
H-module algebra with H-action λR. By definition of λR, ι is left H-linear. The
formula for λR follows from (1).

(5) Let Θ =
(
A

δA−−→ A ⊗ H
id⊗γSH−−−−−→ A ⊗ A

μA−−→ A
)
. We will show that

Θ : (A, μA(γ ⊗ idA)) → (A, adγ) is left H-linear. Then (5) follows, since ι is a
monomorphism, and the formula for λR follows from (2) and (4). In order to prove
that ΘμA(γ ⊗ idA) = adγ(id⊗Θ), we begin with the left-hand side.

+

H A

A

γ

γ

=

+

H A

A

γ

γ

=
+ +

H A

A

γ

γ

= + +

H A

A

γ

γ γ

= + +

H A

A

γ

γ γ
,

where the first equality follows from H-colinearity of μA (3.9.1), the second from
colinearity of γ (3.9.2) and the rules of the antipode (3.2.26), the third from functo-
riality of the braiding (3.2.12) and since γ is an algebra morphism, and the fourth
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from associativity of A. It follows from functoriality of the braiding (3.2.12) (move
Θ in the middle to the other side of the braiding) that the last picture is equal to
adγ(id⊗Θ).

(6) By Theorem 3.5.14 for right Hopf modules, Φ and Ψ are inverse isomor-
phisms. It is easy to see from colinearity of μA, (3.9.1), and since δAι = (idA ⊗ η)ι
that Φ is right H-colinear. Proposition 3.7.2(1)(a) implies that Φ is an algebra
morphism. �

Corollary 3.9.3. Let R be a left H-module algebra in C with module structure
λ. Let A = R#H with H-comodule algebra structure δA, and

γ = η ⊗ idH : H → R#H, ι = idR ⊗ η : R → R#H.

(1) (R, ι) is an equalizer of (δA, idA ⊗ ηH) and λR = λ.
(2) Assume that the antipode SH is an isomorphism in C. Then the morphism

H ⊗R
γ⊗ι−−→ A⊗A

μA−−→ A

is an isomorphism in C.

Proof. (1) The first claim follows from the axioms for the unit and counit of
the bialgebra H. The second holds by Theorem 3.9.2(5).

(2) We view V = A as an H-bimodule via γ as in Definition 3.7.3. Then by
Proposition 3.7.2(1)(b),

μA(γ ⊗ idA)(SH ⊗ adγ)(ΔH ⊗ idA)(idH ⊗ ι)

= μA(idA ⊗ γ)(idA ⊗ SH)cH,A(idH ⊗ ι).

This equality and the definition of λR in Theorem 3.9.2 imply that the compositions

H ⊗R
ΔH⊗idR−−−−−−→ H ⊗H ⊗R

SH⊗λR−−−−−→ H ⊗R
γ⊗ι−−→ A⊗A

μA−−→ A,

H ⊗R
cH,R−−−→ R⊗H

idR⊗SH−−−−−→ R⊗H
ι⊗γ−−→ A⊗A

μA−−→ A

coincide. The second morphism is an isomorphism, since SH is. Moreover, the
morphism (idH ⊗λR)(ΔH ⊗ idR) : H ⊗R → H ⊗R is an isomorphism with inverse
(idH ⊗ λR)(idH ⊗ SH ⊗ idR)(ΔH ⊗ idR), and the claim follows. �

We note the dual results. They follow from Lemma 3.9.1 and Theorem 3.9.2
for the dual category Cop.

Lemma 3.9.4. Let X,Y be coalgebras and f : X → Y , g : X → Y coalgebra
morphisms in C. Let

X
f

��

g
�� Y

p
�� Q

be a coequalizer diagram. Then there is exactly one coalgebra structure (Q,ΔQ, εQ)
on Q such that p : Y → Q is a coalgebra morphism.

Theorem 3.9.5. Let C be a right H-module coalgebra in C with module struc-
ture λC . Assume that there is a coalgebra morphism π : C → H which is right H-
linear, where H is a right H-module via μ, and that the coequalizer (Q, ϑ : C → Q)
of (λC , idC ⊗ ε) exists.
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Then Q has a uniquely determined coalgebra structure such that ϑ is a coalgebra
morphism in C, and there are uniquely determined morphisms δQ : Q → H⊗Q and
ι : Q → C with

δQϑ =
(
C

coadπ−−−−→ H ⊗ C
id⊗ϑ−−−→ H ⊗Q

)
,

ιϑ = (C
Δ−→ C ⊗ C

idC⊗SHπ−−−−−−→ C ⊗H
λC−−→ C), and

(1) ϑι = idQ.
(2) ι is right H-colinear, where Q and C are right H-comodules via η and by

(idC ⊗ π)Δ.
(3) (Q, δQ) is a left H-comodule coalgebra, ϑ is left H-colinear, where the H-

comodule structures of C and Q are coadπ and δQ, respectively. Moreover,
δQ = (idH ⊗ ϑ)coadπι.

(4) ι is left H-colinear, where Q and C are left H-comodules by δQ and by
(π ⊗ idC)Δ, respectively. Moreover, δQ = (π ⊗ ϑ)ΔCι.

(5) Φ =
(
C

Δ−→ C⊗C
ϑ⊗π−−−→ Q#H

)
is a right H-linear coalgebra isomorphism

with inverse Ψ =
(
Q#H

ι⊗idH−−−−→ C ⊗H
λC−−→ C

)
.

3.10. Hopf algebra triples

Let C be a strict monoidal braided category. Let H be a Hopf algebra in C
whose antipode is an isomorphism. In this section we study Hopf algebra triples
in C, see Definition 3.10.1. We will see that Hopf algebras in the category H

HYD(C)
arise naturally from Hopf algebra triples in C.

Definition 3.10.1. A Hopf algebra triple over H in C is a triple (A, π, γ),
where π : A → H, γ : H → A are morphisms of Hopf algebras in C such that
πγ = idH . A morphism Φ : (A, π, γ)→ (A′, π′, γ′) of Hopf algebra triples over H
is a morphism Φ : A → A′ of Hopf algebras in C with π′Φ = π and Φγ = γ′.

If (A, π, γ) is a Hopf algebra triple over H, let

δA = (idA ⊗ π)ΔA : A→ A⊗H, λA = μA(idA ⊗ γ) : A⊗H → A,

ΘA = μA(id⊗ γπSA)ΔA : A→ A, ΣA = μA(γπ ⊗ SA)ΔA : A→ A.

Remark 3.10.2. Let (A, π, γ) be a Hopf algebra triple over H. By definition,
ΘA = idA ∗γπSA and ΣA = γπ∗SA in the convolution monoid HomC(A,A). Hence

ΘA ∗ γπ = idA, ΘA ∗ΣA = ηAεA = ΣA ∗ΘA.(3.10.1)

Remark 3.10.3. Let G,H be groups and π : G → H, γ : H → G be group
homomorphisms with πγ = idH . This situation is described by a semidirect
product of groups. The group H acts on ker(π) by

ϕ : H × ker(π) �→ ker(π), (h, x) �→ γ(h)xγ(h)−1.

Let ker(π)×ϕ H be the corresponding semidirect product. Then

ker(π)×ϕ H
∼=−→ G, (g, h) �→ gγ(h),

is an isomorphism of groups. For Hopf algebras we have to replace the kernel of π
by the right (or left) coinvariant elements which is a Yetter-Drinfeld Hopf algebra,
and the object which generalizes the semidirect product of groups will be a smash
product and a smash coproduct at the same time.
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Theorem 3.10.4. Let (A, π, γ) be a Hopf algebra triple over H in C with
morphisms δA, λA, ΘA and ΣA introduced in Definition 3.10.1. Assume that an
equalizer (R, ι : R → A) of the pair (δA, idA ⊗ ηH) exists. There is a uniquely
determined morphism ϑ : A → R with ΘA = ιϑ; (A, ϑ : A → R) is a coequal-
izer of (λA, idA ⊗ εH), and ϑι = idR. There are uniquely determined morphisms
λR : H ⊗ R → R, δR : R → H ⊗ R with ιλR = adA(γ ⊗ ι), δRϑ = (π ⊗ ϑ)coadA.
Let SR = λR(idH ⊗ ϑSAι)δR : R → R. Then

(1) (R, λR, δR) is an object in H
HYD(C), and a Hopf algebra in H

HYD(C) with
antipode SR, where
(a) ι : (R, μR, ηR)→ (A, μA, ηA) is an algebra morphism in C,
(b) ϑ : (A,ΔA, εA)→ (R,ΔR, εR) is a coalgebra morphism in C,
(c) ιSR = ΣAι,
(d) ι is a morphism in HC, and ϑ is a morphism in HC, where A and R

are left H-comodules by (π ⊗ idA)ΔA and δR, respectively, and left
H-modules by μA(γ ⊗ idA) and λR, respectively.

(2) Φ =
(
R#H

ι⊗γ−−→ A ⊗ A
μA−−→ A

)
, is an isomorphism of algebras and

coalgebras in C with inverse Ψ =
(
A

ΔA−−→ A ⊗ A
ϑ⊗π−−−→ R#H

)
, where

R#H is the bosonization of R.

The situation of Theorem 3.10.4 is described in the diagram

H

=

��

γ

����
��
��
��

R
ι ��

=

��

A
π ��

ϑ
		��
��
��
�

H

R

Proof. Note that (A, δA) is a right H-comodule algebra, since δA is an algebra
morphism. It follows from πγ = idH that γ is a right H-colinear algebra morphism.
Hence by Theorem 3.9.2, ϑ is well-defined, ϑι = idR, and (A, ϑ : A → R) is a
coequalizer of (λA, idA ⊗ εH).

Since (A, λA) is a right H-module coalgebra, and π is a right H-linear coalgebra
morphism, Theorem 3.9.5 applies.

From both theorems we conclude the existence of ϑ, λR, δR, and of well-defined
algebra and coalgebra structures μR, ηR,ΔR, εR satisfying (1)(a) and (1)(b), that
(R, λR) is a left H-module algebra, (R, δR) is a left H-comodule coalgebra, and that
Φ and Ψ in (2) are inverse isomorphisms of algebras and coalgebras in C. Moreover,
ι : (R, λR) → (A, ad γ) and ϑ : (A, μA(γ ⊗ idA)) → (R, λR) are morphisms in HC
by Theorem 3.9.2. By Theorem 3.9.5,

ϑ : (A, coad π)→ (R, δR) and ι : (R, δR)→ (A, (π ⊗ idA)ΔA)

are morphisms in HC.
It follows from Theorem 3.9.2(2) that also ϑ : (A, ad γ)→ (R, λR) is a morphism

in HC, and from Theorem 3.9.5(2) that ι : (R, δR) → (A, coad π) is a morphism in
HC.

We next prove that R is a coalgebra in HC. Since (A, μA(γ⊗idA)) is a coalgebra
in HC and ϑ is a coalgebra morphism, ΔRϑ = (ϑ ⊗ ϑ)ΔA and εRϑ = εA are
morphisms in HC. Hence ΔR and εR are morphisms in HC, since ϑ is, and since
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ϑι = idR. Similarly it follows that R is an algebra in HC. It remains to prove

(I) (R, λR, δR) is a Yetter-Drinfeld module in H
HYD(C).

(II) ΔR is an algebra morphisms in H
HYD(C).

(III) SR is the antipode of R satisfying (1)(c).

By (2), we may assume that R#H = A is a Hopf algebra, where

γ =

H

HR

, π =

H

H

R

, ι =

R

HR

, ϑ =

R H

R

.(3.10.2)

We denote action and coaction of R by λR =

H R

R

, δR =

H R

R

. The next

rules follow from the definition of μA and ΔA and (3.10.2).

H R

A

γ ι =

H R

R H

,
π ϑ

A

H R

=

R H

H R

,(3.10.3)

ϑ

A A

R

=
ϑ

R H A

R

, ι

R

A A

=

ι

R

R H A

.(3.10.4)

We prove (I).

H R

H R

=

γ ι

π ϑ

H R

H R

=

γ ι

π ϑ

H R

H R

=

H R

H R

,
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where the first equality follows from (3.10.3) and the second, since A is a bialgebra.
To prove the third equality we move γ and π to the right, since γ and π are
morphisms of coalgebras and of algebras, and since ϑι = idR, and then use (3.10.4)
to identify λR and δR.

To prove (II), we note that

μR = ϑμA(ι⊗ ι),(3.10.5)

since ι is an algebra morphism with ϑι = idR. Hence

ι ι

ϑ ϑ

R R

R R

=

ι ι

ϑ

R

R

R

R

=

R R

R R

,(3.10.6)

where the first equality holds, since ϑ is a coalgebra morphism, and the second by
(3.10.5). On the other hand,

ι ι

ϑ ϑ

R R

R R

=

ι ι

ϑ ϑ

R R

R R

=
ι ι

ϑ

R R

R R

=

R R

R R

,(3.10.7)

where the first equality holds, since A is a bialgebra, the second follows from (3.10.4)
for the morphisms ι and the first θ, and the third from (3.10.5).
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(III) By (3.10.4) and the definition of SR,

SA

ι

ϑ

R

R

= SR

R

R

.

Hence idR ∗ SR = ηRεR in HomC(R,R), since SA is the antipode of A.
Since ϑι = idR, the map Π : HomC(R,R) → HomC(A,A), f �→ ιfϑ, is an

injective monoid morphism with respect to composition. Since ϑ is a morphism of
coalgebras, and ι is a morphism of algebras, Π is a monoid morphism with respect
to convolution.

By (3.10.1), ΣA is ∗-inverse to ΘA = ιϑ = Π(idR). Since SR is right ∗-inverse to
idR, it follows that ΣA = Π(SR), and that SR is left ∗-inverse to idR. Hence SR is
the antipode of R by Proposition 3.8.9. Note that (1)(c) follows from ΣA = Π(SR).

Since Π is a monoid morphism with respect to composition,

ΣA = ΘAΣA = ΣAΘA,(3.10.8)

follows from SR = idRSR = SRidR. �
Suppose that in Theorem 3.10.4 the antipode of A is an isomorphism. Then

(Acop, π : Acop → Hcop, γ : Hcop → Acop) is a Hopf algebra triple over Hcop in C.
Assume that (L, ιL : L → Acop) is an equalizer of (δAcop , id⊗ η) in C.

We want to compare R and L. Recall that R and L are Hopf algebras in
H
HYD(C) and in Hcop

HcopYD(C), respectively.
Lemma 3.10.5. Let (A, π, γ) be a Hopf algebra triple over H, and assume that

the antipode of A is an isomorphism. Let ΘA, ΣA be defined by (A, π, γ) and
δAcop , ΘAcop by (Acop, π, γ).

(1) SAΘAcop = ΣA,
(2) ΘAcopΘA = ΘAcop ,
(3) ΘAΘAcop = ΘA.
(4) Assume that the equalizer (L, ιL) of (δAcop , id⊗ η) exists. Then (L, ιL) is

an equalizer of (δlA, η ⊗ id), where δlA = (π ⊗ idA)ΔA.

Proof. (1) By definition of ΘAcop ,

SAΘAcop = SAμA(idA ⊗ γπS−1
A )cA,AΔA

= μAcA,A(SA ⊗ SA)(idA ⊗ γπS−1
A )cA,AΔA

= μAcA,AcA,A(γπ ⊗ SA)ΔA

= ΣA,

where the second equality follows from the rule for the antipode (3.2.26), and the
third from functoriality of the braiding.
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(2) By (1), and since ΣAΘA = ΣA by (3.10.8),

SAΘAcopΘA = ΣAΘA = ΣA = SAΘAcop ,

and (2) follows, since SA is an isomorphism.
(3) follows from (2) replacing (A, π, γ) by (Acop, π, γ).
(4) Note that δAcop = cH,AδlA, and id⊗ η = cH,Aη ⊗ id. �
Theorem 3.10.6. Assume the situation of Theorem 3.10.4, and assume that

the antipode of A is an isomorphism. Let δAcop be defined by the Hopf algebra triple
(Acop, π, γ) in C. Assume that the equalizer (L, ιL) of (δAcop , id⊗ η) exists, and let
ϑL : Acop → L be defined by (Acop, π, γ). Then the morphism T = ϑιL : L → R is
an isomorphism in C with T−1 = ϑLι and ιLT

−1 = S−1
A ιSR, and an isomorphism

T : L → (F, ϕ)(Rcop)

of Hopf algebras in Hcop

HcopYD(C), where (F, ϕ) : HHYD(C)→ Hcop

HcopYD(C) is the braided
monoidal isomorphism in Corollary 3.4.17.

Proof. We denote the braiding and the inverse braiding of H
HYD(C) by cYD

and cYD. Let R′ = (F, ϕ)(Rcop), and

λ′
R = λR, δ′R = (S−1

H ⊗ idR)c
2
H,RδR,

μ′
R = μRcYD

R,RcR,R, Δ′
R = cR,RΔR.

Then by Corollary 3.4.17, R′ = (R, λ′
R, δ′R) as an object in Hcop

HcopYD(C), and the
Hopf algebra structure is given by the multiplication μ′

R and the comultiplication
Δ′

R.
(1) We first show that T is an isomorphism in C with T−1 = ϑLι and with

ιLT
−1 = S−1

A ιSR.
By Theorem 3.9.2, ΘA = ιϑ and ΘAcop = ιLϑL. Hence by Lemma 3.10.5(2)

and (3),

ϑLιϑ = ϑL, ϑιLϑL = ϑ,(3.10.9)

since ιL and ι are monomorphisms. Let T ′ = ϑLι : R → L. Then by (3.10.9),

T ′T = ϑLιϑιL = ϑLιL = idL, TT ′ = ϑιLϑLι = ϑι = idR,

and T ′ = T−1.
By Lemma 3.10.5(1), SAιLT

−1 = SAιLϑLι = SAΘAcopι = ΣAι. Hence the
formula for ιLT

−1 follows from Theorem 3.10.4(1)(c).
(2) We want to show that T−1 is an isomorphism of Hopf algebras, that is, the

following equations hold.

(a) λL(idH ⊗ T−1) = T−1λR,
(b) δLT

−1 = (idH ⊗ T−1)δ′R,
(c) μL(T

−1 ⊗ T−1) = T−1μ′
R,

(d) ΔLT
−1 = (T−1 ⊗ T−1)Δ′

R.

(a) To prove that T−1 : R′ → L is left H-linear, we recall that

H ⊗R
λR−−→ R, H ⊗ L

λL−−→ L

are the left H-module structures of R and of L, satisfying

ιλR = adA(γ ⊗ ι),(3.10.10)

ιLλL = adAcop(γ ⊗ ιL),(3.10.11)
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by Theorem 3.10.4. Note that adA(γ ⊗ idA) = adγ . By Lemma 3.7.4,

adAcop(id⊗ S−1
A ) = S−1

A adA.(3.10.12)

Consider the following diagram.

H ⊗R

id⊗T−1

��

λR �� R

T−1

��

H ⊗ L

γ⊗ιL

��

λL �� L

ιL

��

A⊗A
adAcop

�� A

We want to show that the upper square commutes. The lower square commutes
by (3.10.11). Since ιL is injective, it is enough to prove commutativity of the large
diagram. Since R is a Hopf algebra in the Yetter-Drinfeld category, the antipode
SR is H-linear, that is,

SRλR = λR(id⊗ SR).

By (1), ιLT
−1 = S−1

A ιSR. Hence it remains to prove that

S−1
A ιλR = adAcop(γ ⊗ S−1

A ι).

This follows from (3.10.11) and (3.10.12), since

S−1
A ιλR = S−1

A adA(γ ⊗ ι)

= adAcop(id⊗ S−1
A )(γ ⊗ ι).

(b) The equations

(idH ⊗ ι)δR = (π ⊗ idA)ΔAι,(3.10.13)

(idH ⊗ ιL)δL = (π ⊗ idA)cA,AΔAιL.(3.10.14)

follow from (3.10.4). We note that

δ′RSR = (idH ⊗ SR)δ
′
R,(3.10.15)

since the antipode SR is left H-colinear with respect to δR, and since SR commutes
with the braiding.

Since idH ⊗ ιL is a monomorphism, (b) follows from the equality

(idH ⊗ ιL)δLT
−1 = (idH ⊗ ιLT

−1)δ′R.(3.10.16)

To prove (3.10.16), we begin to compute the left-hand side.

(idH ⊗ ιL)δLT
−1 = (π ⊗ idA)cA,AΔAS−1

A ιSR

= (S−1
H ⊗ S−1

A )c2H,A(π ⊗ idA)ΔAιSR

= (S−1
H ⊗ S−1

A )c2H,A(idH ⊗ ι)(SH ⊗ idR)c
2
H,Rδ′RSR

= (idH ⊗ S−1
A )(idH ⊗ ι)δ′RSR

= (idH ⊗ ιLT
−1)δ′R,

where the first equality follows from (3.10.14) and then from (1), the second from the
rules of the antipode and functoriality of the braiding, the third from (3.10.13), and
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since δR = (SH ⊗ idR)c
2
H,Rδ′R by the definition of δ′R, the fourth from functoriality

of the braiding, and the last from (3.10.15) and (1).
(c) The claim follows from the commutativity of the large diagram

R⊗R

μ′
R

��

T−1⊗T−1

�� L⊗ L

μL

��

ιL⊗ιL �� A⊗ A

μA

��

R
T−1

�� L
ιL �� A

since ιL is an algebra morphism, and the right square commutes. By the equa-
tion ιLT

−1 = S−1
A ιSR in (1), the rules of the antipode, and since ι is an algebra

morphism,

μA(ιLT
−1 ⊗ ιLT

−1) = μA(S−1
A ⊗ S−1

A )(ι⊗ ι)(SR ⊗ SR)

= S−1
A ιμRcR,R(SR ⊗ SR).

On the other hand,

ιLT
−1μ′

R = S−1
A ιSRμRcYD

R,RcR,R

= S−1
A ιμRcYD

R,R(SR ⊗ SR)c
YD
R,RcR,R

= S−1
A ιμRcR,R(SR ⊗ SR),

where the first equality follows from (1) and the definition of μ′
R, the second from

the rules of the antipode, and the last since SR⊗SR commutes with cYD
R,R and with

cR,R.
(d) By Theorem 3.10.4(1)(b), ϑL : Acop → L is a coalgebra morphism. Hence

ΔLϑL = (ϑL ⊗ ϑL)cA,AΔA, and

ΔLT
−1 = (ϑL ⊗ ϑL)cA,AΔAι.(3.10.17)

We claim that the following diagram commutes.

R
T−1

��

ΔR

��

L

ΔL

��

R ⊗R

cR,R

��

R ⊗R
T−1⊗T−1

�� L⊗ L

Note that ΔR = (ϑ⊗ϑ)ΔAι, since ϑ is a coalgebra morphism with ϑι = idR. Hence

(T−1 ⊗ T−1)cR,RΔR = (ϑL ⊗ ϑL)cA,A(ι⊗ ι)ΔR

= (ϑL ⊗ ϑL)cA,A(ιϑ⊗ ιϑ)ΔAι

= (ϑL ⊗ ϑL)(ιϑ⊗ ιϑ)cA,AΔAι.

Since by (3.10.9), ϑLιϑ = ϑL, we have shown that

(T−1 ⊗ T−1)cR,RΔR = (ϑL ⊗ ϑL)cA,AΔAι.

Thus the diagram commutes by (3.10.17). �

The preliminary version made available with permission of the publisher, the American Mathematical Society.



182 3. BRAIDED MONOIDAL CATEGORIES

3.11. Notes

For monoidal and braided monoidal categories, we refer to the books [Kas95]
and [EG+15], see also [ML98], and [Maj95] for background information.

Important sources for our exposition of the theory are the fundamental and
concise paper [Bes97], and [BLS15].

We thank Simon Lentner for sending us the macros for the graphical calculus
from [BLS15].

3.1. Monoidal categories were introduced in [Bén63] by Bénabou already in
1963.

3.2, 3.3. Braided monoidal categories were introduced by Joyal and Street in
1986, see [JS93], [JS91].

Hopf algebras in braided monoidal categories using the graphical calculus were
studied early by Majid, see the survey article [Maj94]. In the graphical calculus
we follow the conventions of [Tak99] and [Shi19].

3.4. Yetter-Drinfeld modules in the category of vector spaces were introduced
by Yetter in [Yet90] under the name of crossed bimodules, and in braided monoidal
categories in [Bes97]. We often use the characterization of Yetter-Drinfeld mod-
ules which we have introduced in Proposition 3.4.5. For another proof of Theo-
rem 3.4.15 see the sketch in [Bes97, Corollary 3.5.5], and [BLS15, Theorem 3.16].
Theorem 3.4.16 and Corollary 3.4.17 seem to be new. We will need them in Sec-
tion 3.10.

3.5. Here, we follow the exposition in [Tak99].

3.6. The generalized smash product algebra of Definition 3.6.1 was introduced
by Takeuchi for C =Mk in [Tak80, Section 8].

3.7. Let H be a Hopf algebra in the braided monoidal category C = Mk. We
denote by H

HCHH = H(HCH)H the category of H-bicomodules in the category of H-
bimodules, or Hopf bimodules over H. By Woronowicz [Wor89], H

HCHH is a braided
monoidal category. Let V ∈ H

HCHH . Then V ∈ H(HCH), and by Proposition 3.7.5,
(V, ad, δ) ∈ H

HYD(C). It follows that V coH is a subobject of V in H
HYD(C), and

H
HCHH → H

HYD(C), V �→ V coH .

is a strict monoidal functor, and an equivalence, see [Ros98, Proposition 4],
[Sch94], [AD95, Appendix]. The equivalence between Hopf bimodules and Yetter-
Drinfeld modules was shown in the general case of braided monoidal categories C
in [BD98].

3.8. Radford’s biproduct (where C =Mk) was introduced in [Rad85] in 1985
when Yetter-Drinfeld modules had not yet been defined. Majid observed in [Maj93]
that the condition in [Rad85] for the biproduct can be expressed by the notion of
a Hopf algebra in H

HYD. It is shown in a short sketch in [Bes97, Theorem 4.1.2]
that the bosonization of a Hopf algebra in H

HYD(C) is a Hopf algebra in C. In our
proof we tried to avoid checking huge pictures (see Proposition 3.8.4).

Theorem 3.8.7 is stated in [Bes97, Proposition 4.2.3] with a sketch of a proof.

3.9. See [AV00] for the more general case of crossed products and crossed
coproducts.
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3.10. The name Hopf algebra triple was coined by Takeuchi. Radford proved
Theorem 3.10.4 for C = Mk, and Bespalov proved the general case. His proof was
not published, it only appeared in the preprint version of [Bes97]. A proof of the
general case also follows from [BD98], where the theorem was shown by replacing
the Yetter-Drinfeld category by the equivalent category of Hopf bimodules. An
outline of the proof of Theorem 3.10.4 was given in [AV00].

Theorem 3.10.6 seems to be new. It is needed in Section 12.3.
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CHAPTER 4

Yetter-Drinfeld modules over Hopf algebras

As a special case of the theory in Chapter 3 we study Yetter-Drinfeld modules
over (usual) Hopf algebras. As an application of Section 3.5 we prove that finite-
dimensional Yetter-Drinfeld Hopf algebras are Frobenius algebras.

Throughout the chapter let H denote a Hopf algebra with bijective antipode.

4.1. The braided monoidal category of Yetter-Drinfeld modules

After the introduction of Yetter-Drinfeld modules over groups in Section 1.4
and Yetter-Drinfeld modules in braided strict monoidal categories in Section 3.4,
here we discuss the category H

HYD(C) of Yetter-Drinfeld modules over the Hopf
algebra H in the braided monoidal category C =Mk of vector spaces with the flip
map as the braiding.

Let V be a left H-module and a left H-comodule with left action and left
coaction

λ : H ⊗ V → V, h⊗ x �→ h · x = hx,

δ : V → H ⊗ V, x �→ x(−1) ⊗ x(0).

Then (V, λ, δ) is a (left) Yetter-Drinfeld module over H if

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2) · v(0)(4.1.1)

for all h ∈ H and v ∈ V .
We write H

HYD = H
HYD(Mk) for the category of Yetter-Drinfeld modules over

H. Objects of H
HYD are the left Yetter-Drinfeld modules over H, morphisms in

H
HYD are the H-linear and H-colinear maps. The full subcategory of H

HYD consist-

ing of finite-dimensional Yetter-Drinfeld modules is denoted by H
HYD

fd
.

We have seen in Section 3.4 that H
HYD is a braided monoidal category with the

following monoidal and braided structure. Let V,W ∈ H
HYD. The tensor product

of vector spaces V ⊗W becomes a Yetter-Drinfeld module with the usual diagonal
action and coaction, where for all h ∈ H, v ∈ V and w ∈ W ,

h · (v ⊗ w) = h(1) · v ⊗ h(2) · w,

δ(v ⊗ w) = v(−1)w(−1) ⊗ v(0) ⊗ w(0).

The unit object is the field k with the trivial H-module and H-comodule structure,
where h · 1 = ε(h) for all h ∈ H, and δ(1) = 1 ⊗ 1. The associativity and unit
constraints are the same as for vector spaces. The braiding in H

HYD and its inverse
are defined by

cV,W : V ⊗W → W ⊗ V, v ⊗ w �→ v(−1) · w ⊗ v(0),

c−1
V,W : W ⊗ V → V ⊗W, w ⊗ v �→ v(0) ⊗ S−1(v(−1)) · w.

185
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186 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS

Yetter-Drinfeld modules can be viewed as a special case of the construction of
the Drinfeld center of any (strict) monoidal category.

Definition 4.1.1. Let (C,⊗, I) be a strict monoidal category. The left Drin-
feld center Zl(C) of C is a braided monoidal category defined as follows. Objects
of Zl(C) are pairs (V, γ), where V ∈ C, and

γ = (γX : V ⊗X → X ⊗ V )X∈C

is a natural isomorphism such that for all X,Y ∈ C the diagram

V ⊗X ⊗ Y
γX⊗Y

��

γX⊗id
����

���
���

���
� X ⊗ Y ⊗ V

X ⊗ V ⊗ Y

id⊗γY

��������������
(4.1.2)

commutes. Note that the definition implies that

γI = idV

for all (V, γ) ∈ Zl(C).
A morphism f : (V, γ) → (W,λ) between objects (V, γ) and (W,λ) in Zl(C)

is a morphism f : V → W in C such that for all X ∈ C the diagram

V ⊗X
γX ��

f⊗id

��

X ⊗ V

id⊗f

��

W ⊗X
λX �� X ⊗W

commutes. Composition of morphisms is given by the composition of morphisms
in C.

For objects (V, γ), (W,λ) in Zl(C) the tensor product is defined by

(V, γ)⊗ (W,λ) = (V ⊗W,σ),

such that for all X ∈ C, the diagram

V ⊗W ⊗X
σX ��

id⊗λX ����
���

���
���

� X ⊗ V ⊗W

V ⊗X ⊗W

γX⊗id



������������
(4.1.3)

commutes. The pair (I, id), where idX = idI⊗X for all X ∈ C, is the unit in Zl(C).
The braiding is defined by

γW : (V, γ)⊗ (W,λ)→ (W,λ)⊗ (V, γ).

The right Drinfeld center Zr(C) is defined similarly the objects being pairs
(V, γ), where γ = (γX : X ⊗ V → V ⊗X)X∈C is a natural isomorphism.

It is not difficult to see that the centers Zl(C) and Zr(C) are braided monoidal
categories. For a proof, see [Kas95, Theorem XIII.4.2]. Note that

Zr(C) ∼= Zl(C), (V, γ) �→ (V, γ−1),

is a braided monoidal isomorphism.
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A monoidal isomorphism (F, ϕ) : C → D between strict monoidal categories
defines in the natural way a braided monoidal isomorphism between the left centers
of C and D, and similarly for the right centers. For all objects (V, γ) ∈ Zl(C) let

FZl(V, γ) = (F (V ), γ̃),

where for all X ∈ C, the isomorphism γ̃F (X) is defined by the commutative diagram

F (V )⊗ F (X)
γ̃F (X)−−−−→ F (X)⊗ F (V )

ϕV,X

⏐⏐' ϕX,V

⏐⏐'
F (V ⊗X)

F (γX)−−−−→ F (X ⊗ V ).

In other words, if G : D → C is the inverse functor of F , for all Y ∈ D,

γ̃Y = ϕ−1
G(Y ),V F (γG(Y ))ϕV,G(Y ).

For morphisms f in Zl(C) we define FZl(f) = F (f). For objects (V, γ) and
(W,λ) in Zl(C) let

ϕZl

(V,γ),(W,λ) = ϕV,W .

We omit the somewhat tedious proof of the next lemma.

Lemma 4.1.2. Let (F, ϕ) : C → D be a monoidal isomorphism between strict
monoidal categories C and D. Then

(FZl , ϕZl) : Zl(C)→ Zl(D)

is a well-defined braided monoidal isomorphism.

Theorem 4.1.3. The functor H
HYD → Zl(HM), mapping M ∈ H

HYD to (M,γ),
where for all X ∈ HM, γX = cM,X : M ⊗X → X ⊗M , and where morphisms f
are mapped to f , is a strict isomorphism of braided strict monoidal categories.

Proof. Let F : H
HYD → Zl(HM) denote the functor of the theorem. It is

clear from Propositions 3.4.5 and 3.4.6 that F is well-defined, strict monoidal, and
braided.

We construct the inverse functor. Let (M,γ) ∈ Zl(HM). We define

δ = (M
id⊗η−−−→ M ⊗H

γH−−→ H ⊗M).(4.1.4)

Since Δ is unitary, the following diagram commutes.

M
id⊗η

�� M ⊗H
γH ��

id⊗Δ

��

H ⊗M

id⊗id⊗η

��

M ⊗H ⊗H
γH⊗id

�� H ⊗M ⊗H

Hence

(id⊗ δ)δ = (id⊗ γH)(id⊗ id⊗ η)γH(id⊗ η)

= (id⊗ γH)(γH ⊗ id)(id⊗Δ)(id⊗ η)

= γH⊗H(id⊗Δ)(id⊗ η)

= (Δ⊗ id)γH(id⊗ η)

= (Δ⊗ id)δ,
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188 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS

where the third equality holds by (4.1.2), and the fourth, since γ is a natural
transformation. Thus δ is coassociative.

Note that (ε⊗id)γH = id⊗ε, since γ is a natural transformation, and ε : H → k
is left H-linear, where k has the trivial H-module structure. Hence (ε⊗ id)δ = id.
We have shown that (M, δ) is a left H-comodule.

We claim that γH = cYD
M,H , where H ∈ HM via left multiplication. For any

h ∈ H, right multiplication rh by h is an endomorphism of H. Since γH is a natural
transformation, it follows that

γH(m⊗ h) = γH(idM ⊗ rh)(m⊗ 1)

= (rh ⊗ idM )γH(m⊗ 1) = m(−1)h⊗m(0) = cM,H(m⊗ h)

for all h ∈ H, where m(−1) ⊗m(0) = δ(m).

Proposition 3.4.5 then implies that M is an object in H
HYD.

The inverse functor G : Zl(HM) → H
HYD is now defined as follows. For all

objects (M,γ) ∈ Zl(HM) let G(M,γ) = (M,λ, δ), where λ : H ⊗M → M is the
given H-module structure on M , and δ : M → H ⊗M is defined by (4.1.4). Let
f : (M,γ)→ (M ′, γ′) be a morphism in Zl(HM), that is, f : M → M ′ is H-linear,
and for all X ∈ HM, (id⊗ f)γX = γ′

X(f ⊗ id). Then the diagram

M

f

��

id⊗η
�� M ⊗H

γH ��

f⊗id

��

H ⊗M

id⊗f

��

M ′ id⊗η
�� M ′ ⊗H

γ′
H �� H ⊗M ′

commutes. Hence f is H-colinear by definition of the comodule structures of M
and M ′, and G(f) = f : G(M,γ)→ G(M ′, γ′) is a morphism in H

HYD.
It is clear from the construction of G that FG = id, GF = id. �
Remark 4.1.4. Theorem 4.1.3 does not generalize directly to H

HYD(C) for any
braided strict monoidal category C, see also the notes at the end of Chapter 4.
Indeed, when proving that γH = cYD

M,H for the construction of the inverse functor,
it is used that H is a set and that for any h ∈ H there is a morphism rh sending 1
to h.

Remark 4.1.5. Assume that H is finite-dimensional. Then the Drinfeld double
D(H) of H is a Hopf algebra by Remark 2.8.9. The monoidal category D(H)M of
left D(H)-modules is braided and as such it is equivalent to Zr(HM). For a proof

we refer to [Kas95, Theorem XIII.5.1]. Hence D(H)M∼= Zl(HM) ∼= H
HYD.

Theorem 4.1.6. The functor H
HYD → Zr(

HM), mapping M ∈ H
HYD to

(M,γ), where for all X ∈ HM, γX = cX,M : X ⊗ M → M ⊗ X, and where
morphisms f are mapped to f , is a strict isomorphism of braided strict monoidal
categories.

Proof. We dualize the proof of Theorem 4.1.3 using condition (4) in Propo-
sition 3.4.5. The inverse functor G : Zr(

HM)→ H
HYD is defined as follows. For all

objects (M,γ) ∈ Zr(
HM) let G(M,γ) = (M,λ, δ), where δ : M → H ⊗M is the

givenH-comodule structure onM , and the leftH-module structure λ : H⊗M → M
is defined by

λ = (H ⊗M
γH−−→ M ⊗H

id⊗ε−−−→ M).

The rest follows along the lines in the proof of Theorem 4.1.3. �
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Remark 4.1.7. Since H
HYD is a braided strict monoidal category, algebras,

coalgebras, bialgebras and Hopf algebras in H
HYD are defined in Chapter 3.

A Yetter-Drinfeld module R ∈ H
HYD is an algebra in H

HYD if R is an algebra
such that the structure maps μ : R ⊗ R → R and η : k → R are left H-linear
and left H-colinear, that is, R with the given action and coaction of H is a left
H-module algebra and a left H-comodule algebra.

An object C ∈ H
HYD is a coalgebra in H

HYD if C is a coalgebra such that the
structure maps Δ : C → C⊗C and ε : C → k are left H-linear and left H-colinear,
that is, C is an H-module coalgebra and an H-comodule coalgebra. We usually
will denote the comultiplication of a braided coalgebra C in a Sweedler notation by

ΔC : C → C ⊗ C, c �→ c(1) ⊗ c(2).

Let R and S be algebras in H
HYD. The tensor product R⊗S in H

HYD is an algebra
in H

HYD with unit 1R ⊗ 1S and the braided multiplication

(r ⊗ s)(x⊗ y) = r(s(−1) · x)⊗ s(0)y for all r, x ∈ R, s, y ∈ S.(4.1.5)

Let C,D be coalgebras in H
HYD. The tensor product C ⊗D in H

HYD is a coalgebra
in H

HYD with counit εC ⊗ εD and the braided comultiplication

Δ(c⊗ d) = c(1)⊗c(2)(−1) · d(1) ⊗ c(2)(0)⊗d(2) for all c ∈ C, d ∈ D.(4.1.6)

A bialgebra in H
HYD is an algebra and a coalgebra R in H

HYD such that the

comultiplication Δ : R → R ⊗ R, x �→ x(1) ⊗ x(2), and the counit ε : R → k are
algebra maps, where R⊗R is the braided tensor product of R with R. In particular,
Δ(xy) = Δ(x)Δ(y) for all x, y ∈ R, that is,

Δ(xy) = x(1)(x(2)
(−1) · y(1))⊗ x(2)

(0)y
(2).(4.1.7)

A Hopf algebra R in H
HYD is a bialgebra in H

HYD such that there is a map
S : R → R of Yetter-Drinfeld modules which is the convolution inverse of idR.
Let S : R → R be a linear map which is convolution inverse to idR. Then S is a
morphism in H

HYD by Proposition 3.8.9.

Lemma 4.1.8. Let R be a bialgebra in H
HYD. If I ⊆ R is a coideal and a

subobject in H
HYD, then RI, IR, and (I) = RIR are coideals of R and subobjects

in H
HYD. In particular, R/(I) is a quotient bialgebra in H

HYD.

Proof. Let r ∈ R and x ∈ I. Then

Δ(rx) = Δ(r)Δ(x) ∈ (R⊗R)(I ⊗R+R ⊗ I) ⊆ RI ⊗R+R⊗RI

by (4.1.7). Thus RI is a coideal. In the same way it follows that IR and (I) are
coideals. It is clear that RI, IR and (I) are subobjects in H

HYD. �

For any bialgebra R in H
HYD, the space of primitive elements of R is

P (R) = {x ∈ R | Δ(x) = 1⊗ x+ x⊗ 1}.

Lemma 4.1.9. Let R be a bialgebra in H
HYD. Then P (R) ⊆ R is a subobject in

H
HYD.

Proof. The map R → R ⊗R, x �→ Δ(x)− 1⊗ x− x⊗ 1, is a map of Yetter-
Drinfeld modules. and its kernel is P (R). �
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As an application of Theorem 4.1.6 we obtain a braided monoidal isomorphism
between Yetter-Drinfeld modules over H and over a two-cocycle deformation of H,
see Theorem 2.8.2.

Definition 4.1.10. Let σ : H ⊗H → k be a normalized two-cocycle. For all
M ∈ H

HYD with module structure λ : H ⊗M → M , h ⊗m �→ hm, and comodule
structure δ : M → H⊗M , let δσ = δ : M → Hσ⊗M , and define λσ : Hσ⊗M → M ,
h⊗m �→ h ·σ m for all h ∈ H, m ∈M by

h ·σ m = σ(h(1),m(−2))σ
−1(h(2)m(−1)S(h(4)), h(5))h(3)m(0).

Theorem 4.1.11. Let σ : H⊗H → k be a normalized two-cocycle. The functor

Fσ : HHYD → Hσ

Hσ
YD, (M,λ, δ) �→ (M,λσ, δσ),

mapping morphisms f to f is an isomorphism of categories.
For all M,N ∈ H

HYD let

(ϕσ)M,N : Fσ(M)⊗ Fσ(N)→ Fσ(M ⊗N), x⊗ y �→ σ(x(−1), y(−1))x(0) ⊗ y(0),

and ϕσ = ((ϕσ)M,N )M,N∈H
HYD. Then

(Fσ, ϕσ) :
H
HYD → Hσ

Hσ
YD

is a braided monoidal isomorphism.

Proof. We define (Fσ, ϕσ) by the following commutative diagram of braided
monoidal isomorphisms.

H
HYD ��

(Fσ,ϕσ)

��

Zr(
HM)

��
Hσ

Hσ
YD �� Zr(

HσM)

(4.1.8)

Here, the horizontal arrows are the strict monoidal isomorphisms of Theorem 4.1.6
for H and Hσ, and the right vertical arrow is the braided monoidal isomorphism in
Lemma 4.1.2 induced from the monoidal isomorphism (F, ϕσ) in Proposition 3.1.10.

Let M ∈ H
HYD. The image of M in Zr(

HM) is (M, c−,M ). According to
Lemma 4.1.2, (M, c−,M ) is mapped onto (Fσ(M), γ̃) in Zr(

HσM), where for all X
in HM, γ̃Fσ(X) is defined by the commutative diagram

Fσ(X)⊗ Fσ(M)
γ̃Fσ(X)

��

ϕX,M

��

Fσ(M)⊗ Fσ(X)

Fσ(X ⊗M)
Fσ(cX,M )

�� Fσ(M ⊗X)

(ϕM,X )−1

��
.

To compute the H-action ·σ on M , let X = H, h ∈ H, and m ∈ M . Then

γ̃Fσ(H)(h⊗m) = (ϕM,H)−1
(
σ(h(1),m(−1))h(2)m(0) ⊗ h(3)

)
= σ(h(1),m(−1))σ

−1(h(2)m(−1)S(h(4)), h(5))h(3)m(0) ⊗ h(6).

Hence (id ⊗ ε)(γ̃Fσ(H)(h ⊗m)) = h ·σ m in Definition 4.1.10. We have computed
Fσ(M).

It is easy to see from (4.1.8) that ϕσ is the monoidal structure of Proposi-
tion 3.1.10. �
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Corollary 4.1.12. Let σ : H ⊗ H → k be a normalized two-cocycle. Let
R be a Hopf algebra in H

HYD with multiplication and comultiplication denoted by

R⊗ R → R, x⊗ y �→ xy, Δ : R → R ⊗R, x �→ x(1) ⊗ x(2). Then Fσ(R) is a Hopf

algebra in Hσ

Hσ
YD with multiplication and comultiplication

R⊗R → R, x⊗ y �→ σ(x(−1), y(−1))x(0)y(0),

R → R⊗R, x �→ σ−1(x(1)
(−1), x

(2)
(−1))x

(1)
(0) ⊗ x(2)

(0),

and the same unit, counit and antipode as R.

Proof. This follows from Theorem 4.1.11 and Remark 3.2.13. �

For the following corollary we will use the two-cocycles of free abelian groups
discussed in Remark 2.7.4.

Definition 4.1.13. Let q = (qij)1≤i≤θ and p = (pij)1≤i≤θ be matrices with
non-zero entries in k×. The matrices q, p are called twist-equivalent, if for all
i, j ∈ {1, . . . , θ},

qijqji = pijpji, qii = pii.

Corollary 4.1.14. Let θ ≥ 1, I = {1, . . . , θ}, and let G be a free abelian
group with basis (gi)i∈I. Let V ∈ G

GYD with basis (xi)i∈I, and W ∈ G
GYD with

basis (yi)i∈I, and assume that xi ∈ V χi
gi and yi ∈ W ηi

gi for all i ∈ I, where for all

i ∈ I, χi and ηi are characters of G, that is, elements of Ĝ = Hom(G, k×). For
all i, j ∈ I define qij = χj(gi), pij = ηj(gi), and assume that the braiding matrices
(qij)i,j∈I and (pij)i,j∈I are twist-equivalent. Then there is a normalized two-cocycle
σ : kG⊗ kG→ k such that

(1) ψ : V
∼=−→ Fσ(W ), xi �→ yi for all i ∈ I, is an isomorphism in G

GYD.
(2) There is a uniquely determined map Ψ : B(V )→ Fσ(B(W )) of N0-graded

Hopf algebras in G
GYD such that ψ is the restriction of Ψ to V .

Proof. (1) Note that (kG)σ = kG for any two-cocycle, since the group algebra
is cocommutative. By Theorem 4.1.11 and Remark 2.7.4, we have to find non-zero
elements σij ∈ k, i, j ∈ I, such that for all i, j ∈ I,

qij = σijσ
−1
ji pij .

These equations are satisfied by defining σij =

{
qijp

−1
ij , if i ≤ j,

1, if i > j.
.

(2) Since (Fσ, ϕσ) is a braided monoidal isomorphism by Theorem 4.1.11,
Fσ(B(W )) is a Nichols algebra of Fσ(W ). Let π : Fσ(B(W )) → B(Fσ(W )) be
the isomorphism of Theorem 1.6.18 such that the restriction of π to Fσ(W ) is the
identity. Then let Ψ be the composition of B(ψ) and π−1. �

4.2. Duality of Yetter-Drinfeld modules

By Example 3.5.3, the category Mfd
k

of finite-dimensional vector spaces over
k is a monoidal category with left duality in the standard way. For all V ∈ Mfd

k
,

V ∗ = Hom(V, k) is the dual space, and evaluation and coevaluation maps evV and
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coevV are defined by

evV : V ∗ ⊗ V → k, f ⊗ v �→ f(v),(4.2.1)

coevV : k→ V ⊗ V ∗, 1 �→
n∑

i=1

vi ⊗ fi,(4.2.2)

where v1, . . . , vn ∈ V and f1, . . . , fn ∈ V ∗ are dual bases, that is, fi(vj) = δij for
all 1 ≤ i, j ≤ n = dimV , or for all v ∈ V ,

n∑
i=1

vifi(v) = v.(4.2.3)

We are going to define a Yetter-Drinfeld structure on the dual vector space of a
finite-dimensional Yetter-Drinfeld module. Before that we consider bilinear forms
of Yetter-Drinfeld modules which are invariant under the action and coaction of H.

Lemma 4.2.1. Let 〈 , 〉 : X × Y → k be a bilinear form of vector spaces.

(1) If X,Y ∈ HMk, then the following are equivalent.
(a) The form 〈 , 〉 is left H-linear.
(b) For all x ∈ X, y ∈ Y , and h ∈ H, 〈h · x, y〉 = 〈x,S(h) · y〉.

(2) If X,Y ∈ HMk, then the following are equivalent.
(a) The form 〈 , 〉 is left H-colinear.
(b) For all x ∈ X and y ∈ Y , S(x(−1))〈x(0), y〉 = y(−1)〈x, y(0)〉.

Proof. (1) (a) ⇒ (b): If the form is H-linear, then for all x ∈ X, y ∈ Y , and
h ∈ H, 〈h(1) · x, h(2) · y〉 = ε(h)〈x, y〉. Hence

〈h · x, y〉 = 〈h(1) · x, h(2)S(h(3)) · y〉 = ε(h(1))〈x,S(h(2)) · y〉 = 〈x,S(h) · y〉.

(b) ⇒ (a): Assume (b). Then for all x ∈ X, y ∈ Y , and h ∈ H,

〈h(1) · x, h(2) · y〉 = 〈x,S(h(1))h(2) · y〉 = ε(h)〈x, y〉.

(2) is shown similarly to (1). �

Lemma 4.2.1, when applied to evaluation of functions, shows how a natural

Yetter-Drinfeld module structures on the dual vector space V ∗ of any V ∈ H
HYD

fd

can be defined.

Lemma 4.2.2. Let V ∈ H
HYD

fd
.

(1) V ∗ is an object in H
HYD

fd
with action and coaction of H defined for all

h ∈ H, v ∈ V and f ∈ V ∗ by

(h · f)(v) = f(S(h) · v), f(−1)f(0)(v) = S−1(v(−1))f(v(0)).

(2) The maps evV : V ∗ ⊗ V → k and coevV : k → V ⊗ V ∗ defined in (4.2.1)

and (4.2.2) are morphisms in H
HYD

fd
, and (V ∗, evV , coevV ) is a left dual

of V in the sense of Definition 3.5.1.

Proof. (1) It is clear by Proposition 2.2.2 that V ∗ is a left H-module and
a left H-comodule, since the antipode of H is an algebra and coalgebra anti-
homomorphism. We check the Yetter-Drinfeld property. Let v ∈ V , f ∈ V ∗,
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and h ∈ H. Then

h(1)f(−1)S(h(3))(h(2) · f(0))(v) = h(1)f(−1)S(h(3))f(0)(S(h(2)) · v)
= h(1)S−1((S(h(2)) · v)(−1))S(h(3))f((S(h(2)) · v)(0))
= h(1)S−1(S(h(4))v(−1)S2(h(2)))S(h(5))f(S(h(3)) · v(0))
= S−1(v(−1))(h · f)(v(0))
= (h · f)(−1)(h · f)(0)(v).

(2) By Lemma 4.2.1, evV is left H-linear and H-colinear. We show that coevV
is left H-linear and left H-colinear, that is

n∑
i=1

h(1) · vi ⊗ h(2) · fi = ε(h)

n∑
i=1

vi ⊗ fi for all h ∈ H,(4.2.4)

n∑
i=1

vi(−1)fi(−1) ⊗ vi(0) ⊗ fi(0) = 1⊗
n∑

i=1

vi ⊗ fi.(4.2.5)

Both equations follow by evaluating both sides at v ∈ V , and from (4.2.3). For
(4.2.5) note that

∑n
i=1 vi(−1)fi(v)⊗ vi(0) = v(−1) ⊗ v(0).

The triple (V ∗, evV , coevV ) is a left dual of V by Example 3.5.3. �
Definition 4.2.3. The Yetter-Drinfeld module V ∗ in Lemma 4.2.2 is called

the (left) dual of V .

Remark 4.2.4. By Lemma 4.2.2, the braided monoidal category H
HYD

fd
is

rigid. Let V,W ∈ H
HYD, and f : V → W a morphism of Yetter-Drinfeld modules.

Then f∗ : W ∗ → V ∗ defined in Remark 3.5.2(3) is the dual map Hom(f, id). The
canonical map

V ∗ ⊕W ∗ → (V ⊕W )∗, f + g �→
(
v + w �→ f(v) + g(w)

)
,(4.2.6)

is an isomorphism in H
HYD. The isomorphisms

ϕV,W : V ∗ ⊗W ∗ → (V ⊗W )∗,

ψV : V → V ∗∗,

of Theorem 3.5.8 are given explicitly by

ϕV,W (f ⊗ g)(v ⊗ w) = f(v(0))g(v(−1) · w),(4.2.7)

ψV (v)(f) = f(SH(v(−1)) · v(0)),(4.2.8)

for all v ∈ V , w ∈ W , and f ∈ V ∗, g ∈ W ∗.

Corollary 4.2.5. The functor

( )∗ : (HHYD
fd
)op → H

HYD
fd
, V �→ V ∗, the left dual of V ,

with f∗ = Hom(f, id) for morphisms f , is an equivalence, and

(ψV : V → V ∗∗)V ∈H
HYDfd

defined in (4.2.8) is a natural isomorphism.
Define ϕ = (ϕV,W )V,W∈H

HYDfd by (4.2.7). Then

(( )∗, ϕ0, ϕ) : (
H
HYD

fd
)op → H

HYD
fd

is a braided monoidal equivalence, where ϕ0 : k→ k∗, 1 �→ idk.
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Proof. This follows from Theorem 3.5.8, Lemma 4.2.2, and Remark 4.2.4. �

Corollary 4.2.6. Let R be a Hopf algebra in H
HYD

fd
, and R∗ its left dual.

Then R∗ is a Hopf algebra in H
HYD

fd
with unit ε∗R, counit η∗R, antipode S∗

R, and
multiplication and comultiplication are defined for all f, g ∈ R∗ and x, y ∈ H by

(fg)(x) = f((x(1))(0))g((x
(1))(−1) · x(2)), f (1)(x(0))f

(2)(x(−1) · y) = f(xy),

where ΔR(x) = x(1) ⊗ x(2), μR(x⊗ y) = xy.

Proof. By Corollary 4.2.5 and Remark 3.5.9, R∗ is a Hopf algebra with mul-
tiplication Δ∗

RϕR,R, comultiplication ϕ−1
R,Rμ∗

R, unit ε
∗
R, counit η

∗, and antipode S∗
R.

Hence the corollary follows from the formula for ϕR,R in (4.2.7). �

Note that the dual Hopf algebra R∗ in Corollary 4.2.6 is the dual Hopf algebra
of Proposition 2.2.19 when H is the trivial Hopf algebra k.

Remark 4.2.7. Let Γ be a set. A Γ-graded object in H
HYD is a pair (V,V),

where V ∈ H
HYD, and V = (V (γ))γ∈Γ is a family V (γ) ⊆ V , γ ∈ Γ, of subobjects

in H
HYD with V =

⊕
γ∈Γ V (γ). Let Γ-GrH

HYD be the category of Γ-graded

Yetter-Drinfeld modules over H with graded maps in H
HYD as morphisms.

If Γ is a monoid, then Γ-GrHHYD is monoidal. The tensor product of graded
objects V,W in H

HYD is the tensor product V ⊗W in H
HYD with diagonal grading

in Definition 1.2.7. The unit object is the trivial object k in H
HYD with grading

given by k(eΓ) = k.
If Γ is an abelian monoid, then the braiding map cV,W : V ⊗W → W ⊗ V in

H
HYD of Γ-graded objects in H

HYD is a morphism in Γ-GrHHYD. Hence the category
Γ-GrHHYD is braided monoidal with braiding c.

Let Γ be an abelian monoid. A bialgebra R in Γ-GrH
HYD is a bialgebra in

H
HYD and a Γ-graded object in H

HYD such that μR, ηR,ΔR, εR are Γ-graded. A
Hopf algebra R in Γ-GrHHYD is a bialgebra in Γ-GrHHYD and a Hopf algebra in
H
HYD whose antipode is Γ-graded.

Corollary 4.2.8. Let R be a bialgebra in Γ-GrHHYD such that idR is convo-
lution invertible in Hom(R,R). Then R is a Hopf algebra in Γ-GrHHYD.

Proof. Let SR be convolution inverse to idR. As noted in Section 4.1, SR is
a morphism in H

HYD by Proposition 3.8.9 which follows from a version of Proposi-
tion 1.2.11. Similarly, SR is Γ-graded by Proposition 1.2.11. �

Let N0-GrHHYD
lf

denote the full subcategory of N0-GrHHYD of locally fi-
nite graded Yetter-Drinfeld modules (V, (V (n))n∈N0

), where V (n) is finite-

dimensional for all n ∈ N0. Note that N0-GrH
HYD

lf
is a braided monoidal subcat-

egory, since the tensor product of locally finite N0-graded Yetter-Drinfeld modules
is locally finite.

The duality of finite-dimensional Yetter-Drinfeld modules extends to a duality

of N0-GrHHYD
lf
. Define a contravariant functor

( )∗gr : N0-GrHHYD
lf → N0-GrHHYD

lf
(4.2.9)
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on objects by (V, (V (n))n≥0)
∗gr = (

⊕
n≥0 V (n)∗, (V (n)∗)n≥0), and on morphisms

f : (V, (V (n))n≥0) → (W, (W (n))n≥0) by f∗gr =
⊕

n≥0(f |V (n))∗. For all objects

V,W ∈ N0-GrHHYD
lf
, define the morphism of graded Yetter-Drinfeld modules

ϕV,W =
⊕
n∈N0

ϕ(n)V,W : V ∗gr ⊗W ∗gr → (V ⊗W )∗gr(4.2.10)

by ϕ(n)V,W =
⊕

a+b=n ϕV (a),W (b) for all n ∈ N0, where⊕
a+b=n

ϕV (a),W (b) :
⊕

a+b=n

V (a)∗ ⊗W (b)∗ →
⊕

a+b=n

(V (a)⊗W (b))
∗

is viewed as a map to
(⊕

a+b=n V (a)⊗W (b)
)∗

by the isomorphism (4.2.6). For all

V ∈ N0-GrHHYD
lf
let

ψV =
⊕
n∈N0

ψV (n) : V → V ∗gr ∗gr .(4.2.11)

Let ϕ0 : k→ D(k) be defined by the isomorphism k→ k∗, 1 �→ idk, in degree zero.

Corollary 4.2.9. Let ϕ = (ϕV,W )V,W∈N0-Gr(HHYD)lf . Then

(( )∗gr , ϕ0, ϕ) : (N0-GrHHYD
lf
)op → N0-GrHHYD

lf

is a braided monoidal equivalence, and

ψ = (ψV )V ∈N0-GrH
HYDlf : id

N0-GrH
HYDlf → ( )∗gr ∗gr

is a natural isomorphism.

Proof. This is a formal extension of Corollary 4.2.5. �

An N0-graded coalgebra C is strictly graded, see Definition 1.3.9, if C(0) is one-
dimensional, and C(1) = P (C). We say that an N0-graded algebra A is generated
in degree one, if A(0) is one-dimensional, and A is generated as an algebra by
A(1).

Corollary 4.2.10. Let C be a coalgebra and A an algebra in N0-GrHHYD
lf
.

(1) The following are equivalent.
(a) C is strictly graded.
(b) The algebra C∗gr is generated in degree one.

(2) The following are equivalent.
(a) A is generated in degree one.
(b) The coalgebra A∗gr is strictly graded.

Proof. (1) Let B = C∗gr . Since (( )∗gr , ϕ0, ϕ) is a braided monoidal equiva-

lence by Corollary 4.2.9, B is an algebra in N0-GrHHYD
lf
. For all n ≥ 1 let

Δn : C → C⊗n, μn : B⊗n → B

be the n-fold comultiplication of C and the n-fold multiplication of B defined in-
ductively by Δn = (idC ⊗Δn−1)Δ, μn = μ(idB ⊗ μn−1), and Δ1 = idC , μ

1 = idB.
We define the isomorphisms ϕn

C : (C∗gr )⊗n → (C⊗n)∗gr inductively by

ϕ2
C = ϕC,C , ϕn

C = ϕC,C⊗(n−1)(idC∗gr ⊗ ϕn−1
C ), n ≥ 3.
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In the same way we define isomorphisms ϕn
C(1) : (C(1)∗)⊗n → (C(1)⊗n)∗. By the

definition of Δ1n : C(n)→ C(1)⊗n in Definition 1.3.12, the restriction of μn to the
subspace (C(1)∗)⊗n is equal to the composition

(C(1)∗)⊗n
ϕn

C(1)−−−→ (C(1)⊗n)∗
(Δ1n )∗−−−−→ C(n)∗ ⊆ C∗gr .

By Proposition 1.3.14, C is strictly graded if and only if C(0) is one-dimensional,
and Δ1n is injective for all n ≥ 2. Hence the equivalence of (a) and (b) follows,
since the maps ϕn

C(1), n ≥ 2, are isomorphisms.

(2) is shown dually to (1). �

Braidings of Yetter-Drinfeld modules are very important examples of braidings
of vector spaces. We define a property of braidings which characterizes braidings
of Yetter-Drinfeld modules over some Hopf algebra with bijective antipode.

Definition 4.2.11. Let (V, c) be a finite-dimensional braided vector space.
Then (V, c) is called rigid if the composition c� of the three maps

V ∗ ⊗ V
id⊗id⊗coevV−−−−−−−−→ V ∗ ⊗ V ⊗ V ⊗ V ∗

id⊗c⊗id−−−−−→ V ∗ ⊗ V ⊗ V ⊗ V ∗ evV ⊗id⊗id−−−−−−−→ V ⊗ V ∗

is bijective.

Example 4.2.12. Let V be a vector space of finite dimension at least two. Let
c = idV⊗V ∈ Aut(V ⊗ V ) be the identity map. Then (V, c) is a (non-interesting)
braided vector space which is not rigid by Definition 4.2.11.

Proposition 4.2.13. Let V ∈ H
HYD

fd
and let c = cV,V . Then c� = c−1

V,V ∗ . In

particular, (V, c) is rigid.

Proof. Let v ∈ V , f ∈ V ∗, and let v1, . . . , vn ∈ V and f1, . . . , fn ∈ V ∗ be
dual bases. Then

c�(f ⊗ v) =
n∑

i=1

f(v(−1) · vi)v(0) ⊗ fi =
n∑

i=1

(S−1(v(−1)) · f)(vi)v(0) ⊗ fi

= v(0) ⊗
n∑

i=1

(S−1(v(−1)) · f)(vi)fi

= v(0) ⊗ S−1(v(−1)) · f = c−1
V,V ∗(f ⊗ v).

This proves the claim. �

4.3. Hopf algebra triples and bosonization

Let R be an Hopf algebra in H
HYD, and a coalgebra in HM. We denote the

H-action, H-coaction, comultiplication and counit of R by

λR : H ⊗R → R, h⊗ r �→ h · r, δR : R → H ⊗R, r �→ r(−1) ⊗ r(0),

ΔR : R → R⊗R, r �→ r(1) ⊗ r(2), εR : R → k.
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Recall that in the smash product algebra R#H and the smash coproduct coalgebra
R#H,

(r#g)(s#h) = r(g(1) · s)#g(2)h,(4.3.1)

ΔR#H(r#h) = r(1)#r(2)(−1)h(1) ⊗ r(2)(0)#h(2),(4.3.2)

εR#H(r#h) = εR(r)ε(h)(4.3.3)

for all r, s ∈ R, g, h ∈ H. The element 1#1 is the unit element in the algebra R#H.
We reformulate Theorem 3.10.4 for the category C = H

HYD in the following
more direct way.

Corollary 4.3.1. Let (A, π, γ) be a Hopf algebra triple over the Hopf algebra
H. Let R = AcoH = {a ∈ A | a(1) ⊗ π(a(2)) = a ⊗ 1}. The antipodes of A and H
are denoted by S. Let

ϑ : A→ R, a �→ a(1)γπS(a(2)).

Then R is a left coideal subalgebra of A, ϑ is a well-defined left R-linear map with
ϑ|R = idR, and the following hold.

(1) R is an object in H
HYD with H-action · = λR : H⊗R → R and H-coaction

δR, where for all r ∈ R, h ∈ H,
(a) h · r = γ(h(1))rγ(S(h(2))),
(b) δR(r) = π(r(1))⊗ r(2).

(2) For all a ∈ A, h ∈ H,
(a) ϑ(aγ(h)) = ϑ(a)ε(h),
(b) ϑ(γ(h)a) = h · ϑ(a).

(3) R is a Hopf algebra in H
HYD, where R is a subalgebra of A, the map

ϑ : A → R is a coalgebra morphism which induces a coalgebra isomorphism
A/Aγ(H)+ ∼= R, and comultiplication ΔR, counit εR and antipode SR are
defined for all h ∈ H, r ∈ R by
(a) ΔR(r) = ϑ(r(1))⊗ r(2), εR(r) = εA(r),
(b) SR(r) = γπ(r(1))S(r(2)).

(4) Φ : R#H → A, r#h �→ rγ(h), is an isomorphism of algebras and coal-
gebras with inverse Ψ : A → R#H, a �→ ϑ(a(1))#π(a(2)), where R#H is
the bosonization of R.

Example 4.3.2. Let q be a primitive n-th root of unity with n ≥ 2, and let

Tq,n = k〈g, x | gn = 1, xn = 0, gx = qxg〉

be the Taft Hopf algebra of Example 2.4.10 with Δ(x) = g ⊗ x+ x⊗ 1 and group-
like element g. Let G be the cyclic group of order n generated by g. Define Hopf
algebra maps π : Tq,n → kG and γ : kG → Tq,n by

π(g) = g, π(x) = 0 and γ(g) = g.

Then πγ = idkG, and Corollary 4.3.1 applies. Since x ∈ R, it follows from
Lemma 2.6.25 that R = k[x]. Then R is a Hopf algebra in G

GYD, where

g · x = gxg−1 = qx,

δR(x) = g ⊗ x,

ΔR(x) = 1⊗ x+ x⊗ 1.
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Corollary 4.3.3. Let R be a Hopf algebra in H
HYD with bosonization R#H.

Define

πR = εR ⊗ idH : R#H → H, γR = ηR ⊗ idH : H → R#H.

Then (R#H, πR, γR) is a Hopf algebra triple over H, and

ι : R → (R#H)coH , r �→ r#1,

is an isomorphism of Hopf algebras in H
HYD.

Proof. By Theorem 3.8.10, R#H is a Hopf algebra. Thus (R#H, πR, γR) is
a Hopf algebra triple over H by Lemma 3.8.2(1). It is clear that ι is an algebra
isomorphism in H

HYD. The map ι is a coalgebra homomorphism since for all r ∈ R,

ϑ(r(1))⊗ r(2) = ϑ(r(1)r(2)(−1))⊗ r(2)(0) = r(1) ⊗ r(2),

where we used the definition of the comultiplication of (R#H)coH and rules for ϑ
in Corollary 4.3.1. �

Remark 4.3.4. By Corollary 4.3.3 and Propositions 3.6.5 and 3.6.9, there is a
unique functor from the category of Hopf algebras in H

HYD to the category of Hopf
algebra triples over H mapping a Hopf algebra R in H

HYD to (R#H, πR, γR) and
a Hopf algebra morphism ϕ to ϕ⊗ idH . Corollaries 4.3.1 and 4.3.3 imply that this
functor is an equivalence.

We recall the following convention for a smash product algebra R#H. For all
r ∈ R, h ∈ H we write r#h = rh, that is, we identify r#1 with r and 1#h with h.

Corollary 4.3.5. Let R be a Hopf algebra in H
HYD with antipode SR. Let

A = R#H be the bosonization of R. We denote the antipodes of A and of H by S.
(1) For all r ∈ R and h ∈ H,

S(rh) = S(h)S(r(−1))SR(r(0)),

(2) The map R → R, r �→ S2(r), is a well-defined algebra and coalgebra map,
and for all h ∈ H, r ∈ R,
(a) S2(r) = S2

R(S(r(−1)) · r(0)),
(b) S2(h · r) = S2(h) · S2(r),
(c) δR(S2(r)) = S2(r(−1))⊗ S2(r(0)).

Proof. (1) is a special case of Theorem 3.8.10.
(2) Let r ∈ R. Using the formula for S in (1) we compute

S2(r) = S(S(r(−1))SR(r(0)))

= S(SR(r(0)))S2(r(−1))

= S(r(−1))S2
R(r(0))S2(r(−2))

= S(r(−1)) · S2
R(r(0))

= S2
R(S(r(−1)) · r(0)).
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Then (b) and (c) follow from (a) and the Yetter-Drinfeld condition. The restriction
of S2 is a coalgebra morphism, since by the definition of ΔR,

ΔR(S2(r)) = S2(r(1))Sπ(S2(r(2)))⊗ S2(r(3))

= S2(r(1)πS(r(2)))⊗ S2(r(3))

= S2(r(1))⊗ S2(r(2)).

�
The theory of bosonization and Hopf algebra triples in Chapter 3 can also be

applied to graded Yetter-Drinfeld modules in H
HYD. We mention some results in

this context which we derive from the non-graded theory.

Corollary 4.3.6. Let R be an N0-graded Hopf algebra in H
HYD. Then R#H

is an N0-graded Hopf algebra, where the grading is defined by

(R#H)(n) = R(n)#H for all n ≥ 0.

Proof. This follows from Theorem 3.8.10, and from the explicit formulas for
the multiplication and comultiplication of R#H. �

The special class of Hopf algebra triples of the following corollary is important
for this book.

Corollary 4.3.7. Let A be an N0-graded Hopf algebra such that H = A(0) is
a Hopf algebra with bijective antipode. Let π : A → H be the canonical projection
with π(x) = 0 for all x ∈ A(n), n ≥ 1, and π|H = idH . Let R = AcoH with respect
to π. Then R is an N0-graded Hopf algebra in H

HYD with grading R(n) = R∩A(n)
for all n ≥ 0, R(0) = k1, and

R#H → A, r#h �→ rh,

is an isomorphism of N0-graded Hopf algebras, where the grading of R#H is defined
by (R#H)(n) = R(n)⊗H for all n ≥ 0.

Proof. It is clear from the definition that R(0) = k1. By definition, R is the

kernel of the graded map A
Δ−→ A⊗A

id⊗(π−ε)−−−−−−→ A⊗H, where H is trivially graded.
Hence R is an N0-graded object in H

HYD by Corollary 4.3.1(2). The map ϑ : A → R
is N0-graded, since the antipode of A is graded by Corollary 1.2.27. Hence ΔR is
graded by Corollary 4.3.1(3), and R is a graded coalgebra. It is clear that R is a
graded algebra. By Corollary 4.3.1 and Corollary 4.2.8, R is a graded Hopf algebra
in H

HYD, and Φ : R#H → A, r#h �→ rh, is a Hopf algebra isomorphism, which is
graded. �

Let R be a Hopf algebra in H
HYD with antipode SR.

We recall the braided, strict monoidal isomorphism

F : RRYD(HHYD)
∼=−→ R#H

R#H YD(4.3.4)

of Theorem 3.8.7. For any Hopf algebra K in R
RYD(HHYD), the image F (K) is a

Hopf algebra in R#H
R#H YD. By Remark 4.3.4,

(F (K)#(R#H), πF (K), γF (K)) and (R#H, πR, γR)

are Hopf algebra triples over R#H and over H, respectively.

Corollary 4.3.8. Let K be a Hopf algebra in R
RYD(HHYD).
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(1) The identity map

(K#R)#H
∼=−→ F (K)#(R#H), x⊗ r ⊗ h �→ x⊗ r ⊗ h,

is an isomorphism of Hopf algebras between the bosonizations of K#R
and F (K).

(2) The map

K#R
∼=−→ (F (K)#(R#H))coH , x#r �→ x#r#1,

is an isomorphism of Hopf algebras in H
HYD.

(Here, (F (K)#(R#H))coH is defined with respect to the Hopf algebra
triple (F (K)#(R#H), πRπF (K), γF (K)γR) over H.)

Proof. (1) is a special case of Theorem 3.8.7, and (2) follows from (1) and
Corollary 4.3.3. �

Proposition 4.3.9. Let R be a Hopf algebra in H
HYD and (P, π, γ) a Hopf

algebra triple in H
HYD over R. Then (P#H, π ⊗ idH , γ ⊗ idH) is a Hopf algebra

triple over R#H. Let P coR and (P#H)coR#H be the sets of right coinvariant
elements. Then the embedding P → P#H, p �→ p⊗ 1, induces an isomorphism

ι1 : F (P coR)
∼=−→ (P#H)co (R#H), x �→ x⊗ 1,

of Hopf algebras in R#H
R#H YD.

Proof. The first claim follows from Remark 4.3.4.
Let K = P coR. By Corollary 4.3.8(1), and Theorem 3.10.4 for the triple

(P, π, γ),

F (K)#(R#H)→ (K#R)#H, x⊗ r ⊗ h �→ x⊗ r ⊗ h,

(K#R)#H → P#H, x⊗ r ⊗ h �→ xγ(r)⊗ h,

are isomorphisms of Hopf algebras. Hence the composition

Φ : F (K)#(R#H)→ P#H, x⊗ r ⊗ h �→ xγ(r)⊗ h,

is an isomorphism of Hopf algebras. Since Φ is an isomorphism of Hopf algebra
triples (F (K), πF (K), γF (K)) and (P#idH , π#idH , γ#H), the restriction of Φ to

the coinvariant elements defines the isomorphism of Hopf algebras in R#H
R#H YD in

the proposition. �
We close this section with some useful formulas on the adjoint action.
Let R be a Hopf algebra in H

HYD, and adR : R⊗R → R the braided adjoint
action in Definition 3.7.3. Then

adR = (R⊗R
ΔR⊗idR−−−−−→ R ⊗R⊗R

idR⊗cR,R−−−−−−→ R⊗R ⊗R

idR⊗idR⊗SR−−−−−−−−→ R⊗R ⊗R
μR(idR⊗μR)−−−−−−−−→ R),

that is for all x, y ∈ R,

adR(x⊗ y) = x(1)(x(2)
(−1) · y)SR(x

(2)
(0)).

We also write adR = adc = ad, and adx(y) = ad(x⊗ y).

Example 4.3.10. Let R be a Hopf algebra in H
HYD, and x, y ∈ R. If x is

primitive, then adcx(y) = xy − (x(−1) · y)x(0) is the braided commutator of x
and y.
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Lemma 4.3.11. Let R be a Hopf algebra in H
HYD, and x, y ∈ R. Then

adRx(y) = x(1)yS(x(2)),

where x(1)yS(x(2)) = adAx(y) is the adjoint action of x on y in the bosonization
A = R#H.

Proof. By Corollary 4.3.5(1), SR(r) = r(−1)S(r(0)) for all r ∈ R. Hence

adRx(y) = x(1)(x(2)
(−1) · y)SR(x

(2)
(0))

= x(1)x(2)
(−3)yS(x(2)

(−2))x
(2)

(−1)S(x(2)
(0))

= x(1)x(2)
(−1)yS(x(2)

(0))

= x(1)yS(x(2)).

�

Proposition 4.3.12. Let R be a Hopf algebra in H
HYD, and let q, r, s ∈ k and

g, h ∈ G(H) with gh = hg. Let x, y ∈ P (R), and assume that

δR(x) = g ⊗ x, δR(y) = h⊗ y, g · x = qx, g · y = ry, h · x = sx.

Let A = R#H be the bosonization of R. Then for all m ∈ N0,

(1) (adRx)m(y) =

m∑
k=0

(−1)krkqk(k−1)/2

(
m

k

)
q

xm−kyxk,

(2) ΔA((adRx)m(y)) = (adRx)m(y)⊗ 1

+
m∑

k=0

(
m

k

)
q

(m−1∏
l=k

(1− qlrs)
)
xm−kgkh⊗ (adRx)k(y).

(3) ΔR((adRx)m(y)) = (adRx)m(y)⊗ 1

+
m∑

k=0

(
m

k

)
q

(m−1∏
l=k

(1− qlrs)
)
xm−k ⊗ (adRx)k(y).

Proof. (1) Note that for all a ∈ R, (adRx)(a) = xa − (g · a)x = (F + G)(a),
where F,G ∈ Hom(R,R) with F (a) = xa, G(a) = −(g · a)x for all a ∈ R. Then
in Hom(R,R), GF = qFG. Hence (1) follows from the q-binomial formula in
Proposition 1.9.5.

(2) By definition of ΔA in (4.3.2), x ∈ Pg,1(A), y ∈ Ph,1(A). By (1),

(adRx)n(y) = xn � y in Proposition 2.4.3.

Hence (2) follows from Proposition 2.4.3(1) and Lemma 4.3.11.
(3) Let ϑ = idR ⊗ ε : A→ R. The formula in (3) follows by applying ϑ⊗ id to

(2), since for all r ∈ R, ΔR(r) = (ϑ⊗ id)ΔA(r). �

4.4. Finite-dimensional Yetter-Drinfeld Hopf algebras
are Frobenius algebras

In 1969, Larson and Sweedler proved in their pioneering paper [LS69] that an
arbitrary finite-dimensional Hopf algebra is a Frobenius algebra. Extending their
ideas we next show that finite-dimensional Hopf algebras in H

HYD are Frobenius.
We first discuss Frobenius algebras.
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The dual vector space A∗ = Hom(A, k) of an algebra A is an A-bimodule by

(af)(x) = f(xa), (fa)(x) = f(ax)

for all a, x ∈ A and f ∈ A∗.

Lemma 4.4.1. Let A be a finite-dimensional algebra, and f ∈ A∗. Then the
following are equivalent.

(1) The left A-module A∗ is free with basis f .
(2) The right A-module A∗ is free with basis f .

Proof. Let can : A → A∗∗, a �→ (ϕ �→ ϕ(a)), be the canonical isomorphism.
Let F : A → A∗, a �→ af . Then for all a ∈ A, F ∗can(a) = fa, and the claim
follows. �

Definition 4.4.2. A finite-dimensional algebra A is a Frobenius algebra if
A ∼= A∗ as a left (or by Lemma 4.4.1 equivalently right) A-module. A basis f of
A∗ as a left or right A-module is called a Frobenius element.

Example 4.4.3. Let G be a finite group. Define f ∈ (kG)∗ by

f(g) =

{
1, if g = 1,

0, if g �= 1.

Then the elements g−1f , g ∈ G, form the dual basis of the basis G of the group
algebra. Thus kG is a Frobenius algebra with Frobenius element f .

Definition 4.4.4. Let A be an augmented algebra, that is an algebra together
with an algebra map ε : A → k. An element Λ ∈ A is called a left integral of A
if aΛ = ε(a)Λ for all a ∈ A. It is called a right integral of A if Λa = ε(a)Λ for
all a ∈ A. We denote by Il(A) and Ir(A) the set of left and right integrals of A,
respectively.

Let C be a coalgebra with a distinguished group-like element 1C . We denote
by Il(C

∗) and Ir(C
∗) the sets of left and right integrals of C∗, respectively, with

respect to the algebra map ε : C∗ → k, f �→ f(1C).

Lemma 4.4.5. Let C be a coalgebra with a distinguished group-like element
1C ∈ C, and let λ ∈ C∗. Then λ ∈ Ir(C

∗) if and only if for all c ∈ C,

λ(c(1))c(2) = λ(c)1C .

Proof. By definition, λ ∈ Ir(C
∗) if and only if for all f ∈ C∗, c ∈ C,

λ(c(1))f(c(2)) = λ(c)f(1C) or f(λ(c(1))c(2)) = f(λ(c)1C),

that is, if and only if for all c ∈ C, λ(c(1))c(2) = λ(c)1C . �

If A is an algebra and X ⊆ A is a subspace, then we denote the left and right
annihilators of X by

l(X) = {a ∈ A | ax = 0 for all x ∈ X},
r(X) = {a ∈ A | xa = 0 for all x ∈ X}.

Lemma 4.4.6. Let A be a Frobenius algebra with Frobenius element f .

(1) For all right ideals I of A and all left ideals J of A,

dim l(I) = dimA/I, dim r(J) = dimA/J.
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(2) Let ε : A → k be an augmentation of A. Then Il(A) and Ir(A) are
one-dimensional, and f(Il(A)) �= 0, f(Ir(A)) �= 0.

Proof. (1) The assumptions imply that the maps l(I) → (A/I)∗, a �→ fa,
and r(J)→ (A/J)∗, a �→ af , are bijective.

(2) follows from (1), since Il(A) = r(A+) and Ir(A) = l(A+). Note that for
Λ ∈ Ir(A), Γ ∈ Il(A), Λ,Γ �= 0 implies that f(Λ) �= 0, f(Γ) �= 0. �

Frobenius algebras can be described by various equivalent conditions. In this
context the notion of a Casimir element is useful. If A is an algebra, and xi, yi,
1 ≤ i ≤ n, are elements in A, then

∑n
i=1 xi ⊗ yi ∈ A ⊗ A is called a Casimir

element of A if for all x ∈ A,

n∑
i=1

xxi ⊗ yi =

n∑
i=1

xi ⊗ yix.

Lemma 4.4.7. Let A be an algebra, xi, yi ∈ A, 1 ≤ i ≤ n, and assume that∑n
i=1 xi ⊗ yi is a Casimir element of A. Then

Δ : A→ A⊗A, x �→
n∑

i=1

xxi ⊗ yi =

n∑
i=1

xi ⊗ yix,

is coassociative and left and right A-linear, where the A-module structures of A⊗A
are defined by the multiplication in A.

Proof. For all x ∈ A,

(Δ⊗ idA)Δ(x) =

n∑
i=1

Δ(xxi)⊗ yi =
∑

1≤i,j≤n

xxixj ⊗ yj ⊗ yi,

(idA ⊗Δ)Δ(x) =
n∑

i=1

xxi ⊗Δ(yi) =
∑

1≤i,j≤n

xxi ⊗ yixj ⊗ yj ,

and equality follows, since
∑n

i=1 xi ⊗ yixj =
∑n

i=1 xjxi ⊗ yi for all 1 ≤ j ≤ n. �

Proposition 4.4.8. Let A be a finite-dimensional algebra, and f : A → k a
linear map. Define

F : A⊗A → Hom(A,A), x⊗ y �→ (a �→ xf(ya)).

The following are equivalent.

(1) A is a Frobenius algebra with Frobenius element f .
(2) F is bijective.
(3) There are an integer n ≥ 1 and xi, yi ∈ A for all 1 ≤ i ≤ n such that for

all x ∈ A,
(a) x =

∑n
i=1 xif(yix),

(b) x =
∑n

i=1 f(xxi)yi.
(4) There is a linear map Δ : A → A⊗A such that

(a) (A,Δ, f) is a coalgebra.
(b) The map Δ : A → A ⊗ A is left and right A-linear, where the A-

module structures of A⊗A are defined by the multiplication in A.
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Proof. (1) ⇔ (2) The map F is the composition of

A⊗A→ A⊗A∗, x⊗ y �→ x⊗ fy,

and the isomorphism A⊗A∗ → Hom(A,A), x⊗ ϕ �→ (a �→ xϕ(a)).
(2) ⇒ (3) Choose xi, yi ∈ A, 1 ≤ i ≤ n, with F (

∑n
i=1 xi ⊗ yi) = idA. By

definition of F , equation (a) follows. Hence for all x, y ∈ A

f
( n∑

i=1

f(xxi)yiy
)
=

n∑
i=1

f(xxi)f(yiy) = f
(
x

n∑
i=1

xif(yiy)
)
= f(xy).

We have shown that f
∑n

i=1 f(xxi)yi = fx for all x ∈ A. Since A is a Frobenius
algebra with Frobenius element f , the second equation (b) follows.

(3) ⇒ (1) Let x ∈ A with xf = 0. Then x = 0 by (3)(a).
(2) ⇒ (4) Choose xi, yi ∈ A, 1 ≤ i ≤ n with F (

∑n
i=1 xi ⊗ yi) = idA. By defini-

tion and injectivity of F ,
∑n

i=1 xi⊗ yi is a Casimir element of A. By Lemma 4.4.7,
it defines a left and right A-linear coassociative map Δ : A→ A⊗A. By equations
(3)(a) and (3)(b), f is a counit for Δ.

(4) ⇒ (3) Choose xi, yi ∈ A, 1 ≤ i ≤ n, with Δ(1) =
∑n

i=1 xi ⊗ yi. Then (3)
follows using (4)(b) and that f is a counit. �

Let A be an algebra and a coalgebra. By Proposition 4.4.8, A is a Frobenius
algebra if Δ : A → A ⊗ A is a map of (A,A)-bimodules. This last condition
is equivalent to the commutativity of two diagrams. Note that condition (4) in
Proposition 4.4.8 implies that A is finite-dimensional. Hence Frobenius algebras
can be defined in monoidal categories.

Definition 4.4.9. Let C be a strict monoidal category. A Frobenius algebra
in C is a quintuple (A, μ.η,Δ, ε), where A is an object in C, (A, μ, η) is an algebra
and (A,Δ, ε) is a coalgebra in C such that

A A

A A

=

A A

A A

=

A A

A A

.

Recall that H is a Hopf algebra with bijective antipode. The next theorem says
that a finite-dimensional Hopf algebra in H

HYD is a Frobenius algebra, that is, a
Frobenius algebra in the category of vector spaces. In general it is not a Frobenius
algebra in H

HYD, since the Frobenius element f is not a morphism of Yetter-Drinfeld
modules (see Example 4.4.15). The Hopf algebra H acts on f by a character which
in general is not trivial.

We recall some notation from Section 3.5. Let R be a Hopf algebra in C = H
HYD.

Let V ∈ C be finite-dimensional. By Lemma 4.2.2, (V ∗, evV , coevV ) is a left
dual of V , where V ∗ as an object in C is defined in Lemma 4.2.2 with evaluation
and coevaluation maps as for vector spaces.

Let (V, δ) ∈ CR, and (V, λ) ∈ RC. Then (V ∗, λr) ∈ CR and (V ∗, δl) ∈ RC by
Lemma 3.5.10. If we use the notation

λ(r ⊗ v) = rv, λr(f ⊗ r) = fr, δ(v) = v[0] ⊗ v[1], δl(f) = f[−1] ⊗ f[0]
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for all r ∈ R, f ∈ V ∗, v ∈ V , then

f[−1]f[0](v) = f(v[0])v[1], fr(v) = f(rv).

In this notation, the left R-module structure λr+ is defined by

λr+ : R⊗ V ∗ → V ∗, r ⊗ f �→ (r(−1) · f)SR(r(0)).

If (V, λ, δ) is a Hopf module in RCR, then by Theorem 3.5.14, (V ∗, λr+, δl) is a Hopf
module in R

RC.
Integrals in the dual algebra R∗ of the coalgebra R are defined with respect to

the augmentation R∗ → k, f �→ f(1). Note that R∗ has two algebra structures.
The dual vector space R∗ is an algebra by the dual algebra structure of the coalgebra
R and by the algebra structure of the dual braided Hopf algebra. For clarity we
denote the dual braided Hopf algebra by R∗br.

Lemma 4.4.10. For any finite-dimensional Hopf algebra R in H
HYD, the algebra

structure of (Rcopop)∗br is R∗op, where R∗ is the dual algebra of the coalgebra R.

Proof. The algebra structure of (Rcopop)∗br is defined as the composition

R∗ ⊗R∗ ϕR,R−−−→ (R⊗R)∗
(cR,R)∗−−−−−→ (R⊗R)∗

Δ∗
R−−→ R∗.

Let can be the isomorphism

can : R∗ ⊗R∗ → (R⊗R)∗, f ⊗ g �→ (x⊗ y �→ f(x)g(y)),

and τ : R⊗R → R⊗R the flip map. By (4.2.7),

ϕR,R =
(
R∗ ⊗R∗ can−−→ (R⊗R)∗

τ∗
−→ (R⊗ R)∗

(cR,R)∗−−−−−→ (R⊗R)∗
)
.

Hence the multiplication of (Rcopop)∗br is

R∗ ⊗R∗ can−−→ (R⊗R)∗
τ−→ (R⊗R)∗

Δ∗
R−−→ R∗.

�

Theorem 4.4.11. Let R be a finite-dimensional Hopf algebra in H
HYD.

(1) The antipode of R is bijective.
(2) Both the algebra R and the dual algebra R∗ of the coalgebra R are Frobe-

nius algebras. Non-zero elements in Ir(R
∗) are Frobenius elements of R.

Proof. (a) Multiplication and comultiplication define R as a Hopf module in

RCR. By Theorem 3.5.12, R∗ is a Hopf module in R
RC. Hence by Theorem 3.5.14,

the multiplication map

R⊗ coRR∗ → R∗

is bijective. Thus coRR∗ is a one-dimensional object in H
HYD. Let 0 �= λ ∈ coRR∗

and let χ be the character of H given by h · λ = χ(h)λ for all h ∈ H. If the left
R-module structure on R∗ is denoted by R⊗R∗ → R∗, r ⊗ f �→ r ◦ f , then for all
r, x ∈ R,

(r ◦ λ)(x) = (r(−1) · λ)(SR(r(0))x) = λ(SR(χ(r(−1))r(0))x).

Hence the composition

R
ϕ−→ R

SR−−→ R
F−→ R∗
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is bijective, where ϕ(r) = χ(r(−1))r(0), F (r) = λr for all r ∈ R. Therefore SR

is bijective. Moreover, R is a Frobenius algebra with Frobenius element λ. By
definition of the left R-comodule structure of R∗,

coRR∗ = {λ ∈ R∗ | λ(x(1))x(2) = λ(x)1 for all x ∈ R},

where we write Δ(x) = x(1) ⊗ x(2) for all x ∈ R. Hence coRR∗ = Ir(R
∗) by

Lemma 4.4.5.
(b) To prove the remaining claim that the dual algebra of the coalgebra R is

Frobenius, we apply (a) to (Rcopop)∗br. Hence (Rcopop)∗br is a Frobenius algebra,
and the dual algebra R∗ is Frobenius by Lemmas 4.4.10 and 4.4.1. �

Let us say that a one-dimensional Yetter-Drinfeld module kx ∈ H
HYD is given

by (g, χ) with g ∈ G(H), χ ∈ Alg(H, k), if action and coaction of H have the form

h · x = χ(h)x, δ(x) = g ⊗ x.

Corollary 4.4.12. Let R be a finite-dimensional Hopf algebra in H
HYD.

(1) Il(R), IR(R) ⊆ R and Il(R
∗), Ir(R

∗) ⊆ R∗ are one-dimensional subobjects
in H

HYD.
(2) SR(Il(R)) = Ir(R).
(3) There are g ∈ G(H) and χ ∈ Alg(H, k) such that the Yetter-Drinfeld

structures of Ir(R) and Il(R) are given by (g, χ), and the Yetter-Drinfeld
structures of Il(R

∗) and Ir(R
∗) are given by (g−1, χ−1).

Proof. By Theorem 4.4.11, Il((R
copop)∗br) = Ir(R

∗) is a one-dimensional
Yetter-Drinfeld module. By the self-duality of finite-dimensional Hopf algebras in
H
HYD, Il(R) is an object in H

HYD. Let Γ be a basis of Il(R), and χ a character of
H with h · Γ = χ(h)Γ for all h ∈ H. Then for all x ∈ R,

ε(x)SR(Γ) = SR(xΓ) = SR(x(−1) · Γ)SR(x(0)) = SR(Γ)SR(χ(x(−1))x(0)).

Hence SR(Γ) is a right integral, since ε(SR(χ(x(−1))x(0))) = ε(x). We have shown
that SR induces an isomorphism Il(R) ∼= Ir(R) of Yetter-Drinfeld modules. Then
also Il((R

copop)∗br) = Ir(R
∗) and Ir((R

copop)∗br) = Il(R
∗) are isomorphic objects

in H
HYD.
Let the Yetter-Drinfeld modules Il(R), Ir(R) be given by (g, χ), and Il(R

∗),
Ir(R

∗) by (g′, χ′). If 0 �= Λ ∈ Ir(R), 0 �= λ ∈ Ir(R
∗), then for all h ∈ H,

χ′(h)λ(Λ) = (h · λ)(Λ) = (χSH)(h)λ(Λ),

g′λ(Λ) = λ(−1)λ(0)(Λ) = S−1
H (g)λ(Λ),

and χ′ = χ−1, g′ = g−1, since λ(Λ) �= 0 by Lemma 4.4.6. �
We apply the previous theorem to a special situation. The assumptions of the

next theorem in particular hold for any finite-dimensional Nichols algebra in H
HYD.

Theorem 4.4.13. Let R =
⊕

n≥0 R(n) be a finite-dimensional N0-graded con-

nected Hopf algebra in H
HYD. Let N ≥ 0 be the largest n ≥ 0 with R(n) �= 0.

Then R(N) is one-dimensional. Let 0 �= Λ ∈ R(N), and define λ : R → k by
prN (r) = λ(r)Λ for all r ∈ R.

(1) Let x1, . . . , xt be a basis of R(1), and assume that R is generated as an
algebra by R(1), that is, R is pre-Nichols. Let xi1 · · ·xil be a non-zero
monomial in x1, . . . , xt of maximal length. Then l = N , xi1 · · ·xil is a
basis of R(N), and R(n) �= 0 for all 0 ≤ n ≤ N .
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(2) R is a local algebra with maximal ideal R+ =
⊕N

i=1 R(i).
(3) Λ is a basis of Ir(R) = Il(R), λ is a basis of Ir(R

∗) = Il(R
∗), and R is a

Frobenius algebra with Frobenius element λ.
(4) Let 0 ≤ n ≤ N . The map R(n) × R(N − n) → k, (x, y) �→ λ(xy), is a

non-degenerate bilinear form, and dimR(n) = dimR(N − n).

Proof. We may assume that N ≥ 1. Let 1 ≤ n ≤ N , and x ∈ R(n). Then

xΛ = 0 = Λx = ε(x)Λ,

since R is an N0-graded algebra, and R(N + n) = 0. Thus Λ is a non-zero left and
right integral of R. Hence Λ is a basis of R(N), since R is a Frobenius algebra
by Theorem 4.4.11, and its space of left or right integrals is one-dimensional by
Lemma 4.4.6. Since R is an N0-graded coalgebra, by Lemma 1.3.6,

Δ(x) ∈ 1⊗ x+ x⊗ 1 +

n−1⊕
i=1

R(i)⊗R(n− i).

Hence

λ(x(1))x(2) = λ(x)1 = x(1)λ(x(2)),

and λ is a non-zero left and right integral of R∗. Again by Theorem 4.4.11, Ir(R
∗)

and Il(R
∗) are both one-dimensional with basis λ. We have proved (3), and (1)

is now obvious. (2) holds for any finite-dimensional N0-graded algebra with one-
dimensional degree 0 part, since R+ is nilpotent.

By Theorem 4.4.11, λ is a Frobenius element of R. Hence the multiplication
maps R → R∗, x �→ λx, and R → R∗, x �→ xλ, are bijective. They induce injections
R(n)→ R(N−n)∗, x �→ λx, and R(N−n)→ R(n)∗, y �→ yλ, which proves (4). �

Corollary 4.4.14. Let R and S be finite-dimensional N0-graded connected
Hopf algebras in H

HYD. Let π : R → S be a surjective N0-graded algebra homo-
morphism, and assume that π(R(N)) �= 0, where N ≥ 0 is the largest n ≥ 0 with
R(n) �= 0. Then π is bijective.

Proof. Since π is surjective and N0-graded, the top-degree of S is N . By
Theorem 4.4.13, R(N) and S(N) are one-dimensional. Let ΛR be a basis of R(N).
Then ΛS = π(ΛR) is a basis of S(N). We denote the integrals of R∗ and S∗ defined
by ΛR and ΛS in Theorem 4.4.13 by λR and λS . Let FR : R → R∗, r �→ λRr, and
FS : S → S∗, s �→ λSs be the induced isomorphisms. Since λR = λSπ, we obtain
that

FR = (R
π−→ S

FS−−→ S∗ π∗
−→ R∗).

Hence π is bijective. �

Example 4.4.15. Let m ≥ 2, and q a primitive m-th root of unity. Let G = 〈g〉
be the cyclic group of order m, and Tq,m the Taft Hopf algebra in Examples 2.4.10
and 4.3.2 with projection π : Tq,m → kG and R = T co kG

q,m . Then R = k〈x | xm = 0〉
is an m-dimensional Hopf algebra in G

GYD with integral xm−1. The G-action is
defined by g · x = qx. The linear map

λ : R → k, λ(xi) = δi,m−1, 0 ≤ i ≤ m− 1,

is an integral in R∗ and a Frobenius element. Note that λ is not a morphism in
G
GYD, since λ(g · xm−1) = q−1 �= 1.
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Finally, motivated by Theorem 4.4.13, we discuss a more general class of Frobe-
nius algebras.

Definition 4.4.16. Let R =
⊕

n≥0 R(n) be a finite-dimensional N0-graded
algebra with multiplication μ and unit η. A PBW deformation of R is an
associative algebra (R, ν, η), such that for all k, l ≥ 0,

(ν − μ)(R(k)⊗R(l)) ⊆
k+l−1⊕
i=0

R(i).

Remark 4.4.17. Traditionally one defines a PBW deformation of a finite-
dimensional N0-graded algebra R as an N0-filtered algebra A such that grA ∼= R.
It is easy to see that the two definitions are equivalent.

Proposition 4.4.18. Let R =
⊕

n≥0 R(n) be a finite-dimensional N0-graded

algebra. Let N ∈ N and let λ : R → k be a linear map with λ(R(n)) = 0 for all
n �= N . Assume that for any n ≥ 0 the bilinear form

R(n)×R(N − n), (x, y) �→ λ(xy),

is non-degenerate. Then R(N) �= 0, R(n) = 0 for all n > N , and any PBW
deformation of R is a Frobenius algebra with Frobenius element λ.

Proof. For any n > N , λ(xy) = 0 for all (x, y) ∈ R(n) × R(N − n), since
R(N − n) = 0. Thus R(n) = 0 by the non-degeneracy of the bilinear form. For a
similar reason, R(N) �= 0 since R(0) �= 0.

Let (R, ν, η) be a PBW deformation of R and let x ∈ R be non-zero. Let n ≤ N

be such that x ∈
⊕n

i=0 R(i), x /∈
⊕n−1

i=0 R(i). Then, by assumption, there exists
y ∈ R(N − n) with λ(ν(x⊗ y)) = λ(xy) �= 0. Therefore λx �= 0, that is, (R, ν, η) is
a Frobenius algebra with Frobenius element λ. �

Corollary 4.4.19. Let R =
⊕

n≥0 R(n) be a finite-dimensional N0-graded

connected Hopf algebra in H
HYD. Then any PBW deformation of R is a Frobenius

algebra.

Proof. This follows from Theorem 4.4.13 and Proposition 4.4.18. �

Example 4.4.20. A standard example of a non-trivial PBW deformation is the
Clifford algebra

Cl(V, q) = T (V )/(v2 − q(v) | v ∈ V )

of a quadratic form q on a finite-dimensional vector space V . Indeed, one can show
that gr (Cl(V, q)) is isomorphic to the exterior algebra of V . Thus Cl(V, q) is a
Frobenius algebra by Corollary 4.4.19.

4.5. Induction and restriction functors for Yetter-Drinfeld modules

In the following Propositions 4.5.1, 4.5.2 and Corollaries 4.5.3, 4.5.5 we assume
that K,H are Hopf algebras with bijective antipodes, and ϕ : K → H is a map of
Hopf algebras.

For Yetter-Drinfeld modules V ∈ K
KYD and W ∈ H

HYD, we define

HomH
K(V,W ) = {f | f : V → W left K-linear and left H-colinear},

where W is a K-module by λW (ϕ⊗ idW ) and V is an H-comodule by (ϕ⊗ id)δV .
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Proposition 4.5.1. Let H be the right K-module with right module structure
H ⊗K → H, h⊗ k �→ hϕ(k).

(1) Let V ∈ K
KYD. The induced module H ⊗K V is an object in H

HYD with
left action · and left coaction δ, where

h · (h′ ⊗ v) = hh′ ⊗ v, δ(h⊗ v) = h(1)ϕ(v(−1))S(h(3))⊗ (h(2) ⊗ v(0))

for all h, h′ ∈ H, v ∈ V .
(2) The induced module construction in (1) defines a functor

ϕ∗ : KKYD → H
HYD, V �→ H ⊗K V,

mapping morphisms f : V → V ′ onto idH ⊗K f .
(3) Let V ∈ K

KYD, W ∈ H
HYD. The maps

HomH
K(V,W )

Φ−→ HomH
HYD(H ⊗K V,W ), f �→ (h⊗ v �→ hf(v)),

HomH
HYD(H ⊗K V,W )

Ψ−→ HomH
K(V,W ), F �→ F (η ⊗ idV ),

are inverse bijections.

Proof. (1) Clearly, (V, (ϕ ⊗ id)δV , idV ⊗ ηH) is an H-bicomodule. By Re-
mark 3.7.10, (H ⊗ V, μ, coad ) ∈ H

HYD. The map δ : H ⊗K V → H ⊗ (H ⊗K V ) is
well-defined since

δ(hϕ(k)⊗ v) =h(1)ϕ(k(1))ϕ(v(−1))S(ϕ(k(3)))S(h(3))⊗ (h(2)ϕ(k(2))⊗ v(0))

=h(1)ϕ((kv)(−1))S(h(3))⊗ (h(2) ⊗ (kv)(0))

=δ(h⊗ kv)

for all h ∈ H, k ∈ K, v ∈ V . Thus the Yetter-Drinfeld structure of H ⊗ V induces
the claimed Yetter-Drinfeld structure of H ⊗K V .

(2) Let V, V ′ ∈ K
KYD, and f : V → V ′ a morphism in K

KYD. Then the map
idH ⊗ f : H ⊗K V → H ⊗K V ′ is left H-linear. It is left H-colinear, since coad in
the proof of (1) is left H-colinear.

(3) Let f ∈ HomH
K(V,W ), and F = Φ(f). Then F is a well-defined left H-linear

map, since f is K-linear. To see that F is H-colinear, let h ∈ H, v ∈ V . Then
δW (f(v)) = ϕ(v(−1))⊗ f(v(0)), since f is H-colinear. Hence

δW (F (h⊗ v)) = δW (hf(v)) = h(1)ϕ(v(−1))S(h(3))⊗ h(2)f(v(0))

= (id⊗ F )δ(h⊗ v).

The map η ⊗ idV : V → H ⊗K V , v �→ 1⊗ v, is K-linear and H-colinear. Hence Ψ
is well-defined, and Φ and Ψ are inverse bijections. �

We note that the construction of M(g, V ) in Definition 1.4.15 is a special case
of the induction functor in Proposition 4.5.1. Let G be a group, g ∈ G, and
ϕ : kGg → kG the Hopf algebra map induced by the inclusion of the centralizer Gg

intoG. Any left kGg-module V is an object in Gg

GgYD with coaction δ : V → kGg⊗V ,
v �→ g ⊗ v, and the given Gg-action. Then ϕ∗(V ) = M(g, V ) ∈ G

GYD.
The cotensor product, see Definition 2.2.9, defines a restriction functor.

Proposition 4.5.2. Let K be the right H-comodule with comodule structure
(idK ⊗ ϕ)ΔK : K → K ⊗H.
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(1) Let W ∈ H
HYD. The cotensor product K�HW is a subobject in K

KYD of
K ⊗W with K-action · and K-coaction δ, where

x · (y ⊗ w) = x(1)yS(x(3))⊗ ϕ(x(2))w, δ(x⊗ w) = x(1) ⊗ x(2) ⊗ w

for all x, y ∈ K, w ∈ W .
(2) The cotensor product in (1) defines a functor

ϕ∗ : HHYD → K
KYD, W �→ K�HW,

where morphisms f : W → W ′ are mapped onto idK�f .
(3) The maps

HomH
K(V,W )

Φ−→ HomK
KYD(V,K�HW ), f �→ (v �→ v(−1) ⊗ f(v(0))),

HomK
KYD(V,K�HW )

Ψ−→ HomH
K(V,W ), F �→ (ε⊗ idW )F,

are inverse bijections.

Proof. (1) Consider W as a trivial right K-module and a left K-module via
λW (ϕ⊗ idW ). By Remark 3.7.10, the triple (K ⊗W, ad,ΔK ⊗ idW ) is an object in
K
KYD. Moreover, H ⊗W is a left K-module via the action

k(h⊗ w) = ϕ(k(1))hS(ϕ(k(3)))⊗ ϕ(k(2))w

for k ∈ K, h ∈ H, w ∈ W , and hence (K ⊗H ⊗W, ad,ΔK ⊗ idH⊗W ) ∈ K
KYD. The

H-coaction δW : W → H ⊗W of W is a K-bimodule map by the Yetter-Drinfeld
condition for W , and hence id ⊗ δW : K ⊗ W → K ⊗ H ⊗W is a morphism in
K
KYD. Let

δ′ = (id⊗ ϕ⊗ idW )(ΔK ⊗ idW ) : K ⊗W → K ⊗H ⊗W.

Then δ′ is left K-linear and left K-colinear by construction, and we conclude that
K�HW = ker(δ′ − id⊗ δW ) is a Yetter-Drinfeld submodule of K ⊗W .

(2) Let f : W → W ′ be a morphism in H
HYD. Then idK⊗f : K⊗W → K⊗W ′

is a morphism in K
KYD. The following diagram commutes.

K ⊗W
δ′−id⊗δW ��

idK⊗f

��

K ⊗H ⊗W

idK⊗idH⊗f

��

K ⊗W ′ δ′−id⊗δW ′
�� K ⊗H ⊗W ′

Hence f induces a morphism K�Hf : K�HW → K�HW ′ in K
KYD.

(3) Let f ∈ HomH
K(V,W ), and F = Φ(f). Then F (v) ∈ K�HW for all v ∈ V ,

since f is H-colinear. Hence F is a well-defined K-colinear map. To see that F is
K-linear, let x ∈ K, v ∈ V . Then

F (xv) = x(1)v(−1)S(x(3))⊗ f(x(2)v(0)) = x · F (v),

since f is K-linear.
The map ε ⊗ idW : K�HW → W ,

∑n
i=1 xi ⊗ wi �→

∑n
i=1 ε(xi)wi, is left K-

linear and left H-colinear, where W is a left K-module by restriction via ϕ, and
K�HW is a left H-comodule by(ϕ ⊗ id)δK�HW . Hence Ψ is well-defined, and Φ
and Ψ are inverse bijections. �

Corollary 4.5.3. The functor ϕ∗ is left adjoint to ϕ∗.

Proof. This follows from Propositions 4.5.1(3) and 4.5.2(3). �
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Remark 4.5.4. Propositions 4.5.1(3) and 4.5.2(3) show that the forgetful func-
tor H

HYD → HM has the left adjoint functor V �→ H ⊗ V , and that the forgetful
functor K

KYD → KM has the right adjoint functor W �→ K ⊗W .

We need the following special cases of the induction and restriction functors.

Corollary 4.5.5. (1) Assume that ϕ is surjective. Let V = (V, λ, δ)
be an object in K

KYD. Assume that λ = λ′(ϕ ⊗ idV ), where V is a left
H-module by λ′ : H ⊗ V → V . Then

ϕ∗(V ) ∼= (V, λ′, (ϕ⊗ idV )δ) in H
HYD,

and the Yetter-Drinfeld modules V and (V, λ′, (ϕ⊗ idV )δ) have the same
braiding map.

(2) Assume that ϕ is injective. Let V = (V, λ, δ) be an object in H
HYD. Assume

that δ = (ϕ ⊗ idV )δ
′, where V is a left K-comodule by δ′ : V → K ⊗ V .

Then

ϕ∗(V ) ∼= (V, λ(ϕ⊗ idV ), δ
′) in K

KYD,

and the Yetter-Drinfeld modules V and (V, λ(ϕ⊗ idV ), δ
′) have the same

braiding map.

Proof. (1) The map ϕ∗(V ) = H ⊗K V → V , h ⊗ v �→ λ′(h ⊗ v), is an
isomorphism in H

HYD, since ϕ is surjective. Its inverse is the map V → H ⊗K V ,
v �→ 1⊗ v. The braiding of (V, λ′, (ϕ⊗ idV )δ) is defined by

c(v ⊗ w) = ϕ(v(−1)) · w ⊗ v(0) = cV,V (v ⊗ w)

for all v, w ∈ V .
(2) The map K�HV → (V, λ(ϕ⊗idV ), δ

′) induced by ε⊗idV is an isomorphism
in K

KYD, since ϕ is injective. Its inverse is the map given by v �→ v(−1)⊗v(0), where

V
λ′
−→ K ⊗ V , v �→ v(−1) ⊗ v(0) denotes the K-comodule structure. The braiding of

(V, λ(ϕ⊗ idV ), δ
′) is defined by

c(v ⊗ w) = ϕ(v(−1)) · w ⊗ v(0) = cV,V (v ⊗ w)

for all v, w ∈ V . �

Let G be a group. The braided vector space (V, cV,V ) of a Yetter-Drinfeld
module V ∈ G

GYD does not determine the Yetter-Drinfeld module V nor the group
G uniquely. We first want to decide when two Yetter-Drinfeld modules over groups
have isomorphic braidings.

A left G-module V is called a faithful G-module, if the identity element is the
only element g ∈ G such that g · v = v for all v ∈ V . If V is a faithful G-module,
we can identify G with a subgroup of Aut(V ), and the action of G on V with the
application of automorphisms to elements of V .

Definition 4.5.6. Let G be a group and V ∈ G
GYD. Then V is called an

essential Yetter-Drinfeld module over G if V is a faithful G-module, and the
group G is generated by the elements g ∈ G with Vg �= 0.

Corollary 4.5.7. Let G be a group and V ∈ G
GYD with representation

ρ : G→ Aut(V ), g �→ (v �→ g · v).
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Let G(V ) = ρ(G1), where G1 ⊆ G is the subgroup of G generated by all g ∈ G with

Vg �= 0. Let Ṽ = V as a vector space with G(V )-action and G(V )-grading given by

ρ(g) · v = ρ(g)(v), Ṽρ(g) =
⊕

h∈G1,ρ(h)=ρ(g)

Vh

for all g ∈ G1 and v ∈ V .

(1) Ṽ ∈ G(V )
G(V )YD is an essential Yetter-Drinfeld module, and

(V, cV,V ) = (Ṽ , cṼ ,Ṽ ).

(2) A direct sum decomposition V =
⊕

i∈I Vi of V in G
GYD is a direct sum

decomposition Ṽ =
⊕

i∈I Vi of Ṽ in
G(V )
G(V )YD.

Proof. (1) The vector space V is a Yetter-Drinfeld module over G1 by Corol-
lary 4.5.5(2), where ϕ is the inclusion map G1 ⊆ G. Then V is a Yetter-Drinfeld
module over ρ(G1) = G(V ) by Corollary 4.5.5(1), where ϕ is the surjective map

G1 → G(V ), g �→ ρ(g). Hence Ṽ ∈ G(V )
G(V )YD with the same braiding as V , and it is

an essential Yetter-Drinfeld module by construction.

(2) is obvious from the definition of Ṽ . �

If G,H are groups, and ϕ : G → H is an isomorphism of groups, we denote the
induced category equivalence between the categories of Yetter-Drinfeld modules by

YD(ϕ) : GGYD → H
HYD, (V, λ, δ) �→ (V, λ(ϕ−1 ⊗ idV ), (ϕ⊗ idV )δ).

Note that ϕ∗ ∼= YD(ϕ) by Corollary 4.5.5.
In the next proposition we formulate a criterion to decide when Yetter-Drinfeld

modules over groups have isomorphic braidings. Recall that braided vector spaces
(V, c) and (W,d) are isomorphic, if there is a linear isomorphism f : V → W such
that d(f ⊗ f) = (f ⊗ f)c. We then write (V, c) ∼= (W,d).

Proposition 4.5.8. Let G,H be groups, and let V ∈ G
GYD and W ∈ H

HYD.

Define Ṽ ∈ G(V )
G(V )YD and W̃ ∈ G(W )

G(W )YD as in Corollary 4.5.7. Then the following

are equivalent:

(1) The braided vector spaces (V, cV,V ) and (W, cW,W ) are isomorphic.
(2) There is a group isomorphism ϕ : G(V )→ G(W ) such that

YD(ϕ)(Ṽ ) ∼= W̃ in
G(W )
G(W )YD.

(3) There is a linear isomorphism f : V → W such that

W̃fgf−1 = f(Ṽ g) for all g ∈ G(V ).

Proof. By Corollary 4.5.7 we may assume that

G = G(V ), V = Ṽ ∈ G(V )
G(V )YD, and H = G(W ),W = W̃ ∈ G(W )

G(W )YD.

(1) ⇒ (2): By definition there is a linear isomorphism f : V → W with

(f ⊗ f)cV,V = cW,W (f ⊗ f).

We denote by Φ : Aut(V ) → Aut(W ), Φ(g) = fgf−1 for all g ∈ Aut(V ), the
induced group isomorphism. Let g ∈ G and 0 �= v ∈ Vg. Then there are elements
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hi ∈ H, 0 �= wi ∈ Whi
for all 1 ≤ i ≤ n, n ≥ 1, with f(v) =

∑n
i=1 wi and hi �= hj

for all i �= j. Hence for all v′ ∈ V ,

(f ⊗ f)cV,V (v ⊗ v′) = f(g · v′)⊗ f(v) =

n∑
i=1

f(g · v′)⊗ wi

= cW,W (f ⊗ f)(v ⊗ v′) =
n∑

i=1

cW,W (wi ⊗ f(v′)) =
n∑

i=1

hi · f(v′)⊗ wi.

Hence n = 1, and h1 = Φ(g). We conclude that f(Vg) ⊆ WΦ(g). Let X be the set
of all g ∈ G with Vg �= 0. It follows that

W = f(V ) =
⊕
g∈X

f(Vg) ⊆
⊕
g∈X

WΦ(g),

and therefore, f(Vg) = WΦ(g) for all g ∈ G, and WΦ(g) = 0 for all g ∈ G \ X.
Hence Φ(G) = H, since by assumption G is generated by X, and H is generated
by {h ∈ H | Wh �= 0}.

This proves (2), since ϕ : G→ H, g �→ Φ(g), is an isomorphism of groups, and
f : YD(ϕ)(V )→ W is an isomorphism of Yetter-Drinfeld modules over H.

(2) ⇒ (3): Let f : YD(ϕ)(V ) → W be an isomorphism of Yetter-Drinfeld
modules over H. Then for all v ∈ YD(ϕ)(V ) and g ∈ G,

ϕ(g) · v = g(v), f(ϕ(g) · v) = ϕ(g)(f(v)),

since f is an H-linear map. Hence ϕ(g) = fgf−1. Since f is an H-graded map,
and YD(ϕ)(V )ϕ(g) = Vg, (3) follows.

(3) ⇒ (1): Let g ∈ G, v ∈ Vg and v′ ∈ V . Then by (3), f(v) ∈ Wfgf−1 , and
hence

cW,W (f ⊗ f)(v ⊗ v′) = cW,W (f(v)⊗ f(v′)) = fgf−1(f(v′))⊗ f(v)

= f(g(v′))⊗ f(v) = (f ⊗ f)cV,V (v ⊗ v′).

This proves the Proposition. �

We now consider Yetter-Drinfeld modules over groups with diagonal braidings.
It is clear from the definition that finite direct sums of one-dimensional Yetter-
Drinfeld modules have diagonal braiding.

Proposition 4.5.9. Let n ∈ N0 and let (V, c) and (W,d) be n-dimensional
braided vector spaces. Let x1, . . . , xn be a basis of V , y1, . . . , yn a basis of W and
qij , pij ∈ k for all 1 ≤ i, j ≤ n such that

c(xi ⊗ xj) = qijxj ⊗ xi, d(yi ⊗ yj) = pijyj ⊗ yi

for all 1 ≤ i, j ≤ n. Then the following are equivalent:

(1) The braided vector spaces (V, c) and (W,d) are isomorphic.
(2) There is a permutation σ ∈ Sn such that

qij = pσ(i)σ(j) for all 1 ≤ i, j ≤ n.

Proof. Let G be a free abelian group with basis (gi)1≤i≤n. Define characters
χi, ηi of G by χj(gi) = qij , ηj(gi) = pij for all 1 ≤ i, j ≤ n. Let V ∈ G

GYD and
W ∈ G

GYD with xi ∈ V χi
gi , yi ∈ W ηi

gi for all 1 ≤ i ≤ n. Then c = cV,V , d = cW,W .
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By definition, Ṽ ∈ G(V )
G(V )YD is the direct sum of the one-dimensional Yetter-

Drinfeld modules kxi, 1 ≤ i ≤ n, over G(V ), and W̃ ∈ G(W )
G(W )YD is the direct sum

of the one-dimensional Yetter-Drinfeld modules kyi, 1 ≤ i ≤ n, over G(W ).
Clearly, (2) implies (1). Assume now (1). By Proposition 4.5.8,

YD(ϕ)(Ṽ ) ∼= W̃ in
G(W )
G(W )YD,

where ϕ : G(V )→ G(W ) is an isomorphism of groups. Then YD(ϕ)(Ṽ ) is the direct
sum of the one-dimensional Yetter-Drinfeld modules kxi over G(W ), 1 ≤ i ≤ n.
By Krull-Schmidt there is a permutation σ ∈ Sn such that kxi

∼= kyσ(i) as Yetter-
Drinfeld modules over G(W ) for all 1 ≤ i ≤ n. This proves (2), since the braidings

of V and YD(ϕ)(Ṽ ) and of W and W̃ coincide. �

Corollary 4.5.10. Let G be a group and V ∈ G
GYDfd with representation

ρ : G → Aut(V ). Let G1 ⊆ G be the subgroup generated by all g ∈ G with Vg �= 0.
Then the following are equivalent.

(1) The braided vector space (V, cV,V ) is of diagonal type.
(2) V is a direct sum of one-dimensional G1-modules.

Assume that ρ(G1) is finite, k is algebraically closed and char(k) does not divide
the order of ρ(G1). Then (1) and (2) are equivalent to

(3) ρ(G1) is abelian.

Proof. Assume (1). We prove (2). By assumption, there is a basis x1, . . . , xn

of V and scalars qij ∈ k× for 1 ≤ i, j ≤ n with

cV,V (xi ⊗ xj) = qijxj ⊗ xi

for all 1 ≤ i, j ≤ n. Let H be a free abelian group with basis (gi)1≤i≤n and
characters (χi)1≤i≤n of H with χj(gi) = qij for all i, j. Let W ∈ H

HYD with
basis (yi)1≤i≤n and yi ∈ Wχi

gi for all i. Then (V, cV,V ) ∼= (W, cW,W ). Hence by

Proposition 4.5.8(2), Ṽ is a direct sum of one-dimensional Yetter-Drinfeld modules

in
G(V )
G(V )YD. This implies (2), since G(V ) = ρ(G1).

Assume (2). Then ρ(G1) is abelian, hence (3) holds. Moreover, by Lemma 1.4.5,

Ṽ is a direct sum of one-dimensional Yetter-Drinfeld modules in
G(V )
G(V )YD. Thus

(V, cV,V ) = (Ṽ , cṼ ,Ṽ ) is of diagonal type, which proves (1).

Finally, (3) implies (1) by Proposition 1.4.6. �

Corollary 4.5.11. Let G be a group and V ∈ G
GYDfd. Let G1 ⊆ G be the

subgroup generated by all g ∈ G with Vg �= 0. Assume that (V, cV,V ) is of diagonal
type, and that V is a faithful G1-module. Then G1 is abelian.

Proof. Let ρ : G → Aut(V ) be the representation of the G-module structure
of V . By Corollary 4.5.10, ρ(G1) is abelian. Hence G1 is abelian, since V is a
faithful G1-module. �

The assumption on the faithfulness of V in Corollary 4.5.11 can not be dropped,
as Example 4.5.12 shows.

Example 4.5.12. The dihedral group D4 of order 8 is generated by two ele-
ments r, s with relations r4 = 1, s2 = 1, sr = r3s. Let ti = ri−1s for all i ∈ Z. Then
for all i, j ∈ Z, ti = tj if and only if i ≡ j (mod 4), and titjti = t2i−j , t

2
i = 1. The
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group D4 is generated by t1 and t4, and the set {ti | 1 ≤ i ≤ 4} is stable under the
adjoint action of D4.

Let εri = 1 and εti = −1 for all 1 ≤ i ≤ 4. Thus D4 → {1,−1}, g �→ εg, is a

group homomorphism. We define a Yetter-Drinfeld module V ∈ D4

D4
YD with basis

xti , 1 ≤ i ≤ 4, where the D4-action and coaction is defined by

g · xti = εgxgtig−1 , δ(xti) = ti ⊗ xti

for all g ∈ D4, 1 ≤ i ≤ 4. We set xi = xti for all i ∈ Z. Note that

ti · xj = −x2i−j , r · xj = xj+2 for all i, j ∈ Z.

Let ρ : D4 → Aut(V ) be the representation of the action of D4 on V . Then
ρ(t1) = ρ(t3), ρ(t2) = ρ(t4), and the automorphisms ρ(t1) and ρ(t4) commute.
Hence ρ(D4) is abelian. Assume that the characteristic of k is not two, and let

y1 = x1 + x3, y2 = x2 − x4, y3 = x1 − x3, y4 = x2 + x4.

Then Ṽ =
⊕4

i=1 kyi is a direct sum of one-dimensional Yetter-Drinfeld modules

over ρ(D4). Thus (V, cV,V ) is of diagonal type. Moreover, Ṽ = V1 ⊕ V2, where
V1 = ky1 ⊕ ky2, V2 = ky3 ⊕ ky4, and c2|V2 ⊗ V1 = idV2⊗V1

. It follows from

Proposition 1.10.12 that B(Ṽ ) is isomorphic to B(V1) ⊗ B(V2). The braidings of
V1 and V2 are of Cartan type with Cartan matrix A2, see Definition 8.2.2. Then
by Theorem 16.3.17, the Nichols algebras of Vi, 1 ≤ i ≤ 2, have dimension 8, and
dimB(V ) = 64.

4.6. Notes

4.1. The Drinfeld center was introduced around 1990 independently by Drin-
feld, Majid [Maj91] and Joyal and Street [JS91]. Theorem 4.1.3 is due to Drin-
feld, see [Maj94], Example 1.3, where a proof is given from the point of view of
Tannaka-Krein reconstruction theory.

Let H be a Hopf algebra in a braided monoidal category (C, c). The functor in
Theorem 4.1.3 identifies H

HYD(C) with a subcategory of the centre Zl(HC) which
is described in [Bes97], Proposition 3.6.1. The Hopf algebra H defines a Hopf
algebra H = (H, cH,−) in Zl(C). By [BV13], Remark 2.15, H

H
YD(Zl(C)) ∼= Zl(HC)

as braided categories.
Theorem 4.1.11 was shown in [MO99], Theorem 2.7, by direct computations

in the category of two-sided Hopf modules which is equivalent to H
HYD.

The notion of a rigid braided vector space was introduced by Lyubashenko. Let
(V, c) be a finite-dimensional braided vector space which is rigid. Following ideas
of Lyubashenko, it was shown by Schauenburg (see the exposition by Takeuchi
[Tak00]) that there is a coquasitriangular Hopf algebra (H,σ) and a right H-
comodule structure on V such that c is the braiding arising from σ. Then V has
the structure of a Yetter-Drinfeld module in YD H

H such that c = cV,V .

4.4. An early proof of Theorem 4.4.11(2) was given in [FMS97] using β-
Frobenius extensions.

Let R be a finite-dimensional Hopf algebra in H
HYD. If A ⊆ R is an H-stable

subalgebra with ΔR(A) ⊆ A⊗R, in particular, a right coideal subalgebra in H
HYD,

then by [ST16], Theorem 5.3, A is a Frobenius algebra, R is free as a left and as a
right A-module, and A is a direct summand in R as a left and as a right A-module.
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This is a braided version of a fundamental result of Skryabin [Skr07]; its proof is
based on [Skr07] and [SVO06].

Freeness of R over Hopf subalgebras in H
HYD was shown earlier by Takeuchi,

see [Tak00], and in [Sch01] extending the arguments in [NZ89].
Corollary 4.4.14 is taken from [AGn03], Theorem 6.4.

4.5. Example 4.5.12 is Example 6.5 in [MS00]. The Nichols algebra there was
computed in a different way; the elements y1, y2, y3, y4 were proposed by Graña.
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CHAPTER 5

Gradings and filtrations

Several objects in this book like algebras, coalgebras and Yetter-Drinfeld mod-
ules, admit a natural filtration or a grading by a monoid more general than the
natural numbers. In particular, Nichols systems in Chapter 13 will be graded by
Nθ

0 for some θ ≥ 1. In this chapter we discuss filtrations and gradings of this type.
Assuming standard results on the Jacobson radical of algebras we study the

coradical filtration, and its associated graded coalgebra. We prove a weak version of
the Theorem of Taft and Wilson which allows us to give a rather detailed description
of the first part A1 of the coradical filtration of a pointed Hopf algebra A with
abelian group G(A). This description is useful to determine the structure of A
when grA is given.

5.1. Gradings

Let Γ be a set.
Recall the definition of the category Γ-GrMk of Γ-graded vector spaces in

Section 1.1. By Proposition 1.1.17, Γ-GrMk can be identified with the category of
left (or right) comodules over kΓ.

Let V be a Γ-graded vector space. A graded subspace U ⊆ V is a subspace
and a graded vector space U =

⊕
α∈Γ U(α) satisfying the following equivalent

conditions.

(1) U(α) = U ∩ V (α) for all α ∈ Γ.
(2) U(α) ⊆ V (α) for all α ∈ Γ.

The intersection of a family of graded subspaces of V is a graded subspace. The
category Γ-GrMk is abelian. Let X,Y be objects in Γ-GrMk, X ′ ⊆ X and
Y ′ ⊆ Y graded subobjects, and f : X → Y a graded map. For all γ ∈ Γ let
fγ : X(γ)→ Y (γ) be the restriction of f . Then

ker(f) =
⊕
γ∈Γ

ker(fγ), im(f) =
⊕
γ∈Γ

im(fγ), X/X ′ =
⊕
γ∈Γ

X(γ)/X ′(γ),

f−1(Y ′) = ker(X
f−→ Y → Y/Y ′)

are all graded.
Assume that Γ is a monoid with unit element e.
By Definition 1.2.7, Γ-GrMk is a monoidal category with diagonal grading on

the tensor product V ⊗W of Γ-graded vector spaces V,W . By Remark 1.2.8, the
monoidal categories Γ-GrMk and kΓMk can be identified.

217
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A Γ-graded algebra A is an algebra in Γ-GrMk, that is, A is an algebra
(with unit 1A = 1), A =

⊕
α∈Γ A(α) is Γ-graded such that

A(β)A(γ) ⊆ A(βγ) for all β, γ ∈ Γ,(5.1.1)

1A ∈ A(e),(5.1.2)

that is, the multiplication and unit maps are graded.
A Γ-graded coalgebra C is a coalgebra in the monoidal category Γ-GrMk.

Thus C =
⊕

α∈Γ C(α) is a Γ-graded vector space and a coalgebra with comultipli-
cation Δ : C → C ⊗ C and counit ε : C → k such that Δ and ε are graded, that
is,

Δ(C(α)) ⊆
⊕
βγ=α

C(β)⊗ C(γ) for all α ∈ Γ,(5.1.3)

ε(C(α)) = 0 for all α ∈ Γ \ {e}.(5.1.4)

Note that (5.1.2) and (5.1.4) are redundant if the monoid Γ is cancellative,
that is, if α, β, γ ∈ M with αγ = βγ or γα = γβ implies that α = β.

Lemma 5.1.1. Assume that Γ is cancellative.

(1) Let C =
⊕

α∈Γ C(α) be a graded vector space and a coalgebra such that
Δ(C(α)) ⊆

⊕
βγ=α C(β) ⊗ C(γ) for all α ∈ Γ. Then for all α �= e,

ε(C(α)) = 0.
(2) Let A =

⊕
α∈Γ A(α) be a graded vector space and an algebra such that

A(β)A(γ) ⊆ A(βγ) for all β, γ ∈ Γ. Then 1A ∈ A(e).

Proof. (1) We give an indirect proof. Let x ∈ C(α) with α �= e. Assume that
ε(x) �= 0. Since Δ is graded and Γ is cancellative, we can write

Δ(x) =

n∑
i=1

xi ⊗ yi, xi ∈ C(αi), yi ∈ C(βi) for all 1 ≤ i ≤ n,

where αi, βi ∈ Γ, αiβi = α for all i, and where y1, . . . , yn are linearly independent.
Since

∑n
i=1 xiε(yi) = x ∈ C(α), there exists j ∈ {1, . . . , n} such that xj ∈ C(α)

and ε(xj) �= 0. Hence αj = α and βj = e, since Γ is cancellative. It follows that
x =

∑n
i=1 ε(xi)yi /∈ C(α), since yj ∈ C(e). Thus ε(x) = 0 for all x ∈ C(α) with

α �= e.
(2) Let 1A =

⊕
α∈Γ aα, where aα ∈ A(α) for all α ∈ Γ. Let 1′ = ae. Since Γ is

cancellative, x = 1Ax = 1′x for all x ∈ A(α) with α ∈ Γ. Hence 1A = 1′ ∈ A(e) by
uniqueness of the unit element of an algebra. �

Let A be a Γ-graded algebra. The multiplication map μ : A ⊗ A → A is
determined by its components

(5.1.5) μβ,γ : A(β)⊗A(γ)→ A(βγ), x⊗ y �→ xy,

for all x ∈ A(β), y ∈ A(γ) and β, γ ∈ Γ.
Let C =

⊕
α∈Γ C(α) be a Γ-graded coalgebra with graded projection maps

πα = πC
α : C → C(α) for all α ∈ Γ. We write

(5.1.6) Δβ,γ : C(βγ) ⊆ C
Δ−→ C ⊗ C

πβ⊗πγ−−−−→ C(β)⊗ C(γ), β, γ ∈ Γ,

for the (β, γ)-th component of the comultiplication Δ.
A Γ-graded left A-module V is a left A-module in Γ-GrMk, that is, a Γ-

graded vector space and a left A-module V with graded structure map A⊗V → V .
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A Γ-graded left C-comodule is a left C-comodule in Γ-GrMk, that is, a Γ-
graded vector space and a left C-comodule V with graded structure map V → C⊗V .

Lemma 5.1.2. (1) Let A be a Γ-graded algebra, and V a Γ-graded left
A-module.
(a) If U ⊆ V is a graded subspace and an A-submodule, then U is a

Γ-graded A-module.
(b) If U ⊆ V is a submodule, then

⊕
γ∈Γ U ∩V (γ) is a graded submodule

of V .
(2) Let C be a Γ-graded coalgebra, and V a Γ-graded left C-comodule.

(a) If U ⊆ V is a graded subspace and a subcomodule, then U is a graded
C-comodule.

(b) Assume that Γ is cancellative. If U ⊆ V is a subcomodule, then⊕
γ∈Γ U ∩ V (γ) is a graded subcomodule of V .

Proof. (1) is obvious.
(2)(a) Let δ : V → C ⊗ V be the comodule structure of V . For all α ∈ Γ,

δ(U(α)) ⊆ (C ⊗ U) ∩ (C ⊗ V )(α) = (C ⊗ U)(α),

since C ⊗ U ⊆ C ⊗ V is a graded subspace. Hence U is a graded C-comodule.
(2)(b) Let U ′ =

⊕
γ∈Γ U ∩ V (γ). We prove that U ′ is a subcomodule of V .

Then the claim follows from (a).
Let α ∈ Γ, and u ∈ U ∩ V (α). Since V is a graded C-comodule, there are

an integer r ≥ 1, βi, γi ∈ Γ for all 1 ≤ i ≤ r, such that βiγi = α for all i, and
δ(u) ∈

⊕r
i=1 C(βi) ⊗ V (γi). Since Γ is cancellative, we may assume that βi �= βj

for all i �= j. Hence

δ(u) ∈ (C ⊗ U) ∩
r⊕

i=1

C(βi)⊗ V (γi) =

r⊕
i=1

C(βi)⊗ (U ∩ V (γi)) ⊆ C ⊗ U ′,

where the last equality follows by choosing bases in C(βi) for all i. �

Corollary 5.1.3. Let C be a Γ-graded coalgebra and A a Γ-graded algebra.
Then Homgr (C,A) ⊆ Hom(C,A) is a subalgebra with respect to the convolution
product. If f ∈ Homgr (C,A) is invertible in Hom(C,A), then f−1 ∈ Homgr (C,A).

Proof. This follows from Proposition 1.2.11(2), since the maps Φ(f) and
Φ−1(f) are both graded. �

Assume that Γ is an abelian monoid with neutral element 0.
Then we define a braiding on the monoidal category Γ-GrMk by the usual flip

map of vector spaces V ⊗W → W ⊗ V , v ⊗ w �→ w ⊗ v, for all v ∈ V , w ∈ W .
A Γ-graded bialgebra (H,H) is a bialgebra in Γ-GrMk, that is, (H,H) is a

graded algebra and a graded coalgebra, and H is a bialgebra.
A Γ-graded Hopf algebra H is a graded bialgebra such that there exists a

graded linear map S : H → H which is convolution inverse to idH .

Corollary 5.1.4. Let H be a Γ-graded bialgebra, and assume that H is a Hopf
algebra. Then the antipode of H is a graded map. Thus H is a graded Hopf algebra,
and H(0) ⊆ H is a Hopf subalgebra.

Proof. The antipode S = id−1 is graded by Corollary 5.1.3. In particular,
H(0) is stable under S. Hence H(0) ⊆ H is a Hopf subalgebra. �
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Remark 5.1.5. The preceding notions can be generalized. Replace the category
Mk by an abelian braided monoidal category C with arbitrary direct sums. If Γ is an
abelian monoid, and (V,V) and (W,W) are Γ-graded objects in C, then the braiding
cV,W : V ⊗W → W ⊗V is Γ-graded; for all β, γ ∈ Γ, cV,W induces an isomorphism
V (β)⊗W (γ)→ W (γ)⊗V (β), since the braiding is a functorial isomorphism. Thus
the category Γ-Gr C of Γ-graded objects in C is braided monoidal. A special case is
the category Γ-GrH

HYD defined in Remark 4.2.7.

5.2. Filtrations and gradings by totally ordered abelian monoids

Let Γ be an abelian monoid with monoid structure +. The neutral element is
denoted by 0. If < is a total order on Γ, we define the following conditions for the
pair (Γ, <).

(M1) For any α ∈ Γ the set {β ∈ Γ |β < α} is finite.
(M2) For any α, β, γ ∈ Γ the relation α < β implies that α+ γ < β + γ.

Example 5.2.1. Let θ be a positive integer and let Γ = Nθ
0. Write

α < β for α = (a1, . . . , aθ) ∈ Γ, β = (b1, . . . , bθ) ∈ Γ

if
∑θ

i=1 ai <
∑θ

i=1 bi or if
∑θ

i=1(ai − bi) = 0 and there exists 1 ≤ i ≤ θ such that
ai < bi and aj = bj for all 1 ≤ j < i. Then (Γ, <) satisfies conditions (M1) and
(M2). In particular, Γ = N0 with the natural ordering satisfies the conditions (M1)
and (M2).

In the remainder of this section we assume a total ordering < on the abelian
monoid Γ satisfying (M1) and (M2).

A monoid M is called positive if 0 is its only unit.

Lemma 5.2.2. The monoid Γ satisfies the following.

(1) Let α ∈ Γ \ {0}. Then α > 0.
(2) The monoid Γ is torsion-free, cancellative, and positive.

Proof. (1) Assume that α < 0. Then · · · < 3α < 2α < α < 0 by (M2), which
is a contradiction to (M1).

(2) Let α ∈ Γ \ {0}. Then 0 < α < 2α · · · < (m − 1)α < mα by (1) and by
(M2). Thus mα �= 0 for all m ≥ 1, and hence Γ is torsion-free.

Let α, β, γ ∈ Γ with α+ γ = β + γ. Then both α < β and β < α contradict to
(M2). Hence α = β, that is, Γ is cancellative.

Let α ∈ Γ be a unit. If α �= 0, then α > 0 and −α > 0 by (1), and hence
0 = α+ (−α) > α > 0, a contradiction. Thus Γ is positive. �

Graded vector spaces often come from natural filtrations, and filtrations are a
useful tool to study graded objects.

A Γ-filtration of a vector space V is a family F(V ) = (Fα(V ))α∈Γ of sub-
spaces of V such that

Fα(V ) ⊆ Fβ(V ) for all α, β ∈ Γ, α < β,

V =
⋃
α∈Γ

Fα(V ).

A Γ-filtered vector space is a pair (V,F(V )), where V is a vector space and
F(V ) is a filtration of V .
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Let Γ-FiltMk be the category of Γ-filtered vector spaces. Objects are the
Γ-filtered vector spaces, and a morphism between filtered vector spaces (V,F(V ))
and (W,F(W )) is a k-linear map f : V → W which is filtered, that is,

f(Fα(V )) ⊆ Fα(W ) for all α ∈ Γ.

We define

Homfilt(V,W ) = {f ∈ Hom(V,W ) | f is filtered}.
The tensor product of (V,F(V )) and (W,F(W )) is the tensor product V ⊗W of
vector spaces with filtration defined by

Fα(V ⊗W ) =
∑

β+γ≤α

Fβ(V )⊗ Fγ(W ) for all α ∈ Γ.

The category Γ-FiltMk is monoidal with this tensor product and unit object k
with filtration Fα(k) = k for all α ∈ Γ. Again the associativity and unit constraints
are the same as for vector spaces, and Γ-FiltMk is braided monoidal with the flip
of vector spaces as braiding.

Remark 5.2.3. Filtered objects can be defined in more general categories than
vector spaces. In particular, for a Hopf algebra H with bijective antipode, the cat-
egory Γ-Filt H

HYD of Γ-filtered Yetter-Drinfeld modules over H is braided
monoidal with the monoidal structure and the braiding of H

HYD.

A filtered vector space V in Γ-FiltMk is called locally finite if Fα(V ) is finite-
dimensional for all α ∈ Γ. We denote the full subcategory of Γ-FiltMk of locally
finite vector spaces by Γ-FiltMlf

k
.

A coalgebra filtration of a coalgebra C is a vector space filtration of C,
F(C) = (Fα(C))α∈Γ, such that

Δ(Fα(C)) ⊆
∑

β+γ≤α

Fβ(C)⊗ Fγ(C) for all α ∈ Γ.(5.2.1)

A filtered coalgebra (C,F(C)) is a coalgebra in the monoidal category Γ-FiltMk,
that is, a coalgebra C with a coalgebra filtration F(C). Note that the counit
ε : C → k is always a filtered map.

We want to prove two useful results about filtered coalgebras. We first look at
their simple subcoalgebras.

Proposition 5.2.4. Let C be a coalgebra with a coalgebra filtration F(C). Then
any simple subcoalgebra of C is contained in F0(C).

Proof. Let D ⊆ C be a simple subcoalgebra. Since F0(C) ∩ D is a sub-
coalgebra of C, it is enough to prove that F0(C) ∩ D is non-zero. Let α ∈ Γ be
minimal such that Fα(C) ∩ D �= 0, and let x ∈ Fα(C) ∩ D be a non-zero ele-
ment. If Δ(x) ∈ F0(C)⊗D, then x = (id ⊗ ε)Δ(x) ∈ F0(C), and we are done. If
Δ(x) /∈ F0(C)⊗D, then there exists f ∈ C∗ = Hom(C, k) such that f(x(1))x(2) �= 0
and f(F0(C)) = 0. Since f(x(1))x(2) ∈ F<α(C) ∩D, we obtain a contradiction to
the minimality of α. �

If C is a one-dimensional coalgebra, then there is a unique group-like element
1C , and C = k1C .
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Corollary 5.2.5. Let C be a coalgebra with coalgebra filtration F(C). If
F0(C) is one-dimensional, then F0(C) is the unique simple subcoalgebra of C. The
coalgebra C has a unique group-like element which spans F0(C).

Proof. The subcoalgebra F0(C) is one-dimensional, hence simple. Thus the
claim follows from Proposition 5.2.4. �

Corollary 5.2.6. Let C be a coalgebra with coalgebra filtration F(C), and
0 �= V ∈ MC with comodule structure δ : V → V ⊗ C. Then there is a non-zero
element v ∈ V with δ(v) ∈ V ⊗ F0(C).

Proof. By the Finiteness Theorem 2.1.3 for comodules, V contains a simple
subcomodule U ⊆ V . By Proposition 2.2.13(2), there is a simple subcoalgebra
D ⊆ C with δ(U) ⊆ U ⊗D. Hence the claim follows from Proposition 5.2.4. �

An algebra filtration of an algebra A is by definition a vector space filtration
F(A) = (Fα(A))α∈Γ of A such that

Fα(A)Fβ(A) ⊆ Fα+β(A) for all α, β ∈ Γ,(5.2.2)

1A ∈ F0(A).(5.2.3)

A filtered algebra (A,F(A)) is an algebra in Γ-FiltMk, that is, an algebra A
with an algebra filtration F(A).

Example 5.2.7. Let A be an algebra and let X be a subset of A generating
the algebra A. The standard N0-filtration F(A) of A defined by X is the algebra
filtration

F0(A) = k1A, Fn(A) = (X ∪ {1A})n for all n ≥ 1,

where (X ∪ {1A})n ⊆ A is the subspace generated by all elements a1 · · · an with
a1, . . . , an ∈ X ∪ {1A}.

Example 5.2.8. Let A and Γ be as in Example 5.2.7. Let I be an index set,
and for all i ∈ I let αi ∈ Γ \ {0} and Xi ⊆ X such that X = ∪i∈IXi. Then F(A)
with

Fα(A) =
∑

n≥0,i1,...,in∈I,
αi1

+···+αin≤α

kXi1 · · ·Xin

for all α ∈ Γ, where kXi1 · · ·Xin = k1 for n = 0, defines an algebra filtration of A
by Γ.

A filtered bialgebra (H,F(H)) is a bialgebra in Γ-FiltMk, that is, (H,F(H))
is a filtered coalgebra and a filtered algebra, and H is a bialgebra.

A filtered Hopf algebra (H,F(H)) is a bialgebra in Γ-FiltMk such that
there exists a filtered map S : H → H which is convolution inverse to idH .

Next we discuss convolution inverses of maps on coalgebras. Let C be a
coalgebra and A an algebra. Recall that Hom(C,A) is an algebra, where the
product is the convolution of maps and the unity is ηε. Define the iterations
Δn : C → C⊗(n+1), n ≥ 0, of Δ inductively by

(5.2.4) Δ0 = id : C → C, Δn = (id⊗Δn−1)Δ for all n ≥ 1.

If (C,F(C)) is a filtered coalgebra, then

Δn(Fα(C)) ⊆
∑

α0+α1+···+αn=α

Fα0
(C)⊗ Fα1

(C)⊗ . . .⊗ Fαn
(C)

for all n ≥ 0 and α ∈ Γ.
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Proposition 5.2.9. (Takeuchi’s Lemma) Let (C,F(C)) be a filtered coalgebra,
A an algebra, and f : C → A a linear map.

(1) Assume that f(F0(C)) = 0. Then ηε− f is invertible in Hom(C,A) with
inverse

(ηε− f)−1 =
∑
n≥0

fn.

(2) Assume that the restriction f | : F0(C) → A of f is invertible. Let
g ∈ Hom(C,A) with g|F0(C) = (f |F0(C))−1. Then f is invertible in
Hom(C,A) with inverse

f−1 = g
∑
n≥0

(ηε− fg)n.

(3) Assume that F0(C) = k1C is one-dimensional. If f(1C) = 1A, then f is
invertible with inverse

f−1 =
∑
n≥0

(ηε− f)n.

Proof. (1) Let α ∈ Γ. Then the set

{(n, α1, α2, . . . , αn) |n ≥ 0, α1, . . . , αn ∈ Γ \ {0}, α1 + · · ·+ αn ≤ α}

is finite. Since f(F0(C)) = 0, there exists N(α) ∈ N0 such that

fn(Fα(C)) ⊆
∑

α1+···+αn≤α

f(Fα1
(C)) . . . f(Fαn

(C)) = 0

for all n > N(α). Thus
∑

n≥0 f
n is a well-defined linear map, and(∑

n≥0

fn

)
(x) =

N(α)∑
n=0

fn(x)

for all x ∈ Fα(C). Let x ∈ Fα(C). Then

(ηε− f)

(∑
n≥0

fn

)
(x) = (ε(x(1))1A − f(x(1)))

(N(α)∑
n=0

fn(x(2))

)

=

N(α)∑
n=0

fn(x)−
N(α)∑
n=0

fn+1(x)

= ηε(x).

Thus (ηε− f)
(∑

n≥0 f
n
)
= ηε, and

(∑
n≥0 f

n
)
(ηε− f) = ηε by a similar calcula-

tion.
(2) By assumption (ηε− fg)(F0(C)) = 0 and (ηε− gf)(F0(C)) = 0. Hence

fg
∑
n≥0

(ηε− fg)n = ηε,
∑
n≥0

(ηε− gf)ngf = ηε

by (1). This proves (2).
(3) follows from (2) with g = ηε. �
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Corollary 5.2.10. Let C be a filtered coalgebra and A a filtered algebra. Then
Homfilt(C,A) ⊆ Hom(C,A) is a subalgebra. If f ∈ Homfilt(C,A) is invertible in
Hom(C,A) with inverse f−1 and the filtrations of C and A are locally finite, then
f−1 ∈ Homfilt(C,A).

Proof. It is clear from the definitions that Homfilt(C,A) ⊆ Hom(C,A) is a
subalgebra. Let f ∈ Homfilt(C,A) be invertible in Hom(C,A). Then Φ(f) in
Proposition 1.2.11 is a filtered endomorphism of C ⊗ A, and Φ(f) is invertible by
Proposition 1.2.11(2). If the filtrations of C and A are locally finite, the filtration of
A⊗C is locally finite, and then Φ(f)−1 is filtered. In this case f−1 ∈ Homfilt(C,A)
by Proposition 1.2.11(2). �

Corollary 5.2.11. (1) Let (H,F(H)) be a filtered bialgebra, such that
the filtration is locally finite. Assume that H is a Hopf algebra with an-
tipode S. Then S(Fα(H)) ⊆ Fα(H) for all α ∈ Γ. Thus H is a filtered
Hopf algebra, and F0(H) ⊆ H is a Hopf subalgebra.

(2) Let H be a bialgebra with a coalgebra filtration F(H). If F0(H) is one-
dimensional, then H is a Hopf algebra with antipode

S =
∑
n≥0

(ηε− id)n.

If F0(H) ⊆ H is a subbialgebra and a Hopf algebra, then H is a Hopf alge-
bra. If F0(H) is a Hopf algebra with bijective antipode, then the antipode
of H is bijective.

Proof. (1) The antipode is filtered by Corollary 5.2.10. In particular, F0(H)
is a Hopf subalgebra of H.

(2) Assume that F0(H) ⊆ H is a subbialgebra and a Hopf algebra with antipode
SF0(H). Then the restriction of id : H → H to F0(H) is invertible. Hence idH
is invertible by Proposition 5.2.9(2), and H is a Hopf algebra. If in addition the
antipode of F0(H) is bijective, then the dual algebra F0(H)op also is a Hopf algebra
with antipode SF0(H), where SF0(H) is the linear inverse of SF0(H). The dual algebra
Hop is a bialgebra with the same coalgebra filtration (Fα(H)op)α∈Γ, and F0(H)op

is a Hopf subalgebra of Hop. Hence Hop is a Hopf algebra by the argument we
have just shown. Thus the antipode of H is bijective.

If F0(H) is one-dimensional, then the formula for the antipode follows from
Proposition 5.2.9(3) with f = id. �

Corollary 5.2.12. Let H =
⊕

α∈Γ H(α) be a bialgebra and a graded coalgebra.
If H(0) = k1H , then H is a Hopf algebra with antipode

S =
∑
n≥0

(ηε− id)n.

If H(0) ⊆ H is a subbialgebra and a Hopf algebra, then H is a Hopf algebra. If
H(0) is a Hopf algebra with bijective antipode, then the antipode of H is bijective.

Proof. This follows from Corollary 5.2.11(2), where we use the coalgebra
filtration associated to the grading of H. �

Proposition 5.2.13. Let H be a Hopf algebra with bijective antipode, and R
be a bialgebra in H

HYD with an N0-coalgebra filtration (Rn)n≥0, and R0 = k1. Then
R is a Hopf algebra in H

HYD with bijective antipode.
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Proof. By (4.3.2) the filtration

H ⊆ R1#H ⊆ R2#H ⊆ · · · ⊆ R#H

is a coalgebra filtration of the bosonization R#H. By Proposition 3.8.4(1), R#H
is a bialgebra. Since the antipode of H is bijective, R#H is a Hopf algebra with
bijective antipode by Corollary 5.2.11(2). By Proposition 5.2.9(3), idR is convolu-
tion invertible, hence R is a Hopf algebra in H

HYD by Proposition 3.8.9. Then the
antipode of R is bijective by Corollary 3.8.11. �

Graded and filtered vector spaces are related by the functors

gr : Γ-FiltMk → Γ-GrMk, filt : Γ-GrMk → Γ-FiltMk.

For a filtered vector space V with filtration F(V ) let

F<α(V ) =

{
0 if α = 0,

Fβ(V ) if α �= 0, where β = max{γ ∈ Γ | γ < α}.
Then we define

grV =
⊕
α∈Γ

Fα(V )/F<α(V ).

For all α ∈ Γ let

pVα = pα : Fα(V )→ Fα(V )/F<α(V ) = (grV )(α)

be the canonical epimorphism. If f : (V,F(V )) → (W,F(W )) is a morphism, the
induced map gr f is defined by

gr f : grV → grW, pα(v) �→ pα(f(v)) for all v ∈ Fα(V ), α ∈ Γ.

For a graded vector space V with gradation V we define filt(V,V) = V with filtration

Fα(V ) =
⊕
β≤α

V (β)

for all α ∈ Γ. If f : (V,V) → (W,W) is a morphism in GrMΓ
k
, then we define

filt(f) = f : V → W .
Note that gr filt ∼= idΓ-GrMk

. Usually information is lost by applying the functor
gr . But in some cases properties of the filtered object can be derived from the
associated graded object. A first example of this type is given in the next lemma.

Lemma 5.2.14. Let f : (V,F(V )) → (W,F(W )) be a morphism of filtered
vector spaces. If gr f is surjective, then f is surjective. If gr f is injective, then f
is injective.

Proof. Assume that f is surjective. We show by induction that the restriction
fα : Fα(V )→ Fα(W ) of f is surjective. This is true for α = 0, since f0 = (gr f)(0).
Let α ∈ Γ, β = max{γ ∈ Γ | γ < α}, and assume that fβ is surjective. Then fα
is surjective, since fβ and the quotient map (gr f)(α) are. The second claim one
proves analogously. �

The functor filt is a braided strict monoidal functor, that is, filt maps the unit
object of Γ-GrMk to the unit object of Γ-FiltMk, and if V and W are graded
vector spaces, then filt(V ) ⊗ filt(W ) = filt(V ⊗W ). To enlarge gr to a monoidal
functor we need some linear algebra lemmas.
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Remark 5.2.15. Let I be an index set, and (Ij)j∈J a family of subsets of I.
Let (Vi)i∈I be a family of vector spaces. Then, by the definition of the direct sum,⋂

j∈J

⊕
i∈Ij

Vi =
⊕

i∈
⋂

j∈J Ij

Vi.

The next lemma essentially shows that gr is a monoidal functor.

Lemma 5.2.16. Let V and W be vector spaces with Γ-filtrations F(V ) and
F(W ). Then for all α ∈ Γ,⋂

β+γ≥α

(V ⊗ F<γ(W ) + F<β(V )⊗W ) =
∑

β+γ<α

Fβ(V )⊗ Fγ(W ).

Proof. Choose subspaces Xβ ⊆ V and Yβ ⊆ W for all β ∈ Γ such that

Fβ(V ) = F<β(V )⊕Xβ , Fβ(W ) = F<β(W )⊕ Yβ

for all β ∈ Γ. Then F0(V ) = X0 and F0(W ) = Y0. Let α ∈ Γ. Then⋂
β+γ≥α

(V ⊗ F<γ(W ) + F<β(V )⊗W ) =
⋂

β+γ≥α

⊕
β′<β

or γ′<γ

Xβ′ ⊗ Yγ′ ,

∑
β+γ<α

Fβ(V )⊗ Fγ(W ) =
⊕

β′+γ′<α

Xβ′ ⊗ Yγ′ .

Clearly,
β′ + γ′ ≥ α ⇐⇒ ∃β, γ ∈ Γ : β + γ ≥ α, β′ ≥ β, γ′ ≥ γ

for all β′, γ′ ∈ Γ. Hence the lemma follows from Remark 5.2.15. �

Proposition 5.2.17. The functor gr : Γ-FiltMk → Γ-GrMk maps the unit
object to the unit object. For all V,W ∈ Γ-FiltMk there is a graded linear isomor-
phism

ϕV,W : gr (V ⊗W )→ grV ⊗ grW

such that for all α, β, γ ∈ Γ with β + γ = α and all v ∈ Fβ(V ), w ∈ Fγ(W ),

ϕV,W (α)(pα(v ⊗ w)) = pβ(v)⊗ pγ(w).

The family ϕ = (ϕV,W )V,W∈GrMΓ
k

is a natural isomorphism of bifunctors, and

(gr , ϕ−1) is a braided monoidal functor.

Proof. For all α ∈ Γ let

qVα = qα : V → V/F<α(V ), qWα = qα : W → W/F<α(W )

be the canonical epimorphisms. Define

fα : V ⊗W →
⊕

β+γ=α

V/F<β(V )⊗W/F<γ(W )

by fα(v ⊗ w) =
∑

β+γ=α qβ(v)⊗ qγ(w) for all v ∈ V , w ∈ W .

Let β, β′, γ, γ′ ∈ Γ with β+γ ≥ α, β′+γ′ = α, and let v ∈ Fβ′(V ), w ∈ Fγ′(W ).
If β + γ > α, then β > β′ or γ > γ′. In this case

Fα(V ⊗W ) ⊆ V ⊗ F<γ(W ) + F<β(V )⊗W.

If β + γ = α, then β > β′ or γ > γ′ or β = β′, γ = γ′, and hence

fα(v ⊗ w) = qβ′(v)⊗ qγ′(w).
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Hence

ker(fα|Fα(V ⊗W )) =
⋂

β+γ≥α

(V ⊗ F<γ(W ) + F<β(V )⊗W )

=
∑

β+γ<α

Fβ(V )⊗ Fγ(W )

by Lemma 1.1.11 and Lemma 5.2.16, and fα induces an isomorphism

ϕV,W (α) : gr (V ⊗W )(α)→ (grV ⊗ grW )(α).

The remaining claims of the proposition are easy to check. �
The functor gr : Γ-Filt H

HYD → Γ-GrHHYD is defined in the obvious way
for filtered objects in H

HYD, H a Hopf algebra with bijective antipode, instead of
vector spaces. For filtered Yetter-Drinfeld modules V,W , the isomorphism ϕV,W in
Proposition 5.2.17 is an isomorphism of graded Yetter-Drinfeld modules.

Corollary 5.2.18. Let H be a Hopf algebra with bijective antipode.

(gr , ϕ−1) : Γ-Filt H
HYD → Γ-GrHHYD

is a braided monoidal functor.

Proof. Follow the proof of Proposition 5.2.17. �
Remark 5.2.19. The braided monoidal functor(gr , ϕ−1) of Proposition 5.2.17

preserves filtered algebras, coalgebras, bialgebras, and Hopf algebras. We describe
these constructions explicitly.

(1) Let C be a coalgebra with coalgebra filtration F(C) = (Fα(C))α∈Γ. Then
gr (C) =

⊕
α∈Γ Fα(C)/F<α(C) is a graded coalgebra.

The counit of gr (C) is given for α ∈ Γ, x ∈ Fα(C) and x ∈ Fα(C)/F<α(C) by
ε(x) = ε(x) if α = 0, and ε(x) = 0 if α �= 0.

The comultiplication Δ on Fα(C)/F<α(C), where α ∈ Γ, is defined in the
following way: Let x ∈ Fα(C) and x ∈ Fα(C)/F<α(C). We can write

Δ(x) =
∑

β+γ=α

∑
l∈Lβ

yl ⊗ zl,

where the Lβ with β ∈ Γ are disjoint finite index sets, and yl ∈ Fβ(C), zl ∈ Fα−β(C)
for all β ∈ Γ and l ∈ Lβ. Then

Δ(x) =
∑

β+γ=α

∑
l∈Lβ

yl ⊗ zl,

where yl ∈ Fβ(C)/F<β(C) and zl ∈ Fγ(C)/F<γ(C) for all β, γ ∈ Γ with β + γ = α
and all l ∈ Lβ.

(2) Let (A,F(A)) be a filtered algebra. Then gr (A) =
⊕

α∈Γ A(α) is a graded
algebra with unit element 1 ∈ F0(A) = gr (A)(0) and multiplication defined for all
β, γ ∈ Γ by

Fβ(A)/F<β(A)⊗ Fγ(A)/F<γ(A)→ Fβ+γ(A)/F<β+γ(A), x⊗ y �→ xy.

(3) Let (H,F(H)) be a filtered bialgebra. Then gr (H) is a graded bialgebra
with coalgebra and algebra structure described in (1) and (2), respectively. If
(H,F(H)) is a filtered Hopf algebra with antipode S, then gr (H) is a graded

Hopf algebra with antipode S, where S(x) = S(x) for all α ∈ Γ, x ∈ Fα(H) and

x,S(x) ∈ Fα(H)/F<α(H).
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Example 5.2.20. Let g be a finite-dimensional Lie algebra of dimension m
with basis x1, . . . , xm. Let (Un(g))n≥0 be the standard algebra filtration defined
by the generating set g, that is, U0(g) = k1 and Un(g) =

∑n
k=0 g

k for all n ≥ 1.
By the coproduct formula in Example 1.2.24, U(g) is a filtered bialgebra with the
standard filtration, where the elements of g are primitive. Then by the theorem of
Poincaré, Birkhoff and Witt, grU(g) is a commutative polynomial algebra in the
variables x1, . . . , xm ∈ (grU(g))(1) = (g+ k1)/k1, with Δ(xi) = 1⊗ xi + xi ⊗ 1 for
all i.

Let θ ≥ 1 and Γ = Nθ
0 the totally ordered abelian monoid defined in Exam-

ple 5.2.1. Let α1, . . . , αθ be the standard basis of Zθ. We describe a general method
to construct Nθ

0-graded Hopf algebras in H
HYD.

Proposition 5.2.21. Let H be a Hopf algebra with bijective antipode. Let
θ ≥ 1, Γ = Nθ

0, and I = {1, . . . , θ}. Let R be a Hopf algebra in H
HYD and (Mi)i∈I

a family of subobjects of R in H
HYD. Assume that the algebra R is generated by∑

i∈I Mi =
⊕

i∈I Mi, and that Mi ⊆ P (R) for all i ∈ I. For all α ∈ Γ define

Fα(R) =
∑

n≥0,i1,...,in∈I,
αi1

+···+αin≤α

Mi1 · · ·Min , gr (R)(α) = Fα(R)/F<α(R),

where Mi1 · · ·Min = k, if n = 0. Then

(1) Fα(R) ⊆ R is a subobject in H
HYD for all α ∈ Γ.

(2) F(R) = (Fα(R))α∈Γ is an algebra and a coalgebra filtration of R.
(3) gr (R) =

⊕
α∈Γ gr (R)(α) is a Γ-graded Hopf algebra in H

HYD which is
generated as an algebra by the subspaces gr (R)(αi), i ∈ I, and for all
i ∈ I, gr (R)(αi) ∼= Mi in

H
HYD.

Proof. (1) and the first part of (2) are obvious. To prove that F(R) is a
coalgebra filtration, we show by induction on n ≥ 1 that for all i1, . . . , in ∈ I,
xi1 ∈Mi1 , . . . , xin ∈ Min , and α = αi1 + · · ·+ αin ,

ΔR(xi1 · · ·xin) ⊆
∑

β+γ≤α

Fβ(R)⊗ Fγ(R).

This is clear for n = 1, since xi1 is primitive. Assume by induction that

ΔR(xi2 · · ·xin) ⊆
∑

β+γ≤α′

Fβ(R)⊗ Fγ(R),

where α′ = αi2 + · · ·+ αin . Then

ΔR(xi1 · · ·xin) ∈ (xi1 ⊗ 1 + 1⊗ xi1)
∑

β+γ≤α′

Fβ(R)⊗ Fγ(R)

=
∑

β+γ≤α′

(xi1Fβ(R)⊗ Fγ(R) + xi1 (−1) · Fβ(R)⊗ xi1 (0)Fγ(R)),

and the claim follows.
(3) follows from Corollary 5.2.18. Note that

Fαi
(R) = k+Mi +Mi+1 + · · ·+Mθ, F<αi

(R) = k+Mi+1 + · · ·+Mθ.

�
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5.3. The coradical filtration

We use the notation of U⊥ and X⊥ from Remark 2.2.6, where V is a vector
space, and U ⊆ V and X ⊆ V ∗ are subspaces. By definition, X⊥ is the kernel of
the map ρX : V → X∗, v �→ (f �→ f(v)).

Lemma 5.3.1. Let V,W be vector spaces, and let X ⊆ V ∗, Y ⊆ W ∗ be sub-
spaces. Identify V ∗⊗W ∗ with a subspace of (V ⊗W )∗ via the canonical monomor-
phism of Lemma 2.2.3. Then X ⊗ Y ⊆ (V ⊗W )∗, and

(X ⊗ Y )⊥ = X⊥ ⊗W + V ⊗ Y ⊥

in V ⊗W .

Proof. Note that

ρX⊗Y = (V ⊗W
ρX⊗ρY−−−−−→ X∗ ⊗ Y ∗ ⊆ (X ⊗ Y )∗).

Hence (X ⊗ Y )⊥ = ker(ρX⊗Y ) = X⊥ ⊗W + V ⊗ Y ⊥ by Lemma 1.1.11. �

Lemma 5.3.2. Let C be a coalgebra, and let In, n ≥ 1, be ideals of C∗ with

· · · ⊆ In+1 ⊆ In ⊆ · · · ⊆ I1 ⊆ C∗.

Define

F0(C) = I⊥1 ⊆ F1(C) = I⊥2 ⊆ · · · ⊆ Fn(C) = I⊥n+1 ⊆ · · · ⊆ C.

Assume that IiIj ⊆ Ii+j for all i, j ≥ 1. Then

Δ(Fn(C)) ⊆
n∑

i=0

Fi(C)⊗ Fn−i(C) for all n ≥ 0.

Proof. Let I0 = C∗. Then IiIj ⊆ Ii+j for all i, j ≥ 0 by assumption. Let
n ≥ 0, 0 ≤ i ≤ n+ 1, f ∈ Ii, and g ∈ In+1−i, and c ∈ Fn(C). Then fg ∈ In+1 and
0 = (fg)(c) = f(c(1))g(c(2)). Hence

Δ(c) ∈ (Ii ⊗ In+1−i)
⊥ = I⊥i ⊗ C + C ⊗ I⊥n+1−i

by Lemma 5.3.1. Let F−1(C) = 0. We conclude that

Δ(Fn(C)) ⊆
n+1⋂
i=0

(Fi−1(C)⊗ C + C ⊗ Fn−i(C)),

and hence Δ(Fn(C)) ⊆
∑n

i=0 Fi(C)⊗ Fn−i(C) by Lemma 5.2.16. �

Definition 5.3.3. Let C be a coalgebra. The coradical Corad(C) is the sum of
all simple subcoalgebras of C. One says that C is cosemisimple if C = Corad(C).

Proposition 5.3.4. Let C be a coalgebra, and (Ci)i∈I a family of subcoalgebras
of C.

(1) Let D ⊆ C be a simple subcoalgebra. If D ⊆
∑

i∈I Ci, then D ⊆ Ci for
some i ∈ I.

(2) Assume that (Ci)i∈I is a family of pairwise different simple subcoalgebras.
Then

∑
i∈I Ci =

⊕
i∈I Ci.

(3) Let D ⊆ C be a subcoalgebra, and assume that C =
⊕

i∈I Ci. Then
D =

⊕
i∈I(D ∩ Ci).
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Proof. (1) By Theorem 2.1.3, simple subcoalgebras are finite-dimensional.
Hence we may assume that I is finite and C is finite-dimensional. Then it suffices
to prove the claim for I = {1, 2}. So assume that D ⊆ C1 + C2 and D �⊆ C1.
Then there exist f ∈ (C1 + C2)

∗, d ∈ D such that f |C1 = 0, f(d) �= 0. Then
0 �= d(1)f(d(2)) ∈ C2 since Δ(D) ⊆ C1 ⊗C1 +C2 ⊗C2. Thus the coalgebra D ∩C2

is non-zero and hence D ⊆ C2 by simplicity of D.
(2) Assume that

∑
i∈I Ci is not direct. Then there exists j ∈ I such that

Cj ∩
∑

i∈I\{j} Ci �= 0. Then Cj ⊆
∑

i∈I\{j} Ci by simplicity of Cj . Hence Cj ⊂ Ci

for some i �= j by (1), a contradiction to the simplicity of Ci.
(3) Again we may assume that C is finite-dimensional. Then the claim follows

by duality, since the ideals in a direct product of algebras are direct products of
ideals. Here is a more direct argument. Let x =

∑
i∈I xi ∈ D, where xi ∈ Ci

for all i ∈ I and I is finite. We have to show that xi ∈ D for all i ∈ I. Let
i ∈ I and let fi ∈ C∗ such that fi|Ci = ε and fi|Cj = 0 for all j �= i. Then
xi = x(1)fi(x(2)) ∈ D. �

The following corollary justifies the definition of cosemisimplicity.

Corollary 5.3.5. Let C be a coalgebra, and M the set of its simple subcoal-
gebras.

(1) Corad(C) =
⊕

S∈M S.
(2) Let D ⊆ C be a subcoalgebra. Then Corad(D) = D ∩ Corad(C).

Proof. This is a consequence of Proposition 5.3.4(2) and (3). �

It follows from Proposition 5.3.4(2) that group-like elements in a coalgebra are
linearly independent, since they span one-dimensional subcoalgebras. Thus we have
given another proof of Proposition 1.1.6.

Remark 5.3.6. We recall some standard properties of the Jacobson radical
Rad(R) of a ring R.

(1) [Lam91, (4.5)] By definition, Rad(R) is the intersection of the maximal
left ideals of R. Then Rad(R) is the intersection of the maximal right
ideals of R.

(2) [Lam91, Ex. 4.10] Let ϕ : R → S be a surjective ring homomorphism.
Then preimages of maximal left ideals of S are maximal left ideals of R
and hence ϕ(Rad(R)) ⊆ Rad(S).

(3) [Lam91, (4.6),(4.14),(3.5)] Assume that R is a finite-dimensional alge-
bra. Then R/Rad(R) is a semisimple algebra. Hence it follows from the
theorem of Wedderburn-Artin that Rad(R) is the intersection of the max-
imal (two-sided) ideals of R. In particular, if R is finite-dimensional and
simple, then Rad(R) = 0.

(4) [Lam91, (4.5)] Rad(R) is the largest ideal I of R such that 1 − r is
invertible for all r ∈ I.

(5) [Lam91, (4.12)] If R is a finite-dimensional algebra, then Rad(R) is the
largest nilpotent ideal of R.

Proposition 5.3.7. Let C be a coalgebra. Then Corad(C)⊥ = Rad(C∗).

Proof. Let f ∈ Rad(C∗). Let D ⊆ C be a simple subcoalgebra. Then
Corollary 2.2.8 implies that D∗ is a simple algebra. By Remark 5.3.6(2), the image
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of f under the restriction map C∗ → D∗ is contained in Rad(D∗), and Rad(D∗) = 0
by Remark 5.3.6(3). Hence f ∈ Corad(C)⊥.

Conversely, let f ∈ Corad(C)⊥. Since Corad(C)⊥ is an ideal of C∗, by Re-
mark 5.3.6(4) it is enough to show that ε − f is invertible in C∗. Let D ⊆ C
be a finite-dimensional subcoalgebra. It follows from Corollary 2.2.8 and Re-
mark 5.3.6(3) that Corad(D)⊥ = Rad(D∗). Hence the image fD of f under the
restriction map C∗ → D∗ is contained in Corad(D)⊥ = Rad(D∗), and ε − fD is
invertible by Remark 5.3.6(4). Then by Corollary 2.1.4, ε−f is invertible in C∗. �

Theorem 5.3.8. Let C be a coalgebra, C0 ⊆ C a subcoalgebra with canonical
map π : C → C/C0 be the canonical map. Let I = C⊥

0 , Cn = (In+1)⊥ for all n ≥ 1,
and F(C) = (Cn)n≥0.

(1) (a) For all n ≥ 0, Cn ⊆ Cn+1 and Δ(Cn) ⊆
∑n

i=0 Ci ⊗ Cn−i.
(b) If Corad(C) ⊆ C0, then F(C) is a coalgebra filtration of C.
(c) For all 1 ≤ i ≤ n, Cn = Δ−1(Ci−1 ⊗ C + C ⊗ Cn−i).
(d) For all n ≥ 1,

Cn = ker(C
Δn

−−→ C⊗(n+1) π⊗(n+1)

−−−−−→ (C/C0)
⊗(n+1)).

(2) Assume that C is a bialgebra, C0 ⊆ C is a subbialgebra, and assume that
Corad(C) ⊆ C0. Then F(C) is a bialgebra filtration of C. If C0 is a Hopf
algebra, then C is a Hopf algebra, and F(C) is a Hopf algebra filtration
of C.

Proof. (1)(a) By Remark 2.2.6(1), C0 = I⊥. Thus Lemma 5.3.2 yields that

Δ(Cn) ⊆
n∑

i=0

Ci ⊗ Cn−i for all n ≥ 0.

(1)(b) Assume that Corad(C) ⊆ C0. By (1)(a) and by Theorem 2.1.3 it is
enough to show that any finite-dimensional subcoalgebra D ⊆ C is contained in
Cn for some n ≥ 0. For a finite-dimensional subcoalgebra D, the restriction map
π : C∗ → D∗ is a surjective algebra map. Let J = π(I). By Proposition 5.3.7,

I = C⊥
0 ⊆ Corad(C)⊥ = Rad(C∗),

and hence J ⊆ Rad(D∗). Moreover, for all d ∈ D and n ≥ 0, d ∈ Cn if and only if
d ∈ (Jn+1)⊥ in D. Since D∗ is a finite-dimensional algebra, its radical is nilpotent
by Remark 5.3.6(5). Hence Jn+1 = 0 for some n ≥ 0, and D ⊆ Cn.

(1)(c) Since (Ii)⊥ ⊗C +C ⊗ (In+1−i)⊥ = (Ii ⊗ In+1−i)⊥ by Lemma 5.3.1, we
conclude that Δ−1(Ci−1 ⊗ C + C ⊗ Cn−i) = (IiIn+1−i)⊥ = Cn.

(1)(d) By definition, I = C⊥
0 = im((C/C0)

∗ π∗
−→ C∗). Hence

(In+1)⊥ = {x ∈ C | f1π(x(1)) · · · fn+1π(x(n+1)) = 0, f1, . . . , fn+1 ∈ (C/C0)
∗}

= ker(C
Δn

−−→ C⊗(n+1) π⊗(n+1)

−−−−−→ (C/C0)
⊗(n+1)).

(2) To show that CiCn−i ⊆ Cn for all for all n ≥ 0, 0 ≤ i ≤ n, we proceed
by induction on n. If n = 0, then C0C0 ⊆ C0 by assumption. Let n ≥ 1. For all
0 ≤ i ≤ n and f ∈ I, g ∈ In we have to show that (fg)(CiCn−i) = 0. By (1)(a),

Δ(Ci) ⊆
i∑

k=0

Ck ⊗ Ci−k, Δ(Cn−i) ⊆
n−i∑
l=0

Cl ⊗ Cn−i−l.
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Hence

(fg)(CiCn−i) ⊆
∑

0≤k≤i
0≤l≤n−i

f(CkCl)g(Ci−kCn−i−l).

Let 0 ≤ k ≤ i, 0 ≤ l ≤ n − i. Then f(CkCl)g(Ci−kCn−i−l) = 0. Indeed, if
k + l = 0, then k = 0 and l = 0 and f(C0C0) = 0, since f ∈ I. If k + l > 0, then
g(Ci−kCn−i−l) = 0 by induction, since i− k+n− i− l = n− k− l < n and g ∈ In.

If C0 is a Hopf algebra, then the restriction of the identity map idC to C0 is
invertible, hence C has an antipode S by Proposition 5.2.9(2), and S(C0) ⊆ C0.
Since S is a coalgebra anti-homomorphism, (1)(b) implies that

Δ(S(Cn)) ⊆
∑

i+j=n

S(Ci)⊗ S(Cj) ⊆ S(C0)⊗ C + C ⊗ S(Cn−1)

for all n ≥ 0. Hence it follows from (1)(c) by induction on n that S is a filtered
map. �

Definition 5.3.9. Let C be a coalgebra. For all n ≥ 0 let

Cn = (Rad(C∗)n+1)⊥.

Then C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ C is called the coradical filtration of C. We define
grC =

⊕
n≥0 Cn/Cn−1.

The coradical filtration is a coalgebra filtration of C by Theorem 5.3.8 with
C0 = Corad(C), hence C⊥

0 = Rad(C∗) by Proposition 5.3.7. By Theorem 5.3.8(1),
the coradical filtration can be defined inductively by

C0 = Corad(C), Cn = Δ−1(C0 ⊗ C + C ⊗ Cn−1)(5.3.1)

for all n ≥ 1.

Corollary 5.3.10. Let A be an algebra, C a coalgebra with coradical C0, and
f : C → A a linear map. Then f is convolution invertible if its restriction to C0 is
convolution invertible in Hom(C0, A).

Proof. This follows from Proposition 5.2.9(2) and the existence of the corad-
ical filtration. �

Definition 5.3.11. An N0-graded coalgebra C =
⊕

n≥0 C(n) is called corad-

ically graded if the coradical filtration (Cn)n≥0 of C is given by

Cn =
n⊕

i=0

C(i)

for all n ≥ 0.

Corollary 5.3.12. Let A be a bialgebra such that H = Corad(A) is a subbial-
gebra of A. Then grA with respect to the coradical filtration is a coradically graded
bialgebra. If H is a Hopf algebra, then grA is a Hopf algebra. If H is a Hopf
algebra with bijective antipode, then grA is a Hopf algebra with bijective antipode.

Proof. By Theorem 5.3.8(2) with C0 = Corad(A), the coradical filtration of
A is a bialgebra filtration. Thus grA is a bialgebra by Proposition 5.2.17. The
remaining claims follow from Corollary 5.2.11 applied to filt(grA). �
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Proposition 5.3.13. Let C =
⊕

n≥0 C(n) be an N0-graded coalgebra. Assume

that C(0) is cosemisimple. Then the following are equivalent.

(1) C is coradically graded.
(2) For all n ≥ 2, Δ1,n−1 : C(n)→ C(1)⊗ C(n− 1) is injective.

Proof. We denote the coradical filtration of C by (Cn)n≥0.

(1) ⇒ (2): Let 0 �= x ∈ C(n), n ≥ 2. Then x �∈ Cn−1 =
⊕n−1

i=0 C(i), since C is
coradically graded. Hence Δ1,n−1(x) �= 0 by (5.3.1), since

Δ(x) ∈
n⊕

i=0

C(i)⊗ C(n− i) ⊆ C0 ⊗ C + C(1)⊗ C(n− 1) + C ⊗ Cn−2.

(2) ⇒ (1): The natural filtration

C(0) ⊆ C(0)⊕ C(1) ⊆ C(0)⊕ C(1)⊕ C(2) ⊆ · · ·

is a coalgebra filtration. Hence C0 ⊆ C(0) by Proposition 5.2.4. Since C(0) is
cosemisimple, it follows that C0 = C(0).

Let n ≥ 1. The inclusion C(n) ⊆ Cn follows easily by induction, since

Δ(C(n)) ⊆
n⊕

i=0

C(i)⊗ C(n− i) ⊆ C(0)⊗ C + C ⊗
( n−1⊕

i=0

C(i)
)
.

Hence
⊕n

i=0 C(i) ⊆ Cn. We prove equality by induction on n ≥ 0. Suppose
there are integers n ≥ 1, m > n and elements xi ∈ C(i), 0 ≤ i ≤ m, with
x =

∑m
i=0 xi ∈ Cn. Then Δ(x) ∈ C0 ⊗ C + C ⊗ Cn−1 by (5.3.1). By induction,

Cn−1 =
⊕n−1

i=0 C(i). Hence Δ1,m−1(x) = 0. Then Δ1,m−1(xm) = 0, and xm = 0 by
(2). �

Recall from Proposition 1.3.14 that (2) in Proposition 5.3.13 is equivalent to
the injectivity of Δi,j for all i, j ≥ 0.

Corollary 5.3.14. Let C be a connected N0-graded coalgebra. Then the fol-
lowing are equivalent.

(1) C is strictly graded.
(2) C is coradically graded.

Proof. This follows from Proposition 5.3.13 and Proposition 1.3.14. �

Proposition 5.3.15. Let C be a coalgebra. Then grC is coradically graded.

Proof. By definition, C0 is cosemisimple. By Proposition 5.3.13 it is enough
to prove that Δ1,n−1 for grC is injective for all n ≥ 2. We choose subspaces
Xn ⊆ C, n ≥ 1, with Cn = Cn−1 ⊕Xn for all n ≥ 1. Then

C1 ⊗ Cn−1 = C0 ⊗ Cn−1 +X1 ⊗Xn−1 +X1 ⊗ Cn−2

for all n ≥ 2. Hence, by (1.3.3),

Δ(Cn) ⊆
n∑

i=0

Ci ⊗ Cn−i ⊆ C0 ⊗ Cn + C1 ⊗ Cn−1 + C ⊗ Cn−2

⊆ C0 ⊗ C +X1 ⊗Xn−1 + C ⊗ Cn−2.
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Since Δ−1(C0 ⊗ C + C ⊗ Cn−2) = Cn−1, the map

Δ′ : Cn/Cn−1 → (X1 ⊗Xn−1 + C0 ⊗ C + C ⊗ Cn−2)/(C0 ⊗ C + C ⊗ Cn−2)

induced by Δ is injective. Thus Δ1,n−1 is injective. �

Corollary 5.3.16. Let A be a Hopf algebra with coradical filtration (An)n≥0

and let H = A0. Assume that H is a Hopf subalgebra of A with bijective antipode.
Let π : grA → H be the canonical graded projection, that is, π(x) = 0 for all
x ∈ grA(n), n ≥ 1, and π|H = idH . Define R = grAcoH with respect to π, and
R(n) = R ∩ grA(n) for n ≥ 0.

(1) R is an N0-graded Hopf algebra in H
HYD with grading (R(n))n≥0. The

map

R#H → grA, r#h �→ rh,

is an isomorphism of N0-graded Hopf algebras, where the N0-grading of
R#H is given by (R#H)(n) = R(n)⊗H for all n ≥ 0.

(2) R is strictly graded.
(3) R is generated as an algebra by R(1) if and only if A is generated as an

algebra by A1.

Proof. (1) follows from Corollary 4.3.7.
(2) By Corollary 5.3.12, grA is a coradically graded Hopf algebra with bijective

antipode. For all n ≥ 2, let

ΔA
1,n−1 : A(n)→ A(1)⊗A(n− 1), ΔR

1,n−1 : R(n)→ R(1)⊗R(n− 1)

be the (1, n − 1)-th component of the comultiplications of A and R. The maps
ΔA

1,n−1 are injective by Proposition 5.3.13. Let ϕ : A⊗R → A⊗R be the isomor-
phism given by ϕ(a ⊗ x) = aS(x(−1)) ⊗ x(0) for all a ∈ A, x ∈ R. Then for all
x ∈ R, h ∈ H,

ϕΔA(x) = ϕ(x(1)x(2)
(−1) ⊗ x(2)

(0)) = x(1) ⊗ x(2).

From these formulas it follows for all n ≥ 2 that ΔR
1,n−1 is injective, since ΔA

1,n−1

is injective. Hence R is strictly graded by Proposition 5.3.13.
(3) follows from (1), since A is generated by A1 if and only if grA is generated

by A0 ⊕A1/A0. �

Remark 5.3.17. A Hopf algebra H is called cosemisimple if it is cosemisimple
as a coalgebra. It is known that the antipode of a cosemisimple Hopf algebra is bi-
jective, see [Lar71, Thm. 3.3]. Therefore in Corollary 5.3.16 the assumption on the
bijectivity of the antipode of the Hopf algebra H can be dropped by Corollary 5.3.5.
A similar remark applies to Corollary 5.3.12 and to Proposition 5.3.18.

Proposition 5.3.18. Let H be a cosemisimple Hopf algebra with bijective an-
tipode. Let R be an N0-graded Hopf algebra in H

HYD, and assume that R is strictly
graded. Then the N0-graded Hopf algebra R#H is coradically graded and has a
bijective antipode.

Proof. Let A = R#H. By Corollary 4.3.5 and the definition of the mul-
tiplication, comultiplication and antipode of A, A is an N0-graded Hopf algebra
with A(0) = 1#H. Hence A(0) is cosemisimple. By Corollary 5.2.12, A is a Hopf
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algebra with bijective antipode. By the definition of ΔA and the rule for ϑ in
Corollary 4.3.1(2)(a),

(ϑ⊗ idA)ΔA(xh) = ϑ(x(1)x(2)
(−1)h(1))⊗ x(2)

(0)h(2)

= x(1) ⊗ x(2)h

for all x ∈ R, h ∈ H. Thus for all n ≥ 2, ΔA
1,n−1 is injective, since ΔR

1,n−1 is
injective. Hence A is coradically graded by Proposition 5.3.13. �

5.4. Pointed coalgebras

By Definition 1.3.3, a coalgebra C is called pointed if every simple subcoalgebra
of C is one-dimensional. A bialgebra or a Hopf algebra is pointed if its underlying
coalgebra is pointed.

If C is pointed, then

G(C)→ {D ⊆ C | D is a simple subcoalgebra}, g �→ kg,

is bijective.

Proposition 5.4.1. Let C be a coalgebra. Then the following are equivalent.

(1) C is pointed.
(2) Corad(C) =

⊕
g∈G(C) kg.

(3) Any simple right C-comodule is one-dimensional.
(4) Any simple left C-comodule is one-dimensional.

Proof. (1) implies (2) by Proposition 5.3.4(2), and (2) implies (1) by Propo-
sition 5.3.4(1). We prove that (1) and (3) are equivalent.

Assume (1) and let (V, δ) be a simple right C-comodule. Then C(V ) is simple by
Proposition 2.2.13(1), and C(V ) = kg for some g ∈ G(C) by (1). Thus δ(v) = v⊗g
for all v ∈ V , hence (3) holds.

Assume now (3) and let D be a simple subcoalgebra of C. Let V be a simple
right subcomodule of D. By (3), there exist 0 �= v ∈ V and d ∈ D with Δ(v) = v⊗d,
ε(d) = 1. Since v ∈ D, it follows from the axiom of the counit that v = ε(v)d.
Hence D = kd since D is a simple coalgebra, that is, (1) holds.

The equivalence of (3) and (4) follows from the category isomorphism between
right comodules over C and left comodules over Ccop and from the equivalence of
(1) and (3). �

If C is pointed, then it follows from Proposition 5.4.1 that there is a bijection
from G(C) to the set of isomorphism classes of simple left (respectively right) C-
comodules mapping a group-like element g to the isomorphism class of a simple one-
dimensional comodule V with basis v and δV (v) = g⊗v (respectively δV (v) = v⊗g).

Proposition 5.4.2. (1) Let C be a coalgebra with a coalgebra filtration
F(C) = (Fn(C))n≥0. If F0(C) is a pointed coalgebra, then C is pointed,
and Corad(C) ⊆ F0(C).

(2) A connected N0-graded coalgebra is pointed.
(3) Let C,D be coalgebras, f : C → D a coalgebra map, and assume that C is

pointed. Then f is a filtered map with respect to the coradical filtrations.
(4) Let C,D be coalgebras, and π : C → D a surjective coalgebra homo-

morphism. Then Corad(D) ⊆ π(Corad(C)). If C is pointed, then D is
pointed, and G(C)→ G(D), g �→ π(g), is surjective.
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Proof. (1) follows from Proposition 5.2.4, and (2) is a special case of (1).
(3) Since C is pointed, f(C0) is a sum of one- or zero-dimensional subcoalge-

bras of D, hence contained in D0. Using the inductive definition of the coradical
filtration, it follows easily by induction on n that f(Cn) ⊆ Dn for all n ≥ 0.

(4) Let (Cn)n≥0, C0 = Corad(C), be the coradical filtration of C.
Then F(D) = (Fn(D))n≥0, Fn(D) = π(Cn) for all n ≥ 0, is a coalgebra

filtration of D. Hence D0 = Corad(D) ⊆ π(C0) by Proposition 5.2.4. The rest is
clear. �

Corollary 5.4.3. (1) A pointed bialgebra H is a Hopf algebra if and
only if G(H) is a group (under multiplication in H).

(2) Let H be a pointed Hopf algebra with antipode S. Then S is bijective, and
S(I) = I for any Hopf ideal I ⊆ H.

Proof. (1) If H is a Hopf algebra, then the monoid G(H) is a group by
Proposition 2.4.1. Let H be a pointed bialgebra with coradical filtration (Hn)n≥0.
Then H0 = kG(H) by Proposition 5.4.1. Hence, by Corollary 5.2.11, if G(H) is a
group then H is a Hopf algebra with bijective antipode.

(2) By Proposition 5.4.2, H/I is a pointed Hopf algebra with antipode induced
by the antipode of H. By the proof of (1), the antipodes of H and of H/I are
bijective. This implies that S(I) = I. �

Corollary 5.4.4. Let H be a bialgebra, J an index set, and for all j ∈ J ,
xj ∈ H, gj , hj ∈ G(H) with g−1

j , h−1
j ∈ G(H) and

Δ(xj) = gj ⊗ xj + xj ⊗ hj .

Let G be a subgroup of G(H) containing all gj , hj with j ∈ J . Assume that H is
generated as an algebra by G and by the elements xj, j ∈ J . Then H is a pointed
Hopf algebra, and G = G(H).

Proof. Let X = {xj | j ∈ J}. For all n ≥ 0, let Fn(H) be the k-span of all
monomials a1a2 · · · am, where m ≥ 0, ai ∈ X ∪G for all 1 ≤ i ≤ m, and such that
ai ∈ X for at most n indices i. Then (Fn(H))n≥0 is a coalgebra filtration of H with
F0(H) = kG. Hence, by Propositions 5.4.2(1) and 5.4.1, H is pointed, G = G(H),
and H is a Hopf algebra by Corollary 5.4.3. �

Corollary 5.4.4 shows that for any Lie algebra g, the universal enveloping alge-
bra U(g) is a pointed Hopf algebra, and 1 is the only group-like element of U(g).
We will use the same argument for the deformed universal enveloping algebras in
Chapter 8.

We extend Proposition 1.3.10 from strictly graded coalgebras to pointed coalge-
bras. By a theorem of Heyneman and Radford the next theorem holds for arbitrary
coalgebras. We will only need the pointed version.

Theorem 5.4.5. Let C,D be coalgebras, and f : C → D a coalgebra map.
Assume that C is pointed and the restriction of f to C1 (defined by the coradical
filtration) is injective. Then gr f : grC → grD and f are injective.

Proof. Since C is pointed, f induces a coalgebra map gr f : grC → grD
by Proposition 5.4.2. By Lemma 5.2.14, it is enough to show that gr f is injective.
Corollary 5.3.5(2) implies that (gr f)1 : (grC)1 → (grD)1 is injective. Hence we can
assume that C,D are N0-graded coalgebras, f is graded, and C is coradically graded.
In this case the theorem follows easily by induction from Proposition 5.3.13(2). �
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Corollary 5.4.6. Let C be a pointed coalgebra. Let (Cn)n≥0 and ((grC)n)n≥0

be the coradical filtrations of C and grC, respectively. Then for all n ≥ 0, the inclu-
sion Cn ⊆ C defines an injective coalgebra map grCn → (grC)n = ⊕n

k=0(grC)(k).

Proof. By Theorem 5.4.5, the induced map grCn → grC is injective. For all
k > n, the map (grCn)(k)→ (grC)(k) is zero. Hence (grCn)(k) = 0 for all k > n,
and the corollary follows from Proposition 5.3.15. �

We next give a short proof of a weak version of the Taft-Wilson theorem. This
weak version is enough to prove Corollary 5.4.9 and 5.4.16 below which are useful
to lift information of grA to A for pointed Hopf algebras A with abelian group
G(A).

Theorem 5.4.7. Let A be a pointed Hopf algebra, and let (An)n≥0 be its corad-
ical filtration.

(1) For all n ≥ 1, An =
∑

g,h∈G(A) An(g, h), where for all g, h ∈ G(H),

An(g, h) = {x ∈ An | Δ(x) = g ⊗ x+ x⊗ h+ u with u ∈ An−1 ⊗An−1}
(2) A1 = kG(A) +

∑
g,h∈G(A) Pg,h(A).

Proof. Let π : grA → A(0) be the projection onto elements of degree 0, and
R = (grA)coH with respect to π. Let G = G(A). By Proposition 5.3.15 and Corol-
lary 5.3.16, grA is coradically graded, R is strictly graded, and the multiplication
map R#kG → grA is a graded isomorphism.

(a) We first prove the theorem for R, that is,

(1)’ for all n ≥ 1,

Rn = {x ∈ Rn | ΔR(x) = 1⊗ x+ x⊗ 1 + u, where u ∈ Rn−1 ⊗Rn−1},
(2)’ R1 = k1⊕ P (R).

By Corollary 5.3.14, R is coradically graded. Hence (2)’ follows immediately. To
prove (1)’, let x ∈ R(n), n ≥ 1. Then by Lemma 1.3.6(2),

ΔR(x) ∈ 1⊗ x+ x⊗ 1 +

n−1⊕
i=1

R(i)⊗R(n− i).

This proves (1)’, since R is coradically graded.
(b) Now we prove the theorem for grA.
(1) Let n ≥ 1 and x ∈ (grA)n. To prove that x ∈

∑
g,h∈G An(g, h), it suffices

to assume that x ∈ (grA)(n), x = r#h, where h ∈ H, r ∈ R(n) with δ(r) = g ⊗ r,
g ∈ G. Here δ : R → H ⊗R is the H-coaction of R. Then

ΔR(r) ∈ 1⊗ r + r ⊗ 1 +⊕n−1
i=1 R(i)⊗R(n− i),

ΔgrA(x) ∈ gh⊗ x+ x⊗ h+⊕n−1
i=1 R(i)#kG⊗R(n− i)#kG.

Hence x ∈ (grA)n(gh, h), and (1) follows.
If n = 1, then ΔgrA(x) = gh⊗ x+ x⊗ h. This proves (2).
(c) Now we prove the theorem for A.
(1) Let x ∈ An, n ≥ 1, and x the residue class of x in An/An−1. By (b), we

can assume that

ΔgrA(x) ∈ g ⊗ x+ x⊗ h+⊕n−1
i=1 (grA)(i)⊗ (grA)(n− i).
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Hence there are a, b ∈ An−1 and v ∈ An−1 ⊗An−1 with

Δ(x) = g ⊗ (x+ a) + (x+ b)⊗ h+ v

= g ⊗ x+ x⊗ h+ (g ⊗ a+ b⊗ h+ v)

∈ g ⊗ x+ x⊗ h+An−1 ⊗An−1.

(2) For all g, h ∈ G, let

Ag,h = {x ∈ A | Δ(x) = g ⊗ x+ x⊗ h+ u, where u ∈ kG⊗ kG}.

By (1) we know that A1 =
∑

g,h∈G Ag,h. So we have to show that

Ag,h = Pg,h(A) + kG.

The inclusion ⊇ is trivial. To prove the other inclusion, let x ∈ Ag,h, and let
u ∈ kG⊗ kG with

Δ(x) = g ⊗ x+ x⊗ h+ u.

It follows from coassociativity of Δ that

u⊗ h+ (Δ⊗ id)(u) = g ⊗ u+ (id⊗Δ)(u).(5.4.1)

Let u =
∑

a,b∈G αa,ba ⊗ b, where αa,b ∈ k for all a, b ∈ G. By subtracting∑
a∈G αa,aa from x, we may assume that αa,a = 0 for all a ∈ G \ {g, h}. Now

we express all terms in (5.4.1) as a linear combination of monomials a⊗ b⊗ c with
a, b, c ∈ G. For any b ∈ G with g �= b �= h, by looking at the coefficients of g⊗ b⊗ b
and b⊗ b⊗ h in (5.4.1) it follows that αg,b = αb,h = 0. Then for any a, b ∈ G with
g �= a �= b �= h, by looking at the coefficient of a ⊗ b ⊗ b we obtain that αa,b = 0.
Finally, if g �= h, then by looking at the coefficients of g ⊗ g ⊗ g and h⊗ h⊗ h we
get αg,g = αh,h = 0. It follows that u = αg,hg ⊗ h. Then x + αg,hh ∈ Pg,h(A),
which proves (2). �

Let A be a pointed Hopf algebra, and G = G(A). Note that the coradical
filtration (An)n≥0 of A is stable under the adjoint action of G, since the subspaces
An ⊆ A, n ≥ 0, are left and right kG-submodules of A by restriction. This follows
from their inductive definition in (5.3.1). Assume that G is abelian. Then G acts

on Pg,h(A) by the adjoint action. For all g, h ∈ G, and χ ∈ Ĝ, let

Pχ
g,h(A) = {a ∈ Pg,h(A) | uau−1 = χ(u)a for all u ∈ G}.

Lemma 5.4.8. Let A be a finite-dimensional pointed Hopf algebra. Assume that
G = G(A) is abelian, and char(k) = 0. Then for all g, h ∈ G, P ε

g,h(A) ⊆ kG.

Proof. We may assume that h = 1, since P ε
gh,h(A) = P ε

g,1(A)h. Choose

a ∈ P ε
g,1(A) with canonical image a in A1/A0. Since ΔgrA(a) = g ⊗ a + a ⊗ 1, we

see that a ∈ V = R(1) ∈ G
GYD, where the Yetter-Drinfeld structure is given by

δ(a) = g ⊗ a, u · a = uau−1 = a for all u ∈ G,

since a ∈ P ε
g,1(A). Thus a ∈ V ε

g . Now finite-dimensionality of A implies finite-
dimensionality of B(V ) by Example 1.10.2. Therefore a = 0 and a ∈ kG. �
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Corollary 5.4.9. Let A be a finite-dimensional pointed Hopf algebra. Assume
that G = G(A) is abelian, and that k is algebraically closed, and char(k) = 0. Let
(An)n≥0 be the coradical filtration of A. Then

A1 = A0 ⊕
⊕

(g,h,χ)

g,h∈G,ε �=χ∈Ĝ

Pχ
g,h(A),

and for all g, h ∈ G, ε �= χ ∈ Ĝ, the canonical map A1 → A1/A0 induces an

isomorphism Pχ
g,h(A)

∼=−→ Pχ
g,h(grA).

Proof. (1) By Lemma 5.4.8, Theorem 5.4.7, and Proposition 1.4.6, it follows
that

A1 = A0 ⊕
⊕

ε �=χ∈Ĝ

∑
g,h∈G

Pχ
g,h(A).(5.4.2)

Let ε �= χ ∈ Ĝ. To prove that the sum
∑

g,h∈G Pχ
g,h(A) is direct, let for all g, h ∈ G,

ag,h ∈ Pχ
g,h, and assume that

∑
g,h∈G ag,h = 0. Then

0 = ΔA(
∑

g,h∈G

ag,h) =
∑
g∈G

(g ⊗
∑
h∈G

ag,h) +
∑
h∈G

(
∑
g∈G

ag,h ⊗ h).

Since A0 ∩
∑

g,h∈G Pχ
g,h(A) = 0 by (5.4.2), we obtain that

∑
h∈G ag,h = 0 for all

g ∈ G, hence

0 = ΔA(
∑
h∈G

ag,h) = g ⊗
∑
h∈G

ag,h +
∑
h∈G

ag,h ⊗ h =
∑
h∈G

ag,h ⊗ h,

and ag,h = 0 for all g, h ∈ G.
(2) By (1), the canonical map A1 → A1/A0 induces an isomorphism⊕

(g,h,χ)

g,h∈G,ε �=χ∈Ĝ

Pχ
g,h(A)→ A1/A0 =

⊕
(g,h,χ)}g,h∈G,ε �=χ∈Ĝ

Pχ
g,h(grA),

Since grA is coradically graded by Proposition 5.3.15, the equality follows from (1)

for grA instead of A. For all g, h ∈ G, ε �= χ ∈ Ĝ, the canonical map induces
a linear map Pχ

g,h(A) → Pχ
g,h(grA). Since the direct sum of these maps is an

isomorphism, the maps Pχ
g,h(A)→ Pχ

g,h(grA) are bijective for all g, h, χ. �

To describe a decomposition of A1 as in Proposition 5.4.9 for certain infinite-
dimensional Hopf algebras, we need some standard results on locally finite repre-
sentations of abelian groups.

Definition 5.4.10. Let G be an abelian group, and V a kG-module. For all

χ ∈ Ĝ, we define

V (χ) = {v ∈ V | for all g ∈ G, (g − χ(g))sv = 0 for some s ≥ 1}.
Recall that V χ = {v ∈ V | gv = χ(g)v for all g ∈ G}.

Lemma 5.4.11. Let G be an abelian group, V a kG-module, S, T ⊆ Ĝ subsets,

and χ ∈ Ĝ.

(1) V χ ⊆ V (χ) ⊆ V are kG-submodules, and (V (χ))(χ) = V (χ).

(2) Let μ, ν ∈ Ĝ with μ �= ν. Then V (μ) ∩ V (ν) = 0 and (V (μ))(ν) = 0.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



240 5. GRADINGS AND FILTRATIONS

(3) Let (Vi)i∈I be a family of kG-modules. Then (
⊕

i∈I Vi)
(χ) =

⊕
i∈I V

(χ)
i .

(4) Let V,W be kG-modules, and assume that⊕
χ∈S

V (χ) ∼=
⊕
χ∈T

W (χ) as kG-modules,

where for all χ ∈ S, V (χ) �= 0, and for all χ ∈ T , W (χ) �= 0. Then S = T ,
and V (χ) ∼= W (χ) as kG-modules for all χ ∈ S.

Proof. (1) is obvious, since G is abelian.
(2) Let x ∈ V (μ) ∩ V (ν). For all g ∈ G, there is an integer s ≥ 1 with

(g − μ(g))sx = 0, (g − ν(g))sx = 0, and

(ν(g)− μ(g))2sx = ((g − μ(g))− (g − ν(g)))2sx = 0.

Thus x = 0, and therefore V (μ) ∩ V (ν) = 0. Hence (V (μ))(ν) ⊆ V (μ) ∩ V (ν) = 0.
(3) is obvious, and (4) follows from (2) and (3). �

From now on we assume in this section that k is algebraically closed.

Lemma 5.4.12. Let G be an abelian group, and V a finite-dimensional kG-
module with representation ρ : G → Aut(V ). Then there is a basis of V such that
for all g ∈ G, the representing matrix of ρ(g) is upper triangular.

Proof. Let g ∈ G. Since k is algebraically closed, there is an eigenvalue λ of
ρ(g). Let Vg,λ = {v ∈ V | gv = λv}. Since G is abelian, Vg,λ is a G-subspace of V .
If Vg,λ = V for all g, λ, the lemma is obvious. Hence we may assume that Vg,λ � V
for some g, λ. By induction on dimV , there is a non-zero element v1 ∈ V such that
kv1 is G-invariant. Again by induction there are elements v2, . . . , vn ∈ V such that
their residue classes are a basis as claimed in the lemma for V/kv1. Then the basis
v1, . . . , vn of V has the required property. �

Proposition 5.4.13. Let G be an abelian group, and V a locally finite kG-
module. Then V =

⊕
χ∈Ĝ V (χ).

Proof. We can assume that V is finite-dimensional. We prove the proposition
by induction on the dimension of V . Let dimV = n ≥ 1, and assume the theorem
holds for kG-modules of dimension< n. Let ρ : kG → End(V ) be the representation
of G.

(1) Assume that for all g ∈ G, ρ(g) has exactly one eigenvalue χ(g). By
Lemma 5.4.12, there is a basis of V such that for all g ∈ G, the representing matrix
(aij(g))1≤i,j≤n of ρ(g) with respect to this basis is upper triagonal. Hence for all
g ∈ G, 1 ≤ i ≤ n, aii(g) = χ(g). This implies that χ(gh) = χ(g)χ(h) for all

g, h ∈ G, hence χ ∈ Ĝ. Moreover, V = V (χ), since ρ(g) − χ(g) is nilpotent for all

g ∈ G. For all μ ∈ Ĝ, μ �= χ, V (μ) = 0 by Lemma 5.4.11(2).
(2) Now we assume that there is an element g ∈ G such that ρ(g) has at least

two eigenvalues. Let V =
⊕n

i=1 Vi be the decomposition of V into generalized
eigenspaces of ρ(g)

Vi = {v ∈ V | (g − λi)
sv = 0 for some s ≥ 1}

with eigenvalue λi, 1 ≤ i ≤ n. Then n ≥ 2. Since G is abelian, Vi � V is a
kG-submodule for all 1 ≤ i ≤ n. By induction, the claim holds for all Vi, 1 ≤ i ≤ n.
The claim for V follows from Lemma 5.4.11(3). �

The preliminary version made available with permission of the publisher, the American Mathematical Society.



5.4. POINTED COALGEBRAS 241

Corollary 5.4.14. Let G be an abelian group, V a locally finite kG-module,

U ⊆ V a kG-submodule, and S ⊆ Ĝ a subset.

(1) If V =
⊕

χ∈S V (χ), then U =
⊕

χ∈S U (χ).

(2) If V =
⊕

χ∈S V χ, then U =
⊕

χ∈S Uχ.

Proof. By Proposition 5.4.13, U =
⊕

χ∈Ĝ U (χ). Hence (1) and (2) follow

from Lemma 5.4.11. �

Corollary 5.4.15. Let G be an abelian group, V a locally finite kG-module,

U ⊆ V a kG-submodule, and S, T ⊆ Ĝ disjoint subsets such that

U =
⊕
χ∈S

Uχ, V/U =
⊕
χ∈T

(V/U)χ.

Then

V = U ⊕
⊕
χ∈T

V χ, U =
⊕
χ∈S

V χ.

Proof. By Proposition 5.4.13, V =
⊕

χ∈S V (χ) ⊕
⊕

χ∈Ĝ\S V (χ), and⊕
χ∈T

(V/U)χ = V/U ∼=
⊕
χ∈S

V (χ)/Uχ ⊕
⊕

χ∈Ĝ\S

V (χ),

since by Lemma 5.4.11(2),(3), for all χ ∈ T , (V/U)(χ) = (V/U)χ, and for all χ ∈ Ĝ,
U (χ) = Uχ, if χ ∈ S, and U (χ) = 0, if χ /∈ S. Since for all χ ∈ T , (V/U)χ = 0
implies that V χ = 0, we may assume that (V/U)χ �= 0 for all χ ∈ T . We conclude
from Lemma 5.4.11(4) that V (χ) = Uχ for all χ ∈ S, V (χ) = V χ for all χ ∈ T , and

V (χ) = 0 for all χ ∈ Ĝ \ (S ∪ T ). This proves the claim. �

Proposition 5.4.16. Let k be algebraically closed, A a pointed Hopf algebra
with coradical filtration (An)n≥0, and abelian group G = G(A). Let R = (grA)co kG

with respect to the projection of grA onto degree 0. Assume that V = R(1) ∈ G
GYD

is finite-dimensional. Then the following hold.

(1) A1 is a locally finite kG-module under the adjoint action.
(2) Assume that V =

⊕
ε �=χ V χ. Then

A1 = A0 ⊕
⊕

(g,h,χ)

g,h∈G,ε �=χ∈Ĝ

Pχ
g,h(A),

and for all g, h ∈ G, ε �= χ ∈ Ĝ, the canonical map A1 → A1/A0 induces

an isomorphism Pχ
g,h(A)

∼=−→ Pχ
g,h(grA).

Proof. (1) The coradical filtration is stable under the adjoint action of G. By
Theorem 5.4.7,

A1 = A0 +
∑

g,h∈G(A)

Pg,h(A).(5.4.3)

By Corollary 5.3.16, multiplication defines an isomorphism grA ∼= R#kG of N0-
graded Hopf algebras, hence as kG-modules under the adjoint action. In particular,

A1/A0
∼= V#kG as kG-modules,(5.4.4)
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where g · (v ⊗ h) = g · v ⊗ h for all g, h ∈ G, v ∈ V . Hence A1/A0 is a locally finite
kG-module.

Let g, h ∈ G. Then Pg,h(A)/k(g−h) is embedded into A1/A0 as a kG-module.
Hence Pg,h(A)/k(g − h) and Pg,h(A) are locally finite.

Then it follows from (5.4.3) that A1 is locally finite.
(2) By (5.4.4), A1/A0 =

⊕
ε �=χ∈Ĝ(A1/A0)

χ. Hence

A1 = A0 ⊕
⊕

ε �=χ∈Ĝ

(A1)
χ, A0 = (A1)

ε,

by Corollary 5.4.15 with S = {ε}, T = Ĝ \ {ε}. Then by Corollary 5.4.14(2) and

(5.4.3), for all ε �= χ ∈ Ĝ, (A1)
χ =

∑
g,h∈G Pχ

g,h(A). The claim in (2) now follows

by the same argument as in part (2) of the proof of Corollary 5.4.9. �

5.5. Graded Yetter-Drinfeld modules

Let Γ be an abelian monoid, and H a Γ-graded Hopf algebra with bijective
antipode.

The category Γ-GrMk is braided monoidal, where the braiding is the flip map-
ping (see Section 5.1), and H is a Hopf algebra in Γ-GrMk. We study the Yetter-
Drinfeld category H

HYD(Γ-GrMk) defined in Section 3.4. An object V in this
category is an object V in H

HYD such that V =
⊕

α∈Γ V (α) is a graded vector
space, and the module and comodule structure maps H ⊗ V → V and V → H ⊗ V
are graded.

If H is trivially graded, that is, H(0) = H and H(α) = 0 for all non-zero α ∈ Γ,
then an object in H

HYD(Γ-GrMk) is an object in H
HYD which is a graded vector

space V =
⊕

α∈Γ V (α) such that V (α) ⊆ V are subobjects in H
HYD for all α ∈ Γ,

that is, V ∈ Γ-GrHHYD.

Lemma 5.5.1. Let V ∈ H
HYD(Γ-GrMk).

(1) Let U ⊆ V be a Γ-graded subspace and a submodule and subcomodule.
Then U is a subobject of V in H

HYD(Γ-GrMk).
(2) If U ⊆ V is a Γ-graded H-subcomodule, then HU is the smallest subobject

of V in H
HYD(Γ-GrMk) containing U .

(3) Assume that Γ is cancellative. If U ⊆ V is a Γ-graded H-submodule, then
UH∗ is the smallest subobject of V in H

HYD(Γ-GrMk) which contains U .
Here, UH∗ is the smallest H-subcomodule of V containing U .

Proof. (1) follows from Lemma 5.1.2(1)(a) and (2)(a).
(2) Since U is a graded vector space, HU is a graded H-submodule of V . Let

δ : V → H⊗V , v �→ v(−1)⊗v(0), be the comodule structure of V . Then for all h ∈ H
and u ∈ U , δ(hu) = h(1)u(−1)S(h(3)) ⊗ h(2)u(0). Hence HU is an H-subcomodule
of V , and the claim follows from (1).

(3) By definition, V is a right H∗-module with vf = f(v(−1))v(0) for all v ∈ V ,
f ∈ H∗. By Corollary 2.2.18, UH∗ is the smallest subcomodule of V containing
U . By Lemma 5.1.2(2)(b),

⊕
α∈Γ(UH∗)∩V (α) is a graded subcomodule of V , and

U ⊆
⊕

α∈Γ(UH∗) ∩ V (α), since U is graded. Hence
⊕

α∈Γ(UH∗) ∩ V (α) = UH∗.
For all h ∈ H, u ∈ U and f ∈ H∗,

h(uf) = f(u(−1))hu(0) = (h(2)u)(h(3)fS(h(1))).
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Hence UH∗ is a left H-submodule of V , since U ⊆ V is an H-submodule. The
claim follows from (1). �

The category H
HYD(Γ-GrMk) is a braided monoidal category with monoidal

structure and braiding as in H
HYD.

Let C = H
HYD(Γ-GrMk). Algebras, coalgebras, bialgebras, and Hopf algebras

in C are called Γ-graded algebras, coalgebras, bialgebras, and Hopf algebras
in H

HYD, respectively.

Lemma 5.5.2. Let R be a Γ-graded bialgebra in H
HYD, and

P (R) = {x ∈ R | Δ(x) = x⊗ 1 + 1⊗ x}.
Then P (R) is a Γ-graded subobject of R in H

HYD.

Proof. The maps R
Δ−→ R⊗R and R → R⊗R, r �→ r⊗1+1⊗r, are Γ-graded

maps in H
HYD. �

Graded objects in C are defined as in Remark 5.1.5. The category N0-Gr C is
monoidal with (V ⊗W )(n) =

⊕
i+j=n V (i)⊗W (j) for all n ≥ 0, where V,W ∈ C.

It is braided with the braiding of C, since the braiding cV,W : V ⊗W → W ⊗ V in
C of graded objects is graded.

We construct the tensor algebra as an N0-graded Hopf algebra in C.
Let V ∈ C. The tensor algebra

T (V ) =
⊕
n≥0

Tn(V ), T 0(V ) = k, Tn(V ) = V ⊗n for all n > 0,

is an N0-graded algebra with multiplication given by concatenation, that is, for all
i, j ≥ 0,

μi,j = id : T i(V )⊗ T j(V )→ T i+j(V ).

Then T (V ) is an N0-graded algebra in the monoidal category C, where Tn(V ) is
the n-fold tensor product of graded Yetter-Drinfeld modules for all n ≥ 0. Thus
action and coaction of H are defined by

h · (v1 ⊗ · · · ⊗ vn) = h(1)v1 ⊗ · · · ⊗ h(n)vn

δ(v1 ⊗ · · · ⊗ vn) = v1(−1) · · · vn(−1) ⊗ v1(0) ⊗ · · · ⊗ vn(0)

for all h ∈ H, v1, . . . , vn ∈ V , n ≥ 0.

Example 5.5.3. Let Γ = Nθ
0 as in Example 5.2.1, and let α1, . . . , αθ be the

standard basis of Zθ. Assume that V =
⊕θ

i=1 Vi is a direct sum decomposition in
H
HYD. We define an Nθ

0-grading on V by setting

V (αi) = Vi for all i, and V (α) = 0 for all α ∈ Nθ
0 \ {α1, . . . , αθ}.

Note that for all n1, . . . , nθ ∈ N0,

T (V )
( θ∑

i=1

niαi

)
⊂ Tn(V ), where n =

θ∑
i=1

ni.

The tensor algebra has the usual universal property.

Lemma 5.5.4. Let V be an object and R an algebra in C. For any morphism
f : V → R in C there is exactly one morphism ϕ : T (V )→ R of algebras in C such
that ϕ(v) = f(v) for all v ∈ V .
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Proof. Let ϕ(v1⊗· · ·⊗vn) = f(v1) · · · f(vn) for all v1, . . . , vn ∈ V , n ≥ 0. �
Proposition 5.5.5. Let V ∈ C.
(1) There exists a uniquely determined map Δ : T (V ) → T (V )⊗T (V ) of

algebras in C such that

Δ(v) = 1⊗ v + v ⊗ 1 for all v ∈ V.

The algebra T (V ) is an N0-graded Hopf algebra in C with comultiplication

Δ and counit π
T (V )
0 : T (V ) → k, and S(v) = −v for all v ∈ V , where S

is the antipode of T (V ).
(2) Let R be a bialgebra in C and f : V → P (R) a homomorphism in C.

Then there is exactly one map ϕ : T (V )→ R of bialgebras in C such that
ϕ(v) = f(v) for all v ∈ V .

Proof. (1) It is clear from the universal property of the tensor algebra that Δ
exists and is uniquely determined. We show that T (V ) with comultiplication Δ and

counit ε = π
T (V )
0 : T (V )→ k becomes an N0-graded bialgebra in C. It is easy to see

by induction that the comultiplication is N0-graded, since for all i, j the braiding of
T (V ) maps T i(V )⊗ T j(V ) onto T j(V )⊗ T i(V ). By the universal property of the
tensor algebra it is enough to check the axioms of coassociativity and counitarity
on elements of V which is obvious, since the elements of V are primitive. Finally
T (V ) has an antipode by Proposition 5.2.9. Then for all v ∈ V , S(v) = −v, since
v is primitive and ε(v) = 0 by definition.

(2) By the universal property of the tensor algebra there is exactly one map
ϕ : T (V ) → R of algebras in C with ϕ|V = f . By the same argument as before, ϕ
is a coalgebra map, since it is enough to check the equalities Δϕ = (ϕ⊗ ϕ)Δ and
εϕ = ε on elements of V . �

We formulate a graded version of Corollary 4.3.3. Let H be a Γ-graded Hopf
algebra. The category of graded Hopf algebra triples over H is defined as
follows. The objects of this category are triples (A, π, γ), where A is a Γ-graded Hopf
algebra, and π : A → H, γ : H → A are Γ-graded Hopf algebra homomorphisms
with πγ = idH . A morphism between graded triples (A, π, γ), (A′, π′, γ′) is a Γ-
graded Hopf algebra homomorphism Φ : A → A′ with π′Φ = π and Φγ = γ′.

Recall that C = H
HYD(Γ-GrMk).

Theorem 5.5.6. Let H be a Γ-graded Hopf algebra with bijective antipode.

(1) Let R be a Hopf algebra in C. Then (R#H, πR, γR) is a graded Hopf
algebra triple over H, where the grading of R#H is the tensor product
grading. Moreover, (R#H)coH is a graded subspace of R#H, and

R → (R#H)coH , r �→ r#1,

is an isomorphism of Hopf algebras in C.
(2) Let A be a Γ-graded Hopf algebra, and π : A → H and γ : H → A graded

Hopf algebra homomorphisms with πγ = idH , and define the Hopf algebra
R#H with R = AcoH . Then R is a Hopf algebra in C with induced grading
R(α) = R ∩A(α) for all α ∈ Γ, and

Φ : R#H → A, r#h �→ rγ(h),

is a graded Hopf algebra isomorphism with πR = πΦ and ΦγR = γ.

Proof. Adapt the proof of Corollary 4.3.3 replacing Mk by kΓM. �
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5.6. Notes

5.2. A variant of Proposition 5.2.9 was formulated first in [Tak71, Lemma 14]
for the coradical filtration.

A version of Lemma 5.2.16 was already used in [Swe69, Lemma 9.1.5].

5.3. We present the classical theory of the coradical filtration. See [Swe69],
[Mon93], [Rad12] for a slightly different exposition without using properties of
the Jacobson radical.

5.4. For a proof of the general case of the Theorem of Heyneman and Radford
[HR74] see [Mon93, Theorem 5.3.1], and in generalized form [Rad12, Theo-
rem 4.7.4].

Our proof of Theorem 5.4.7 follows [AS00b]. The proof of Corollary 5.4.16 is
inspired by [AS04, Lemma 4.4].

Let C be a pointed coalgebra, G = G(C), and (Cn)n≥0 the coradical filtration
of C. For all g, h ∈ G, let P ′

g,h(C) ⊆ Pg,h(C) be a vector subspace such that

Pg,h(C) = k(g−h)⊕P ′
g,h(C). The Theorem of Taft and Wilson [TW74] says that

Theorem 5.4.7(1) holds for C, and C1 = C0

⊕
g,h∈G P ′

g,h(C). See [Mon93, The-

orem 5.4.1] and [Rad12, Theorem 4.3.2] for a proof. In the situation of Proposi-
tion 5.4.16 we have shown that P ′

g,h(A) =
⊕

ε �=χ Pχ
g,h is a possible choice for the

Theorem of Taft and Wilson.
In Lemma 5.4.11, Proposition 5.4.13 and Corollary 5.4.15 we prove some stan-

dard results on locally finite representations of abelian groups following the presen-
tation of Dixmier in [Dix96], Theorem 1.3.19, for nilpotent Lie algebras.
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CHAPTER 6

Braided structures

In Chapter 1 we defined the Nichols algebra of a braided vector space where the
braiding comes from a Yetter-Drinfeld module structure. It is possible to develop
the basic theory of braided Hopf algebras and Nichols algebras for arbitrary braided
vector spaces. This will be done in the following two chapters.

In Section 6.3 we study quotient theory of pointed braided Hopf algebras, in
particular of pointed Hopf algebras where the braiding is the twist map. In Corol-
lary 6.3.10 we describe the Hilbert series of a quotient; in Section 7.1, this leads to
a formula which compares the Hilbert series of the Nichols algebra with the Hilbert
series of the tensor algebra.

However, more sophisticated tools like Cartan graphs and root systems can not
be discussed in this context, and therefore in later chapters we will turn back again
to categories of Yetter-Drinfeld modules.

6.1. Braided vector spaces

Let (V, c) be a braided vector space. Recall from Definition 1.7.9 that we have
defined linear maps cm,n ∈ Aut(V ⊗m ⊗ V ⊗n) for all m,n ≥ 0. In particular, by
Corollary 1.7.10,

c1,n = cncn−1 · · · c1,(6.1.1)

cn,1 = c1c2 · · · cn.(6.1.2)

If V is an object of a braided strict monoidal category, the braid group acts on
tensor powers of V as in Lemma 1.7.5.

Lemma 6.1.1. Let V be an object in a braided strict monoidal category with
braiding c = cV,V : V ⊗ V → V ⊗ V . Then for all m,n ≥ 1,

cV ⊗m,V ⊗n = cm,n.

Proof. See the proof of Lemma 1.7.11. �

Definition 6.1.2. Let (V, c) be a braided vector space, and m,n ≥ 0. A linear
map f : V ⊗m → V ⊗n commutes with the braiding of V if

(f ⊗ idV )c1,m = c1,n(idV ⊗ f), (idV ⊗ f)cm,1 = cn,1(f ⊗ idV ),(6.1.3)

that is, if the diagrams

V ⊗ V ⊗m
c1,m

��

idV ⊗f

��

V ⊗m ⊗ V

f⊗idV

��

V ⊗ V ⊗n
c1,n

�� V ⊗n ⊗ V

V ⊗m ⊗ V
cm,1

��

f⊗idV

��

V ⊗ V ⊗m

idV ⊗f

��

V ⊗n ⊗ V
cn,1

�� V ⊗ V ⊗n

commute.

247
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Let V ∈ H
HYD be a Yetter-Drinfeld module over some Hopf algebra H with

bijective antipode. Then any linear map f : V ⊗m → V ⊗n which is a morphism
of Yetter-Drinfeld modules commutes with the braiding, since the braiding is a
functorial isomorphism. Thus equations (6.1.3) are a substitute for the functoriality
of the braiding.

Equations (6.1.3) can be described by the pictures (3.2.12) and (3.2.13), where
h = f , and Xi = V = Yj for all i, j.

Lemma 6.1.3. Let (V, c) be a braided vector space.

(1) The set of linear maps between tensor powers of V which commute with the
braiding of V is closed under composition, addition, scalar multiplication
and tensor products.

(2) All left multiplications with elements of kBn on V ⊗n, n ≥ 1, commute
with the braiding of V .

(3) If f : V ⊗m → V ⊗n, m,n ≥ 0, is a linear map commuting with the braiding
of V , then the following diagrams commute for all r ≥ 0:

V ⊗r ⊗ V ⊗m
cr,m

��

idV ⊗r⊗f

��

V ⊗m ⊗ V ⊗r

f⊗idV ⊗r

��

V ⊗r ⊗ V ⊗n
cr,n

�� V ⊗n ⊗ V ⊗r

V ⊗m ⊗ V ⊗r
cm,r

��

f⊗idV ⊗r

��

V ⊗r ⊗ V ⊗m

idV ⊗r⊗f

��

V ⊗n ⊗ V ⊗r
cn,r

�� V ⊗r ⊗ V ⊗n

(4) If f : V ⊗p → V ⊗q, g : V ⊗r → V ⊗s, p, q, r, s ≥ 0, are linear maps
commuting with the braiding of V , then the following diagram commutes:

V ⊗p ⊗ V ⊗r
cp,r

��

f⊗g

��

V ⊗r ⊗ V ⊗p

g⊗f

��

V ⊗q ⊗ V ⊗s
cq,s

�� V ⊗s ⊗ V ⊗q

Proof. (1) is obvious for composition, addition and scalar multiplication of
linear maps, and follows for tensor products from Corollary 1.7.10(4),(5).

(2) follows from (1), since the equation c1c2c1 = c2c1c2 implies that c and hence
each ci ∈ End(V ⊗n), 1 ≤ i ≤ n− 1, commutes with the braiding.

(3) We prove the commutativity of the first diagram by induction on r. The
commutativity of the second diagram follows in the same way. For r = 0 the first
diagram is trivially commutative, and for r = 1 it is commutative, since f commutes
with the braiding. In the diagram

V ⊗ V ⊗r ⊗ V ⊗m
idV ⊗cr,m

��

idV ⊗idV ⊗r⊗f

��

V ⊗ V ⊗m ⊗ V ⊗r
c1,m

��

idV ⊗f⊗idV ⊗r

��

V ⊗m ⊗ V ⊗ V ⊗r

f⊗idV ⊗idV ⊗r

��

V ⊗ V ⊗r ⊗ V ⊗n
idV ⊗cr,n

�� V ⊗ V ⊗n ⊗ V ⊗r
c1,n

�� V ⊗n ⊗ V ⊗ V ⊗r

the first square commutes by induction, and the second square commutes, since f
commutes with the braiding. The claim follows since by Corollary 1.7.10(4), the
composition of the upper and lower horizontal maps is cr+1,m and cr+1,n, respec-
tively.

(4) follows from (3) by using that f ⊗ g = (id⊗ g)(f ⊗ id). �
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Remark 6.1.4. Let (V, c) be a braided vector space. For clarity, we denote
by V ⊗n, n ≥ 0, a vector space satisfying the universal property with respect to
multilinear maps. Let C(V ) be the strict monoidal category with objects V ⊗n,
n ≥ 0, and linear maps as morphisms. The monoidal structure is the functor

C(V )× C(V )→ C(V ), (V ⊗m, V ⊗n) �→ V ⊗(m+n),

where morphism (f, g) are mapped onto f ⊗ g. Let C(V, c) be the strict monoidal
subcategory of C(V ) with the same objects V ⊗m, m ≥ 0, and where the morphisms
are the linear maps f : V ⊗m → V ⊗n, m,n ≥ 0, which commute with c. By
Lemma 6.1.3(1), C(V, c) is a monoidal subcategory of C(V ). For all m,n ≥ 0, let

c(V ⊗m,V ⊗n) = cm,n : V ⊗m ⊗ V ⊗n → V ⊗n ⊗ V ⊗m.

By Lemma 6.1.3(4), (cX,Y )X,Y ∈C(V,c) is a natural isomorphism. Hence C(V, c) is a
braided strict monoidal category by Corollary 1.7.10(4) and (5).

Definition 6.1.5. Let (V, c) be a braided vector space, and U ⊆ V a subspace.
Then

(1) U is a categorical subspace of V if

c(U ⊗ V ) = V ⊗ U and c(V ⊗ U) = U ⊗ V,

(2) U is a braided subspace of V if c(U ⊗ U) = U ⊗ U ,
(3) V/U is a braided quotient space of V if

c(U ⊗ V + V ⊗ U) = U ⊗ V + V ⊗ U.

A subspace U ⊆ V of a Yetter-Drinfeld module V ∈ H
HYD with braiding cV,V

is categorical if it is a subobject in H
HYD.

Remark 6.1.6. Let (V, c) be a braided vector space.
A subspace U ⊆ V is categorical if and only if c induces bijections

c : V/U ⊗ V → V ⊗ V/U, c : V ⊗ V/U → V/U ⊗ V.

If U1 and U2 are categorical subspaces of V , then U1 ∩ U2 ⊆ V is categorical,
and c(U1 ⊗ U2) = U2 ⊗ U1.

If U ⊆ V is a categorical subspace, then U is a braided subspace, and V/U is
a braided quotient space.

If U ⊆ V is a subspace, then V/U is a braided quotient space if and only if
there exists a (uniquely determined) braiding

c : V/U ⊗ V/U → V/U ⊗ V/U

such that the quotient map π : V → V/U is a map of braided vector spaces.

Lemma 6.1.7. Let (V, c) be a braided vector space, and f : V ⊗m → V ⊗n with
m,n ≥ 0 be a linear map commuting with the braiding of V . Then ker(f) ⊆ V ⊗m

and im(f) ⊆ V ⊗n are categorical subspaces.

Proof. By taking the kernels of the vertical maps in the commutative dia-
grams in Lemma 6.1.3(3) with r = m, we see that

cm,m(V ⊗m ⊗ ker(f)) = ker(f)⊗ V ⊗m, cm,m(ker(f)⊗ V ⊗m) = V ⊗m ⊗ ker(f).

By taking the images of the same vertical maps with r = n we see that im(f) is a
categorical subspace of V ⊗n. �
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Definition 6.1.8. Let Γ be a set. A Γ-graded braided vector space is a
braided vector space (V, c) which is a Γ-graded vector space V =

⊕
γ∈Γ V (γ) such

that c(V (γ)⊗ V (λ)) = V (λ)⊗ V (γ) for all γ, λ ∈ Γ.

Lemma 6.1.9. Let Γ be a set, (V, c) a Γ-graded braided vector space, and γ ∈ Γ.

(1) V (γ) ⊆ V is a categorical subspace.

(2) The linear map V
πγ−−→ V (γ) ⊆ V commutes with c, where πγ is the pro-

jection map.

Proof. (1) is obvious.

(2) The diagrams in Definition 6.1.2 with f = (V
πγ−−→ V (γ) ⊆ V ) commute,

since by (1) they commute on V ⊗ V (λ) and V (λ)⊗ V for all λ ∈ Γ. �

Corollary 6.1.10. Let (V, c) be a braided vector space. Then (T (V ), cT (V ))
is an N0-graded braided vector space, where by definition for all m,n ≥ 0, the
restriction of cT (V ) to V ⊗m ⊗ V ⊗n is cm,n.

Proof. We have to show that for all r, s, t ≥ 0,

cs,tcr,t
↑scr,s = cr,s

↑tcr,tcs,t
↑r.(6.1.4)

By Lemma 6.1.3(2), cs,t commutes with the braiding of V . Hence the first dia-
gram in Lemma 6.1.3(3) with f = cs,t commutes. This proves (6.1.4), since by
Corollary 1.7.10(5), cr,t

↑scr,s = cr,s+t = cr,s
↑tcr,t. �

6.2. Braided algebras, coalgebras and bialgebras

We discuss algebra and coalgebra structures on a braided vector space.
Recall from Remark 6.1.4 the definition of the braided strict monoidal category

C(V, c) for a braided vector space (V, c). The results of Chapter 3 apply to C(V, c).

Definition 6.2.1. A braided algebra is a quadruple A = (A, μ, η, c) such
that (A, c) is a braided vector space and (A, μ, η) is an algebra in C(A, c) (that is,
(A, μ, η) is an algebra and μ and η commute with c). A braided coalgebra is a
quadruple C = (C,Δ, ε, c) such that (C, c) is a braided vector space and (C,Δ, ε)
is a coalgebra in C(C, c).

A homomorphism or a map of braided algebras (coalgebras) A→ B is
a braided linear map (A, c)→ (B, d) which is also an algebra (coalgebra) map.

Remark 6.2.2. Let (A, μ, η, c) be a braided algebra. Then (A, μ, η) is an alge-
bra in the category C(A, c) by definition.

(1) By Proposition 3.2.4, for any three algebras B,C,D in C(A, c), the tensor
product of B and C, denoted by B⊗C, is an algebra in C(A, c), and the alge-
bra structures on (B⊗C)⊗D and on B⊗(C⊗D) coincide. In particular, for any
m ≥ 1 the m-fold tensor product (A⊗m, μA⊗m , ηA⊗m) of the algebra A is uniquely
determined as an algebra in C(A, c).

A similar remark holds for braided coalgebras using Proposition 3.2.5.
(2) By Lemma 6.1.3, compositions and tensor products of algebra morphisms

in C(A, c) are algebra morphisms in C(A, c). (They commute with c by definition
of a morphism in C(A, c).)

Proposition 6.2.3. Let ϕ : A → B be a map of braided (co)algebras. Then
for any m ≥ 1, ϕ⊗m : A⊗m → B⊗m is a map of (co)algebras.
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Proof. Assume that A = (A, μA, ηA, c) and B = (B, μB, ηB, d) are braided
algebras. We prove the claim by induction on m. For m = 1 the claim is trivial.
Assume that m ≥ 2. Then

ϕ⊗mμA⊗m = ϕ⊗m(μA⊗m−1 ⊗ μA)c
↑m−1
1,m−1

= (μB⊗m−1 ⊗ μB)ϕ
⊗2mc↑m−1

1,m−1

= (μB⊗m−1 ⊗ μB)d
↑m−1
1,m−1ϕ

⊗2m = μB⊗m(ϕ⊗m ⊗ ϕ⊗m),

where the first equation holds by definition of the tensor product, the second follows
from induction hypothesis and since ϕ is an algebra map, the third follows since ϕ is
a braided linear map, and the last one holds again by definition of μB⊗m . Similarly,
ϕ⊗mηA⊗m = ηB⊗m . Hence ϕ⊗m is an algebra map.

For coalgebra maps the proof is analogous. �

Definition 6.2.4. Let A = (A, μ, η,Δ, ε, c) be a 6-tuple such that (A, μ, η, c)
is a braided algebra and (A,Δ, ε, c) is a braided coalgebra. Then A is a braided
bialgebra if Δ : A → A⊗A and ε : A → k are algebra maps.

A braided Hopf algebra is a braided bialgebra with an antipode, that is, a
convolution inverse of the identity map.

A homomorphism or a map of braided bialgebras (respectively Hopf
algebras) is a homomorphism of braided algebras and of braided coalgebras.

A braided bialgebra A is a bialgebra in C(A, c).
Since the antipode S of a braided Hopf algebra A is convolution inverse to the

identity, S is a unitary and augmented map, that is, S(1) = 1, and ε(S(x)) = ε(x)
for all x ∈ A.

Lemma 6.2.5. Let A be a braided algebra, coalgebra or bialgebra, and I an ideal,
coideal or bi-ideal of A such that A/I is a braided quotient space. Then A/I is a
braided algebra, coalgebra or bialgebra, such that the quotient map A → A/I is a
homomorphism of braided algebras, coalgebras or bialgebras.

Proof. Obviously, the structure maps of A/I commute with the quotient
braiding of A/I. �

Proposition 6.2.6. Let A be a braided Hopf algebra with antipode S and braid-
ing c.

(1) S commutes with c, in particular, (S ⊗ S)c = c(S ⊗ S).
(2) Sμ = μc(S ⊗ S).
(3) ΔS = (S ⊗ S)cΔ.

Proof. (1) Since S is the convolution inverse of the identity in Hom(A,A),
by Proposition 1.2.19, S is the composition of the maps

A
η⊗idA−−−−→ A⊗A

G−1

−−→ A⊗A
idA⊗ε−−−−→ A,(6.2.1)

where G is the isomorphism G = (μ⊗ idA)(idA ⊗Δ). Hence S commutes with the
braiding of A, since η ⊗ idA, G−1 and idA ⊗ ε all commute with the braiding of A.

(2) and (3) follow from Proposition 3.2.12 and (1). �
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Definition 6.2.7. Let A = (A, μ, η,Δ, ε, c) be a braided bialgebra. Let

Aop = (A, μc−1, η,Δ, ε, c−1),

Acop = (A, μ, η, c−1Δ, ε, c−1).

Proposition 6.2.8. Let H be a braided bialgebra.

(1) Hop and Hcop are braided bialgebras.
(2) If H is a braided Hopf algebra, then the following are equivalent.

(a) The antipode of H is bijective.
(b) Hop is a braided Hopf algebra.
(c) Hcop is a braided Hopf algebra.

(3) If H is a braided Hopf algebra with bijective antipode, then
(a) Hop and Hcop are braided Hopf algebras with antipode S−1.
(b) S : Hop → Hcop is an isomorphism of braided Hopf algebras.

Proof. (1) follows from Proposition 3.2.15. Since S commutes with the braid-
ing by Proposition 6.2.6, (2) and (3) follow from Proposition 3.2.15 and Corol-
lary 3.2.16. �

Remark 6.2.9. The crucial axiom for a braided bialgebra is the equality

Δμ = (μ⊗ μ)c2(Δ⊗Δ),(6.2.2)

which can be written as

Δ(xy) = x(1)c(x(2) ⊗ y(1))y(2)(6.2.3)

for all x, y ∈ A, where A⊗A is viewed as a left and a right A-module by multipli-
cation on the left and the right tensorand, respectively.

Lemma 6.2.10. (1) Let A be a braided algebra, and V1, . . . , Vn, n ≥ 2,
categorical subspaces. Then V1 · · ·Vn is a categorical subspace of A.

(2) Let A be a braided bialgebra, and I a categorical coideal of A. Then AI, IA
and AIA are categorical coideals of A.

(3) Let C be a braided coalgebra, and assume that the braided vector space C
is N0-graded. Then for all n ≥ 1, IC(n) = ker(Δ1n) ⊆ C is a categorical
subspace.

Proof. (1) By induction, it is enough to consider the case when n = 2. Since
μ : A ⊗ A → A commutes with the braiding of A, the image of the categorical
subspace V1 ⊗ V2 is categorical.

(2) follows easily form (6.2.3) and (1).

(3) By Lemma 6.1.9, the map f = (C
πn−−→ C(n) ⊆ C) commutes with c, and

C(n) ⊆ C is categorical. Hence it follows from Lemma 6.1.3 and Lemma 6.1.7
that the map f⊗nΔ⊗(n−1) : C → C⊗n commutes with c, and that the subspace
ker(Δ1n) = C(n) ∩ ker(f⊗nΔ⊗(n−1)) of C is categorical. �

Proposition 6.2.11. (1) Let A be a braided Hopf algebra. Then the
braiding c of A is determined by the multiplication, the comultiplication,
and the antipode of A. More precisely,

c(x⊗ y) = S(x(1))Δ(x(2)y(1))S(y(2))(6.2.4)

for all x, y ∈ A.
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(2) Let A,B be braided Hopf algebras with antipodes SA, SB. Let ϕ : A → B
be a morphism of algebras and of coalgebras. Then SBϕ = ϕSA, and ϕ is
a map of braided vector spaces.

Proof. (1) The formula for the braiding follows from (6.2.3).
(2) The equality SBϕ = ϕSA is shown as for usual Hopf algebras in Proposi-

tion 1.2.17(2). Since ϕ commutes with the multiplication, the comultiplication and
the antipodes of A and B, it is braided linear by (1). �

We note an application of (6.2.4) to the group-like elements G(A) of a braided
Hopf algebra.

Proposition 6.2.12. Let A be a braided Hopf algebra. Then the following are
equivalent:

(1) G(A) is multiplicatively closed.
(2) G(A) is a subgroup of the group of invertible elements of A.
(3) For all g, h ∈ G(A), c(g ⊗ h) = h⊗ g.

Proof. (1) ⇒ (3). Let g, h ∈ G(A). Then gh ∈ G(A), and by (6.2.4),

c(g ⊗ h) = g−1(gh⊗ gh)h−1 = h⊗ g.

(3) ⇒ (2). Let g, h ∈ G(A). Then Δ(gh) = gc(g ⊗ h)h = gh ⊗ gh by (6.2.3). By
Proposition 6.2.6(3), Δ(S(g)) = (S ⊗S)(g⊗ g) = S(g)⊗S(g). Hence g−1 ∈ G(A),
since S(g) = g−1.

(2) ⇒ (1) is trivial. �

Proposition 6.2.13. Let A be a braided pointed Hopf algebra with antipode S
and braiding c.

(1) The following are equivalent.
(a) S is bijective.
(b) Every group-like element in A is invertible in Aop.

(2) Assume that for all g ∈ G(A),

c(g ⊗ g−1) = g−1 ⊗ g, c(g−1 ⊗ g) = g ⊗ g−1.

Then S is bijective.

Proof. (1) (a) ⇒ (b). Since S is bijective, S : Aop → A is an algebra isomor-
phism by Proposition 6.2.8(3)(b). Let g ∈ G(A). Then S(g) is invertible in A with
inverse g, and hence g is invertible in Aop.

(b) ⇒ (a). By (b), the inclusion map Corad(Aop) = kG(A) → Aop has a
convolution inverse, which maps a group-like element of A to its inverse in Aop.
Hence the braided bialgebra Aop has an antipode by Proposition 5.2.9, and S is
bijective by Proposition 6.2.8(2).

(2) Every element g ∈ G(A) is invertible in Aop, since μc−1(g ⊗ g−1) = 1 and
μc−1(g−1 ⊗ g) = 1 by the assumption in (2). Hence S is bijective by (1). �

Definition 6.2.14. A braided algebra is called braided commutative, if
μc = μ. A braided coalgebra is called braided cocommutative, if cΔ = Δ.

As a corollary of Proposition 6.2.8 and (6.2.4), we now can see that a braided
Hopf algebra with a general braiding is usually neither braided commutative nor
braided cocommutative.
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Corollary 6.2.15. Let A be a braided Hopf algebra with braiding c. If A is
braided commutative or braided cocommutative, then c2 = idA⊗A.

Proof. Assume that A is braided commutative. Then the bialgebra Aop in
Proposition 6.2.8 is a Hopf algebra with antipode S. Hence c(x⊗ y) = c−1(x⊗ y)
for all x, y ∈ A by (6.2.4) for A and Aop. If A is cocommutative, then Acop is a
Hopf algebra with antipode S, and again we obtain c = c−1. �

Definition 6.2.16. Let A be a braided algebra with braiding c. Let x, y ∈ A.
The braided commutator of x, y is the element

[x, y]c = xy − μc(x⊗ y).

Proposition 6.2.17. Let A be a braided bialgebra.

(1) Let x, y ∈ A. Then Δ[x, y]c = [Δ(x), Δ(y)]c, where the braided commuta-
tor on the right-hand side is taken in A⊗A.

(2) Let x, y ∈ P (A). Then

Δ[x, y]c = [x, y]c ⊗ 1 + 1⊗ [x, y]c + (idA⊗A − c2)(x⊗ y).

Proof. (1) The formula follows from

Δμc = μA⊗A(Δ⊗Δ)c = μA⊗Ac2,2(Δ⊗Δ),

where the first equality holds since Δ is an algebra map, and the second follows
from Lemma 6.1.3(4), since Δ commutes with the braiding.

(2) By (1),

Δ[x, y]c = [Δ(x), Δ(y)]c = [1⊗ x+ x⊗ 1, 1⊗ y + y ⊗ 1]c

= [1⊗ x, 1⊗ y]c + [1⊗ x, y ⊗ 1]c + [x⊗ 1, 1⊗ y]c + [x⊗ 1, y ⊗ 1]c.

The maps A → A⊗A, x �→ 1 ⊗ x, and A → A⊗A, x �→ x ⊗ 1, are braided algebra
morphisms. Hence

[x, y]c ⊗ 1 = [x⊗ 1, y ⊗ 1]c, 1⊗ [x, y]c = [1⊗ x, 1⊗ y]c,

and (2) follows from

[1⊗ x, y ⊗ 1]c = 0,(6.2.5)

[x⊗ 1, 1⊗ y]c = x⊗ y − c2(x⊗ y).(6.2.6)

Recall that the braiding of A⊗A is c2,2 = c2c1c3c2 by Corollary 1.7.10. Hence
μA⊗Ac2,2(x⊗ 1⊗ 1⊗ y) = μA⊗A(1⊗ c(x⊗ y)⊗ 1) = c2(x⊗ y), and (6.2.6) follows.

To prove (6.2.5), let c(x ⊗ y) =
∑n

i=1 yi ⊗ xi, where xi, yi ∈ A for all i. Then
μA⊗Ac2,2(1 ⊗ x ⊗ y ⊗ 1) = μA⊗A(

∑n
i=1 yi ⊗ 1 ⊗ 1 ⊗ xi) = c(x ⊗ y), which implies

(6.2.5). �

6.3. The fundamental theorem for pointed braided Hopf algebras

We define left and right coideal subalgebras of a braided Hopf algebra A as
in Chapter 1. A left coideal subalgebra K of A is a subalgebra such that
Δ(K) ⊆ A ⊗ K. Similarly, a right coideal subalgebra K of A is a subalgebra
such that Δ(K) ⊆ K ⊗ A.

Let K be a left coideal subalgebra with c(K⊗A) ⊆ A⊗K. Then A⊗K ⊆ A⊗A
is a subalgebra, and A ⊗ K is an (A ⊗ K,K)-bimodule, where A ⊗ K is a right
K-module by multiplication on the right tensorand. Hence for any left K-module
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V with structure map λV , A⊗K ⊗K V ∼= A⊗ V is an A⊗K-module, hence a left
K-module by restriction via Δ with the braided diagonal action

K ⊗A⊗ V
Δ⊗idA⊗V−−−−−−→ A⊗K ⊗A⊗ V

idA⊗c⊗idV−−−−−−−→ A⊗A⊗K ⊗ V
μ⊗λV−−−−→ A⊗ V.

If K ⊆ A is a right coideal subalgebra with c(A ⊗K) ⊆ K ⊗ A, and V is a right
K-module, then V ⊗A is a right K-module in the same way by the braided diagonal
action.

The following type of Hopf modules for braided Hopf algebras is an important
tool in this section.

Definition 6.3.1. Let A be a braided Hopf algebra with braiding c.

(1) Let K ⊆ A be a left coideal subalgebra with c(K ⊗ A) ⊆ A ⊗K. A left
Hopf module V ∈ A

KM is a left K-module V and a left A-comodule such
that the comodule structure map δV : V → A⊗ V is left K-linear, where
A⊗ V is a left K-module by the braided diagonal action.

(2) Let K ⊆ A be a right coideal subalgebra with c(A⊗K) ⊆ K⊗A. A right
Hopf module V ∈ MA

K is a right K-module V and a right A-comodule
such that the comodule structure map δV : V → V ⊗A is right K-linear,
where V ⊗ A is a right K-module by the braided diagonal action.

Hopf modules in A
KM and MA

K , respectively, form an abelian category, where
morphisms are left A-colinear left K-linear and right A-colinear right K-linear
maps, respectively. In particular, A is an object in A

KM, and in MA
K , where the

A-comodule structure is given by the comultiplication of A, and the K-module
structure by restriction of the multiplication in A. More generally, if K ⊆ K ′ ⊆ A
are left or right coideal subalgebras, then K ′ ⊆ A is a subobject in A

KM or in MA
K .

For a braided Hopf algebra A with braiding c we introduce the following nota-
tion.

S(A) = {K | K is a left coideal subalgebra of A, c(K ⊗A) = A⊗K},
Q(A) = {I | I is a coideal and right ideal of A, c(I ⊗A) = A⊗ I}.

For a coideal I ⊆ A, we define AcoA/I = {x ∈ A | x(1) ⊗ x(2) = x⊗ 1}.
The next theorem is the fundamental theorem for braided pointed Hopf alge-

bras.

Theorem 6.3.2. Let A be a braided pointed Hopf algebra with braiding c. As-
sume that c(a⊗ g) = g ⊗ a for all a ∈ A, g ∈ G(A).

(1) The maps

{K ∈ S(A) | G(A) ∩K is a group} � Q(A), K �→ K+A, I �→ AcoA/I ,

are mutually inverse bijections.
(2) Let K ∈ S(A) and assume that G(A)∩K is a group. Then Hopf modules

in A
KM and in MAcop

Kcop are free over K. In particular, any left coideal
subalgebra K ⊆ K ′ ⊆ A is free as a left and as a right K-module, and
K ⊆ K ′ is a direct summand as a left and as a right K-module.

(3) Let I ∈ Q(A), and define K = AcoA/I . Then there is a left K-linear and
right A/I-colinear isomorphism A ∼= K ⊗A/I.

In (3), the module and comodule structures are the standard ones: A is a left

K-module by restriction, a right A/I-comodule by x �→ x(1)⊗x(2), and K ⊗A/I is
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a left K-module by multiplication on the first tensorand, and a right A/I-comodule
by comultiplication on the second tensorand.

We note that in Theorem 6.3.2, G(A) is a group under multiplication by Propo-
sition 6.2.12. Thus if K ∈ S(A), then G(A) ∩K is a group if and only if for any
g ∈ G(A) ∩K, the inverse g−1 is in K. If all elements of G(A) have finite order,
this last condition is always guaranteed. But if g ∈ G(A) is an element of infinite
order, then the condition fails for the left and right coideal subalgebra k[g] ⊆ A.

Before we prove the theorem, we need some preparations.

Lemma 6.3.3. Let A be a braided Hopf algebra with braiding c.

(1) Let K ∈ S(A). Then K+A ∈ Q(A).
(2) Let I ∈ Q(A). Then K := AcoA/I ∈ S(A), and g−1 ∈ K for all elements

g ∈ G(A) ∩K.

Proof. (1) Since the augmentation map of A commutes with the braiding,
and c(K ⊗ A) = A ⊗ K by assumption, it follows that c(K+ ⊗ A) = A ⊗ K+.
Since the multiplication of A commutes with c and with c−1, we obtain from this
equality that c(K+A ⊗ A) ⊆ A ⊗ K+A and c−1(A ⊗ K+A) ⊆ K+A ⊗ A. Thus
c(K+A⊗A) = A⊗K+A.

By Lemma 1.1.14, K+ is a coideal of A. Hence K+A is a coideal of A, since
c(K+ ⊗A) ⊆ A⊗K+.

(2) Let π : A→ A/I be the canonical map. By Lemma 2.5.6, K is a left coideal
of A. To see that K ⊆ A is a subalgebra, note that A ⊗ I is an A⊗A-submodule,
and A⊗A/I is an A⊗A-quotient module of A⊗A as a right A⊗A-module. Here,
the assumption c(I ⊗A) ⊆ A⊗ I is used. Let x ∈ K and y ∈ A. Then

(xy)(1) ⊗ π((xy)(2)) = (idA ⊗ π)((x(1) ⊗ x(2))(y(1) ⊗ y(2)))

= (x(1) ⊗ π(x(2)))(y(1) ⊗ y(2))

= (x⊗ π(1))(y(1) ⊗ y(2))

= xy(1) ⊗ π(y(2)).

Thus the map (idA ⊗ π)Δ : A → A ⊗ A/I is left K-linear, where A ⊗ A/I is a
left K-module by multiplication on the first tensorand. In particular, if x, y ∈ K,
then xy ∈ K. Since c(I ⊗ A) = A ⊗ I, the braiding of A induces an isomorphism
c : A/I ⊗A → A⊗A/I such that the diagrams

A⊗A
c ��

π⊗idA

��

A⊗A

idA⊗π

��

A/I ⊗A
c �� A⊗A/I

A⊗A⊗A
c2,1

��

idA⊗π⊗idA

��

A⊗ A⊗A

idA⊗idA⊗π

��

A⊗A/I ⊗A
c2,1

�� A⊗A⊗A/I

commute, where c2,1 = (c⊗ idA/I)(idA ⊗ c). Let

ϕ : A→ A⊗A/I, x �→ (idA ⊗ π)Δ(x)− x⊗ π(1),
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thus K = ker(ϕ). Since the comultiplication of A commutes with the braiding we
obtain a commutative diagram

A⊗ A
c ��

ϕ⊗idA

��

A⊗A

idA⊗ϕ

��

A⊗A/I ⊗A
c2,1

�� A⊗A⊗A/I

and it follows that c(K ⊗A) = A⊗K.
Finally, let g ∈ G(A) ∩ K. Then g ⊗ π(g) = g ⊗ π(1). By multiplying with

g−2 ⊗ g−1 from the right, we see that g−1 ∈ K. �

The next lemma is the braided version of Proposition 1.2.19 (for left coideal
subalgebras).

Lemma 6.3.4. Let A be a braided Hopf algebra with braiding c, and K ⊆ A
a left coideal subalgebra with c(K ⊗ A) ⊆ A ⊗ K. Let A = A/K+A. Then the
canonical map

can : A⊗K A → A⊗A, x⊗ y �→ xy(1) ⊗ y(2),

is bijective.

Proof. For any right A-module X, the maps

ΦX : X ⊗A → X ⊗A, x⊗ a �→ xa(1) ⊗ a(2),

Φ−1
X : X ⊗A → X ⊗A, x⊗ a �→ xS(a(1))⊗ a(2),

are inverse bijections. In particular, the restriction of ΦA induces a bijection

Φ : A⊗K → A⊗K.

Clearly, there is a unique right A-module structure on A⊗K given by

A⊗K ⊗A
idA⊗c−−−−→ A⊗A⊗K

μA⊗idK−−−−−→ A⊗K.

Then

Ψ : A⊗K ⊗A
Φ⊗idA−−−−→ A⊗K ⊗A

ΦA⊗K−−−−→ A⊗K ⊗A

is bijective. Let μ1 : A ⊗ K → A and μ2 : K ⊗ A → A be the restrictions of
the multiplication map. The square in the following diagram is commutative, since
Δ : A → A⊗A is a braided algebra map, and ε commutes with the braiding of A.

A⊗K ⊗A
μ1⊗idA−idA⊗μ2 ��

Ψ

��

A⊗A
can ��

ΦA

��

A⊗K A �� 0

A⊗K ⊗A
idA⊗ε⊗idA−idA⊗μ2 �� A⊗A

can �� A⊗A/K+A �� 0

Since both rows are exact, Φ induces the isomorphism can. �

Lemma 6.3.5. Let B ⊆ A be a ring extension, and assume that B is a direct
summand of A as a left or as a right B-module. Then the sequence

0→ B ⊆ A
i1−i2−−−→ A⊗B A

is exact, where i1(x) = x⊗ 1, i2(x) = 1⊗ x for all x ∈ A.
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Proof. Let f : A → B be a left or right B-linear map such that f |B = idB.
If x ∈ A with x⊗ 1 = 1⊗ x in A⊗B A, then x = f(x) ∈ B. �

Proposition 6.3.6. Let A be a braided Hopf algebra with braiding c, and let
K ⊆ A be a left coideal subalgebra with c(K⊗A) ⊆ A⊗K (a right coideal subalgebra
with c(A⊗K) ⊆ K ⊗A, respectively).

(1) Assume that any non-zero Hopf module V in A
KM (MA

K , respectively)
contains a non-zero Hopf submodule which is K-free. Then any Hopf
module in A

KM (MA
K , respectively) is K-free.

(2) Assume that A is pointed and
(a) for all g ∈ G(A) ∩K, g−1 ∈ K,
(b) for all g ∈ G(A) and a ∈ K, c(a ⊗ g) = g ⊗ a (c(g ⊗ a) = a ⊗ g,

respectively).
Then any Hopf module in A

KM (MA
K , respectively) is K-free.

Proof. We only prove the version for left coideal subalgebras.
(1) This is a standard application of Zorn’s Lemma. Let V be a non-zero Hopf

module in A
KM and let S be the set of K-linearly independent subsets X of V

such that
∑

x∈X Kx is a Hopf module in A
KM. The set S is partially ordered by

inclusion. Clearly, ∅ ∈ S and the union of any totally ordered subset of S is an
element of S. Hence by Zorn’s Lemma there is a maximal element X of S. Let
U =

∑
x∈X Kx and assume that U �= V . Then V/U is a non-zero Hopf module in

A
KM. By assumption there is a Hopf submodule V ′ of V strictly containing U such
that V ′/U is K-free. This is a contradiction to the maximality of X. Hence U = V
and V is K-free.

(2) Let 0 �= V ∈ A
KM. Then there is a simple A-subcomodule W ⊆ V . Since

A is pointed, W is one-dimensional with basis element v such that δV (v) = g ⊗ v,
where g ∈ G(A). Then δV (Kv) ⊆ Δ(K)δV (v) ⊆ A⊗Kv, since K is a left coideal of
A and c(K⊗A) ⊆ A⊗K. We will show that Kv is K-free. Then the claim follows
from (1), since Kv ∈ A

KM. The map ϕ : K → Kv, x �→ xv, is a left K-linear
epimorphism. Note that by (b), for all x ∈ K,

δV (xv) = (x(1) ⊗ x(2))(g ⊗ v) = x(1)g ⊗ x(2)v.

Hence the kernel of ϕ is a left coideal of A, since for all x ∈ ker(ϕ),

0 = δV (xv) = x(1)g ⊗ x(2)v, hence 0 = x(1) ⊗ x(2)v.

Assume that ker(ϕ) �= 0. Since A is pointed, ker(ϕ) contains a simple left A-
subcomodule of the form ka, 0 �= a ∈ K, Δ(a) = h⊗a, h ∈ G(A). Then a = hε(a),
hence h ∈ ker(ϕ) ⊆ K. By (a), h−1 ∈ K. Since ker(ϕ) is a left ideal of K, we
obtain the contradiction 0 �= h−1a = ε(a) ∈ ker(ϕ). �

Definition 6.3.7. Let C be a coalgebra, and V ∈MC . Then V is an injective
C-comodule if for all U,W ∈ MC , for all injective C-colinear maps i : U → W ,
and for all C-colinear maps f : U → V there is a C-colinear map g : W → V with
f = gi.

Recall from Lemma 1.2.10 that the functor X �→ (X ⊗ C, idX ⊗ Δ) is right
adjoint to the forgetful functor MC →Mk.

Proposition 6.3.8. Let C be a coalgebra, and V ∈ MC . The following are
equivalent.
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(1) V is an injective C-comodule.
(2) There is a vector space X such that V is isomorphic to a direct summand

of X ⊗ C as a right C-comodule.

Proof. (1) ⇒ (2). The comodule structure map δ : V → V ⊗ C is injective
and right C-colinear. By (1), there is a C-colinear map g : V ⊗ C → V with
gδ = idV , and V ⊗ C = δ(V )⊕ ker(g).

(2) ⇒ (1). Since a direct summand of an injective comodule is injective, it is
enough to show that X⊗C is injective for any vector space X. Let i : U → W be an
injective C-colinear map, and f : U → X⊗C a C-colinear map. By Lemma 1.2.10,
there is a linear map g : U → X such that f(u) = g(u(0))⊗u(1) for all u ∈ U . Choose
a linear map g1 : W → X with g = g1i. Then g2 : W → X⊗C, w �→ g1(w(0))⊗w(1)

is C-colinear, and f = g2i. �

Proof of Theorem 6.3.2. We first prove (2). Let K ⊆ K ′ ⊆ A be left
coideal subalgebras. Hopf modules in A

KM are K-free by Proposition 6.3.6. Recall
that A is a Hopf module in A

KM, and K ⊆ K ′ ⊆ A are Hopf submodules. Hence
K ′ and K ′/K are K-free by Proposition 6.3.6. Thus the inclusion K ⊆ K ′ of left
K-modules splits.

By Proposition 6.2.13, the antipode S of A is bijective. Hence Acop is a braided
Hopf algebra with braiding c−1, and S : A → Acop is an isomorphism of coalge-
bras by Proposition 6.2.8. Thus Acop is a pointed coalgebra. Since K ∈ S(A),
c−1Δ(K) ⊆ c−1(A⊗K) = K ⊗ A. Hence Kcop ⊆ Acop is a right coideal subalge-
bra. By definition,

G(Acop) = {g ∈ A | Δ(g) = c(g ⊗ g)}.
Hence G(Acop) = G(A). It is now clear that the assumptions of Proposition 6.3.6
are satisfied for the right coideal subalgebra Kcop of Acop. Hence Hopf modules in
MAcop

Kcop are free over K. Note that Acop is a Hopf module in MAcop

Kcop , and K ⊆ K ′

are Hopf submodules. Thus K ′ is free as a right K-module, and K ⊆ K ′ is a direct
summand as a right K-module.

(1) Both maps are well-defined by Lemma 6.3.3, and the claim follows from

(a) Let K ∈ S(A), and define I = K+A. Then K = AcoA/I .
(b) Let I ∈ Q(A), and define K = AcoA/I . Then I = K+A.

Proof of (a). The following diagram

0 �� K
ι2 ��

ι1

��

A
i1−i2 ��

=

��

A⊗K A

can

��

0 �� AcoA/I �� A �� A⊗ A/I

is commutative with exact rows, where ι1 and ι2 are the inclusion maps, and the
lower sequence is the defining sequence of AcoA/I . The upper sequence is exact by
Lemma 6.3.5 and (2). Hence K = AcoA/I .

(b) Let π : A → A/I be the quotient map. By definition, for all x ∈ K,
x(1)⊗π(x(2)) = x⊗π(1), hence π(x) = ε(x)π(1). Thus K+A ⊆ I. By Lemma 6.3.4
it suffices to show that the composition

Φ : A⊗K A
can−−→ A⊗A/K+A→ A⊗A/I, x⊗ y �→ xy(1) ⊗ π(y(2)),

is bijective.
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We have seen in the proof of Lemma 6.3.3(2) that the A/I-comodule structure
map A → A ⊗ A/I, x �→ x(1) ⊗ π(x(2)), is left K-linear, where A ⊗ A/I is a
left K-module by multiplication on the first tensorand. Hence A ⊗K A is a right
A/I-comodule with structure map

A⊗K A→ A⊗K A⊗A/I, x⊗ y �→ x⊗ y(1) ⊗ π(y(2)),

and Φ is a surjective right A/I-colinear map, where A ⊗ A/I is an A/I-comodule
with coaction idA ⊗ΔA/I . We have to show that Φ is injective. Since by Proposi-
tion 5.4.2(2), A/I is pointed and G(A)→ G(A/I) is surjective, it remains to show
by Proposition 2.2.14 that for all g ∈ G(A) the induced map

Φ(kπ(g)) : (A⊗K A)(kπ(g))→ A⊗ (A/I)(kπ(g))

is bijective. Since A is free as a right K-module by (2), it follows that

(A⊗K A)(kπ(g)) ∼= A⊗K A(kπ(g)).

It is clear that (A/I)(kπ(g)) = kπ(g). Moreover, A(kπ(g)) = Kg, since for all
x ∈ A,

x ∈ A(kπ(g)) ⇐⇒ x(1) ⊗ π(x(2)) = x⊗ π(g) ⇐⇒ xg−1 ∈ K,

where the last equivalence follows from the assumption that c(a⊗ g−1) = g−1 ⊗ a
for all a ∈ A. Thus we are reduced to show that

A⊗K Kg → A⊗ π(g), x⊗ ag �→ x(ag)(1) ⊗ π((ag)(2)) = xag ⊗ π(g),

is bijective. But this is obvious since the multiplication map A ⊗K Kg → A is
bijective with inverse x �→ xg−1 ⊗ g.

(3) Let A = A/I. Since K is a direct summand of the left K-module A by (2),
it follows from Lemma 6.3.4 that A is a direct summand if the right A-comodule
A⊗A. Hence A is an injective A-comodule by Proposition 6.3.8.

Since A is pointed, the map G(A) → G(A), g �→ g, is surjective by Propo-

sition 5.4.2. Choose a map γ : G(A) → G(A) with γ(g) = g for all g ∈ G(A).
Then the linear map f : kG(A)→ A, g �→ γ(g), is right A-colinear. Note that f is
convolution invertible, since γ maps group-like elements to invertible elements in A.
Since A is injective as a right A-comodule, f can be extended to a right A-colinear
map h : A→ A, which is convolution invertible by Corollary 5.3.10.

Define

Φ(h) : A⊗A → A⊗A, x⊗ y �→ xh(y(1))⊗ y(2),

Ψ(h) : A⊗A → A⊗K A, xy �→ x⊗ h(y).

Then Φ(h) is bijective by Proposition 1.2.11(2), since γ is invertible. Since h is
right A-colinear, canΨ(h) = Φ(h). Hence Ψ(h) is bijective by (1). Thus the map
A ⊗K K ⊗ A → A ⊗K A, a ⊗ x ⊗ y �→ a ⊗ xh(y), is bijective. Since K is a right
K-direct summand of A by (2), the induced map K ⊗A → A is bijective. �

We next prove a graded version of the decomposition in Theorem 6.3.2(3).

Lemma 6.3.9. Let C be an N0-graded coalgebra, X,Y and E N0-graded right
C-comodules, and i : X → Y an injective N0-graded right C-colinear map. If E
is an injective C-comodule, and f : X → E is an N0-graded right C-colinear map,
then there is an N0-graded right C-colinear map g : Y → E with gi = f .
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Proof. Since E is an injective comodule, there is a right C-colinear map
g̃ : Y → E with g̃i = f . Define g : Y → E by g(y) = g̃(y)(n) for all y ∈ Y (n),
n ≥ 0. Then g is a graded map with gi = f , and g is right C-colinear, since for all
y ∈ Y (n), n ≥ 0, the homogeneous part of degree n of δ(g̃(y)) = (g̃ ⊗ idC)(δ(y)) is
δ(g(y)) = (g ⊗ idC)(δ(y)). �

For any N0-graded vector space V =
⊕

n≥0 V (n) such that V (n) is finite-
dimensional for all n ≥ 0, we denote by

HV = HV (t) =
∑
n≥0

dimV (n)tn

the Hilbert series of V .

Corollary 6.3.10. Let A be a braided Hopf algebra with an N0-grading as
a vector space such that A is a connected N0-graded algebra and coalgebra. Let
I ⊆ A be an N0-graded coideal and right ideal with c(I ⊗ A) = A ⊗ I, and define
K = AcoA/I .

(1) There is an N0-graded left K-linear and right A/I-colinear isomorphism
A ∼= K ⊗A/I, where K ⊆ A is an N0-graded subalgebra.

(2) If A(n) is finite-dimensional for all n ≥ 1, then HA = HKHA/I .

Proof. Since A is connected, it is pointed by Proposition 5.4.2, and Theo-
rem 6.3.2 applies. It follows easily from the definition that K ⊆ A is an N0-graded
subalgebra. Let π : A → A/I be the quotient map. Note that I(0) = 0 since
I is a coideal. Hence A/I =

⊕
n≥0 A(n)/I(n) is an N0-graded coalgebra with

(A/I)(0) = A(0) = k1. The map f : (A/I)(0) = A(0) ⊆ A is N0-graded and
right A/I-colinear, where A is a right A/I-comodule with coaction (idA⊗π)Δ. By
Theorem 6.3.2(3), A is an injective right A/I-comodule. Hence by Lemma 6.3.9,
f can be extended to an N0-graded right A/I-colinear map γ : A/I → A. By
Corollary 5.3.10, γ is convolution invertible. Then we have shown in the proof of
Theorem 6.3.2(3), that the map

K ⊗A/I → A, x⊗ y �→ xγ(y),

is bijective. This proves (1), and (2) is an immediate consequence of (1). �

6.4. The braided tensor algebra

We now introduce graded braided structures, but at this moment we will study
only N0-gradings.

Definition 6.4.1. Let Γ be an abelian monoid. A Γ-graded braided algebra
(coalgebra, respectively) is a braided algebra (coalgebra, respectively) A with
a Γ-grading as a vector space such that A is a Γ-graded braided vector space and
a Γ-graded algebra (coalgebra, respectively). A Γ-graded braided bialgebra is
a braided bialgebra with a Γ-grading as a vector space such that A is a Γ-graded
braided vector space and Γ-graded as an algebra and as a coalgebra. A Γ-graded
braided Hopf algebra is a Γ-graded braided bialgebra with an antipode.

Proposition 6.4.2. Let A =
⊕

n≥0 A(n) be an N0-graded braided bialgebra.

(1) Assume that the subbialgebra A(0) is a braided Hopf algebra. Then A is
a braided Hopf algebra.

(2) If the antipode of A(0) in (1) is bijective, then the antipode of A is bijective.
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Proof. (1) We apply Proposition 5.2.9(2) to the N0-filtered coalgebra with
filtration A(n) =

⊕
i≤n A(i), n ≥ 0. The restriction of the idA to A(0) is invertible,

since A(0) has an antipode. Hence A has an antipode.
(2) The braided bialgebra Aop is an N0-filtered bialgebra, and (Aop)(0) is the

braided bialgebra A(0)op. Hence the antipode of A is bijective by (1) and Proposi-
tion 6.2.8(2). �

Recall that by Corollary 6.1.10 the tensor algebra T (V ) is an N0-graded braided
vector space with braiding given for all m,n ≥ 0 by

cm,n : V ⊗m ⊗ V ⊗n → V ⊗n ⊗ V ⊗m.

For all n ≥ 1, we denote the n-fold multiplication map of an algebra A with
multiplication μ by μn : A⊗(n+1) → A. Thus μ1 is the multiplication of A, and
μn = μ(idA ⊗ μn−1). We set μ0 = idA. If A is a braided algebra, it follows by
induction on n that μn commutes with the braiding of A for all n ≥ 0.

Proposition 6.4.3. Let (V, c) be a braided vector space, and A a braided alge-
bra.

(1) The tensor algebra T (V ) is an N0-graded braided algebra.
(2) For every map of braided vector spaces f : V → A there is a unique

morphism of braided algebras ϕ : T (V ) → A such that ϕ|V = f . If A is
an N0-graded braided algebra, and f(V ) ⊆ A(1), then ϕ is N0-graded.

Proof. (1) It is clear that the unit map η : k → T (V ) commutes with the
braiding of T (V ). The identity maps V ⊗m ⊗ V ⊗n → V ⊗m+n, m,n ≥ 0, are the
components of the multiplication of the tensor algebra T (V ), hence they commute
with the braiding by Corollary 1.7.10(5). Thus T (V ) is an N0-graded braided
algebra.

(2) We have to show that the algebra map ϕ : T (V ) → A determined by
ϕ|V = f is a map of braided vector spaces.

For all m,n ≥ 1 the following diagram commutes, where c denotes the braiding
of V and A, respectively.

V ⊗m ⊗ V ⊗n f⊗m⊗f⊗n

��

cm,n

��

A⊗m ⊗A⊗n μm−1⊗μn−1

��

cm,n

��

A⊗A

c

��

V ⊗n ⊗ V ⊗m f⊗n⊗f⊗m

�� A⊗n ⊗A⊗m μn−1⊗μm−1

�� A⊗A

This is clear for the left square, since f is a map of braided vector spaces. The
right square commutes by Lemma 6.1.3(4), since μm−1 and μn−1 commute with the
braiding of A. The commutativity of the outer square implies that ϕ : T (V ) → A
is a map of braided vector spaces. �

Lemma 6.4.4. Let A be a braided bialgebra. Then the map

f : A→ A⊗A, a �→ a⊗ 1 + 1⊗ a,

commutes with the braiding of A, and P (A) = {a ∈ A | Δ(a) = a⊗ 1 + 1⊗ a} is a
categorical subspace of A.

Proof. By assumption, η : k → A and Δ : A → A⊗A commute with the
braiding of A. Hence by Lemma 6.1.3(1), f = η⊗ idA+idA⊗η and Δ−f commute
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with the braiding of A. Then P (A) = ker(Δ− f) ⊆ A is a categorical subspace by
Lemma 6.1.7. �

Lemma 6.4.5. Let (C, c) be a braided vector space, and let Δ : C → C ⊗C and
ε : C → k be linear maps. Assume that

(1) ε commutes with the braiding of C,
(2) (ε⊗ idC)Δ = idC ,
(3) Δ is a braided linear map.

Then Δ commutes with the braiding of C.

Proof. The diagram

C ⊗ C
c ��

Δ⊗Δ
��

C ⊗ C

Δ⊗Δ
��

C⊗2 ⊗ C⊗2
c2,2

��

ε⊗idC⊗idC⊗2

��

C⊗2 ⊗ C⊗2

idC⊗2⊗ε⊗idC

��

C ⊗ C⊗2
c1,2

�� C⊗2 ⊗ C

commutes, since the upper part commutes by (3), and the lower part by (1) and
Lemma 6.1.7. Hence (Δ ⊗ idC)c = c1,2(idC ⊗Δ) by (2), and similarly one proves
that (idC ⊗Δ)c = c2,1(Δ⊗ idC). Thus Δ commutes with the braiding of C. �

Proposition 6.4.6. Let (V, c) be a braided vector space. The tensor algebra
T (V ) is an N0-graded braided Hopf algebra with comultiplication Δ and counit ε
given by Δ(v) = v ⊗ 1 + 1⊗ v, ε(v) = 0, for all v ∈ V .

Proof. (1) By Proposition 6.4.3(1) and Remark 6.2.2(1), T (V )⊗T (V ) and

T (V ) are algebras in C(T (V ), cT (V )). By the universal property of the tensor algebra
there are algebra maps

Δ : T (V )→ T (V )⊗T (V ), ε : T (V )→ k,

determined by Δ(x) = x⊗1+1⊗x, ε(x) = 0, x ∈ V . To see that T (V ) is a braided
bialgebra, it remains to prove

(a) ε commutes with the braiding of T (V ), and (idT (V ) ⊗ ε)Δ = idT (V ),
(ε⊗ idT (V ))Δ = idT (V ),

(b) Δ commutes with the braiding of T (V ), and Δ is coassociative.

(a) Since ε(V ⊗n) = 0 for all n ≥ 0, it is easy to see that ε commutes with
the braiding. Hence by Remark 6.2.2(2), idT (V ) ⊗ ε and ε ⊗ idT (V ) are algebra

morphisms in C(T (V ), cT (V )). Then the equations in (a) follow from the universal
property of the tensor algebra.

(b) The linear map f : T (V )→ T (V )⊗T (V ), a �→ a⊗1+1⊗a, is a morphism of
braided vector spaces by Lemma 6.4.4 and Lemma 6.1.3(4). Hence the restriction
of f to V is braided, and by Proposition 6.4.3(2), Δ : T (V ) → T (V )⊗T (V ) is
braided. By Lemma 6.4.5 and (a), Δ commutes with the braiding of T (V ).

We can now prove coassociativity. The maps

idT (V ) ⊗Δ : T (V )⊗T (V )→ T (V )⊗(T (V )⊗T (V )),

Δ⊗ idT (V ) : T (V )⊗T (V )→ (T (V )⊗T (V ))⊗T (V )
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are algebra maps by Remark 6.2.2(2). By Remark 6.2.2(1),

T (V )⊗(T (V )⊗T (V )) = (T (V )⊗T (V ))⊗T (V ) as algebras.

Hence the diagram

T (V )
Δ ��

Δ

��

T (V )⊗T (V )

idT (V )⊗Δ

��

T (V )⊗T (V )
Δ⊗idT (V )

�� T (V )⊗T (V )⊗T (V )

commutes, since it commutes on V .
Finally, T (V ) has an antipode by Proposition 5.2.9(3). �
Proposition 6.4.7. Let V be a braided vector space, and A a braided bialgebra.

For every map of braided vector spaces f : V → P (A), there is a unique morphism of
braided bialgebras ϕ : T (V )→ A such that ϕ|V = f . If A is a connected N0-graded
bialgebra, and im(f) ⊆ A(1), then ϕ is N0-graded.

Proof. Recall that P (A) ⊆ A is a categorical, hence a braided subspace by
Lemma 6.4.4. By Proposition 6.4.3, there is a uniquely determined map of braided
algebras ϕ : T (V )→ A extending f . It remains to show that ϕ is a coalgebra map,
that is, the diagrams

T (V )
ϕ

��

Δ

��

A

Δ

��

T (V )⊗T (V )
ϕ⊗ϕ

�� A⊗A

T (V )
ϕ

��

ε
���

��
��

��
�

A

ε
��		
		
		
		

k

commute. By Proposition 6.2.3, ϕ ⊗ ϕ is an algebra map. Hence all maps in
the diagrams are algebra maps, and it is enough to prove commutativity on the
generators in V . It is clear from the assumption on f that both diagrams commute
on elements of V . �

Remark 6.4.8. By Proposition 6.4.7, any morphism f : V → W of braided
vector spaces defines a morphism T (f) : T (V )→ T (W ) of N0-graded braided Hopf
algebras determined by T (f)|V = f . Thus the tensor algebra construction is a
functor from braided vector spaces to N0-graded braided Hopf algebras.

By Proposition 6.4.6, the tensor algebra of a braided vector space is an N0-
graded coalgebra. In the next theorem we compute the components of its comulti-
cation (see Definitions 1.2.26(1) and 1.3.12).

Theorem 6.4.9. Let (V, c) be a braided vector space, and n ≥ 2. The comulti-
plication of T (V ) is denoted by Δ.

(1) For all 1 ≤ i ≤ n− 1, Δi,n−i = Si,n−i in End(V ⊗n).
(2) Δ1n = Sn in End(V ⊗n).

Proof. See the proofs of Theorem 1.3.12 and Corollary 1.9.7. �
Finally we note a useful property of N0-graded braided coalgebras.

Proposition 6.4.10. Let C be an N0-graded braided coalgebra which is a strictly
graded coalgebra. Then C⊗C is strictly graded.

Proof. This follows from Proposition 1.3.17. �
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6.5. Notes

6.1, 6.2. The definitions of maps commuting with the braiding and of braided
algebras, coalgebras, and Hopf algebras are taken form [Tak00] and [Tak05], see
also [HH92].

Proposition 6.2.11 and Corollary 6.2.15 are observed in [Sch98].

6.3. The non-braided version of Theorem 6.3.2 is a result of [Mas91]. We
follow the proof sketched in the end of [Sch90]. The freeness of Hopf modules is
shown by an argument in [Rad78].

Theorem 6.3.2 for a connected Hopf algebra in the braided category H
HYD is

shown in [AA+14], Proposition 3.6.

6.4. In [Kha15], Section 6.2, another proof of Proposition 6.4.6 is given by
explicit calculations in the group algebra of the braid group.

We want to mention the construction of an N0-graded braided Hopf algebra
which is dual to T (V ) in Section 6.4, see [Ros95], [Sch96], [Tak05], or [Kha15],
Chapter 6.

Let (V, c) a braided vector space, and T (V ) =
⊕

n≥0 V
⊗n be the braided vec-

tor space with braiding cT (V ) defined in Corollary 6.1.10. T (V ) is a N0-graded
coalgebra with comultiplication given by

Δ(v1 ⊗ · · · ⊗ vn) =
n∑

i=0

(v1 ⊗ · · · ⊗ vi)⊗ (vi+1 ⊗ · · · ⊗ vn)

for all n ≥ 0, v1, . . . , vn ∈ V . We define another algebra structure on T (V ) by

(v1 ⊗ · · · ⊗ vi) · (vi+1 ⊗ · · · ⊗ vn) =
∑

w∈Si,n−i

cw(v1 ⊗ · · · ⊗ vn)

for all n ≥ 0, v1, . . . , vn ∈ V . Recall from Definition 1.8.1 that Si,n−i denotes the
set of all i-shuffles in Sn. Then T (V ) with multiplication and comultiplication just
defined and braiding cT (V ) is an N0-graded braided Hopf algebra called the shuffle
algebra of (V, c) and denoted by Sh(V ).

Sh(V ) is Sweedler’s shuffle algebra in [Swe69], Chapter XII, when c is the
twist map. If V is finite-dimensional, then Sh(V ) is isomorphic to the graded dual
of T (V ).

Let S : T (V ) → Sh(V ) be the algebra morphism with S(v) = v for all v ∈ V .
Then S is a morphism of N0-graded braided Hopf algebras, and for all n ≥ 0, the
n-th component of S is the braided symmetrizer map

Sn =
∑
w∈Sn

cw : V ⊗n → V ⊗n.
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CHAPTER 7

Nichols algebras

In this short chapter we first define and characterize the Nichols algebra of a
braided vector space, and of Yetter-Drinfeld modules over any Hopf algebra with
bijective antipode. We proceed exactly as we did for Yetter-Drinfeld modules over
groups in Chapter 1.

In Section 7.2 we introduce the important non-degenerate duality pairing of
Nichols algebras. This is the starting point of the theory of reflections of Nichols
algebras in Part 3 of the book. In the last section we define differential operators
for Nichols algebras. In the case of Yetter-Drinfeld modules over groups they are
skew derivations which form a very efficient tool for computations, for example to
decide whether an element of the Nichols algebra is non-zero.

7.1. The Nichols algebra of a braided vector space
and of a Yetter-Drinfeld module

In Section 6.4 we have defined the tensor algebra T (V ) of a braided vector
space (V, c) as an N0-graded braided Hopf algebra. In this section we define a basic
universal quotient Hopf algebra of T (V ). Recall the definition of the maps Δ1n in
Definition 1.3.12.

Definition 7.1.1. Let (V, c) be a braided vector space. Then

B(V, c) = B(V ) = T (V )/
⊕
n≥2

ker(Δ
T (V )
1n )

is called the Nichols algebra of (V, c). Let

I(V, c) = I(V ) =
⊕
n≥2

ker(Δ
T (V )
1n ).

As a vector space, B(V ) =
⊕

n≥0 Bn(V ) is N0-graded, where

B0(V ) = k1, B1(V ) = V, and Bn(V ) = V ⊗n/ker(Δ
T (V )
1n ) for all n ≥ 2.

Theorem 7.1.2. Let (V, c) be a braided vector space.

(1) (a) I(V ) is the largest coideal of T (V ) contained in
⊕

n≥2 V
⊗n.

(b) I(V ) is the only coideal I of T (V ) contained in
⊕

n≥2 V
⊗n such that

P (T (V )/I) = V .
(2) I(V ) is a categorical subpace of T (V ), and B(V ) is an N0-graded braided

graded Hopf algebra quotient of T (V ). As a coalgebra B(V ) is strictly
graded, and as an algebra it is generated by B1(V ) = V .

(3) For all n ≥ 2 let Sn : V ⊗n → V ⊗n be the braided symmetrizer map. Then

B(V ) = k1⊕ V ⊕
⊕
n≥2

V ⊗n/ker(Sn).

267
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Proof. (1) is a special case of Theorem 1.3.16.
(2) The subspace I(V ) ⊆ T (V ) is categorical by Lemmas 6.1.3(2) and 6.1.7.

Thus Lemma 6.2.10 implies that the ideal of T (V ) generated by I(V ) is a coideal.
Hence I(V ) is an ideal of T (V ) by (1)(a). The coalgebra B(V ) is strictly graded by
(1). Hence T (V )/I(V ) is a braided quotient bialgebra of T (V ) by Lemma 6.2.5, and
the quotient T (V )/I(V ) is an N0-graded braided vector space by Definition 6.1.8.
Finally, B(V ) has an antipode by Proposition 5.2.9(3).

(3) follows from Theorem 6.4.9, since by definition

B(V ) = k⊕ V ⊕
⊕
n≥2

V ⊗n/ker(Δ1n).

�
The following rather pathological example shows some phenomena, which are

out of the scope of the current developments.

Example 7.1.3. Let V be a vector space and let c = idV⊗V . Then (V, c) is a
braided vector space, and for all n ≥ 2, Sn = n!idV ⊗n : V ⊗n → V ⊗n. Thus

B(V ) =

{
T (V ) if char(k) = 0,

T (V )/(V p) if char(k) = p > 0.

If char(k) = p > 0 and V is finite-dimensional, then the Nichols algebra B(V ) is a
finite-dimensional N0-graded braided Hopf algebra. By Lemma 4.4.6, B(V ) is not
a Frobenius algebra if dimV ≥ 2, since

B(V ) = k⊕ V ⊕ V ⊗2 ⊕ · · · ⊕ V ⊗(p−1),

and the space V ⊗(p−1) of left and right integrals is not one-dimensional.

Remark 7.1.4. By Proposition 6.4.7, any morphism f : V → W of braided
vector spaces induces a morphism T (f) : T (V ) → T (W ) of N0-graded braided
bialgebras. Since T (f) is an N0-graded coalgebra map, it maps I(V ) to I(W ).
Hence f defines a morphism B(f) : B(V ) → B(W ) of N0-graded braided Hopf
algebras determined by B(f)|V = f . Thus the construction of the Nichols algebra
is a functor from braided vector spaces to N0-graded braided Hopf algebras.

Lemma 7.1.5. Let (V, c) be a braided vector space, and U ⊆ V a braided sub-
space. Then the inclusion map defines an injective map B(U)→ B(V ) of N0-graded
braided Hopf algebras.

Proof. Since c(U ⊗ U) = U ⊗ U , T (U) ⊆ T (V ) is an N0-graded braided
subcoalgebra, and it follows from the definition that I(U) = I(V ) ∩ T (U). �

Definition 7.1.6. Let (V, c) be a braided vector space. An N0-graded con-
nected braided Hopf algebra R is a pre-Nichols algebra of V , if

(N1) R(1) ∼= V as braided vector spaces, where the braiding of R(1) is induced
by the braiding of R,

(N2) R is generated as an algebra by R(1).

A pre-Nichols algebra of V is a Nichols algebra of V , if

(N3) R is strictly graded, that is, P (R) = R(1).

Theorem 7.1.7. Let (V, c) be a braided vector space.

(1) B(V ) is a Nichols algebra of V .
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(2) Let R be a pre-Nichols algebra of V and f : R(1)
∼=−→ V an isomorphism

of braided vector spaces.
(a) There is exactly one morphism π : R → B(V ) of N0-graded braided

Hopf algebras such that f is the restriction of π to R(1), and π is
surjective.

(b) π is bijective if and only if R is a Nichols algebra of V .

Proof. (1) is shown in Theorem 7.1.2, and (2) follows as in the proof of
Theorem 1.6.18. �

Corollary 7.1.8. Let A be a braided bialgebra. Assume that A =
⊕

n≥0 A(n)
is an N0-graded vector space such that A is a connected N0-graded braided algebra
with A(1) = P (A). Let V ⊆ A(1) be a categorical subspace of A. Then the subal-
gebra k[V ] generated by V is a subcoalgebra of A, and an N0-graded braided Hopf
algebra isomorphic to B(V ).

Proof. By Lemma 6.2.10, the subspaces V n ⊆ A, n ≥ 0, are categorical. The
subalgebra B = k[V ] is an N0-graded braided algebra with B(n) = V n for all n ≥ 1.

Since V ⊆ P (A), ε(v) = 0 for all v ∈ V . Hence ε(v) = 0 for all v ∈ V n with
n ≥ 1. We show by induction on n that Δ(B(n)) ⊆

⊕n
i=0 B(i) ⊗ B(n − i) for all

n ≥ 1. This is clear for n = 0. Let x ∈ B(1), y ∈ B(n), n ≥ 0, and assume that

Δ(y) = y(1) ⊗ y(2) ∈
n⊕

i=0

B(i)⊗B(n− i).

Then

Δ(xy) = (x⊗ 1 + 1⊗ x)(y(1) ⊗ y(2))

= x y(1) ⊗ y(2) + c(x⊗ y(1))y(2)

∈
n∑

i=0

B(1)B(i)⊗B(n− i) +

n∑
i=0

c(B(1)⊗B(i))B(n− i).

Hence Δ(xy) ∈
⊕n+1

i=0 B(i)⊗B(n+ 1− i), since c(B(1)⊗B(i)) = B(i)⊗B(1) for
all i.

We have shown that k[V ] is an N0-graded braided bialgebra. It is strictly graded
as a coalgebra, since P (A) = A(1). Hence k[V ] ∼= B(V ) by Theorem 7.1.7(2). �

Corollary 7.1.9. Let (V, c) be a braided vector space, and let S be the antipode
of B(V, c).

(1) S is bijective, and for all x ∈ V , S(x) = −x.
(2) B(V, c)cop = B(V, c−1), and I(V, c) = I(V, c−1).
(3) S : B(V )op → B(V )cop is an isomorphism of N0-graded braided Hopf

algebras.

Proof. (1) and (3) follow from Propositions 6.2.13 and 6.2.8(2)(c). For (2)
note that B(V, c)cop is a pre-Nichols algebra of (V, c−1), and that P (B(V, c)cop) = V .
Hence B(V, c)cop = B(V, c−1) by Theorem 7.1.7(2), and B(V, c) = B(V, c−1) as
algebras. �

Remark 7.1.10. Let (V, c) be a braided vector space. The defining ideal I(V )
of the Nichols algebra is an N0-graded and categorical subspace and a coideal of
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T (V ). Hence for all N ≥ 2,

IN (V ) :=
⊕

2≤n≤N

ker(Sn)

is an N0-graded coideal of T (V ), and a categorical subspace. The two-sided ideals
(IN (V )) of T (V ) generated by IN (V ) are coideals and categorical subspaces by
Lemma 6.2.10. Hence the quotients T (V )/(IN (V )) are pre-Nichols algebras of V .

We apply Theorem 6.3.2 to the Hopf algebra quotient B(V ) of the tensor algebra
of a braided vector space. In particular, it turns out that the Hilbert series of B(V )
only depends on the dimensions of the kernels of all the maps Sn−1,1 : V ⊗n → V ⊗n,
n ≥ 2.

Proposition 7.1.11. Let (V, c) be a braided vector space, π : T (V )→ B(V ) the
canonical surjection, and K = T (V )coB(V ), where T (V ) is a right B(V )-comodule
by (idT (V ) ⊗ π)Δ.

(1) K ⊆ T (V ) is an N0-graded left coideal subalgebra, and there is an N0-
graded, left K-linear and right B(V )-colinear isomorphism

T (V ) ∼= K ⊗ B(V ).

(2) For all n ≥ 2, K(n) = ker(Sn−1,1 : V ⊗n → V ⊗n), and K(n) contains
all primitive elements of T (V ) of degree n. As a right ideal of T (V ), the
defining ideal I(V ) of B(V ) is generated by

⊕
n≥2 K(n).

Proof. (1) By Theorem 7.1.2(2), I(V ) is a categorical N0-graded coideal and
ideal of T (V ). Thus K is a left coideal subalgebra of T (V ) by Theorem 6.3.2, and
the remaining claim is a special case of Corollary 6.3.10.

(2) By definition, K =
⊕

n≥0 K(n), where for all n ≥ 0,

K(n) = {x ∈ V ⊗n | x(1) ⊗ π(x(2)) = x⊗ 1}.

In particular, K(0) = k1, and K(1) = 0. Recall that for x ∈ V ⊗n and n ≥ 2,

Δ(x) = 1⊗ x+ x⊗ 1 +
∑n−1

i=1 Δi,n−i(x), where Δi,n−i = Si,n−i by Corollary 1.8.4.
Hence

x ∈ K(n) ⇐⇒ 1⊗ πn(x) +

n−1∑
i=1

(idV ⊗i ⊗ πn−i)(Si,n−i(x)) = 0

⇐⇒ πn(x) = 0, and for all 1 ≤ i ≤ n− 1,

(idV ⊗i ⊗ πn−i)(Si,n−i(x)) = 0.

Since ker(πm) = ker(Sm) for all m ≥ 1, we conclude that

K(n) = {x ∈ V ⊗n | Sn(x) = 0, Sn−i
↑iSi,n−i(x) = 0 for all 1 ≤ i ≤ n− 1}

= ker(Sn−1,1),

where the last equality holds by Corollary 1.8.8(3) and (4).
Primitive elements x of T (V ) of degree n are contained in I(V ), hence in

K = T (V )coT (V )/I(V ) by definition. Finally, I(V ) = K+T (V ) follows from Theo-
rem 6.3.2. �
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Corollary 7.1.12. Let (V, c) be a finite-dimensional braided vector space, and
dn = dimker(Sn−1,1 : V ⊗n → V ⊗n) for all n ≥ 2. Then

HT (V )(t) = HB(V )(t)
(
1 +

∑
n≥2

dnt
n
)
.

Proof. This follows from Proposition 7.1.11, and K(0) = k1,K(1) = 0. �

We now extend the definition of the Nichols algebra of a braided vector space in
the obvious way to Yetter-Drinfeld modules. The Nichols algebra becomes a Hopf
algebra in the braided category H

HYD and not just a braided Hopf algebra. Thus
we extend Section 1.6 from C = G

GYD, G a group, to C = H
HYD, H a Hopf algebra

with bijective antipode.

Definition 7.1.13. Let H be a Hopf algebra with bijective antipode, and
V ∈ H

HYD. Then

B(V ) = T (V )/
⊕
n≥2

ker(Δ
T (V )
1n )

is called the Nichols algebra of V .
An N0-graded connected Hopf algebra R in H

HYD is a pre-Nichols algebra
of V , if

(N1) R(1) ∼= V in H
HYD,

(N2) R is generated as an algebra by R(1).

A pre-Nichols algebra of V is a Nichols algebra of V , if

(N3) R is strictly graded, that is, P (R) = R(1).

Theorem 7.1.14. Let V ∈ H
HYD.

(1) B(V ) is a Nichols algebra of V .

(2) Let R be a pre-Nichols algebra of V and f : R(1)
∼=−→ V an isomorphism

in H
HYD.

(a) There is exactly one morphism π : R → B(V ) of N0-graded Hopf
algebras in H

HYD such that f is the restriction of π to R(1), and π is
surjective.

(b) π is bijective if and only if R is a Nichols algebra of V .

Proof. See the proof of Theorem 7.1.7 or 1.6.18. �

Direct sum decompositions of Yetter-Drinfeld modules give rise to very impor-
tant gradings of the Nichols algebra.

Corollary 7.1.15. Let Γ be an abelian monoid, H a Γ-graded Hopf algebra
with bijective antipode, and let V,W be Γ-graded objects in H

HYD.

(1) The Nichols algebra B(V ) is a Γ-graded Hopf algebra quotient of T (V ) in
H
HYD, where B(V )(γ)∩V = V (γ) for all γ ∈ Γ, and B(V ) =

⊕
n≥0 B

n(V )

is a decomposition into Γ-graded subobjects in H
HYD.

(2) Let f : V → W be a morphism of Γ-graded objects in H
HYD. Then there

is a unique morphism B(f) : B(V )→ B(W ) of Γ-graded Hopf algebras in
H
HYD such that B(f)|V = f . If f is injective (surjective, bijective) then
B(f) is injective (surjective, bijective, respectively).
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Proof. (1) By Proposition 5.5.5, the tensor algebra T (V ) is a Γ-graded Hopf
algebra in H

HYD. Hence for all n ≥ 2, the map

Δ1n : V ⊗n ⊆ T (V )
Δn−1

−−−−→ T (V )⊗n π⊗n
1−−−→ T 1(V )⊗n

is a Γ-graded map of Yetter-Drinfeld modules, and I(V )(n) = ker(Δ1n) and Bn(V )
are Γ-graded objects in H

HYD.
(2) The uniqueness of B(f) is clear. The existence of B(f) as a morphism of

N0-graded Hopf algebras in H
HYD follows by the argument in Remark 7.1.4. The

morphism B(f) restricted to B(V )(n), where n ∈ N0, is induced by f⊗n and hence
it is Γ-graded. Indeed,

B(f)(V (γ1) · · ·V (γn)) = f(V (γ1)) · · · f(V (γn)) ⊆ B(W )(γ)

for all n ∈ N0 and γ, γ1, . . . , γn ∈ Γ with γ = γ1 + · · · + γn. The claim on the
surjectivity of B(f) is obvious. The injectivity of B(f) for an injective f follows
from the equations

Δ1nf
⊗n = f⊗nΔ1n

for all n ∈ N0. �

Remark 7.1.16. In Corollary 7.1.15(2), ker(f) is clearly contained in ker(B(f)).
In general, however, ker(B(f)) is larger than the ideal generated by ker(f). Indeed,
assume that k has characteristic 2. Let g ∈ Z and V = V (1, 2) ∈ Z

Z
YD as in

Example 1.4.19. Then V = Vg and there is a basis v1, v2 of V with g · v1 = v1,
g · v2 = v1 + v2. Let W = kw ∈ Z

Z
YD with δ(w) = g ⊗ w, g · w = w. Then there

is a unique morphism f : V → W of Yetter-Drinfeld modules with f(v2) = w and
ker(f) = kv1. Moreover, B(W )(2) = 0 and

B(V )(2) = V ⊗2/spank{v21}.

Hence v22 ∈ ker(B(f)) but v22 /∈ (v1).

Nichols algebras of Yetter-Drinfeld modules play an important role in the clas-
sification theory of Hopf algebras. They appear naturally as subalgebras of graded
Hopf algebras associated to the coradical filtration.

Corollary 7.1.17. Let A be a Hopf algebra, and assume that its coradical
H = Corad(A) is a Hopf subalgebra of A with bijective antipode. Let grA be the N0-
graded Hopf algebra associated to the coradical filtration of A, and let π : grA→ H
be the projection onto elements of degree 0. Then

R = AcoH = {x ∈ A | x(1) ⊗ π(x(2)) = x⊗ 1}

is a Hopf algebra in H
HYD. The space V = P (R) of primitive elements in R is an

object in H
HYD, the subalgebra of R generated by V is isomorphic to B(V ) as an

N0-graded Hopf algebra in H
HYD with grading R(n) = R∩grA(n) for all n ≥ 0, and

B(V )#H ⊆ R#H ∼= grA

is a Hopf subalgebra.

Recall from Remark 5.3.17 that the assumption on the bijectivity of the an-
tipode of H can be dropped.
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Proof. By Corollary 5.3.16, R is a strictly N0-graded Hopf algebra in H
HYD,

and R#H ∼= grA. Hence the subalgebra k[V ] ⊆ R generated by V is a pre-Nichols
algebra of V . It is strictly N0-graded as a subcoalgebra of the strictly graded
coalgebra R. By Theorem 7.1.14, k[V ] ∼= B(V ). �

7.2. Duality of Nichols algebras

Definition 7.2.1. Let X,Y be vector spaces, and let 〈 , 〉 : X ⊗ Y → k be a
bilinear form. The extended form of 〈 , 〉 is the unique bilinear form

( , ) : T (X)⊗ T (Y )→ k

on the tensor algebras such that

(1, 1) = 1,(7.2.1)

(Tn(X), Tm(Y )) = 0 for all n �= m,(7.2.2)

(xn · · ·x2x1, y1y2 · · · yn) =
n∏

i=1

〈xi, yi〉(7.2.3)

for all n ≥ 1, 1 ≤ i ≤ n, xi ∈ X, yi ∈ Y .

Rule (7.2.3) is the natural choice from a categorical point of view, since it makes
sense in any monoidal category instead of vector spaces. Recall that a bilinear form
〈 , 〉 : X⊗Y → k is non-degenerate if the induced maps X → Y ∗, x �→ (y �→ 〈x, y〉),
and Y → X∗, y �→ (x �→ 〈x, y〉), are injective.

Lemma 7.2.2. Let X,Y be vector spaces, and 〈 , 〉 : X ⊗ Y → k a bilinear
form. Let ( , ) : T (X)⊗ T (Y )→ k be the extended form of 〈 , 〉.

(1) If 〈 , 〉 is non-degenerate, then the extended form is non-degenerate.
(2) If 〈 , 〉 is non-degenerate, X,Y are finite-dimensional, and (Y, d) (respec-

tively, (X, c)) is a braided vector space, then (X, c) (respectively, (Y, d))
is a braided vector space, where the braiding of X (respectively, Y ) is
uniquely determined by the equation

(c(x), y) = (x, d(y))

for all x ∈ T 2(X), y ∈ T 2(Y ).
(3) Let (X, c) and (Y, d) be braided vector spaces, and assume that

(c(x), y) = (x, d(y))

for all x ∈ T 2(X), y ∈ T 2(Y ). Then

(Sn(x), y) = (x, Sn(y))

for all x ∈ Tn(X), y ∈ Tn(Y ), n ≥ 1.

Proof. (1) We show that Tn(X)→ Tn(Y )∗, x �→ (y �→ (x, y)), is injective for
all n ≥ 2. Let x ∈ Tn(X) and suppose that (x, y) = 0 for all y ∈ Tn(Y ). Write
x =

∑r
i=1 xi⊗x′

i, where x1, . . . , xr are linearly independent in X, and x′
i ∈ Tn−1(X)

for all i. Then for all y′ ∈ Tn−1(Y ) and y ∈ Y ,

0 = (x, y′ ⊗ y) =

r∑
i=1

(xi, y)(x
′
i, y

′) =

〈
r∑

i=1

(x′
i, y

′)xi, y

〉
.

Hence (x′
i, y

′) = 0 for all i, and the claim follows by induction. The injectivity of
Tn(Y )→ Tn(X)∗ follows in the same way.
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(2) We assume that (Y, d) is a braided vector space (the case when (X, c) is
braided is treated in the same way). Since the extended form ( , ) of 〈 , 〉 is
non-degenerate and X,Y are finite-dimensional, the map

Tn(X)
∼=−→ Tn(Y )∗, x �→ (y �→ (x, y)),

is an isomorphism for all n ≥ 0. In particular, if n = 2, we can define for each
x ∈ T 2(X) a unique element c(x) ∈ T 2(X) such that (c(x), y) = (x, d(y)) for all
y ∈ T 2(Y ). Then c : X ⊗X → X ⊗X is an isomorphism. We have to check the
braid relation c1c2c1 = c2c1c2 on X⊗3. Note that by construction,

(7.2.4) (ci(x), y) = (x, dn−i(y))

for all x ∈ Tn(X), y ∈ Tn(Y ) and 1 ≤ i ≤ n− 1.
In particular for all x ∈ T 3(X), y ∈ T 3(Y ),

(c1c2c1(x), y) = (x, d2d1d2(y)) = (x, d1d2d1(y)) = (c2c1c2(x), y).

Hence c1c2c1(x) = c2c1c2(x) for all x ∈ T 3(X) by non-degeneracy of ( , ).
(3) It follows from the assumption in (3) that the braidings of X and Y satisfy

(7.2.4). Hence by Remark 1.8.6, for any w ∈ Sn with reduced decomposition
(i1, . . . , it),

(cw(x), y) = (ci1 · · · cit(x), y) = (x, dn−it · · · dn−i1(y)) = (x, dw0ww0
(y))

for all x ∈ Tn(X), y ∈ Tn(y). Then (3) follows from the definition of Sn. �

Theorem 7.2.3. Let (X, c), (Y, d) be braided vector spaces, 〈 , 〉 : X ⊗ Y → k
a bilinear form, and ( , ) the extended form of 〈 , 〉. If (c(x), y) = (x, d(y)) for all
x ∈ T 2(X) and y ∈ T 2(Y ), then there exists a unique bilinear form

〈 , 〉 : T (X)⊗ T (Y )→ k

extending the given form on X ⊗ Y such that

〈1, 1〉 = 1,(7.2.5)

〈Tn(X), Tm(Y )〉 = 0 for all n �= m,(7.2.6)

and for all w, x ∈ T (X) and y, z ∈ T (Y )

〈wx, y〉 = 〈w, y(2)〉〈x, y(1)〉,(7.2.7)

〈x, yz〉 = 〈x(2), y〉〈x(1), z〉.(7.2.8)

If the form 〈 , 〉 : X ⊗ Y → k is non-degenerate, then the defining ideals of the
Nichols algebras of X and Y are given by

I(X) = T (Y )⊥ = {x ∈ T (X) | 〈x, T (Y )〉 = 0},(7.2.9)

I(Y ) = T (X)⊥ = {y ∈ T (Y ) | 〈T (X), y〉 = 0}.(7.2.10)

Proof. We define a bilinear form 〈 , 〉 : T (X)⊗ T (Y )→ k by (7.2.5), (7.2.6),
and

〈x, y〉 = (x, Sn(y)) = (Sn(x), y)

for all x ∈ Tn(X), y ∈ Tn(Y ), n > 0, where we have used Lemma 7.2.2(3). To
prove (7.2.7), let n ≥ 1, 1 ≤ i ≤ n− 1, and w ∈ Tn−i(X), x ∈ T i(X), y ∈ Tn(Y ).
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Then, by Lemma 7.2.2(3),

〈wx, y〉 = (wx, Sn(y))

= (wx, (Si ⊗ Sn−i)Si,n−i(y)) (by (1.8.10))

= (Sn−i(w)⊗ Si(x), Si,n−i(y)) (by Lemma 7.2.2(3))

= (Sn−i(w)⊗ Si(x), Δi,n−i(y)) (by Theorem 1.9.1)

= (Sn−i(w), y(2))(Si(x), y
(1)) (by (7.2.6))

= 〈w, y(2)〉〈x, y(1)〉.

Equation (7.2.8) is proved in the same way, beginning with

〈x, yz〉 = (Sn(x), yz), if x ∈ Tn(X).

The uniqueness of the form 〈 , 〉 on the tensor algebras is clear by induction using
(7.2.7).

If 〈 , 〉 : X ⊗ Y → k is non-degenerate, then the extended form ( , ) is
non-degenerate by Lemma 7.2.2(1). Hence, for all n ≥ 2,

{x ∈ Tn(X) | 〈x, Tn(Y )〉 = 0} = {x ∈ Tn(X) | (Sn(x), T
n(Y )) = 0}

= ker(Sn)

= I(X)(n),

where the last equality holds by Corollary 1.9.7. Thus I(X) = T (Y )⊥ by (7.2.6),
and I(Y ) = T (X)⊥ is shown in the same way. �

Definition 7.2.4. Let (V, c) be a finite-dimensional braided vector space, and
let ( , ) : T (V ∗)⊗T (V )→ k be the form of Definition 7.2.1 extending the evaluation
V ∗ ⊗ V → k. The dual braiding c : V ∗ ⊗ V ∗ → V ∗ ⊗ V ∗ is defined by

(c(f ⊗ g), v ⊗ w) = (f ⊗ g, c(v ⊗ w))(7.2.11)

for all f, g ∈ V ∗ and v, w ∈ V .

Note that the dual braiding of a finite-dimensional braided vector space is a
well-defined braiding by Lemma 7.2.2(2). We finally can formulate the very useful
duality property of Nichols algebras.

Corollary 7.2.5. Let (V, c) be a finite-dimensional braided vector space, and
let B(V ) and B(V ∗) be the Nichols algebras of V and V ∗ with respect to c and to
the dual braiding, respectively. Then there is a unique non-degenerate bilinear form
〈 , 〉 : B(V ∗) ⊗ B(V ) → k extending the evaluation map 〈 , 〉 : V ∗ ⊗ V → k such
that

〈1, 1〉 = 1,(7.2.12)

〈Bn(V ∗),Bm(V )〉 = 0 for all n �= m,(7.2.13)

and for all f, g ∈ B(V ∗) and v, w ∈ B(V )

〈fg, v〉 = 〈f, v(2)〉〈g, v(1)〉,(7.2.14)

〈f, vw〉 = 〈f (2), v〉〈f (1), w〉.(7.2.15)
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Proof. We apply Theorem 7.2.3 to the evaluation form 〈 , 〉 : V ∗ ⊗ V → k.
By dividing out the radicals I(V ∗) = T (V )⊥ and I(V ) = T (V ∗)⊥ of the form in
〈 , 〉 : T (V ∗) ⊗ T (V ) → k in Theorem 7.2.3, we get a non-degenerate form on the
Nichols algebras satisfying all the claims. The uniqueness of the form is clear by
(7.2.14). �

Remark 7.2.6. We note that the form in Corollary 7.2.5 is defined explicitly
as follows. Let ( , ) : T (V ∗) ⊗ T (V ) → k be the extended form of the evaluation
〈 , 〉 : V ∗ ⊗ V → k. Then 〈 , 〉 : B(V ∗)⊗ B(V )→ k is defined by

〈fn · · · f1, v1 · · · vn〉 = (fn ⊗ · · · ⊗ f1, Sn(v1 ⊗ · · · ⊗ vn))

for all fi ∈ V ∗, vi ∈ V , 1 ≤ i ≤ n, n ≥ 2, where

Sn(v1 ⊗ · · · ⊗ vn) = Δ1n(v1 ⊗ · · · ⊗ vn)

is defined with respect to the tensor algebra T (V ).

Let H be a Hopf algebra with bijective antipode. We apply the results in this
section to Yetter-Drinfeld modules.

Lemma 7.2.7. (1) Let X,Y ∈ H
HYD, and let 〈 , 〉 : X ⊗ Y → k be a

bilinear form with extended form ( , ). If 〈 , 〉 is a morphism in H
HYD,

then ( , ) is a morphism in H
HYD, and

(c(x), y) = (x, c(y))

for all x ∈ T 2(X), y ∈ T 2(Y ).
(2) Let V ∈ H

HYD be finite-dimensional. Then the dual braiding of the Yetter-
Drinfeld braiding cV,V is the braiding of the (left) dual V ∗ in H

HYD.

Proof. (1) We show by induction that the extended form restricted to the
subspace Tn(X)⊗ Tn(Y ) for n ≥ 1 is H-linear and H-colinear. Let n ≥ 2, h ∈ H,
and x ∈ X, y ∈ Y , u ∈ Tn−1(X), v ∈ Tn−1(Y ). Then(

h(1) · (u⊗ x), h(2) · (y ⊗ v)
)
= (h(1) · u⊗ h(2)x, h(3) · y ⊗ h(4) · v)
= (h(1) · u, h(4) · v)〈h(2)x, h(3) · y〉
= (h(1) · u, h(3) · v)ε(h(2))〈x, y〉
= (h(1) · u, h(2) · v)〈x, y〉
= ε(h)(u, v)〈x, y〉 = ε(h)(u⊗ x, y ⊗ v),

where the second last equation follows from induction hypothesis. In a similar way
one proves that the extended form of 〈 , 〉 is H-colinear.

To show that the braidings are adjoint under the form ( , ), let x, x′ ∈ X and
y, y′ ∈ Y . Then

(c(x⊗ x′), y ⊗ y′) = (x(−1) · x′ ⊗ x(0), y ⊗ y′)

= 〈x(−1) · x′, y′〉〈x(0), y〉
= 〈S−1(y(−1)) · x′, y′〉〈x, y(0)〉 (by Lemma 4.2.1(2))

= 〈x′, y(−1) · y′〉〈x, y(0)〉 (by Lemma 4.2.1(1))

= (x⊗ x′, y(−1) · y′ ⊗ y(0))

= (x⊗ x′, c(y ⊗ y′)).
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(2) follows from (1), since the evaluation map V ∗ ⊗ V → k is a morphism in
H
HYD by Lemma 4.2.1. �

Corollary 7.2.8. Let V ∈ H
HYD be finite-dimensional. Then there is a unique

non-degenerate bilinear form 〈 , 〉 : B(V ∗) ⊗ B(V ) → k extending the evaluation
map 〈 , 〉 : V ∗ ⊗ V → k satisfying (7.2.12)–(7.2.15), and for all h ∈ H, v ∈ B(V ),
f ∈ B(V ∗),

〈h · f, v〉 = 〈f,S(h) · v〉,(7.2.16)

f(−1)〈f(0), v〉 = S−1(v(−1))〈f, v(0)〉(7.2.17)

Proof. By Lemma 7.2.7 we can apply Corollary 7.2.5 to V with the Yetter-
Drinfeld braiding. This proves the first part of the claim. By the proof of Theo-
rem 7.2.3 with X = V ∗, Y = V , the form 〈 , 〉 on the Nichols algebras is induced
from the form 〈 , 〉 : T (V ∗)⊗ T (V )→ k, defined by (7.2.5), (7.2.6), and

〈f, v〉 = (f, Sn(v)) = (Sn(f), v)

for all f ∈ Tn(V ∗), v ∈ Tn(V ), n > 0. Here, ( , ) is the extended form of the
evaluation form. The form 〈 , 〉 : T (V ∗)⊗ T (V ) → k is a morphism in H

HYD since
the maps Sn and by Lemma 7.2.7 the extended form ( , ) are morphisms in H

HYD.
Hence the induced form on the Nichols algebras is a morphism in H

HYD. Thus
(7.2.16) and (7.2.17) follow from Lemma 4.2.1. �

7.3. Differential operators for Nichols algebras

Differential operators for braided Hopf algebras can be defined as linear maps
in the general context of graded coalgebras. We restrict ourselves here to the
discussion of first order differential operators.

Definition 7.3.1. Let C =
⊕

n≥0 C(n) be an N0-graded coalgebra with pro-

jection maps πn : C → C(n), n ≥ 0. We write Δ(x) = x(1) ⊗ x(2) for the co-
multiplication of x ∈ C. For any linear form f : C(1) → k we define linear maps
by

∂l
f : C → C, x �→ fπ1(x

(1))x(2), ∂r
f : C → C, x �→ x(1)fπ1(x

(2)).

Thus ∂l
f (C(n)) ⊆ C(n− 1), ∂r

f (C(n)) ⊆ C(n− 1) for all n ≥ 1, ∂l
f (C(0)) = 0,

∂r
f (C(0)) = 0, and for all x ∈ C(n), n ≥ 1,

∂l
f (x) = (f ⊗ id)Δ1,n−1(x), ∂r

f (x) = (id⊗ f)Δn−1,1(x).

Remark 7.3.2. Let C be an N0-graded and connected coalgebra. Recall from
Section 1.3 that IC =

⊕
n≥2 ker(Δ1n) is the largest coideal of C contained in⊕

n≥2 C(n), and B(C) = C/IC is the universal strictly graded quotient coalgebra

of C with C(1) = B(C)(1).
We note some immediate consequences of Definition 7.3.1.
(1) The following diagrams commute for all f ∈ C(1)∗

C
∂r
f

��

π

��

C

π

��

B(C)
∂r
f

�� B(C)

C
∂l
f

��

π

��

C

π

��

B(C)
∂l
f

�� B(C),
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278 7. NICHOLS ALGEBRAS

where we have used the same notation for ∂r
f and ∂l

f for the coalgebras C and B(C),
respectively.

(2) For all f, g ∈ C(1)∗ and x ∈ C,

Δ(∂r
f (x)) = x(1) ⊗ ∂r

f (x
(2)),(7.3.1)

Δ(∂l
f (x)) = ∂l

f (x
(1))⊗ x(2),(7.3.2)

∂r
f∂

l
g = ∂l

g∂
r
f .(7.3.3)

As always we denote the kernel of the counit ε by C+ =
⊕

n≥1 C(n). Let

π : C → B(C) be the canonical surjection of coalgebras.
For ∂ = ∂r or ∂ = ∂l, a subspace I ⊆ C is called ∂-invariant, if ∂f (I) ⊆ I for

all f ∈ C(1)∗.
We formulate the next proposition for ∂r. There is also a ∂l-version of the

proposition which is proved in the same way.

Proposition 7.3.3. Let C be an N0-graded connected coalgebra.

(1) Assume that C is strictly graded.
(a) If x ∈ C+ and ∂r

f (x) = 0 for all f ∈ C(1)∗, then x = 0.

(b) Any ∂r-invariant subspace of C+ is zero.
(2) IC is the largest ∂r-invariant subspace of C+.

Proof. (1) (a) Let x =
∑n

i=1 xi, xi ∈ C(i) for all 1 ≤ i ≤ n, and assume that
∂r
f (x) = 0 for all f ∈ C(1)∗. Then for all 1 ≤ i ≤ n, ∂r

f (xi) = 0 for all f ∈ C(1)∗,

hence Δi−1,1(xi) = 0. By Proposition 1.3.14, Δi−1,1 is injective for all i ≥ 2, and
Δ0,1 is bijective by definition. Thus x = 0.

(b) Let I ⊂ C+ be a ∂r-invariant subspace. Assume that I �= 0. Let n ≥ 1 and

x =
∑n

i=1 xi ∈ I with xi ∈ C(i) for all 1 ≤ i ≤ n, xn �= 0, and I ∩
∑n−1

i=1 C(i) = 0.

Then ∂r
f (x) ∈ I ∩

∑n−1
i=1 C(i) for all f ∈ C(1)∗ by the ∂r-invariance of I and since

I ⊆ C+. Hence ∂r
f (x) = 0 for all f ∈ C(1)∗ by assumption on n. This contradicts

(a). Hence I = 0.
(2) By Lemma 1.3.13(1b), for all n ≥ 2, Δ1n = (Δ1n−1 ⊗Δ11)Δn−1,1. Hence

for all x ∈ ker(Δ1n), Δn−1,1(x) ∈ ker(Δ1n−1)⊗C(1), since Δ11 is the identity. This
proves that IC is ∂r-invariant.

Let I ⊆ C+ be a ∂r-invariant subspace. Then π(I) ⊆ B(C)+ is a subspace with
∂r
f (π(I)) = π∂r

f (I) ⊆ π(I) for all f ∈ C(1)∗ by Remark 7.3.2. Hence π(I) = 0 by

(1)(b). �
Proposition 7.3.3 is very useful if we want to know whether a given element

x ∈ B(C)(n), n ≥ 2, is non-zero. If x �= 0, then there are linear forms f1, . . . , fn in
B(C)(1)∗ such that ∂r

f1
· · · ∂r

fn
(x) �= 0 in k.

Proposition 7.3.4. Let (V, c) be a braided vector space. Then the defining
ideal I(V ) ⊆ T (V ) of the Nichols algebra of V is generated as a T (V )-module, in
particular as an ideal of T (V ), by⋃

n≥2

{x ∈ Tn(V ) | ∂r
f (x) = 0 for all f ∈ V ∗}.

Proof. For all n ≥ 2 and f ∈ V ∗, ∂r
f | Tn(V ) = (idTn−1(V ) ⊗ f)Δn−1,1. Thus

Tn(V ) ∩
⋂

f∈V ∗

ker(∂r
f ) = ker(Δn−1,1)
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for all n ≥ 2. Since Δn−1,1 = Sn−1,1 by Theorem 1.9.1, the claim follows from
Proposition 7.1.11(2). �

Let H be a Hopf algebra with bijective antipode. The maps ∂r
f and ∂l

f for
graded Yetter-Drinfeld Hopf algebras are skew derivations in the sense of the next
lemma.

Lemma 7.3.5. Let R be an N0-graded connected Hopf algebra in H
HYD, and

assume that V = R(1) is finite-dimensional. Then for all f ∈ V ∗ and x, y ∈ R,

(1) ∂r
f (xy) = x∂r

f (y) + ∂r
f(0)

(x)S(f(−1)) · y,
(2) ∂l

f (xy) = x(0)∂
l
S−1(x(−1))·f (y) + ∂l

f (x)y.

If x ∈ V , then ∂r
f (x) = f(x) = ∂l

f (x).

Proof. (1) Let x, y ∈ R(n), n ≥ 1. Since R is a graded connected coalgebra,
we can write

Δ(x) ∈ x⊗ 1 +
∑
l∈L

al ⊗ xl +
∑
i≥2

R⊗R(i),

Δ(y) ∈ y ⊗ 1 +
∑
l∈L

bl ⊗ xl +
∑
i≥2

R⊗R(i),

where L is a finite index set, and al, bl ∈ R(n− 1), xl ∈ R(1) for all l ∈ L. Hence
by multiplying Δ(x)Δ(y) = Δ(xy) we obtain

Δ(xy) ∈ xy ⊗ 1 +
∑
l∈L

xbl ⊗ xl +
∑
l∈L

(al ⊗ xl)(y ⊗ 1) +
∑
i≥2

R⊗R(i).

For all l ∈ L, (al ⊗ xl)(y ⊗ 1) = al(xl(−1) · y)⊗ xl(0), hence

(id⊗ f)((al ⊗ xl)(y ⊗ 1)) = al(xl(−1) · y)f(xl(0)) = al(S(f(−1)) · y)f(0)(xl)

by definition of the H-coaction of V ∗ in Lemma 4.2.2. Thus

∂r
f (xy) =

∑
l∈L

xblf(xl) +
∑
l∈L

al(S(f(−1)) · y)f(0)(xl)

= x∂r
f (y) + ∂r

f(0)
(x)S(f(−1)) · y.

(2) This proof is very similar to the proof of (1). We write

Δ(x) ∈ 1⊗ x+
∑
l∈L

xl ⊗ al +
∑
i≥2

R(i)⊗R,

Δ(y) ∈ 1⊗ y +
∑
l∈L

xl ⊗ bl +
∑
i≥2

R(i)⊗R,

where xl ∈ R(1), al, bl ∈ R(n− 1) for all l ∈ L.
Finally, ∂r

f (x) = f(x) = ∂l
f (x) for x ∈ V follows by definition. �

Remark 7.3.6. Let R be a pre-Nichols algebra of a finite-dimensional Yetter-
Drinfeld module V ∈ H

HYD. Then the function

∂r : V ∗ → Hom(R,R), f �→ ∂r
f ,

is uniquely determined by the rules in Lemma 7.3.5. In other words, if

d : V ∗ → Hom(R,R), f �→ df ,
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is a linear map satisfying

(1) df (xy) = xdf (y) + df(0)(x)S(f(−1)) · y for all f ∈ V ∗, x, y ∈ R,

(2) df (x) = f(x) for all f ∈ V ∗, x ∈ V ,

then df = ∂r
f for all f ∈ V ∗. For the proof note that df (1) = 0 by (1), and if

df (x) = ∂r
f (x) and df (y) = ∂r

f (y), then by (1), df (xy) = ∂r
f (xy).

A similar uniqueness property holds for ∂l.

We now consider the case when H = kG is a group algebra. We show that
then the maps ∂r

f are skew derivations.

Definition 7.3.7. Let G be a group and V ∈ G
GYD a finite-dimensional Yetter-

Drinfeld module over the group algebra of G. We choose a basis x1, . . . , xθ of G-
homogeneous elements, and for all 1 ≤ i ≤ θ let gi ∈ G with δ(xi) = gi ⊗ xi. Let
f1, . . . , fθ be the dual basis of (xi)1≤i≤θ in V ∗. Let R be a pre-Nichols algebra of
V . We define

∂r
i = ∂r

fi : R → R, 1 ≤ i ≤ θ.

Corollary 7.3.8. Assume the situation of Definition 7.3.7.

(1) The linear maps ∂r
i : R → R, 1 ≤ i ≤ θ, are determined by

(a) ∂r
i (1) = 0, ∂r

i (xj) = δij for all 1 ≤ i, j ≤ θ,
(b) ∂r

i (xy) = x∂r
i (y) + ∂r

i (x)gi · y for all 1 ≤ i ≤ θ, x, y ∈ R.
(2) If R = B(V ), then for any non-zero element x ∈ B(V )+, ∂r

i (x) �= 0 for
some i.

(3) If R = T (V ), then I(V ) is the largest subspace I ⊆ T (V )+ such that
∂r
i (I) ⊆ I for all 1 ≤ i ≤ θ. As a right ideal, I(V ) is generated by
∪n≥2{x ∈ Tn(V ) | ∂r

i (x) = 0 for all 1 ≤ i ≤ θ}.

Proof. (1) follows from Lemma 7.3.5(1), since for all i, δ(fi) = g−1
i ⊗ fi. If

f ∈ V ∗, f =
∑θ

i=1 αifi with scalars αi ∈ k, then ∂r
f =

∑θ
i=1 αi∂

r
i . Hence (2) and

(3) follow from Propositions 7.3.3 and 7.3.4. �
Example 7.3.9. In the situation of Definition 7.3.7, let 1 ≤ i ≤ θ, and assume

that there is a scalar qi ∈ k such that gi ·xi = qixi. It is easy to check by induction
that for all t ≥ 2, 1 ≤ j ≤ θ,

∂r
j (x

t
i) = δij(t)qix

t−1
i .

Hence, by Corollary 7.3.8, xt
i ∈ IR if and only if (s)qi = 0 for some 2 ≤ s ≤ t.

Example 7.3.10. We go back to Example 1.10.3 and assume that n = 3. Then
O2 = {(1 2), (2 3), (1 3)}. Let g1 = (1 2), g2 = (2 3), g3 = (1 3), and let V3 be the
Yetter-Drinfeld module over S3 with basis xt, t ∈ O2, and

δ(xt) = t⊗ xt, s · xt = −xsts,

for all s, t ∈ O2. Let a = x(1 2), b = x(2 3), c = x(1 3). Then the following quadratic
relations hold in B(V3).

a2 = 0, b2 = 0, c2 = 0,(7.3.4)

ab+ bc+ ca = 0,(7.3.5)

ba+ ac+ cb = 0.(7.3.6)
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Indeed, it is easily checked that the skew derivations ∂r
x∗
t
with t ∈ O2 annihilate

the left-hand sides of the relations. Thus the claim follows from Corollary 7.3.8(2).
Multiplying (7.3.5) with a on the right and b on the left gives the equations

aba+ bca = 0, bab+ bca = 0.

Hence

aba = bab.(7.3.7)

Let Λ = abac. It is easy to check that Λ is a right integral of B(V3), that is, Λa = 0,
Λb = 0, Λc = 0. To see that Λ is non-zero, we compute derivations.

∂r
c∗(abac) = aba,

∂r
b∗(aba) = a∂r

b∗(ba) = a(g2 · a) = −ac,

∂r
c∗(ac) = a.

Hence ∂r
a∗∂r

c∗∂
r
b∗∂

r
c∗(Λ) = −1.

By choosing the ordering a < b < c of the generators and by writing relations
(7.3.4)–(7.3.6) and (7.3.7) as

a2 = 0, b2 = 0, c2 = 0,

ca = −ac− bc, cb = −ac− ba,

bab = aba,

we conclude that the monomials

1, a, b, c, ab, ac, ba, bc, aba, abc, bac, abac(7.3.8)

span the vector space B(V3). Since Λ is a non-zero integral in B(V3), the relations
in (7.3.4)–(7.3.6) generate the ideal I(V3) by Corollary 4.4.14 for S = B(V3).

The monomials in (7.3.8) are non-zero since Λ �= 0 and ∂r
b∗∂

r
c∗(abc) �= 0. Finally,

the monomials of degree two are linearly independent by definition, and those of
degree three because no two of them have the same S3-degree. Thus (7.3.8) is a
basis of B(V3) (which proves in a second way that the ideal I(V3) is generated by
(7.3.4)–(7.3.6)). Thus the Hilbert series of B(V3) is

HB(V3)(t) = 1 + 3t+ 4t2 + 3t3 + t4 = (1 + t)2(1 + t+ t2).

7.4. Notes

7.1. The denotation Nichols algebra and pre-Nichols algebra appeared first in
[AS00a] and [Mas08], respectively.

7.2. We extend the description of Nichols algebras via bilinear forms in [AGn99]
to Nichols algebras of braided vector spaces.

7.3. Already Nichols [Nic78] used “twisted derivations” in the context of
Nichols algebras.
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CHAPTER 8

Quantized enveloping algebras and generalizations

Quantized enveloping algebras are non-commutative and non-cocommutative
Hopf algebra analogues of enveloping algebras of finite-dimensional complex semi-
simple Lie algebras or of Kac-Moody algebras. They enjoy great attention far
beyond the theory of Hopf algebras. Our intention with this chapter is to study
quantized enveloping algebras and related Hopf algebras using standard tools in
the theory of pointed Hopf algebras. Structural results related to root systems will
be discussed in Chapter 16.

Let n ∈ N and let A = (aij)i,j∈{1,...,n} be a symmetrizable Cartan matrix.
Let D = (di)1≤i≤n be a family of positive integers such that (diaij)i,j∈{1,...,n} is
symmetric. For any non-negative integers m, r with m ≥ r let

[m]v =
vm − v−m

v − v−1
, [m]!v =

m∏
i=1

[i]v,

[
m
r

]
v

=
[m]!v

[r]!v[m− r]!v

in Z[v, v−1]. Note that

[m]!v = v−m(m−1)/2(m)!v2 ,

[
m
r

]
v

= vr(r−m)

(
m

r

)
v2

(8.0.1)

for all m, r ∈ N0 with 0 ≤ r ≤ m.
Let q ∈ k×. The ring homomorphism Z[v, v−1]→ k, v �→ q, defines q-analogues

of the above v-numbers, v-factorials and v-binomial coefficients. Assume q2di �= 1
for any i ∈ {1, . . . , n}. Let Uq denote the associative k-algebra (depending on q, A,

and D) given by generators Ei, Fi, Ki, K
−1
i , where 1 ≤ i ≤ n, and relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEj = qdiaijEjKi, KiFj = q−diaijFjKi,

EiFj − FjEi = δij
Ki −K−1

i

qdi − q−di
,

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

Em
i EjE

1−aij−m
i = 0, (i �= j)

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

Fm
i FjF

1−aij−m
i = 0 (i �= j)

with i, j ∈ {1, . . . , n}. The algebra Uq is called the quantized enveloping algebra
of the Kac-Moody algebra associated to A. It is known to be a Hopf algebra with

283
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comultiplication Δ, counit ε and antipode S given by

Δ(Ki) = Ki ⊗Ki, Δ(K−1
i ) = K−1

i ⊗K−1
i ,

Δ(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, Δ(Fi) = Fi ⊗K−1
i + 1⊗ Fi,

ε(Ei) = 0, ε(Fi) = 0, ε(Ki) = 1, ε(K−1
i ) = 1,

S(Ei) = −K−1
i Ei, S(Fi) = −FiKi, S(Ki) = K−1

i , S(K−1
i ) = Ki

for any 1 ≤ i ≤ n. We give a proof of this fact in Corollary 8.1.7, where Uq is
presented as a quotient of Drinfeld’s quantum double of two Hopf algebras.

In Section 8.3 we study Hopf algebras constructed from a Yetter-Drinfeld datum
and a linking. In Section 8.4 we specialize this construction to perfect linkings and
relate the obtained Hopf algebras to quantized enveloping algebras.

If q is not a root of 1, then the subalgebra U+
q of U generated by Ei, 1 ≤ i ≤ n,

is a Nichols algebra of diagonal type. This will be shown in Chapter 16 in the case
when A is of finite type.

8.1. Construction of the Hopf algebra Uq

We will construct Uq as a quotient Hopf algebra of the Drinfeld double with
respect to a skew pairing of certain infinite-dimensional Hopf algebras. See Sec-
tion 2.8 for the general theory of the Drinfeld double.

Proposition 8.1.1. Let A,U be bialgebras with an invertible skew pairing τ of
A and U . Let σ be the associated two-cocycle of A⊗ U . Assume that A and U are
given by generators (ai)i∈IA and (xk)k∈IU , respectively, and relations rj((ai)i∈IA),
j ∈ JA, and sj((xk)k∈IU ), j ∈ JU , respectively. Assume moreover that the following
hold.

(1) For any i ∈ IA, ai is group-like or (1, al)-primitive for some l ∈ IA with
group-like al, and

(2) for any k ∈ IU , xk is group-like or (xl, 1)-primitive for some l ∈ IU with
group-like xl.

Then (A⊗U)σ can be presented by generators āi = ai⊗1, x̄k = 1⊗xk with i ∈ IA,
k ∈ IU , and relations rj((āi)i∈IA), j ∈ JA, sj(x̄k)k∈IU ), j ∈ JU , and

x̄kāi =āix̄k(8.1.1)

if ai and xk are group-like,

(8.1.2) x̄kāi =τ (ai ⊗ xl)āix̄k + τ (ai ⊗ xk)(āi − āix̄l)

if ai, xl are group-like and xk is (xl, 1)-primitive,

(8.1.3) x̄kāi =τ−1(al ⊗ xk)āix̄k + τ−1(ai ⊗ xk)(x̄k − ālx̄k)

if al, xk are group-like and ai is (1, al)-primitive, and

(8.1.4)
x̄kāi =τ (ai ⊗ xk)āl + τ−1(ai ⊗ xk)x̄m

+ (āi + τ (ai ⊗ xm)āl)(x̄k + τ−1(al ⊗ xk)x̄m))

if al, xm are group-like, ai is (1, al)-primitive, and xk is (xm, 1)-primitive.
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Proof. By Corollary 2.8.8, the elements āi with i ∈ IA and x̄i with i ∈ IU
generate (A⊗U)σ as an algebra, and rj((āi)i∈IA), j ∈ JA, and sj((x̄k)k∈IU ), j ∈ JU ,
are relations of (A⊗U)σ. We check that in (A⊗U)σ Equations (8.1.1)–(8.1.4) hold.
Let i ∈ IA and k ∈ IU .

Assume that ai and xk are group-like. Then, by Corollary 2.8.8,

x̄kāi = τ (ai ⊗ xk)āix̄kτ
−1(ai ⊗ xk) = āix̄k,

since τ (ai ⊗ xk)τ
−1(ai ⊗ xk) = ε(ai)ε(xk) = 1. This proves (8.1.1).

Assume that xk is group-like and ai is (1, g)-primitive for some g ∈ G(A).
Then, by Corollary 2.8.8,

x̄kāi = τ (ai(1) ⊗ xk)(ai(2) ⊗ 1)x̄kτ
−1(ai(3) ⊗ xk)

= x̄kτ
−1(ai ⊗ xk) + āix̄kτ

−1(g ⊗ xk) + τ (ai ⊗ xk)(g ⊗ 1)x̄kτ
−1(g ⊗ xk).

Now observe that

0 = ττ−1(ai ⊗ xk) = τ (ai ⊗ xk)τ
−1(g ⊗ xk) + τ (1⊗ xk)τ

−1(ai ⊗ xk).

From this we conclude (8.1.3). The proofs of (8.1.2) and (8.1.4) are analogous.
Let A′ and U ′ be the subalgebras of (A⊗ U)σ spanned by the elements a⊗ 1,

a ∈ A, and 1⊗ x, x ∈ U , respectively. Then A′ is canonically isomorphic to A, U ′

is canonically isomorphic to U , and the multiplication map A′ ⊗ U ′ → (A ⊗ U)σ
is bijective by Corollary 2.8.8(1). Thus the proposition follows from the above and
from Lemma 2.8.10 for the algebra C = (A⊗U)σ and its subalgebras A′ and U ′. �

An important class of examples of quantum doubles is given by the (multi-
parameter versions of) quantized enveloping algebras of complex semi-simple Lie
algebras, or, more generally, of symmetrizable Kac-Moody algebras. We introduce
these examples in several steps.

Let n ∈ N. Let A = (aij)i,j∈{1,...,n} be a symmetrizable Cartan matrix and
D = diag(d1, . . . , dn) a diagonal matrix with positive integer entries such that DA
is symmetric.

Example 8.1.2. Let G be an abelian group, g1, . . . , gn ∈ G, χ1, . . . , χn ∈ Ĝ,
and (qij)i,j∈{1,...,n} the family of non-zero scalars in k such that

χj(gi) = qij

for all i, j ∈ {1, . . . , n}. Let V be an n-dimensional vector space over k with basis
E1, . . . , En. By Example 1.5.3, V has the structure of a Yetter-Drinfeld module
over kG, where

g · Ei = χi(g)Ei, δV (Ei) = gi ⊗ Ei

for all 1 ≤ i ≤ n and g ∈ G. Then T (V ) is a Hopf algebra in G
GYD by Proposi-

tion 1.6.13 and A = T (V )#kG is a Hopf algebra by Corollary 4.3.5.
Let Y be a kG-submodule of T (V ) spanned by skew-primitive elements of

A. Let (Y ) be the ideal of T (V ) generated by Y . Then
(
T (V )/(Y )

)
#kG is a

Hopf algebra by Proposition 2.4.4. This fact will be used in the proof of the next
proposition.
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Proposition 8.1.3. Let q ∈ k×. Let U≥0
q denote the k-algebra (depending on

A and D) given by generators Ei, Ki, K
−1
i , where 1 ≤ i ≤ n, and relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEj = qdiaijEjKi,

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

Em
i EjE

1−aij−m
i = 0 (i �= j)

with i, j ∈ {1, . . . , n}.
(1) The algebra U≥0

q is a Hopf algebra with comultiplication Δ, counit ε and
antipode S given by

Δ(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, Δ(Ki) = Ki ⊗Ki, Δ(K−1
i ) = K−1

i ⊗K−1
i ,

ε(Ei) = 0, ε(Ki) = 1, ε(K−1
i ) = 1,

S(Ei) = −K−1
i Ei, S(Ki) = K−1

i , S(K−1
i ) = Ki

for any 1 ≤ i ≤ n.
(2) Let U+

q and U0
q be the subalgebras of U≥0

q generated by E1, . . . , En and

K1, . . . ,Kn,K
−1
1 , . . . ,K−1

n , respectively. Then the multiplication map

U+
q ⊗ U0

q → U≥0
q

is bijective.

We write Kμ = Km1
1 · · ·Kmn

n for any μ = (m1, . . . ,mn) ∈ Zn.

Proof. Let G = Zn, V an n-dimensional vector space over k with basis
E1, . . . , En, and gi = Ki for all 1 ≤ i ≤ n, where K1, . . . ,Kn are the standard

generators of Zn. Let χj ∈ Ĝ such that χj(gi) = qdiaij for all i, j ∈ {1, 2, . . . , n}.
Then U≥0

q is a quotient algebra of the Hopf algebra T (V )#kZn by Example 8.1.2.

Let i, j ∈ {1, . . . , n} with i �= j, and let q′ = q2di and r = qdiaij . Then

KiEiK
−1
i = q′Ei, KiEjK

−1
i = rEj , KjEiK

−1
j = rEi

and

q′−aijr2 = q−2diaij+2diaij = 1.

Therefore E
1−aij

i � Ej ∈ P
K

1−aij
i ,1

by Proposition 2.4.3(2). By (8.0.1),

E
1−aij

i � Ej =

1−aij∑
m=0

(−qdiaij )m(q2di)m(m−1)/2

(
1− aij

m

)
q2di

E
1−aij−m
i EjE

m
i

=

1−aij∑
m=0

(−1)mqdi(aijm+m(m−1)+m(1−aij−m))

[
1− aij

m

]
qdi

E
1−aij−m
i EjE

m
i

=

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

E
1−aij−m
i EjE

m
i

= (−1)1−aij

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

Em
i EjE

1−aij−m
i .
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Therefore U≥0
q is isomorphic to the Hopf algebra

(
T (V )/(Y )

)
#kZn, where (Y ) is

the ideal of T (V ) generated by all E
1−aij

i � Ej with i �= j. �

Remark 8.1.4. Let λ1, . . . , λn ∈ k×. Then there is a unique Hopf algebra
automorphism ϕλ of U≥0

q , as defined in Proposition 8.1.3, with

ϕλ(Ei) = λiEi, ϕλ(Ki) = Ki, ϕλ(K
−1
i ) = K−1

i

for any 1 ≤ i ≤ n. The linear map ϕλ also defines Hopf algebra automorphisms of
U≥0
q

op, U≥0
q

cop, and U≥0
q

op cop. All of these automorphisms will be denoted by ϕλ.

Recall the notion of the dual Hopf algebra from Definition 2.3.8.

Lemma 8.1.5. Let q ∈ k× and let U≥0
q be as in Proposition 8.1.3. For any

1 ≤ i ≤ n let k+
i , k−

i , ei ∈ (U≥0
q )∗ such that

k±
i (EKμ) =ε(E)q±

∑n
j=1 diaijmj ,

ei(Ei1 · · ·EirKμ) =δr,1δi1,i

for any μ = (m1, . . . ,mn) ∈ Zn, r ∈ N0, i1, . . . , ir ∈ {1, . . . , n} and E ∈ U+
q .

(1) The functionals k+
i , k−

i , ei for 1 ≤ i ≤ n are contained in the dual Hopf
algebra of U≥0

q .

(2) There is a Hopf algebra homomorphism from U≥0
q to its dual which maps

Ki,K
−1
i and Ei to k+

i , k
−
i and ei, respectively.

Proof. The Hopf algebra U≥0
q is N0-graded with

degEi = 1, degKi = degK−1
i = 0

for any 1 ≤ i ≤ n. Therefore k±
i and ei, where 1 ≤ i ≤ n, are well-defined. The

defining relations of U≥0
q imply that

k+
i (E

′E′′) = k+
i (E

′)k+
i (E

′′), k−
i (E

′E′′) = k−
i (E

′)k−
i (E

′′)

and that

ei(E
′E′′) = ei(E

′)ε(E′′) + k+
i (E

′)ei(E
′′)

for all E′, E′′ ∈ U≥0
q . (The only non-trivial case to check for the latter equation

is when E′ = Kμ and E′′ = EiKν , where μ, ν ∈ Zn. In this case one needs that

the matrix DA is symmetric.) Therefore for any 1 ≤ i ≤ n the elements k±
i are

group-like and the elements ei are (k
+
i , ε)-primitive in the dual Hopf algebra of U≥0

q

by Corollary 2.3.12. This proves (1).
Let i ∈ {1, . . . , n}, E ∈ U+, and μ = (m1, . . . ,mn) ∈ Zn. Since

Δ(E) ∈ U≥0
q ⊗ U+

q ,

we obtain that

k+
i k−

i (EKμ) =k+
i (E(1)Kμ)k

−
i (E(2)Kμ)

=k+
i (E(1)Kμ)ε(E(2))q

−
∑n

j=1 diaijmj

=ε(E).

Hence k+
i k−

i = ε. Similarly, k−
i k+

i = ε.
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Let r ∈ N0, i, j, i1, . . . , ir ∈ {1, . . . , n}, and μ = (m1, . . . ,mn) ∈ Zn. Then

k±
i ej(Ei1 · · ·EirKμ) =k±

i ((Ei1 · · ·Eir)(1)Kμ)ej((Ei1 · · ·Eir)(2)Kμ)

=k±
i (Ki1 · · ·KirKμ)ej(Ei1 · · ·EirKμ)

=δr,1δi1,jq
±diaijq±

∑n
l=1 diailml .

Similarly,

ejk
±
i (Ei1 · · ·EirKμ) =ej((Ei1 · · ·Eir)(1)Kμ)k

±
i ((Ei1 · · ·Eir)(2)Kμ)

=ej(Ei1 · · ·EirKμ)k
±
i (Kμ)

=δr,1δi1,jq
±

∑n
l=1 diailml .

Therefore k±
i ej = q±diaijejk

±
i .

By the argument in the proof of Proposition 8.1.3,

e
1−aij

i � ej = (−1)1−aij

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

emi eje
1−aij−m
i

is (k
1−aij

i kj , ε)-primitive. Note that any monomial ei1 · · · eir ∈ (U≥0
q )∗ with r ≥ 2,

i1, . . . , ir ∈ {1, . . . , n} (and hence e
1−aij

i � ej) vanishes on Ek and on Kμ for any

k ∈ {1, . . . , n} and μ ∈ Zn. Since e
1−aij

i � ej is skew-primitive, it vanishes on U≥0.
This implies (2). �

Proposition 8.1.6. Let q ∈ k× and let U≥0
q be as in Proposition 8.1.3. Let

U≤0
q = (U≥0

q )cop. We write Fi, Li, L
−1
i , 1 ≤ i ≤ n, for the generators of U≤0

q corre-

sponding to Ei, Ki,K
−1
i , respectively, and U−

q for the subalgebra of U≤0
q generated

by Fi, 1 ≤ i ≤ n. Let (λi)1≤i≤n ∈ (k×)n. Then there is a unique skew pairing
τ : U≤0

q ⊗ U≥0
q → k such that for all 1 ≤ i, j ≤ n,

τ (Fi ⊗ Ej) = δijλi, τ (Fi ⊗Kj) = 0,

τ (Li ⊗ Ej) = 0, τ (Li ⊗Kj) = qdiaij .

The corresponding Drinfeld’s quantum double of U≤0
q and U≥0

q is isomorphic to the

Hopf algebra given by generators Ei, Fi,Ki,K
−1
i , Li, L

−1
i and relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

LiLj = LjLi, LiL
−1
i = L−1

i Li = 1, KiLj = LjKi,

KiEj = qdiaijEjKi, KiFj = q−diaijFjKi,

LiEj = q−diaijEjLi, LiFj = qdiaijFjLi,

EiFj − FjEi = δijλi(Li −Ki),

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

Em
i EjE

1−aij−m
i = 0, (i �= j)

1−aij∑
m=0

(−1)m
[
1− aij

m

]
qdi

Fm
i FjF

1−aij−m
i = 0 (i �= j)
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with i, j ∈ {1, . . . , n}, where the Hopf algebra structure is given by

Δ(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, Δ(Fi) = Fi ⊗ Li + 1⊗ Fi,

Δ(Ki) = Ki ⊗Ki, Δ(K−1
i ) = K−1

i ⊗K−1
i ,

Δ(Li) = Li ⊗ Li, Δ(L−1
i ) = L−1

i ⊗ L−1
i ,

ε(Ei) = 0, ε(Fi) = 0, ε(Ki) = 1, ε(Li) = 1,

S(Ei) = −K−1
i Ei, S(Fi) = −FiL

−1
i , S(Ki) = K−1

i , S(Li) = L−1
i

for all 1 ≤ i ≤ n.

Proof. The relations KiK
−1
i = K−1

i Ki = 1 and LiL
−1
i = L−1

i Li = 1 for
1 ≤ i ≤ n imply that any skew pairing of U≤0

q and U≥0
q with the required properties

satisfies additionally the equations

τ (Fi ⊗K−1
j ) = 0, τ (L−1

i ⊗ Ej) = 0,

τ (L−1
i ⊗Kj) = τ (Li ⊗K−1

j ) = q−diaij , τ (L−1
i ⊗K−1

j ) = qdiaij

for all i, j ∈ {1, . . . , n}. For example,

0 = ε(Fi) = τ (Fi ⊗ 1) = τ (Fi ⊗KjK
−1
j )

= τ (Fi ⊗K−1
j )τ (Li ⊗Kj) + τ (1⊗K−1

j )τ (Fi ⊗Kj)

and hence τ (Fi⊗K−1
j )qdiaij =0 for any i, j∈{1, . . . , n}. The span of 1, Ei,Ki,K

−1
i ,

1 ≤ i ≤ n, and 1, Fi, Li, L
−1
i , 1 ≤ i ≤ n, is a subcoalgebra of U≥0

q and U≤0
q ,

respectively, and generates U≥0
q and U≤0

q as algebra, respectively. Therefore the
uniqueness of the skew pairing follows from Definition 2.8.4.

Let ϕ be the Hopf algebra homomorphism from U≥0
q to its own dual described

in Lemma 8.1.5. Let ϕλ be the Hopf algebra automorphism of U≥0
q defined in Re-

mark 8.1.4. Then the composed map ϕ ◦ϕλ defines a Hopf algebra homomorphism
from U≤0

q
cop = U≥0

q to the dual of U≥0
q , and maps the generators Li, L

−1
i and Fi

to k+
i , k

−
i , and ei, respectively, for any 1 ≤ i ≤ n. The skew pairing of U≤0

q and

U≥0
q defined by ϕ ◦ ϕλ, as explained in Remark 2.8.5, satisfies all properties of τ .

This proves the existence of τ .
The claim on the presentation of Drinfeld’s quantum double by generators and

relations follows from Propositions 8.1.1 and 8.1.3 by inserting appropriate values
of τ . By definition, the coalgebra structure of Drinfeld’s quantum double coincides
with the coalgebra structure of U≤0

q ⊗ U≥0
q . This also implies the formulas for the

antipode. �
The definition of the quantized enveloping algebra of a symmetrizable Kac-

Moody algebra and Proposition 8.1.6 immediately imply the following.

Corollary 8.1.7. Let n ∈ N and let A = (aij)i,j∈{1,...,n} be a symmetriz-
able Cartan matrix. Let D = (di)1≤i≤n be a family of positive integers such
that (diaij)i,j∈{1,...,n} is symmetric. Let q ∈ k×. Assume that q2di �= 1 for any

1 ≤ i ≤ n. Let τ be the skew pairing of U≤0
q and U≥0

q in Proposition 8.1.6 with

parameters λi = (q−di − qdi)−1, 1 ≤ i ≤ n. The quantized enveloping algebra Uq of
the Kac-Moody algebra associated to A is isomorphic to the quotient Hopf algebra
of the Drinfeld double of U≤0

q and U≥0
q corresponding to τ by the two-sided ideal

generated by KiLi − 1, 1 ≤ i ≤ n.
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8.2. YD-data and linking

Definition 8.2.1. Let I be a finite set, qij ∈ k× for all i, j ∈ I, and let
q = (qij)i,j∈I . We say that q is

(1) generic, if qii is not a root of unity for all i ∈ I,
(2) quasi-generic, if

(a) char(k) > 0 and q is generic, or
(b) char(k) = 0 and for all i ∈ I, qii is not a root of unity or qii = 1,

(3) of (finite) Cartan type if there is a (finite) Cartan matrix (aij)i,j∈I

such that for all i, j ∈ I,

qijqji = q
aij

ii , where 0 ≤ −aij < ord(qii) if i �= j,(8.2.1)

and 1 ≤ ord(qii) ≤ ∞.

Definition 8.2.2. A YD-datum D = D(G, (gi)i∈I , (χi)i∈I) consists of an
abelian group G, a finite non-empty set I, and for all i ∈ I, elements gi ∈ G, and

characters χi in Ĝ = Hom(G, k×). We define the braiding matrix (qij)i,j∈I of D
by

qij = χj(gi) for all i, j ∈ I.(8.2.2)

A YD-datum is called generic, quasi-generic, and of (finite) Cartan type,
respectively, if its braiding matrix q is.

Let q = (qij)i,j∈I be a matrix of non-zero elements in k. Assume that for all
i �= j in I there are mij ∈ N0 with

qijqji = q
−mij

ii for all i, j ∈ I, i �= j.

We choose 0 ≤ mij < ord(qii) for all i �= j in I. Then q is of Cartan type with
Cartan matrix A = (aij)i,j∈I , where aii = 2 for all i, and aij = −mij for all i �= j.

Note that the Cartan matrix of a YD-datum of Cartan type is uniquely deter-
mined.

Example 8.2.3. Let A = (aij)i,j∈I be a symmetrizable Cartan matrix, and
(di)i∈I positive integers with diaij = djaji for all i, j ∈ I. Let 0 �= q ∈ k, and
assume that for all i, j ∈ I, 0 ≤ −aij < ord(q2di) ≤ ∞. Define

qij = qdiaij for all i, j ∈ I.

Then the matrix (qij)i,j∈I is of Cartan type with Cartan matrix A. This is the
braiding which appeared in Proposition 8.1.3.

Let ∼ be the usual equivalence relation on the index set I of a Cartan matrix
(aij)i,j∈I : For all i, j ∈ I, i ∼ j if and only if there are elements i1, . . . , it ∈ I, t ≥ 2,
with i1 = i, it = j, ail,il+1

�= 0 for all 1 ≤ l < t. The set of equivalence classes of I
with respect to ∼, also called connected components, will be denoted by X .

Lemma 8.2.4. Let q = (qij)i,j∈I be a matrix of non-zero elements in k. Assume
that q is of finite Cartan type with Cartan matrix A = (aij)i,j∈I . Then there are
integers di ∈ {1, 2, 3}, for all i ∈ I, and for each connected component J of I with
respect to ∼ there exists qJ ∈ k× such that

qii = qdi

J for all i ∈ J .(8.2.3)
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Proof. By Theorem 1.10.18, there exist unique integers di, i ∈ I, such that

diaij = djaji for all i, j ∈ I,(8.2.4)

and for each equivalence class J in I with respect to ∼, {dj | j ∈ J} is one of the
sets {1}, {1, 2}, {1, 3}.

Let i1, i2 ∈ I which belong to the same equivalence class J . Assume that
di1 = di2 . Then there is k ≥ 1 and a sequence j1, . . . , jk ∈ J such that i1 = j1,
i2 = jk, and

djl = dj1 , ajljl+1
= ajl+1jl = −1

for all 1 ≤ l < k. Therefore

q−1
jljl

= qjljl+1
qjl+1jl = q−1

jl+1jl+1

for all 1 ≤ l < k and hence qi1i1 = qi2i2 .
Assume now that di1 = 1, di2 > 1, and ai1i2 �= 0. Then ai1i2 = −di2 , ai2i1 = −1

because of (8.2.4), and

q−1
i2i2

= qi2i1qi1i2 = q
−di2
i1i1

.

This implies that for each component J of I there exists qJ ∈ k× (namely, qJ = qjj
with dj = 1) such that qii = qdi

J for all i ∈ J . �
Remark 8.2.5. More complicated situations may appear if A is not of finite

type. For example, assume that dimV = 2, q ∈ k× with q2 �= 1, and

q =

(
q q−1

q−1 −q

)
, A =

(
2 −2
−2 2

)
.

Then A is symmetric, but the diagonal entries of q do not coincide.

Remark 8.2.6. Let q = (qij)i,j∈I be a matrix of non-zero elements in k. As-
sume that q is of Cartan type with Cartan matrix A = (aij)i,j∈I . For all i ∈ I and
J ∈ X , let di be a positive integer and qJ ∈ k×. Assume that diaij = djaji for all
i, j ∈ I, and

qii = q2di

J for all i ∈ J .

Define

pij =

{
q
diaij

J for all J ∈ X , i, j ∈ J ,

1 for all i, j ∈ I, i �∼ j.

Let p = (pij)i,j∈I . Then the matrices q and p are twist-equivalent. By Corol-
lary 4.1.14, the Nichols algebras of braided vector spaces of diagonal type with
braiding matrices q and p are very similar. The only difference between p and the
matrix in Example 8.2.3 is that the elements qJ can vary for different components
J . Note that by Lemma 8.2.4, the assumptions in this remark are satisfied for
matrices q of finite Cartan type (if the elements qJ have square roots in k).

Definition 8.2.7. Let D = D(G, (gi)i∈I , (χi)i∈I) be a YD-datum of Cartan
type with braiding matrix (qij)i,j∈I .

(1) Let i, j ∈ I. The pair (i, j) is called linkable, and i is called linkable to
j, if

i �∼ j, gigj �= 1, and χiχj = 1.

(2) A matrix λ = (λij)i,j∈I,i �∼j of elements in k is called a linking parameter
for D, if for all i, j ∈ I, i �∼ j,
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(a) if λij �= 0, then (i, j) is linkable,
(b) λij = −qijλji.

(3) If λ = (λij)i,j∈I,i �∼j is a linking parameter for D, then a pair (i, j) of
elements in I, i �∼ j, is called linked if λij �= 0.

If i �∼ j, then aij = 0, hence qijqji = 1, and λij = −qijλji implies λji = −qjiλij .
Note that (j, i) is linked, if (i, j) is.

Lemma 8.2.8. Let D be a YD-datum of Cartan type with Cartan matrix
(aij)i,j∈I and braiding matrix (qij)i,j∈I .

(1) Let i, j, k, l ∈ I.
(a) If (i, k) is linkable, then aik = 0, and qii = q−1

kk = qki = q−1
ik .

(b) If (i, k) and (j, l) are linkable, then q
aij

ii = qakl
ii .

(c) If (i, k) and (j, l) are linkable, and i �∼ l, then qij = q−1
lk .

(2) Let i be any vertex of I. Assume that for all k ∈ I,
(a) qkk is not a root of one, or
(b) the order of qkk is finite and for all l ∈ I, l �= k, ord(qkk) does not

divide 2− akl.
Then i is linkable to at most one k ∈ I.

Proof. (1) (a) follows easily from the definition of linkable pairs.
(b) We first note that qij = q−1

il , qji = q−1
jk , qkl = q−1

kj , qlk = q−1
li , since by

assumption χiχk = 1, χjχl = 1. Hence

(8.2.5) (qijqji)(qklqlk) = (qilqli)
−1(qjkqkj)

−1.

If i ∼ l or j ∼ k, then i �∼ j and k �∼ l since by assumption i �∼ k and j �∼ l; then
the left-hand of (8.2.5) is equal to 1. And if i �∼ l and j �∼ k, then the right-hand
of (8.2.5) is equal to 1. Therefore q

aij

ii qakl

kk = 1 by (8.2.1). Then the claim follows
from (a).

(c) We have noted in the proof of (b) that qij = q−1
il , qlk = q−1

li . The assumption

i �∼ l implies ail = 0, hence qli = q−1
il , and (c) follows.

(2) Let k, l ∈ I such that k �= l and both i, k and i, l are linkable. Then by
(1)(b) and (a), qaii

kk = qakl

kk , and (2) follows, since aii = 2. �

Remark 8.2.9. There are examples of YD-data with vertices linkable to several
vertices. E. g. if qij = −1 for all i, j ∈ I, gigj �= 1 for all i �= j, and G is generated
by gi, i ∈ I, then each pair (i, j) with i �= j is linkable.

Definition 8.2.10. Let D = D(G, (gi)i∈I , (χi)i∈I) be a YD-datum of Cartan
type, and λ = (λij)i,j∈I,i �∼j a linking parameter for D. Let X be the set of connected
components of I with respect to ∼. The linking graph of (D, λ) is the graph with
set of vertices X , where there is an edge between J1, J2 ∈ X if and only if there are
elements i ∈ J1 and j ∈ J2 with λij �= 0.

Recall that a graph is called bipartite if the set of its vertices V can be written
as the disjoint union of non-empty subsets V + and V − such that there is no edge
between vertices in V + and no edge between vertices in V −.

Lemma 8.2.11. Let D = D(G, (gi)i∈I , (χi)i∈I) be a YD-datum of Cartan type
with Cartan matrix (aij)i,j∈I , and λ a linking parameter for D. Assume that any
element of I is linked with at most one element of I.
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Let (Jl)1≤l≤n be a circle of length n ≥ 3 in the linking graph of D, that is,
J1, . . . , Jn ∈ X , Jk �= Jl for all k, l, and for all 1 ≤ l ≤ n there are il, jl ∈ Jl such
that

(j1, i2), (j2, i3), . . . , (jn−1, in), (jn, i1) are linked.

For each l there exist i1(l), i2(l), . . . , ip(l)(l) ∈ Jl, where p(l) ≥ 2, such that
aip(l) ip+1(l) < 0 for all 1 ≤ p ≤ p(l)− 1, and i1(l) = il �= jl = ip(l)(l). Let

al =

p(l)−1∏
p=1

aip(l) ip+1(l), bl =

p(l)−1∏
p=1

aip+1(l) ip(l).

Then

(qi1i1)
a1···an = (qi1i1)

(−1)nb1···bn .(8.2.6)

Proof. The elements i1(l), i2(l), . . . , ip(l)(l) exist, since il ∼ jl. Note that
il �= jl, since any element of I is linked with at most one element in I. The Cartan
condition implies qal

ilil
= qbljljl for all l. Let in+1 = i1. Hence for all 1 ≤ l ≤ n,

qal
ilil

= q−bl
il+1il+1

, since (jl, il+1) are linked, and (8.2.6) follows. �

Corollary 8.2.12. Let D be a generic YD-datum of Cartan type, and let λ
be a linking parameter for D. Then the linking graph of (D, λ) is bipartite.

Proof. By a well-known result in graph theory, see [Die18], Section 1.6, a
graph is bipartite if and only if it contains no odd cycle. Assume there is a cycle in
the linking graph of (D, λ) of length n ≥ 3. By Lemma 8.2.8(2), since D is generic,
any element of I is linkable to at most one element of I. Hence we can apply
Lemma 8.2.11. Then (8.2.6) implies that n is even, since for all l, the non-zero
integers al and bl have the same sign. �

Remark 8.2.13. The conditions in Lemma 8.2.8 and (8.2.6) in Lemma 8.2.11
imply that the linking graph of (D, λ) is bipartite in many other cases than the
generic one. For example, the linking graph is bipartite in the simply laced case,
when the values of the Cartan matrix are 0, 2 or −1, and when the order of qii is
> 3 for all i ∈ I.

In the generic case the equality (8.2.6) implies that a1 · · · an = b1 · · · bn for
cycles of even length n. This gives further restrictions when the ai are not all equal
to ±1.

For the definition of the diagram of a YD-datum and linking parameter we will
use the notion of the Dynkin diagram of a Cartan matrix.

Definition 8.2.14. The Dynkin diagram of a Cartan matrix A = (aij)i,j∈I

is a graph with vertex set I as follows. For i �= j with aijaji ≤ 4 and |aij | ≥ |aji|,
the vertices i and j are connected by |aij | lines, and these lines are equipped with
an arrow pointing towards i if |aij | > 1. If aijaji > 4, the vertices i and j are
connected by a bold-faced line equipped with the ordered pair (|aij |, |aji|).

Definition 8.2.15. Let D be a YD-datum of Cartan type A and λ a linking
parameter. The diagram of (D, λ) is the Dynkin diagram of A together with
dotted edges between linked pairs of vertices.
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The next proposition describes a large class of possible diagrams (D, λ) when
the linking graph is bipartite.

If D = D(G, (gi)i∈I , (χi)i∈I) is a YD-datum, and J ⊆ I is a subset, we define

D(J) = D(G, (gi)i∈J , (χi)i∈J ).

Proposition 8.2.16. Let A = (aij)i,j∈I be a Cartan matrix, and X the set of
connected components of I with respect to ∼. Let

X+,X− ⊆ X with X = X+ ∪ X−, X+ ∩ X− = ∅,

I+ =
⋃

J∈X+

J, I− =
⋃

J∈X−

J.

Let l : I+l → I−l be a bijective map between subsets I+l ⊆ I+ and I−l ⊆ I−. Let G
be a free abelian group with basis (gi)i∈I , and

D1 = D(G, (gi)i∈I+ , (μi)i∈I+), D2 = D(G, (gi)i∈I− , (νi)i∈I−),

YD-data of Cartan type (aij)i,j∈I+ and (aij)i,j∈I− . Then the following are equiva-
lent.

(1) There is a YD-datum D = D(G, (gi)i∈I , (χi)i∈I) of Cartan type with Car-
tan matrix A, and a linking parameter λ of D such that
(a) D(I+) = D1, D(I−) = D2, and
(b) the dotted lines in the diagram of (D, λ) are the lines between i and

l(i) for all i ∈ I+l .

(2) For all i, j ∈ I+l , μj(gi) = νl(i)(gl(j))
−1.

Proof. (1) ⇒ (2) follows from Lemma 8.2.8(1)(c).
(2) ⇒ (1) For all i ∈ I+ we define a character χi of G as follows.

(α) Let χi(gj) = μi(gj) for all j ∈ I+.

(β) If i ∈ I+l , let χi(gj) = ν−1
l(i)(gj) for all j ∈ I−.

(γ) If i �∈ I+l , let χi(gl(k)) = μk(gi) for all k ∈ I+l .

(δ) If i �∈ I+l , j ∈ I−, j �∈ I−l , let χi(gj) be an arbitrary element in k.

Then we define for all i ∈ I− a character χi of G by

χi(gj) =

{
νi(gj) for all j ∈ I−,

χj(gi)
−1 for all j ∈ I+.

(8.2.7)

It follows that D = D(G, (gi)i∈I , (χi)i∈I) is a YD-datum of Cartan type with Cartan
matrix A.

We claim that

χi = χ−1
l(i) for all i ∈ I+l .(8.2.8)

Let j ∈ I−. Then χi(gj) = ν−1
l(i)(gj) by (β), and χl(i)(gj) = νl(i)(gj) by (8.2.7).

Let j ∈ I+l . Then

χl(i)(gj) = χj(gl(i))
−1 = νl(j)(gl(i)) = μi(gj)

−1 = χi(gj)
−1,

where the first equality follows from (8.2.7), the second from (β), the third from
(2), and the last from (α).
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Let j ∈ I+ with j �∈ I+l . Then

χl(i)(gj) = χ−1
j (gl(i)) = μ−1

i (gj) = χ−1
i (gj),

where the first equality follows from by (8.2.7), the second from (γ), and the last
from (α).

This proves (8.2.8). Finally, let (li)i∈I+
l
be a family of non-zero scalars, and for

all i, j ∈ I, i �∼ j, let

λij =

⎧⎪⎨⎪⎩
li if i ∈ I+l , j = l(i),

−ql(j)jlj if j ∈ I+l , i = l(j),

0 otherwise.

Then λ = (λij)i,j∈I,i �∼j is a linking parameter for D, and the linked pairs of (D, λ)

are {(i, l(i)), (l(i), i) | i ∈ I+l }. �

Corollary 8.2.17. Under the assumptions of Proposition 8.2.16 let A be sym-
metrizable, and (di)i∈I a family of positive integers with diaij = djaji for all i, j ∈ I.
For all i ∈ I we denote the connected component of I with respect to ∼ containing
i by I(i). Let (tJ )J∈X be a family of non-zero integers and 0 �= q ∈ k not a root
of 1. Define YD-data D1 and D2 with characters μi, i ∈ I+, and νk, k ∈ I−, such
that

μi(gj) = qdiaijtJ(i) , νk(gj) = qdkakjtJ(k) for all j ∈ I.

Assume that for all i, j ∈ I+l ,

aij = al(i)l(j), ditJ(i) = −dl(i)tJ(l(i)).(8.2.9)

Then there is a YD-datum D = D(G, (gi)i∈I , (χi)i∈I) of Cartan type with Cartan
matrix A, and a linking parameter λ of D such that

(1) D(I+) = D1, D(I−) = D2, and
(2) the dotted lines in the diagram of (D, λ) are the lines between i and l(i)

for all i ∈ I+l .

Proof. The matrices (μj(gi))i,j∈I+ and (νj(gk))k,j∈I− are of Cartan type with
Cartan matrices (aij)i,j∈I+ and (akj)k,j∈I− , respectively. Indeed, by definition of
a Cartan matrix, if aij = 0, then aji = 0, and J(i) = J(j) otherwise; moreover, q
is not a root of 1. Condition (2) in Proposition 8.2.16 follows from (8.2.9). Hence
the corollary follows from Proposition 8.2.16. �

The diagonal elements of the braiding matrix ofD in the last corollary satisfy an
additional condition: For all J ∈ X there is an element qJ ∈ k× (namely qJ = q2tJ )

such that qii = qdi

J for all i ∈ J . By Lemma 8.2.4, this condition always holds in
the case of finite Cartan matrices.

Corollary 8.2.18. Under the assumptions of Proposition 8.2.16 let A be sim-
ply laced, that is, aij ∈ {0,−1} for all i, j ∈ I, i �= j. The following are equivalent.

(1) There is a generic YD-datum D of Cartan type with Cartan matrix A,
and a linking parameter λ for D such that the dotted lines in the diagram
of (D, λ) are the lines between i and l(i) for all i ∈ I+l .

(2) For all i, j ∈ I+l , aij = al(i)l(j).
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Proof. (1) ⇒ (2) follows from Lemma 8.2.8(1)(b).
(2) ⇒ (1) follows from Corollary 8.2.17 with tJ(i) = 1, tJ(l(i)) = −1 for all

i ∈ I+l . �
Examples 8.2.19. (1) The diagram of a quantum group with perfect linking,

see Section 8.4, is the most well-known example of a diagram with non-trivial linking
parameter.

(2) Here is an example of four copies of A3 linked in a circle. The linking graph
is bipartite. In the second picture of the same graph, the decomposition of the set
of connected components X = X− ∪ X+ is shown.

It follows immediately from Corollary 8.2.18 that this diagram is the diagram
of some (D, λ).

(3) In the next two diagrams there are two double arrows with different direc-
tions. The first diagram can be realized as the diagram of some (D, λ) by Corol-
lary 8.2.17. But for the second diagram the integers tJ do not exist. In fact this
diagram cannot be realized as the diagram of some (D, λ) when D is generic. This
follows from Lemma 8.2.11.

8.3. The Hopf algebra U(D, λ)

Let D = D(G, (gi)i∈I , (χi)i∈I) be a YD-datum. The Yetter-Drinfeld module
X ∈ G

GYD defined by D is a vector space with basis (xi)i∈I and G-coaction and
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G-action given by

δ(xi) = gi ⊗ xi, gxi = χi(g)xi,

for all i ∈ I, g ∈ G. The braiding c = cX,X is the diagonal braiding with

c(xi ⊗ xj) = qijxj ⊗ xi, qij = χj(gi),

for all i, j ∈ I.
We identify the tensor algebra T (X) with the free algebra in the generators xi,

i ∈ I. Recall that T (X) is a Hopf algebra in G
GYD. The bosonization T (X)#kG

is a Hopf algebra. We identify elements x ∈ T (X) with x ⊗ 1 in T (X)#kG, and
g ∈ G with 1⊗ g. By Lemma 4.3.11, the braided adjoint action adx(y) ∈ T (X) of
elements x, y ∈ T (X) can be identified with the adjoint action adx(y) of the Hopf
algebra T (X)#kG.

Let i, j1, . . . , jt ∈ I, t ≥ 1, and y = xj1 · · ·xjt ∈ T (X). Then

adxi(y) = xiy − qij1 · · · qijtyxi.

Definition 8.3.1. Let D = D(G, (gi)i∈I , (χi)i∈I) be a YD-datum of Cartan
type with Cartan matrix (aij)i,j∈I , and λ = (λij)i,j∈I,i �∼j a linking parameter for
D. Let X ∈ G

GYD be defined by D with basis (xi)i∈I . Let

U(D) = T (X)/((adxi)
1−aij (xj) | i, j ∈ I, i �= j),(8.3.1)

U(D, λ) = (T (X)#kG)/I(D, λ),(8.3.2)

where I(D, λ) is the ideal generated by the elements

(adxi)
1−aij (xj) for all i, j ∈ I, i ∼ j, i �= j,(8.3.3)

xixj − qijxjxi − λij(gigj − 1) for all i, j ∈ I, i �∼ j.(8.3.4)

We denote the images of xi, i ∈ I, in U(D) and U(D, λ) again by xi, and the
images of g ∈ G in U(D, λ) by g. For each pair (i, j) ∈ I × I, i �∼ j,

−qji(xixj − qijxjxi − λij(gigj − 1)) = xjxi − qjixixj − λji(gjgi − 1).

Hence in (8.3.4) we can omit one of the relations for the pair (i, j) and the pair
(j, i).

Proposition 8.3.2. Let D be a YD-datum of Cartan type, and λ a linking
parameter for D.

(1) U(D) is a quotient Hopf algebra of T (X) in G
GYD.

(2) U(D, λ) is a quotient Hopf algebra of T (X)#kG.
(3) Let Iλ be the ideal in U(D)#kG generated by the images of the elements

in (8.3.4). Then

U(D, λ) ∼= (U(D)#kG)/Iλ.

(4) U(D, 0) ∼= U(D)#kG.

Proof. (1) It follows from Proposition 4.3.12 that for all i, j ∈ I, i �= j,
(adxi)

1−aij (xj) is primitive in T (X). Hence the elements in (8.3.3) and in (8.3.4)
are skew-primitive in T (X)#kG. This implies (1) and (2). (3) is clear from the
definition of U(D, λ), and (4) follows from (3), since

(adxi)
1−aij (xj) = xixj − qijxjxi for all i, j ∈ I, i �∼ j.

�
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Our next goal is to prove that U(D, λ) is isomorphic to a quotient Hopf algebra
by central group-like elements of a quantum double of two smash products of the
form U(D′)#kG′. To prove this decomposition we have to assume that the linking
graph is bipartite.

We begin with some general observations on bosonizations.
Let G be a monoid, H = kG the monoid algebra, R a left H-module algebra,

and T an algebra. Let (gk)k∈K be generators of the monoid G, and (rl)l∈L genera-
tors of the algebra R. Let ϕ1 : R → T , ϕ2 : H → T be algebra maps satisfying the
commutation rule

ϕ2(gk)ϕ1(rl) = ϕ1(gk · rl)ϕ2(gk)(8.3.5)

for all k ∈ K and l ∈ L. Then

ϕ : R#H → T, r#h �→ ϕ1(r)ϕ2(h),

is an algebra map, and any algebra map R#H → T has this form.

Lemma 8.3.3. Let G be a group, R =
⊕

n≥N0
R(n) be an N0-graded Hopf algebra

in G
GYD with R(0) = k1, and U = R#kG the bosonization.

(1) Ĝ → Alg(U, k) = G(U0), χ �→ χ̃ = ε ⊗ χ, is a well-defined group homo-
morphism.

(2) Let χ ∈ Ĝ. Assume that f : R(1) → χ−1k is a G-linear map, where χ−1k
is the G-module k with G-action g · 1 = χ−1(g) for all g ∈ G. Then
fπ1 ⊗ χ ∈ P1,χ̃(U

0), where π1 : R → R(1) is the projection.

Proof. (1) Let χ ∈ Ĝ. The function χ̃ = ε ⊗ χ : R#kG → k is an algebra
map, since ε : R → k is a G-linear algebra map.

Let χ1, χ2 ∈ Ĝ. Then χ̃1 ∗ χ̃2 = χ̃1χ2, since for all r ∈ R, g ∈ G,

χ̃1 ∗ χ̃2(r#g) = χ̃1(r
(1)#r(2)(−1)g)χ̃2(r

(2)
(0)#g)

= ε(r(1))χ1(r
(2)

(−1))χ1(g)ε(r
(2)

(0))χ2(g)

= χ̃1χ2(r#g).

(2) Let δ = fπ1 ⊗ χ. By Lemma 2.3.11 we have to show that ρ : U → M2(k),

u �→
(
ε(u) δ(u)
0 χ̃(u)

)
, is an algebra map. It is clear that the restrictions of ρ to R

and to kG are algebra maps. The commutation relations (8.3.5) are equivalent to
the G-linearity of f . �

In the remainder of this section let

– D = D(G, (gi)i∈I , (χi)i∈I) be a YD-datum of Cartan type,
– (qij)i,j∈I the braiding matrix of D,
– λ = (λij)i,j∈I,i �∼j a linking parameter for D, such that
– the linking graph of (D, λ) is bipartite.

We choose non-empty subsets X+ and X− of the set X of connected components
of I with X = X+ ∪ X−, X+ ∩ X− = ∅, and

I+ =
⋃

J∈X+

J, I− =
⋃

J∈X−

J,(8.3.6)

such that λij = 0 whenever i, j ∈ I+ or i, j ∈ I−.
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Remark 8.3.4. The relations of U(D, λ) can be regrouped as follows.

U(D, λ) = (T (X)#kG)/I,

where the ideal I is generated by the elements

(adxi)
1−aij (xj) for all i, j ∈ I+, i �= j,(8.3.7)

(adxi)
1−aij (xj) for all i, j ∈ I−, i �= j,(8.3.8)

xixj − qijxjxi − λij(gigj − 1) for all i ∈ I−, j ∈ I+.(8.3.9)

Let F be a free abelian group with basis (ej)j∈I+ , and define characters (ηj)j∈I+

of F by

ηj(ek) = χj(gk) = qkj for all k ∈ I+.(8.3.10)

Let

D+ = D(G, (gi)i∈I+ , (χi)i∈I+), D− = D(G, (gi)i∈I− , (χi)i∈I−),(8.3.11)

be the restrictions of D to I+ and I−, and

D(+) = D(F, (ej)j∈I+ , (ηj)j∈I+).(8.3.12)

Let X,X+, X− be objects in G
GYD, and X(+) ∈ F

FYD with basis (xi)i∈I , (vi)i∈I+ ,
(ui)i∈I− , and (aj)j∈I+ , respectively, where

xi ∈ Xχi
gi for all i ∈ I,

vi ∈ (X+)χi
gi for all i ∈ I+, ui ∈ (X−)χi

gi for all i ∈ I−,

aj ∈ (X(+))ηj
ej for all j ∈ I+.

Then D+ and D− are of Cartan type (ajk)j,k∈I+ and (aij)i,j∈I− , respectively. By

(8.3.10), D+ and D(+) have the same braiding matrix, and D(+) is of Cartan type
(ajk)j,k∈I+ .

Let U(D, λ) be defined with respect to X. Finally, let U(D(+)) and U(D−) be
the pre-Nichols algebras defined in Definition 8.3.1 with respect to X(+) and X−,
respectively. Let

A = U(D(+))#kF and U = U(D−)#kG

be the bosonizations. To define a quantum double of A and U , we first construct a
Hopf algebra homomorphism ϕ : A → (U0)cop.

Lemma 8.3.5. For all j ∈ I+, let γj = ε ⊗ χj ∈ U0, δj = fjπ1 ⊗ χj ∈ U0,
where fj : U(D−)(1) = X− → k is the linear map defined by fj(ui) = −λij for all
i ∈ I−. Then

ϕ : A → (U0)cop, aj �→ δj , ej �→ γj , for all j ∈ I+,

defines a Hopf algebra map. Let

τ : A⊗ U → k, a⊗ u �→ ϕ(a)(u),

be the skew pairing defined by ϕ. Then for all j ∈ I+, i ∈ I−, g ∈ G,

τ (ej ⊗ g) = χj(g), τ±1(ej ⊗ ui) = 0, τ±1(aj ⊗ g) = 0,

τ (aj ⊗ ui) = −λij , τ−1(aj ⊗ ui) = q−1
ij λij .
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Proof. Let j ∈ I+, i ∈ I−, and g ∈ G. Then

fj(g · ui) = χi(g)fj(ui) = χ−1
j (g)fj(ui),

since χiχj = ε if λij �= 0. Hence fj : X
− → χ−1

j
k is G-linear, and by Lemma 8.3.3(2)

it follows that δj : U → k is an (ε, γj)-derivation.
We claim that

ϕ̃ : T (X(+))#kF → (U0)cop, aj �→ δj , ej �→ γj for all j ∈ I+

defines an algebra map. We only have to check the commutation relations (8.3.5),
that is,

γ±1
k ∗ δj = η±1

j (ek)δj ∗ γ±1
k(8.3.13)

for all j, k ∈ I+. Let i ∈ I−, g ∈ G. Then

ΔU (uig) = uig ⊗ 1#g + gig ⊗ uig.

Hence for all j, k ∈ I+,

(γ±1
k ∗ δj)(uig) = χ±1

k (gig)fj(ui)χj(g),

η±1
j (ek)(δj ∗ γ±1

k )(uig) = χ±1
j (gk)fj(ui)χj(g)χ

±1
k (g).

Note that aik = 0, since i ∈ I−, k ∈ I+. If λij �= 0, then χiχj = 1, hence

χj(gk) = χ−1
i (gk) = q−1

ki = qik = χk(gi),

and the equations (8.3.13) follow.
Since ϕ̃ is an algebra map, it is clear from its definition that ϕ̃ is a map of Hopf

algebras. Therefore, for all j, k ∈ I+, j �= k, the elements

ϕ̃((ad aj)
1−ajk(ak)) = (ad δj)

1−ajk(δk)

are skew derivations of U . Note that a skew derivation δ : U → k is 0, if it vanishes
on algebra generators of U . Hence the elements (ad δj)

1−ajk(δk) are 0, since by
Lemma 4.3.11 and Proposition 4.3.12, they are linear combinations of monomials
δj1 · · · δjt , j1, . . . jt ∈ I+, t ≥ 2, and any product δj1δj2 vanishes on G and on all
elements ui, i ∈ I−.

We have shown that ϕ̃ factorizes over A. This proves the existence of ϕ. The
values of τ in the lemma are easy to check. �

We call the two-cocycle σ for A⊗U associated to the skew pairing τ defined in
Lemma 8.3.5 the two-cocycle defined by ϕ. Let ·σ be the multiplication of (A⊗U)σ.
Then by Corollary 2.8.8 and Lemma 2.8.6, for all a, b ∈ A, u, v ∈ U ,

(a⊗ u) ·σ (b⊗ v) = τ (b(1) ⊗ u(1))ab(2) ⊗ u(2)vτ
−1(b(3) ⊗ u(3)),(8.3.14)

τ−1(a⊗ u) = τ (S(a)⊗ u) = τ (a⊗ S−1(u)).(8.3.15)

In particular,

(a⊗ 1) ·σ (b⊗ v) = ab⊗ v, (a⊗ u) ·σ (1⊗ v) = a⊗ uv(8.3.16)

for all a, b ∈ A, u, v ∈ U , and

(a⊗ u) ·σ (b⊗ v) = ab⊗ uv, if a, b ∈ G(A), u, v ∈ G(U).(8.3.17)

The preliminary version made available with permission of the publisher, the American Mathematical Society.



8.3. THE HOPF ALGEBRA U(D, λ) 301

Recall that for all j ∈ I+, i ∈ I−,

Δ2(aj) = ej ⊗ ej ⊗ aj + ej ⊗ aj ⊗ 1 + aj ⊗ 1⊗ 1,

Δ2(ui) = gi ⊗ gi ⊗ ui + gi ⊗ ui ⊗ 1 + ui ⊗ 1⊗ 1.

Theorem 8.3.6. Let ϕ : A → (U0)cop be the Hopf algebra homomorphism of
Lemma 8.3.5, and σ the two-cocycle defined by ϕ. Then for all j ∈ I+, the elements
ej ⊗ g−1

j are central group-like elements of (A⊗ U)σ, and there is an isomorphism
of Hopf algebras

Φ : U(D, λ)→ (A⊗ U)σ/(ej ⊗ g−1
j − 1⊗ 1 | j ∈ I+),

mapping xj with j ∈ I+, xi with i ∈ I−, and g ∈ G onto the residue classes of
aj ⊗ 1, 1⊗ ui, and 1⊗ g, respectively.

Proof. (1) We show that Φ is a well-defined Hopf algebra map. Using the
formulas (8.3.14), (8.3.15), it is easy to check that the group-like elements ej⊗g−1

j ,

j ∈ I+, are central, since they commute with ak⊗1 and 1⊗ui for all k ∈ I+, i ∈ I−.
The elements ej ⊗ g−1

j − 1⊗ 1, j ∈ I+, generate a Hopf ideal by Proposition 2.4.4.
There is a well-defined algebra homomorphism

Φ̃ : T (X)#kG→ (A⊗ U)σ, xj �→ aj ⊗ 1, xi �→ 1⊗ ui, g �→ 1⊗ g,

for all j ∈ I+, i ∈ I−, g ∈ G. This follows from the commutation rules

(1⊗ g) ·σ (1⊗ ui) = χi(g)(1⊗ ui) ·σ (1⊗ g),

(1⊗ g) ·σ (aj ⊗ 1) = χj(g)(aj ⊗ 1) ·σ (1⊗ g),

for all j ∈ I+, i ∈ I−, g ∈ G.

Next we show that the relations of U(D, λ) are preserved under Φ̃ modulo the
ideal in (A ⊗ U)σ generated by the elements ej ⊗ g−1

j − 1 ⊗ 1, j ∈ I+. The Serre

relations (8.3.3) are already zero in (A ⊗ U)σ. It is enough to check the linking
relations (8.3.4)

xixj − qijxjxi − λij(gigj − 1) for all j ∈ I+, i ∈ I−.

Let j ∈ I+, i ∈ I−. Then Φ̃(xjxi) = (aj ⊗ 1) ·σ (1 ⊗ ui) = aj ⊗ ui. We compute

Φ̃(xixj) = (1⊗ ui) ·σ (aj ⊗ 1):

(1⊗ ui) ·σ (aj ⊗ 1) = τ (ej ⊗ ui(1))ej ⊗ ui(2)τ
−1(aj ⊗ ui(3))

+ τ (ej ⊗ ui(1))aj ⊗ ui(2)τ
−1(1⊗ ui(3))

+ τ (aj ⊗ ui(1))1⊗ ui(2)τ
−1(1⊗ ui(3))

= τ (ej ⊗ gi)ej ⊗ giτ
−1(aj ⊗ ui) + τ (ej ⊗ gi)aj ⊗ ui + τ (aj ⊗ ui)1⊗ 1

= λijej ⊗ gi + qijaj ⊗ ui − λij1⊗ 1,

where we used the values of τ in Lemma 8.3.5. We obtain that

Φ̃(xixj − qijxjxi) = λij(ej ⊗ gi − 1⊗ 1)

≡ λij(1⊗ gigj − 1⊗ 1) mod (ek ⊗ g−1
k − 1⊗ 1 | k ∈ I+)

= Φ̃(λij(gigj − 1)).

Thus Φ is a well-defined algebra map. Then it follows easily from the construction
of Φ that it is a map of Hopf algebras.
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(2) To construct the inverse of Φ, we define Hopf algebra maps

ψ(+) : A→ U(D, λ), aj �→ xj , ej �→ gj for all j ∈ I+,

ψ− : U → U(D, λ), ui �→ xi, g �→ g, for all i ∈ I−, g ∈ G.

Note that ψ(+) and ψ− are well-defined algebra maps, since λij = 0, if i, j are both
in I+ or both in I−.

We want to show that

Ψ̃ : (A⊗ U)σ → U(D, λ), a⊗ x �→ ψ(+)(a)ψ−(x),

is a Hopf algebra map. Let P be the set of all pairs (a, x), a ∈ A, x ∈ U , satisfying

ψ−(x(1))ψ
(+)(a(1))τ (a(2) ⊗ x(2)) = τ (a(1) ⊗ x(1))ψ

(+)(a(2))ψ
−(x(2)).

By Proposition 2.8.11, it suffices to show that the pairs

(e±1
j , g), (e±1

j , ui), (aj , g), (aj, ui) for all j ∈ I+, i ∈ I−, g ∈ G,

are elements of P. This can be checked case by case using the values of τ in
Lemma 8.3.5. In the proof of the last case the linking relations are required.

For all j ∈ I+, Ψ̃(ej ⊗ g−1
j ) = gjg

−1
j = 1. Hence the Hopf algebra map Ψ̃

defines a Hopf algebra map

(A⊗ U)σ/(ej ⊗ g−1
j − 1⊗ 1 | j ∈ I+)→ U(D, λ),

mapping the residue class of a⊗ x onto ψ(+)(a)ψ−(x) for all a ∈ A, x ∈ U .
It is clear that this map is inverse to Φ. �

In the next theorem we will show that the Hopf algebra U(D, λ) is a two-
cocycle deformation of U(D, 0). We first prove a general lemma on two-cocycle
deformations.

Lemma 8.3.7. Let H be a bialgebra, M ⊂ G(H) a subset, and σ1, σ0 two-
cocycles for H. Assume that M is central in Hσ0

, and that

σ1(g ⊗ x) = σ0(g ⊗ x), σ1(x⊗ g) = σ0(x⊗ g)

for all g ∈ M , x ∈ H. Let ρ = σ1 ∗ σ−1
0 . Then ρ is a two-cocycle for Hσ0

,
(Hσ0

)ρ = Hσ1
, and

(1) M ⊆ Hσ1
is a central subset, and g ·σ0

x = g ·σ1
x, x ·σ0

g = x ·σ1
g for all

g ∈ M , x ∈ H.
(2) Hσi

= Hσi
/(g− 1 | g ∈ M), i ∈ {0, 1}, is a quotient bialgebra of Hσi

, and
ρ induces a two-cocycle

ρ : Hσ0
⊗Hσ0

→ k, x⊗ y �→ ρ(x⊗ y),

for Hσ0
.

(3) (Hσ0
)ρ = Hσ1

as Hopf algebras.

Proof. By Remark 2.8.3, ρ is a two-cocycle for Hσ0
, and (Hσ0

)ρ = Hσ1
.

The assumptions on σ1 and σ0 imply that

σ−1
1 (g ⊗ x) = σ−1

0 (g ⊗ x), σ−1
1 (x⊗ g) = σ−1

0 (x⊗ g)

for all g ∈ M , x ∈ H. Hence (1) and the equality as coalgebras in (3) follow. By
Proposition 2.4.4, Hσi

/(g − 1 | g ∈ M), i ∈ {0, 1}, is a quotient bialgebra of Hσi
.
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To prove (2), it is enough to show that the linear maps ρ±1 are well-defined.
Indeed, M is central in Hσ0

, and for all g ∈ M , x, y ∈ H,

ρ±1(g ⊗ x) = ε(x) = ρ±1(x⊗ g).

Hence

ρ±1(g ·σ0
x⊗ y) = ρ±1(x⊗ y) = ρ±1(x⊗ g ·σ0

y)

by the two-cocycle conditions (2.7.1) on ρ for Hσ0
and on ρ−1 for Hcop

σ0
for the

triples (g, x, y) and (x, y, g).
(3) now follows, since for all x, y ∈ H,

x ·ρ y = ρ(x(1) ⊗ y(1))x(2) ·σ0
y(2)ρ−1(x(3) ⊗ y(3) = x ·σ1

y,

since (Hσ0
)ρ = Hσ1

. �

Recall the definition of D+ and D− in (8.3.11). We define maps of Hopf algebras
in G

GYD by

ϕ+ : U(D+)→ U(D), vj �→ xj for all j ∈ I+,

ϕ− : U(D−)→ U(D), ui �→ xi for all i ∈ I−.

Lemma 8.3.8. (1) The maps

ϕ∓ : U(D−)⊗ U(D+)→ U(D), u⊗ v �→ ϕ−(u)ϕ+(v),

ϕ± : U(D+)⊗ U(D−)→ U(D), v ⊗ u �→ ϕ+(v)ϕ−(u),

are isomorphisms of Hopf algebras in G
GYD.

(2) The maps

(U(D−)⊗ U(D+))#kG
ϕ∓⊗id−−−−→ U(D)#kG ∼= U(D, 0),

(U(D+)⊗ U(D−))#kG
ϕ±⊗id−−−−→ U(D)#kG ∼= U(D, 0),

are isomorphisms of Hopf algebras.

Proof. (1) We prove the lemma for ϕ±. The result for ϕ∓ follows by changing
+,– into –,+.

The algebra map

F : U(D)→ U(D+)⊗ U(D−), xj �→ vj ⊗ 1, xi �→ 1⊗ ui for all j ∈ I+, i ∈ I−,

is well-defined, since for all i ∈ I−, j ∈ I+, aij = aji = 0 and qijqji = 1, hence

(adxi)(xj) = xixj − qijxjxi = 0 in U(D),

F(xi)F(xj) = (1⊗ ui)(vj ⊗ 1) = qijF(xj)F(xi) in U(D+)⊗ U(D−).

By construction, ϕ± is the composition

U(D+)⊗ U(D−)
ϕ+⊗ϕ−

−−−−−→ U(D)⊗ U(D)
μU(D)−−−−→ U(D).

Hence ϕ± is a coalgebra map in G
GYD.

To prove that ϕ± is an algebra map, it is enough to prove the following.

ϕ±((1⊗ u)(v ⊗ 1)) = ϕ±(1⊗ u)ϕ±(v ⊗ 1)
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for all

u = ui = ui1 · · ·uis , i = (i1, . . . , is) ∈ (I−)s,

v = vj = vj1 · · · vjt , j = (j1 . . . , jt) ∈ (I+)t, s, t ≥ 1.

Let qij =
∏

1≤k≤s,1≤l≤t qikjl . Then

(1⊗ ui)(vj ⊗ 1) = qijvj ⊗ ui.

Hence ϕ±((1⊗ u)(v ⊗ 1)) = qijxjxi = xixj = ϕ±(1⊗ u)ϕ±(v ⊗ 1).

It is obvious that the algebra maps F and ϕ± are inverse isomorphisms.
(2) follows from (1). �

As in part (2) of the proof of Theorem 8.3.6, there are Hopf algebra maps

ψ+ : U(D+)#kG → U(D, λ), vj �→ xj , g �→ g for all j ∈ I+, g ∈ G,

ψ− : U(D−)#kG → U(D, λ), ui �→ xi, g �→ g for all i ∈ I−, g ∈ G,

Theorem 8.3.9. There are two-cocycles ν for (U(D−) ⊗ U(D+))#kG and ν′

for (U(D+)⊗ U(D−))#kG such that

Ψ : ((U(D−)⊗ U(D+))#kG)ν → U(D, λ), u⊗ v ⊗ g �→ ψ−(u)ψ+(v)g,

Ψ′ : ((U(D+)⊗ U(D−))#kG)ν′ → U(D, λ), v ⊗ u⊗ g �→ ψ+(v)ψ−(u)g,

are isomorphisms of Hopf algebras.

Proof. Let H = A⊗U , M = {ej⊗g−1
j | j ∈ I+}. Let σ0 be the two-cocycle of

A corresponding to the algebra map ϕ0 defined in Lemma 8.3.5, where λ is replaced
by 0 (and same I+, I−). Let τ0 be the skew pairing defined by ϕ0. Lemma 8.3.8
can be applied with σ1 = σ as above and σ0, since for all j ∈ I+, a ∈ A, u ∈ U ,

τ (a⊗ g−1
j ) = τ0(a⊗ g−1

j ), τ (ej ⊗ u) = τ0(ej ⊗ u)

do not depend on λ, hence

σ(ej ⊗ g−1
j ⊗ a⊗ u) = τ (a⊗ g−1

j )ε(u) = σ0(ej ⊗ g−1
j ⊗ a⊗ u),

σ(a⊗ u⊗ ej ⊗ g−1
j ) = ε(a)τ (ej ⊗ u) = σ0(a⊗ u⊗ ej ⊗ g−1

j ).

Let Φ0 be the isomorphism Φ of Theorem 8.3.6 with λ replaced by 0. Hence by
Lemma 8.3.7 and Theorem 8.3.6, the composition

(U(D, 0))ρ̃
Φ0−−→ ((A⊗ U)σ0

/(g − 1 | g ∈ M))ρ =(A⊗ U)σ/(g − 1 | g ∈ M)

Φ−1

−−−→ U(D, λ)

is an isomorphism of Hopf algebras, where ρ = σ ∗ σ−1
0 , and where ρ̃ is the two-

cocycle for U(D, 0) defined from ρ by transport of structure with respect to the
isomorphism Φ0.

We compute the linear isomorphism Φ−1Φ0 : U(D, 0) → U(D, λ). Let n ≥ 1.
As in the proof of Lemma 8.3.8 let

aj = aj1 · · · ajn ∈ A, ui = ui1 · · ·uin ∈ U for all j ∈ (I+)n, i ∈ (I−)n.
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As before, we denote the images of xi, i ∈ I, and g ∈ G in U(D, 0) and in U(D, λ)
again by xi and g. We write xi = xi1 · · ·xin for all i ∈ In in U(D, 0) and in U(D, λ).
Then for all i ∈ (I−)s, j ∈ (I+)t, s, t ≥ 1, and g ∈ G,

Φ−1Φ0(xjxig) = Φ−1((aj ⊗ uig)) = xjxig.

Hence Ψ′ is the composition

(U(D+)⊗ U(D−))#kG
ϕ±⊗id−−−−→ U(D)#kG ∼= U(D, 0)

Φ−1Φ0−−−−→ U(D, λ),

where the first map is the isomorphism of Lemma 8.3.8(2). The two-cocyle ν′ is
now defined by transport of structure with respect to the Hopf algebra isomorphism
(U(D+)⊗ U(D−))#kG ∼= U(D, 0) and the two-cocycle ρ̃.

We have shown the theorem for Ψ′. The claim for Ψ follows by changing +,–
to –,+. �

8.4. Perfect linkings and multiparameter quantum groups

In this section we single out an important subclass of the Hopf algebras U(D, λ)
with bipartite linking graph.

Definition 8.4.1. A reduced YD-datum

D
red

= D
red

(G, (Li)i∈I , (Ki)i∈I , (χi)i∈I)

consists of an abelian group G, a finite, non-empty set I, Li ∈ G, Ki ∈ G, and

χi ∈ Ĝ for all i ∈ I satisfying

χj(Ki) = χi(Lj) for all i, j ∈ I,(8.4.1)

KiLi �= 1 for all i ∈ I.(8.4.2)

For all i, j ∈ I, let qij = χj(Ki).
Let D

red
be a reduced YD-datum. D

red
is called of (finite) Cartan type if the

braiding matrix (qij)i,j∈I is; in this case, the Cartan matrix of D
red

is the Cartan
matrix of (qij)i,j∈I . Dred

is called generic and quasi-generic, respectively, if the
braiding matrix (qij)i,j∈I is.

A linking parameter � for a reduced YD-datum over the index set I is a
family � = (�i)i∈I of non-zero elements in k.

For simplicity, for the index set I we take

I = {1, . . . , θ}, where θ ≥ 1 is a natural number.

Definition 8.4.2. Let D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced
YD-datum of Cartan type with Cartan matrix (aij)i,j∈I. Let X ∈ G

GYD with basis

x1, . . . , xθ, y1, . . . , yθ, and xi ∈ Xχi

Ki
, yi ∈ X

χ−1
i

Li
for all i ∈ I. Let � = (�i)i∈I be a

linking parameter for D
red

. We define U(D
red

, �) as the quotient Hopf algebra of
the smash product T (X)#kG modulo the ideal generated by

(adxi)
1−aij (xj) for all i, j ∈ I, i �= j,(8.4.3)

(ad yi)
1−aij (yj) for all i, j ∈ I, i �= j,(8.4.4)

xiyj − χ−1
j (Ki)yjxi − δij�i(KiLi − 1) for all i, j ∈ I.(8.4.5)
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Note that U(D
red

, �) is a Hopf algebra, since the elements (8.4.3), (8.4.4), (8.4.5)
are skew-primitive by Proposition 4.3.12.

To see that the quantized enveloping algebras Uq of Kac-Moody algebras and
their multiparameter versions are special cases of U(D

red
, �), we introduce slightly

different generators of U(D
red

, �).
If H is a Hopf algebra with antipode S, we denote the left and right adjoint

actions adl and adr by

(adlx)(y) = x(1)yS(x(2)), (adrx)(y) = S(x(1))yx(2) for all x, y ∈ H.

In Example 2.6.3, we wrote ad = adl.

Lemma 8.4.3. Let D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced YD-
datum of Cartan type with Cartan matrix (aij)i,j∈I, braiding matrix (qij)i,j∈I, and
linking parameter � = (�i)i∈I. We denote by adl and adr the adjoint actions of the
Hopf algebra H = k〈x1, . . . , xθ, y1, . . . , yθ〉#kG. Define

ei = xi, fi = yiL
−1
i , for all i ∈ I.

Then for all i, j ∈ I,

Δ(ei) = Ki ⊗ ei + ei ⊗ 1, Δ(fi) = 1⊗ fi + fi ⊗ L−1
i ,(8.4.6)

(adlei)
1−aij (ej) =

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qii

q
k(k−1)

2

ii qkije
1−aij−k
i eje

k
i ,(8.4.7)

(adrfi)
1−aij (fj) =

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qii

q
k(k−1)

2

ii qkijf
k
i fjf

1−aij−k
i ,(8.4.8)

S((adlyi)n(yj)) = (−1)n+1qniiqjj(adrfi)
n(fj),(8.4.9)

(eifj − fjei − δij�i(Ki − L−1
i ))Lj =(8.4.10)

xiyj − χ−1
j (Ki)yjxi − δij�i(KiLi − 1).

Proof. (8.4.6) is obvious.
Let i ∈ I. Note that S(ei) = −K−1

i ei and S(fi) = −fiLi. For all a ∈ H, let
La and Ra in End(H) be the left and right muliplication with a. Let σ, τ be the
inner automorphisms of H given by σ(x) = KixK

−1
i , τ (x) = LixL

−1
i for all x ∈ H.

Then

adlei = A+B, where A = Lei , B = −Reiσ, BA = qiiAB,

adrfi = C +D, where C = Rfi , D = −Lfiτ , CD = qiiDC.

By the q-binomial formula in Proposition 1.9.5,

(adlei)
n =

n∑
k=0

(
n

k

)
qii

An−kBk, (adrfi)
n =

n∑
k=0

(
n

k

)
qii

DkCn−k

for all n. Since for all k ≥ 0,

Bk = (−1)kq
k(k−1)

2
ii Reki

σk, Dk = (−1)kq−
k(k−1)

2
ii Lfk

i
τk,
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we obtain for all j ∈ I,

(adlei)
n(ej) =

n∑
i=0

(−1)k
(
n

k

)
qii

q
k(k−1)

2
ii qkije

n−k
i eje

k
i ,

(adrfi)
n(fj) =

n∑
k=0

(−1)k
(
n

k

)
qii

q
− k(k−1)

2
ii q

−k(n−k)
ii q−k

ji fk
i fjf

n−k
i .

This proves (8.4.7), and (8.4.8) follows, since qijqji = q
aij

ii .

Recall that Δ(yi) = Li ⊗ yi + yi ⊗ 1, Δ(fi) = 1 ⊗ fi + fi ⊗ L−1
i , and hence

S(yi) = −L−1
i yi = −qiiyiL

−1
i = −qiifi. The formula

S((adlyi)n(x)) = (−1)nqnii(adrfi)n(S(x)) for all x ∈ H,n ≥ 1,

is shown by induction on n. (8.4.9) follows with x = yj , and (8.4.10) is obvious. �

Definition 8.4.4. Let D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced
YD-datum of Cartan type with Cartan matrix (aij)i,j∈I, braiding matrix (qij)i,j∈I,
and linking parameter � = (�i)i∈I. Let

H = k〈E1, . . . , Eθ, F1, . . . , Fθ〉#kG

be the smash product algebra, where k〈E1, . . . , Eθ, F1, . . . , Fθ〉 is the free algebra
with 2θ generators and G-action defined by

g · Ei = χi(g)Ei, g · Fi = χ−1
i (g)Fi for all i ∈ I, g ∈ G.(8.4.11)

Let U(D
red

, �) be the quotient algebra of H modulo the ideal generated by

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qii

q
k(k−1)

2

ii qkijE
1−aij−k
i EjE

k
i ,(8.4.12)

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qii

q
k(k−1)

2

ii qkijF
k
i FjF

1−aij−k
i ,(8.4.13)

for all i, j ∈ I, i �= j, and

EiFj − FjEi − δij�i(Ki − L−1
i ) for all i, j ∈ I.(8.4.14)

We denote the images of Ei, Fi, i ∈ I, and g ∈ G in U(D
red

, �) again by Ei, Fi, g.
For all i ∈ I, g ∈ G, let

Δ(g) = g ⊗ g, ε(g) = 1,(8.4.15)

Δ(Ei) = Ki ⊗ Ei + Ei ⊗ 1, ε(Ei) = 0,(8.4.16)

Δ(Fi) = 1⊗ Fi + Fi ⊗ L−1
i , ε(Fi) = 0.(8.4.17)

Proposition 8.4.5. Let D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced
YD-datum of Cartan type. Then

(1) U(D
red

, �) is a Hopf algebra with Δ, ε given by (8.4.15)–(8.4.17).
(2) The map U(D

red
, �) → U(D

red
, �), g �→ g, xi �→ Ei, yi �→ FiLi for all

g ∈ G, i ∈ I, is a Hopf algebra isomorphism.

Proof. Let H = k〈x1, . . . , xθ, y1, . . . , yθ〉#kG. Then

ϕ : H → H, g �→ g, xi �→ Ei, yi �→ FiLi for all g ∈ G, i ∈ I,
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is an algebra isomorphism. By definition, U(D
red

, �) = H/I, where I is the ideal gen-
erated by the elements (8.4.3), (8.4.4) and (8.4.5). The bosonization H is a pointed
Hopf algebra by Corollary 5.4.4, and I ⊆ H is a Hopf ideal. As in Lemma 8.4.3,
we set ei = xi, fi = yiL

−1
i for all i ∈ I. Let I ′ be the ideal of H generated by

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qii

q
k(k−1)

2

ii qkije
1−aij−k
i eje

k
i ,(8.4.18)

1−aij∑
k=0

(−1)k
(
1− aij

k

)
qii

q
k(k−1)

2

ii qkijf
k
i fjf

1−aij−k
i ,(8.4.19)

for all i, j ∈ I, i �= j, and

eifj − fjei − δij�i(Ki − L−1
i ) for all i, j ∈ I.(8.4.20)

The generators of I ′ are skew-primitive by Lemma 8.4.3, since the antipode pre-
serves skew-primitive elements. Hence I ′ is a Hopf ideal. By Corollary 5.4.3, the
antipode S of H is bijective, and S(I ′) = I ′. Then it follows from Lemma 8.4.3
that I ′ ⊆ I, since S(I) ⊆ I, and I ⊆ I ′, since S−1(I ′) ⊆ I ′. Thus ϕ induces an
isomorphism of Hopf algebras. We have shown (1) and (2). �

Example 8.4.6. Let A = (aij)i,j∈I be a symmetrizable Cartan matrix, and
(di)i∈I a family of positive integers such that the matrix (diaij)i,j∈I is symmetric.
Let 0 �= q ∈ k such that q2di �= 1 for all i ∈ I. Let G be a free abelian group of rank
θ with basis (Ki)i∈I, and Li = Ki for all i ∈ I. Define characters χi, i ∈ I, of G by

χj(Ki) = qdiaij for all i, j ∈ I.

Then D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) is a reduced datum of Cartan type
with Cartan matrix (aij)i,j∈I. Let Uq be the quantized enveloping algebra of the
Kac-Moody algebra associated to A. Then the Serre relations (8.4.12) and (8.4.13)
are the Serre relations of Uq, and U(D

red
, �) = Uq, where �i = (qdi − q−di)−1 for all

i ∈ I.

Example 8.4.7. Let D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced YD-
datum of Cartan type with Cartan matrix (aij)i,j∈I, braiding matrix (qij)i,j∈I, and
linking parameter � = (�i)i∈I. Let X be the set of connected components of I with
respect to (aij)i,j∈I. Assume that there are positive integers (di)i∈I and non-zero

elements (qJ)J∈X in k, q2di

J �= 1 for all J , i ∈ J , such that

diaij = djaji for all i, j ∈ I,

qii = q2di

J for all J ∈ X , i ∈ J.

Note that by Lemma 8.2.4 this assumption in particular holds when (aij)i,j∈I is
of finite type (and the elements qJ in Lemma 8.2.4 have a square root). Then the
Serre relations (8.4.12) and (8.4.13) have the form

1−aij∑
k=0

(−pij)
k

[
1− aij

k

]
q
di
J

E
1−aij−k
i EjE

k
i = 0,

1−aij∑
k=0

(−pij)
k

[
1− aij

k

]
q
di
J

F k
i EjE

1−aij−k
i = 0,

where pij = qijq
−diaij

J for all J ∈ X , i, j ∈ J , i �= j.
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Example 8.4.8. Let n ≥ 1 be a natural number, and a1, . . . , an+1, b1, . . . , bn+1

be the basis of a free abelian group G of rank 2(n+ 1). Fix r, s ∈ k× with r �= s.

Define characters χi ∈ Ĝ and Ki, Li ∈ G for all 1 ≤ i ≤ n by

χi(aj) = rδi,j−δi+1,j , χi(bj) = sδi,j−δi+1,j for all 1 ≤ j ≤ n+ 1,

Ki = aibi+1, Li = (ai+1bi)
−1.

Then D
red

= D
red

(G, (Li)1≤i≤n, (Ki)1≤i≤n, (χi)1≤i≤n) is a reduced YD-datum of
finite Cartan type An with braiding matrix (qij)1≤i,j≤n, and for all 1 ≤ i, j ≤ n,
qii = rs−1, qi,i+1 = s, qi+1,i = r−1, if 1 ≤ i < n, and qi,j = 1, if |i− j| > 1.

The Serre relations of U(D
red

, �) for E1, . . . , En are

EiEj − EjEi = 0, if |i− j| > 1,

E2
i Ei+1 − (r + s)EiEi+1Ei + rsEi+1E

2
i = 0, if 1 ≤ i < n,

E2
i+1Ei − (r−1 + s−1)Ei+1EiEi+1 + r−1s−1EiE

2
i+1 = 0, if 1 ≤ i < n.

Let li = (r − s)−1, and � = (li)1≤i≤n. Then U(D
red

, �) = Ur,s(gln+1) is the two-
parameter deformation defined in [BW04].

Let D
red

be a reduced YD-datum with Cartan matrix A and a linking parameter
�. It is easy to see that (D

red
, �) can be identified with (D, λ), and U(D

red
, �) with

U(D, λ) for some λ, where the Cartan matrix of D is a block matrix with 2 copies
of A in the diagonal, and such that each point of the Dynkin diagram of D is linked
with its copy.

Hence we can apply the results of the previous section to reduced data.

Lemma 8.4.9. Let D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced YD-
datum of Cartan type with Cartan matrix (aij)i,j∈I. Let � = (�i)i∈I be a linking

parameter of D
red

, Ĩ = {1, . . . , 2θ}, and define

(g1, . . . , g2θ) = (K1, . . . ,Kθ, L1, . . . , Lθ),

(η1, . . . , η2θ) = (χ1, . . . , χθ, χ
−1
1 , . . . , χ−1

θ ),

ãij = aij = ãθ+i,θ+j , ãi,θ+j = 0 = ãθ+i,j for all i, j ∈ I,

λij =

⎧⎪⎨⎪⎩
�i if i ∈ I, j = θ + i,

−qjj�j if j ∈ I, i = θ + j,

0 otherwise

for all i, j ∈ Ĩ, i �≈ j,

where ≈ is the equivalence relation of Ĩ with respect to the Cartan matrix (ãi,j)i,j∈̃I
.

(1) D = D(G, (gi)i∈̃I
, (ηi)i∈̃I

) is a YD-datum of Cartan type with Cartan ma-
trix (ãij)i,j∈̃I

and linking parameter λ = (λi,j)i,j∈̃I,i �≈j.

(2) U(D
red

, �) = U(D, λ).
(3) The linking graph of (D, λ) is bipartite. The Dynkin diagram of D consists

of two copies of the Dynkin diagram of (aij)i,j∈I, and each vertex is linked

with its copy. A decomposition of Ĩ as in (8.3.6) is

Ĩ+ = {1, . . . , θ} = I, Ĩ− = {θ + 1, . . . , 2θ}.

Proof. Let X̃ be the set of connected components of Ĩ with respect to the

Cartan matrix (ãij)i,j∈̃I
, and X̃+ the set of connected components of I with respect
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to the Cartan matrix (aij)i,j∈I. For all J ∈ X̃+, let

J ′ = {θ + j | j ∈ J}.

Let X̃− = {J ′ | J ∈ X̃+}. Then

X̃ = X̃+ ∪ X̃−, X̃+ ∩ X̃− = ∅, Ĩ+ =
⋃

J∈̃I+

J, Ĩ− =
⋃

J∈̃I−

J ′.

By (8.4.1), (ãij)i,j∈̃I
is the Cartan matrix of D, and (1) and (2) are easy to check.

For all i ∈ I, the vertices i, θ+ i are linked, and λij = 0 for all i, j ∈ Ĩ+ and for

all i, j ∈ Ĩ−. This proves (3). �

Definition 8.4.10. A linking parameter of a YD-datum D of Cartan type is
called perfect if any vertex is linked.

See 8.2.19(1) for an example of a perfect linking.

Proposition 8.4.11. Let D = D(G, (gi)i∈I , (χi)i∈I) be a YD-datum of Cartan
type with Cartan matrix (aij)i,j∈I , braiding matrix (qij)i,j∈I , and linking parameter
λ = (λij)i,j∈I,i �∼j. Assume that for all i, j ∈ I, i �= j, ord(qii) does not divide
2− aij (this holds in particular, if qii is not a root of one). Then the following are
equivalent.

(1) The linking parameter λ is perfect.
(2) There are a reduced YD-datum D

red
of Cartan type and a linking param-

eter � for D
red

such that

U(D, λ) ∼= U(D
red

, �)

as Hopf algebras, and up to renumbering of the vertices, (D, λ) is con-
structed from (D

red
, �) as in Lemma 8.4.9.

Proof. (1) ⇒ (2). Let X be the set of connected components of I. It follows
from Lemma 8.2.8 that for each i ∈ I, there is exactly one i′ ∈ I such that (i, i′)
is linked; moreover, aij = ai′j′ . Hence vertices i, j ∈ I are in the same connected
component of I if and only if i′ and j′ are in the same connected component. Thus
the involution I → I, i �→ i′, induces the involution X → X , J �→ J ′ = {j′ | j ∈ J}.
By definition of a linking parameter, this involution has no fixed point. Thus the
linking graph is bipartite, since there is an edge between J1, J2 ∈ X if and only if
J2 = J ′

1.
After renumbering we may assume that

I = I+ ∪ I−, I+ ∩ I− = ∅, I+ = {1, . . . , θ}, I− = {θ + 1, . . . , 2θ},

where |I| = 2θ, and i′ = θ + i for all i ∈ I+. Then for all i ∈ I+, χθ+i = χ−1
i , and

λθ+i,i �= 0, since (i, θ + i) is linked.
Define D

red
(G, (Li)i∈I+ , (Ki)i∈I+ , (χi)i∈I+) and � = (�i)i∈I+ by

(g1, . . . , g2θ) = (K1, . . . ,Kθ, L1, . . . , Lθ),

�i = λi,θ+i for all i ∈ I+.

Then D
red

is a reduced YD-datum of Cartan type with linking parameter �, and
(2) follows from Lemma 8.4.9.

(2) ⇒ (1) is obvious. �
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Let D
red

= D
red

(G, (Li)i∈I, (Ki)i∈I, (χi)i∈I) be a reduced YD-datum of Cartan
type with Cartan matrix (aij)i,j∈I with linking parameter �. Then

D+ = D(G, (Ki)i∈I, (χi)i∈I), D− = D(G, (Li)i∈I, (χ
−1
i )i∈I),

are YD-data of Cartan type with the same Cartan matrix. Let X+, X− in G
GYD

be defined by D+ and D− with bases (xi)i∈I of X
+ and (yi)i∈I of X

−, that is,

xi ∈ (X+)χi

Ki
, yi ∈ (X−)

χ−1
i

Li
for all i ∈ I.

Note that X = X+ ⊕ X− in G
GYD, where X is the Yetter-Drinfeld module in

Definition 8.4.2. We define U(D+) and U(D−) with respect to X+ and X−. By
abuse of notation, the images of xi and yi in U(D+) and U(D−) and in U(D

red
, �)

are again denoted by xi and yi. Then there are Hopf algebra maps

ψ− : U(D−)#kG → U(D
red

, �), yi �→ yi, g �→ g, for all i ∈ I, g ∈ G,

ψ+ : U(D+)#kG → U(D
red

, �), xi �→ xi, g �→ g, for all i ∈ I, g ∈ G.

Corollary 8.4.12. There are two-cocycles ν for (U(D−)⊗ U(D+))#kG and
ν′ for (U(D+)⊗ U(D−))#kG such that

(U(D−)⊗ U(D+)⊗ kG)ν → U(D
red

, �), y ⊗ x⊗ g �→ ψ−(y)ψ+(x)g,

(U(D+)⊗ U(D−)⊗ kG)ν′ → U(D
red

, �), x⊗ y ⊗ g �→ ψ+(x)ψ−(y)g,

are isomorphisms of Hopf algebras.

Proof. This follows from Lemma 8.4.9 and Theorem 8.3.9. �

8.5. Notes

8.1. The Hopf algebras Uq were defined by Jimbo [Jim85] and Drinfeld
[Dri87].

8.2. Our definition of the Dynkin diagram of a Cartan matrix follows [Kac90,
§ 4.7].

Linking was first defined in [AS02].
See [Did02] for more information about the possible diagrams of (D, λ) and a

different approach not assuming that the linking graph is bipartite. Corollary 8.2.12
was shown in [RS08b, Lemma 4.2], where the linking graph was introduced.

8.3. Theorem 8.3.6 is Theorem 4.4 in [RS08b] (for finite Cartan type); the
strategy of the proof comes from the proof of Theorem 5.17 in [AS02]. There
are various versions of Theorem 8.3.6 where the Serre relations in the definition of
U(D, λ) are replaced by the relations of a Nichols algebra [RS08a, Theorem 8.3],
or a pre-Nichols algebra [Mas08, Theorem 4.3, Theorem 5.3].

The two-cocycles in Theorem 8.3.9 are derived from the isomorphism in The-
orem 8.3.6 as in the proof of [Did05, Theorem 1], where Didt showed that the
finite-dimensional pointed Hopf algebras A = u(D, λ, μ) in [AS10] with μ = 0 are
two-cocycle deformations of grA; see also [KS05, Section 4].

We will see in Theorem 16.5.5 that the pointed Hopf algebra A = U(D, λ), D
a generic YD-datum of finite Cartan type, is a two-cocycle deformation of grA.

As culmination of a series of papers of various authors, it was shown by Angiono
and Iglesias, see [AI18], [AGI19], that any finite-dimensional pointed Hopf algebra
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A with abelian group G(A) over an algebraically closed field of characteristic 0 is
a two-cocycle deformation of grA.

Let D be a generic YD-datum of finite Cartan type, and 0 �= λ a linking pa-
rameter for D. In [RS08b, Theorem 4.6] a bijection is constructed between the
isomorphism classes of finite-dimensional irreducible U(D, λ)-modules and domi-
nant characters of G. In the case of U(D

red
, �), a character χ of G is dominant if

there are natural numbers mi ≥ 0, 1 ≤ i ≤ θ, such that χ(KiLi) = qmi
ii for all i.

8.4. Reduced YD-data were introduced in [RS08b].
An early example of a two-parameter quantum group was given by Takeuchi in

[Tak90], which is up to notation the Hopf algebra in Example 8.4.8 (with opposite
comultiplication).

In [PHR10] a general class of multi-parameter quantum groups Uq(gA), A a
symmetrizable Cartan matrix, was defined. In [PHR10], Remark 9, it is noted
that many multi-parameter quantum groups which appeared before are of the form
Uq(gA). The Hopf algebras Uq(gA) are special cases of our Hopf algebras U(D

red
, �)

with some restrictions on the field and the group.
The representation theory of U(D

red
, �) was studied in [ARS10]. Assume that

D
red

= D
red

(G, (Li)1≤i≤θ, (Ki)1≤i≤θ, (χi)1≤i≤θ) is a generic reduced YD-datum of
Cartan type, and that D

red
is regular, that is, the characters χ1, . . . , χθ are Z-

linearly independent in Ĝ. Then the representation theory in Sections 3.4, 3.5,
6.1 and 6.2 of [Lus93] (irreducible highest weight modules, integrable modules,
quantum Casimir operator, complete reducibility theorems) can be extended to
U(D

red
, �), where � is a linking parameter of D

red
.

Let D be a generic YD-datum of finite Cartan type with abelian group G, and
λ a linking datum for D. The representation theory above is used to prove the
following characterization of perfect linking parameters. Let A be an algebra, and
B ⊆ A a subalgebra. A is called reductive, if any finite-dimensional left A-module is
semisimple; A is called B-reductive, if any finite-dimensional left A-module which is
B-semisimple when restricted to B, is A-semisimple. By Theorem 5.3 in [ARS10],
the following are equivalent.

(1) U(D, λ) is kG-reductive.
(2) The linking parameter λ is perfect.

Thus by Proposition 8.4.11, U(D, λ) ∼= U(D
red

, �), where D
red

is a generic reduced
YD-datum of finite Cartan type, and � is a linking parameter for D

red
. Let G2 be

the subgroup of G generated by the products KiLi, 1 ≤ i ≤ θ. By Theorem 5.3 in
[ARS10], the following are equivalent.

(1) U(D, λ) is reductive.
(2) The linking parameter is perfect, and G/G2 is finite.
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CHAPTER 9

Cartan graphs and Weyl groupoids

The (generalized) Cartan matrix and its associated Weyl group as well as the
root system are among the most fundamental invariants of a semi-simple Lie algebra
and more generally of a Kac-Moody algebra. Important classes of Nichols algebras
appear to have fundamental invariants of the same significance. However, instead
of one Cartan matrix one has to consider a family of Cartan matrices with a natural
relationship among them. This leads us to the notions in the title of this part of
the book.

Because of their outstanding role, Weyl groups are studied in many different
generalities and have several interpretations. Similarly, several other explanations
and interpretations of Weyl groupoids and related structures are available in the
literature. We chose a presentation of the topic which is most suitable to explain
in Part 3 the deep interrelation between a Nichols algebra, its root system and its
Weyl groupoid.

Nevertheless, the subject discussed in Part 2 is independent of the notion of a
Nichols algebra.

9.1. Axioms and examples

The most natural way to extend the notion of the Weyl group of one Cartan
matrix to the situation of a family of Cartan matrices seems to be the Weyl groupoid
of a semi-Cartan graph to be introduced in this chapter. However, this definition is
much too general to be useful. We define a Cartan graph as a semi-Cartan graph
satisfying two additional conditions which allow to show that the Weyl groupoid is
a Coxeter groupoid.

We fix once and for all the notation (αi)i∈I for the standard basis of ZI for
any finite set I.

Definition 9.1.1. Let I be non-empty finite set, X a non-empty set, and
r : I × X → X , A : I × I × X → Z maps. For all i, j ∈ I and X ∈ X we write
ri(X) = r(i,X), aXij = A(i, j,X), and AX = (aXij )i,j∈I ∈ ZI×I . The quadruple

G = G(I,X , r, A) is called a semi-Cartan graph if for all X ∈ X , the matrix AX

is a Cartan matrix in the sense of Definition 1.10.17, and if the following hold.

(CG1) For all i ∈ I, r2i = idX .

(CG2) For all i, j ∈ I and X ∈ X , aXij = a
ri(X)
ij , that is, AX and Ari(X) have the

same i-th row.

The cardinality of I is called the rank of G. The elements of X are called the
points of G, and the elements of I the labels of G. For any X ∈ X and any i ∈ I
let

sXi ∈ Aut(ZI), sXi (αj) = αj − aXijαi for all j ∈ I.

315

The preliminary version made available with permission of the publisher, the American Mathematical Society.



316 9. CARTAN GRAPHS AND WEYL GROUPOIDS

1

Figure 9.1.1. Exchange graph with two points

1 2,3

3 4

Figure 9.1.2. Exchange graph with four points

As in (CG1) and (CG2), typically we will view r as a family (ri)i∈I of permu-
tations of X , and A as a family (AX)X∈X of matrices. Note that sXi (αi) = −αi,

and (sXi )2 = id in Definition 9.1.1, since aXii = 2. (CG2) says that sXi = s
ri(X)
i for

all X ∈ X , i ∈ I.

Example 9.1.2. Let I = {1, 2}, X = {X1, X2}, r1 : X → X the non-trivial
permutation and r2 : X → X the identity. Let

AX1 =

(
2 −1
−3 2

)
, AX2 =

(
2 −1
−4 2

)
.

Then G = G(I,X , r, A) is a semi-Cartan graph.

Definition 9.1.3. Let I, X and r be as in Definition 9.1.1, and assume that
(CG1) holds. The exchange graph of (X , r, I) is a labeled non-oriented graph
with vertices corresponding to the elements of X , and edges marked by elements
i ∈ I, where two vertices X,Y are connected by an edge i if and only if X �= Y
and ri(X) = Y (and ri(Y ) = X). The exchange graph of a semi-Cartan graph
G(I,X , r, A) is the exchange graph of (X , r, I).

The exchange graph of (X , r, I) may have multiple edges (with different labels)
but no loops. Any two edges with a vertex in common have different labels. Con-
versely, labeled graphs with these two properties describe triples (X , r, I) satisfying
(CG1). For simplicity, instead of several edges with different labels, we display only
one edge with several labels. The exchange graph of Example 9.1.2 is displayed in
Figure 9.1.1.

Example 9.1.4. Let I = {1, 2, 3, 4, 5}, and X = {X1, X2, X3, X4} a set of four
points. Let σ1 = (1 2), σ2 = (2 3), σ3 = (2 3)(1 4), σ4 = (3 4). Let ri(Xj) = Xσi(j)

for all 1 ≤ i, j ≤ 4, and r5 = idX . Then (CG1) is satisfied. The exchange graph of
(X , r, I) is shown in Figure 9.1.2.

A semi-Cartan graph can be viewed as a labeled exchange graph, where any
vertex X ∈ X has AX as a label.

The semi-Cartan graph G in Example 9.1.2 as a labeled graph is drawn in
Figure 9.1.3. In a short-hand notation we used the Cartan matrices AX as place-
holders for the vertices X ∈ X . This describes G completely.

Given (X , r, I) satisfying (CG1), there is always a family A of Cartan matrices
such that G(I,X , r, A) is a semi-Cartan graph. For any Cartan matrix A we may
simply define AX = A for all X ∈ X .
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(
2 −1
−3 2

)
1
(

2 −1
−4 2

)
Figure 9.1.3. The semi-Cartan graph in Example 9.1.2

Definition 9.1.5. A semi-Cartan graph G = G(I,X , r, A) is called standard
if AX = AY for any two points X,Y ∈ X .

Let G = G(I,X , r, A) and G′ = G(J,Y , t, B) be semi-Cartan graphs. A mor-
phism (β, γ) : G → G′ of semi-Cartan graphs is a pair (β, γ), where β : I → J ,
γ : X → Y are maps such that for all i, j ∈ I and X ∈ X ,

γ(ri(X)) = tβ(i)(γ(X)), aXij = b
γ(X)
β(i)β(j),

that is, the diagrams

I ×X β×γ
��

r

��

J × Y

t

��

X γ
�� Y

I × I ×X β×β×γ
��

A
���

��
��

��
��

� J × J × Y

B
����
��
��
��
��

Z

commute.
Semi-Cartan graphs together with their morphisms form a category, where

composition of morphisms is defined by composition of maps. Thus a morphisms
(β, γ) is an isomorphism if and only if both maps β and γ are bijective.

Definition 9.1.6. Let G = G(I,X , r, A) be a semi-Cartan graph. If Y ⊆ X is a
non-empty subset such that ri(Y ) ∈ Y for all i ∈ I and Y ∈ Y , then the quadruple
G′ = G(I,Y , r|(I × Y), A|(I × I × Y)) is called the semi-Cartan subgraph of G
with point set Y . Then (id, γ) : G′ → G is a morphism, where γ : Y → X is the
inclusion.

We say that G is connected if there is no proper non-empty subset Y ⊆ X
such that ri(Y ) ∈ Y for all i ∈ I, Y ∈ Y , that is, if G is the only semi-Cartan
subgraph of G.

For any point X ∈ X of a semi-Cartan graph G = G(I,X , r, A), the semi-Cartan
subgraph with point set

{ri1 · · · rik(X) | k ≥ 0, i1, . . . , ik ∈ I}
is the only connected semi-Cartan subgraph containing X. It is called the con-
nected component of G containing X. The set X is the disjoint union of non-
empty subsets Xl ⊆ X , l in some index set L, such that the semi-Cartan subgraphs
with sets of points Xl, l ∈ L, are the connected components of G.

The connected components of a semi-Cartan graph are given by the connected
components of its exchange graph.

Example 9.1.7. Let G be a semi-Cartan graph with set of labels I = {1, 2}
of two elements. Then the connected components of the exchange graph of G are
either chains as in Figure 9.1.4 or cycles as in Figure 9.1.5.

Definition 9.1.8. Let X be a set and M a monoid. We denote by D(X ,M)
the category with objects ObD(X ,M) = X , and morphisms

Hom(X,Y ) = {(Y, f,X) | f ∈ M} for all X,Y ∈ X ,
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1 2 1

Figure 9.1.4. Chain with two labels

1 2

2 1

1,2

Figure 9.1.5. Cycles with two labels

where composition of morphism is defined by

(Z, g, Y ) ◦ (Y, f,X) = (Z, gf,X) for all X,Y, Z ∈ X , f, g ∈ M .

Let G = G(I,X , r, A) be a semi-Cartan graph, and End(ZI) the monoid (with
respect to composition) of endomorphisms of the group ZI . We call the smallest
subcategory of D(X ,End(ZI)) which contains all morphisms (ri(X), sXi , X) with
i ∈ I, X ∈ X the Weyl groupoid of G. We write W(G) for this subcategory. The
morphisms (ri(X), sXi , X) are usually abbreviated by sXi , or by si, if no confusion
is likely.

Remark 9.1.9. Let G = G(I,X , r, A) be a semi-Cartan graph, X ∈ X , and

i ∈ I. Then sXi = s
ri(X)
i ∈ Aut(ZI) by (CG2), and (sXi )2 = idZI . Therefore the

morphisms sXi : X → ri(X) and s
ri(X)
i : ri(X)→ r2i (X) = X by (CG1) are inverse

isomorphisms. Consequently, all morphisms of W(G) are invertible, and hence
W(G) is a groupoid. Recall that a groupoid is a category where each morphism
is an isomorphism.

Let X ∈ X . The set Hom(X,X) then forms a group, which is called the
automorphism group of X. It is denoted by Aut(X). As in any groupoid, if
Y ∈ X , and w : X → Y is a morphism, then

Aut(X) ∼= Aut(Y ), v �→ wvw−1,

is a group isomorphism, and Hom(Y,X) = Aut(X)w−1.
For any morphism w = (Y, f,X) in W(G) with X,Y ∈ X , f ∈ Aut(ZI) we

define

det(w) = det(f) and w(α) = f(α) for all α ∈ ZI .

We call F (w) = f the linear function of w. In fact, F can (and should) be
viewed as a functor F :W(G)→ ZI .

The morphisms of W(G) ending in X ∈ X are the triples

w = (X, s
ri1(X)
i1

s
ri2ri1 (X)
i2

· · · srim ···ri1 (X)
im

, rim · · · ri1(X))

= (rim · · · ri1(X)
s
rim

···ri1 (X)

im−−−−−−−−→ rim−1
· · · ri1(X)→ · · · → ri1(X)

s
ri1

(X)

i1−−−−−→ X)

with m ≥ 0 and i1, . . . , im ∈ I. We also write w = idXsi1 · · · sim . Note that

det(w) = (−1)m, if w = idXsi1 · · · sim .(9.1.1)

The preliminary version made available with permission of the publisher, the American Mathematical Society.



9.1. AXIOMS AND EXAMPLES 319

The semi-Cartan graph G is connected if and only if the groupoid W(G) is
connected, that is, if for any two points X,Y of G there is a morphism from X to
Y in W(G).

Definition 9.1.10. A semi-Cartan graph G is called simply connected if for
any two points X,Y of G there is at most one morphism from X to Y in W(G).

Example 9.1.11. Let G be the semi-Cartan graph in Example 9.1.2. We com-
pute W(G). The Weyl groupoid is generated by the morphisms

s = sX2
1 : X2 → X1, t = sX1

1 : X1 → X2,

u = sX1
2 : X1 → X1, v = sX2

2 : X2 → X2.

Then s and t are inverse isomorphisms in W(G), and u, v are self-inverse. Hence
the automorphism group Aut(X1) is generated by u and

w = svt = (X1
t−→ X2

v−→ X2
s−→ X1).

The matrices of u and w (with respect to α1, α2) are

A =

(
1 0
3 −1

)
, B =

(
−3 2
−4 3

)
and have order two. Since −(AB)2 = idZ2 , the matrix AB has order four, and the
group generated by A,B is the dihedral group of order eight with generators A and
AB. Thus

Aut(X1) = {uk(uw)l | 0 ≤ k ≤ 1, 0 ≤ l ≤ 3}
is the dihedral group of order eight, Aut(X2) = tAut(X1)s ∼= Aut(X1), and

Hom(X2, X1) = Aut(X1)s, Hom(X1, X2) = tAut(X1).

Definition 9.1.12. Let G = G(I,X , r, A) be a semi-Cartan graph, X,Y points
of G, and w ∈ Hom(Y,X). We call

�(w) = min{k | w = idXsi1 · · · sik , k ≥ 0, i1, . . . , ik ∈ I}
the length of w. If w = idXsi1 · · · sil , where i1, . . . , il ∈ I and l = �(w), then
(i1, . . . , il) is called a reduced decomposition of w.

Lemma 9.1.13. Let G = G(I,X , r, A) be a semi-Cartan graph. Then for all
X,Y, Z ∈ X , w ∈ Hom(X,Y ), w′ ∈ Hom(Y, Z), k ≥ 0, and i1, . . . , ik ∈ I,

(1) |�(w)− �(w′)| ≤ �(w′w) ≤ �(w′) + �(w), �(w−1) = �(w),
(2) �(w′w) ≡ �(w′) + �(w) mod 2,
(3) �(siw), �(wsi) ∈ {�(w) + 1, �(w)− 1} for all i ∈ I,
(4) k − �(idXsi1 · · · sik) is a non-negative even integer.

Proof. (1) It follows from the definition of the Weyl groupoid that

�(w−1) = �(w) and �(w′w) ≤ �(w) + �(w′).

Then �(w) ≤ �(w′−1)+�(w′w) and hence �(w)−�(w′) ≤ �(w′w). Similarly it follows
that �(w′)− �(w) ≤ �(w′w).

(2) and (4) follow from (9.1.1), and (3) follows from (1) and (2). �
For any category D and any object X of D let

Hom(D, X) =
⋃

Y ∈D
Hom(Y,X).
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Definition 9.1.14. Let G = G(I,X , r, A) be a semi-Cartan graph. For all
X ∈ X , the set

ΔX re = {w(αi) ∈ ZI | w ∈ Hom(W(G), X), i ∈ I}

is called the set of real roots of G at X. The real roots αi, i ∈ I, are called
simple. The elements of

ΔX re
+ = ΔX re ∩ NI

0 and ΔX re
− = ΔX re ∩ −NI

0

are called positive and negative, respectively.
The semi-Cartan graph G is called finite, if ΔX re is finite for all X ∈ X .
For any X ∈ X and i, j ∈ I let

mX
ij = |ΔX re ∩ (N0αi + N0αj)|.

We say that G is a Cartan graph if the following hold.

(CG3) For all X ∈ X , the set ΔX re consists of positive and negative roots.

(CG4) Let X ∈ X , and i, j ∈ I. If mX
ij < ∞, then (rirj)

mX
ij (X) = X.

Example 9.1.15. We continue with the notation of Example 9.1.11, and com-
pute the real roots of the semi-Cartan graph in Example 9.1.2. The matrix of s

is C =

(
−1 1
0 1

)
. We know from Example 9.1.11 that the matrices of the linear

functions of the morphisms in Hom(W(G), X1) are ±idZ2 , ±A, ±B, ±AB, ±C,
±AC, ±BC, ±ABC, since (AB)2 = −idZ2 . Hence

ΔX1 re ={±1,±2,±12,±122,±123,±1223,±1324,±1325},
t(ΔX1 re) = ΔX2 re ={±1,±2,±12,±122,±123,±124,±1223,±1225},

where we abbreviate aα1+bα2 by 1a2b for all a, b ∈ N. Thus mX
ij = 8 for all X ∈ X ,

i, j ∈ I, i �= j, and G is a finite Cartan graph, despite of the fact that in one of its
points the Cartan matrix is not of finite type.

Axiom (CG3) does not follow from (CG1) and (CG2), and Axiom (CG4) does
not follow from (CG1)–(CG3). This is shown for finite semi-Cartan graphs by
Examples 9.2.3 and 9.1.26, respectively, below. Example 9.2.3 also shows that in
a semi-Cartan graph Axiom (CG3) can be satisfied in all points of a connected
component but in one. In Example 9.1.15 we have seen a finite Cartan graph with
a point X such that the Cartan matrix AX is not of finite type. However, we will
show in Theorem 10.2.18 that a finite semi-Cartan graph always has a point X with
Cartan matrix AX of finite type.

Axiom (CG3) is very strong and crucial. In Corollary 9.2.22 we will show that
in a Cartan graph for any point X and labels i, j withmX

ij < ∞, the Coxeter relation

idX(sisj)
mX

ij = idX holds. Since idX(sisj)
mX

ij is a morphism from (rjri)
mX

ij (X) to
X, (CG4) is a necessary condition for the Coxeter relations to be satisfied.

We will give an equivalent definition of a Cartan graph in Section 9.2.

Remark 9.1.16. Let G = G(I,X , r, A) be a semi-Cartan graph.
(1) Let X,Y ∈ X and w ∈ Hom(Y,X). Then the map

w : ΔY re →ΔX re, α �→ w(α),
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is bijective, andΔX re = −ΔX re, since usi(αi) = −u(αi) for all u ∈ Hom(W(G), X)
and all i ∈ I. Thus a connected semi-Cartan graph is finite if ΔX re is finite for at
least one point X ∈ X .

(2) Let X ∈ X and α ∈ΔX re. Then the only multiples of α which are real roots
at X are ±α. Indeed, if mα = w(αi), where m ∈ Z, i ∈ I, and w ∈ Hom(W(G), X),
then αi = mw−1(α) with w−1(α) ∈ ZI , hence m = ±1.

(3) If G is finite, then mX
ij < ∞ for all i, j ∈ I and X ∈ X . If G is a connected

finite Cartan graph, we will show in Corollary 9.3.12 that G is finite in the strongest
sense, that is, X is finite, and the sets Hom(X,Y ) are finite for all X,Y ∈ X .

(4) The part of Axiom (CG4) with i = j is redundant by (CG1).

Example 9.1.17. Let n ∈ N, I = {1, . . . , n}, X = {X}, and let A = AX be a
Cartan matrix. Then G = G(I,X , r = idX , A) is a semi-Cartan graph. The Weyl
groupoid of G has only one object and is just the Weyl group of the Cartan matrix
A in the sense of Kac, see [Kac90, Ch. 3]. By the general theory of Kac-Moody
algebras, G is a Cartan graph, and ΔX re is the set of real roots of the Kac-Moody
algebra g(A). It is known that G is finite if and only if A is of finite type.

In the rest of the section let G = G(I,X , r, A) be a semi-Cartan graph.
As a first approximation towards Remark 9.1.16(3), already now we can prove

the following finiteness result.

Lemma 9.1.18. Assume that G is finite. Let X be a point of G, and let

Y = {ri1 · · · rik(X) | k ≥ 0, i1, . . . , ik ∈ I}.

Then
⋃

Y ∈Y ΔY re is a finite set, and Hom(Y,X) is a finite set for any point Y of
G.

Proof. Let Y ∈ X . If Y �∈ Y , then Hom(Y,X) is empty by definition. Assume
that Y ∈ Y , and let w = (X, f, Y ) ∈ Hom(Y,X). Then for all i ∈ I, f(αi) ∈ΔX re.
Since ΔX re is finite, and the linear function F (w) = f is uniquely determined by
the family (f(αi))i∈I , the set Hom(Y,X) is finite. By the same reason,

F = ∪Y ∈Y{F (w) | w ∈ Hom(Y,X)}

is a finite set. Since ΔY re = f−1(ΔX re) for all f = F (w), w ∈ Hom(Y,X) and
Y ∈ Y , the finiteness of F implies that

⋃
Y ∈Y ΔY re is finite. �

We collect first consequences of Axiom (CG3) or of weak versions of it. Thus
we assume that ΔX re ⊆ NI

0 ∪ −NI
0 for certain points X ∈ X .

The observation in the next lemma is very useful.

Lemma 9.1.19. Let X ∈ X , i ∈ I, and assume that

ΔX re,Δri(X) re ⊆ NI
0 ∪ −NI

0.

(1) The map sXi maps ±αi to ∓αi, and it induces bijections

sXi : ΔX re
+ \ {αi} →Δ

ri(X) re
+ \ {αi},

sXi : ΔX re
− \ {−αi} →Δ

ri(X) re
− \ {−αi}.

(2) mX
ij = m

ri(X)
ij .
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Proof. (1) Note that sXi (α) ∈ α + Zαi for all α ∈ ZI . By Remark 9.1.16(2),
mαi /∈ ΔX re for any m ∈ Z \ {1,−1}. Moreover, Δri(X) re ⊆ NI

0 ∪ −NI
0 by as-

sumption. Hence both maps in the claim are well-defined. Their inverses are

induced by s
ri(X)
i , and they are well-defined again by Remark 9.1.16(2) and since

ΔX re ⊆ NI
0 ∪ −NI

0.
(2) follows from (1). �

As for Weyl groups, we associate another natural number N(w) to any mor-
phism w in the Weyl groupoid of G, counting the number of positive real roots
made negative by w−1. It is one of the goals of Section 9.3 to prove for Cartan
graphs the equality N(w) = �(w).

Definition 9.1.20. Let X,Y ∈ X and w ∈ Hom(Y,X). We define

ΔX re(w) = {α ∈ΔX re
+ | w−1(α) ∈ −NI

0},
N(w) = |ΔX re(w)|.

Lemma 9.1.21. Let X,Y ∈ X , i ∈ I, and w ∈ Hom(Y,X).

(1) N(w) = N(w−1).
(2) Assume that ΔY re,Δri(Y ) re ⊆ NI

0 ∪ −NI
0.

(a) If w(αi) ∈ NI
0, then N(wsi) = N(w) + 1, and

ΔX re(wsi) = ΔX re(w) ∪ {w(αi)}.
(b) If w(αi) ∈ −NI

0, then N(wsi) = N(w)− 1, and

ΔX re(wsi) = ΔX re(w) \ {−w(αi)}.
(3) If ΔZ re ⊆ NI

0 ∪ −NI
0 for all Z ∈ X , then N(w) ≤ �(w).

Proof. (1) ΔX re(w)→ΔY re(w−1), α �→ −w−1(α), is bijective.
(2) Note that ΔX re(wsi) = {α ∈ ΔX re

+ | sYi (w−1(α)) ∈ −NI
0}. Hence (a) and

(b) follow from Lemma 9.1.19(1).
(3) follows from (2) by induction on �(w), since N(idX) = 0. �

In typical situations, the subsets ΔX re(w) of ΔX re have a characteristic prop-
erty.

Theorem 9.1.22. Assume that (CG3) holds. Then for any X ∈ X and any
finite subset R of ΔX re

+ the following are equivalent.

(1) There exists w ∈ Hom(W(G), X) such that R = ΔX re(w).
(2) For any k, l ≥ 0 and any β1, . . . , βk ∈ ΔX re

+ \ R and γ1, . . . , γl ∈ R,∑k
i=1 βi −

∑l
j=1 γj ∈ ZI \R.

Proof. Assume (1). Let k, l ≥ 0 and let β1, . . . , βk ∈ΔX re
+ \R, γ1, . . . , γl ∈ R.

Then w−1(βi) and w−1(−γj) are positive for any 1 ≤ i ≤ k and any 1 ≤ j ≤ l.

Hence w−1(β) with β =
∑k

i=1 βi−
∑l

j=1 γj is a sum of positive roots. In particular,

β /∈ R, which proves (2).
Assume now (2). We prove (1) by induction on |R|. For R = ∅ the claim holds

since ΔX re(idX) = ∅.
Let X ∈ X , R ⊆ ΔX re, and m = |R|. Assume that m ≥ 1 and that the

claim holds for subsets of real roots (at any point) with m − 1 elements. Since
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R �= ∅ and any element of R is a sum of simple roots, (2) with l = 0 and β1, . . . , βk

simple implies that there exists i0 ∈ I such that αi0 ∈ R. Let Y = ri0(X) and
R′ = sXi0 (R \ {αi0}). Then |R′| = m − 1 and R′ ⊆ ΔY re

+ by Lemma 9.1.19(1). By
assumption,

k∑
i=1

βi −
l∑

j=1

γj − nαi0 ∈ ZI \R

for any k, l, n ≥ 0, β1, . . . , βk ∈ΔX re
+ \R, and γ1, . . . , γl ∈ R \ {αi0}. Thus

k∑
i=1

sXi0 (βi) + nαi0 −
l∑

j=1

sXi0 (γj) ∈ ZI \ sXi0 (R)

for any k, l ≥ 0, β1, . . . , βk ∈ ΔX re
+ \ R, γ1, . . . , γl ∈ R \ {αi0}, and n ≥ 0. By

induction hypothesis, there exists w′ ∈ Hom(W(G), Y ) with R′ = ΔY re(w′). Hence
R = ΔX re(sYi0w

′), and the proof is completed. �

At this place we also add a related general lemma which will lead to strong
restrictions on some elements of the Weyl groupoid.

Lemma 9.1.23. Let I be a non-empty finite set and J ⊆ I. Let w ∈ Aut(ZI)
such that w(αj) ∈ −

∑
k∈J N0αk for any j ∈ J . Assume that w−1(αj) ∈ NI

0 ∪ −NI
0

for any j ∈ J . Then there is permutation σ of J such that w(αj) = −ασ(j) for all
j ∈ J .

Proof. Since w∈Aut(ZI) and since w(αj)∈
∑

k∈J Zαk, the elements w−1(αj)
with j ∈ J form a basis of

∑
k∈J Zαk. Let j ∈ J . Then, by assumption, there exists

(λk)k∈J ∈ ZJ such that w−1(αj) =
∑

k∈J λkαk and either λk ≥ 0 for all k ∈ J or
λk ≤ 0 for all k ∈ J . Hence

αj = ww−1(αj) =
∑
k∈J

λkw(αk).

Since w(αk) ∈ −NI
0 for all k ∈ J , it follows that λk = −1, w(αk) = −αj for some

k ∈ J , and that λl = 0 for all l ∈ J \ {k}. This implies the claim. �

At the end of this section we discuss some more examples.

Example 9.1.24. We can easily define two semi-Cartan graphs of rank one.
The first is G({1}, {X}, r, (2)) with r1(X) = X, and the second semi-Cartan graph is
G({1}, {X,Y }, r, (AX = AY = (2))) with r1(X) = Y , r1(Y ) = X. Conversely, any
connected semi-Cartan graph of rank one is isomorphic to one of these semi-Cartan
graphs. The situation is more complicated for connected semi-Cartan graphs of
higher rank.

Now we give some non-trivial examples of different type. Some of them are
Cartan graphs, others are not. In Section 10.3 we will give a classification of all
finite connected simply connected Cartan graphs of rank two up to isomorphism.
This classification provides us with yet another class of non-trivial examples.

First we slightly generalize Example 9.1.17.

Example 9.1.25. Let A be a Cartan matrix and let G be a standard Cartan
graph, such that the Cartan matrix of any point of G is A. Then by Proposi-
tion 9.3.15, the set of real roots ΔX re at any point X coincides with the set of real
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2 0
0 2
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1
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2
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2 0
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)
Figure 9.1.6. The semi-Cartan graph in Example 9.1.26

roots of the Kac-Moody algebra g(A). Hence G is finite if and only if A is of finite
type.

It is easy to describe all connected standard Cartan graphs. Indeed, let A
be a Cartan matrix over a finite index set I, let W be the corresponding Weyl
group, and let U be a subgroup of W . Let X = W/U = {wU |w ∈ W} and let
ri : X → X , wU �→ siwU , for all i ∈ I. Let AX = A for all X ∈ X . Then
(CG4) holds for GU = G(I,X , r, A) since (sisj)

mij = id for all i, j ∈ I, where
mij = |ΔX re ∩ (N0αi +N0αj)|. Hence GU is a standard Cartan graph. Since W is
generated by simple reflections, GU is connected.

On the other hand, let G be a standard Cartan graph with Cartan matrix
A = (aij)i,j∈I , then for any point X of G the group Hom(X,X) naturally identifies
with a subgroup U of the Weyl group W of A. (The assumption (CG4) ensures

that idX(sisj)
mX

ij ∈ Hom(X,X) for all points X and all i, j ∈ I.) Now it is easy
to see that if G is connected, then G is isomorphic to the standard Cartan graph
described in the previous paragraph.

Let U,U ′ be subgroups of W . Assume that GU and GU ′ are isomorphic. Then
there exists a permutation β of I such that aij = aβ(i)β(j) for all i, j ∈ I. Moreover,
there is a bijection γ : W/U → W/U ′ of left cosets such that

γ(si1 · · · sikU) = sβ(i1) · · · sβ(ik)γ(U)(9.1.2)

for all k ≥ 0, i1, . . . , ik ∈ I. Since W is a Coxeter group and the Coxeter relations
are obtained from the entries of A, the permutation β induces a group isomorphism
β∗ : W → W such that β∗(si) = sβ(i) for all i ∈ I. Therefore, by (9.1.2) there
exists w′ ∈ W such that β∗(w)w′U ′ = w′U ′ for all w ∈ U , that is, U ′ is conjugate
to β∗(U) in W .

Conversely, assume that there is a permutation β of I such that aij = aβ(i)β(j)
for all i, j ∈ I, and that U ′ = w′−1β∗(U)w′ for some w′ ∈ W . Then the map
γ : W/U → W/U ′, wU �→ β∗(w)w′U ′, is a well-defined bijection and fulfills (9.1.2).
Hence GU and GU ′ are isomorphic via (β, γ).

Example 9.1.26. Let I = {1, 2}, X = {X1, X2, X3}, and r1, r2 : X → X the
permutations r1(Xi) = Xσ(i), r2(Xi) = Xπ(i), where σ, π ∈ S3, σ = (1 2), π = (2 3).

For all 1 ≤ i ≤ 3 let AXi = A ∈ Z2×2 with a11 = a22 = 2, a12 = a21 = 0. Then
G = G(I,X , r, A) is a standard semi-Cartan graph. We display it in Figure 9.1.6.
Moreover, sXi (αj) = αj for all X ∈ X , i, j ∈ I with i �= j. This implies that
ΔX re = {±α1,±α2} and mX

ij = 2 for all X ∈ X and i �= j. In particular, G is
finite, but it does not satisfy (CG4), since r1r2 is defined by the permutation (1 2 3)
of order 3. Thus G is not a Cartan graph.

An example of a finite semi-Cartan graph not satisfying (CG3) will be given in
Example 9.2.3.

Now we give two non-standard examples of rank three with two points.
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⎛
⎝ 2 −1 0
−2 2 −1
0 −1 2

⎞
⎠ 3

⎛
⎝ 2 −1 0

−1 2 −1
0 −1 2

⎞
⎠ 2

⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠ 3

⎛
⎝ 2 0 −1

0 2 −1
−1 −1 2

⎞
⎠

Figure 9.1.7. The semi-Cartan graph in Example 9.1.29

Example 9.1.27. Let I = {1, 2, 3}, X = {X,Y }, and r1 the non-trivial per-
mutation of X , and r2 = r3 = idX . Let

AX =

⎛⎝ 2 −1 0
−2 2 −1
0 −1 2

⎞⎠ , AY =

⎛⎝ 2 −1 0
−2 2 −2
0 −1 2

⎞⎠ .

Then G(I,X , r, A) is a finite Cartan graph. Indeed, one checks that

ΔX re = { ± 1,±132432,±12233,±122332,±12223,
± 12,±122,±1223,±12232,±123,±2,±23,±3},

ΔY re = { ± 1,±12,±122,±12432,±1233,±12332,
± 1223,±12232,±123,±2,±223,±23,±3},

where aα1 + bα2 + cα3 ∈ N3
0 is abbreviated by 1a2b3c. Moreover, mX

12 = 4 and
mX

13 = 2. Note that the third rows of the two Cartan matrices AX and AY coincide,
which has to be the case according to Lemma 9.3.3 with i = 1, j = 3. Further, the
Cartan matrix AY is not of finite type.

Example 9.1.28. Let I = {1, 2, 3}, X = {X,Y }, and r1 the non-trivial per-
mutation of X , and r2 = r3 = idX . Let

AX =

⎛⎝ 2 −2 0
−1 2 −1
0 −1 2

⎞⎠ , AY =

⎛⎝ 2 −2 0
−1 2 −2
0 −1 2

⎞⎠ .

Then G(I,X , r, A) is a finite Cartan graph. Indeed, one checks that

ΔX re = { ± 1,±14233,±142332,±14223,±13223,
± 122,±12223,±1223,±12,±123,±2,±23,±3},

ΔY re = { ± 1,±122,±12233,±122332,±12223,
± 1223,±12,±1223,±123,±2,±223,±23,±3},

where aα1 + bα2 + cα3 ∈ N3
0 is abbreviated by 1a2b3c.

We now give an example of a semi-Cartan graph of rank three, which shows
that the claims of Lemma 9.3.1 and Proposition 9.4.18 below do not hold for all
semi-Cartan graphs.

Example 9.1.29. Let I = {1, 2, 3} and let G be the semi-Cartan graph in
Figure 9.1.7. Then α1 + α2 = s3s2s3s2(α1) is a real root at the last point X. In
particular, aX12 = aX21 = 0, but mX

12 �= 2, and hence Lemma 9.3.1 does not hold for
all semi-Cartan graphs. Similarly, idXsi1 · · · sik(αj) ∈ {±α1,±α2} for any k ≥ 0
and i1, . . . , ik, j ∈ {1, 2}. Hence Proposition 9.4.18 does not hold if we omit the
assumption on Axiom (CG3).
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(
2 −1
−3 2

)
1
(

2 −1
−4 2

)
2
(

2 −1
−4 2

)
Figure 9.2.1. The semi-Cartan graph in Example 9.2.3

9.2. Reduced sequences and positivity of roots

The aim of this section is to prove with Corollary 9.2.20 that Axioms (CG3)
and (CG4) for a semi-Cartan graph are equivalent to two other axioms (CG3’),
(CG4’) based on reduced sequences, see below. This characterization of a Cartan
graph will in particular be essential in Section 14.5. With Proposition 9.2.25 we
give a characterization of the finiteness of some semi-Cartan graphs.

Let G = G(I,X , r, A) be a semi-Cartan graph.

Definition 9.2.1. Let X ∈ X , l ≥ 0, and κ = (i1, . . . , il) ∈ I l.

(1) For all 1 ≤ k ≤ l let

βX,κ
k = idXsi1 · · · sik−1

(αik),

and let

ΛX(κ) =
{
βX,κ
k | 1 ≤ k ≤ l

}
.

(2) We say that κ is X-reduced if for any 1 ≤ k < l,

αik �∈ Λrik ···ri1 (X)(ik+1, . . . , il).

The integer l is called the length of κ.

The definition immediately implies the following lemma.

Lemma 9.2.2. Let X ∈ X , l ≥ 1, and i1, . . . , il ∈ I.

(1) ΛX(i1, . . . , il) = {αi1} ∪ s
ri1 (X)
i1

(Λri1 (X)(i2, . . . , il)).
(2) The following are equivalent.

(a) (i1, . . . , il) is X-reduced.
(b) (i2, . . . , il) is ri1(X)-reduced and αi1 �∈ Λri1 (X)(i2, . . . , il).

In order to point out some pitfalls, let us discuss first an example of a finite
semi-Cartan graph which violates several positivity and length constraints.

Example 9.2.3. Let I = {1, 2}, X = {X1, X2, X3}, and r1, r2 : X → X the
permutations r1(Xi) = Xσ(i), r2(Xi) = Xπ(i), where σ, π ∈ S3, σ = (1 2), π = (2 3).
Let

AX1 =

(
2 −1
−3 2

)
, AX2 =

(
2 −1
−4 2

)
, AX3 =

(
2 −1
−4 2

)
.

Then G = G(I,X , r, A) is the semi-Cartan graph in Figure 9.2.1.
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Direct calculation shows that the real roots of G are

ΔX1 re = { ± 1,±2,±12,±122,±123,±1223,
± 1324,±1325,±1425,±1427,±1527,±1528},

ΔX2 re = { ± 1,±2,±12,±122,±123,±124,
± 125,±1223,±1225,±1227,±1327,±1328},

ΔX3 re = { ± 12−1,±1,±2,±12,±122,±123,
± 124,±122,±1223,±1225,±1324,±1325},

where we abbreviate aα1 + bα2 with a, b ∈ N0 by 1a2b, and α1 − α2 by 12−1. In
particular, G is finite but it does not satisfy (CG3) since α1−α2 ∈ΔX3 re. Thus G
is not a Cartan graph.

It is instructive to look at Xi-reduced sequences for 1 ≤ i ≤ 3. By direct
calculations one obtains that

ΛX1(1, 2, 1, 2, 1, 2, 1, 2, 1) = {1, 12, 1324, 1223, 1528, 1325, 1427, 122, 2}
�= ΔX1 re

+ ,

but

σ(α1) = −α2, σ(α2) = −α1 − α2

for σ = idX1
s1s2s1s2s1s2s1s2s1. Hence (1, 2, 1, 2, 1, 2, 1, 2, 1, i) is not X1-reduced

for any i ∈ {1, 2} by Lemma 9.2.5 below. Further, one can show that there is no
X1-reduced sequence of length ten. On the other hand,

ΛX2(1, 2, 1, 2, 1, 2, 1, 2, 1, 2) = {1, 12, 1223, 122, 1225, 123, 1227, 124, 125, 2}
and hence there is an X2-reduced sequence of length ten. One can also check that
the longest X2-reduced sequence starting with 2 has length eight, and that

ΛX3(1, 2, 1, 2, 1, 2, 1, 2, 1) = {1, 12, 1324, 1223, 1325, 122, 123, 2, 1−12}.
Note that in the latter set there is a root which is neither positive nor negative, but
the sequence is X3-reduced.

For Cartan graphs we will prove in Theorem 9.3.5 that a sequence (i1, . . . , il) is
X-reduced if and only if it is a reduced decomposition of idXsi1 · · · sil in the Weyl
groupoid of the Cartan graph.

The definition of ΛX(κ) is compatible with reversing κ.

Lemma 9.2.4. Let X ∈ X , l ≥ 1, κ = (i1, . . . , il) ∈ I l, and w = idXsi1 · · · sil ,
Y = ril · · · ri1(X), κ′ = (il, . . . , i1). Then

βY,κ′

k = −w−1
(
βX,κ
l+1−k

)
for any 1 ≤ k ≤ l.

Proof. Let 1 ≤ k ≤ l. Then

w
(
βY,κ′

k

)
= idXsi1 · · · silsil · · · sil+2−k

(αil+1−k
)

= idXsi1 · · · sil+1−k
(αil+1−k

) = −βX,κ
l+1−k.

This proves the lemma. �

We continue with equivalent conditions for X-reducedness.
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Lemma 9.2.5. Let X ∈ X , l ≥ 0, and κ = (i1, . . . , il) ∈ I l. Then the following
are equivalent.

(1) κ is X-reduced.
(2) βX,κ

p �= −βX,κ
q for all 1 ≤ p < q ≤ l.

(3) (il, . . . , i1) is ril · · · ri1(X)-reduced.

In particular, if ΛX(κ) ⊆ NI
0 then κ is X-reduced.

Proof. Let 1 ≤ p < q ≤ l. By definition,

βX,κ
p = idXsi1 · · · sip−1

(αip) = −idXsi1 · · · sip−1
sip(αip),

βX,κ
q = idXsi1 · · · sipsip+1

· · · siq−1
(αiq ).

Hence βX,κ
p = −βX,κ

q if and only if αip = idrip ···ri1 (X)sip+1
· · · siq−1

(αiq ). This

proves the equivalence of (1) and (2).
Let Y = ril · · · ri1(X) and κ′ = (il, . . . , i1). By the previous paragraph, (3)

holds if and only if βY,κ′

p �= −βY,κ′

q for all 1 ≤ p < q ≤ l. This is equivalent to (2)
because of Lemma 9.2.4. �

Remark 9.2.6. (1) Let X ∈ X , l ≥ 2, and κ = (i1, . . . , il) ∈ I l. If ij = ij+1 for

some 1 ≤ j < l, then αij ∈ Λrij ···ri1 (X)(ij+1, . . . , il), and hence κ is not X-reduced.

(2) Let X ∈ X , l ≥ 2, 1 ≤ j < l, and κ = (i1, . . . , il) ∈ I l. Then βX,κ
j = βX,κ

j+1

if and only if sYij (αij ) = αij+1
, where Y = rij−1

· · · ri1(X). This is impossible since

sYij (αij ) = −αij /∈ NI
0. Similarly, βX,κ

j = −βX,κ
j+1 if and only if ij = ij+1.

Further equivalences to X-reducedness hold under additional conditions.

Lemma 9.2.7. Let X ∈ X , l ≥ 0, and κ = (i1, . . . , il) ∈ I l.

(1) Assume that ΔY re ⊆ NI
0 ∪−NI

0 for any Y = rik · · · ri1(X) with 0 ≤ k < l.
Then the following are equivalent.
(a) κ is X-reduced.

(b) βX,κ
1 , . . . , βX,κ

l are pairwise distinct elements in NI
0.

(c) ΛX(κ) ⊆ NI
0.

(2) Let w=idXsi1 · · · sil . Assume ΔY re ⊆ NI
0∪−NI

0 for any Y =rik · · · ri1(X)
with 0 ≤ k ≤ l. If κ is X-reduced then

ΔX re(w) = ΛX(κ).

Proof. (1) Assume (a). We prove (b) by induction on l. If l ≤ 1, (b) is
trivial. Assume that l > 1. Let Z = ri1(X). Then κ′ = (i2, . . . , il) is Z-reduced

by Lemma 9.2.2. By induction hypothesis, βZ,κ′

1 , . . . , βZ,κ′

l−1 are pairwise dictinct

elements in NI
0, and by assumption (1)(a), they are contained in ΔZ re

+ \ {αi1}.
Hence by Lemma 9.1.19(1),

βX,κ
1 = αi1 , βX,κ

2 = sZi1
(
βZ,κ′

1

)
, . . . , βX,κ

l = sZi1
(
βZ,κ′

l−1

)
are pairwise distinct elements in NI

0.
Finally (b) implies (c), and (c) implies (a) because of Lemma 9.2.5.
(2) Again we proceed by induction on l. If l = 0, then w = idX ,ΔX re(w) = ∅.

Assume that l > 0 and that κ is X-reduced. Then (i1, . . . , il−1) is X-reduced.
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Let w′ = idXsi1 · · · sil−1
. Then w = w′sil , ΔX re(w′) =

{
βX,κ
1 , . . . , βX,κ

l−1

}
, and

w′(αil) = βX,κ
l ∈ NI

0 by (1). Hence

ΔX re(w) = ΔX re(w′) ∪
{
βX,κ
l

}
= ΛX(κ)

by Lemma 9.1.21(2). �

Lemma 9.2.8. Let X ∈ X , l ≥ 0, and κ = (i1, . . . , il) ∈ I l. Assume that κ is

X-reduced, |ΔX re
+ | > l, and that Δrik ···ri1 (X) re ⊆ NI

0 ∪ −NI
0 for any 0 ≤ k ≤ l.

Then there exists i ∈ I such that (i, i1, . . . , il) is ri(X)-reduced.

Proof. Let w = idXsi1 · · · sil . Then ΔX re(w) �= ΔX re
+ by Lemma 9.2.7(2),

since |ΔX re
+ | > l. Thus αi /∈ ΔX re(w) for some i ∈ I. Hence the claim follows

from Lemma 9.2.2(2) and Lemma 9.2.7(2). �

Remark 9.2.9. Let i, j ∈ I with i �= j and κ = (ik)k≥1 = (i, j, i, . . . ) with
ik = i if k is odd and ik = j if k is even. Let X ∈ X . By Remark 9.2.6(1), any
X-reduced sequence with entries in {i, j} and starting with i is a beginning of κ.
Let κX

ij be the longest X-reduced beginning of κ, if it exists, and κ otherwise. We

write mX
ij for the length of κX

ij . Clearly, m
X
ij ≥ 2.

For any X ∈ X and any i, j ∈ I with i �= j let

τ (X, i, j) = (ri(X), j, i), σ(X, i, j) = (X, j, i).(9.2.1)

Clearly, σ2(X, i, j) = (X, i, j) for any X ∈ X and i, j ∈ I with i �= j. Moreover, τ
is invertible with inverse

τ−1(X, i, j) = (rj(X), j, i) = στσ(X, i, j)(9.2.2)

for any X ∈ X and i, j ∈ I with i �= j. Hence the permutation group of the set of
triples (X, i, j) with X ∈ X and i, j ∈ I, i �= j, generated by τ and σ, is generated
by τ and σ as a monoid. In Proposition 9.2.14 we prove that mX

ij is constant on
the orbits of this group in an important special case.

With the help of the notation in Remark 9.2.9 we are in the position to introduce
axioms characterizing Cartan graphs.

(CG3’) For any X ∈ X and any X-reduced sequence κ, ΛX(κ) ⊆ NI
0.

(CG4’) For any X ∈ X and any i, j ∈ I with i �= j and mX
ij < ∞, we have

(rjri)
m(X) = X, idX(sisj)

m(αk) = αk

for all k ∈ I \ {i, j}, where m = mX
ij .

For the proof of Theorem 9.2.18 and Corollary 9.2.20 below, which relate these
axioms to those of a Cartan graph, we need some preparation.

Lemma 9.2.10. Let X ∈ X , l ≥ 2, κ = (i1, . . . , il) ∈ I l, and 1 ≤ m < n ≤ l.
Assume that im = in and that ik �= im for any m < k < n. Then there exist
am+1, . . . , an−1 ∈ N0 such that

βX,κ
m + βX,κ

n =
n−1∑

k=m+1

akβ
X,κ
k .(9.2.3)
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Proof. Induction by n − m. If n = m + 1 then the claim holds by Re-
mark 9.2.6(1). If n > m+ 1, then

βX,κ
m + βX,κ

n = βX,κ
m + idXsi1 · · · sin−1

(αin)

= βX,κ
m + idXsi1 · · · sin−2

(αin + an−1αin−1
)

= βX,κ′

m + βX,κ′

n−1 + an−1β
X,κ
n−1,

where κ′ = (i1, . . . , in−2, in) and an−1 ∈ N0. Thus the claim follows from induction

hypothesis, since βX,κ′

k = βX,κ
k for any m ≤ k < n− 1. �

Lemma 9.2.11. Let X ∈ X , l ≥ 3, and κ = (i1, . . . , il) ∈ I l. Assume that

il−2 = il and that βX,κ
l−1 = αj for some j ∈ I. Then βX,κ

l−2 /∈ NI
0 or βX,κ

l /∈ NI
0.

Proof. If il−1 = il then βX,κ
l = −βX,κ

l−1 = −αj and the claim is proven.
Assume that il−1 �= il. Then, by Lemma 9.2.10, there exists a ∈ N0 such that

βX,κ
l−2 + βX,κ

l = aαj . Since βX,κ
l−1 = αj , Remarks 9.1.16(2) and 9.2.6(2) imply that

βX,κ
l /∈ N0αj . This implies the claim. �

Lemma 9.2.12. Assume that there exist a point X ∈ X and an X-reduced
sequence κ such that ΛX(κ) contains an element in −NI

0. Then there exist a point
Y ∈ X and a Y -reduced sequence κ′ such that ΛY (κ′) contains an element in
ZI \ (NI

0 ∪ −NI
0).

Proof. Let X ∈ X and κ = (i1, . . . , il) ∈ I l be an X-reduced sequence with
l ≥ 1. Assume that ΛZ(κ′′) contains no elements in −NI

0 for any point Z and

any Z-reduced sequence κ′′ of length < l, and that βX,κ
l ∈ −NI

0. Then l > 1.

Moreover, βX,κ
l �= −αi1 since κ is X-reduced. Thus βX,κ

l /∈ Zαi1 . Since (i2, . . . , il)
is ri1(X)-reduced by Lemma 9.2.2(2), we conclude from our assumption on reduced
sequences of length < l that

Λri1 (X)(i2, . . . , il)  sXi1 (β
X,κ
l ) = βX,κ

l + bαi1 ,

where b ∈ Z, is contained in ZI \ (NI
0 ∪ −NI

0). �

Lemma 9.2.13. Assume that |I| ≥ 2. Let Y ∈ X , i, j ∈ I with i �= j, and
κ = (j, i, j, i, . . . ) = (j1, . . . , jm) be a Y -reduced beginning of κY

ji with m ≥ 2. If

m
ri(Y )
ij = m, then βY,κ

m = αi.

Proof. Let κ′ = (i, j1, . . . , jm). Since m
ri(Y )
ij ≤ m, κ′ is not ri(Y )-reduced.

Hence β
ri(Y ),κ′

p = −β
ri(Y ),κ′

q for some 1 ≤ p < q ≤ m + 1 by Lemma 9.2.5. Since

β
ri(Y ),κ′

k+1 = sYi (β
Y,κ
k ) for any 1 ≤ k ≤ m and since κ is Y -reduced, we conclude

that p = 1. Then q = m+ 1, since m
ri(Y )
ij = m. Therefore αi = −sYi (β

Y,κ
m ), which

implies that βY,κ
m = αi. �

Proposition 9.2.14. Assume that |I| ≥ 2 and that G satisfies (CG3’). Let
X ∈ X , i, j ∈ I with i �= j, and

Y =
{
ri1 · · · rik(X) | k ≥ 0, i1, . . . , ik ∈ {i, j}

}
.

Then mY
ij = mY

ji = mX
ij for any Y ∈ Y.
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Proof. If mY
ij = mY

ji =∞ for any Y ∈ Y then we are done.

Assume that mX
ij < ∞ and that mY

ij ,m
Y
ji ≥ mX

ij for any Y ∈ Y . We prove that

mY
i′j′ = mX

ij for (Y, i′, j′) = τ (X, i, j) and for (Y, i′, j′) = σ(X, i, j), where τ and σ
are as in (9.2.1). This implies then the Proposition by Remark 9.2.9.

Let m = mX
ij , Y = ri(X), and κ = (j, i, j, i, . . . ) = (j1, . . . , jm). Then κ is

Y -reduced since mY
ji ≥ mX

ij . In particular, βY,κ
m−1 ∈ NI

0 by (CG3’). Moreover,

βY,κ
m = αi by Lemma 9.2.13. Then βY,κ

m+1 /∈ NI
0 by Lemma 9.2.11, and hence

mY
ji = m by (CG3’).
Let now Z = rjm · · · rj1(Y ) and κ′ = (jm, . . . , j1, i). Then κ′ is not Z-reduced

by Lemma 9.2.5, since (i, j1, . . . , jm) is not X-reduced because of m = mX
ij . On the

other hand, mZ
jmjm−1

≥ mX
ij = m. Thus mZ

jmjm−1
= m. Since

τm+1(Z, jm, jm−1) = τ (Y, i, j) = (X, j, i) = σ(X, i, j),

the previous paragraph applied m+1 times implies that mX
ji = m. This proves the

proposition. �
Lemma 9.2.15. Assume that |I| ≥ 2. Let X ∈ X , i, j ∈ I with i �= j, κ = κX

ij ,

and m = mX
ij . Assume that m < ∞.

(1) If G satisfies (CG3’), then βX,κ
1 = αi, β

X,κ
m = αj, and

idX(sisj)
m(αi) = αi, idX(sisj)

m(αj) = αj .

(2) If G satisfies (CG3’) and (CG4’), then idX(sisj)
m = idX .

Proof. (1) Assume that G satisfies (CG3’). Then m
rj(X)
ji = mX

ij by Proposi-

tion 9.2.14. Thus βX,κ
m = αj by Lemma 9.2.13, and βX,κ

1 = αi by definition.
For any 1 ≤ n ≤ 2m, let in = i if n is odd and in = j if n is even. Thus, by

Proposition 9.2.14 and by the first part of the proof,

idX(sisj)
m(αi) = idXsi1 · · · simsim+1

(αim+1
)

= −idXsi1 · · · sim(αim+1
) = −idXsi(αi) = αi,

idX(sisj)
m(αj) = −idXsi1 · · · si2m−1

(αj)

= −idXsi1 · · · sim(αim) = idXsi1 · · · sim−1
(αim) = αj .

This proves (1). Now (2) follows from (1) trivially. �
The following proposition is a variant of the weak exchange condition for Weyl

groups.

Proposition 9.2.16. Assume that the semi-Cartan graph G satisfies (CG3’)
and (CG4’). Let X ∈ X , l ≥ 1, κ = (i1, . . . , il) ∈ I l, and i ∈ I, such that κ is
X-reduced and idXsi1 · · · sil(αi) /∈ NI

0. Then there exists an X-reduced sequence
(j1, . . . , jl) ∈ I l such that jl = i and idXsi1 · · · sil = idXsj1 · · · sjl .

Remark 9.2.17. In the classical situation of semisimple Lie algebras or of Kac-
Moody algebras, X has only one point, and only one Cartan matrix is given. If the
Cartan matrix is of finite type, then the Weyl group W is a group of orthogonal
transformations of a euclidian space of dimension |I|, and the maps si ∈ Aut(ZI) are
hyperplane reflections at the hyperplane orthogonal to αi. Hence for any element
w ∈ W , and i, j ∈ I with w(αi) = αj , the conjugate transformation wsiw

−1 is the
hyperplane reflection at the hyperplane orthogonal to w(αi), that is, wsiw

−1 = sj .
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This last relation is also true in the Kac-Moody case (see [Kac90], proof of Lemma
3.10), and it is an essential device in the study of the Weyl group. However, for
Cartan graphs an analogous argument is not available. This is one of the main
reasons why the proof of Proposition 9.2.16 and some other claims are different
from the classical ones.

Proof of Proposition 9.2.16. If l = 1, then il = i since s
ri1(X)
i1

(αi) /∈ NI
0.

Generally, if il = i then the Proposition holds with (j1, . . . , jl) = κ.
Assume now that il �= i. Then l ≥ 2. Let M be the set of pairs (κ′, p′), where

κ′ = (i′1, . . . , i
′
l) ∈ I l is X-reduced and 0 ≤ p′ < l, such that i′l = il, i

′
n ∈ {i, il} for

any p′ < n ≤ l, and idXsi1 · · · sil = idXsi′1 · · · si′l . ThenM �= ∅ since (κ, l−1) ∈M.

Let ((k1, . . . , kl), p) ∈ M with a smallest possible p. Then ΛX(k1, . . . , kl) ⊆ NI
0 by

(CG3’). In particular, (k1, . . . , kp) is X-reduced by Lemma 9.2.5.
Let j ∈ {i, il} and assume that idXsk1

· · · skp
(αj) /∈ NI

0. Then p ≥ 1. By
induction hypothesis there exist k′

1, . . . , k
′
p ∈ I such that (k′

1, . . . , k
′
p) is X-reduced,

k′
p = j, and idXsk1

· · · skp
= idXsk′

1
· · · sk′

p
. Let

κ′ = (k′
1, . . . , k

′
p, kp+1, . . . , kl).

Then
ΛX(κ′) = ΛX(k′

1, . . . , k
′
p) ∪ {βX,(k1,...,kl)

n | p+ 1 ≤ n ≤ l} ⊆ NI
0,

and hence κ′ is X-reduced by Lemma 9.2.5. Thus (κ′, p − 1) ∈ M, which is a
contradiction to the choice of ((k1, . . . , kl), p).

By the previous paragraph, idXsk1
· · · skp

(αj) ∈ NI
0 for any j ∈ {i, il}. Then

idXsk1
· · · skp

(aαi + bαil) ∈ NI
0(9.2.4)

for any a, b ∈ N0. Let Y = rip · · · ri1(X). Then (kp+1, . . . , kl) is Y -reduced and

idY skp+1
· · · skl

(αi) ∈ Zαi + Zαil \ NI
0

because of (9.2.4) and since

NI
0 � idXsi1 · · · sil(αi) = idXsk1

· · · skl
(αi)

= idXsk1
· · · skp

(
idY skp+1

· · · skl
(αi)

)
.

Thus (kp+1, . . . , kl, i) is not Y -reduced by (CG3’), and then l − p = mY
kp+1,kp+2

.

Therefore
idY skp+1

· · · skl
= idY skp+2

· · · skl
skl+1

by (CG4’) and Lemma 9.2.15, where kl = il and kl+1 = i. Thus the proposition
holds for (j1, . . . , jl) = (k1, . . . , kp, kp+2, . . . , kl+1). �

Theorem 9.2.18. Assume that the semi-Cartan graph G satisfies (CG3’) and
(CG4’). Then for any X ∈ X , ΔX re = ΔX re

+ ∪ −ΔX re
+ and

ΔX re
+ =

⋃
κ

ΛX(κ),

where the union is taken over all X-reduced sequences κ.

Proof. Let X ∈ X and let α ∈ ΔX re, l ≥ 0, κ = (i1, . . . , il) ∈ I l, and i ∈ I
such that α = idXsi1 · · · sil(αi). Let κ′ = (i1, . . . , il, i). Assume that

α �= idXsj1 · · · sjk(αj)

for any 0 ≤ k < l, j ∈ I, and (j1, . . . , jk) ∈ Ik.
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Assume first that κ is X-reduced and α ∈ NI
0. Then ΛX(κ′) ⊆ NI

0 by as-
sumption, and hence κ′ is X-reduced by Lemma 9.2.5. Moreover, α ∈ ΛX(κ′) by
definition.

Assume now that κ is X-reduced and α /∈ NI
0. Then, by Proposition 9.2.16,

there exists an X-reduced sequence (j1, . . . , jl) ∈ I l such that jl = i and

idXsi1 · · · sil = idXsj1 · · · sjl .
Therefore

α = idXsi1 · · · sil(αi) = idXsj1 · · · sjl(αi) = −idXsj1 · · · sjl−1
(αi).

In particular, −α ∈ ΛX(j1, . . . , jl).
Finally, assume that κ is not X-reduced. Then, by Lemma 9.2.5 and by as-

sumption there exists 2 ≤ k ≤ l such that βX,κ
j ∈ NI

0 for all 1 ≤ j < k and

βX,κ
k /∈ NI

0. Hence, by Proposition 9.2.16, there exist j1, . . . , jk−1 ∈ I such that
jk−1 = ik and idXsi1 · · · sik−1

= idXsj1 · · · sjk−1
. We conclude that

α = idXsi1 · · · sik−1
sik · · · sil(αi) = idXsj1 · · · sjk−1

sik · · · sil(αi)

= idXsj1 · · · sjk−2
sik+1

· · · sil(αi),

a contradiction to the assumption in the first paragraph of the proof. �

As a consequence of Theorem 9.2.18 we can relate the axioms of a Cartan graph
to (CG3’) and (CG4’). To do so, we need a lemma on Aut(ZI).

Lemma 9.2.19. Let J be a finite set, i, j ∈ J , and w ∈ Aut(ZJ). Assume that
w(αk) ∈ αk+Zαi+Zαj for all k ∈ J and w(αj), w

−1(αj) ∈ NJ
0∪−NJ

0 . If det(w) = 1
and w(αi) = αi, then w(αj) = αj. If additionally w(αk), w

−1(αk) ∈ NJ
0 ∪−NJ

0 for
all k ∈ J , then w = id.

Proof. If i = j then the first claim clearly holds. So assume that i �= j. By
assumption, w(αj) = aαi + bαj for some a, b ∈ Z. Then b = 1 since det(w) = 1,
w(αi) = αi, and w(αk) ∈ αk + Zαi + Zαj for any k ∈ J \ {i, j}. We conclude that
w−1(αj) = −aαi+αj . Therefore a = 0 since w(αj), w

−1(αj) ∈ NJ
0 . Hence the first

claim holds if i �= j.
The second claim holds by a similar argument. Let k ∈ J \ {i, j}. Since

w(αk) ∈ αk +Zαi +Zαj , and w(αk) ∈ NJ
0 ∪−NJ

0 , there exist unique a, b ∈ N0 such
that w(αk) = αk +aαi+ bαj , where b = 0 if i = j. Since w−1(αk) = αk−aαi− bαj

is contained in NI
0 by assumption, we get a = b = 0. Thus w = id. �

Corollary 9.2.20. For any semi-Cartan graph G the following are equivalent.

(1) G satisfies (CG3’) and (CG4’).
(2) G is a Cartan graph.

Moreover, if G satisfies (CG3), then mX
ij = mX

ij for any point X and any two
distinct labels i, j of G.

Proof. Let G = G(I,X , r, A). Suppose that G satisfies (CG3). Then (CG3’)
holds because of Lemma 9.2.7(1). We prove first that mX

ij = mX
ij for any X ∈ X

and i, j ∈ I with i �= j in this setting.
Let X ∈ X and i, j ∈ I. Assume that i �= j. Then mX

ij ≥ mX
ij because

of Lemma 9.2.7(1). In particular, if mX
ij = ∞ then mX

ij = ∞. Assume that

m = mX
ij < ∞, and let w = idXsi1 · · · sim , where (i1, . . . , im) = κX

ij . Since κX
ij is
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X-reduced, ΛX(κX
ij ) ⊆ NI

0 by (CG3’). Thus w(αi), w(αj) /∈ NI
0 by definition of κX

ij

and by Lemma 9.2.5. Hence w(αi), w(αj) ∈ −NI
0 by (CG3), and therefore

ΔX re ∩ (N0αi + N0αj) ⊆ΔX re(w) = ΛX(κX
ij )

by Lemma 9.2.7(2). Since |ΛX(κX
ij )| = mX

ij by Lemma 9.2.7(1), we conclude that

mX
ij = mX

ij .
Now we prove that (2) implies (1). Assume that G is a Cartan graph. Then,

by the previous paragraph, (CG3’) holds and mX
ij = mX

ij for any X ∈ X and
i, j ∈ I with i �= j. Therefore (CG4’) follows from (CG4), Lemma 9.2.15(1), and
Lemma 9.2.19 with w = idX(sisj)

m and m = mX
ij , since det(idX(sisj)

m) = 1 by
(9.1.1).

Assume now (1). Then (CG3) holds by Theorem 9.2.18. Hence mX
ij = mX

ij for
any X ∈ X and i, j ∈ I with i �= j by the first paragraph of the proof. Moreover,
(CG4) holds because of (CG4’). �

Definition 9.2.21. For any semi-Cartan graph G = G(I,X , r, A) and for all
X ∈ X , i, j ∈ I with i �= j, and k ∈ N0 let

ProdXij (2k) = idX(sisj)
k, ProdXij (2k + 1) = idX(sisj)

ksi

as morphisms in Hom(W(G), X).

Corollary 9.2.22. Let G = G(I,X , r, A) be a Cartan graph. Let X ∈ X and
i, j ∈ I with i �= j. If mX

ij is finite then

(1) idX(sisj)
mX

ij = idX ,

(2) ProdXij (m
X
ij ) = ProdXji(m

X
ij ).

The relations in (2) are called the Coxeter relations.

Proof. (1) follows from Corollary 9.2.20 and Lemma 9.2.15. (2) follows then
from (1). �

In the next theorem we state a variant of the Coxeter relations in the Weyl
groupoid of a semi-Cartan graph which is not necessarily Cartan. Recall that we
denote by F (w) the linear automorphism of a morphism w in the Weyl groupoid.

Theorem 9.2.23. Let G = G(I,X , r, A) be a semi-Cartan graph. Let X ∈ X
and i, j ∈ I with i �= j. Let Y ⊆ X with X ∈ Y such that ri(Y) ∪ rj(Y) ⊆ Y, and
assume that ΔY re ⊆ NI

0 ∪ −NI
0 for all Y ∈ Y. If mX

ij is finite then

mX
ij = min{n ≥ 1 |F (idX(sisj)

n) = idZI}.

If mX
ij is infinite, then for all n ≥ 1, F (idX(sisj)

n) �= idZI .

Proof. We may assume that G is connected. Then, since G satisfies (CG3),
mX

ij = mX
ij by Corollary 9.2.20. Moreover, (CG3’) holds by Lemma 9.2.7(1).

Assume that mX
ij is finite. Then F (idX(sisj)

mX
ij ) = idZI by Lemma 9.2.15 and

Lemma 9.2.19. Now it suffices to prove that N(idX(sisj)
n) > 0 for all 1 ≤ n < mX

ij .

For the latter note that N(ProdXij (m
X
ij )) = mX

ij by Lemma 9.2.7, and hence the
claim follows from Lemma 9.1.21(2).

If mX
ij =∞, then κX

ij has infinite length and hence idX(sisj)
n(αi) �= αi for all

n ≥ 1 by Lemma 9.2.7(1). �
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Example 9.2.24. Here we discuss an example of a semi-Cartan graph satisfying
(CG3’) and the first condition in (CG4’), but not the second.

Let I = {1, 2, 3} and X = {1, 2, 3, 4}. Let r1, r2, r3 be the permutations

r1 = (1 2)(3 4), r2 = (2 3), r3 = idX

of X . Then r2i = idX for any i ∈ I. Moreover, let

A1 = A4 =

⎛⎝ 2 −2 −2
−2 2 −2
−2 −2 2

⎞⎠ , Am =

⎛⎝ 2 −2 −2
−2 2 0
−pm 0 2

⎞⎠
for m ∈ {2, 3}, where 2 ≤ p2 < p3. Then Gp2,p3

= G(I,X , r, A) is a semi-Cartan
graph. Its exchange graph is displayed in Figure 9.1.4.

Let now

Λ2 = Λ3 = {aα1 + bα2 + cα3 | a, b, c ∈ N0, a < b+ c},
P1 = {aα1 + bα2 + cα3 | a, b, c ∈ N0, a > b+ c},
P2 = {aα1 + bα2 + cα3 | a, b, c ∈ N0, b > a+ c},
P3 = {aα1 + bα2 + cα3 | a, b, c ∈ N0, c > a+ b},

and

Λ1 = Λ4 = P2 ∪ P3.

Then the following hold.

(1) mX
23 = mX

32 = 2 for X ∈ {2, 3}.
(2) For any X ∈ X , a sequence κ = (i1, . . . , il) ∈ I l with l ≥ 1 is not X-

reduced, if
(a) there exists 1 ≤ k < l such that ik = ik+1, or
(b) there exists 1 ≤ k ≤ l − 2 such that rik−1

· · · ri1(X) ∈ {2, 3} and
(ik, ik+1, ik+2) ∈ {(2, 3, 2), (3, 2, 3)}.

We denote by NX the set of such sequences.
(3) For any X ∈ X and any sequence κ /∈ NX , ΛX(κ) ⊆ ΛX ∪ P1.
(4) mX

ij =∞ whenever X ∈ {1, 4} or {i, j} �= {2, 3}.
(5) id2s2s3(α1) = α1 + 2α2 + p3α3 �= α1 + 2α2 + p2α3 = id2s3s2(α1).

The verification of these claims is straightforward except (3) and (4). Claim (3)
can be obtained by showing the following by induction on l.

(3)(a) For any X ∈ {1, 4} and any sequence κ = (i1, . . . , il) /∈ NX with l ≥ 1,
ΛX(κ) ⊆ Pi1 .

(3)(b) For any X ∈ {2, 3} and any sequence κ = (i1, . . . , il) /∈ NX with l ≥ 1
and i1 = 1, ΛX(κ) ⊆ P1.

(3)(c) For any X ∈ {2, 3} and any sequence κ = (i1, . . . , il) /∈ NX with l ≥ 1
and i1 ∈ {2, 3}, ΛX(κ) ⊆ Λ2.

Then (4) follows from (3) and Lemma 9.2.5.
Now (2) and (3) imply that (CG3’) holds, and (1) and (4) imply that the first

condition of (CG4’) holds. Finally, the second condition of (CG4’) fails because of
(5).

We close the section with a criterion for finiteness of a semi-Cartan graph in
terms of reduced sequences.
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Proposition 9.2.25. Assume that the semi-Cartan graph G is connected and
satisfies (CG3). Let X ∈ X . The following are equivalent.

(1) There exists m ∈ N0 such that for any Y ∈ X , any Y -reduced sequence
has length at most m.

(2) There exists m ∈ N0 such that any X-reduced sequence has length at most
m.

(3) G is finite.

Proof. Clearly, (1) implies (2). Now assume (2). In order to prove (3), it
suffices to show that ΔX re is finite, since G is connected. Assume to the contrary
that ΔX re is infinite. Let (i1, . . . , il) be an X-reduced sequence of maximal length.
Let Y = ril · · · ri1(X). Then (il, . . . , i1) is Y -reduced by Lemma 9.2.5. Moreover,
there exists i ∈ I such that (i, il, . . . , i1) is ri(Y )-reduced because of (CG3) and
Lemma 9.2.8. Thus (i1, . . . , il, i) is X-reduced by Lemma 9.2.5, which contradicts
the maximality assumption on l.

Finally, we prove that (3) implies (1). Since G is connected, Lemma 9.1.18
and (3) imply that ∪Y ∈XΔY re is a finite set. Let m be its cardinality. Then for
any Y ∈ X , any Y -reduced sequence has length at most m by the equivalence of
Lemma 9.2.7(1)(a) and (1)(b). �

9.3. Weak exchange condition and longest elements

We discuss general properties of Cartan graphs, Coxeter relations, a variant of
the weak exchange condition, and the existence and uniqueness of longest elements
in the Weyl groupoid.

Lemma 9.3.1. Let G = G(I,X , r, A) be a Cartan graph, X ∈ X , and i, j ∈ I
with i �= j. The following are equivalent.

(1) aXij = aXji = 0.

(2) mX
ij = 2.

(3) ΔX re ∩ (N0αi + N0αj) = {αi, αj}.

Proof. Since αi, αj ∈ΔX re, (2) and (3) are equivalent. Moreover, (2) implies

that s
ri(X)
i (αj) = αj and hence (1) holds. Assume (1). Then a

ri(X)
ij = 0 = a

ri(X)
ji by

(CG2) and since AX is a Cartan matrix. Similarly, a
rjri(X)
ij = 0. Hence κX

ij = (i, j)

and mX
ij = mX

ij = 2 by Corollary 9.2.20. �

Remark 9.3.2. In any semi-Cartan graph G, Lemma 9.3.1(2) implies (1), and
(2) and (3) are equivalent.

Lemma 9.3.3. Let G = G(I,X , r, A) be a Cartan graph, i, j ∈ I, and X ∈ X
with aXij = 0. Then aXjl = a

ri(X)
jl for all l ∈ I.

Proof. Since a
ri(X)
ij = aXij = 0, we observe that a

ri(X)
ji = 0. Now mX

ij = 2 by

Lemma 9.3.1. Thus sis
X
j (αl) = sjs

X
i (αl) by Corollary 9.2.22, that is,

αl − aXjlαj − a
rj(X)
il αi + aXjla

rj(X)
ij αi = αl − aXil αi − a

ri(X)
jl αj + aXil a

ri(X)
ji αj .

Then aXjl = a
ri(X)
jl by comparing the coefficients of αj on both sides of the equation.

�
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As an application of the Coxeter relations we now prove a weak exchange
condition for Cartan graphs.

Theorem 9.3.4. Let G = G(I,X , r, A) be a Cartan graph, X ∈ X , k ∈ N, and
i1, . . . , ik, i ∈ I. Assume that idXsi1 · · · sik(αi) ∈ −NI

0. Then there exist j1, . . . , jk
in I such that jk = i and

idXsi1 · · · sik = idXsj1 · · · sjk
in the Weyl groupoid of G.

Proof. Since G is a Cartan graph, it satisfies (CG3’) and (CG4’) by Corol-
lary 9.2.20. Let w = idXsi1 · · · sik and κ = (i1, . . . , ik). If κ is X-reduced, then the
claim holds by Proposition 9.2.16.

Assume that κ is not X-reduced. By Lemma 9.2.7(1), there exists 1 ≤ l ≤ k

such that βX,κ
l ∈ −NI

0 and βX,κ
n ∈ NI

0 for any 1 ≤ n < l. By the same Lemma,
(i1, . . . , il−1) is X-reduced. Hence by Proposition 9.2.16 there exist j1, . . . , jl−1 ∈ I
such that idXsi1 · · · sil−1

= idXsj1 · · · sjl−1
and jl−1 = il. Then

idXsi1 · · · sil−1
sil · · · sik = idXsj1 · · · sjl−1

sil · · · sik
= idXsj1 · · · sjl−2

sil+1
· · · siks2i

which proves the theorem. �
The weak exchange condition in Theorem 9.3.4 is the main tool to understand

the relation between reduced decompositions in the Weyl groupoid and X-reduced
tuples of elements of I, and to prove the important equality N(w) = l(w) for
morphisms w in the Weyl groupoid.

Theorem 9.3.5. Let G = G(I,X , r, A) be a Cartan graph, i1, . . . , il ∈ I, and
X ∈ X . Let w = idXsi1 . . . sil ∈ Hom(W(G), X), and

βk = idXsi1 · · · sik−1
(αik) for all 1 ≤ k ≤ l.

(1) The following are equivalent.
(a) (i1, . . . , il) is a reduced decomposition of w.
(b) (i1, . . . , il) is X-reduced.

(2) N(w) = �(w), and if (i1, . . . , il) is a reduced decomposition of w, then
ΔX re(w) = {β1, . . . , βl} = ΛX(i1, . . . , il).

Proof. Let κ = (i1, . . . , il). Assume that κ is a reduced decomposition of w,
and that κ is not X-reduced. By Lemma 9.2.7(1), there is an integer 2 ≤ k ≤ l
such that βk ∈ −NI

0. By Theorem 9.3.4, there are j1, . . . , jk−1 ∈ I such that
idXsi1 · · · sik−1

= idXsj1 · · · sjk−1
, and jk−1 = ik. Therefore,

idXsi1 · · · sik = idXsj1 · · · sjk−2
siksik = idXsj1 · · · sjk−2

,

and then �(w) < l. Hence κ is X-reduced. Then Lemma 9.2.7(2) implies that
N(w) = l = �(w), and ΔX re(w) = {β1, . . . , βl} = ΛX(κ).

We have shown (2) and that (1)(a) implies (1)(b). To prove that (1)(b) im-
plies (1)(a), assume that κ is X-reduced. Then N(w) = �(w) by (2), and from
Lemma 9.2.7 we obtain that N(w) = |ΔX re(w)| = l. Thus �(w) = l. �

Corollary 9.3.6. Let G be a Cartan graph, w ∈ W(G) and i a label of G.
(1) w(αi) ∈ NI

0 if and only if �(wsi) = �(w) + 1.
(2) w(αi) ∈ −NI

0 if and only if �(wsi) = �(w)− 1.
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Proof. This holds by Lemma 9.1.21(2), since N = � by Theorem 9.3.5. �
Corollary 9.3.7. Let G = G(I,X , r, A) be a Cartan graph, i ∈ I, X ∈ X , and

w ∈ Hom(W(G), X). If αi ∈ ΔX re(w), then there exists a reduced decomposition
(i1, . . . , il) of w with i1 = i.

Proof. Assume that αi ∈ ΔX re(w). Then w−1(αi) ∈ −NI
0, and hence

�(w−1si) = �(w−1) − 1 by Corollary 9.3.6. Let w′ = siw. Then w = siw
′,

and (i, i2, . . . , il) is a reduced decomposition of w for any reduced decomposition
(i2, . . . , il) of w

′. �
Theorem 9.3.5 is one of the main results in the general theory of Cartan graphs.

In particular, it allows to prove for each point of a finite Cartan graph the existence
of a unique longest element in the Weyl groupoid ending in this point. We also will
see that the Weyl groupoid of a finite and connected Cartan graph has only finitely
many objects and finitely many morphisms.

We begin with a criterion for equality of morphisms in the Weyl groupoid of a
Cartan graph.

Corollary 9.3.8. Let G be a Cartan graph, X a point of G, and w,w′ mor-
phisms in Hom(W(G), X).

(1) Assume that w(αi) ∈ NI
0 for all labels i ∈ I of G. Then w = idX .

(2) Assume that ΔX re(w) = ΔX re(w′). Then w = w′.
(3) Assume that the linear functions F (w) and F (w′) of w and w′ coincide.

Then w = w′.

Proof. (1) The assumption implies that N(w−1) = 0. Hence �(w) = 0 by
Theorem 9.3.5(2), and w = idX .

(2) Let i ∈ I. We show that w−1w′(αi) ∈ NI
0. By (1), this proves the claim in

(2).
If w′(αi) ∈ NI

0, then w′(αi) /∈ ΔX re(w′) = ΔX re(w), and w−1w′(αi) ∈ NI
0.

On the other hand, if w′(αi) ∈ −NI
0, then −w′(αi) ∈ ΔX re(w′). This implies that

w−1w′(αi) ∈ NI
0, since ΔX re(w′) = ΔX re(w).

(3) is a special case of (2). �
Proposition 9.3.9. Let G be a finite Cartan graph, and X a point of G. There

is a unique morphism w0 ∈ Hom(W(G), X) such that �(w) ≤ �(w0) for all mor-
phisms w ∈ Hom(W(G), X). Let Y ∈ X with w0 ∈ Hom(Y,X). Then

(1) ΔX re(w0) = ΔX re
+ ,

(2) w0 ∈ Hom(W(G), X) is unique with the property that for all labels i of G,
�(w0si) < �(w0), and

(3) for all α ∈ΔY re, α is simple if and only if −w0(α) is simple.

Proof. Let I be the set of labels of G. Since G is finite, by Theorem 9.1.22 with
R = ΔX re

+ there exists a morphism w′ ∈ Hom(W(G), X) with ΔX re(w′) = ΔX re
+ .

Let w ∈ Hom(W(G), X) with �(w) ≥ �(w′). Then Theorem 9.3.5 implies that
|ΔX re(w)| = �(w) ≥ |ΔX re

+ |, and hence ΔX re(w) = ΔX re
+ . Therefore w = w′ by

Corollary 9.3.8(2). This proves the first claim and (1) with w0 = w′.
(2) We proved already that �(w0si) ≤ �(w0) (and hence �(w0si) < �(w0) by

Corollary 9.3.6) for all i ∈ I. Conversely, let w ∈ Hom(W(G), X) such that for any
i ∈ I, �(wsi) < �(w). Then w(αi) ∈ −NI

0 for any i ∈ I by Corollary 9.3.6. Thus
ΔX re(w) = ΔX re

+ and hence w = w0 by the first paragraph of the proof.

(3) Since w0(αi) ∈ −NI
0 by (1), the claim follows from Lemma 9.1.23. �
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Definition 9.3.10. Let G be a finite Cartan graph, and let X be a point
of G. The element w0 in Proposition 9.3.9 is called the longest element in
Hom(W(G), X).

Corollary 9.3.11. Let G be a finite Cartan graph, X,Z points of G, and
w ∈ Hom(Z,X). Then any reduced decomposition (i1, . . . , il) of w can be extended
to a reduced decomposition (i1, . . . , il, . . . , im) of w0 ∈ Hom(W(G), X).

Proof. By Proposition 9.3.9, �(w) < �(w0) if w �= w0. Thus the claim follows
from Proposition 9.3.9(2). �

Corollary 9.3.12. Let G be a connected finite Cartan graph, and let X be the
set of points of G. Then X is finite and Hom(Y,X) is finite for all X,Y ∈ X .

Proof. Let X ∈ X . By Corollary 9.3.8(2), the map from Hom(W(G), X) to
the power set of ΔX re

+ sending w to ΔX re(w) is injective. Since ΔX re
+ is finite, we

conclude that Hom(W(G), X) is finite. This proves the claim since G is connected.
�

Corollary 9.3.13. Let G = G(I,X , r, A) be a finite Cartan graph, X ∈ X ,
n ∈ N0, and i1, . . . , in ∈ I such that w0 = idXsi1 · · · sin is the longest element in
Hom(W(G), X) and �(w0) = n. Then n = |ΔX re

+ |, and
ΔX re

+ = {idXsi1 · · · sik−1
(αik) | 1 ≤ k ≤ n}.

Proof. By Proposition 9.3.9(1), ΔX re(w0) = ΔX re
+ . Hence the claim follows

from Theorem 9.3.5(2). �
Any reduced decomposition of a morphism w in the Weyl groupoid of a Cartan

graph induces a total order on the set ΔX re(w) in a natural way by Theorem 9.3.5.
As in the case of Weyl groups, this order is convex in the strong sense of the next
proposition.

Proposition 9.3.14. Let G be a Cartan graph, X a point of G, w a morphism
of the Weyl groupoid of G, and (i1, . . . , il) with l = �(w) a reduced decomposition of
w. For any 1 ≤ k ≤ l let βk = idXsi1 · · · sik−1

(αik). Then ΔX re(w) = {β1, . . . , βl}
is totally ordered by βp < βq if and only if p < q. Let k, k1, . . . , kr ∈ {1, . . . , l} with
k1 ≤ k2 ≤ · · · ≤ kr. Assume that βk =

∑r
i=1 βki

. Then either r = 1, k = k1 or
k1 < k < kr.

Proof. Let v = idXsi1 · · · sik−1
. By Theorem 9.3.5, ΔX re(w) = {β1, . . . , βl}

and ΔX re(v) = {β1, . . . , βk−1}. Thus v−1(βj) ∈ −NI
0 for 1 ≤ j ≤ l if and only if

j < k. Moreover, αik = v−1(βk) =
∑r

i=1 v
−1(βki

) by assumption. Hence either
r = 1, k = k1 or r ≥ 2, k1 < k < kr. �

Finally we discuss a special property of standard Cartan graphs.

Proposition 9.3.15. Let G = G(I,X , r, A) be a standard Cartan graph. Let X
be a point of G.

(1) Let Y ∈ X be any point, k, l ∈ N0, and i1, . . . , ik, j1, . . . , jl ∈ I such that
idXsi1 · · · sik = idXsj1 · · · sjl . Then idY si1 · · · sik = idY sj1 · · · sjl .

(2) The set Hom(W(G), X) is a group with

(idXsi1 · · · sik)(idXsj1 · · · sjl) = idXsi1 · · · siksj1 · · · sjl
for all k, l ∈ N0 and all labels i1, . . . , ik, j1, . . . , jl of G.
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(3) The group Hom(W(G), X) in (2) is isomorphic to the Weyl group of the
Cartan matrix of G.

Proof. (1) The assumptions imply that F (idXsi1 · · · sik) = F (idXsj1 · · · sjl).
Since AZ = AX for all Z ∈ X , it follows that F (idY si1 · · · sik) = F (idY sj1 · · · sjl).
Hence idY si1 · · · sik = idY sj1 · · · sjl by Corollary 9.3.8(3).

(2) The multiplication is well-defined by (1). The remaining group axioms
follow directly from the definition of the multiplication.

(3) The group Hom(W(G), X) is generated by the morphisms idXsi with i ∈ I,
and fulfills the relations

((idXsi)(idXsj))
mX

ij = idX

for all i, j ∈ I, since idX(sisj)
mX

ij = idX by Corollary 9.2.22. Thus there is a unique
surjective group homomorphism W → Hom(W(G), X) sending si to idXsi for all
i ∈ I, where W is the Weyl group of the Cartan matrix A of G. If i1, . . . , ik ∈ I
with idXsi1 · · · sik = idX , then si1 · · · sik = F (idXsi1 · · · sik) = idZI . Thus the given
group homomorphism is bijective. �

9.4. Coxeter groupoids

If the Coxeter relations hold for the generators in a group, then the exchange
condition implies that the Coxeter relations are defining relations, that is, the group
is a Coxeter group, see [Bou68, Ch. IV, 1.6]. We will extend this result to groupoids
which are Weyl groupoids of a Cartan graph. In this case our proof of the weak
exchange condition implies that the Coxeter relations of the Weyl groupoid are
defining relations.

Coxeter groupoids are certain categories given by generators and relations. We
recall the definition of such categories from [ML98, §II.7,8].

Let X be a set and let G be a directed graph with X as its set of vertices.
One also says that G is an X -graph. The free category generated by G is the
category with X as the set of objects, where the morphisms are admissible finite
compositions of arrows of G.

For a category C and any two objects X,Y of C let

RX,Y ⊆ Hom(X,Y )×Hom(X,Y )

be a relation, that is, a subset. Then there exists a category C/R and a functor
FR : C → C/R with the following properties.

(1) If (f, f ′) ∈ RX,Y , then FR(f) = FR(f
′).

(2) Let D be a category and H : C → D a functor. If H(f) = H(f ′) for
all f, f ′ ∈ Hom(X,Y ), X,Y ∈ C with (f, f ′) ∈ RX,Y , then there exists a
unique functor H ′ : C/R → D such that H ′FR = H.

The second property of C/R is called the universal property of C/R. The functor
FR is then necessarily a bijection between the objects of C and the objects of C/R.
If C is the free category generated by a graph G, then C/R is called the category
with generators G and relations R.

Definition 9.4.1. Let I be a non-empty finite set and let X be a non-empty
set. Let G be a directed labeled graph with X as its set of objects, such that each
object has for all i ∈ I precisely one incoming and one outgoing arrow labeled by
i. For all X ∈ X and i ∈ I let ri(X) be the target of the i-arrow starting at X.
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For all X ∈ X let MX = (mX
ij )i,j∈I ∈ (N ∪ {∞})I×I be a symmetric matrix

such that mX
ii = 1 for all i ∈ I. Assume that (rirj)

mX
ij (X) = X for all X ∈ X

and i, j ∈ I with mX
ij �= ∞. The Coxeter groupoid Cox(G, (MX)X∈X ) is the

category with generators G and relations

idX(sisj)
mX

ij = idX ,

where i, j ∈ I, X ∈ X such that mX
ij �= ∞, and sXi (or simply si) is the morphism

corresponding to the i-arrow of G starting at X.

The assumption mX
ii = 1 for all objects X and labels i implies the equation

s
ri(X)
i sXi = idX . This equation will also be written as idXsisi = idX .

Example 9.4.2. Let I = {1, . . . , n}. Let G be a directed graph with one
vertex and with one loop for each i ∈ I. Let M = (mij)i,j∈I ∈ (N ∪ {∞})n×n be a
symmetric matrix with mii = 1 for all i ∈ I. Then Cox(G,M) is a Coxeter group
viewed as a category.

Definition 9.4.3. Let Cox(G, (MX)X∈X ) be a Coxeter groupoid, where X is
a set and G is an X -graph. For all X,Y ∈ X and w ∈ Hom(Y,X) let �(w) be the
smallest integer k ≥ 0 such that w = idXsi1 · · · sik for some i1, . . . , ik ∈ I. The
family (� : Hom(X,Y ) → N0)X,Y ∈X is called the length function and �(w) is
called the length of w.

Some properties of Coxeter groups immediately generalize to Coxeter groupoids.
Recall the definition of the category D(X , {−1, 1}) from Definition 9.1.8, where
{−1, 1} is a monoid with respect to multiplication.

Lemma 9.4.4. Let Cox(G, (MX)X∈X ) be a Coxeter groupoid, where X is a set
and G is an X -graph. There is a unique functor

det : Cox(G, (MX)X∈X )→ D(X , {−1, 1})

which is the identity on the objects X and sends any sXi ∈ Hom(X, ri(X)) to
(ri(X),−1, X).

Proof. This follows from the relations of the groupoid Cox(G, (MX)X∈X ) and
from its universal property as a quotient of a free category. �

Lemma 9.4.5. Let Cox(G, (MX)X∈X ) be a Coxeter groupoid, where X is a set
and G is an X -graph. Let X,Y, Z ∈ X , and let w : X → Y , w′ : Y → Z be
morphisms in Cox(G, (MX)X∈X ), k ≥ 0, and i1, . . . , ik ∈ I. Then

(1) |�(w)− �(w′)| ≤ �(w′w) ≤ �(w′) + �(w), �(w−1) = �(w),
(2) �(w′w) ≡ �(w′) + �(w) mod 2,
(3) �(siw), �(wsi) ∈ {�(w) + 1, �(w)− 1} for all i ∈ I,
(4) k − �(idXsi1 · · · sik) is a non-negative even integer.

Proof. Follow the proof of Lemma 9.1.13 using Lemma 9.4.4. �

We will mainly be interested in Coxeter groupoids of Cartan graphs. In partic-
ular, we will show that the Weyl groupoid and the Coxeter groupoid of a Cartan
graph are equivalent via a functor which is the identity on the points of the Cartan
graph.
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Definition 9.4.6. Let G = G(I,X , r, A) be a Cartan graph. Let G be the X -
graph with arrows labeled by the elements of I, such that for any i ∈ I and X ∈ X
there is precisely one i-arrow starting at X, and the target of this arrow is ri(X).
For all X ∈ X let MX = (mX

ij )i,j∈I . We say that Cox(G) = Cox(G, (MX)X∈X ) is
the Coxeter groupoid of G.

Theorem 9.4.7. Let G = G(I,X , r, A) be a Cartan graph, X ∈ X , k ∈ N,
and i1, . . . , ik, i ∈ I. Assume that idXsi1 · · · sik(αi) ∈ −NI

0. Then there exist labels
j1, . . . , jk ∈ I such that jk = i and idXsi1 · · · sik = idXsj1 · · · sjk in Cox(G).

Proof. The claim is the Coxeter groupoid analogue of Theorem 9.3.4. The
proof of Theorem 9.3.4 also works here without essential modifications. Let us
recall the main steps.

(1) Assume that the sequence (i1, . . . , ik) is X-reduced and i �= ik. Choose a
pair ((j1, . . . , jk), p) in Ik × N0 such that idXsi1 · · · sik = idXsj1 · · · sjk in Cox(G),
0 ≤ p < k, and jn ∈ {i, ik} for any p < n ≤ k. Assume that in all such pairs
the second entry is at least p. Let u = idXsj1 · · · sjp and Y = rjp · · · rj1(X).

Then induction hypothesis implies that u(αi), u(αik) ∈ NI
0, k− p = mY

iik
, and then

idY sjp+1
· · · sjk = idY sjp+2

· · · sjk−1
sjksjk−1

in Cox(G). This implies the claim.
(2) Assume that (i1, . . . , ik) is not X-reduced. Let 0 ≤ l < k such that

(i1, . . . , il) is X-reduced and idXsi1 · · · sil(αil+1
) ∈ −NI

0. By (1), there exists a

sequence (j1, . . . , jl) ∈ I l such that jl = il+1 and idXsi1 · · · sil = idXsj1 · · · sjl in
Cox(G). Then, by Lemma 9.4.5(4), k − �(idXsi1 · · · sik) is a positive even integer
from which one concludes the claim. �

Theorem 9.4.8. Let G = G(I,X , r, A) be a Cartan graph. Then the functor
W : Cox(G) → W(G) sending X to X, and sXi to sXi for all X ∈ X and i ∈ I, is
an equivalence of categories.

Proof. By Corollary 9.2.22, idX(sisj)
mX

ij = idX in W(G) for all X ∈ X and
i, j ∈ I with mX

ij < ∞. Hence W is a well-defined functor.
Next we prove that

(9.4.1) �(W (w)) = �(w) for any morphism w in Cox(G).
Let X ∈ G, l ≥ 0, i1, . . . , il ∈ I, and w = idXsi1 · · · sil in Cox(G). Assume
that �(w) = l. Then �(W (w)) ≤ l. Moreover, for any 2 ≤ n ≤ l there is no
(j1, . . . , jn−1) ∈ In−1 such that idXsi1 · · · sin−1

= idXsj1 · · · sjn−1
in Cox(G) and

jn−1 = in. Therefore ΛX(i1, . . . , il) consists of positive roots by Theorem 9.4.7,
and hence �(W (w)) = N(W (w)) = |ΛX(i1, . . . , il)| = l by Theorem 9.3.5(2) and
Lemma 9.2.7.

By definition of the morphisms, W is surjective on the set of morphisms.
To prove injectivity on the morphisms, let X,Y ∈ G, and let v, w : X → Y
be morphisms in Cox(G) with W (v) = W (w). Then W (w−1v) = idX . Hence
0 = �(idX) = �(W (w−1v)) = �(w−1v) by (9.4.1). Thus w−1v = idX . �

One application of Theorem 9.4.8 is the description of parabolic subgroupoids.

Definition 9.4.9. Let G = G(I,X , r, A) be a semi-Cartan graph and let J ⊆ I
be a non-empty subset. The quadruple

G|J = G(J,X , r|(J × X ), A|(J × J ×X ))

is called the restriction of G to J .
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Lemma 9.4.10. Any restriction of a semi-Cartan graph is a semi-Cartan graph.
Any restriction of a Cartan graph is a Cartan graph.

Proof. The first claim is obvious. The second follows from Corollary 9.2.20,
since for any point X, sequences of labels are X-reduced in the restriction if and
only if they are X-reduced in the semi-Cartan graph. �

Remark 9.4.11. A restriction of a connected semi-Cartan graph is not neces-
sarily connected. For example, G|{1} in Example 9.1.2 is connected, but G|{2} is
not.

Corollary 9.4.12. Let G be a Cartan graph with set I of labels, and let J ⊆ I
be a non-empty subset. Then there is a unique faithful functor

W(G|J)→W(G)

which is the identity on the objects and sends each morphism sXj to sXj for all labels
j ∈ J and all points X of G.

Proof. Let X be a point of G. Recall that mX
ij = mX

ij for any i, j ∈ J

by Corollary 9.2.20, and mX
ij is the same in G and in G|J . Thus, Theorem 9.4.8

implies that there is a unique functor FJ : W(G|J) → W(G) which is the identity
on the objects and sends any morphism sYi , where i ∈ J and Y is a point of G, to
sYi .

Let X,Y be points of G and let w,w′ ∈ HomW(G|J)(X,Y ). Assume that
FJ(w) = FJ(w

′). Then F (w) = F (w′) for all j ∈ J and hence w = w′ in
HomW(G|J)(X,Y ) by Corollary 9.3.8(3). Thus F is faithful. �

Definition 9.4.13. Let G = G(I,X , r, A) be a semi-Cartan graph, and let
J ⊆ I be a non-empty subset. LetWJ (G) be the subcategory of W(G) with objects
the elements of X and with morphisms si1 · · · sXik ∈ HomW(G)(X,Y ), where k ∈ N0,
i1, . . . , ik ∈ J , and X,Y ∈ X such that ri1 · · · rik(X) = Y . Then WJ(G) is a
groupoid and is called a parabolic subgroupoid of W(G).

Proposition 9.4.14. Let G be a Cartan graph, and let J ⊆ I be a non-
empty subset of the set I of labels of G. Then there is an equivalence of categories
W(G|J)→WJ (G) which is the identity on the points of G and sends sXj to sXj for
all j ∈ J and all points X of G.

Proof. The functor in Corollary 9.4.12 is faithful and has its image inWJ(G).
It is full by definition of WJ(G). This implies the claim. �

The length function of a Cartan graph and on a parabolic subgroupoid coincide.

Proposition 9.4.15. Let G = G(I,X , r, A) be a Cartan graph and J ⊆ I. Then
any reduced decomposition of a morphism in WJ (G) is in WJ(G). In particular,
any morphism w ∈ WJ (G) can be written as a product of �(w) simple reflections
sj, j ∈ J .

Proof. Let X ∈ X and w = idXsi1 · · · sil with l ∈ N0 and i1, . . . , il ∈ I be a
reduced decomposition of a morphism w ∈ WJ (G). Assume to the contrary that
{i1, . . . , il} �⊆ J . Let 1 ≤ k ≤ l be minimal with ik /∈ J . Then

α = si1 · · · sik−1
(αik) ∈ΔX re(w)
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by Theorem 9.3.5(2). Moreover, α ∈ αik +
∑

j∈J N0αj by the choice of k. Therefore

w−1(α) ∈ α+
∑
j∈J

Zαj = αik +
∑
j∈J

Zαj

since w is a morphism in WJ (G). Thus w−1(α) ∈ NI
0, a contradiction. �

Corollary 9.4.16. Let G = G(I,X , r, A) be a Cartan graph, J ⊆ I, X ∈ X ,
and w ∈ Hom(W(G), X). If w(αj) ∈ NI

0 for all j ∈ J , then �(wv) = �(w)+ �(v) for
all v ∈ WJ(G).

Proof. Let v = si1 · · · sil with l = �(v). Then i1, . . . , il ∈ J by Proposi-
tion 9.4.15. Since w(αj) ∈ NI

0 for all j ∈ J , we conclude that

wsi1 · · · sik−1
(αik) ∈ NI

0

for all 1 ≤ k ≤ l by Theorem 9.3.5(2). Thus �(wv) = �(w) + l = �(w) + �(v) by
Corollary 9.3.6. �

Corollary 9.4.17. (Kostant’s decomposition) Let G = G(I,X , r, A) be a Car-
tan graph, X ∈ X , w ∈ Hom(W(G), X), and J ⊆ I. Then there exist uniquely
determined Y ∈ X , u ∈ Hom(Y,X), and v ∈ Hom(W(G), Y ) such that w = uv,
�(w) = �(u) + �(v), v ∈ WJ (G), and u(αj) ∈ NI

0 for all j ∈ J . Moreover, w = u′v′

with �(w) = �(u′) + �(v′) and v′ ∈ WJ (G) implies that �(u) ≤ �(u′).

Proof. We prove first the existence. Let M denote the set of all pairs (u′, v′)
of morphisms in W(G) such that w = u′v′, �(w) = �(u′) + �(v′), and v′ ∈ WJ(G).
Clearly, (w, id) ∈ M . Let (u, v) ∈ M be such that �(u) ≤ �(u′) for all (u′, v′) ∈ M .
Then u(αj) ∈ NI

0 for all j ∈ J . Indeed, assume that u(αj) ∈ −NI
0 for some j ∈ J .

Then w = (usj)(sjv) and �(usj) = �(u)−1 by Corollary 9.3.6. Thus (usj , sjv) ∈ M ,
a contradiction to the choice of (u, v).

The last claim of the Corollary follows by definition of (u, v).
Let now (u1, v1) ∈ M with u1(αj) ∈ NI

0 for all j ∈ J . Then �(u) ≤ �(u1) and
�(u1) ≤ �(u) by the last claim of the Corollary for (u, v) and (u1, v1), respectively.
Hence �(u) = �(u1) and u = wv−1 = u1(v1v

−1). Since

�(u) = �(u1(v1v
−1)) = �(u1) + �(v1v

−1)

by Corollary 9.4.16, we conclude that v1v
−1 = id and hence v1 = v, u1 = u. �

The next Proposition is a result about real roots that are spanned by a subset
of the simple roots.

Proposition 9.4.18. Let X ∈ X , ∅ �= J ⊆ I, and assume Axiom (CG3) in the
connected component of X. If α ∈ ΔX re ∩

∑
j∈J N0αj, then there exist k ∈ N0,

i1, . . . , ik, l ∈ J such that α = idXsi1 · · · sik(αl).

Proof. It is enough to prove the following claim, where Y is the connected
component of X.

(∗) Let Y ∈ Y , w ∈ Hom(W(G), Y ), α ∈ΔY re(w) ∩
∑

j∈J N0αj . Then there

exist k ∈ N0, i1, . . . , ik, l ∈ J such that α = idY si1 · · · sik(αl).

Indeed, if α ∈ ΔX re ∩
∑

j∈J N0αj , then there are w ∈ Hom(W(G), X) and i ∈ I

such that w(αi) = α, hence α ∈ ΔX re(wsi). Thus (∗) implies the claim of the
Proposition.
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Note that by the assumption in (∗), w−1(α) ∈ −NI
0, and α ∈

∑
j∈J N0αj .

Hence there exists n ∈ J such that w−1(αn) ∈ −NI
0, and αn ∈ ΔY re(w). If

α = αn, then the claim in (∗) is obvious with k = 0 and l = n.
We prove (∗) by induction on N(w) ≥ 1 which by Lemma 9.1.21(3) is a natural

number. Assume that N(w) = 1. Then α = αn, and we are done. Assume that

α �= αn. Then we know from Lemma 9.1.19(1) that sYn (α) ∈ Δ
rn(Y ) re
+ . Since

(snw)−1(sYn (α)) = w−1(α) ∈ −NI
0, it follows that

sYn (α) ∈Δrn(Y ) re(snw) ∩
∑
j∈J

N0αj .

On the other hand, w−1(αn) ∈ −NI
0. Thus N(snw) = N(w−1sn) = N(w) − 1 by

Lemma 9.1.21. By induction hypothesis there exist k ≥ 1 and i2, . . . , ik, l ∈ J such
that sYn (α) = idrn(Y )si2 · · · sik(αl). Then α = idY snsi2 · · · sik(αl). �

Corollary 9.4.19. Let G be a Cartan graph, let I be its set of labels, and let
J ⊆ I be a non-empty subset. Then for any point X of G, the set ΔX re∩

∑
j∈J Zαj

is the set of real roots of the restriction G|J at X.

Proof. Let X be a point of G. A real root of G|J at X is a root of the
form idXsi1 · · · sik(αj), where k ∈ N0 and i1, . . . , ik, j ∈ J . Since the entries of the
Cartan matrices of the restriction come from the entries of the Cartan matrices
of G, these roots are indeed in ΔX re ∩

∑
j∈J Zαj . Conversely, any root in the

intersection ΔX re ∩
∑

j∈J Zαj is of the form idXsi1 · · · sik(αl), where k ∈ N0 and
i1, . . . , ik, l ∈ J , by Proposition 9.4.18. �

9.5. Notes

Semi-Cartan graphs and attached sets of roots and Weyl groupoid appeared
axiomatically first in [HY08]. In particular, variants of Theorem 9.3.5(2) and
Proposition 9.3.9 have been proved there, and that the Coxeter relations hold in
the Weyl groupoid of a Cartan graph, which is the essential part of Theorem 9.4.8.

A more structured approach was presented in [CH09b], where a semi-Cartan
graph was called a Cartan scheme. There and in forthcoming papers, semi-Cartan
graphs and Weyl groupoids were studied together with a root system, see the next
Chapter for this notion.

The definition of X-reduced sequences and of a Cartan graph in the presented
form, in particular, Axioms (CG3’) and (CG4’) as well as Theorem 9.2.18 and
Corollary 9.2.20, are new.

The notion of a standard semi-Cartan graph originates from [AHS10], Defi-
nition 3.23 and was introduced in the combinatorial context in [CH09b], Defini-
tion 3.1.

Depending on emphasis, taste and intended applications and interpretations,
(finite) Cartan graphs and their sets of real roots have several very different presen-
tations in the literature. In one of these approaches, finite simply connected Car-
tan graphs are identified with crystallographic simplicial arrangements in [Cun11].
Rather differently, in [Yam16] and in [BY18], Section 5, a definition of a general-
ized root system is given using the notion of a base.
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CHAPTER 10

The structure of Cartan graphs and root systems

Similarly to Coxeter groups, Cartan graphs have a very rich structure and can
be studied from different perspectives. In this Chapter, we first point out some
topological aspects in the theory of coverings and decompositions. Then we prove
that finite Cartan graphs have a point with a Cartan matrix of finite type. We also
classify finite Cartan graphs of rank two in terms of quiddity cycles, and study root
systems of Cartan graphs emphasizing finite root systems.

10.1. Coverings and decompositions of Cartan graphs

Semi-Cartan graphs behave in some sense like a topological space with addi-
tional structure.

Definition 10.1.1. Let G = G(I,X , r, A) and G′ = G(I,Y , t, B) be semi-Cartan
graphs. Let π : Y → X be a map. We say that the triple (G′,G, π) is a covering
of semi-Cartan graphs, G′ is a covering of G and that π is a covering map if π
is surjective and if (id, π) : G′ → G is a morphism, that is,

π(ti(Y )) = ri(π(Y )), bYij = a
π(Y )
ij

for all i, j ∈ I, Y ∈ Y . We then also say that G is a quotient semi-Cartan graph
of G′.

Note that the surjectivity assumption in Definition 10.1.1 is superfluous if G is
connected.

Remark 10.1.2. (1) Semi-Cartan graphs (as objects) and coverings (as mor-
phisms) form a category.

(2) Let G = G(I,X , r, A) and G′ = G(I,Y , t, B) be semi-Cartan graphs and let
(G′,G, π) be a covering. Then there is a unique covariant functor

Fπ :W(G′)→W(G)

sending any object Y ∈ Y to π(Y ) and any morphism sYi to s
π(Y )
i , where i ∈ I.

The assumption BY = Aπ(Y ) for all Y ∈ Y implies that w(αi) = Fπ(w)(αi) for all
i ∈ I, w ∈ Hom(Y, Z), and Y, Z ∈ Y .

Proposition 10.1.3. Let G′ = G(I,Y , t, B) be a semi-Cartan graph. Let ∼ be
an equivalence relation on Y. Assume that ti(X) ∼ ti(Y ) and that BX = BY for
all i ∈ I and X,Y ∈ Y with X ∼ Y . Let X be the set of equivalence classes

[X] = {Y ∈ Y |Y ∼ X}
and let A[X] = BX for all X ∈ Y. Let r : I × X → X , r(i, [X]) = [ti(X)],
and A : I × I × X → Z, A(i, j, [X]) = B(i, j,X). Then G = G(I,X , r, A) is a
semi-Cartan graph and (G′,G, π), where π : Y → X , X �→ [X], is a covering.

347
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348 10. THE STRUCTURE OF CARTAN GRAPHS AND ROOT SYSTEMS

Proof. It is clear that the map r and the matrices A[X] for all X ∈ Y are
well-defined. Then the claim follows directly from the axioms of a semi-Cartan
graph and a covering. �

Lemma 10.1.4. Let (G′,G, π) be a covering. Then ΔX re = Δπ(X) re for all
points X of G′. In particular,

(1) G′ is finite if and only if G is finite, and
(2) if G′ is a Cartan graph, then G is a Cartan graph.

Proof. By Remark 10.1.2(2), w(αi) = Fπ(w)(αi) for all points X,Y of G′, all
labels i and all w ∈ Hom(Y,X). Hence Δπ(X) re = ΔX re for all points X of G′.
Then (1) is clear and (2) follows from Axioms (CG3) and (CG4). �

Coverings of connected semi-Cartan graphs can be expressed in terms of auto-
morphism groups of points.

Proposition 10.1.5. Let G = G(I,X , r, A) and G′ = G(I,Y , t, B) be connected
semi-Cartan graphs and π : Y → X a map such that (G′,G, π) is a covering. Let
Y ∈ Y and X = π(Y ).

(1) The map Fπ : Aut(Y )→ Aut(X) is injective.
(2) The map Fπ : Hom(W(G′), Y )→ Hom(W(G), X) is surjective.
(3) For any Z ∈ Y with π(Z) = X the subgroups Fπ(Aut(Y )) and Fπ(Aut(Z))

of Aut(X) are conjugate.
(4) Let U be a subgroup of Aut(X) conjugate to Fπ(Aut(Y )). Then there

exists Z ∈ Y such that π(Z) = X and U = Fπ(Aut(Z)).

Proof. (1) Let k ∈ N and i1, . . . , ik ∈ I. Then si1 · · · sYik(αi) = si1 · · · sXik(αi)
for all i ∈ I by Remark 10.1.2(2). This implies the claim.

(2) Let k ∈ N0 and i1, . . . , ik ∈ I. Then idXsi1 · · · sik = Fπ(idY si1 · · · sik) by
Remark 10.1.2(2).

(3) Since G′ is connected, there exists a morphism w ∈ Hom(Y, Z). Then
Aut(Z) = wAut(Y )w−1, Fπ(w) ∈ Aut(X), and

Fπ(Aut(Z)) = Fπ(w)Fπ(Aut(Y ))Fπ(w
−1).

(4) Let w ∈ Aut(X) such that wFπ(Aut(Y ))w−1 = U . By (2) there exist Z ∈ Y
and w′ ∈ Hom(Y, Z) such that Fπ(w

′) = w. Then

U = Fπ(w
′Aut(Y )w′−1) = Fπ(Aut(Z))

which proves the claim. �

In the next Proposition we discuss the construction of a covering of a connected
semi-Cartan graph corresponding to a subgroup of the automorphism group of a
point. For a special case of the construction we refer to Example 9.1.25.

Proposition 10.1.6. Let G = G(I,X , r, A) be a connected semi-Cartan graph,
X ∈ X , and U ⊆ Aut(X) a subgroup.

(1) There exists a covering (G′,G, π) and a point Y of G′ such that G′ is
connected, π(Y ) = X, and

Fπ(Aut(Y )) = U, |π−1(X)| = [Aut(X) : U ].
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(2) Assume that G is a Cartan graph. Then there exists a covering (G′,G, π)
and a point Y of G′ such that G′ is a connected Cartan graph satisfying
π(Y ) = X, and Fπ(Aut(Y )) = U . Moreover, any two such coverings of G
are isomorphic, and |π−1(X)| = [Aut(X) : U ].

Proof. (1) We construct explicitly a covering of G. Let
Y = {wU |w ∈ Hom(X,X ′), X ′ ∈ X}

be the set of left U -cosets. For all i ∈ I let

ti : Y → Y , wU �→ siwU

for all w ∈ Hom(X,X ′), X ′ ∈ X . For all wU ∈ Y , where w ∈ Hom(X,X ′), let

BwU = AX′
. Then t2i = idY since sis

X′

i = idX′ for all X ′ ∈ X , and

B(i, j, wU) = A(i, j,X ′) = A(i, j, ri(X
′)) = B(i, j, siwU)

for all i, j ∈ I, w ∈ Hom(X,X ′), X ′ ∈ X . Thus G′ is a connected semi-Cartan
graph, since G is connected. The triple (G′,G, π) with π : G′ → G, wU �→ X ′ for
all w ∈ Hom(X,X ′), X ′ ∈ X , is a covering. The automorphism group of U ∈ Y is
isomorphic to U via Fπ, and

|π−1(X)| = |{wU |w ∈ Aut(X)}| = [Aut(X) : U ].

(2) Let G′ be the semi-Cartan graph constructed in (1). Let i, j ∈ I, Z ∈ X , and
w ∈ Hom(X,Z). ThenΔZ re = ΔwU re. HencemZ

ij = mwU
ij andΔwU re ⊆ NI

0∪−NI
0.

Assume that mZ
ij is finite. Then idZ(sisj)

mZ
ij = idZ by Theorem 9.2.23 and by

(CG4) for G. Hence (titj)
mwU

ij (wU) = wU . Therefore G′ is a Cartan graph.
The uniqueness of G′ follows from the fact that for any two coverings (G′,G, π′)

and (G′′,G, π′′) with the required properties and any Y ∈ π′−1(X), Z ∈ π′′−1(X)
there is a unique isomorphism between G′ and G′′ which is the identity on I and
maps Y to Z. �

An important consequence of the proposition is the following.

Corollary 10.1.7. Let G be a Cartan graph.

(1) There exists a covering (G′,G, π) such that G′ is a simply connected Cartan
graph.

(2) Let (G′,G, π) and (G′′,G, π′′) be coverings such that G′,G′′ are Cartan
graphs and G′ is simply connected. Then there is a covering (G′,G′′, π′).

(3) Any two simply connected Cartan graph coverings of G are isomorphic.

Proof. (1), (3) Apply Proposition 10.1.6 to all connected components of G by
letting U be the trivial group.

(2) By (1), there is a covering (G′′′,G′′, π′′′) of G′′ such that G′′′ is simply
connected. Then (G′′′,G, π′′π′′′) is a covering. By (3), G′′′ and G′ are isomorphic.
This implies the claim. �

We also identify another important class of semi-Cartan graphs.

Definition 10.1.8. A semi-Cartan graph G is called incontractible, if any
covering (G,G′, π) is an isomorphism.

Lemma 10.1.9. Let G = G(I,X , r, A) be a Cartan graph and let X ∈ X and
i, j ∈ I. If i �= j then

−aXij = max{m ∈ N0 |αj +mαi ∈ΔX re}.
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Proof. Assume that i �= j. Then aXij = a
ri(X)
ij and

αj − aXijαi = s
ri(X)
i (αj) ∈ΔX re.

On the other hand, if αj +mαi ∈ΔX re, then

sXi (αj +mαi) = αj + (−aXij −m)αi ∈Δri(X) re.

Hence m ≤ −aXij by (CG3). �

Corollary 10.1.10. Let G = G(I,X , r, A) be a Cartan graph. For all X ∈ X
let [X] = {Y ∈ X |ΔY re = ΔX re} and let Y = {[X] |X ∈ X}. Then t : I×Y → Y,
(i, [X]) �→ [ri(X)], and B : I × I × Y → Z, (i, j, [X]) �→ aXij , are well-defined.

(1) The quadruple G′ = G(I,Y , t, B) is an incontractible Cartan graph. Let
π : X → Y, π(X) = [X]. Then (G,G′, π) is a covering.

(2) Let (G,G′′, π′′) be a covering. Then there is a covering (G′′,G′, π′).
(3) The Cartan graph G′ is up to isomorphism the unique incontractible Car-

tan graph G̃ which admits a covering (G, G̃, π̃).
Proof. The map t is well-defined if ΔY re = ΔX re for X,Y ∈ X implies

that Δri(Y ) re = Δri(X) re for all i ∈ I. The latter holds since AY = AX by
Lemma 10.1.9. By the same reason, B is well-defined.

(1) It is clear that G′ is a Cartan graph and that π is a covering map. Let
(G′,G′′, π′′) be a covering. Then for any X ∈ X the sets ΔX re = Δ[X] re and

Δπ′′[X] re coincide by Lemma 10.1.4, and hence π′′ is injective. Thus π′′ is an
isomorphism and G′ is incontractible.

(2) Let π′(π′′(X)) = π(X) for all X ∈ X . This is well-defined, since by

Lemma 10.1.4, Δπ′′(X) re = ΔX re. The rest is clear.
(3) follows from (2). �
Example 10.1.11. A semi-Cartan graph is standard and incontractible if and

only if it has precisely one point.

Example 10.1.12. Let G be the Cartan graph in Example 9.1.15. Then G
is incontractible, since AX1 �= AX2 . The exchange graph of the unique simply
connected covering of G is a cycle with 16 vertices. In general, the exchange graph
of a finite connected simply connected Cartan graph of rank two is a cycle with as
many vertices as the cardinality of the set of roots at a point. The latter is false
for Cartan graphs of higher rank.

We turn our attention to products and decompositions of semi-Cartan graphs.

Definition 10.1.13. Let G = G(I,X , r, A), G′ = G(J,Y , t, B) be semi-Cartan
graphs. Assume that I and J are disjoint sets. The product semi-Cartan graph
G × G′ is the quadruple

G(I ∪ J,X × Y , q = r × t, C),

where
qi(X,Y ) = (ri(X), Y ), qj(X,Y ) = (X, tj(Y ))

for all i ∈ I, j ∈ J , X ∈ X , Y ∈ Y , and

c
(X,Y )
kl =

⎧⎪⎨⎪⎩
aXkl if k, l ∈ I,

bYkl if k, l ∈ J ,

0 otherwise.
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Lemma 10.1.14. The product of two Cartan graphs is a Cartan graph.

Proof. Let G1 = G(I1,X1, r, A), G2 = G(I2,X2, t, B) be Cartan graphs, where
I1 and I2 are disjoint sets. We prove (CG3) and (CG4) for G1×G2. Let I = I1∪ I2.
By definition, Δ(X,Y ) re ⊆ ZI for all X ∈ X1, Y ∈ X2. Regard ZI1 and ZI2 as
subgroups of ZI via the identification of αi ∈ ZIk with αi ∈ ZI for all i ∈ Ik and
k ∈ {1, 2}. For all X1 ∈ X1, X2 ∈ X2, j ∈ Ik, j

′ ∈ I \ Ik, α ∈ ZIk , where k ∈ {1, 2},
the definition of G1 × G2 implies s

(X1,X2)
j (α) = sXk

j (α), s
(X1,X2)
j′ (α) = α. Therefore

Δ(X1,X2) re = ΔX1 re ∪ΔX2 re, and hence Δ(X1,X2) re ⊆ NI
0 ∪ −NI

0. Further,

((r × t)k(r × t)l)
m

(X,Y )
kl (X,Y ) = ((rkrl)

mX
kl(X), Y ) = (X,Y )

for all k, l ∈ I1, X ∈ X1, Y ∈ X2, and the analogous claim holds for all k, l ∈ I2. If

(k, l) ∈ I1×I2, then m
(X,Y )
kl = 2 for all X ∈ X1, Y ∈ X2, and (r×t)k(r×t)l = rk×tl,

and hence ((r × t)k(r × t)l)
2 = id. Thus G1 × G2 is a Cartan graph. �

Definition 10.1.15. A matrix A = (aij)i,j∈I ∈ RI×I , where R is any ring,
is called decomposable, if there exist disjoint non-empty subsets I1, I2 ⊆ I such
that I1 ∪ I2 = I and aij = aji = 0 for all i ∈ I1, j ∈ I2. A semi-Cartan graph
G = G(I,X , r, A) is said to be decomposable if AX is decomposable for all X ∈ X .
Cartan matrices and semi-Cartan graphs, which are not decomposable, are called
indecomposable.

Remark 10.1.16. Let A = (aij)i,j∈I ∈ RI×I , where R is a commutative inte-
gral domain. Assume that for all i, j ∈ I, aij = 0 implies that aji = 0. Then the
following can be easily checked.

(1) For all i, j ∈ I define i ∼ j, if i = j or there are k > 0 and i1, . . . , ik ∈ I
with aii1ai1i2 · · · aikj �= 0. Then ∼ is an equivalence relation on I.

(2) Let I = ∪1≤l≤mIl be the decomposition of I into pairwise distinct equiv-
alence classes by ∼, as defined in (1). Then the matrices (aij)i,j∈Il ,
1 ≤ l ≤ m, are indecomposable, and aij = 0 = aji for any 1 ≤ k < l ≤ m,
i ∈ Ik, and j ∈ Il.

Suppose that I = ∪1≤q≤rJq is the union of pairwise disjoint subsets
Jq ⊆ I, 1 ≤ q ≤ r, such that the matrices (aij)i,j∈Jq

with 1 ≤ q ≤ r are
indecomposable, and that i ∈ Jp, j ∈ Jq with 1 ≤ p < q ≤ r implies that
aij = 0 = aji. Then r = m, and there is a permutation w ∈ Sm with
Jl = Iw(l) for all 1 ≤ l ≤ m.

In particular, Cartan matrices can be uniquely decomposed into indecomposable
Cartan matrices.

Proposition 10.1.17. Let G = G(I,X , r, A) be a connected Cartan graph of
rank at least two, let X ∈ X , and let I = I1 ∪ I2 be a decomposition into disjoint
non-empty subsets I1, I2 ⊆ I. Then the following are equivalent.

(1) For any i ∈ I1 and j ∈ I2, a
X
ij = 0 = aXji .

(2) For any Y ∈ X , aYij = 0 = aYji for all i ∈ I1 and j ∈ I2.
(3)

ΔX re =
(
ΔX re ∩

∑
i∈I1

Zαi

)
∪
(
ΔX re ∩

∑
i∈I2

Zαi

)
.
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(4) For all Y ∈ X ,

ΔY re =
(
ΔY re ∩

∑
i∈I1

Zαi

)
∪
(
ΔY re ∩

∑
i∈I2

Zαi

)
.

(5) There is a covering G1 × G2 → G, where Gl, l = 1, 2, is the connected
component of G|Il containing X.

Proof. Assume (1). We prove (2). By Lemma 9.3.3, for all i ∈ I1, j ∈ I2
the j-th rows of AX and of Ari(X) coincide. In particular, for all i, l ∈ I1 and

j ∈ I2, 0 = aXjl = a
ri(X)
jl , and then a

ri(X)
lj = 0, since Ari(X) is a Cartan matrix. By

symmetry, a
ri(X)
jl = 0 for all i, l ∈ I2 and j ∈ I1. We proved that for all l ∈ I1,

j ∈ I2 and for all k ∈ I1 ∪ I2 = I, a
rk(X)
lj = 0 = a

rk(X)
jl . Now (2) follows since G is

connected.
(2) implies (4) by the definition of ΔY re. Moreover, (4) implies (3) trivially,

and (3) implies (1) by Lemma 10.1.9.
(5) implies (2) because of Definition 10.1.13.
Finally, assume (2). We prove (5). Let

Xl = {ri1ri2 · · · rik(X) | k ≥ 0, i1, i2, . . . , ik ∈ Il},
l = 1, 2. Then, by definition, Gl = G(Il,Xl, r|(Il ×Xl), A|(Il × Il ×Xl)) for l = 1, 2.
We define π : X1 ×X2 → X by

π(a(X), b(X)) = ab(X),

where a = ri1ri2 · · · rip , b = rj1rj2 · · · rjq , i1, i2, . . . , ip ∈ I1, j1, j2, . . . , jq ∈ I2, and
p, q ≥ 0.

To see that the map π is well-defined, we first note that mY
ij = 2 for all i ∈ I1,

j ∈ I2 and Y ∈ X by (2) and Lemma 9.3.1, where we used that G is a Cartan
graph. Therefore (rirj)

2(Y ) = Y by (CG4) for G. Thus rirj = rjri. We conclude
that π(a(X), b(X)) = ba(X) for all a, b, and hence π is well-defined. The map π is
surjective, since G is connected and π(X1 ×X2) is invariant under all ri with i ∈ I.

We now prove that (id, π) : G1 × G2 → G is a morphism. Let a = ri1ri2 · · · rip
and b = rj1rj2 · · · rjq , where p, q ≥ 0, i1, i2, . . . , ip ∈ I1, j1, j2, . . . , jq ∈ I2. Then
a(X) ∈ X1, b(X) ∈ X2, and for all i ∈ I1, j ∈ I2,

π(ri(a(Z), b(Z))) = π(ria(Z), b(Z)) = riab(Z) = ri(π(a(Z), b(Z))),

π(rj(a(Z), b(Z))) = π(a(Z), rjb(Z)) = arjb(Z) = rj(π(a(Z), b(Z))),

since rj commutes with a.
By definition, the entries of the Cartan matrix of G1 × G2 at (a(X), b(X)) are

c
(a(X),b(X))
kl =

⎧⎪⎨⎪⎩
a
a(X)
kl if k, l ∈ I1,

a
b(X)
kl if k, l ∈ I2,

0 otherwise.

Since ri and rj commute for all i ∈ I1, j ∈ I2, it follows by repeatedly applying
Lemma 9.3.3 that

c
(a(X),b(X))
kl = a

ab(X)
kl = a

π(a(X),b(X))
kl

for all k, l ∈ I = I1 ∪ I2. Therefore (G1 × G2,G, π) is a covering. �
As a corollary we now obtain the decomposition of a connected Cartan graph

into indecomposable components.
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Corollary 10.1.18. Let G = G(I,X , r, A) be a connected Cartan graph. Then
there is a unique decomposition I = ∪1≤l≤mIl, where m ≥ 1 and Ik ∩ Il = ∅ for all
1 ≤ k < l ≤ m, such that the following hold.

(1) For all X ∈ X , the matrices (aXij )i,j∈Il , 1 ≤ l ≤ m, are indecomposable,

and aXij = 0 for all i ∈ Ik, j ∈ Il, 1 ≤ k, l ≤ m, k �= l.
(2) For all X ∈ X ,

ΔX re =
⋃

1≤l≤m

ΔX re ∩
∑
i∈Il

Zαi.

(3) Let X ∈ X . There is a covering G1 × G2 × · · · × Gm → G, where Gl,
1 ≤ l ≤ m, is the connected component of G|Il containing X, and Gl is an
indecomposable Cartan graph.

Proof. This follows from Remark 10.1.16 and Proposition 10.1.17. In (3) we
define π : X1 ×X2 × · · · × Xm → X by

π(a1(X), a2(X), . . . , am(X)) = a1a2 · · · am(X),

where for all 1 ≤ l ≤ m, al = ri1ri2 · · · ripl , i1, i2, . . . , ipl
∈ Il, pl ≥ 0. �

10.2. Types of Cartan matrices

We recall the classification of certain indecomposable matrices by Vinberg into
three types: finite, affine, and indefinite. We use this classification to prove that
any finite Cartan graph has a point with a Cartan matrix of finite type.

For any n ∈ N and x ∈ Rn we write x > 0 (x ≥ 0) if xi > 0 (xi ≥ 0) for all
1 ≤ i ≤ n.

In the theory of linear programming, there exist several variants of a so called
Theorem of Alternatives. One of them is Gordan’s Theorem.

Theorem 10.2.1. Let m ∈ N, V a real vector space, and λ1, . . . , λm ∈ V ∗.
Then either there exists v ∈ V such that λi(v) > 0 for all 1 ≤ i ≤ m, or there exists
y ∈ Rm such that

∑m
i=1 yiλi = 0, y ≥ 0, y �= 0.

Proof. The two cases are clearly mutually exclusive. We have to show that
one of the two cases holds.

We proceed by induction on m. For m = 1 the claim is trivial.
Assume now that m ≥ 2, and let

C = {v ∈ V |λi(v) > 0 for all 1 ≤ i < m}.
If C = ∅, then by induction hypothesis there exists z ∈ Rm−1, z ≥ 0 and z �= 0,
such that

∑m−1
i=1 ziλi = 0. Then y = (z1, . . . , zm−1, 0)

t establishes the second case
of the claim for m. Therefore we may assume that C �= ∅, and hence V �= 0.
Further we may assume that λm �= 0, since otherwise the second case holds in the
claim with y = (0, . . . , 0, 1)t.

If λm(v) > 0 for some v ∈ C, then the first case is established. If λm(u) = 0
for some u ∈ C, then choose x ∈ V , ε > 0, such that λm(x) = 1 and λi(u+ εx) > 0
for all 1 ≤ i < m. Then the first case of the claim holds with v = u + εx. So we
may assume that λm(u) < 0 for all u ∈ C.

Let H = ker(λm). Since C ∩ H = ∅, induction hypothesis implies that there

exists z ∈ Rm−1 such that
∑m−1

i=1 ziλi|H = 0, and z ≥ 0, z �= 0. Then there exists

μ ∈ R such that
∑m−1

i=1 ziλi = μλm. Evaluation of the latter at any u ∈ C implies
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that μ < 0. Then y = (z1, . . . , zm−1,−μ)t establishes the second case of the claim.
This finishes the proof of the theorem. �

Corollary 10.2.2. (Gordan’s Theorem, 1873) Let m,n ∈ N and A ∈ Rm×n.
Then either there exists x ∈ Rn such that Ax > 0 or there exists y ∈ Rm such that
ytA = 0, y ≥ 0, y �= 0.

Proof. Apply Theorem 10.2.1 with V = Rn, λi(x) =
∑n

j=1 aijxj for all x ∈ V ,
1 ≤ i ≤ m. �

Corollary 10.2.3. Let m,n ∈ N and A ∈ Rm×n. Then either there exists
x ∈ Rn such that Ax < 0, x > 0, or there exists y ∈ Rm such that ytA ≥ 0, y ≥ 0,
y �= 0.

Proof. Let B ∈ R(m+n)×n such that the first m rows of B are the rows of
−A and the remaining rows form the identity in Rn×n. It follows that Bx > 0
if and only if Ax < 0 and x > 0. By Gordan’s Theorem, the alternative of this
case is the existence of z ∈ Rm+n such that ztB = 0, z ≥ 0, z �= 0. The rows
m+1, . . . ,m+n of B are linearly independent, and hence zi �= 0 for some 1 ≤ i ≤ m.
Let y = (z1, . . . , zm)t. The assumptions on z are then equivalent to ytA ≥ 0, y ≥ 0,
y �= 0. �

The classification of Vinberg applies to a special class of matrices which we
introduce now.

Definition 10.2.4. Let n ∈ N and A ∈ Rn×n. We say that A is a Vinberg
matrix if

(1) A is indecomposable,
(2) aij ≤ 0 for all i, j ∈ {1, . . . , n} with i �= j, and
(3) i, j ∈ {1, . . . , n}, aij = 0 implies that aji = 0.

Remark 10.2.5. A real square matrix satisfying the second condition in Defi-
nition 10.2.4 is usually called a Z-matrix.

Lemma 10.2.6. Let n ∈ N and let A ∈ Rn×n be a Vinberg matrix. If x ∈ Rn

with Ax ≥ 0 and x ≥ 0, then x > 0 or x = 0.

Proof. Assume that Ax ≥ 0, x ≥ 0, and x �= 0. By permuting the columns
and the corresponding rows of A, we may assume that there exists 1 ≤ s ≤ n such
that xi = 0 for 1 ≤ i < s and xj > 0 for s ≤ j ≤ n. Since aij ≤ 0 for all i �= j,
Ax ≥ 0 implies that aij = 0 for all 1 ≤ i < s ≤ j ≤ n. Since A is Vinberg, we
conclude that s = 1. Thus x > 0. �

Theorem 10.2.7. (Vinberg) Let n ∈ N and let A ∈ Rn×n be a Vinberg matrix.
Then precisely one of the following cases appears.

(1) det(A) �= 0; there exists u ∈ Rn such that Au > 0, u > 0; v ∈ Rn, Av ≥ 0
implies that v > 0 or v = 0.

(2) rkA = n − 1; there exists u ∈ Rn such that Au = 0, u > 0; v ∈ Rn,
Av ≥ 0 implies that Av = 0.

(3) There exists u ∈ Rn such that Au < 0, u > 0; v ∈ Rn, Av ≥ 0, v ≥ 0
implies that v = 0.

In these cases A is called of finite, affine, and indefinite type, respectively.
Moreover, At is of the same type as A.
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Proof. It is clear that the three cases are mutually exclusive.
Let C = {u ∈ Rn |u ≥ 0} and KA = {u ∈ Rn |Au ≥ 0}. We distinguish three

cases.

(1) C ∩ KA �= {0} and A is not invertible. Since A is not invertible, there
exists x ∈ Rn such that x �≥ 0, Ax = 0. Let y ∈ C ∩ KA \ {0}. By
Lemma 10.2.6, y > 0 and the straight line containing x and y meets the
boundary of C at 0. Hence rkA = n− 1 and there exists u > 0 such that
Au = 0. Let v ∈ Rn \ {u} with Av ≥ 0. The straight line {v + tu | t ∈ R}
meets the boundary of C at 0. Hence Av = 0. Therefore A is of affine
type.

(2) C ∩ KA �= {0} and A is invertible. Let v ∈ Rn with Av ≥ 0 and let
y ∈ C ∩KA \ {0}. Then y > 0 by Lemma 10.2.6. If v ∈ C, then v > 0 or
v = 0 by the same reason. Otherwise, the half line {v + ty | t > 0} meets
the boundary of C at 0, and hence Av + tAy = 0. Then Av = Ay = 0
since v, y ∈ KA, a contradiction to the invertibility of A. Hence v > 0 or
v = 0.

(3) C ∩KA = {0}. Then v ∈ Rn, Av ≥ 0, v ≥ 0 implies that v = 0.

The same arguments can be applied to At. We obtain the following cases.

(1) C∩KAt �= {0}. By cases (1) and (2) for At, Atx ≥ 0 implies that Atx = 0
or x > 0 or x = 0. Thus Corollary 10.2.3 for At implies that there exists
y ∈ Rn such that Ay ≥ 0, y ≥ 0, y �= 0. Thus case (1) or case (2) holds
for A. In particular, if A (and At) is not invertible, then A and At are of
affine type. On the other hand, if A (and At) is invertible, then both A
and At satisfy case (2). By Corollary 10.2.3 for −A (−At, respectively)
we conclude that A (At, respectively) is of finite type.

(2) C ∩ KAt = {0}. Case (3) for At and Corollary 10.2.3 imply that there
exists u ∈ Rn such that Au < 0, u > 0. In particular, cases (1) and (2)
do not hold for A. Then A is of indefinite type.

This proves the theorem. �
We can say more about the three types of Vinberg matrices.

Corollary 10.2.8. Let n ∈ N and let A ∈ Rn×n be a Vinberg matrix. Then
there exists u ∈ Rn, u > 0, such that Au > 0 or Au = 0 or Au < 0. In these cases
A is of finite, affine, and indefinite type, respectively.

Proof. This follows directly from Theorem 10.2.7. �
Corollary 10.2.9. Let n ∈ N and let A ∈ Rn×n be a Vinberg matrix. Then

there exists a unique λ ∈ R such that A+ λid is of affine type, A+ μid is of finite
type for all μ > λ, and A+ μid is of indefinite type for all μ < λ.

Proof. Suppose that A is of affine type. By Theorem 10.2.7, there exists
u ∈ Rn such that u > 0 and Au = 0. Then (A+ μid)u > 0 for all μ > 0, and hence
A+ μid is of finite type. Similarly, A+ μid is of indefinite type for all μ < 0.

Assume now that A is of finite type. By Theorem 10.2.7, there exists u > 0
such that Au > 0. Then (A+μid)u > 0 for all μ ∈ R in a small neighborhood of 0.
Thus A+ μid is of finite type for these μ. Further, (A+ μid)u < 0 for some μ < 0,
and hence A+ μid is of indefinite type for some μ < 0.

Assume that A is of indefinite type. Let u ∈ Rn such that u > 0 and Au < 0.
Similarly to the previous paragraph we conclude that A+ μid is of indefinite type
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for all μ ∈ R in some small neighborhood of 0, and that there exists μ0 > 0 such
that A + μid is of finite type for all μ > μ0. Let now λ be the supremum of all
μ ∈ R such that A+ μid is of indefinite type. Then A+ λid is neither of indefinite
nor of finite type. Hence A + λid is of affine type, and the corollary follows from
the first paragraph of the proof. �

Lemma 10.2.10. Let n ∈ N and let A ∈ Rn×n be a Vinberg matrix of finite
or affine type. Let J ⊆ {1, . . . , n} be a proper subset such that B = (aij)i,j∈J is
indecomposable. Then B is a Vinberg matrix of finite type.

Proof. For any v ∈ Rn let vJ = (vj)j∈J . By assumption, there exists u ∈ Rn

such that u > 0 and that either Au > 0 or Au = 0. Then BuJ ≥ (Au)J ≥ 0.
Further, BuJ = 0 if and only if Au = 0 and ajk = 0 for all j ∈ J , k ∈ I \ J . Hence
BuJ > 0, since A is indecomposable and J ⊆ {1, . . . , n} is a proper subset. Thus
B is of finite type. �

Lemma 10.2.11. Let n ∈ N and let A ∈ Rn×n be a Vinberg matrix. The
following are equivalent.

(1) A is of finite type.
(2) All principal minors of A are positive.
(3) det(A+ λid) > 0 for all non-negative real numbers λ.

Remark 10.2.12. A real square matrix of which all principal minors are positive
is also called a P -matrix.

Proof. (2) implies (3) by the Leibniz formula for det.
Assume that (3) holds. Then A + λid is not of affine type for all λ ≥ 0, and

hence A is of finite type by Corollary 10.2.9.
Assume now that (1) holds. In view of Lemma 10.2.10 it suffices to prove that

det(A) > 0. By Corollary 10.2.9, A+λid is of finite type, and hence det(A+λid) �= 0,
for all λ ≥ 0. This implies that det(A + λid) > 0 for all λ ≥ 0. In particular,
det(A) > 0. Thus (2) holds. �

Lemma 10.2.13. Let n ∈ N and let A ∈ Rn×n be a Vinberg matrix. The
following are equivalent.

(1) A is of affine type.
(2) det(A) = 0 and all proper principal minors of A are positive.
(3) det(A) = 0 and det(A+ λid) > 0 for all positive real numbers λ.

Proof. (1) implies (2) by Lemmas 10.2.10 and 10.2.11. The rest is similar to
the proof of Lemma 10.2.11. �

Indecomposable Cartan matrices of finite and affine type, respectively, can be
listed explicitly; for finite type, see Theorem 1.10.18. They are usually presented in
terms of the associated Dynkin diagrams. We now prove that an indecomposable
Cartan matrix is of finite type in the sense of Definition 1.10.17 if and only if it is
of finite type in the sense of Theorem 10.2.7.

Lemma 10.2.14. Let n ∈ N and let A ∈ Rn×n be a Cartan matrix. If for all
i, j ∈ {1, . . . , n} with i �= j there is at most one sequence i1, i2, . . . , ik, k ≥ 1, i1 = i,

i2 = j, of pairwise distinct elements of {1, . . . , n} such that
∏k−1

l=1 ailil+1
�= 0, then

A is symmetrizable.
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Proof. The claim follows easily by induction on n. �

Lemma 10.2.15. Let n ∈ N and let A ∈ Rn×n be an indecomposable Cartan
matrix of finite or affine type in the sense of Theorem 10.2.7. Then A is sym-
metrizable. Let s ∈ N with s > 2 and let i1, . . . , is ∈ {1, . . . , n} be pairwise distinct
elements such that ai1i2ai2i3 · · · aisi1 �= 0. Then s = n and there is a permutation σ
of {1, . . . , n} such that

aσ(i)σ(j) =

⎧⎪⎨⎪⎩
2 if i = j,

−1 if (i, j) = (1, n) or |i− j| = 1,

0 otherwise.

(10.2.1)

In the latter case A is of affine type.

Proof. If ai1i2ai2i3 · · · aisi1 = 0 for any s > 2 and any pairwise distinct ele-
ments i1, . . . , is ∈ {1, . . . , n}, then A is symmetrizable by Lemma 10.2.14. So let us
consider the opposite case.

By permuting the rows and columns of A we may assume that s is minimal
and that ij = j for all 1 ≤ j ≤ s. Then ajk �= 0 for j, k ∈ {1, . . . , s} if and only if
|j − k| ≤ 1 or {j, k} = {1, s}. Let B = (aij)1≤j≤s. By Lemma 10.2.10, there exists
u ∈ Rs such that u > 0 and that Bu > 0 or Bu = 0. Further, Bu = 0 if and only
if A is of affine type and s = n. Let v = (u−1

i )1≤i≤s. Then vtBu ≥ 0. But

0 ≤ vtBu =
s∑

i=1

2uivi +
∑

1≤i<j≤s

(aiju
−1
i uj + ajiu

−1
j ui)

≤ 2s−
s−1∑
i=1

(u−1
i ui+1 + uiu

−1
i+1)− (u1u

−1
s + u−1

s u1) ≤ 0,

and equality holds at all places if and only if aij < 0 implies aij = −1 and if ui = uj

for all i, j ∈ {1, . . . , s}. Then Bu = 0, and hence A is of affine type and s = n.
This proves the lemma. �

Proposition 10.2.16. Let n ∈ N and let A ∈ Rn×n be a Cartan matrix. Then
A is of finite type in the sense of Definition 1.10.17 if and only if its indecomposable
components are Vinberg matrices of finite type.

Proof. If A is of finite type, then all indecomposable components of A are
Cartan matrices of finite type. Let B be an indecomposable component of A. Then
all principal minors of B are positive and hence B is a Vinberg matrix of finite type
by Lemma 10.2.11. For the converse, one concludes the symmetrizability of (the
components of) A from Lemma 10.2.15. The rest follows again from Lemma 10.2.11.

�

We apply Vinberg’s classification to finite semi-Cartan graphs.

Lemma 10.2.17. Let G be a finite semi-Cartan graph, X a point of G, and
D ⊆ ΔX re. Assume that γ = 0 or γ /∈

∑
i∈I N0αi for any D′ ⊆ ΔX re and

γ =
∑

β∈D′ β −
∑

β∈D β. Then α ∈ D and −α /∈ D for any α ∈ΔX re
+ .

Proof. The claim follows by comparing D with D′ = D ∪ {α} and with
D′ = D \ {−α} for any α ∈ΔX re

+ . �
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Theorem 10.2.18. Let G be a finite semi-Cartan graph. Then there exists a
point of G with a Cartan matrix of finite type.

Proof. Let X be a point of G and let Y be the set of points in the connected
component of X. Let Y ∈ Y , DY ⊆ ΔY re, and δY =

∑
β∈DY β. Assume that

δY ∈
∑

i∈I N0αi and that Z ∈ Y , D′ ⊆ ΔZ re, γ =
∑

β∈D′ β implies that γ = δY

or γ− δY /∈
∑

i∈I N0αi. (If G is a finite Cartan graph, then Lemma 10.2.17 implies

that DY = ΔY re
+ .) Since G is finite, the set ∪Y ∈YΔ

Y re is finite by Lemma 9.1.18.

Therefore Y and DY exist. In particular, αi ∈ DY for all i ∈ I by Lemma 10.2.17.
Let x = (xj)j∈I such that δY =

∑
j∈I xjαj . Then x ≥ 0 by assumption. We

show that AY x > 0. Let i ∈ I. By definition,

sYi (δ
Y − αi) = αi + δY −

∑
j∈I

aYijxjαi.

Since sYi (δ
Y − αi) is a sum of roots of ri(Y ) ∈ Y , the choice of Y and DY implies

that
∑

j∈I a
Y
ijxj ≥ 1. Thus AY x > 0.

Now let B be an indecomposable component of AY and let x′ be the corre-
sponding component of x. Then Bx′ > 0 and x′ ≥ 0. Hence the Vinberg matrix
B is not of affine and not of indefinite type by Theorem 10.2.7. Therefore B is
a Vinberg matrix of finite type. Thus AY is a Cartan matrix of finite type by
Proposition 10.2.16. �

10.3. Classification of finite Cartan graphs of rank two

In this section we characterize finite connected Cartan graphs of rank two in
terms of certain integer sequences. As a consequence, we obtain non-trivial local
properties of such Cartan graphs. The structure discussed in this section appears
in different forms at many places in mathematics, see also the Notes at the end of
the chapter.

For all integers 1 < i ≤ n let Vi : Zn → Zn+1,

Vi(c1, . . . , cn) = (c1, . . . , ci−2, ci−1 + 1, 1, ci + 1, ci+1, . . . , cn).(10.3.1)

Definition 10.3.1. Let A+ be the smallest subset of
⋃

n≥2 N
n
0 such that

(1) (0, 0) ∈ A+, and
(2) if (c1, . . . , cn) ∈ A+ and 1 < i ≤ n, then Vi(c1, . . . , cn) ∈ A+.

We say that two consecutive entries of a sequence in A+ are neighbors and that
the first and the last entry are neighbors.

For all n ≥ 2 let A+(n) denote the set of all (c1, . . . , cn) ∈ A+.

The definition of A+ immediately implies the following.

Lemma 10.3.2. Let n ≥ 2. Then
∑n

i=1 ci = 3n−6 for all sequences (c1, . . . , cn)
in A+(n).

Example 10.3.3. It follows directly from the definition that

A+(2) = {(0, 0)},
A+(3) = {(1, 1, 1)},
A+(4) = {(1, 2, 1, 2), (2, 1, 2, 1)},
A+(5) = {(1, 2, 2, 1, 3), (1, 3, 1, 2, 2), (2, 1, 3, 1, 2), (2, 2, 1, 3, 1), (3, 1, 2, 2, 1)}.
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We also have other easy consequences of the definition.

Lemma 10.3.4. Let c ∈ A+(n) with n ≥ 3.

(1) For all 1 ≤ i ≤ n, ci > 0.
(2) There exist 1 ≤ i < j ≤ n with (i, j) �= (1, n) and ci = cj = 1.
(3) If ci = ci+1 = 1 for some 1 ≤ i < n, then n = 3 and c = (1, 1, 1).

Proof. The claim follows by induction on n, where for n ≤ 4 it holds by
Example 10.3.3. �

We relate sequences in A+(n) to triangulations of labeled convex n-gons.

Definition 10.3.5. Let n ≥ 2 and let G be a convex n-gon. Enumerate the
vertices of G from 1 to n such that consecutive integers correspond to neighboring
vertices. We write Tn for the set of triangulations of G with non-intersecting diag-
onals. For any triangulation T ∈ Tn of G and any i ∈ {1, . . . , n} let ci(T ) be the
number of triangles meeting at the i-th vertex.

Example 10.3.6. (1) For n = 2, a convex n-gon G is just a line segment. A
triangulation T of G is G itself. Then c1(T ) = c2(T ) = 0.

(2) For n = 3, a convex 3-gon G is a triangle. A triangulation T of G is G
itself. Then c1(T ) = c2(T ) = c3(T ) = 1.

(3) Let n = 4. There are two triangulations T of a convex tetragon.

�
�

�
�1

2 3

4
�

�
�

�

1

2 3

4

In the first case, c1(T ) = 1, c2(T ) = 2, c3(T ) = 1, c4(T ) = 2. In the second case,
c1(T ) = 2, c2(T ) = 1, c3(T ) = 2, c4(T ) = 1.

Proposition 10.3.7. Let n ≥ 2 and let G be a convex n-gon. Enumerate the
vertices of G from 1 to n such that consecutive integers correspond to neighboring
vertices. Then the map Tn → A+(n), T �→ (c1(T ), . . . , cn(T )), is a bijection.

Proof. We proceed by induction on n. For n = 2, the claim follows from
Example 10.3.6(1). For n ≥ 3, Axiom (2) for A+ corresponds to the rule to obtain
a triangulation of a convex n + 1-gon from a triangulation of a convex n-gon by
adding a new triangle between two consecutive vertices, but not at the edge between
the first and the last vertex. �

Corollary 10.3.8. Let n ≥ 2.

(1) Let (c1, . . . , cn) ∈ A+(n). Then A+(n) also contains (cn, cn−1, . . . , c1)
and (c2, c3, . . . , cn, c1). Thus the dihedral group Dn ⊆ Sn of order 2n acts
on A+(n) by neighborhood preserving permutations of the entries:

w(c1, . . . , cn) = (cw−1(1), . . . , cw−1(n))

for all w ∈ Dn, (c1, . . . , cn) ∈ A+(n).
(2) The dihedral group Dn acts on the set of triangulations of a convex n-gon

by renumbering the vertices. The bijection in Proposition 10.3.7 commutes
with the action of Dn.
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Proof. Both claims follow directly from the description of the bijection in
Proposition 10.3.7. �

Corollary 10.3.9. Let n ≥ 3, c = (c1, . . . , cn) ∈ A+(n), and let 1 < i < n. If
ci = 1 then c′ ∈ A+(n− 1), where

c′ = (c1, . . . , ci−2, ci−1 − 1, ci+1 − 1, ci+2, . . . , cn).

Proof. The corresponding claim on triangulations of convex n-gons clearly
holds. �

Example 10.3.10. A short calculation shows that the sequences

(0, 0), (1, 1, 1), (1, 2, 1, 2), (1, 2, 2, 1, 3),

(1, 2, 2, 2, 1, 4), (1, 2, 3, 1, 2, 3), (1, 3, 1, 3, 1, 3)

are representatives of the orbits of
⋃6

n=2A+(n) under the action of the dihedral
groups Dn, 2 ≤ n ≤ 6.

All sequences in A+ share a local property, which will enter prominently in the
classification of Nichols algebras in Section 15.3. Under the reversal of a sequence
(c1, c2, . . . , ck), k ∈ N, we mean the sequence (ck, ck−1, . . . , c1).

Proposition 10.3.11. Let n ≥ 3. Then any sequence (c1, . . . , cn) ∈ A+ con-
tains a subsequence (ck)i≤k≤j, where 1 ≤ i < j ≤ n, of the form

(1, 1), (1, 2, a), (2, 1, b), (1, 3, 1, b)

or their reversal, where 1 ≤ a ≤ 3 and 3 ≤ b ≤ 5.

Proof. We give an indirect proof. Let c = (c1, . . . , cn) ∈ A+. Assume that the
claim does not hold for this sequence. Then n ≥ 6 by Example 10.3.3, since (1, 1),
(1, 2, 1), (2, 1, 3) and (3, 1, 2) are not subsequences. Since n ≥ 6, Corollary 10.3.9
implies that c has no subsequence (2, 1, 2). Let

ε11 = (1), ε12 = (2, 1), ε21 = (1, 2), ε22 = (1, 3, 1)

and let E = {εij | 1 ≤ i, j ≤ 2}. By assumption, both the left and the right neighbor
of any subsequence εij with (i, j) �= (1, 1) is at least four. Thus there is a unique
decomposition d = (d1, . . . , dk), where k ≥ 2, of c into disjoint subsequences of the
form (a) and ε, where a ≥ 2 and ε ∈ E, such that

(a) (ε11, 2), (2, ε11) and (ε11, 3, ε11) are not subsequences of d.

(For example, if c = (1, 4, 6, 1, 3, 1, 7, 2) then d = (ε11, 4, 6, ε22, 7, 2).) Since c does
not satisfy the claim of the proposition, we obtain the following information for d.

(b) No two consecutive entries of d belong to E.
(c) No entry ε ∈ E of d is preceded or followed by 2.
(d) If (ε21, a) or (a, ε12) is a subsequence of d, then a ≥ 4.
(e) If (εi2, b) or (b, ε2i) is a subsequence of d, where i ∈ {1, 2}, then b ≥ 6.

By iterated application of Corollary 10.3.9 we obtain further reductions of d.

(. . . , dm−1, εij , dm+1, . . . ) −→ (. . . , dm−1 − i, dm+1 − j, . . . ),

(εi2, d2, . . . ) −→ (εi1, d2 − 1, . . . ),

(. . . , d̃, ε2i) −→ (. . . , d̃− 1, ε1i)
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for all i, j ∈ {1, 2}. Let us perform these reductions at all places 1 ≤ m ≤ k in
d, where an entry εij with 1 ≤ i, j ≤ 2 appears. By (b) and (c), this results in
a unique sequence d′ without entries in E except maybe at the first or last place.
Any intermediate entry of d′ is at least 2 by the following.

(1) Any entry dm /∈ E of d is decreased by at most 4. Hence if dm ≥ 6, then
its value after the reductions is at least 2.

(2) If 4 ≤ dm < 6, then dm−1 �= εi2 and dm+1 �= ε2i for any i ∈ {1, 2} by (e).
Hence dm decreases by at most 2.

(3) If dm = 3 then (a),(d),(e) imply that at most one of dm−1, dm+1 is in E,
and this entry is ε11. Hence dm decreases by at most 1.

(4) If dm = 2 then dm does not decrease by (c).

Thus by Corollary 10.3.9 there exists a sequence d′′ = (d′′1 , . . . , d
′′
l ) ∈ A+ with l ≥ 2,

where d′′m ≥ 2 for all 1 < m < l and d′′1 , d
′′
l ≥ 1. This is a contradiction to d′′ ∈ A+

and Lemma 10.3.4(2). �

Sequences in A+ have an interesting number theoretic property, which we prove
in Theorem 10.3.14 below. We start with general considerations.

Let

η : Z→ SL2(Z), a �→
(
a −1
1 0

)
.(10.3.2)

Recall that (α1, α2) is the standard basis of Z2.

Lemma 10.3.12. Let n ∈ N and (ck)1≤k≤n ∈ Zn. For all 1 ≤ k ≤ n + 1 let
βk = η(c1) · · · η(ck−1)(α1).

(1) Let β0 = −α2. Then βk+1 = ckβk − βk−1 for all 1 ≤ k ≤ n.
(2) If n ≥ 3 and ck = 0 for some 1 ≤ k < n, then βl /∈ N2

0 for some 1 ≤ l ≤ n.
(3) If c1 ≥ 1 and ck ≥ 2 for all 1 < k < n, then βk ∈ N2

0 for all 1 ≤ k ≤ n and
βk − βk−1 ∈ N2

0 \ {0} for all 1 < k ≤ n. Further, if n ≥ 2 then βn+1 ∈ N2
0

or βn+1 + βn−1 ∈ −N2
0.

Proof. (1) Since β1 = α1 and β2 = η(c1)(α1) = c1α1 + α2, the claim holds
for k = 1. Let now k ≥ 2. Then

βk+1 =η(c1) · · · η(ck)(α1) = η(c1) · · · η(ck−1)(ckα1 + α2) = ckβk − βk−1

since η(ck−1)(α2) = −α1.
(2) If c1 = 0 then

β3 = η(c1)(c2α1 + α2) = c2α2 − α1 /∈ N2
0.

If 1 < k < n and ck = 0 then βk+1 = −βk−1 by (1). Thus βk−1 /∈ N2
0 or βk+1 /∈ N2

0.
(3) Assume first that ck ≥ 2 for all 1 ≤ k < n. For all 0 ≤ k ≤ n let ak, bk ∈ Z

such that βk = akα1 + bkα2, where β0 = −α2. We prove by induction on k for all
1 ≤ k ≤ n that

ak > bk ≥ 0, ak > ak−1, bk > bk−1, ak − bk − ak−1 + bk−1 ≥ 0.(10.3.3)

Since β1 = α1, (10.3.3) is valid for k = 1. For 1 ≤ k < n we get from (1) that

ak+1 − bk+1 =(ckak − ak−1)− (ckbk − bk−1)

=(ck − 1)(ak − bk) + (ak − bk − ak−1 + bk−1).
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This is positive by induction hypothesis, since ck > 1. Similarly,

ak+1 − ak = ckak − ak−1 − ak = (ck − 2)ak + (ak − ak−1) > 0,

bk+1 − bk = ckbk − bk−1 − bk = (ck − 2)bk + (bk − bk−1) > 0.

In particular, bk+1 > bk ≥ 0. Finally,

ak+1 − bk+1 − ak + bk =ck(ak − bk)− ak−1 + bk−1 − ak + bk

=(ck − 2)(ak − bk) + (ak − bk − ak−1 + bk+1) ≥ 0,

which completes the proof of (10.3.3) for all 1 ≤ k ≤ n. Thus βk ∈ N2
0 for all

1 ≤ k ≤ n and βk − βk−1 ∈ N2
0 \ {0} for all 1 < k ≤ n.

If c1 = 1 and ck ≥ 2 for all 1 < k < n, then βk ∈ N2
0 for all 1 ≤ k ≤ n and

βk − βk−1 ∈ N2
0 \ {0} for all 1 < k ≤ n by a similar argument using the inequalities

bk ≥ ak > 0, ak ≥ ak−1, bk > bk−1, ak − bk − ak−1 + bk−1 < 0(10.3.4)

for all 1 < k ≤ n.
The last claim follows from (1). Indeed, if cn ≥ 1 then βn+1 ∈ N2

0, and if cn ≤ 0
then βn+1 + βn−1 = cnβn ∈ −N2

0. �

Lemma 10.3.13. Let 1 < i ≤ n, c′1, . . . , c
′
n ∈ Z, and

(c1, . . . , cn+1) = Vi(c
′
1, . . . , c

′
n) ∈ Zn+1.

Let β′
k = η(c′1) · · · η(c′k−1)(α1) for all 1 ≤ k ≤ n and βk = η(c1) · · · η(ck−1)(α1) for

all 1 ≤ k ≤ n+ 1. Then

(1) η(c1) · · · η(cn+1) = η(c′1) · · · η(c′n), and
(2) βk = β′

k for all 1 ≤ k < i, βk = β′
k−1 for all i < k ≤ n + 1, and

βi = β′
i−1 + β′

i = βi−1 + βi+1.

Proof. Direct calculation shows that

η(a)η(b) = η(a+ 1)η(1)η(b+ 1) for all a, b ∈ Z.(10.3.5)

This implies (1). Further, βk = β′
k for 1 ≤ k < i, and

βi+1 = η(c1) · · · η(ci)(α1) = η(c′1) · · · η(c′i−2)η(c
′
i−1 + 1)(α1 + α2) = β′

i,

since η(c + 1)(α1 + α2) = η(c)(α1) for all c ∈ Z. Again by (10.3.5), βk = β′
k−1 for

all i+ 1 < k ≤ n+ 1. Finally,

βi =η(c1) · · · η(ci−1)(α1)

=η(c′1) · · · η(c′i−2)η(c
′
i−1 + 1)(α1)

=η(c′1) · · · η(c′i−2)(η(c
′
i−1)(α1) + α1)

=β′
i + β′

i−1

which implies (2). �

Theorem 10.3.14. Let n ≥ 2 and let (c1, . . . , cn) ∈ Zn. The following are
equivalent.

(1) (c1, . . . , cn) ∈ A+,
(2) η(c1) · · · η(cn) = −id, and the pairs βk = η(c1) · · · η(ck−1)(α1), 1 ≤ k ≤ n,

are in N2
0.
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Proof. Assume (1). We prove (2) by induction on n. If n = 2, then trivially,
(c1, c2) = (0, 0), η(0)2 = −id, and β1 = α1, β2 = α2.

Assume now that n ≥ 3. Then there exist (c′1, . . . , c
′
n−1) ∈ A+(n − 1) and

1 < i ≤ n − 1 such that (c1, . . . , cn) = Vi(c
′
1, . . . , c

′
n−1). Hence (2) follows from

Lemma 10.3.13.
Now assume (2). We prove (1) by induction on n. If n = 2, then

−id = η(c1)η(c2) =

(
c1c2 − 1 −c1

c2 −1

)
.

Thus c1 = c2 = 0, that is, (c1, c2) ∈ A+.
Assume that n ≥ 3. For any 1 ≤ k < n, ckβk = βk−1 + βk+1 because of

Lemma 10.3.12(1), where β0 = −α2. Since βl ∈ N2
0 for any 1 ≤ l ≤ n, we obtain

that ck > 0 for any 1 < k < n and c1 ≥ 0. Further, c1 > 0 by Lemma 10.3.12(2).
Since η(c1) · · · η(cn) = −id, we also get that βn+1 = −α1. Thus ci = 1 for some
2 ≤ i ≤ n by the first claim in Lemma 10.3.12(3).

Assume first that ck ≥ 2 for any 1 < k < n. Then, the first claim in
Lemma 10.3.12(3) implies that βn−1 �= α1. Moreover, βn−1 − α1 ∈ −N2

0 by the
second claim in Lemma 10.3.12(3), which is a contradiction.

Let i ∈ {2, 3, . . . , n − 1} such that ci = 1 and let (c′1, . . . , c
′
n−1) ∈ Zn−1 such

that (c1, . . . , cn) = Vi(c
′
1, . . . , c

′
n−1). Then η(c′1) · · · η(c′n−1) = −id and the pairs

β′
k = η(c′1) · · · η(c′k−1)(α1) for all 1 ≤ k ≤ n−1 are in N2

0 because of Lemma 10.3.13.

Hence (c′1, . . . , c
′
n−1) ∈ A+ by induction hypothesis, and then (c1, . . . , cn) ∈ A+. �

We are going to characterize and classify finite connected Cartan graphs using
their characteristic sequences.

Definition 10.3.15. Let G = G(I,X , r, A) be a semi-Cartan graph of rank two
and let X ∈ X and i ∈ I. The characteristic sequence of G with respect to

X and i is the infinite sequence (cX,i
k )k≥1 of non-negative integers, where

cX,i
2k+1 =− a

(rjri)
k(X)

ij = −a
ri(rjri)

k(X)
ij ,

cX,i
2k+2 =− a

ri(rjri)
k(X)

ji = −a
(rjri)

k+1(X)
ji

for all k ≥ 0 and j ∈ I \ {i}.

Lemma 10.3.16. Let G = G(I,X , r, A) be a semi-Cartan graph of rank two and
let X ∈ X and i, j ∈ I with i �= j. Let (ck)k≥1 be the characteristic sequence of G
with respect to X and i.

(1) The characteristic sequence of G with respect to ri(X) and j is (ck+1)k≥2.
(2) Suppose that (rjri)

n(X) = X for some n ≥ 1. Then c2n+k = ck for all
k ≥ 1, and the characteristic sequence of G with respect to X and j is
(c2n+1−k)k≥1.

Proof. Both claims follows directly from the definition of a characteristic
sequence. �

For semi-Cartan graphs G of rank two we can use the map η to calculate ΔX re

for any point X of G.
Let τ ∈ Aut(Z2), (c1, c2) �→ (c2, c1).
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Definition 10.3.17. Let I = {1, 2}, let G = G(I,X , r, A) be a semi-Cartan
graph of rank two, and let X ∈ X and i ∈ I. Let (ck)k≥1 be the characteristic
sequence of G with respect to X and i. The root sequence of G with respect
to X and i is the sequence (βk)k≥1 of elements of Z2, where

βk = η(c1) · · · η(ck−1)(α1)

for all k ≥ 1. In particular, β1 = α1.

Remark 10.3.18. Let I = {1, 2}, let G = G(I,X , r, A) be a semi-Cartan graph
of rank two, and let X ∈ X . Let (βk)k≥1 be the root sequence of G with respect to
X and 1 and let (γk)k≥1 be the root sequence of G with respect to X and 2. Then

β2k+1 =idX(s1s2)
k(α1), β2k+2 =idX(s1s2)

ks1(α2),

τγ2k+1 =idX(s2s1)
k(α2), τγ2k+2 =idX(s2s1)

ks2(α1)
(10.3.6)

for all k ≥ 0, since sY1 = η(−aY12)τ and sY2 = τη(−aY21) for all Y ∈ X . Thus

ΔX re = {±βk,±τγk | k ≥ 1}.(10.3.7)

For a finite sequence (c1, . . . , cn) of integers or vectors, where n ≥ 1, let

(c1, . . . , cn)
∞ = (dk)k≥1

be the sequence where dmn+k = ck for all 1 ≤ k ≤ n, m ≥ 0.

Example 10.3.19. Let I = {1, 2}, let G = G(I,X , r, A) be a connected semi-
Cartan graph of rank two, and let X ∈ X . Assume that aX12 = 0.

Since AX is a Cartan matrix and a
r1(X)
12 = aX12, a

r2(X)
21 = aX21, we conclude that

aX12 = aX21 = 0 and a
r1(X)
12 = 0 = a

r2(X)
21 . Since G is connected, the latter implies

that aY12 = aY21 = 0 for all Y ∈ X . One checks quickly that η(0)2 = −id, and
hence the root sequence of G with respect of X and 1 is (α1, α2,−α1,−α2)

∞. In
particular, mX

12 = 2 by Remark 10.3.18. Therefore, G is a Cartan graph if and
only if (r2r1)

2(X) = X. Up to isomorphism there exist precisely four such Cartan
graphs: one with one object, two with two objects, and one with four objects.
In fact, all of them are isomorphic to products of Cartan graphs of rank one (see
Example 9.1.24) in the sense of Definition 10.1.13.

Example 10.3.20. Let I = {1, 2} and let G = G(I,X , r, A) be a connected
semi-Cartan graph of rank two. Assume that aY12, a

Y
21 ≤ −2 for all Y ∈ X .

Let X ∈ X and let (ck)k≥1 and (βk)k≥1 be the characteristic sequence and
the root sequence of G with respect to X and 1, respectively. Then ck ≥ 2 for all
k ≥ 1 by assumption. Thus βk ∈ N2

0 for any k ≥ 1 and βk �= βl for any 1 ≤ k < l
by Lemma 10.3.12(3). By Remark 10.3.18, ΔX re is infinite and is contained in
N2

0 ∪ −N2
0. Hence G is a Cartan graph in this case.

Now we characterize finite connected Cartan graphs of rank two.

Theorem 10.3.21. Let G = G(I,X , r, A) with I = {i, j} be a connected semi-
Cartan graph of rank two such that |X | is finite. Let X ∈ X and let n > 0 be the
integer with (rjri)

n(X) = X, (rjri)
k(X) �= X for any 1 ≤ k < n. Let (ck)k≥1 be

the characteristic sequence of G with respect to X and i, and let � = 6n−
∑2n

k=1 ck.
The following are equivalent.

(1) G is a finite Cartan graph.
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(2) � > 0, � | 12, (c1, . . . , c12n/�) ∈ A+, and

(ck)k≥1 = (c1, . . . , c12n/�)∞.

In this case 12n/� = |ΔX re
+ | = mX

ij .

Proof. Up to isomorphism we may assume that I = {1, 2}, i = 1, and j = 2.
Let (βk)k≥1 be the root sequence of G with respect to X and 1.

Assume (1). We prove (2). Let q = mX
ij = mX

ij , see Corollary 9.2.20. Then

Remark 10.3.18 and Lemma 9.2.7 imply that βk ∈ N2
0 for 1 ≤ k ≤ q, and βq+1 = −βl

for some 1 ≤ l ≤ q, since mX
ij = q. Since (ck)k≥2 is the characteristic sequence of

G with respect to ri(X) and j by Lemma 10.3.16(1), and since m
ri(X)
ji = q by

Proposition 9.2.14, it follows that l = 1, that is,

−η(c1) · · · η(cq)(α1) = −βq+1 = α1.

Thus −η(c1) · · · η(cq) = id by Lemma 9.2.19. Hence (c1, . . . , cq) ∈ A+ by Theo-
rem 10.3.14. Therefore

q∑
i=1

ci = 3q − 6

by Lemma 10.3.2. Because of Lemma 10.3.16(1), the same reasoning for ri(X) and

j shows that (c2, . . . , cq+1) ∈ A+ and that
∑q+1

i=2 ci = 3q− 6. Hence cq+1 = c1, and
(ck)k≥1 = (c1, . . . , cq)

∞ by induction. In particular,

q
2n∑
i=1

ci =

2qn∑
i=1

ci = 2n

q∑
i=1

ci = 2n(3q − 6).

Therefore
∑2n

i=1 ci = (6nq − 12n)/q = 6n − 12n/q. Hence q | 12n and 12n/q = �.
Moreover, (rjri)

q(X) = X by (CG4), and hence n | q. Therefore � | 12, since
q = n · 12/�. This proves (2).

Now assume that (2) holds. We prove (1). Let q = 12n/�. Then (c1, . . . , cq)
is a sequence in A+, and hence βk ∈ N2

0 for 1 ≤ k ≤ q and η(c1) · · · η(cq) = −id by
Theorem 10.3.14. Therefore, since (ck)k≥1 = (c1, . . . , cq)

∞, in the root sequence of
G with respect to X and i only q elements of N2

0 and q elements of −N2
0 appear.

Since (cq, . . . , c1) ∈ A+ by Corollary 10.3.8(1), Lemma 10.3.16 implies that the same
holds for the root sequence of G with respect to X and j. Thus ΔX re ⊆ N2

0∪−N2
0 by

Remark 10.3.18, and G is finite. Because of Lemma 10.3.16(1), the same arguments
show that ΔY re ⊆ N2

0 ∪−N2
0 for all Y ∈ X . Therefore |ΔX re

+ | = mX
ij = mX

ij = q by
Corollary 9.2.20. Further, n | q by assumption, and hence (r2r1)

q(X) = X. Thus
G is a Cartan graph. �

Example 10.3.22. Let G = G(I,X , r, A) be a connected semi-Cartan graph of
rank two. Let X ∈ X and i, j ∈ I with i �= j. Assume that aXij = aXji = −1.
The only sequence in A+ with two consecutive entries 1 is (1, 1, 1). Hence, by
Theorem 10.3.21, G is a Cartan graph if and only if aYij = aYji = −1 for all Y ∈ X
and if (r2r1)

3(X) = X. Up to isomorphism there exist precisely four such Cartan
graphs: one with one object, one with two objects (and r1 = r2 �= id), one with
three objects, and one with six objects.

Theorem 10.3.21 and Lemma 10.3.13 provide us with a nice description of
positive roots.
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Definition 10.3.23. For any n ≥ 1, a set of non-zero vectors v1, v2, . . . , vk ∈ Zn

with k ≥ 1 is said to be relatively prime, if the elementary divisors of the matrix
in Zn×k with columns v1, . . . , vk are units.

Corollary 10.3.24. Let G = G(I,X , r, A) with I = {i, j} be a finite Cartan
graph of rank two. Let X ∈ X , and let (ck)k≥1 be the characteristic sequence of G
with respect to X and i. Let q = mX

ij . Then (c1, . . . , cq) ∈ A+. For all 1 ≤ k ≤ q−2
let ik ∈ {2, 3, . . . , k + 1} such that

(c1, . . . , cq) = Viq−2
· · ·Vi2Vi1(0, 0).

Let (β1, . . . , βq) be the sequence of elements of Z2 arising from (α1, α2) by inserting
successively at the ik-th place, where 1 ≤ k ≤ q − 2, the sum of the elements at
place ik − 1 and ik.

(1) ΔX re
+ = {β1, . . . , βq}.

(2) For any 1 ≤ k < q, the matrix in Z2×2 with columns βk, βk+1 has deter-
minant 1. In particular, βk and βk+1 are relatively prime.

(3) For any 1 < k < q, βk is a sum of two relatively prime positive real roots.

Proof. We may assume that i = 1 and j = 2. Since G is a finite Cartan graph,
rjri has finite order. Then (c1, . . . , cq) ∈ A+ by Theorem 10.3.21. Let (βk)k≥1 be
the root sequence of G with respect to X and i. Then

|ΔX re
+ | = mX

ij = mX
ij

(the length of κX
ij ) by Corollary 9.2.20. Now Lemma 9.2.7(1) and Remark 10.3.18

imply that ΔX re
+ = {β1, . . . , βq}. Thus the corollary follows from Lemma 10.3.13.

Indeed, the property claimed in (2) holds for the sequence (α1, α2) and remains
valid after each insertion of a new root. In particular, any inserted root (and hence
each βk with 1 < k < q) is the sum of two relatively prime roots. �

Remark 10.3.25. If one identifies any positive real root (a, b) ∈ Z2 with the
fraction a

b , then the construction of the set ΔX re
+ in Corollary 10.3.24 parallels the

iterated insertion of mediants of two neighboring rationals. The claim in Corol-
lary 10.3.24(2) is a variant of a standard result in number theory in the context of
Farey sequences.

Example 10.3.26. Let G = G(I,X , r, A) be the connected semi-Cartan graph
from Example 9.1.2, see also Example 9.1.15. The characteristic sequence of G
with respect to X1 and 1 is (ck)k≥1 = (1, 4, 1, 3)∞, and n = 2 is the smallest
positive integer such that (r2r1)

n(X1) = X1. We check the conditions in Theo-

rem 10.3.21(2). We obtain that � = 6n −
∑2n

i=1 ci = 3, � | 12, 12n/� = 8, and
(ck)k≥1 = (c1, . . . , c8)

∞. Further,

(1, 4, 1, 3, 1, 4, 1, 3) =V3(1, 3, 2, 1, 4, 1, 3) = V3V4(1, 3, 1, 3, 1, 3)

=V3V4V3(1, 2, 2, 1, 3) = V3V4V3V4(1, 2, 1, 2)

=V3V4V3V4V3(1, 1, 1) = V3V4V3V4V3V2(0, 0)

and hence (c1, . . . , c8) ∈ A+. We conclude from Theorem 10.3.21 that G is a
Cartan graph and has 12n/� = 8 positive roots at each point. (We knew this
already, but the proof in Example 9.1.15 is much more computational.) Further,
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by Corollary 10.3.24 we obtain easily the set of positive real roots at X1. We again
abbreviate aα1 + bα2 for a, b ∈ N0 by 1a2b.

{1, 2} V2→ {1, 12, 2} V3→ {1, 12, 122, 2} V4→ {1, 12, 122, 123, 2}
V3→ {1, 12, 1223, 122, 123, 2} V4→ {1, 12, 1223, 1325, 122, 123, 2}
V3→ {1, 12, 1324, 1223, 1325, 122, 123, 2} = ΔX1 re

+ .

This coincides with the calculation in Example 9.1.15.

The next claim is part of Corollary 10.3.24.

Corollary 10.3.27. Let G be a finite Cartan graph of rank two and let X be a
point of G. Then any non-simple positive real root at X is the sum of two relatively
prime positive real roots.

Proposition 10.3.11 and Theorem 10.3.21 imply another important fact about
finite Cartan graphs.

Corollary 10.3.28. Let G = G(I,X , r, A) be a finite Cartan graph of rank
two. Then there exist X ∈ X and i, j ∈ I with i �= j such that one of the following
hold.

(1) aXij = aXji = 0,

(2) aXij = aXji = −1,
(3) aXji = −1, aXij = −2, −3 ≤ a

ri(X)
ji ≤ −1,

(4) aXji = −2, aXij = −1, −5 ≤ a
ri(X)
ji ≤ −3,

(5) aXji = −1, aXij = −3, ari(X)
ji = −1, −5 ≤ a

rj(X)
ij ≤ −3.

Proof. We may assume that G is connected. If mX
ij = 2 for all X ∈ G then

aXij = aXji = 0 for all X ∈ X and i, j ∈ I with i �= j. Otherwise mX
ij ≥ 3 for

all X ∈ G and i, j ∈ I with i �= j. Let Y ∈ X and i ∈ I. Let (ck)k≥1 be the
characteristic sequence of G with respect to Y and i. Then (c1, . . . , cmY

ij
) ∈ A+ by

Theorem 10.3.21. By Proposition 10.3.11 there exists a subsequence (1, 1), (1, 2, a),
(2, 1, b) or (1, 3, 1, b) with 1 ≤ a ≤ 3, 3 ≤ b ≤ 5 of (c1, . . . , cmY

ij
) or its reversal.

Thus the claim follows from Lemma 10.3.16. �

Theorem 10.3.21 also allows the classification of finite connected simply con-
nected Cartan graphs of rank two.

Theorem 10.3.29. The following hold.

(1) Let n ≥ 2 be an integer, (c1, . . . , cn) ∈ A+(n), X = {1, 2, . . . , 2n}, and
I = {1, 2}. Define r1, r2 : X → X by

r1 = (1 2)(3 4) · · · (2n− 1 2n), r2 = (2 3)(4 5) · · · (2n− 2 2n− 1)(2n 1).

Then there is a unique semi-Cartan graph G = G(I,X , r, A), such that the
characteristic sequence of G with respect to X = 1 and 1 is (c1, . . . , cn)

∞.
This G is a connected simply connected finite Cartan graph, and for all
Y ∈ X , mY

12 = mY
21 = n.

(2) Any finite connected simply connected Cartan graph of rank two is iso-
morphic to a Cartan graph in (1).
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(3) Let G and G′ be two semi-Cartan graphs as in (1) corresponding to a
sequence (c1, . . . , cq) ∈ A+ and (c′1, . . . , c

′
q′) ∈ A+, respectively. Then G

and G′ are isomorphic if and only if q = q′ and (c1, . . . , cq), (c
′
1, . . . , c

′
q)

are in the same orbit of A+(q) under the action of Dq.

Proof. (1) The existence of G is easy to check. Clearly, G is connected. More-
over, (r2r1)

k(X) = X if and only if n | k. Since
∑n

i=1 ci = 3n− 6, Theorem 10.3.21
with � = 12 implies that G is a finite Cartan graph with mX

ij = n. Finally, G is
simply connected since for all X ∈ X the group Hom(X,X) is the cyclic group
generated by idX(s1s2)

n, which is the identity by Corollary 9.2.22(1).
(2) Let G = G(I,X , r, A) be a finite connected simply connected Cartan graph

of rank two. We may assume that I = {1, 2}. Let X ∈ X , and let n be the

smallest positive integer such that (r2r1)
n(X) = X. Since idX(s1s2)

mX
12 = idX

by Corollary 9.2.22, it follows that n ≤ mX
12. Let (ck)k≥1 be the characteristic

sequence of G with respect to X and 1. By Theorem 9.2.23 and by (9.1.1), none
of the morphisms F (idX(s1s2)

k) with 0 < k < mX
12 and F (idX(s1s2)

ks1) with
0 ≤ k < mX

12 are the identity on Z2. Since G is simply connected, this implies
that the 2mX

12 points r1(r2r1)
k(X) and (r2r1)

k(X) with 0 ≤ k < mX
12 are pairwise

distinct. Thus n = mX
12 and |X | = 2mX

12, since G is connected and has rank two.
Then (c1, . . . , cn) ∈ A+ and (ck)k≥1 = (c1, . . . , cn)

∞ by Theorem 10.3.21. Thus (2)
holds.

(3) Clearly, if G and G′ are isomorphic then they have the same number of
points. Hence we may assume that q = q′. Then, by construction, G and G′

are isomorphic if and only if there exist X ∈ {1, . . . , 2n} and i ∈ {1, 2} such
that the characteristic sequence of G with respect to X and i coincides with the
characteristic sequence of G′ with respect to X ′ = 1 and i = 1. Therefore (3)
follows from Lemma 10.3.16. �

The structure of root strings in root systems of finite Cartan graphs of rank two
is more complicated than in usual root systems. We illustrate this in an example.

Example 10.3.30. Let G be the semi-Cartan graph of rank two with set of
labels I = {1, 2}, and with four points Xi, i ∈ Z4 = {0̄, 1̄, 2̄, 3̄}, such that

r1(X0̄) = X1̄, r1(X2̄) = X3̄, r2(X0̄) = X3̄, r2(X1̄) = X2̄,

and the Cartan matrices of G are

AX0̄ =

(
2 −3
−3 2

)
, AX1̄ =

(
2 −3
−2 2

)
,

AX3̄ =

(
2 −1
−3 2

)
, AX2̄ =

(
2 −1
−2 2

)
.

The characteristic sequence of G with respect to X0̄ and 1 is then (3, 2, 1, 3)∞.
The smallest positive integer n with (r2r1)

n(X0̄) = X0̄ is n = 2. Thus � = 3
in Theorem 10.3.21. Further, G is a finite Cartan graph by Theorem 10.3.21 with
eight positive roots, since

(3, 2, 1, 3, 3, 2, 1, 3) = V3V2V2V4V3V2(0, 0) ∈ A+.

The set of positive roots at X0̄ is

{1, 132, 1522, 122, 12, 122, 123, 2}
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by Corollary 10.3.24, where we abbreviate aα1 + bα2 by 1a2b for all a, b ∈ N0. We
see that 1522 and 122 are positive roots at X0̄, but 1322 is not a positive root.
However, (4α1 + 2α2)/2 and (2α1 + 2α2)/2 are positive roots.

We deduce a general claim supporting the observation in Example 10.3.30.

Proposition 10.3.31. Let G be a finite Cartan graph of rank two. Let i, j
be the labels of G and let X be a point of G. Let a, b ∈ N0 with b ≥ 1 such that
aαi + bαj ∈ΔX re

+ . Then cαi + αj ∈ΔX re
+ for all 0 ≤ c ≤ a/b.

Proof. We proceed by induction on a+b. If a+b = 1 then a = 0 and the claim
holds trivially. Assume now that a+b ≥ 2. By Corollary 10.3.27, the root aαi+bαj

is the sum of two positive real roots β1 = a1αi + b1αj and β2 = a2αi + b2αj , where
a1, a2, b1, b2 ∈ N0. We distinguish two cases.

First assume that b1 = 0. Then β1 = αi. If b = 1 then aαi + αj ∈ ΔX re
+ by

assumption and cαi + αj ∈ ΔX re
+ for all 0 ≤ c ≤ a − 1 by induction hypothesis

applied to β2 = (a− 1)αi + αj .
If b > 1, then there is no integer c with (a− 1)/b < c ≤ a/b. Hence the claim

holds again by induction hypothesis applied to β2.
Now assume that b1, b2 > 0. Then a1/b1 ≥ a/b or a2/b2 ≥ a/b, since otherwise

a1b < b1a, a2b < b2a, and hence

ab = (a1 + a2)b < (b1 + b2)a = ba,

which is absurd. Thus the Proposition holds by applying the induction hypothesis
to β1 and β2. �

10.4. Root systems

We are going to introduce root systems over Cartan graphs. We prove in The-
orem 10.4.7 that finite Cartan graphs have a unique reduced root system, and that
infinite Cartan graphs have no finite root system. We also show in Theorem 10.4.13
under some mild assumption that any positive real root is the sum of two positive
real roots. Finally, we discuss the notion of irreducibility.

In the whole section let G = G(I,X , r, A) be a Cartan graph.

Definition 10.4.1. For all X ∈ X let RX be a subset of ZI with the following
properties.

(1) 0 /∈ RX and αi ∈ RX for all X ∈ X and i ∈ I.
(2) RX ⊆ NI

0 ∪ −NI
0 for all X ∈ X .

(3) For any X ∈ X and i ∈ I, sXi (RX) = Rri(X).

Then we say that the pair (G, (RX)X∈X ) is a root system over G. A root system
over G is said to be reduced if for all X ∈ X and α ∈ RX the roots α and −α are
the only rational multiples of α in RX . A root system over G is finite if RX is a
finite set for all X ∈ X . The elements of RX

+ = RX ∩NI
0 are called positive roots

at X.

Remark 10.4.2. Our definition is very different from the usual definition of
a root system, see for example [Bou68, Ch.VI, §1]. However it is known, that
any finite reduced root system R in an n-dimensional Euclidean space has a basis
α1, . . . , αn. If one expresses the roots as linear combinations of the basis vectors,
and lets si denote the simple reflection on αi for all 1 ≤ i ≤ n, then there is a
Cartan graph with one point for which Axioms (1)–(3) in Definition 10.4.1 hold.
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Remark 10.4.3. Assume that G has precisely one point X. Then the root
system in the sense of [Kac90, §1.3] associated to the Cartan matrix AX satisfies
the axioms of a root system over G in our sense.

There is always at least one reduced root system over G, as the following ex-
ample shows.

Example 10.4.4. The pair (G, (ΔX re)X∈X ) is a root system over G. Indeed,
Axioms (1) and (3) follow from the definition of ΔX re for all X ∈ X , and (2) follows
from (CG3). The root system (G, (ΔX re)X∈X ) is reduced by Remark 9.1.16(2).

The root system in Example 10.4.4 is important for several reasons.

Lemma 10.4.5. Let (G, (RX)X∈X ) be a root system over G. Then for any
X ∈ X , ΔX re is contained in RX .

Proof. By Definition 10.4.1(1), αi ∈ RX for all i ∈ I and X ∈ X . Thus the
claim follows from Definition 10.4.1(3) and the definition of ΔX re. �

Now we prove that there is at most one finite reduced root system over G. If
it exists, then it is of the form given in Example 10.4.4. For the proof we use an
analogue of Lemma 9.1.19 for reduced root systems over G.

Lemma 10.4.6. Let (G, (RX)X∈X ) be a reduced root system over G. Then for
any X ∈ X and i ∈ I, sXi induces bijections

sXi : RX
+ \ {αi} → R

ri(X)
+ \ {αi}, sXi : RX

− \ {−αi} → R
ri(X)
− \ {−αi}.

Proof. Follow the arguments in the proof of Lemma 9.1.19. �
Theorem 10.4.7. The following hold.

(1) Assume that G is finite. Then (G, (ΔX re)X∈X ) is the only reduced root
system over G.

(2) Assume that G is not finite. Then there is no finite root system over G.

Proof. (1) Since G is finite, ΔX re is finite for all X ∈ X . By Example 10.4.4,
(G, (ΔX re)X∈X ) is a finite reduced root system over G. Let now (G, (RX)X∈X ) be
a reduced root system over G. Let X ∈ X and let β ∈ RX

+ . By Proposition 9.3.9(1)

there exist Y ∈ X and w0 ∈ HomW(G)(Y,X) such that w−1
0 (α) ∈ −NI

0 for all

α ∈ ΔX re
+ . Thus w−1

0 (β) ∈ −NI
0, since β is a sum of positive real roots. Let

N = �(w0) and i1, . . . , iN ∈ I such that w0 = idXsi1 · · · siN . Then there exists
1 ≤ k ≤ N with sik · · · sXi1 (β) /∈ NI

0. Let k be minimal. Then sik−1
· · · sXi1 (β) = αik

by Lemma 10.4.6. Thus β ∈ΔX re
+ .

(2) follows directly from Lemma 10.4.5. �
Next we develop some properties of finite reduced root systems over G.

Lemma 10.4.8. Let X ∈ X , i, j ∈ I, and m ∈ Z. Assume that G is finite and
i �= j. Then αj +mαi ∈ΔX re if and only if 0 ≤ m ≤ −aXij .

Proof. Assume that αj + mαi ∈ ΔX re. Then 0 ≤ m ≤ −aXij by (CG3) and
by Lemma 10.1.9. For the converse, by Corollary 9.4.19 it is enough to show that
αj + mαi for all 0 ≤ m ≤ −aXij is a positive real root of G|{i, j} at X. The latter

follows from Lemma 9.4.10 and Proposition 10.3.31, since αj − aXijαi ∈ ΔX re
+ by

Lemma 10.1.9. �
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Lemma 10.4.9. Assume that G is finite. Let X ∈ X , 1 ≤ k ≤ |I|, and let
J ⊆ I with |J | = k, and let β1, . . . , βk ∈ΔX re ∩

∑
t∈J Zαt be linearly independent

elements. Then there exist j, i1, . . . , il ∈ J , where l ≥ 0, and a point Y of G,
such that w = si1 · · · sYil ∈ HomW(G)(Y,X), β1, . . . , βk−1 ∈

∑
t∈J\{j} Zw(αt), and

βk ∈
∑

t∈J N0w(αt).

Proof. Let f ∈ HomZ(ZI ,Z) such that f(βn) = 0 for all 1 ≤ n < k and
f(βk) > 0. We proceed by induction on the cardinality of

N =
{
α ∈ΔX re

+ ∩
∑
t∈J

N0αt

∣∣ f(α) < 0
}
.

If |N | = 0, then f(αt) ≥ 0 for all t ∈ J , and f(αj) > 0 for some j ∈ J . Hence
βk ∈

∑
t∈J N0αt since f(βk) > 0, and βn ∈

∑
t∈J\{j} Zαt for all 1 ≤ n < k since

f(βn) = 0.
Assume that |N | > 0. Then f(αi) < 0 for some i ∈ J , and hence∣∣∣{α ∈Δ

ri(X) re
+ ∩

∑
t∈J

N0αt

∣∣ (fsri(X)
i )(α) < 0

}∣∣∣ = |N | − 1

because of Lemma 9.1.19(1) and since fs
ri(X)
i (αi) > 0. Moreover, the roots

sXi (βn) ∈Δri(X) re with 1 ≤ n ≤ k are linearly independent in ZI and

(fs
ri(X)
i )(sXi (βk)) = f(βk) > 0, (fs

ri(X)
i )(sXi (βn)) = f(βn) = 0

for all 1 ≤ n < k. Thus by induction hypothesis there exist j ∈ J , Y ∈ X , l ≥ 1
and i2, . . . , il ∈ J such that w′ = si2 · · · sYil ∈ HomW(G)(Y, ri(X)) and

sXi (β1), . . . , s
X
i (βk−1) ∈

∑
t∈J\{j}

Zw′(αt), sXi (βk) ∈
∑
t∈J

N0w
′(αt).

Therefore the claim holds with w = s
ri(X)
i w′. �

Proposition 10.4.10. Assume that G is finite. Let X ∈ X , 1 ≤ k ≤ |I|, and
let β1, . . . , βk ∈ ΔX re be linearly independent elements in QI . Then there exist
w ∈ HomW(G)(Y,X), where Y ∈ X , and pairwise distinct elements j1, . . . , jk ∈ I,
such that

βn ∈
n∑

l=1

N0w(αjl)(10.4.1)

for all 1 ≤ n ≤ k.

Proof. We may assume that k = |I|. We prove for all 0 ≤ m ≤ |I| by
induction on |I| −m, that there exist wm ∈ HomW(G)(Ym, X), where Ym ∈ X , and
pairwise distinct elements j1, . . . , jk ∈ I, such that

βn ∈
m∑
l=1

Zwm(αjl)(10.4.2)

for all 1 ≤ n ≤ m and

βn ∈
n∑

l=1

N0wm(αjl)(10.4.3)

for all m < n ≤ k. For m = |I| this claim holds trivially, and for m = 0 it is
equivalent to the Proposition.
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Let 0 ≤ m < |I| such that the claim in the previous paragraph holds for

m + 1. Then w−1
m+1(βn) ∈

∑m+1
l=1 Zαjl for all 1 ≤ n ≤ m + 1 by (10.4.2). Note

that j1, . . . , jm+1 may be permuted without effect on the claim. By Lemma 10.4.9
we may choose the labels j1, . . . , jm+1 such that there exist a point Ym ∈ X ,
a morphism u ∈ HomW(G)(Ym, Ym+1), and q ≥ 0, i1, . . . , iq ∈ {j1, . . . , jm+1}
such that u = si1 · · · sYm

iq
, w−1

m+1(βn) ∈
∑m

l=1 Zu(αjl) for all 1 ≤ n ≤ m, and

w−1
m+1(βm+1) ∈

∑m+1
l=1 N0u(αjl). Let wm = wm+1u. Then (10.4.2) holds for all

1 ≤ n ≤ m together with (10.4.3) for n = m + 1. Since i1, . . . , iq ∈ {j1, . . . , jm+1}
and by induction hypothesis

w−1
m+1(βn) ∈

n∑
l=1

N0αjl , w−1
m+1(βn) /∈

m+1∑
l=1

N0αjl

for all m + 2 ≤ n ≤ k, we conclude that u−1w−1
m+1(βn) ∈

∑n
l=1 N0αjl for all

m+ 2 ≤ n ≤ k. This finishes the proof of (10.4.3) and the Proposition. �

Remark 10.4.11. In general, in the situation of Proposition 10.4.10 it is not

true that
∑k

l=1 Zβl =
∑k

l=1 Zw(αjl). Indeed, assume that the rank of G is two,
k = 2, and β1 = α1, β2 = α1 + 2α2. Then Zβ1 + Zβ2 �= Z2.

Corollary 10.4.12. Let a ∈ N, X ∈ X , and let α, β ∈ ΔX re be linearly
independent elements. Assume that aα+β ∈ΔX re and β−mα /∈ ∪k≥2kZI for all
m ∈ N0. Then mα+ β ∈ΔX re for all 0 ≤ m ≤ a.

Proof. By Proposition 10.4.10 with k = 2 there exist i, j ∈ I, a1, a2 ∈ N0,
Y ∈ X , and w ∈ HomW(G)(Y,X), such that α = w(αi), β = w(a1αi + a2αj),

and a2 > 0. Since β − a1α /∈ kZI for all k ≥ 2, we conclude that a2 = 1. Then
(a1+a)αi+αj = w−1(aα+β) ∈ΔY re by assumption, and hence for all 0 ≤ m ≤ a,
mα+ β = w((a1 +m)αi + αj) ∈ΔX re by Lemma 10.4.8. �

Theorem 10.4.13. Assume that mX
ij is finite for all X ∈ X and i, j ∈ I. Let

X ∈ X . Then any positive real root at X is either simple or the sum of two relatively
prime positive real roots.

Proof. Let α ∈ ΔX re
+ be a non-simple root. Among the pairs (u, j) in

Hom(W(G), X) × I with u(αj) = α pick (w, i) such that �(w) ≤ �(u) for all u.
Then �(w) �= 0, since α �= αi. Let N = �(w) and let j ∈ I such that �(wsj) < �(w).
Then j �= i by Corollary 9.3.6, since w(αi) = α ∈ NI

0.
Let Y, Z ∈ X , u ∈ HomW(G)(Y,X), and v ∈ HomW(G)(Z, Y ) such that w = uv,

�(w) = �(u) + �(v), and v−1 = ProdZji(�(v)). Assume that �(v) is maximal. Then

u(αi), u(αj) ∈ NI
0(10.4.4)

by Theorem 9.3.4 and since �(w) = �(u) + �(v). Further, �(u) < �(w), and hence
α /∈ {u(αi), u(αj)} by the minimality of �(w). The construction of v yields that
u−1(α) = v(αi) ∈ Zαi + Zαj . Since α ∈ NI

0, we conclude from (10.4.4) that
u−1(α) ∈ΔY re∩ (N0αi+N0αj) is a non-simple positive root at Y of the restriction
G|{i, j}. Since G|{i, j} is a Cartan graph by Lemma 9.4.10, mY

ij is finite, and
α /∈ {αi, αj}, we conclude from Corollary 10.3.27 that

u−1(α) = γ1 + γ2(10.4.5)
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for two relatively prime positive real roots γ1, γ2 of G|{i, j} at Y . By Corol-
lary 9.4.19, γ1, γ2 ∈ ΔY re

+ . Moreover, u(γ1), u(γ2) ∈ ΔX re
+ by (10.4.4). These

two roots are relatively prime, since u is an isomorphism. Hence α = u(γ1)+u(γ2)
is a sum of two relatively prime positive real roots by (10.4.5). �

A special case of the next proposition extends the characterization of connected
indecomposable finite Cartan graphs in Proposition 10.1.17.

Proposition 10.4.14. Let X be a point of G, and let J ⊆ I with J �= ∅.
Assume that G|J is finite. The following are equivalent.

(1) The Cartan matrix (aXij )i,j∈J is indecomposable.

(2)
∑

j∈J αj ∈ΔX re.

Proof. Since ΔX re ∩
∑

j∈J Zαj is the set of real roots of G|J at X by Corol-

lary 9.4.19, and since G|J is a Cartan graph by Lemma 9.4.10, we may assume that
I = J and that G is finite.

Assume (2). Then (1) follows from Proposition 10.1.17.
Assume now (1). We prove (2) by induction on |I|. If |I| = 1 then the claim is

trivial. If |I| = 2 then Lemma 9.3.1 implies that |ΔX re
+ | > 2. Thus

∑
i∈I αi ∈ΔX re

+

by Corollary 10.3.24.
Assume now that |I| = 3. Let i, j, k ∈ I be pairwise distinct elements. By (1)

we may assume that aXij �= 0 and aXjk �= 0. Then αj + αk ∈ ΔX re
+ by induction

hypothesis applied to G|{j, k}. We consider two cases. First, if aXik = 0, then

a
ri(X)
ik = 0, and Proposition 10.1.17 implies that a

ri(X)
jk �= 0. Therefore αj +αk is a

real root in Δ
ri(X) re
+ . Then

s
ri(X)
i (αj + αk) = −aXijαi + αj + αk ∈ΔX re.

Since aXij < 0, Corollary 10.4.12 with α = αi, β = αj +αk implies that αi+αj +αk

is a real root in ΔX re.
In the second of two cases, aXik is non-zero. Then either

a
ri(X)
jk = 0, and γ = αi + αj + αk ∈Δri(X) re

by the previous paragraph, or

a
ri(X)
jk �= 0, and γ = αj + αk ∈Δri(X) re

by induction hypothesis. In both cases,

s
ri(X)
i (γ) = aαi + αj + αk ∈ΔX re

for some a ≥ 1. Hence αi + αj + αk ∈ ΔX re by Corollary 10.4.12 with α = αi,
β = αj + αk.

Assume now that |I| ≥ 4. Let r = |I| and let i1, . . . , ir ∈ I be pairwise distinct
elements such that for any 2 ≤ m ≤ r there exists 1 ≤ j < m with aXijim �= 0. In

particular, aXi1i2 �= 0 and hence αi1 + αi2 ∈ΔX re. Let

β1 = αi1 + αi2 , β2 = αi3 , β3 = αi4 , . . . , βr−1 = αir .

By Proposition 10.4.10 there exist Y ∈ X , a morphism w ∈ HomW(G)(Y,X) and

labels j1, . . . , jr−1 ∈ I such that βm ∈
∑m

l=1 N0w(αjl) for all 1 ≤ m ≤ r − 1. For

any 1 ≤ m ≤ r− 1, βm is the only element in βm−
∑m−1

l=1 N0βl which is a multiple
of a positive root. Thus βm = w(αjm) for all 1 ≤ m ≤ r − 1 by induction on m.
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We prove that AY |{j1, . . . , jr−1} is indecomposable. Then
∑r−1

l=1 αjl ∈ ΔY re by
induction hypothesis, and hence

r−1∑
l=1

w(αjl) =
r−1∑
l=1

βl =
r∑

l=1

αil ∈ΔX re.

Let m ≥ 2. Since aXi1i2 �= 0 and aXilim+1
�= 0 for some 1 ≤ l ≤ m, induction

hypothesis implies that βm + βl ∈ ΔX re for some 1 ≤ l < m. Hence for this l we
obtain that αjm +αjl ∈ΔY re. Therefore AY |{j1, . . . , jr−1} is indecomposable and
the proof is completed. �

Definition 10.4.15. Let (G, (RX)X∈X ) be a root system over G. We say that
(G, (RX)X∈X ) is reducible, if there is a decomposition I = I1 ∪ I2 into non-empty
disjoint subsets such that

RX =
(
RX ∩

∑
i∈I1

Zαi

)
∪
(
RX ∩

∑
i∈I2

Zαi

)
for all X ∈ X . Root systems, which are not reducible, are called irreducible.

Corollary 10.4.16. Assume that G is connected and finite. Let X ∈ X . The
following are equivalent.

(1) G is indecomposable.
(2) (G, (ΔY re)Y ∈X ) is irreducible.
(3)

∑
i∈I αi ∈ΔY re for all Y ∈ X .

(4)
∑

i∈I αi ∈ΔX re.

Proof. (1) is equivalent to (2) by Proposition 10.1.17 without using the finite-
ness assumption. Further, (1) and Proposition 10.1.17 imply that AY is indecom-
posable for all Y ∈ X . Thus (3) follows from (1) by Proposition 10.4.14. Finally,
(4) follows from (3) trivially and (4) implies (1) by Proposition 10.4.14. �

10.5. Notes

10.1. Coverings of semi-Cartan graphs have been introduced in [CH09a]. De-
compositions of (semi-)Cartan graphs are discussed in [CH09b].

10.2. The classification of Cartan matrices into three types is due to Vinberg,
see Section 4 in [Vin71]. Our presentation and nomenclature is based on [Kac90],
Chapter 4.

10.3. The elements of A+ have been studied already in the work [CC73] of
Conway and Coxeter, where they are called quiddity cycles. The relationship
between finite Cartan graphs of rank two and sequences in A+, as well as many
properties of the map η have been observed in [CH09a]. There also a classification
of finite Cartan graphs of rank two is given. An interpretation of these results from
the perspective of triangulations of convex n-gons was given in [CH11]. Proposi-
tion 10.3.11, Theorems 10.3.14 and 10.3.21, and Corollary 10.3.24 have been proven
in [HW15], although the ideas behind Theorem 10.3.14 and Corollary 10.3.24 were
available already in [CH09a] and [CH11]. A classification of finite Cartan graphs
of rank three and higher was obtained in [CH12] and [CH15], respectively, using
heavy computer calculations.
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10.4. The concept of a root system over a Cartan graph appeared already
in [HY08] and [CH09b]. Theorem 10.4.7 is a direct consequence of Proposi-
tions 2.9 and 2.12 in [CH09b]. Proposition 10.4.10 is [CH12], Theorem 2.4. The-
orem 10.4.13 was proven in rank two in [CH11], Corollary 3.8, and in full generality
in [CH12], Theorem 2.10.
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CHAPTER 11

Cartan graphs of Lie superalgebras

Among the classical algebraic objects the regular Kac-Moody superalgebras,
in particular the Kac-Moody algebras, admit a Cartan graph. We prove this in
Theorem 11.2.10, and in Corollary 11.2.12 we discuss the finite-dimensional case.
The Chapter starts with the basics of the theory of Lie superalgebras and then the
structures needed for the construction of the Cartan graph are studied.

In this chapter, the ground field is the field of complex numbers.

11.1. Lie superalgebras

Definition 11.1.1. A Lie superalgebra is a Z2-graded complex vector space
g = g0̄ ⊕ g1̄ together with a bilinear map [·, ·] : g × g → g (the commutator)
satisfying the following axioms.

(1) [x, y] ∈ gi+j for all x ∈ gi, y ∈ gj , i, j ∈ Z2,
(2) [x, y] = −(−1)ij [y, x] for all x ∈ gi, y ∈ gj , i, j ∈ Z2,
(3) [x, [y, z]] = [[x, y], z]+(−1)ij [y, [x, z]] for all x ∈ gi, y ∈ gj , z ∈ g, i, j ∈ Z2.

(Jacobi identity)

The subspaces g0̄ and g1̄ are called the even and odd part of g, respectively. The
even part g0̄ together with the restriction of [·, ·] to g0̄ × g0̄ is a Lie algebra. As
usual, we let adx(y) = [x, y] for all x, y ∈ g.

A graded linear map f : g→ h between Lie superalgebras is a homomorphism
of Lie superalgebras if f([x, y]) = [f(x), f(y)] for all x, y ∈ g.

Remark 11.1.2. The axioms of a Lie superalgebra g imply that

[[x, y], z] = [x, [y, z]] + (−1)jk[[x, z], y]
for all x ∈ g, y ∈ gj , z ∈ gk, j, k ∈ Z2.

Example 11.1.3. Let A = A0̄ ⊕ A1̄ be a Z2-graded associative algebra (over
the complex numbers) as defined in Section 5.1. Then A is a Lie superalgebra with
commutator [a, b] = ab− (−1)ijba for any a ∈ Ai, b ∈ Aj , i, j ∈ Z2.

Lemma 11.1.4. Let g be a Lie superalgebra and let x1, . . . , xk ∈ g be ho-
mogeneous elements with k ≥ 1. Then any iterated bracket of x1, . . . , xk, in
which x1 appears at least once, is contained in the linear span of the elements
(adxi1) · · · (adxim)(x1) with m ≥ 0 and i1, . . . , im ∈ {1, . . . , k}.

Proof. By Axiom 11.1.1(2), any such iterated bracket is up to a sign equal to
(ad y1) · · · (ad yl)(x1), where l ≥ 0 and y1, . . . , yl are iterated brackets of x1, . . . , xk.
The rest follows from the Jacobi identity. �

Among the Lie superalgebras there are the contragredient and the basic classical
Lie superalgebras, which are related to Cartan graphs. We need some preparation

377
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before we introduce the definitions. Recall that (αi)1≤i≤n is the standard basis of
Zn.

Definition 11.1.5. Let n ∈ N,

B = (bij)1≤i,j≤n ∈ Cn×n, τ = (τi)1≤i≤n ∈ Zn
2 ,

and let g̃ = g̃(B, τ ) be the Lie superalgebra given by generators ei, fi, and hi with
1 ≤ i ≤ n, and relations

[hi, hj ] = 0, [hi, ej ] = bijej , [hi, fj ] = −bijfj , [ei, fj ] = δijhi,

hi ∈ g̃0̄, ei, fi ∈ g̃τi

for all i, j ∈ {1, . . . , n}. The Lie subsuperalgebras of g̃ generated by the sets

{ei | 1 ≤ i ≤ n}, {fi | 1 ≤ i ≤ n}, and {hi | 1 ≤ i ≤ n}

are denoted by ñ+, ñ−, and h, respectively. For any α =
∑n

i=1 aiαi ∈ Zn let

hα =
n∑

i=1

aihi ∈ h, τα =
n∑

i=1

aiτi ∈ Z2.

We write 〈·, ·〉B for the bilinear form on Cn with 〈α, β〉B = αtBβ for all α, β ∈ Cn.

Remark 11.1.6. It is more common to take for the definition of the Lie super-
algebras g̃(B, τ ) a larger Cartan subalgebra h in order to implement the Zn-grading
in Lemma 11.1.9 below using inner superderivations. For our purposes, the given
less technical definition of g̃(B, τ ) together with the grading will be sufficient.

Remark 11.1.7. In the setting of Definition 11.1.5, let 1 ≤ i ≤ n. If τi = 0̄,
then [ei, ei] = [fi, fi] = 0 in g̃ because of Definition 11.1.1(2). Similarly, if τi = 1̄,
then the axioms of a Lie superalgebra imply that

[[ei, ei], ei] = [fi, [fi, fi]] = 0.

(The proof uses that the characteristic of C is not 3.)

Remark 11.1.8. We construct a non-trivial homomorphism of Lie superalge-
bras from g̃ in Definition 11.1.5 to a Z2-graded associative algebra, and prove that
the elements e1, . . . , en, h1, . . . , hn, f1, . . . , fn of g̃ are linearly independent.

Let n ∈ N, letB ∈ Cn×n, and let V be an n-dimensional Z2-graded vector space.
Let x1, . . . , xn be a basis of V consisting of homogeneous elements, and for each
1 ≤ i ≤ n let τi ∈ Z2 be the degree of xi. The polynomial ring H = C[h1, . . . , hn]
in n indeterminates h1, . . . , hn is a Hopf algebra, where h1, . . . , hn are primitive
elements. The free algebra T (V ) has a unique H-module algebra structure with
action � of H on T (V ) satisfying hi � xj = bijxj for all 1 ≤ i, j ≤ n.

Let A = T (V )#H, see Definition 2.6.8. Then A is a Z2-graded algebra such
that for any 1 ≤ i ≤ n, xi has degree τi and hi is even. It can be presented by
generators x1, . . . , xn and h1, . . . , hn and relations

hixj = xjhi + bijxj , hihj = hjhi

for all 1 ≤ i, j ≤ n. Moreover, since Z2 is finite, End(A) becomes a Z2-graded
algebra with

End(A)p = {f ∈ End(A) | ∀x ∈ Ap′ , p′ ∈ Z2 : f(x) ∈ Ap+p′}
for all p ∈ Z2.
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For any 1 ≤ i ≤ n, left multiplication by xi (denoted by e′i) and left multipli-
cation by hi (denoted by h′

i) are graded endomorphisms of A of degree τi and 0̄,
respectively. Moreover, for any 1 ≤ i ≤ n, there is a unique algebra automorphism
σi of A of degree 0̄ with

σi(xj) = (−1)τiτjxj , σi(hj) = hj + bji1,

and a unique (σi, id)-derivation f ′
i of degree τi with

f ′
i(xj) = −(−1)τiδijhi, f ′

i(hj) = 0

for all 1 ≤ j ≤ n. One then checks that ρ : g̃(B, τ )→ End(A) with

ei �→ e′i, hi �→ h′
i, fi �→ f ′

i

for any 1 ≤ i ≤ n, is a homomorphism of Lie superalgebras, and the endomorphisms
e′1, . . . , e

′
n, h

′
1, . . . , h

′
n, f

′
1, . . . , f

′
n of A are linearly independent. Thus the elements

e1, . . . , en, h1, . . . , hn, f1, . . . , fn of g̃(B, τ ) are linearly independent.

Lemma 11.1.9. Let n ∈ N, B ∈ Cn×n, and let τ ∈ Zn
2 .

(1) The Lie superalgebra g̃(B, τ ) has a unique Zn-grading g̃ = ⊕α∈Zn g̃α with
deg(ei) = − deg(fi) = αi and deg(hi) = 0 for all 1 ≤ i ≤ n.

(2) g̃ = ñ+ ⊕ h⊕ ñ− and dim h = n.

Proof. (1) The Lie superalgebra g̃ is Zn-graded, since the defining relations
are homogeneous.

(2) Let

G = {ei, hi, fi | 1 ≤ i ≤ n},
G+ = {ei | 1 ≤ i ≤ n},
G− = {fi | 1 ≤ i ≤ n}.

For any k ≥ 0 let Fk(g̃), F
+
k (g̃), and F−

k (g̃) denote the linear span of all elements
(adx1)(adx2) · · · (adxl)(xl+1) ∈ g̃, such that 0 ≤ l ≤ k and x1, x2, . . . , xl+1 ∈ G,
x1, x2, . . . , xl+1 ∈ G+, and x1, x2, . . . , xl+1 ∈ G−, respectively. Using the Jacobi
identity and the defining relations of g̃, one proves the following.

(a) g̃ =
⋃

k≥0 Fk(g̃).

(b) ad ei(h) ⊆ F+
0 (g̃), adhi(h) = 0, ad fi(h) ⊆ F−

0 (g̃) for any 1 ≤ i ≤ n.
(c) For any k ≥ 0, adG+(F+

k (g̃)) ⊆ F+
k+1(g̃), ad h(F+

k (g̃)) ⊆ F+
k (g̃), and

adG−(F+
k (g̃)) ⊆ Fk(g̃).

(d) For any k ≥ 0 the relations adG+(F−
k (g̃)) ⊆ Fk(g̃), ad h(F

−
k (g̃)) ⊆ F−

k (g̃),

and adG−(F−
k (g̃)) ⊆ F−

k+1(g̃) hold.

By induction on k then it follows that Fk(g̃) = F+
k (g̃) + h + F−

k (g̃) for any k ≥ 0.
Then Lemma 11.1.4 implies that g̃ = ñ+ + h + ñ−. The last sum is direct by (1).
Moreover, dim h = n by Remark 11.1.8. �

We continue with the study of the structure of the Lie superalgebras in Defini-
tion 11.1.5.

Lemma 11.1.10. Let n ∈ N, B ∈ Cn×n, τ ∈ Zn
2 , and let g̃ = g̃(B, τ ). The set

I of Zn-graded ideals of g̃ contained in ñ+ + ñ− contains a unique element r such
that m ⊆ r for all m ∈ I. The quotient Lie superalgebra g(B, τ ) = g̃/r is Zn-graded
and is called a contragredient Lie superalgebra.
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Proof. The ideal r is unique, since ñ+ + ñ− is a subspace of g̃ and the sum of
Zn-graded ideals of g̃ is a Zn-graded ideal of g̃. Existence of r is clear. Since r is
Zn-graded, the quotient g(B, τ ) is Zn-graded as well. �

The following lemma is elementary but of relevance in view of the Weyl groupoid
of a contragredient Lie superalgebra.

Lemma 11.1.11. Let n ∈ N, B,C ∈ Cn×n, and τ ∈ Z2. Then the following are
equivalent.

(1) There exists a surjective homomorphism ϕ : g̃(B, τ ) → g(C, τ ) of Lie
superalgebras with ϕ(g̃(B, τ )α) = g(C, τ )α for all α ∈ Zn.

(2) There exists an invertible diagonal matrix D with B = DC.

Proof. By the definitions of g̃(B, τ ) and g(C, τ ), (1) is equivalent to the exis-
tence of non-zero numbers λi, μi with 1 ≤ i ≤ n such that there is a homomorphism
of Lie superalgebras ϕ : g̃(B, τ ) → g(C, τ ) with ϕ(ei) = λiei, ϕ(fi) = μifi for all
1 ≤ i ≤ n. Any such homomorphism satisfies

ϕ(hi) = ϕ([ei, fi]) = [λiei, μifi] = λiμihi

and

bijλjej = ϕ([hi, ej ]) = [λiμihi, λjej ] = λiμicijλjej

for all 1 ≤ i, j ≤ n. Thus, in view of Remark 11.1.8, (1) implies (2) with dii = λiμi

for all 1 ≤ i ≤ n.
Assume now (2). Then there is a unique homomorphism of Lie superalgebras

ϕ : g̃(B, τ )→ g̃(C, τ ) with ϕ(ei) = diiei, ϕ(fi) = fi for all 1 ≤ i ≤ n. This implies
(1). �

Remark 11.1.12. Let n ∈ N and B,C ∈ Cn×n be symmetric matrices. Assume
that B = DC for some invertible diagonal matrix D and that C is not decomposable
in the sense of Definition 10.1.15. Then B = dC for some non-zero d ∈ C. Indeed,
assume that D is not a multiple of the identity. Let

I1 = {1 ≤ i ≤ n | dii = d11}, I2 = {1, . . . , n} \ I1.

Let i ∈ I1 and j ∈ I2 such that cij �= 0. Then

diicij = bij = bji = djjcji = djjcij .

Hence dii = djj , a contradiction to the definition of I1 and I2.

Lemma 11.1.13. Let n ∈ N, B ∈ Cn×n, τ ∈ Zn
2 , and let g̃ = g̃(B, τ ). Let

1 ≤ i ≤ n, β, β′ ∈ Zn \ Zαi, x ∈ g̃β, y ∈ g̃β′ , and λ ∈ C.

(1) If β + β′ = −αi, [g̃γ , g̃−γ ] ⊆ Chγ for all γ ∈ {β, β +αi}, and [x, y] = λfi,
then [[ei, x], y] = λhβ+αi

, [x, [ei, y]] = −(−1)τiτβλhβ.
(2) If β + β′ = αi, [g̃γ , g̃−γ ] ⊆ Chγ for all γ ∈ {β, β − αi}, and [x, y] = λei,

then [x, [y, fi]] = λhβ and [[x, fi], y] = −(−1)τiτβ′λhβ−αi
.

Proof. We prove (1). The proof of (2) is similar.
By assumption and by Jacobi identity,

λhi = λ[ei, fi] = [ei, [x, y]] = [[ei, x], y] + (−1)τiτβ [x, [ei, y]].(11.1.1)

Since [g̃γ , g̃−γ ] ⊆ Chγ for γ ∈ {β, β + αi}, there exist λ1, λ2 ∈ C such that

[[ei, x], y] = λ1hβ+αi
, [x, [ei, y]] = λ2hβ .(11.1.2)
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Since β /∈ Cαi, hβ and hi are linearly independent by Lemma 11.1.9(2). Thus
λ1+(−1)τiτβλ2 = 0 and λ1 = λ by (11.1.1) and (11.1.2). This implies the claim. �

Lemma 11.1.14. Let n ∈ N, B ∈ Cn×n, τ ∈ Zn
2 , and g̃ = g̃(B, τ ). Assume that

B is symmetric. Then [g̃β, g̃−β] ⊆ Chβ for all β ∈ Zn.

Proof. By Definition 11.1.1(2) and by Lemma 11.1.9 it suffices to prove the
claim for β ∈

∑n
i=1 N0αi. We proceed by induction on the sum |β| of the coefficients

of β. For β = 0 the claim is trivial. If β ∈ Nαi with 1 ≤ i ≤ n, then [g̃β , g̃−β]
is contained both in h and in the Lie subsuperalgebra of g̃ generated by ei and fi,
and hence is contained in Chi.

Let β =
∑n

k=1 bkαk with
∑n

k=1 bk ≥ 2. Assume that β /∈ N0αi for any 1 ≤ i ≤ n
and that [g̃γ , g̃−γ ] ⊆ Chγ for all γ ∈ Zn with |γ| < |β|. By Lemma 11.1.4 it suffices
to show that [[x, ei], [fj , y]] ∈ Chβ for all 1 ≤ i, j ≤ n with bi, bj > 0, x ∈ g̃β−αi

,
and y ∈ g̃−(β−αj). So let i, j ∈ {1, . . . , n} with bi, bj > 0 and let x ∈ g̃β−αi

,
y ∈ g̃−(β−αj). By Lemma 11.1.4, if β = mαk + αl for some m ≥ 1 and 1 ≤ k, l ≤ n
with k �= l, then we may also assume that i = j = k.

By induction hypothesis and by Lemma 11.1.9, there exist complex numbers
μ1, μ2, μ3, μ4 such that

[x, y] = δijμ1hβ−αi
, [[x, fj ], y] = −(−1)τiτβ−αi−αj μ3fi,(11.1.3)

[[x, fj ], [ei, y]] = μ2hβ−αi−αj
, [x, [ei, y]] = −(−1)τjτβ−αi−αj μ4ej .(11.1.4)

Induction hypothesis and Lemma 11.1.13 imply that μ3 = μ2 and μ4 = μ2. Then

[[x, ei],[fj , y]] = [x, [ei, [fj , y]]]− (−1)τβ−αi
τi [ei, [x, [fj , y]]]

= [x, [δijhi, y]] + (−1)τiτj [x, [fj , [ei, y]]]
− (−1)τβ−αi

τi [ei, [[x, fj ], y]]− (−1)τβ−αi
(τi+τj)[ei, [fj , [x, y]]]

= −δij〈αi, β − αi〉Bμ1hβ−αi
+ (−1)τiτj [[x, fj ], [ei, y]]

+ (−1)τβτj [fj , [x, [ei, y]]] + (−1)τiτjμ3hi − δij〈β − αi, αi〉Bμ1hi

= −δij〈αi, β − αi〉Bμ1hβ + (−1)τiτjμ2hβ−αi−αj

+ (−1)τiτjμ4hj + (−1)τiτjμ3hi,

where the first two equations follow from the Jacobi identity, the third from (11.1.3)
and the Jacobi identity, and the last one from the symmetry of B and from (11.1.4).
Thus [[x, ei], [fj , y]] ∈ Chβ since μ2 = μ3 = μ4. �

We now start the discussion of contragredient and basic classical Lie superal-
gebras.

Definition 11.1.15. Let g be a Lie superalgebra. A complex valued bilinear
form f on g is called

(1) invariant if f([x, y], z) = f(x, [y, z]) for all x, y, z ∈ g, and
(2) supersymmetric if f(x, y) = (−1)ijf(y, x) for all x ∈ gi, y ∈ gj , and

i, j ∈ Z2.

The Lie superalgebra g is basic classical if g is finite-dimensional, simple (that
is, it has no proper ideals), its even part is a reductive Lie algebra (the direct sum
of abelian and of simple ideals), and g admits a non-degenerate invariant bilinear
form.
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Remark 11.1.16. Let g be a Lie superalgebra and let X ⊆ g be a homogeneous
subset. Suppose that g is generated by X, that is, spanned by iterated brackets
of elements of X. Then a bilinear form f : g × g → C is invariant if and only if
f([x, y], z) = f(x, [y, z]) for all x, z ∈ g and y ∈ X. Indeed, let

g
f = {y ∈ g | ∀x, z ∈ g : f([x, y], z) = f(x, [y, z])}.

Clearly, gf is a subspace of g. Moreover, for any y1 ∈ g
f
i1
, y2 ∈ g

f
i2
, and any x, z ∈ g,

where i1, i2 ∈ Z2,

f([x, [y1, y2]], z) = f([[x, y1], y2], z)− (−1)i1i2f([[x, y2], y1], z)
= f([x, y1], [y2, z])− (−1)i1i2f([x, y2], [y1, z])
= f(x, [y1, [y2, z]])− (−1)i1i2f(x, [y2, [y1, z]])
= f(x, [[y1, y2], z])

by Jacobi identity and the definition of gf . This implies the claim.

Proposition 11.1.17. Let n ∈ N, B ∈ Cn×n, τ ∈ Zn
2 , and g̃ = g̃(B, τ ).

Assume that B is symmetric. There is a unique complex valued invariant bilinear
form (· | ·) on g̃ with

(ei | fi) = (−1)τi(fi | ei) = 1, (hi | hj) = bij , (g̃α | g̃β) = 0

for all 1 ≤ i, j ≤ n and α, β ∈ Zn with β �= −α. This form is Zn-graded, supersym-
metric, and [x, y] = (x | y)hα for all x ∈ g̃α, y ∈ g̃−α, α ∈ Zn.

Proof. Any invariant bilinear form (· | ·) on g̃ is uniquely determined by its
values (x | y) for x ∈ {ei, fi, hi | 1 ≤ i ≤ n} and y ∈ g̃. Thus the uniqueness of (· | ·)
in the Proposition follows from Lemma 11.1.9.

By Lemma 11.1.14 and Lemma 11.1.9 there exists a unique Zn-graded complex
valued bilinear form (· | ·) on g̃ such that

(hi | hj) = bij , [x, y] = (x | y)hα

for all 1 ≤ i, j ≤ n and x ∈ g̃α, y ∈ g̃−α with α ∈ Zn \ {0}. The required properties
of the form, except invariance, are clearly satisfied. By Remark 11.1.16, it suffices
to prove for any y ∈ {hi, ei, fi | 1 ≤ i ≤ n} that ([x, y] | z) = (x | [y, z]). The latter
is clear for y = hi, 1 ≤ i ≤ n, by construction.

Let 1 ≤ i ≤ n, x ∈ g̃α, and z ∈ g̃β with α, β ∈ Zn. Then

([x, ei] | z) = (x | [ei, z])(11.1.5)

whenever α+αi+β �= 0. The same equation also holds if α /∈ Zαi and α+αi+β = 0
because of Lemma 11.1.13. Moreover, if α, β ∈ Zαi and α + αi + β = 0, then the
claim follows by easy calculations using Lemma 11.1.4 and Remark 11.1.7. Finally,
the analog of (11.1.5) with fi instead of ei holds by similar reasons. �

Remark 11.1.18. It is known, that the odd part of a basic classical Lie su-
peralgebra g is an irreducible module over the even part. Basic classical Lie su-
peralgebras are classified by Kac, see [Kac77]. They can be presented as follows
[Kac77, 2.5.1, Th. 3].

Let n ∈ N, τ ∈ Zn
2 , and let B = (bij)1≤i,j≤n ∈ Cn×n be a symmetric matrix.

The center C of the contragredient Lie superalgebra g(B, τ ) is contained in h and
is of dimension at most one. By [Kac77, Prop. 2.5.2], the quotient g(B, τ )/C
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is simple if and only if for all i, j ∈ {1, . . . , n} there exist t ≥ 2 and a family
(ik)1≤k≤t ∈ {1, . . . , n}t such that i = i1, j = it, and

bi1i2bi2i3 · · · bit−1it �= 0.(11.1.6)

(Equivalently, n = 1, b11 �= 0 or n ≥ 2 and B is indecomposable.) In this case,
g(B, τ )/C is a basic classical Lie superalgebra if and only if it is finite-dimensional.

The Lie superalgebra g(B, τ )/C is isomorphic as a Lie superalgebra to the
quotient of g̃ by the radical of the invariant form in Proposition 11.1.17.

11.2. Cartan graphs of regular Kac-Moody superalgebras

In this section we construct the Cartan graph of a regular Kac-Moody super-
algebra attached to a symmetric indecomposable matrix. The construction can be
easily adapted to basic classical Lie superalgebras as well.

Lemma 11.2.1. Let n ∈ N, B ∈ Cn×n, τ ∈ Zn
2 , g̃ = g̃(B, τ ), and 1 ≤ i, j ≤ n.

(1) If i �= j, then for any m ≥ 1,

(ad ej)(ad fi)
m(fj) = (−1)mτiτj bji(ad fi)

m−1(fi),

(ad fj)(ad ei)
m(ej) = (−1)mτiτj (−1)τjbji(ad ei)

m−1(ei).

(2) If τi = 0̄ and i �= j then for any m ≥ 0,

(ad ei)(ad fi)
m(fj) = −m

(m− 1

2
bii + bij

)
(ad fi)

m−1(fj),

(ad fi)(ad ei)
m(ej) = −m

(m− 1

2
bii + bij

)
(ad ei)

m−1(ej).

(3) If τi = 1̄ then for any m ≥ 0,

(ad ei)(ad fi)
m(fj) =

{
−m

2 bii(ad fi)
m−1(fj) if m is even,

−
(
m−1
2 bii + bij

)
(ad fi)

m−1(fj) if m is odd,

(ad fi)(ad ei)
m(ej) =

{
m
2 bii(ad ei)

m−1(ej) if m is even,(
m−1
2 bii + bij

)
(ad ei)

m−1(ej) if m is odd.

Proof. The claim follows by induction on m from the defining relations of
g̃ and the axioms of a Lie superalgebra. (Define xm = (ad fi)

m(fj) for m ≥ 0.
Regarding (2) and (3), prove that [ei, xm] = λmxm−1 for any m ≥ 1, where λm ∈ C,
and that λ1 = −bij and λm = (1−m)bii − bij + (−1)τiλm−1 for any m ≥ 2.) �

Recall from Lemma 11.1.10 the definition of a contragredient Lie superalgebra.

Lemma 11.2.2. Let g be a contragredient Lie superalgebra of rank n ≥ 1 and
let α ∈ Nn

0 with α �= 0.

(1) Let x ∈ gα. If [fi, x] = 0 for all 1 ≤ i ≤ n then x = 0.
(2) Let x ∈ g−α. If [ei, x] = 0 for all 1 ≤ i ≤ n then x = 0.

Proof. (1) Let k be the ideal of n+ = (ñ++r)/r generated by x. Since x ∈ gα,
k becomes an ideal of (ñ+ + h+ r)/r. Since (ad fi)(ñ+) ⊆ ñ+ + h for all 1 ≤ i ≤ n,
the assumption and Jacobi identity imply that (ad fi)(k) ⊆ k for all 1 ≤ i ≤ n.
Hence k = 0 by the definition of g.

(2) is proven similarly to (1). �

The preliminary version made available with permission of the publisher, the American Mathematical Society.



384 11. CARTAN GRAPHS OF LIE SUPERALGEBRAS

Remark 11.2.3. Lemma 11.2.2 implies that for any 1 ≤ i ≤ n, [ei, ei] = 0 in g

if and only if τi = 0̄ or bii = 0. Indeed,

[fi, [ei, ei]] = [[fi, ei], ei] + (−1)τi [ei, [fi, ei]] = (1− (−1)τi)biiei

and [fj , [ei, ei]] = 0 for any j �= i.

Definition 11.2.4. Let n ∈ N, B ∈ Cn×n, and τ ∈ Zn
2 . Assume that for any

1 ≤ i, j ≤ n, bij = 0 implies that bji = 0. For any 1 ≤ i, j ≤ n let

aB,τ
ij = aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if i = j,

0 if i �= j, bij = 0,

−m if i �= j, bij �= 0, τi = 0̄, bij = −m
2 bii,

−1 if i �= j, bij �= 0, τi = 1̄, bii = 0,

−m if i �= j, bij �= 0, τi = 1̄, bij = −m
2 bii, m ≥ 2 is even,

−∞ otherwise.

The matrix AB,τ = (aij)1≤i,j≤n is called the Cartan matrix of the pair (B, τ )
(and of g(B, τ )).

Lemma 11.2.5. Let n ∈ N, B ∈ Cn×n, and τ ∈ Zn
2 such that bij = 0 implies

bji = 0 for any 1 ≤ i, j ≤ n. Let g = g(B, τ ), 1 ≤ i, j ≤ n, and a = aB,τ
ij . Assume

that i �= j.

(1) If a = −∞ then (ad ei)
m(ej) �= 0 and (ad fi)

m(fj) �= 0 in g for all m ≥ 1.
(2) Suppose that a ∈ Z. Then (ad ei)

1−a(ej) = 0, (ad fi)
1−a(fj) = 0, and

[fi, (ad ei)
k(ej)] �= 0, [ei, (ad fi)

k(ej)] �= 0 in g for all 1 ≤ k ≤ −a.

Proof. By Remark 11.1.8, the elements ei and fi with 1 ≤ i ≤ n are non-
zero in g. Now combine Lemmas 11.2.2 and 11.2.1 as well as Remarks 11.1.7 and
11.2.3. �

Definition 11.2.6. Let n ≥ 1, B ∈ Cn×n a symmetric matrix, and τ ∈ Zn
2 .

Let X be the smallest set of pairs (C, σ) containing (B, τ ) such that

(∗) for any (C, σ) ∈ X and any 1 ≤ i ≤ n, such that aij = aC,σ
ij ∈ Z for all

1 ≤ j ≤ n, the pair ri(C, σ) = (C ′, σ′) ∈ Cn×n × Zn
2 is contained in X ,

where c′jk = 〈αj − aijαi, αk − aikαi〉C and σ′
j = σj − aijσi ∈ Z2 for all

1 ≤ j, k ≤ n.

Assume that AC,σ ∈ Zn×n for all (C, σ) ∈ X . Then g(B, τ ) is called a regular Kac-
Moody superalgebra, and the quadruple G = G(I,X , r, A), where I = {1, . . . , n},
r : I × X → X with r(i, (C, σ)) = ri(C, σ), and A = (AC,σ)(C,σ)∈X , is called the
Cartan graph of (B, τ ) and of g(B, τ ).

The terminology for G will be justified in Theorem 11.2.10.

Lemma 11.2.7. Let n ≥ 1, C ∈ Cn×n a symmetric matrix, σ ∈ Zn
2 , and

1 ≤ i ≤ n. Assume that aC,σ
ij ∈ Z for all 1 ≤ j ≤ n. Let (C ′, σ′) = ri(C, σ).

(1) If cii �= 0 then C ′ = C and σ′ = σ.
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(2) Assume that cii = 0. Then C ′ is symmetric and

c′jk =

⎧⎪⎨⎪⎩
−cjk if i = j or i = k,

cjk if i �= j, i �= k, and cijcik = 0,

cjk + cik + cji if i �= j, i �= k, and cijcik �= 0

for any 1 ≤ j, k ≤ n.

Proof. The claim follows from Definition 11.2.4 and the definition of (C ′, σ′).
If cii �= 0, then aij = 2cij/cii for any 1 ≤ j ≤ n, which implies that C ′ = C.
Moreover, if σi �= 0̄ then aij is even for any 1 ≤ j ≤ n, and hence σ′ = σ. If cii = 0,
then the claim follows by direct calculations. �

Remark 11.2.8. Assume that in the setting of Lemma 11.2.7 the matrix C is
decomposable in the sense of Definition 10.1.15. Let I1, I2 be non-empty subsets of
{1, . . . , n} such that I1 ∪ I2 = {1, . . . , n}, I1 ∩ I2 = ∅, i ∈ I1, and cjk = 0 for any
j ∈ I1, k ∈ I2. Then the lemma implies that C ′ is decomposable and that cjk = c′jk
whenever j ∈ I2 or k ∈ I2, since cijcik = 0 for these pairs (j, k). Similarly, σ′

j = σj

for any j ∈ I2.

Lemma 11.2.9. Let n ≥ 1, C ∈ Cn×n a symmetric matrix, σ ∈ Zn
2 , and

1 ≤ i ≤ n. Assume that aij = aC,σ
ij ∈ Z for all 1 ≤ j ≤ n. Let (C ′, σ′) = ri(C, σ)

and let

e′i = fi, f
′
i = (−1)σiei, e

′
j = (ad ei)

−aij (ej), f
′′
j = (ad fi)

−aij (fj) ∈ g(C, σ)

for all 1 ≤ j ≤ n with j �= i. Then there is a unique isomorphism of Lie superalge-
bras Ri : g(C

′, σ′)→ g(C, σ) with

Ri(ej) = e′j , Ri(fj) = f ′
j for all 1 ≤ j ≤ n,

where f ′
j = (e′j | f ′′

j )
−1f ′′

j for all 1 ≤ j ≤ n with j �= i. Moreover,

Ri(g(C
′, σ′)α) = g(C, σ)si(α)

for any α ∈ Zn, where si ∈ Aut(Zn) is defined by si(αj) = αj − aC,σ
ij αi for all

1 ≤ j ≤ n.

Proof. By construction, e′j , f
′′
j (where f ′′

i = f ′
i) have Z2-degree σ′

j for all

1 ≤ j ≤ n. For all 1 ≤ j ≤ n let h′
j = hj − aijhi ∈ h. Then

[h′
j , h

′
k] = 0, [h′

j , e
′
k] = c′jke

′
k, [h′

j , f
′′
k ] = −c′jkf

′′
k

for all 1 ≤ j, k ≤ n by Definition 11.2.6. Moreover,

[e′i, f
′
i ] = (−1)σi [fi, ei] = −[ei, fi] = h′

i,

[e′i, f
′′
j ] = [fi, (ad fi)

−aij (fj)] = 0,

[f ′
i , e

′
j ] = (−1)σi [ei, (ad ei)

−aij (ej)] = 0

for all 1 ≤ j ≤ n with j �= i by the definitions and by Lemma 11.2.5(2). For any
1 ≤ j ≤ n with j �= i we obtain from Proposition 11.1.17 that

[e′j , f
′′
j ] = (e′j | f ′′

j )h
′
j .

Moreover, the invariance of (· | ·) and Lemma 11.2.5(2) imply that in this setting
(e′j | f ′′

j ) �= 0 and hence f ′
j is well-defined and [e′j , f

′
j ] = h′

j . Also, for 1 ≤ j, k ≤ n
with j, k �= i and j �= k we know that [e′j , f

′
k] = 0 by degree reasons. Thus there is a
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unique homomorphism R̃i : g̃(C
′, σ′) → g(C, σ) of Lie superalgebras sending ej to

e′j and fj to f ′
j for all 1 ≤ j ≤ n. Since e′i = fi and f ′

i = (−1)σiei, Lemma 11.2.5(2)

implies that ej , fj ∈ R̃i(g̃(C
′, σ′)) for all 1 ≤ j ≤ n, and hence R̃i is surjective.

Moreover,

R̃i(g̃α) = gsi(α)(11.2.1)

for all α ∈ Zn, where si ∈ (Aut(Zn)) with si(αj) = αj−aijαi for all 1 ≤ j ≤ n. We

conclude that R̃i(r) is an ideal of g(C, σ) contained in n+ + n− and hence 0. Thus

R̃i induces a surjective map Ri : g(C
′, σ′)→ g(C, σ) of Lie superalgebras. Clearly,

Ri restricted to h is injective, and hence ker(Ri) is an ideal of g(C ′, σ′) contained
in n+ + n−. But 0 is the only such ideal of g(C ′, σ′), and hence Ri is bijective. The
last claim follows from (11.2.1). �

Theorem 11.2.10. The Cartan graph of a regular Kac-Moody superalgebra is
a connected Cartan graph in the sense of Definition 9.1.14.

Proof. Let n ≥ 1, B ∈ Cn×n a symmetric matrix, and τ ∈ Zn
2 . Assume

that g(B, τ ) is a regular Kac-Moody superalgebra. Let G = G(I,X , r, A) be the
Cartan graph of (B, τ ). Thus, AC,σ ∈ Zn×n for all (C, σ) ∈ X . By assumption,
r : I × X → X and A : I × I × X → Z are well-defined maps. We have to prove
axioms (CG1)–(CG4) of a Cartan graph. Connectedness follows from the definition
of X .

Axioms (CG1) and (CG2) follow easily from Lemma 11.2.7 and Definition
11.2.4. Hence G is a semi-Cartan graph. In order to verify Axioms (CG3) and
(CG4), for any (C, σ) ∈ X let

Δ(C,σ) = {α ∈ Zn \ {0} | g(C, σ)α �= 0}.(11.2.2)

Then Δ(C,σ) ⊆ NI
0 ∪ −NI

0 by Lemma 11.1.9. Lemma 11.2.9 implies that for all

(C, σ) ∈ X , Δri(C,σ) = s
(C,σ)
i (Δ(C,σ)). Hence

Δ(C,σ) re ⊆Δ(C,σ) ⊆ NI
0 ∪ −NI

0

for all (C, σ) ∈ X , that is, Axiom (CG3) is fulfilled.
Let i, j ∈ I and X = (C, σ) ∈ X . Assume that i �= j and mX

ij < ∞. Then

F (idX(sisj)
mX

ij ) = idZn by Theorem 9.2.23. Let (C ′, σ′) = (rjri)
mX

ij (X). In order
to prove (CG4), we have to show that (C ′, σ′) = (C, σ).

Assume first that C is indecomposable. Lemma 11.2.9 implies that there is
an isomorphism ϕ : g(C, σ) → g(C ′, σ′) of Lie superalgebras such that for all
α ∈ Zn, ϕ(g(C, σ)α) = g(C ′, σ′)α. Thus (C ′, σ′) = (C, σ) by Lemma 11.1.11 and
Remark 11.1.12, since C is indecomposable. Hence Axiom (CG4) is fulfilled in this
case.

Finally, assume that C is decomposable. Let I1, I2 be non-empty subsets of
{1, . . . , n} such that I1 ∪ I2 = {1, . . . , n}, I1 ∩ I2 = ∅, and ckl = 0 whenever k ∈ I1,
l ∈ I2. If i ∈ I1 and j ∈ I2, then mX

ij = 2 and Remark 11.2.8 implies that

rjri(C, σ) = rirj(C, σ).

Hence (rjri)
mX

ij (C, σ) = (C, σ) by (CG1). On the other hand, if i, j ∈ I1, then
Remark 11.2.8 implies that ri, rj don’t change the block decomposition of C and
the entries of C and σ in the components away from i, j. Moreover, Corollary 9.2.20
implies that mX

ij = mX
ij does not change by passing from G to its restriction to I1.
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Thus (rjri)
mX

ij (C, σ) = (C, σ) by the previous paragraph applied to the restriction
of G to I1. This completes the proof. �

Remark 11.2.11. It is known that the Cartan graph of a regular Kac-Moody
superalgebra is not standard in general, and some points may have Cartan matrices
which are not of finite type. Further, a regular Kac-Moody superalgebra may have
roots which are the double of another root, which is due to the fact that [ei, ei] may
be non-zero for some 1 ≤ i ≤ n.

Corollary 11.2.12. Let n ≥ 1, B ∈ Cn×n a symmetric matrix, and τ ∈ Zn
2 .

Assume that g(B, τ ) is finite-dimensional. Then G = G(I,X , r, A) is a finite Cartan
graph.

Proof. As argued in the proof of Theorem 11.2.10, Δ(C,σ) re ⊆Δ(C,σ) for any
(C, σ) ∈ X . Since g(B, τ ) is finite-dimensional, the set Δ(B,τ) is finite. Since G is
connected, it is a finite Cartan graph. �

Example 11.2.13. Here we construct explicitly the Cartan graph of the regular
Kac-Moody superalgebra g = g(B, τ ) with

B =

⎛⎝ 0 −1 0
−1 2 −2
0 −2 4

⎞⎠ , τ = (1̄, 0̄, 0̄).

This Lie superalgebra is usually denoted by C(3) or osp(2|4). By Definition 11.2.4,
the Cartan matrix of g is

A =

⎛⎝ 2 −1 0
−1 2 −2
0 −1 2

⎞⎠ ,

and r2(B, τ ) = r3(B, τ ) = (B, τ ) by Lemma 11.2.7. Let (B′, τ ′) = r1(B, τ ). Then

B′ =

⎛⎝0 1 0
1 0 −2
0 −2 4

⎞⎠ , τ ′ = (1̄, 1̄, 0̄).

by Definition 11.2.6 and by Lemma 11.2.7. The Cartan matrix of (B′, τ ′) is

A′ =

⎛⎝ 2 −1 0
−1 2 −1
0 −1 2

⎞⎠ .

Then r1(B
′, τ ′) = r3(B

′, τ ′) = (B, τ ). Let (B′′, τ ′′) = r2(B
′, τ ′). Then

B′′ =

⎛⎝ 2 −1 −1
−1 0 2
−1 2 0

⎞⎠ , τ ′′ = (0̄, 1̄, 1̄),

and the Cartan matrix of (B′′, τ ′′) is

A′′ =

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ ,

which is not of finite type.
Continuing this way we obtain that r1(B

′′, τ ′′) = (B′′, τ ′′), r2(B
′′, τ ′′) = (B′, τ ′)

and r3(B
′′, τ ′′) is the pair (B′, τ ′) up to permutation of the indices 2 and 3 in
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{1, 2, 3}. The exchange graph of G is displayed in Figure 11.2.1. Instead of a pair
(C, σ) for a point of G we write C in top of σ.

⎛
⎝ 0 −1 0

−1 2 −2
0 −2 4

⎞
⎠

(1̄, 0̄, 0̄)

1

⎛
⎝0 1 0

1 0 −2
0 −2 4

⎞
⎠

(1̄, 1̄, 0̄)

���
2 ⎛

⎝ 2 −1 −1
−1 0 2
−1 2 0

⎞
⎠

(0̄, 1̄, 1̄)���
3

⎛
⎝ 0 0 −1

0 4 −2
−1 −2 2

⎞
⎠

(1̄, 0̄, 0̄)

1
⎛
⎝0 0 1

0 4 −2
1 −2 0

⎞
⎠

(1̄, 0̄, 1̄)

Figure 11.2.1. Exchange graph of the Lie superalgebra osp(2|4)

11.3. Notes

11.1. For a much more detailed exposition of the theory of Lie superalgebras
and historical remarks we refer to [Mus12] and [BM+92].

11.2. Our definition of a regular Kac-Moody superalgebra follows [HS07].
In [Ser11], the Weyl groupoid of a contragredient Lie superalgebra is defined.
This Weyl groupoid of a regular Kac-Moody superalgebra and our definition of
the Weyl groupoid of the Cartan graph of a regular Kac-Moody superalgebra are
different, but closely related. Note that the former has more objects and more
(iso)morphisms.
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CHAPTER 12

A braided monoidal isomorphism
of Yetter-Drinfeld modules

Let H be a Hopf algebra with bijective antipode, and C = H
HYD. We discuss

dual pairs (A,B) of graded Hopf algebras in C and rational modules over graded
algebras. In this context, there is a monoidal isomorphism between categories of
comodules and of rational modules. In Theorem 12.3.2 we construct a braided
monoidal isomorphism

(Ω, ω) : BBYD(C)rat → A
AYD(C)rat

between categories of rational Yetter-Drinfeld modules. In the applications in Chap-
ter 13, the dual pair (A,B) is the pair (B(V ∗),B(V )) of Corollary 7.2.8, where V
is a finite-dimensional object in H

HYD.
In Theorem 12.3.3, we construct a Hopf algebra isomorphism T which relates

K#B and Ω(K)#A, where K is a Hopf algebra in B
BYD(C)rat. In the applications

later, V = Mi is irreducible, K#B(Mi) is the Hopf algebra of a Nichols system,
and Ω(K)#B(M∗

i ) is the Hopf algebra of the i-th reflection of the Nichols system.
The Hopf algebra isomorphism T is then used in Section 12.4 to compare one-

sided coideal subalgebras of K#B and of Ω(K)#A. In our theory, T plays the
role of the Lusztig isomorphisms of quantum groups to construct right coideal
subalgebras and PBW-bases of Nichols systems and Nichols algebras.

Most of this Chapter depends on the general theory of braided strict monoidal
categories in Chapter 3.

12.1. Dual pairs of Yetter-Drinfeld Hopf algebras

Recall the notion of a Hopf pairing in a braided strict monoidal category from
Definition 3.3.7.

Definition 12.1.1. Let A =
⊕

n≥0 A(n) and B =
⊕

n≥0 B(n) be locally finite

N0-graded Hopf algebras in C = H
HYD, and

〈 , 〉 : A⊗B → k, a⊗ b �→ 〈a, b〉,

a Hopf pairing in C. Then (A,B, 〈 , 〉) is called a dual pair of locally finite
N0-graded Hopf algebras in C if 〈 , 〉 is non-degenerate, and if

〈A(m), B(n)〉 = 0 for all m �= n.(12.1.1)

Remark 12.1.2. Let A =
⊕

n≥0 A(n) and B =
⊕

n≥0 B(n) be locally finite

N0-graded Hopf algebras in C = H
HYD, and 〈 , 〉 : A ⊗ B → k a bilinear non-

degenerate form satisfying (12.1.1). Then (A,B, 〈 , 〉) is a dual pair of locally finite

391
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N0-graded Hopf algebras in C if and only if the following axioms hold.

〈h · a, b〉 = 〈a,S(h) · b〉,(12.1.2)

a(−1)〈a(0), b〉 = S−1(b(−1))〈a, b(0)〉,(12.1.3)

〈a, bb′〉 = 〈a(1), b′〉〈a(2), b〉, 〈1, b〉 = ε(b),(12.1.4)

〈aa′, b〉 = 〈a, b(2)〉〈a′, b(1)〉, 〈a, 1〉 = ε(a),(12.1.5)

for all a, a′ ∈ A, b, b′ ∈ B and h ∈ H.

The bilinear form 〈 , 〉 : A⊗ B → k is a morphism in C if and only if (12.1.2)
and (12.1.3) are satisfied, and it is a Hopf pairing in C if and only if (12.1.2)–(12.1.5)
are satisfied.

In (12.1.4) and (12.1.5), the equations

〈a, bb′〉 = 〈a(1), b〉〈a(2), b′〉,
〈aa′, b〉 = 〈a, b(1)〉〈a′, b(2)〉

seem to look more natural. But for braided monoidal categories the natural defini-
tion of a Hopf pairing is given in Definition 3.3.7.

In view of (12.1.1), non-degeneracy of the pairing means that for all n ∈ N0,
the maps

A(n)→ (B(n))∗, a �→ (b �→ 〈a, b〉),
B(n)→ (A(n))∗, b �→ (a �→ 〈a, b〉),

are isomorphisms.
If we extend the N0-gradings to Z-gradings by A(n) = 0, B(n) = 0 for all

n < 0, and if we define a new Z-grading on A by deg(A(n)) = −n for all n ∈ Z (as
we will do later for A = B(M∗)), then (12.1.1) just says that 〈 , 〉 : A ⊗ B → k is
Z-graded. Here, the grading of k is given by k(n) = 0, if n �= 0, and k(0) = k.

The main example we have in mind comes from the theory of Nichols algebras.
If V ∈ C is a finite-dimensional object, then by Corollary 7.2.8, there is a bilinear
form

〈 , 〉 : B(V ∗)⊗ B(V )→ k

such that (B(V ∗),B(V ), 〈 , 〉) is a dual pair of locally finite N0-graded Hopf algebras
in C.

We note that finite-dimensional (non-graded) Hopf algebras in C and their
opcop-duals are another example.

Proposition 12.1.3. Let R be a Hopf algebra in H
HYD

fd
, and R∗ its left dual.

Then (R∗op cop, R, 〈 , 〉) is a dual pair of locally finite N0-graded Hopf algebras,
where 〈 , 〉 is the evaluation map

R∗ ⊗R → k, f ⊗ x �→ f(x),

and where R(n) = 0, R∗(n) = 0 for all n �= 0, and R(0) = R, R∗(0) = R∗.

Proof. By Corollary 4.2.6, R∗ is a Hopf algebra in H
HYD

fd
with multiplication

and comultiplication defined for all f, g ∈ R∗ and x, y ∈ H by

(fg)(x) = f((x(1))(0))g((x
(1))(−1) · x(2)),(12.1.6)

f(xy) = f (1)(x(0))f
(2)(x(−1) · y),(12.1.7)
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where ΔR(x) = x(1) ⊗ x(2), μR(x ⊗ y) = xy. R∗opcop = ((R∗)op)cop is the Hopf
algebra

(R∗, μR∗cR∗,R∗ , ηR∗ , cR∗,R∗ΔR∗ , εR∗ ,SR∗).

By Theorem 4.4.11(1), the antipode of R is bijective. Hence R∗opcop is a Hopf

algebra in H
HYD

fd
by Corollary 3.2.16(2). For all f, g ∈ R∗ let

f ◦ g = g(0)(S−1(g(−1)) · f), f [1] ⊗ f [2] = (f (1))(−1) · f (2) ⊗ (f (1))(0).

Then f ◦ g is the multiplication of f ⊗ g and f [1] ⊗ f [2] is the comultiplication of f
with respect to R∗opcop. For all x, y ∈ R,

f [2](x)f [1](y) = (f (1))(0)(x)
(
(f (1))(−1) · f (2)

)
(y)

=
(
(f (1))(−1)(f

(1))(0)(x) · f (2)
)
(y)

= f(xy),

where the last equality follows from Lemma 4.2.2(1) and (12.1.7), and

(f ◦ g)(x) =
(
g(0)(S−1(g(−1)) · f)

)
(x)

= g(0)((x
(1))(0))(S−1(g(−1)) · f)((x(1))(−1) · x(2))

= g(x(1))f(x(2)),

where the second equation follows from (12.1.6) and the last from Lemma 4.2.2(1).
We have shown (12.1.4) and (12.1.5) for (R∗op cop, R, 〈 , 〉), since the claims for unit
and counit are obvious. �

Proposition 12.1.4. Let (A,B, 〈 , 〉) be a dual pair of locally finite N0-graded
Hopf algebras in C.

(1) The antipodes of A and B and of their bosonizations are bijective.
(2) For all a ∈ A, b ∈ B,

〈SA(a), b〉 = 〈a,SB(b)〉.(12.1.8)

(3) Define 〈 , 〉+ = 〈 , 〉c(SB ⊗ SA) : B ⊗A → k. Then

〈b, a〉+ = 〈a,S2(b)〉(12.1.9)

for all b ∈ B, a ∈ A, where S is the antipode of B#H, and (B,A, 〈 , 〉+)
is a dual pair of locally finite Hopf algebras in C.

Proof. (1) By Theorem 4.4.11(1), the antipode of a finite-dimensional Hopf
algebra in C is bijective. Hence (1) follows from Proposition 6.4.2 and Corol-
lary 3.8.11. (2) follows from Proposition 3.3.8(1).

(3) For all b ∈ B and a ∈ A,

〈b, a〉+ = 〈SA(b(−1) · a),SB(b(0))〉
= 〈b(−1) · a,S2

B(b(0))〉 (by (12.1.8))

= 〈a,S2
B(S(b(−1)) · b(0))〉 (by (12.1.2))

= 〈a,S2(b)〉. (by Corollary 4.3.5(2)(a))

By Proposition 3.3.8(2), 〈 , 〉+ is a Hopf pairing in C. Hence (3) follows, since
S2 : B → B is graded by Corollary 5.1.3 and bijective by (1). �
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12.2. Rational modules

Let A and B be objects in C = H
HYD, and 〈 , 〉 a pairing of A,B in C, that is,

a morphism 〈 , 〉 : A⊗B → k, a⊗ b �→ 〈a, b〉, in C. For subsets X ⊆ A and Y ⊆ B,
we define

X⊥ = {b ∈ B | 〈x, b〉 = 0 for all x ∈ X},
Y ⊥ = {a ∈ A | 〈a, y〉 = 0 for all y ∈ Y }.

The pairing 〈 , 〉 is non-degenerate, if A⊥ = 0 and B⊥ = 0.

Remark 12.2.1. Let A,B ∈ C and 〈 , 〉 a pairing in C.
(1) Let E ⊆ A and F ⊆ B be subobjects in C. Then E⊥ ⊆ B and F⊥ ⊆ A are

subobjects in C.
(2) Assume that the pairing 〈 , 〉 is non-degenerate and B is finite-dimensional.

Then the map

A → B∗, a �→ (b �→ 〈a, b〉),(12.2.1)

is an isomorphism in C, where B∗ is the left dual of B of Definition 4.2.3. Let
(bi)1≤i≤n be a basis of B with dual basis (fi)1≤i≤n of B∗. For all i, let ai be the
inverse image of fi under the isomorphism (12.2.1). It follows from Lemma 4.2.2
that (A, evB, coevB) is a left dual of B, where

evB = 〈 , 〉, coevB : k→ B ⊗A, 1 �→
n∑

i=1

bi ⊗ ai.

(3) Let F ⊆ B in C be a finite-dimensional subobject in C. Then

A/F⊥ ⊗ F → k, a⊗ b �→ 〈a, b〉,(12.2.2)

is a non-degenerate pairing in C, if A⊥ = 0.

Let V,W ∈ C, and 〈 , 〉 a pairing of A,B in C. We denote by HomC,rat(A⊗V,W )
the set of all g in HomC(A⊗V,W ) such that for all v ∈ V there is a finite-dimensional
subobject F ⊆ B in C with g(F⊥ ⊗ v) = 0.

Proposition 12.2.2. Let A,B ∈ C, 〈 , 〉 a non-degenerate pairing of A,B in
C, and W ∈ C. Assume that for any b ∈ B there is a finite-dimensional subobject
F ⊆ B in C containing b. For all V ∈ C, the map

DV : HomC(V,B ⊗W )→ HomC,rat(A⊗ V,W ),

f �→ (A⊗ V
idA⊗f−−−−→ A⊗B ⊗W

〈 , 〉⊗idW−−−−−−→ W ),

is bijective.

Proof. (1) Let f ∈ HomC(V,B ⊗W ), and g = DV (f). For each v ∈ V there
is a finite-dimensional subobject F ⊆ B in C with f(v) ∈ F ⊗W . This follows from
the assumption on B. Hence g(F⊥ ⊗ v) = 0. Thus DV is well-defined. Note that
DV is injective.

(2) Assume that B is finite-dimensional. Since (A, 〈 , 〉, coevB) is a left dual of
B by Remark 12.2.1(2), DV is bijective by (3.5.3).

(3) Let V ′ ⊆ V be a finite-dimensional H-subcomodule. Then HV ′ ⊆ V is a
subobject in C. Assume that HV ′ = V . We prove that then DV is surjective.
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Let g ∈ HomC,rat(A ⊗ V,W ). Since V ′ is finite-dimensional, there is a finite-
dimensional subobject F ⊆ B in C with g(F⊥⊗V ′) = 0. By Remark 12.2.1(1), F⊥

is an H-submodule of A. Thus for all h ∈ H,

g(F⊥ ⊗ hV ′) = h(2)g(S−1(h(1))F
⊥ ⊗ V ′) = 0.

Hence g(F⊥ ⊗ V ) = 0. The pairing

A/F⊥ ⊗ F → k, a⊗ b �→ 〈a, b〉,

is non-degenerate. By (2), the map

DV : HomC(V, F ⊗W )→ HomC(A/F⊥ ⊗ V,W )

for this pairing is bijective. Let f ∈ HomC(V, F ⊗ W ) be the inverse of g in
HomC(A/F⊥⊗V,W ), where g is induced by g. Then f composed with the inclusion
F ⊗W → B ⊗W is the preimage of g under D.

(4) The family (DV )V ∈C is a natural transformation. Let

U = {HV ′ | V ′ ⊆ V finite-dimensional H-subcomodule}.

Note that for all U1, U2 ∈ U there is an element U ∈ U with U1 ⊆ U and U2 ⊆ U ,
since U is closed under sums. By Theorem 2.1.3, V is the union of all U ∈ U . Let
g ∈ Homrat(A ⊗ V,W ). For any U ∈ U , let gU be the restriction of g to A ⊗ U .
It follows from (3) that for any U there is a morphism fU : U → B ⊗ W in C
with DU (fU ) = gU . For all U1, U2 ∈ U with U1 ⊆ U2, fU2

|U1 = fU1
, since DU1

is
injective. Hence the maps fU define a linear map f : V → B⊗W by f(v) = fU (v),
where U is an element in U containing v. Then D(f) = g. �

Definition 12.2.3. Let R =
⊕

n≥0 R(n) be an N0-graded algebra (in Mk). A
left or right R-module X is called rational if for any element x ∈ X there is a
natural number n0 such that R(n)x = 0 and xR(n) = 0 for all n ≥ n0, respectively.

Let R be a left H-module algebra, and R#H the corresponding smash product
algebra. A left or right R#H-module V is called rational over R if V is a
rational R-module by restriction. We denote the categories of left and of right
R#H-modules which are rational over R by R#HMrat and ratMR#H , respectively.

Let R be an N0-graded algebra in C. The subcategories of rational left and
rational right R-modules in C are denoted by RCrat and ratCR, respectively.

Lemma 12.2.4. Let R =
⊕

n≥0 R(n) be an N0-graded Hopf algebra in C with
bosonization R#H.

(1) R#HMrat is a monoidal subcategory of R#HM which is closed under ar-
bitrary direct sums, subobjects and quotient objects.

(2) RCrat is a monoidal subcategory of RC which is closed under arbitrary
direct sums, subobjects and quotient objects in RC.

(3) The tensor algebra of any V ∈ R#HMrat is an object in R#HMrat. The

Nichols algebra B(V ) of any V ∈ R#H
R#HYD is rational over R if V is.

(4) Let A be a left R#H-module algebra, and V ⊆ A an R#H-submodule
which is rational over R. Assume that A is generated as an algebra by V .
Then A is rational over R.

Proof. (1) Let V,W ∈ R#HMrat, v ∈ V , w ∈ W . Then there is a natural
number n0 such that such that (R(n)#1)v = 0, (R(n)#1)w = 0 for all n ≥ n0.
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Note that (R(n)#H)v = 0 for all n ≥ n0, since

(1#h(2))(S−1(h(1)) · r#1)v = (r#h)v

for all h ∈ H, r ∈ R.

Let n ≥ 2n0 and r ∈ R(n). Then (r#1)(v⊗w) = (r(1)#r
(2)
(−1))v⊗(r

(2)
(0)#1)w = 0,

since ΔR(r) = r(1) ⊗ r(2) ∈
⊕

i+j=n R(i)⊗R(j).

The remaining claims in (1) are obvious.
(2) follows from (1), since the functor F1 : R(

H
HYD) → R(HM) ∼= R#HM of

Definition 3.8.3 is strict monoidal by Proposition 3.8.4(3).
(3) follows from (1).
(4) Since A is a left R#H-module algebra, and the algebra A is generated by

V , A is an R#H-module quotient of T (V ). Hence A is rational as an R-module by
(3). �

We want to restrict the Yetter-Drinfeld criterion in Proposition 3.4.5(2) to
rational left modules.

Lemma 12.2.5. Let R be a Hopf algebra in C and (V, λ) ∈ RC, (V, δ) ∈ RC with
V ∈ C. Let X ∈ RC, and assume that there is an index set I, a family Xi, i ∈ I, of
objects in RC, and morphisms fi : X → Xi in RC for all i ∈ I with

⋂
i∈I ker(fi) = 0.

If cYD
V,Xi

is a morphism in RC for all i ∈ I, then cYD
V,X is a morphism in RC.

Proof. Let c = cYD
V,X and ci = cYD

V,Xi
, i ∈ I. For all i ∈ I, the diagrams

V ⊗X

id⊗fi

��

c �� X ⊗ V

fi⊗id

��

V ⊗Xi
ci �� Xi ⊗ V

commute, since the fi are left R-linear. Hence for all r ∈ R, v ∈ V and x ∈ X,

(fi ⊗ id)(c(r(v ⊗ x))) = ci(id⊗ fi)(r(v ⊗ x)) = rci(id⊗ fi)(v ⊗ x)

= (fi ⊗ id)(rc(v ⊗ x)),

and c(r(v⊗ x))− rc(v⊗ x) ∈
⋂

i∈I ker(fi⊗ id) = 0. Thus c is an R-linear map. �
Proposition 12.2.6. Let R be an N0-graded Hopf algebra in C, V an object in

C, (V, λ) ∈ RC, and (V, δ) ∈ RC. The following are equivalent.

(1) For all (X,λX) ∈ RCrat,

cYD
V,X =

(
V ⊗X

δ⊗id−−−→ R⊗ V ⊗X
id⊗cV,X−−−−−→ R⊗X ⊗ V

λX⊗id−−−−→ X ⊗ V
)

is a morphism in RC.
(2) V ∈ R

RYD(C).

Proof. (1) ⇒ (2). By Proposition 3.4.5, it is enough to prove that

cYD
V,R : V ⊗R → R⊗ V

is left R-linear, where R is a left R-module by multiplication in R. For all n ≥ 0,
let Xn = R/

⊕
i≥n R(i) with left (and right) R-linear quotient map πn : R → Xn.

Then
⋂

n≥0 ker(πn) = 0, R(m)Xn = 0 for all m ≥ n, and Xn is a rational R-module

quotient of R. Hence by Lemma 12.2.5, cYD
V,R is left R-linear.

(2) ⇒ (1) is clear from Proposition 3.4.5. �
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Proposition 12.2.7. Let (A,B, 〈 , 〉) be a dual pair of locally finite N0-graded
Hopf algebras in C. The functor

D
l
: BC → AcopCrat, (V, δ) �→ (V, λ),

where λ =
(
A⊗V

id⊗δ−−−→ A⊗B⊗V
〈 , 〉⊗id−−−−−→ V

)
, and where morphisms f are mapped

onto f , is a strict monoidal isomorphism of categories.

Proof. (1) Let V be an object in C = H
HYD. By Proposition 12.2.2,

DV : HomC(V,B ⊗ V )→ HomC,rat(A⊗ V, V ),

δ �→ λ = (〈 , 〉 ⊗ idV )(idV ⊗ δ),

is bijective. Note that HomC,rat(A ⊗ V, V ) is the set of all λ in HomC(A ⊗ V, V )
such that for all v ∈ V there is a natural number n0 with λ(A(n)⊗ v) = 0 for all
n ≥ n0.

We claim that the map

{δ | (V, δ) ∈ BC} → {λ | (V, λ) ∈ ACrat}, δ �→ DV (δ),

is bijective. Let δ ∈ HomC(V,B ⊗ V ), and λ = DV (δ) ∈ HomC,rat(A ⊗ V, V ), We
have to show that (V, δ) ∈ BC if and only if (V, λ) ∈ AC.

Let v ∈ V . We introduce the notation

v[−1] ⊗ v[0] = δ(v), av = λ(a⊗ v), for all a ∈ A.

The following are equivalent, since the pairing is non-degenerate.

(a) v[−1] ⊗ (v[0])[−1] ⊗ (v[0])[0] = ΔB(v[−1])⊗ v[0].
(b) For all a, a′ ∈ A,

〈a, v[−1]〉〈a′, (v[0])[−1]〉(v[0])[0] = 〈a, (v[−1])
(1)〉〈a′, (v[−1])

(2)〉v[0].
This proves our claim, since (a) is equivalent to (idB ⊗ δ)δ = (ΔB ⊗ idV )δ, and (b)
to the equality a′(av) = (a′a)v for all a, a′ ∈ A by (12.1.5). Note that by (12.1.4),
1v = ε(v[−1])v[0].

(2) Let (V, δ), (V ′, δ′) ∈ BC, and (V, λ), (V ′, λ′) the corresponding modules in

ACrat, where λ = DV (δ), λ
′ = DV ′(δ′). It is easy to see that a map f ∈ HomC(V, V

′)
is B-colinear if and only if is A-linear. Since ACrat is a monoidal subcategory of AC
by Lemma 12.2.4(1), the Proposition follows from (1) and Proposition 3.3.9. �

Definition 12.2.8. Let R be an N0-graded algebra and C an N0-graded coal-
gebra in C. For all X ∈ RC, (Y, δY ) ∈ CC, and n ≥ 0 let

FnX = {x ∈ X | R(i)x = 0 for all i > n},(12.2.3)

FnY = {y ∈ Y | δY (y) ∈
n⊕

i=0

C(i)⊗ Y }.(12.2.4)

Lemma 12.2.9. Let R be an N0-graded algebra and C an N0-graded coalgebra
in C, (X,λX) ∈ RC, and (Y, δY ) ∈ CC.

(1) (FnX)n≥0 is an N0-filtration in C of the largest rational R-submodule of
X.

(2) (FnY )n≥0 is an N0-filtration in C of Y .
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Proof. (1) Let x ∈ X and i ∈ N0, and assume that R(i)x = 0. Then for all
r ∈ R(i),

(a) 0 = h(2)((S−1(h(1)) · r)x) = r(h · x), since λX is H-linear, and R(i) ⊆ R is
an H-submodule.

(b) 0 = r(−1) ⊗ δ(r(0)x) = r(−2) ⊗ r(−1)x(−1) ⊗ r(0)x(0), since λX is H-colinear,
and R(i) is an H-subcomodule. Hence 0 = x(−1) ⊗ rx(0).

By (a) and (b), FnX ⊆ X is a subobject in C for all n ∈ N0. By the definition
of rational R-modules,

⋃
n≥0 FnX is the largest rational R-submodule of X.

(2) Let n ∈ N0. Since δY is a map in C, and
⊕n

i=0 C(i) ⊗ Y ⊆ C ⊗ Y is a
subobject in C, (2) follows. �

Lemma 12.2.10. Let (A,B, 〈 , 〉) be a dual pair of locally finite N0-graded Hopf
algebras in C, and V ∈ BC.

(1) FnD
l
(V ) = FnV for all n ≥ 0.

(2) We view A and B as Z-graded Hopf algebras in C, where for all n < 0,

A(n) = 0 and B(n) = 0. If V is a Z-graded B-comodule, then D
l
(V ) is a

Z-graded A-module with D
l
(V )(n) = V (−n) for all n ∈ Z.

Proof. (1) For all i ≥ 0, the kernel of the induced map

B ⊗ V → Hom(A(i), V ), b⊗ v �→ (a �→ 〈a, b〉v)

is
⊕

j �=i B(j)⊗ V by (12.1.1) and non-degeneracy of the form. This implies (1).

(2) Let m,n ∈ Z. Then

A(m)D
l
(V )(n) = A(m)V (−n) ⊆ V (−m− n) = D

l
(V )(m+ n),

since δ(V (−n)) ⊆
⊕

i+j=−n B(i)⊗ V (j). �

Lemma 12.2.11. Let R be an N0-graded Hopf algebra in C, V = (V, δ) ∈ RC,

and m ∈ Z. Define δ(m) =
(
V

δ−→ R⊗ V
S2m
R ⊗id−−−−−→ R ⊗ V

c2mR,V−−−→ R⊗ V
)
.

(1) V (m) = (V, δ(m)) is an object in RC.
(2) For all n ≥ 0, FnV = FnV (m).
(3) If V is a Z-graded object in RC, then V (m) with the grading of V is a

Z-graded object in RC.

Proof. (1) follows from Corollary 3.3.6, since

(F rl
+ F lr

+ )m(V ) = V (m), (F rl
− F lr

− )m(V ) = V (−m)

for all m ≥ 0.
(2) and (3) are obvious, since c2mR,V (S2m

R ⊗ id)(R(n)⊗ V ′) = R(n) ⊗ V ′ for all

n ≥ 0 and all subobjects V ′ ⊆ V in C. �

12.3. The braided monoidal isomorphism (Ω, ω)

For an N0-graded Hopf algebra A in C = H
HYD we denote by A

AYD(C)rat and

ratYD(C)AA the full subcategories of the left and the right Yetter-Drinfeld modules
over A which are rational A-modules, respectively.

In this section we assume that (A,B, 〈 , 〉) is a dual pair of locally finite
N0-graded Hopf algebras in C.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



12.3. THE BRAIDED MONOIDAL ISOMORPHISM (Ω, ω) 399

The main results are Theorem 12.3.2, which says that there is an isomor-

phism (Ω, ω) : BBYD(C)rat
∼=−→ A

AYD(C)rat of braided monoidal categories, and Theo-
rem 12.3.3, which describes for any Hopf algebra K in B

BYD(C)rat the bosonization
Ω(K)#A in terms of K.

We begin with a result on categories of Yetter-Drinfeld modules which is very
similar to Theorem 3.4.16. There we assumed strict monoidal isomorphisms be-
tween module categories and between comodule categories to derive a braided
monoidal isomorphism of Yetter-Drinfeld modules. Here we do the same assuming
isomorphisms between module and comodule categories.

Recall from Proposition 3.3.8 that

〈 , 〉+ = 〈 , 〉cB,A(SB ⊗ SA) : B ⊗A → k,

〈 , 〉+cop = 〈 , 〉+(idB ⊗ S−1
A ) : Bcop ⊗Acop → k

give rise to dual pairs of locally finite N0-graded Hopf algebras in C and C, respec-
tively, and that

〈 , 〉+cop = 〈 , 〉cB,A(idB ⊗ SA) = 〈 , 〉cB,A(SB ⊗ idA).(12.3.1)

Let

D1 : BC → AcopCrat, D2 : A
copC → BCrat

be the strict monoidal isomorphisms D1 = D
l
for the pairing 〈 , 〉, and D2 = D

l

for the pairing 〈 , 〉+cop in Proposition 12.2.7. By definition,

D1(V, δ) = (V, λ), λ =
(
A⊗ V

id⊗δ−−−→ A⊗B ⊗ V
〈 , 〉⊗id−−−−−→ V

)
,(12.3.2)

D2(V, δ) = (V, λ), λ =
(
B ⊗ V

id⊗δ−−−→ B ⊗A⊗ V
〈 , 〉+cop⊗id−−−−−−−→ V

)
,(12.3.3)

for all (V, δ) ∈ BC, (V, δ) ∈ AcopC.

Theorem 12.3.1. The functor

D : BBYD(C)rat → Acop

AcopYD(C)rat, (V, λ, δ) �→ (V, λ, δ),

where λ and δ are defined by (12.3.2) and (12.3.3). and where morphisms f are
mapped onto f , is a braided strict monoidal isomorphism.

Proof. (1) Let (X, δX) ∈ AcopC, (V, δ) ∈ BC, and define

(X,λX) = D2(X, δX), (V, λ) = D1(V, δ).

We first prove the equality

cYD
(X,λX),(V,δ) = cYD

(X,δX),(V,λ)
.(12.3.4)

Let δ =

B V

V

, δX =

A X

X

. Then λ =

A

V

V

, λX =

+

B X

X

.
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Hence

cYD
(X,λX),(V,δ) =

–

+

X V

V X

=

X V

V X

=

X V

V X

= cYD
(X,δX),(V,λ)

,

where the second equality follows from (3.2.13) with h = δX and (3.2.9), and since
S−1
B and SA cancel by Proposition 3.3.8(1), and the third from (3.2.12) with h = δ.

(2) Let V ∈ C, and

P l(V ) = {(λ, δ) | (V, λ) ∈ BCrat, (V, δ) ∈ BC},
Pr(V ) = {(λ, δ) | (V, λ) ∈ AcopCrat, (V, δ) ∈ AcopC}.

By Proposition 12.2.7, the map Φ : P l(V )→ Pr(V ), (λ, δ) �→ (λ, δ), defined by

D1(V, δ) = (V, λ), D2(V, δ) = (V, λ),

is bijective.
Let (λ, δ) ∈ P l(V), and (λ, δ) = Φ(λ, δ). We claim that the following are

equivalent.

(a) (V, λ, δ) ∈ B
BYD(C)rat.

(b) (V, λ, δ) ∈ Acop

AcopYD(C)rat.
(c) For all (X,λX) ∈ BCrat, the morphism

cYD
(X,λX),(V,δ) : (X,λX)⊗ (V, λ)→ (V, λ)⊗ (X,λX) is in BCrat.

(d) For all (X, δX) ∈ AcopC, the morphism

cYD
(X,δX),(V,λ)

: (X, δX)⊗ (V, δ)→ (V, δ)⊗ (X, δX) is in AcopC.

By Proposition 12.2.6 and Proposition 3.4.8, (a) is equivalent to (c). By Propo-
sition 3.4.5, (b) is equivalent to (d). The equivalence of (c) and (d) follows from
(12.3.4), since D2 is a strict monoidal isomorphism.

(3) Since D1 and D2 are strict monoidal isomorphisms, it follows from (1) and
(2), that D is a well-defined strict monoidal isomorphism.

To show that D is braided, let X = (X,λX , δX), V = (V, λ, δ) ∈ B
BYD(C)rat.

Define D(X) = (X,λX , δX), D(V ) = (V, λ, δ). Then cYD
(X,λX),(V,δ) is the inverse

braiding of X,V in B
BYD(C)rat, and cYD

(X,δX),(V,λ)
is the braiding of D(X), D(V ) in

Acop

AcopYD(C). Hence D is braided by (12.3.4). �

If (G,ψ) : A → B is a braided monoidal functor, then (G,ψ) is also braided
monoidal with respect to the inverse braidings of A and B. We denote this functor
again by (G,ψ) : A → B.
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It follows from Proposition 3.3.4 and Lemma 12.2.9(1) that the functors

ACrat → ratCA, (V, λ) �→ (V, λ+), where λ+ = λcV,A(idV ⊗ SA),

ratCA → ACrat, (V, λ) �→ (V, λ−), where λ− = λcA,V (S−1
A ⊗ idV ),

are well-defined inverse isomorphisms. Hence the braided monoidal isomorphisms
in Theorems 3.4.15, 3.4.16 and Corollary 3.4.17 for A restrict to braided monoidal
isomorphisms again denoted by

(FYD
rl , ρ) : ratYD(C)AA → A

AYD(C)rat, (V, λ, δ) �→ (V, λ−, (SA ⊗ idV )cV,Aδ),

F
YD
lr : A

cop

AcopYD(C)rat → ratYD(C)AA, (V, λ, δ) �→ (V, λ+, cA,V δ),

(F, ϕ) : AAYD(C)rat → Acop

AcopYD(C)rat, (V, λ, δ) �→ (V, λ, (S−1
A ⊗ idV )c

2
A,V δ).

Theorem 12.3.2. The functor

Ω : BBYD(C)rat → A
AYD(C)rat, (V, λ, δ) �→ (V, λ1, δ1), with

λ1 =
(
A⊗ V

id⊗δ−−−→ A⊗B ⊗ V
〈 , 〉⊗id−−−−−→ V

)
, and

δ1 =
(
V

δ2−→ A⊗ V
S2
A⊗id−−−−→ A⊗ V

c2A,V−−−→ A⊗ V
)
, where δ2 is defined by

λ =
(
B ⊗ V

id⊗δ2−−−−→ B ⊗A⊗ V
〈 , 〉+⊗id−−−−−−→ V

)
,

and where morphisms f are mapped onto f , is an isomorphism of categories, and

(Ω, ω) : BBYD(C)rat → A
AYD(C)rat, where ωX,Y = c

B
BYD(C)
Y,X cX,Y

for all X,Y ∈ B
BYD(C)rat, is a braided monoidal isomorphism.

The diagram

B
BYD(C)rat

(Ω,ω)
��

D ��










A
AYD(C)rat

(F,ϕ)�����
���

�

Acop

AcopYD(C)rat
of braided monoidal isomorphisms commutes.

Proof. By Corollary 3.4.17, (F, ϕ) is an isomorphism. Since the inverse of

(F, ϕ) is (FYD
rl , ρ)F

YD
lr , we define (Ω, ω) as the composition

B
BYD(C)rat D−→ Acop

AcopYD(C)rat
F

YD
lr−−−→ ratYD(C)AA

(FYD
rl ,ρ)−−−−−→ A

AYD(C)rat.

We compute the functor Ω. Let (V, λ, δ) ∈ B
BYD(C)rat. Then

Ω(V, λ, δ) = FYD
rl F

YD
lr D(V, λ, δ) = (V, λ+−, (SA ⊗ idV )c

2
A,V δ),

where λ and δ are defined by

λ =
(
A⊗ V

id⊗δ−−−→ A⊗B ⊗ V
〈 , 〉⊗id−−−−−→ V

)
,(12.3.5)

λ =
(
B ⊗ V

id⊗δ−−−→ B ⊗A⊗ V
〈 , 〉+cop⊗id−−−−−−−→ V

)
.(12.3.6)

Note that λ+− = λ1. We have to prove that (SA ⊗ idV )c
2
A,V δ = δ1, that is,

δ2 = (S−2
A ⊗ idV )c

2
A,V (SA ⊗ idV )c

2
A,V δ = (S−1

A ⊗ idV )δ
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satisfies the equation

λ =
(
B ⊗ V

id⊗δ2−−−−→ B ⊗ A⊗ V
〈 , 〉+⊗id−−−−−−→ V

)
.

This follows from (12.3.6), since 〈 , 〉+cop = 〈 , 〉+(idB ⊗ S−1
A ).

To compute the monoidal structure ω, let G = F
YD
lr D. Then G is a braided

strict monoidal functor, Ω = FYD
rl G, and for all X,Y ∈ B

BYD(C)rat,

ωX,Y = ρG(X),G(Y ) : F
YD
rl G(X)⊗ FYD

rl G(Y )→ FYD
rl G(X ⊗ Y ),

where ρG(X),G(Y ) = c
YD(C)AA
G(Y ),G(X)cG(X),G(Y ).

The functor G : B
BYD(C)rat → ratYD(C)AA with the Yetter-Drinfeld braidings

of B
BYD(C)rat and of ratYD(C)AA is braided and strict monoidal. Hence for all

X,Y ∈ B
BYD(C)rat,

ωX,Y = c
YD(C)AA
G(Y ),G(X)cG(X),G(Y ) = c

B
BYD(C)
Y,X cX,Y .

�

Let K be a Hopf algebra in B
BYD(C)rat with bijective antipode. We denote by

Ω(K) the Hopf algebra in A
AYD(C)rat given by the braided isomorphism (Ω, ω). The

bosonization (S̃, π̃, γ̃) of Ω(K) is a Hopf algebra triple over A in C, and (S̃cop, π̃, γ̃)
is a Hopf algebra triple over Acop in C with commutative diagrams

A
γ̃

�����
���

���
�

=

��

S̃ = Ω(K)#A
π̃ �� A

Acop

γ̃

�����
���

���
��

=

��

(Ω(K)#A)cop
π̃ �� Acop

Since SK = SΩ(K) by Remark 3.1.8, the antipodes of Ω(K) and S̃ are bijective by
Corollary 3.8.11.

Then Ω(K) = S̃coA is the set of right coinvariant elements of the projection

π̃ (where we identify x#1 with x for all x ∈ Ω(K)). Let L̃ ⊆ S̃cop be the braided
Hopf algebra of right coinvariant elements of the braided Hopf algebra projection

S̃cop π̃−→ Acop in C. Thus L̃ is a Hopf algebra in Acop

AcopYD(C), and by Theorem 3.10.4

on Hopf algebra triples in C, the multiplication map

L̃#Acop ∼= S̃cop

is an isomorphism of Hopf algebras in C. By Theorem 12.3.1, we may view the Hopf

algebra Kcop in B
BYD(C)rat as a Hopf algebra in Acop

AcopYD(C). This Hopf algebra turns

out to be isomorphic to L̃.

Theorem 12.3.3. Let K be a Hopf algebra in B
BYD(C)rat with bijective an-

tipode. Let (S̃, π̃, γ̃) be the bosonizations of Ω(K), and L̃ the set of right coinvariant

elements of the projection S̃cop π̃−→ Acop.

Then the morphism T : L̃ → K, x �→ S−1
K SS̃(x), in C is an isomorphism

T : L̃ → D(Kcop)

of Hopf algebras in Acop

AcopYD(C).
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Proof. We denote by F (Ω(K)cop) the image of the Hopf algebra Ω(K)cop

of the braided strict monoidal isomorphism (F, ϕ) : A
AYD(C)rat → Acop

AcopYD(C))rat.
Let T : L̃ → F (Ω(K)cop) be the isomorphism of Hopf algebras in Acop

AcopYD(C) of

Theorem 3.10.6 for the Hopf algebra triple (S̃, π̃, γ̃).
Note that Ω(K)cop = Ω(Kcop), since (Ω, ω) is a braided monoidal functor.

Hence

F (Ω(K)cop) = F (Ω(Kcop)) = D(Kcop)

by the commutative diagram in Theorem 12.3.2.
By Theorem 3.10.6, ιL̃T

−1 = S−1

S̃
ιSΩ(K). Since SΩ(K) = SK , it follows that

T−1(y) = S−1

S̃
SK(y) for all y ∈ K. Hence SS̃(L̃) = K, and T (x) = S−1

K SS̃(x) for

all x ∈ L̃. �

Remark 12.3.4. Since D is strict monoidal, the Hopf algebra D(Kcop) is de-
scribed as follows. Let μK ,ΔK , λ and δ be multiplication, comultiplication, B-
action and B-coaction of K. Then multiplication, comultiplication, Acop-action

and Acop-coaction of the Hopf algebra D(Kcop) are μK , c
B
BYD(C)
K,K ΔK , and λ, δ

defined in (12.3.2) and (12.3.3).

We close this section with an immediate corollary of Theorem 12.3.3. Let c be
a braiding of the monoidal category H

HYD. Let P be a Hopf algebra in (HHYD, c),
and X a Hopf algebra in P

PYD(HHYD, c). A Hopf ideal I of X is a subobject I ⊆ X
in P

PYD(HHYD, c) which is an ideal and a coideal of X with SX(I) ⊆ I. Hopf ideals
I ⊆ X are the subobjects in P

PYD(HHYD, c) such that the quotient map P → P/I
is a morphism of Hopf algebras in P

PYD(HHYD, c). We denote by I(P ) the set of all
Hopf ideals of P .

Corollary 12.3.5. Under the assumptions of Theorem 12.3.3 the map

I(L̃)→ I(K), I �→ T (I),

is bijective, where I(L̃) and I(K) are the set of Hopf ideals of the Hopf algebra L̃
in Acop

AcopYD(C) and of the Hopf algebra K in B
BYD(C).

Proof. By Theorem 12.3.3, the map

I(L̃)→ I(D(Kcop)), I �→ T (I),

is bijective. By Theorem 12.3.1, I(D(Kcop)) = I(Kcop). Since Hopf ideals of K
are Yetter-Drinfeld subobjects, it is clear that I(Kcop) = I(K). �

Corollary 12.3.6. Let V be an object in B
BYDrat.

(1) FnΩ(V ) = FnV , FnΩ(V ) = FnV for all n ≥ 0.
(2) If V is a Z-graded object in B

BYDrat, then Ω(V ) is a Z-graded object in
A
AYDrat, where Ω(V )(n) = V (−n) for all n ∈ Z.

Proof. (1) By Lemma 12.2.10(1), FnΩ(V ) = FnV and Fn(V, δ2) = FnV . By
Lemma 12.2.11, Fn(V, δ2) = Fn(V, δ1) = FnΩ(V ).

(2) follows from Lemma 12.2.10(2) and Lemma 12.2.11(2). �

We introduce a notation for the special case of Theorem 12.3.2 we need later-on.
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Definition 12.3.7. Let V ∈ C = H
HYD be finite-dimensional. We denote by

(ΩV , ωV ) :
B(V )
B(V )YD(C)rat → B(V ∗)

B(V ∗)YD(C)rat

the braided monoidal isomorphism of Theorem 12.3.2 for (B(V ∗),B(V ), 〈 , 〉) with
Hopf pairing 〈 , 〉 : B(V ∗)⊗ B(V )→ k of Corollary 7.2.5.

Remark 12.3.8. If R is an N0-graded Hopf algebra in C with bijective antipode,
R#H
R#H YDrat denotes the full subcategory of Yetter-Drinfeld modules in R#H

R#H YD
which are rational as modules over R. In the situation of Theorem 12.3.2, we use
the braided, strict monoidal isomorphism of Theorem 3.8.7 to obtain a braided
monoidal isomorphism

B#H
B#HYDrat

∼= B
BYD(C)rat → A

AYD(C)rat ∼= A#H
A#HYDrat

which we again denote by (Ω, ω).

For Q ∈ B#H
B#HYDrat, the Nichols algebra B(Q) (defined with respect to the

braiding of B#H
B#HYD) is an N0-graded Hopf algebra in B#H

B#HYD. By Lemma 12.2.4,

B(Q) is again an object in B#H
B#HYDrat.

Corollary 12.3.9. Let Q be an object in B#H
B#HYDrat, and B(Q) its Nichols

algebra. Then

(Ω, ω)(B(Q)) ∼= B((Ω, ω)(Q))

as N0-graded Hopf algebras in A#H
A#HYDrat.

Proof. It is easy to see that (Ω, ω)(B(Q)) is a connected N0-graded Hopf
algebra which is generated as an algebra by Ω(Q). Moreover, any homogeneous
primitive element of degree ≥ 2 is zero. Hence (Ω, ω)(B(Q)) is a Nichols algebra of
Ω(Q), and the claim follows from Theorem 7.1.14. �

12.4. One-sided coideal subalgebras of braided Hopf algebras

The isomorphism T : L̃ → K of Theorem 12.3.3 shows that the Hopf algebras

S and S̃ are closely related. In this section we use T to study one-sided coideal

subalgebras in S and in S̃.
We begin with some general remarks about one-sided coideal subalgebras in

Hopf algebra triples.
Let H be a Hopf algebra with bijective antipode, and let C = (HHYD, c) be

a braided monoidal category with underlying monoidal category H
HYD and some

braiding c. In particular, c could be the Yetter-Drinfeld braiding c
H
HYD or its inverse

c
H
HYD.

Let X be a bialgebra in C. A left (right) coideal subalgebra of X in C is
a subobject E ⊆ X and an algebra in C such that the inclusion map E ⊆ X is an
algebra morphism in C and ΔX(E) ⊆ X ⊗ E (ΔX(E) ⊆ E ⊗X).

Let P be a Hopf algebra in C, Q ⊆ P a Hopf subalgebra, and π : P → Q
a Hopf algebra morphism in C with π|Q = idQ. Let R = P coQ be the space of
right coinvariant elements of P with respect to π. Thus we are in the situation of
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Theorem 3.10.4 of a Hopf algebra triple (P, π, γ), where γ is the inclusion map.

Q

=

��

⊆

		��
��
��
�

R
⊆

��

=

��

P
π ��

ϑ
		��
��
��
��

Q

R

Let ΔP : P → P ⊗ P , x �→ ΔP (x) = x(1) ⊗ x(2), denote the comultiplication of P .
Recall that for all x ∈ P ,

ϑ(x) = x(1)SQ(π(x
(2))),(12.4.1)

R ⊆ P is a subalgebra in C with ΔP (R) ⊆ P ⊗ R, and R is a Hopf algebra in
Q
QYD(C) with Q-action ad : Q ⊗ R → R and Q-coaction δ : R → Q ⊗ R. The
multiplication map

R⊗Q → P, x⊗ q �→ xq, is bijective(12.4.2)

with inverse P → R⊗Q, x �→ ϑ(x(1))⊗ π(x(2)). For all x ∈ R, y ∈ P , q ∈ Q,

ΔR(x) = ϑ(x(1))⊗ x(2),(12.4.3)

δ(x) = π(x(1))⊗ x(2),(12.4.4)

ΔP (x) = ϑ(x(1))π(x(2))⊗ x(3),(12.4.5)

ϑ(qx) = (ad q)(x),(12.4.6)

ϑ(yq) = ϑ(y)ε(q).(12.4.7)

In the next two lemmas we relate right coideal subalgebras of P containing Q
and left coideal subalgebras of P contained in R to the Hopf algebra structure of

R in Q
QYD(C).

Definition 12.4.1. Let

E+
r (P ) = {E | E ⊆ P right coideal subalgebra in C, Q ⊆ E},

Er(P,X) = {E | E ⊆ P right coideal subalgebra in C, E ⊆ X},

where X ⊆ P is a subobject in H
HYD, and

Fr(P ) = {F | F ⊆ R subalgebra in C,
ΔR(F ) ⊆ F ⊗R, F ⊆ R Q-submodule}.

For left coideal subalgebras we define

Definition 12.4.2. Let

E+
l (P ) = {E | E ⊆ P left coideal subalgebra in C, Q ⊆ E},

El(P,X) = {E | E ⊆ P left coideal subalgebra in C, E ⊆ X},

where X ⊆ P is a subobject in H
HYD, and

Fl(P ) = {F | F ⊆ R subalgebra in C,
ΔR(F ) ⊆ R⊗ F, F ⊆ R Q-subcomodule}.
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Note that the sets in the previous definitions depend on the Hopf algebra triple
(P, π, γ).

Lemma 12.4.3. (1) For all E ∈ E+
r (P ), the multiplication map

(E ∩R)⊗Q → E

is an isomorphism in H
HYD.

(2) The map E+
r (P )→ Fr(P ), E �→ E ∩ R, is bijective with inverse given by

F �→ FQ.

Proof. (1) The map

E → (E ∩R)⊗Q, x �→ x(1)SQ(π(x
(2)))⊗ π(x(3)) = ϑ(x(1))⊗ π(x(2)),

is inverse to the multiplication map. This can be checked using (12.4.7).
(2) We first show that both maps are well-defined. Let E ∈ E+

r (P ). Then
E ∩R ⊆ R is a subalgebra in C. For all x ∈ E ∩R,

ΔR(x) = x(1)SQ(π(x
(2)))⊗ x(3) ∈ (E ⊗ P ) ∩ (R⊗R) = (E ∩R)⊗R

by (12.4.1) and (12.4.3). Moreover,

ΔP (qx) = (q(1) ⊗ q(2))(x(1) ⊗ x(2)) ∈ QE ⊗QP ⊆ E ⊗ P

for all x ∈ E, q ∈ Q, since c(Q ⊗ E) = E ⊗Q. Hence E ∩ R is a Q-submodule of
R, since

(ad q)(x) = ϑ(qx) = (qx)(1)SQπ((qx)(2)) ∈ E ∩R

by (12.4.1) and (12.4.6).
Let F ∈ Fr(P ). By (12.4.3) and (12.4.5), ΔP (F ) ⊆ FQ ⊗ R. Hence for all

x ∈ F , q ∈ Q, ΔP (xq) = ΔP (x)ΔP (q) ∈ FQ⊗ P .
To see that FQ ⊆ P is a subalgebra, we have to prove that QF ⊆ FQ. For all

q ∈ Q, x ∈ F ,

ΔP (qx) = ΔP (q)ΔP (x) ∈ QFQ⊗ P,

since ΔP (F ) ⊆ FQ⊗R. Hence

qx = ϑ((qx)(1))π((qx)(2)) ∈ ϑ(QFQ)Q = (adQ)(F )Q ⊆ FQ

by (12.4.6), (12.4.7), and since F ⊆ R is a Q-submodule.
Finally it follows that the two maps are inverse bijections. If E ∈ E+

r (P ), then
E = (E ∩ R)Q by (1). If F ∈ Fr(P ), then (FQ ∩ R)Q = FQ. By (12.4.2), the
multiplication maps (FQ ∩ R) ⊗ Q → (FQ ∩ R)Q = FQ and F ⊗ Q → FQ are
bijective. Hence F = FQ ∩R. �

Lemma 12.4.4. El(P,R) = Fl(P ).

Proof. The inclusion El(P,R) ⊆ Fl(P ) follows from (12.4.3) and (12.4.4), and
⊇ follows from (12.4.5). �

Now we assume the situation of Theorem 12.3.3. Thus (A,B, 〈 , 〉) is a dual
pair of locally finite Hopf algebras in C = H

HYD (with the Yetter-Drinfeld braiding),

(Ω, ω) : BBYD(C)rat → A
AYD(C)rat
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is the braided monoidal isomorphism of Theorem 12.3.2, K is a Hopf algebra in
B
BYD(C)rat, and (S, π, γ) and (S̃, π̃, γ̃) are the bosonizations of K and of Ω(K) with
commutative diagrams

B
γ

�����
���

���
�

=

��

S = K#B
π �� B

A
γ̃

�����
���

���
�

=

��

S̃ = Ω(K)#A
π̃ �� A

The triple (S̃cop, π̃, γ̃) is a Hopf algebra triple over Acop in C, and L̃ denotes the set

of right coinvariant elements of the projection S̃cop π̃−→ Acop.
The bijections in the following theorems are induced by the Hopf algebra iso-

morphism T : L̃ → K of Theorem 12.3.3.

Theorem 12.4.5. Under the assumptions of Theorem 12.3.3 the map

Er(S̃, L̃)→ E+
r (S), E �→ T (E)B,

is an inclusion-preserving bijection with inverse given by E �→ T−1(E ∩ K). For

all E ∈ Er(S̃, L̃), the multiplication map

T (E)⊗B → T (E)B

is bijective.

Proof. By Theorem 12.3.3, T is an Acop-colinear isomorphism of algebras
and coalgebras in C. The Acop-comodule structure of K is (SA ⊗ id)δ2, where the
category isomorphism Dl

+ : AC → BCrat maps (K, δ2) onto (K,λ). Note that a
subobject F ⊆ K in C is a B-submodule if and only if F is an Acop-subcomodule.
This follows from the category isomorphism Dl

+, and since SA : A → Acop is a
coalgebra isomorphism. Hence T induces a bijection between

Fl(S̃
cop) = {F | F ⊆ L̃ subalgebra in H

HYD, ΔL̃(F ) ⊆ L̃⊗ F ,

F ⊆ L̃ Acop-subcomodule}

and

F = {F | F ⊆ K subalgebra in H
HYD, c

B
BYD(C)
K,K ΔK(F ) ⊆ K ⊗ F ,

F ⊆ K B-submodule}.

If F ⊆ K is a subobject in C and a left B-submodule, then

c
B
BYD(C)
K,K ΔK(F ) ⊆ K ⊗ F ⇐⇒ ΔK(F ) ⊆ F ⊗K,

since by Proposition 3.4.5, the braiding of K⊗K in B
BYD(C) defines an isomorphism

K ⊗ F ∼= F ⊗K for B-stable subobjects F ⊆ K. Hence F = Fr(S).

Lemma 12.4.4 for the projection S̃cop π̃−→ Acop gives the equality

Er(S̃, L̃) = El(S̃cop, L̃) = Fl(S̃
cop).

The first claim of the theorem follows by composing the bijection Er(S̃, L̃)→ Fr(S)
induced by T and the bijection Fr(S) → E+

r (S) in Lemma 12.4.3(2). The second
claim then holds by Lemma 12.4.3(1). �
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Theorem 12.4.6. Under the assumptions of Theorem 12.3.3 the map

E+
l (S̃)→ El(S,K), E �→ T (E ∩ L̃),

is an inclusion-preserving bijection with inverse given by E �→ T−1(E)A. For all
E ∈ El(S,K), the multiplication map

T−1(E)⊗A → T−1(E)A

is bijective.

Proof. By Theorem 12.3.3, T : L̃ → K is an Acop-linear, that is, A-linear
isomorphism of algebras and coalgebras in the monoidal category C. Recall that
K is an A-module with module structure λ1, where the category isomorphism
Dl : BC → ACrat maps (K, δ) onto (K,λ1). Thus a subobject F ⊆ K in C is an
A-submodule if and only if F is a B-subcomodule. Hence T induces a bijection
between

Fr(S̃
cop) = {F | F ⊆ L̃ subalgebra in H

HYD, ΔL̃(F ) ⊆ F ⊗ L̃,

F ⊆ L̃ A-submodule}
and

F = {F | F ⊆ K subalgebra in H
HYD, c

B
BYD(C)
K,K ΔK(F ) ⊆ F ⊗K,

F ⊆ K B-subcomodule}.
If F ⊆ K is a subobject in C and a left B-subcomodule, then

c
B
BYD(C)
K,K ΔK(F ) ⊆ F ⊗K ⇐⇒ ΔK(F ) ⊆ K ⊗ F,

since by Proposition 3.4.5, the braiding of K⊗K in B
BYD(C) defines an isomorphism

F ⊗K ∼= K ⊗ F for B-costable subobjects F ⊆ K. Hence F = Fl(S).

Note that Fl(S) = El(S,K) by Lemma 12.4.4 for the projection S
π−→ B. Since

E+
l (S̃) = E+

r (S̃cop), the first part of the theorem follows by composing the bijec-

tion E+
r (S̃cop) → Fr(S̃

cop) in Lemma 12.4.3(2) with C = H
HYD, and the bijection

Fr(S̃
cop)→ Fl(S) induced by T . The second claim holds by Lemma 12.4.3(1). �

12.5. Notes

12.3. The braided monoidal isomorphism (Ω, ω) first appeared in [HS13b] in

the form B#H
B#HYDrat

∼= A#H
A#HYDrat, however, without the factorization in Theo-

rem 12.3.2. Then in [BLS15] a proof of the category isomorphism was given for

finite-dimensional pairs A,B of braided Hopf algebras and replacing A#H
A#HYD by

A
AYD(C), C = H

HYD. In fact, in [BLS15], C was just a braided monoidal cate-
gory, but the braided Hopf algebras A,B were related by a non-degenerate pairing
A ⊗ B → I together with an inverse copairing I → B ⊗ A; in particular, A was a
left dual of B.

Our proof of Theorem 12.3.2 is inspired from [BLS15]. To cover the case of
the dual pair B(V ∗),B(V ), V ∈ H

HYD finite-dimensional (where the existence of
a copairing is not assumed), we have to introduce in Section 12.2 Yetter-Drinfeld
modules which are rational as modules. Working with Yetter-Drinfeld modules
over smash products A#H, as we did in our first proof, easily gets technically very
complicated. For the main results in this chapter we need Yetter-Drinfeld modules
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A
AYD(C), where C = H

HYD or C = H
HYD. Hence we presented the general theory of

braided monoidal categories in the long Chapter 3.
The factorization of Ω in Theorem 12.3.2, and Theorem 12.3.3 are published

here for the first time.

12.4. The Hopf algebra isomorphism T of Theorem 12.3.3 is the main tool
to compare right or left coideal subalgebras of K#B and of Ω(K)#A, K a Hopf
algebra in B

BYD(C), in Theorem 12.4.5 and 12.4.6. Special cases of these results for
one-sided coideal subalgebras of Nichols algebras have been obtained in [HS13a]
with another method of proof.
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CHAPTER 13

Nichols systems, and semi-Cartan graph
of Nichols algebras

Let H be a Hopf algebra with bijective antipode. After a discussion of some
subtle technicalities on graded objects and bosonization, we introduce and study
reflections of tuples of Yetter-Drinfeld modules over H in Section 13.4. Using
the functor Ω from the previous Chapter, we show how these can be extended to
reflections of Nichols systems if all entries of the tuples are simple. In the ideal
case, as shown in Section 13.6, the reflections give rise to a semi-Cartan graph.

13.1. Z-graded Yetter-Drinfeld modules

The functor N0-GrMk → Z-GrMk which extends the N0-grading of an object
V in N0-GrMk to a Z-grading by setting V (n) = 0 for all n < 0, is strict monoidal.
Hence an N0-graded algebra R is naturally a Z-graded algebra by setting R(n) = 0
for all n < 0. In the same way we view N0-graded coalgebras and Hopf algebras as
Z-graded coalgebras and Hopf algebras, respectively.

Let H be a Z-graded Hopf algebra. A Z-graded Yetter-Drinfeld module V
over H is by definition an object V in H

HYD(Z-GrMk) (see Section 5.5). In other
words, V is an object in H

HYD and a Z-graded vector space such that the module
and comodule structure maps H ⊗ V → V and V → H ⊗ V are graded.

We next characterize irreducible Z-graded Yetter-Drinfeld modules over an N0-
graded Hopf algebra.

Let R be an N0-graded algebra, C an N0-graded coalgebra, X ∈ RM, and
Y ∈ CM with comodule structure δ : Y → C ⊗ Y . Recall that

F0X = {x ∈ X | R(i)x = 0 for all i > 0},
F0Y = {y ∈ Y | δ(y) ∈ C(0)⊗ Y }.

Lemma 13.1.1. Let R be an N0-graded algebra, C an N0-graded coalgebra, and
H an N0-graded Hopf algebra.

(1) Let X be a left R-submodule. Then F0X ⊆ X is an R-submodule. If X
is a Z-graded R-module, then F0X is a Z-graded submodule.

(2) Let Y �= 0 be a left C-comodule with coaction δ : Y → C ⊗ Y . Then
F0Y ⊆ Y is a C-subcomodule with δ(F0Y ) ⊆ C(0)⊗F0Y , and F0Y �= 0.
If Y is a Z-graded C-comodule, then F0Y is a Z-graded subcomodule.

(3) Let V be a Z-graded Yetter-Drinfeld module over H. Then the homoge-

neous components V (n), n ∈ Z, are objects in
H(0)
H(0)YD, where the H(0)-

action is given by restriction with respect to the Hopf algebra inclusion
H(0) ⊆ H, and the H(0)-coaction is defined by the Hopf algebra projec-
tion H → H(0).

411
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Proof. (1) and (3) are easy to check.
(2) By Remark 2.2.10(3) and Corollary 5.2.6, δ(F0Y ) ⊆ C(0) ⊗ F0Y , and

F0Y �= 0. If Y is a Z-graded C-comodule, then F0Y = δ−1(H(0) ⊗ Y ) is a Z-
graded subcomodule of Y , since H(0)⊗ Y ⊆ H ⊗ Y is a graded subspace. �

Proposition 13.1.2. Let H be an N0-graded Hopf algebra with bijective an-
tipode, and V a Z-graded Yetter-Drinfeld module over H. The following are equiv-
alent.

(1) V is an irreducible object in H
HYD.

(2) V is an irreducible Z-graded Yetter-Drinfeld module over H.
(3) There is an integer n0 such that

(a) V (n0) is irreducible in
H(0)
H(0)YD,

(b) V (n0) = F0V ,
(c) V (n0) generates V as an H-module, that is,

V (n) =

{
H(n− n0)V (n0) for all n ≥ n0,

0 for all n < n0.

Proof. (1) ⇒ (2) is trivial.
(2) ⇒ (3). Let δ : V → H ⊗ V denote the left coaction of H on V . By

Lemma 13.1.1(2), F0V is a non-zero Z-graded H-subcomodule of V satisfying
δ(F0V ) ⊆ H(0) ⊗ F0V . Let n0 be an integer such that the homogeneous com-
ponent F0V ∩ V (n0) of degree n0 of F0V is non-zero. Then

δ(F0V ∩ V (n0)) ⊆ H(0)⊗ (F0V ∩ V (n0)),

and F0V ∩ V (n0) ⊆ V is an H-subcomodule. Let X ⊆ F0V ∩ V (n0) be a non-zero
H-subcomodule. By Lemma 5.5.1(2), HX ⊆ V is a Z-graded subobject in H

HYD.
Hence HX = V by (2). Thus H(n)X = V (n + n0) for all n ≥ 0. In particular,
V (n) = 0 for all n < n0, and H(0)X = V (n0). Then F0V = F0V ∩ V (n0). Since
δ(V (n0)) ∈ H(0) ⊗ V (n0), it follows that F0V = V (n0). We proved (3)(b) and
(3)(c).

To prove (3)(a), let X ⊆ V (n0) be a non-zero Yetter-Drinfeld submodule over
H(0). Then X = H(0)X = V (n0).

(3) ⇒ (1). Let X ⊆ V be a non-zero subobject in H
HYD. Then F0X is

a subobject of F0V in
H(0)
H(0)YD. By Lemma 13.1.1(2), F0X is non-zero, hence

F0X = F0V = V (n0) ⊆ X by (3)(a) and (3)(b). Thus X = V by (3)(c). �

Proposition 13.1.3. Let H be an N0-graded Hopf algebra with bijective an-
tipode, and V a Z-graded Yetter-Drinfeld module over H. Assume that there are
integers n0 ≤ n1 such that

V = V (n0)⊕ V (n0 + 1)⊕ · · · ⊕ V (n1), V (n0) �= 0, V (n1) �= 0,

is the decomposition of V into Z-homogeneous components. The following are equiv-
alent.

(1) V is an irreducible object in H
HYD.

(2) (a) V (n0) is irreducible in
H(0)
H(0)YD,

(b) V (n0) = F0V ,
(c) V (n0) generates V as an H-module.

(3) (a) V (n1) is irreducible in
H(0)
H(0)YD,
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(b) V (n1) = F0V ,
(c) V (n1) generates V as an H-comodule.

Proof. (1) ⇔ (2) follows from Proposition 13.1.2.
(1) ⇒ (3). By Lemma 13.1.1(1), F0V ⊆ V is a Z-graded H-submodule. Note

that V (n1) ⊆ F0V , hence F0V �= 0. Let l be an integer such that F0V ∩ V (l) �= 0.
Then F0V ∩ V (l) ⊆ V is an H-submodule, since V (l) ⊆ H is an H(0)-submodule.
Let X ⊆ F0V ∩ V (l) be a non-zero H-submodule. By Lemma 5.5.1(3) and (1),
XH∗ = V . Since XH∗ ⊆

⊕
j≤l V (j) it follows that l = n1. Thus F0V = V (n1).

We have shown (3)(b) and (3)(c).
To prove (3)(a), let 0 �= X ⊆ V (n1) be a Yetter-Drinfeld submodule over H(0),

where V (n1) is a Yetter-Drinfeld module over H(0) as defined in Lemma 13.1.1(3).
Then V = XH∗ ⊆

⊕
j<n1

V (nj)⊕X, and X = V (n1).

(3) ⇒ (1). By Proposition 13.1.2 it is enough to show that V is an irreducible
Z-graded Yetter-Drinfeld module over H. Let X ⊆ V be a non-zero Z-graded
Yetter-Drinfeld module over H. Thus

X = X ∩ V (n0)⊕X ∩ V (n0 + 1)⊕ · · · ⊕X ∩ V (n1).

Since F0X contains the non-zero homogeneous component of X of maximal degree,
it follows that 0 �= F0X ⊆ F0V = V (n1) by (b). Therefore V (n1) = F0X ⊆ X by
(a). By (c), V = V (n1)H

∗ ⊆ XH∗ = X. �

13.2. Projections of Nichols algebras

For any Yetter-Drinfeld module V ∈ H
HYD, the bosonization B(V )#H is an N0-

graded Hopf algebra with deg(V ) = 1 and deg(H) = 0 by Corollaries 4.3.5 and 4.3.6.
We call this grading the standard grading of the bosonization A(V ) = B(V )#H.
Let πH = ε ⊗ idH : A(V ) → H be the Hopf algebra projection onto H. Thus the
diagram

H

=

��

⊆

�����
���

���
��

B(V ) ⊆ A(V )
πH �� H

commutes, and B(V ) = A(V )coH . We use the notation

ΔA(V )(a) = a(1) ⊗ a(2), ΔB(V )(b) = b(1) ⊗ b(2)

for all a ∈ A(V ), b ∈ B(V ). Let ϑ = idB(V ) ⊗ ε : A(V ) → B(V ) be the coalgebra
projection onto B(V ). Then ΔB(V )(a) = (ϑ ⊗ id)ΔA(V )(a) for any a ∈ B(V ). In
particular, for all x ∈ V ,

ΔB(V )(x) = x⊗ 1 + 1⊗ x, ΔA(V )(x) = x⊗ 1 + x(−1) ⊗ x(0).

See Theorem 3.8.7 and Corollary 4.3.3 for the theory of bosonization.
In this subsection we fix a Yetter-Drinfeld module V ∈ H

HYD with subobjects
U and W in H

HYD such that V = U ⊕W . Thus

U

=

��

⊆

����
��
��
��
�

W ⊆ V
π �� U
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is a commutative diagram in H
HYD, where π : V = W ⊕ U → U is the projection

with kernel W .

Lemma 13.2.1. There is a unique Hopf algebra map π : A(V )→ A(U) which is
the identity on U and H and vanishes on W . The map π is N0-graded with respect
to the gradings given by

deg(H) = 0, deg(U) = 0, deg(W ) = 1,

and also with respect to the standard gradings.

Proof. The algebra A(V ) is generated by V and H. This implies the unique-
ness of π. On the other hand, V ∈ H

HYD is N0-graded with V (0) = U , V (1) = W ,
and V (n) = 0 for all n ≥ 2. Then B(V ) is an N0-graded bialgebra by Corol-
lary 7.1.15(1), and A(U) is the degree zero part of A(V ). Let π : A(V ) → A(U)
be the graded projection. Then π is a Hopf algebra map vanishing on W , and it is
graded in the standard gradation. �

Let K = {x ∈ A(V ) | (id⊗ π)ΔA(V )(x) = x⊗ 1}. Hence

A(U)

=

��

⊆

�����
���

���
�

K ⊆ A(V )
π �� A(U)

commutes, and K = A(V )coA(U).
We first view π as an N0-graded map with respect to the standard gradings of

A(V ) and A(U). By Theorem 5.5.6, K is an N0-graded Hopf algebra in
A(U)
A(U)YD

with grading K(n) = A(V )(n) ∩ K for all n ≥ 0, and with action, coaction and
comultiplication

ad : A(U)⊗K → K, a⊗ x �→ ad a(x),

δK : K → A(U)⊗K, x �→ (π ⊗ id)ΔA(U)(x),

ΔK : K → K ⊗K, x �→ ϑK(x(1))⊗ x(2),

with ϑK : A(V )→ K, a �→ a(1)πS(a(2)).
The multiplication map

K#A(U)
∼=−→ A(V )

is an N0-graded Hopf algebra isomorphism.
We denote the primitive elements of K by

P (K) = {x ∈ K | ΔK(x) = x⊗ 1 + 1⊗ x}.

Lemma 13.2.2. (1) K = {x ∈ B(V ) | (id⊗ π)ΔB(V )(x) = x⊗ 1}.
(2) P (K) ⊆ K is an N0-graded subobject in

A(U)
A(U)YD.

Proof. (1) Let πH = ε ⊗ id : A(U) → H be the projection onto H, and
ϑ = id ⊗ ε : A(V ) → B(V ). If x ∈ K, then (id ⊗ πHπ)ΔA(V )(x) = x ⊗ 1, hence

x ∈ A(V )coH = B(V ), and x⊗ 1 = x(1)x(2)
(−1) ⊗ π(x(2)

(0)). Hence

x⊗ 1 = ϑ(x(1)x(2)
(−1))⊗ π(x(2)

(0)) = x(1) ⊗ π(x(2)).
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Conversely, let x ∈ B(V ) with x(1) ⊗ π(x(2)) = x ⊗ 1. Then x ∈ K, since the
projection π : B(V )→ B(U) is left H-colinear.

(2) follows from Lemma 5.5.2. �
For the proof of the important Proposition 13.2.4 below we need a general result

on the existence of specific elements in a subcomodule of a graded comodule.
Let C be an N0-graded coalgebra, and X an N0-graded left C-comodule with

structure map δ : X → C ⊗X. We define the components of δ as we did before for
Δ. For all i, j ≥ 0 let δij : X(i+ j)→ C(i)⊗X(j) be the composition

X(i+ j) ⊆ X
δ−→ C ⊗X

πi⊗πj−−−−→ C(i)⊗X(j).

In the next proposition we consider graded comodules with injective components
δn−1,1 for all n ≥ 1.

Proposition 13.2.3. Let C be an N0-graded coalgebra, X an N0-graded left
C-comodule, and Y a C-subcomodule of X. Let k ≥ 0 be an integer. Assume that
δn−k,k : X(n) → C(n − k) ⊗ X(k) is injective for all n ≥ k, and that Y is not

contained in
⊕k−1

i=0 X(i). Then Y ∩
⊕k

i=0 X(i) �= 0.

Proof. By assumption there is an element 0 �= y =
∑n

i=0 x(i) ∈ Y , n ≥ k,
with homogeneous components x(i) ∈ X(i) for all 0 ≤ i ≤ n, and x(n) �= 0. Let
x = x(n), z = y − x. Since δn−k,k is injective,

0 �= (πn−k ⊗ πk)(δ(x)) ∈ C(n− k)⊗X(k).

Hence there exists f ∈ C∗ with 0 �= f(x(−1))x(0) ∈ X(k) and f(C(i)) = 0 for all

i �= n− k. Note that f(z(−1))z(0) ∈
⊕k−1

i=0 X(i). Thus

f(y(−1))y(0) = f(x(−1))x(0) + f(z(−1))z(0) ∈
k⊕

i=0

X(i)

is a non-zero element in Y ∩
⊕k

i=0 X(i). �

Proposition 13.2.4. Let Z be a nonzero subobject of W ⊆ A(W ) in H
HYD,

and let Q = adA(U)(Z).

(1) Q ⊆ P (K) is an N0-graded subobject in
A(U)
A(U)YD, and

Q(0) = 0, Q(1) = Z, Q(n) = (adU)n−1(Z) for all n ≥ 2.

(2) For all x ∈ Q,
(a) ΔA(V )(x) ∈ x⊗ 1 +A(U)⊗Q,
(b) ΔB(V )(x) ∈ x⊗ 1 + B(U)⊗Q.

(3) Z ⊆ Q is a large left A(U)-subcomodule, that is, if Q′ ⊆ Q is a non-zero
A(U)-subcomodule, then Q′ ∩ Z �= 0.

Proof. (1) Let x ∈ W . Then ΔA(V )(x) = x⊗ 1 + x(−1) ⊗ x(0), hence x ∈ K,
since π(W ) = 0. By definition of ΔK ,

ΔK(x) = ϑK(x)⊗ 1 + ϑK(x(−1))⊗ x(0) = x⊗ 1 + 1⊗ x.

Hence W ⊆ P (K). Let a ∈ B(U) and h ∈ H. Then

ad (a#h)(Z) = ad a(h · Z) ⊆ ad a(Z).

Hence Q = adA(U)(Z) = adB(U)(Z) =
⊕

n≥0(adU)n(Z), where for all n ≥ 0,

deg((adU)n(Z)) = n+ 1.
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For all x ∈ Z, δK(z) = π(x) ⊗ 1 + π(x(−1)) ⊗ x(2) = x(−1) ⊗ x(0). Hence
Z ⊆ P (K) is an A(U)-subcomodule, and by Lemma 5.5.1(2), Q ⊆ P (K) is a

graded subobject in
A(U)
A(U)YD.

(2)(a) Let a ∈ A(U), z ∈ Z. Then ΔA(V )(z) = z ⊗ 1 + z(−1) ⊗ z(0). Hence

ΔA(V )(ad a(z)) = ΔA(V )(a(1)zS(a(2)))
= a(1)z(1)S(a(4))⊗ a(2)z(2)S(a(3))
= a(1)zS(a(4))⊗ a(2)S(a(3))
+ a(1)z(−1)S(a(4))⊗ a(2)z(0)S(a(3))

∈ ad a(z)⊗ 1 +A(U)⊗Q.

(2)(b) Let x ∈ Q. Then by (2)(a),

ΔB(V )(x) = ϑ(x(1))⊗ x(2) ∈ x⊗ 1 + B(U)⊗Q.

(3) B(V ) is a left B(U)-comodule in H
HYD with comodule structure

δ : B(V )
ΔB(V )−−−−→ B(V )⊗ B(V )

π⊗id−−−→ B(U)⊗ B(V ).

Let x ∈ Q. Then δ(x) ∈ B(U) ⊗ Q by (2)(b), since π(x) = 0. Thus Q is an
N0-graded left B(U)-comodule via δ : Q → B(U) ⊗ Q, and for all n ≥ 1 and
x ∈ Q(n), δn−1,1(x) = ΔB(V )n−1,1

(x) by (2)(b), since π1(1) = 0. It follows that

δn−1,1 : Q(n) → B(U)(n − 1) ⊗ Q(1) is injective, since the Nichols algebra B(V )
is strictly graded. Hence (3) follows from Proposition 13.2.3 with k = 1, since
Q(0) = 0 by (1). �

Corollary 13.2.5. (1) Let Zi with i ∈ I be subobjects of W in H
HYD,

and let Z ∈ H
HYD such that Z =

∑
i∈I Zi =

⊕
i∈I Zi. For all i ∈ I let

Qi = adA(U)(Zi), and let Q = adA(U)(Z). Then Q =
⊕

i∈I Qi.

(2) Let Z ⊆ W be an irreducible subobject in H
HYD. Then adA(U)(Z) is an

irreducible object in
A(U)
A(U)YD.

Proof. (1) If the sum of the Qi is not direct, there is an index k ∈ I such
that 0 �= Qk ∩

∑
i�=k Qi. Hence 0 �= Zk ∩

∑
i�=k Qi, since Zk is a large A(U)-

subcomodule of Qk by Proposition 13.2.4(3). Since Zk is of degree one, we obtain
the contradiction 0 �= Zk ∩

∑
i�=k Zi.

(2) Let 0 �= Q′ ⊆ adA(U)(Z) be a subobject in
A(U)
A(U)YD. Then 0 �= Q′ ∩ Z

by Proposition 13.2.4(3). Since Q′ ∩Z is an H-submodule and an H-subcomodule
of Z, and since Z is irreducible in H

HYD, it follows that Q′ ∩ Z = Z ⊆ Q′, hence
adA(U)(Z) = Q′. �

Definition 13.2.6. Let Q be a non-zero N0-graded object in
A(U)
A(U)YD. Assume

that Q has only finitely many non-zero homogeneous components. Let

Qmax = Q(n), where n ≥ 0, Q(n) �= 0, Q(m) = 0 for all m > n.

Note that the homogeneous components of an N0-graded object in
A(U)
A(U)YD are

objects in H
HYD, where the H-action is induced from the inclusion H ⊆ A(U), and

the H-coaction from the projection πH : A(U)→ H.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



13.2. PROJECTIONS OF NICHOLS ALGEBRAS 417

Theorem 13.2.7. Let Z ⊆ W be an irreducible subobject in H
HYD, and assume

that Q = adA(U)(Z) has only finitely many non-zero homogeneous components.
Then Qmax is irreducible in H

HYD, and Q is generated as an A(U)-comodule by
Qmax.

Proof. This follows from Corollary 13.2.5(2) and Proposition 13.1.3(3). �
In the next theorem, B(adA(U)(W )) denotes the Nichols algebra of the Yetter-

Drinfeld module adA(U)(W ) in
A(U)
A(U)YD.

Theorem 13.2.8. There is a unique isomorphism

K ∼= B(adA(U)(W ))

of braided Hopf algebras in
A(U)
A(U)YD which is the identity on adA(U)(W ). In par-

ticular, P (K) = adA(U)(W ).

Proof. Let Q = adA(U)(W ). By Lemma 2.6.25, K is generated as an algebra
by Q.

We go back to the non-standard gradings in Lemma 13.2.1, where

deg(H) = 0, deg(U) = 0, deg(W ) = 1.

The map π is N0-graded, where now A(U) is trivially graded. By Theorem 5.5.6, K

is an N0-graded Hopf algebra in
A(U)
A(U)YD with homogeneous components in

A(U)
A(U)YD,

where by (1), K(0) = k and K(n) = Qn for all n ≥ 1. By Lemma 5.5.2, P (K) is an

N0-graded object in
A(U)
A(U)YD with homogeneous components P (K)(n) = P (K)∩Qn

in
A(U)
A(U)YD. In particular, P (K)(n), n ≥ 1, is a subcomodule of the left A(U)-

comodule K with comodule structure δK : K → A(U)⊗K, x �→ π(x(1))⊗ x(2). It
remains to show that P (K)(n) = 0 for all n ≥ 2.

Assume that P (K)(n) is non-zero for some n ≥ 2. The Hopf algebra A(U)
is N0-graded with A(U)(n) = Bn(U)#H for all n ≥ 0. In particular A(U) is an
N0-filtered coalgebra with F0(A(U)) = H. By Corollary 5.2.6, there is a non-zero
element x ∈ P (K)(n) with δK(x) ∈ H ⊗ P (K)(n), hence δK(x) = πH(x(1))⊗ x(2).
Thus

ΔA(V )(x) = x⊗ 1 + πH(x(1))⊗ x(2),

since x is primitive in K, and K#A(U) ∼= A(V ). Hence

ΔB(V )(x) = x⊗ 1 + ϑπH(x(1))⊗ x(2) = x⊗ 1 + 1⊗ x.

We have found in Qn a non-zero primitive element x of the braided Hopf algebra
B(V ). Since Q =

⊕
m≥1(adU)m−1(W ) by Proposition 13.2.4(1), in the standard

gradation x is a sum of homogeneous elements of degree ≥ 2. This is impossible
since primitive elements in B(V ) have degree one. �

Starting with a direct sum decomposition of V , by Theorem 13.2.8 we obtain
a smash product decomposition of braided Hopf algebras

B(Q)#B(U) ∼= B(V ), Q = adA(U)(W ).

We need to prove a kind of converse. First we prove a converse of Corollary 13.2.5.

Lemma 13.2.9. Let U ∈ H
HYD, Q ∈ A(U)

A(U)YD, and B(Q) the Nichols algebra of

Q with bosonization B(Q)#A(U). Assume that Q = A(U) · F0Q. Then the algebra
B(Q)#B(U) = (B(Q)#A(U))coH is generated by F0Q and U .
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Proof. By definition, the algebras B(U) and B(Q) are generated by U and
A(U) · F0Q = B(U) · F0Q, respectively. To see that B(U) · F0Q is contained in the
subalgebra generated by B(U) and F0Q, let b ∈ B(U) and w ∈ F0Q. Then in the
smash product algebra B(Q)#A(U), bw = (b(1) · w)b(2), hence

b · w = b(1)wSA(U)(b(2))

= b(1)b(2)(−1)wSA(U)(b
(2)

(0))

= b(1)b(2)(−2)wSH(b(2)(−1))SB(U)(b
(2)

(0))

= b(1)(b(2)(−1) · w)SB(U)(b
(2)

(0)).

This implies the claim since F0Q is an H-submodule of Q. �

Theorem 13.2.10. Let U ∈ H
HYD, and let Q be a semisimple object in the

category of Z-graded objects in
A(U)
A(U)YD, where A(U) is N0-graded by the standard

grading. Let B(Q) be the Nichols algebra of Q ∈ A(U)
A(U)YD, and W = F0Q. Then

there is a unique isomorphism

B(Q)#B(U) ∼= B(W ⊕ U)

of braided Hopf algebras in H
HYD which is the identity on W ⊕ U .

Proof. Note that F0 commutes with direct sums of comodules. Let

Q =
⊕
i∈I

Qi and W =
⊕
i∈I

Wi

be the decomposition of Q into irreducible Z-graded objects Qi in
A(U)
A(U)YD and of

W into irreducible objects Wi = F0Qi in
H
HYD with Qi = A(U) ·Wi by Proposi-

tion 13.1.2.
We change the Z-grading of Q by shifting the degree in each Qi. By Proposi-

tion 13.1.2, for all i ∈ I, Qi(ni) = Wi, where ni is the smallest degree of a non-zero
homogeneous component of Qi. Let Q′

i be the Yetter-Drinfeld module Qi with
grading Q′

i(n) = Qi(n+ni−1) for all n ∈ Z. Since degree shifting preserves graded
modules and graded comodules, Q′

i is again a graded Yetter-Drinfeld module.

Let Q′ =
⊕

i∈I Q
′
i. Then Q′ = Q as objects in

A(U)
A(U)YD, Q′(n) = 0 for all n ≤ 0,

and Q′ is an N0-graded object in
A(U)
A(U)YD with

Q′(1) =
⊕
i∈I

Wi = W.

By Corollary 7.1.15, the Nichols algebra B(Q′) is an N0-graded Hopf algebra quo-

tient of T (Q′) in
A(U)
A(U)YD, and

B(Q′)(0) = k, B(Q′)(1) = W,

since Q′(0) = 0. By Theorem 5.5.6(1), the bosonization B(Q′)#A(U) is an N0-
graded Hopf algebra with (B(Q′)#A(U))(0) = H, (B(Q′)#A(U))(1) = (W ⊕U)H.
By Theorem 5.5.6(2), B(Q′)#B(U) = (B(Q′)#A(U))coH is an N0-graded Hopf
algebra in H

HYD, where the H-coinvariant elements are defined with respect to the
projection onto degree 0, and

(B(Q′)#B(U))(0) = k, (B(Q′)#B(U))(1) = W ⊕ U.
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By Lemma 13.2.9, the algebra B(Q′)#B(U) is generated by W ⊕ U . Therefore
B(Q′)#B(U) is a pre-Nichols algebra of W⊕U , and there is an N0-graded surjective
morphism ϕ : B(Q′)#B(U) → B(W ⊕ U) of Hopf algebras in H

HYD which is the
identity on W ⊕ U .

Let Φ = ϕ#idH . Then the following diagram of N0-graded Hopf algebras is
commutative, where π′ = ε⊗idA(U) and π is the projection map from the beginning
of this section.

B(Q′)#A(U)
Φ ��

π′

��

A(W ⊕ U)

π

��

A(U)
id

�� A(U)

Let K = A(W ⊕ U)coA(U). By Theorem 13.2.8, K = B(adB(U)(W )). Hence Φ
induces a map

ΦK : B(Q′)→ B(adA(U)(W ))

in
A(U)
A(U)YD between the right coinvariant elements of π′ and of π, respectively, where

ΦK |W = id. Recall from Corollary 4.3.3(1) that the given Hopf algebra structure

of B(Q′) in
A(U)
A(U)YD coincides with the structure on the coinvariant elements of

π′. By Corollary 13.2.5, adA(U)(W ) =
⊕

i∈I adA(U)(Wi) is a decomposition

into irreducible objects adA(U)(Wi) in
A(U)
A(U)YD. The map Φ induces surjective

N0-graded maps

Φi : Q
′
i = A(U) ·Wi → adA(U)(Wi), i ∈ I,

in
A(U)
A(U)YD, since Φ|Wi = id. For all i ∈ I, Φi is bijective, since Q′

i is irre-

ducible as an N0-graded object in
A(U)
A(U)YD. Hence Φ induces an isomorphism

Q′ → adA(U)(W ) in
A(U)
A(U)YD. Thus ΦK is bijective, and it follows from Corol-

lary 4.3.3 that Φ is an isomorphism. �

13.3. The adjoint action in Nichols algebras

Let U,W ∈ H
HYD. Then B(U) ⊆ A(U ⊕ W ) acts on B(U ⊕W ) via the left

adjoint action. In Theorem 13.3.1 we give a description of the B(U)-submodule of
B(U ⊕W ) generated by W which does not dependend on the explicit structure of
the Nichols algebra B(U ⊕W ). This description can be used to compute reflections
of Yetter-Drinfeld modules defined in Section 13.4.

Recall the definitions of Tn, ϕn ∈ ZBn+1 for all n ≥ 1 from Corollary 1.8.14.
We also write Tn and ϕn for the image of Tn and ϕn, respectively, in End(U⊗n⊗W )
under the representation ZBn+1 → End((U ⊕W )⊗n+1) introduced in Section 1.7.

Let XU,W
0 = W and for all n ≥ 1 let

XU,W
n = (Sn ⊗ idW )Tn(U

⊗n ⊗W ) ⊆ U⊗n ⊗W.

Theorem 13.3.1. Let U,W ∈ H
HYD and let Xn = XU,W

n for all n ∈ N0.

(1) Xn ⊆ U ⊗Xn−1 and Xn = ϕn(U ⊗Xn−1) for all n ≥ 1.
(2) For all n ∈ N0 there is an isomorphism Xn → (adU)n(W ) in H

HYD, where
(adU)n(W ) ⊆ B(U ⊕W ).
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Proof. (1) We proceed by induction on n. First, X1 = ϕ1(U ⊗ X0) since
T1 = ϕ1 by definition. Moreover,

X1 = T1(U ⊗W ) = (idU⊗W − cW,U cU,W )(U ⊗W ) ⊆ U ⊗W = U ⊗X0.

Assume now that n ≥ 2. Then

SnTn(U
⊗n ⊗W ) = ϕn(idU ⊗ Sn−1Tn−1)(U

⊗n ⊗W ) = ϕn(U ⊗Xn−1)

by Corollary 1.8.14(4) and by definition of Xn−1. Moreover,

Xn = ϕn(U ⊗Xn−1) ⊆ ϕn(U ⊗ U ⊗Xn−2)

by induction hypothesis. Hence Xn ⊆ U ⊗Xn−1 by Corollary 1.8.14(3) and induc-
tion hypothesis.

(2) For any u ∈ U and x ∈ B(U⊕W ), adu(x) = ux−(u(−1)·x)u(0) by definition.
Hence for any n ∈ N0, u1, . . . , un ∈ U and w ∈ W , adu1 · · · adun(w) ∈ B(U ⊕W )
is the multiplication of B(U ⊕W ) composed with

(id− cn · · · c2c1) · · · (id− cncn−1)(id− cn)(u1 ⊗ · · · ⊗ un ⊗ w).

Since Sn+1 : B(U⊕W )(n+1)→ (U⊕W )⊗n+1 is injective, (adU)n(W ) is isomorphic
via Sn+1 to

Sn+1(id− cn · · · c2c1) · · · (id− cncn−1)(id− cn)(U
⊗n ⊗W ).

The latter equals SnTn(U
⊗n ⊗W ) = Xn by Corollary 1.8.14(2). �

13.4. Reflections of Yetter-Drinfeld modules

We are going to define, under some assumptions, the reflection of a tuple of
finite-dimensional Yetter-Drinfeld modules. In Theorem 13.4.9 we relate the Nichols
algebra of a tuple to the one of its reflection.

Let θ ∈ N and I = {1, . . . , θ}. Let H be a Hopf algebra with bijective antipode,
and let FH

θ denote the category of families M = (Mi)i∈I, where M1, . . . ,Mθ ∈ H
HYD

are finite-dimensional. A morphism f : M → N is a family f = (fi)i∈I, where
fi : Mi → Ni is a morphism in H

HYD for all i ∈ I. The identity of M is (idMi
)i∈I.

The isomorphism class of any M ∈ FH
θ is denoted by [M ].

For any two M,N ∈ FH
θ which are isomorphic we write M ∼= N .

As in Section 9.1, let (αi)i∈I be the standard basis of ZI. Then the Yetter-
Drinfeld module M1⊕· · ·⊕Mθ ∈ H

HYD is Zθ-graded with homogeneous component
Mi of degree αi for all i ∈ I.

For all M ∈ FH
θ let B(M) denote the Nichols algebra B(M1 ⊕ · · · ⊕Mθ).

Corollary 13.4.1. Let M,N ∈ FH
θ . If M ∼= N then B(M) and B(N) are

isomorphic as Zθ-graded algebras and coalgebras in H
HYD.

Proof. Apply Corollary 7.1.15(2) with the trivial Zθ-grading of H. �

Definition 13.4.2. Let M ∈ FH
θ and i ∈ I. We say that M is i-finite if for

all j ∈ I \ {i} there exists m ∈ N such that (adMi)
m(Mj) = 0 in B(M).

Assume that M is i-finite. For all j ∈ I \ {i} let

aMij = −max{m ∈ N0 | (adMi)
m(Mj) �= 0},

and let aMii = 2. These so called Cartan integers allow us to define the reflection

sMi ∈ Aut(Zθ), sMi (αj) = αj − aMij αi
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for all j ∈ I. The family Ri(M) = (Ri(M)j)j∈I ∈ FH
θ , where

Ri(M)j =

{
M∗

i if j = i,

(adMi)
−aM

ij (Mj) if j �= i,

is called the i-th reflection of M .

Corollary 13.4.3. Let M ∈ FH
θ and i ∈ I. Assume that M is i-finite and

that Mj is irreducible in H
HYD for all j ∈ I \ {i}. Then the components Ri(M)j

with j ∈ I \ {i} are irreducible objects in H
HYD.

Proof. Let j ∈ I \ {i} and let aij = aMij . By assumption,

adB(Mi)(Mj) = Mj ⊕ (adMi)(Mj)⊕ · · · ⊕ (adMi)
−aij (Mj),

and (adMi)
−aij (Mj) �= 0. Hence (adB(Mi)(Mj))

max = (adMi)
−aij (Mj) is irre-

ducible in H
HYD by Theorem 13.2.7. �

Lemma 13.4.4. Let M ∈ FH
θ . Assume that M is i-finite for all i ∈ I. Then

AM = (aMij )i,j∈I is a Cartan matrix.

Proof. Let i, j ∈ I with i �= j and let aij = aMij . By Theorem 13.3.1(2) with
n = 1, aij = 0 if and only if

0 = X
Mi,Mj

1 = T1(Mi ⊗Mj) = (id− c2)|Mi ⊗Mj .

Thus aij = 0 if and only if cMi,Mj
= (cMj ,Mi

)−1, which in turn is equivalent to

aMji = 0. The remaining properties of AM are clearly fulfilled. �

Reflections and Cartan matrices of objects in FH
θ are compatible with isomor-

phisms.

Lemma 13.4.5. Let M,N ∈ FH
θ such that M ∼= N . Let i ∈ I. If M is i-finite,

then N is i-finite, Ri(M) ∼= Ri(N), and aNij = aMij for all j ∈ I.

Proof. The claim follows from Corollary 7.1.15(2). �

Definition 13.4.6. Let M ∈ FH
θ and i ∈ I. Let πMi

: B(M) → B(Mi) be the
Hopf algebra projection in H

HYD induced by the i-th projection of the direct sum⊕
j∈I

Mj . Let

K
B(M)
i = B(M)coB(Mi), L

B(M)
i = coB(Mi)B(M)

be the set of right and left coinvariant elements of B(M) with respect to πMi
,

respectively.

Remark 13.4.7. In Definition 13.4.6, B(M) and B(Mi) are Hopf algebras in
H
HYD. Moreover, (B(M), πMi

, ιMi
) is a Hopf algebra triple over B(Mi) in H

HYD,
where ιMi

: B(Mi) → B(M) is the Hopf algebra map induced by the canonical

embedding Mi →
⊕

j∈I
Mj . Thus K

B(M)
i is a Hopf algebra in

B(Mi)
B(Mi)

YD(HHYD)

by Theorem 3.10.4, and K
B(M)
i = F (K

B(M)
i ) is a Hopf algebra in

B(Mi)#H
B(Mi)#HYD by

Theorem 3.8.7.
On the other hand, B(M)#H and B(Mi)#H are Hopf algebras and

(B(M)#H, πMi
#idH , ιMi

#idH)
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is a Hopf algebra triple over B(Mi)#H. Let K
B(M)#H
i = (B(M)#H)coB(Mi)#H .

Then K
B(M)#H
i ∈ B(Mi)#H

B(Mi)#HYD by Theorem 3.10.4. Moreover, by Proposition 4.3.9,

the embedding ιB(M) = idB(M) ⊗ η : B(M) → B(M)#H induces an isomorphism

K
B(M)
i → K

B(M)#H
i of Hopf algebras in

B(Mi)#H
B(Mi)#HYD.

Recall the notation of rational Yetter-Drinfeld modules from Definition 12.2.3
and Section 12.3.

Lemma 13.4.8. Let M ∈ FH
θ and i ∈ I. Then the following are equivalent.

(1) M is i-finite.

(2) K
B(M)
i ∈ B(Mi)#H

B(Mi)#H YDrat.

Proof. Assume (1). By Remark 13.4.7, K
B(M)
i and K

B(M)#H
i are isomor-

phic as algebras in
B(Mi)#H
B(Mi)#H YD. Thus K

B(M)
i is generated as an algebra by∑

j �=i ad (B(Mi)#H)(Mj) because of Theorem 2.6.23 and Lemma 2.6.25 applied

to the right B(Mi)#H-comodule algebra B(M)#H, as the latter is generated as
an algebra by

⊕
j �=i Mj and B(Mi)#H. Then (2) follows from Lemma 12.2.4(4).

Conversely, (2) implies (1) since Mj ∈ K
B(M)
i for all j ∈ I \ {i}. �

The next theorem gives a natural explanation of reflections of tuples of Yetter-
Drinfeld modules. All the deeper results on Ri(M) depend on this description.
Recall the notation (ΩV , ωV ) in Definition 12.3.7 for finite-dimensional V ∈ H

HYD.

Theorem 13.4.9. Let M ∈ FH
θ , i ∈ I, and (ΩMi

, ωMi
) = (Ω, ω). Assume that

M is i-finite and that Mj is irreducible in H
HYD for all j ∈ I \ {i}. Then there is

an isomorphism

Θ : B(Ri(M))
∼=−→ Ω(K

B(M)
i )#B(M∗

i )

of Hopf algebras in H
HYD which is the identity on the components of Ri(M).

Proof. Let W =
⊕

j �=i Mj , and Q = adB(Mi)(W ). Lemma 13.4.8 implies

that Q ∈ B(Mi)#H
B(Mi)#H YDrat. For all j ∈ I, j �= i, let

Qj = adB(Mi)(Mj) = Mj ⊕ adMi(Mj)⊕ · · · ⊕ (adMi)
−aM

ij (Mj).

Then Q =
⊕

j �=i Qj , and for all j �= i, Qj is irreducible in
B(Mi)#H
B(Mi)#H YDrat by

Corollary 13.2.5. By Theorem 13.2.8, K
B(M)
i

∼= B(Q), and by Corollary 12.3.9,

Ω(K
B(M)
i ) ∼= B(Ω(Q)), hence

Ω(K
B(M)
i )#B(M∗

i )
∼= B(Ω(Q))#B(M∗

i ).

Since Q is a Z-graded semisimple object in
B(Mi)#H
B(Mi)#H YDrat with Q(n) = 0 for all

n < 0, it follows from Theorem 12.3.2 and Corollary 12.3.6(2) that Ω(Q) is a

Z-graded semisimple object in
B(M∗

i )#H

B(M∗
i )#H YDrat. Thus Theorem 13.2.10 applies, and

B(Ω(Q))#B(M∗
i )
∼= B(F0Ω(Q)⊕M∗

i ) = B(Ri(M)),

since

F0Ω(Q) = F0Q =
⊕
j �=i

(adMi)
−aM

ij (Mj),
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where the first equality follows from Corollary 12.3.6(1), and the second from Propo-
sition 13.1.3(3b). �

Corollary 13.4.10. Let M ∈ FH
θ , i ∈ I, and assume that M is i-finite, and

Mj is irreducible in C = H
HYD for all j ∈ I \ {i}. Let Ki = K

B(M)
i , and D(Kcop

i )

the Hopf algebra in
B(M∗

i )
cop

B(M∗
i )

copYD(C), where D is defined in Theorem 12.3.1. Let

D(Kcop
i )#B(M∗

i )
cop be the bosonization which is a Hopf algebra in C. Then there

is an isomorphism

Θ̃ : B(Ri(M))
∼=−→
(
D(Kcop

i )#B(M∗
i )

cop
)cop

of Hopf algebras in H
HYD. Let Ki#B(M∗

i ) be the vector space Ki ⊗ B(M∗
i ) with

algebra structure given by

(x#f)(y#g) = x〈f (2), πMi
(y(1))〉(y(2))(0)#

(
S−1((y(2))(−1)) · f (1)

)
g

for all x, y ∈ Ki, f, g ∈ B(M∗
i ). Then Θ̃ is the algebra map

Θ̃ : B(Ri(M))
∼=−→ Ki#B(M∗

i )

which is the identity on the components of Ri(M).
(Here, xy and fg denote the product of x, y in Ki, and of f, g in B(M∗

i ),
respectively, and ΔB(M)(x) = x(1) ⊗ x(2), ΔB(M∗

i )
(f) = f (1) ⊗ f (2).)

Proof. Let L̃i be the space of right coinvariant elments of the projection

(Ω(Ki)#B(M∗
i ))

cop → B(M∗
i )

cop, and Ti : L̃i → D(Kcop
i ), x �→ S−1

Ki
SS̃ , the

Hopf algebra isomorphism in Theorem 12.3.3, where S̃ = Ω(Ki)#B(M∗
i ). Let

Φ : L̃i#B(M∗
i )

cop →
(
Ω(Ki)#B(M∗

i )
)cop

be the Hopf algebra isomorphism of

Corollary 4.3.1. We define Θ̃ as the composition

B(Ri(M))cop
Θ−→
(
Ω(Ki)#B(M∗

i )
)cop Φ−1

−−−→ L̃i#B(M∗
i )

cop

= L̃i#B(M∗
i )

cop Ti⊗id−−−−→ D(Kcop
i )#B(M∗

i )
cop.

Then Θ̃ is an isomorphism of Hopf algebras in H
HYD.

Let j ∈ I \ {i}, and x ∈ M ′
j = (ad B(M)Mi)

1−aM
ij (Mj). Then x ⊗ 1 is a prim-

itive element in the Hopf algebra S̃ = Ω(Ki)#B(M∗
i ), since Θ is a Hopf algebra

isomorphism by Theorem 13.4.9. Hence −x = S−1

S̃
(x) ∈ L̃i, and

Ti(x) = S−1
Ki
SS̃(x) = −S−1

Ki
(x) = x,

since x is a primitive element of Ki. We have shown that Θ̃(x ⊗ 1) = x⊗ 1. This

proves that Θ̃ is the identity on the components of Ri(M), since by definition,

Θ̃(1⊗ f) = 1⊗ f for all f ∈ B(M∗
i ).

We now describe the algebra structure of D(Kcop
i )#B(M∗

i )
cop with underlying

vector space Ki ⊗B(M∗
i ). We write π = πMi

: B(M)→ B(Mi). By Remark 12.3.4

(applied to the canonical form B(M∗
i ) ⊗ B(Mi)

〈 , 〉−−→ k), D(Kcop
i ) is an algebra in

B(M∗
i )

copC, C = H
HYD, where D(Kcop

i ) = Ki as an algebra with action

B(M∗
i )

cop ⊗Ki → Ki, f ⊗ x �→ 〈f, π(x(1))〉x(2).
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Let f ∈ B(M∗
i ), x ∈ Ki. We compute the commutation law for (1 ⊗ f)(x ⊗ 1) in

the smash product algebra D(Kcop
i )#B(M∗

i )
cop. By definition,

ΔB(M∗
i )

cop(f) = (f (2))(0) ⊗ S−1((f (2))(−1)) · f (1).

Hence in Ki#B(M∗
i )

cop,

(1⊗ f)(x⊗ 1) =

= 〈(f (2))(0), π((x(0))
(1))〉(x(0))

(2) ⊗
(
S−1(x(−1))S−1((f (2))(−1))

)
· f (1)

= (x(2))(0) ⊗
(
S−1((x(2))(−1))S−1(π(x(1))(−1))〈(f (2))(0), π(x

(1))(0)〉
S−1((f (2))(−1))

)
· f (1)

= 〈f (2), π(x(1))〉(x(2))(0) ⊗ S−1((x(2))(−1)) · f (1),

where the third equality follows from

x(−1) ⊗ π((x(0))
(1))⊗ (x(0))

(2) = π(x(1))(−1)(x
(2))(−1) ⊗ π(x(1))(0) ⊗ (x(2))(0),

and the last equality from the rule (12.1.3). �

13.5. Nichols systems and their reflections

As in the previous section, let θ ∈ N and I = {1, . . . , θ}.
We are going to introduce and to discuss pre-Nichols systems of M and Nichols

systems of (M, i), where M ∈ FH
θ and i ∈ I. These will be used to develop criteria

to decide whether a given pre-Nichols algebra is in fact a Nichols algebra. As an
application, we will prove in Chapter 16 that some (small) quantum groups are
Nichols algebras.

Definition 13.5.1. Let S be a Hopf algebra in H
HYD, N1, . . . , Nθ be finite-

dimensional subobjects of S in H
HYD, and N = (N1, . . . , Nθ). Let

f = (fj)j∈I : N → M

be an isomorphism of tuples in FH
θ for some M ∈ FH

θ . The triple N = N (S,N, f)
is called a pre-Nichols system of M if

(Sys1) S is generated as an algebra by N1, . . . , Nθ, and
(Sys2) S is an Nθ

0-graded Hopf algebra in H
HYD with deg(Nj) = αj for all integers

1 ≤ j ≤ θ.

Remark 13.5.2. For θ = 1 a pre-Nichols system of M is nothing but a pre-
Nichols algebra of M1, see Definition 7.1.6.

Let N = N (S,N, f) be a pre-Nichols system of a tuple M ∈ FH
θ . Note that

S(0) = k1 and
∑θ

j=1 Nj =
⊕θ

j=1 Nj by (Sys1) and (Sys2). Hence the antipode of
S is bijective by Proposition 6.4.2. We will use the notation

Nj = Nj , 1 ≤ j ≤ θ.

Let

pN : S → B(M)

be the surjective map of Nθ
0-graded Hopf algebras in H

HYD which is defined by

fj : Nj

∼=−→ Mj ⊆ B(M) on Nj , j ∈ I. It is called the canonical map of N .
We note that the Hopf algebra map pN : S → B(M) exists for a pre-Nichols

system of M by the definition of the Nichols algebra B(M).
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A pre-Nichols system gives rise to many other pre-Nichols systems by changing
the grading.

Example 13.5.3. LetM ∈ FH
θ and letN = N (S,N, f) be a pre-Nichols system

of M . Let θ′ ∈ N, I′ = {1, . . . , θ′}, and h : I → I′ be any map. Let h0 : Zθ → Zθ′

be the homomorphism with h0(αi) = αh(i) for all i ∈ I. For any P ∈ FH
θ let

h1(P ) = (P ′
1, . . . , P

′
θ′) ∈ FH

θ′ , where

P ′
j =

⊕
i∈I,h(i)=j

Pi

for any j ∈ I′. Then

h∗(N ) = N (S, h1(N), h2(f)),

where

h2(f)j =
⊕

i∈I,h(i)=j

fi : h1(N)j → h1(M)j

for all j ∈ I′, is a pre-Nichols system of h1(M). Indeed, the Yetter-Drinfeld module∑θ′

j=1 h1(N)j =
∑θ

i=1 Ni generates S. Moreover, S is Nθ′

0 -graded Hopf algebra in
H
HYD, where for any β ∈ Nθ′

0 the homogeneous component of S of degree β is⊕
α∈Nθ

0,h0(α)=β

S(α).

In the special case, where θ′ = 1, this construction results in the pre-Nichols algebra

S of
⊕θ

i=1 Mi.

Now we define Nichols systems of (M, i).

Definition 13.5.4. Let M ∈ FH
θ , and N = N (S,N, f) a pre-Nichols system

of M . Let i ∈ I. Then N is called a Nichols system of (M, i), if pN defines
bijective maps

(Sys3) k[Ni] ∼= B(Mi), and
(Sys4) (adSNi)

n(Nj) ∼= (adB(M)Mi)
n(Mj) for all j ∈ I \ {i} and n ≥ 0.

(Here, adS and adB(M) denote the adjoint actions of S and B(M), respectively.)

Note that N0 = N (B(M),M, id) is a Nichols system of (M, i) with canonical
map pN0 = idB(M).

In the following three lemmas we discuss properties of pre-Nichols systems
related to Axiom (Sys4).

Lemma 13.5.5. Let M ∈ FH
θ , i ∈ I, and N = N (S,N, f) a pre-Nichols system

of M . Assume that pN |k[Ni] : k[Ni]→ B(Mi) is bijective. Then for any j ∈ I \ {i}
the following are equivalent.

(1) The restriction of pN to ⊕n≥1(adSNi)
n(Nj) is bijective.

(2) There is no non-zero primitive element of S in ⊕n≥1(adSNi)
n(Nj).

Moreover, if Mj is irreducible, then these properties are equivalent to

(3) The Yetter-Drinfeld module adSk[Ni](Nj) ∈ k[Ni]#H
k[Ni]#HYD is irreducible.

Proof. Assume that θ ≥ 2 and let j ∈ I with j �= i.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



426 13. NICHOLS SYSTEMS, & SEMI-CARTAN GRAPH OF NICHOLS ALGEBRAS

Clearly, (1) implies (2) by the definition of pN . Now we prove that (2) implies
(1). Let m ∈ N and x ∈ (adSNi)

m(Nj). Assume that pN (x) = 0, and the restriction

of pN to ⊕m−1
n=1 (adSNi)

n(Nj) is bijective. Then

Δ(x)− x⊗ 1− 1⊗ x ∈ ker(pN ⊗ pN ) ∩
(
k[Ni]⊗⊕m−1

n=0 (adSNi)
n(Nj)

)
.

Since pN |k[Ni] and pN |Nj are bijective, we obtain that x is primitive. Then x = 0
by (2).

Assume now that Mj is irreducible. Then adB(M)(B(Mi)#H)(Mj) is irre-
ducible by Corollary 13.2.5(2). In particular, (1) implies (3). Finally, the kernel
of the restriction of pN to ⊕n≥1(adSNi)

n(Nj) is a Yetter-Drinfeld submodule of
adSk[Ni](Nj) and hence (3) implies (1). �

Lemma 13.5.6. Let N (S,N, f) be a pre-Nichols system of M , m ∈ N0, and
i, j ∈ I. Assume that i �= j and dimNi = dimNj = 1. Let xi ∈ Ni and xj ∈ Nj be
non-zero elements. Then (adSxi)

m(xj) = 0 if and only if dimS(αj+mαi) < m+1.

Proof. The assumptions imply that S(αj+mαi) is the linear span of the m+1

monomials xk
i xjx

m−k
i with 0 ≤ k ≤ m. If xm

i = 0 then dimS(αj +mαi) < m+ 1.
Moreover, (adSxi)

m(xj) = (adSx
m
i )(xj) = 0 by Lemma 4.3.11. Therefore we may

suppose that xm
i �= 0.

If (adSxi)
m(xj) �= 0, then 0 �= (adSxi)

k(xj) ∈ KN
i for any 0 ≤ k ≤ m. In this

case the isomorphism KN
i #k[xi] ∼= S in Theorem 3.9.2(6) implies that the elements

(adSxi)
k(xj)x

m−k
i , 0 ≤ k ≤ m,(13.5.1)

are linearly independent in S. Therefore dimS(αj +mαi) = m+ 1.
Conversely, if (adSxi)

m(xj) = 0, then dimS(αj + mαi) < m + 1 since the

monomials xk
i xjx

m−k
i with 0 ≤ k ≤ m are linearly dependent. �

Lemma 13.5.7. Let M ∈ FH
θ , i ∈ I, and N = N (S,N, f) a pre-Nichols system

of M satisfying (Sys4). Let x ∈ k[Ni]∩S(n) be a primitive element of degree n ≥ 2.
Then

adSx(y) = 0, (id− c2)(x⊗ y) = 0

for any y ∈ Nj with j �= i.

Proof. If y ∈ Nj with j ∈ I, j �= i, then adSx(y) ∈ adSk[Ni](Nj) ∩ S(n+ 1)
and π(x) = 0, where π : S → S(1) is the homogeneous projection. Then

Δ(adSx(y)) = adSx(y)⊗ 1 + 1⊗ adSx(y) + (id− c2)(x⊗ y)(13.5.2)

by Proposition 6.2.17(2), and hence (π⊗ id)Δ(adSx(y)) = 0. Since B(M) is strictly
graded, it follows that pN (adSx(y)) = 0. Thus (Sys4) implies that adSx(y) = 0.
Then the claim follows from Equation (13.5.2). �

Lemma 13.5.8. Let M ∈ FH
θ , V = M1 ⊕ · · · ⊕Mθ, and let R =

⊕
n≥0 R(n)

be an N0-graded Hopf algebra in H
HYD. Assume that R is a pre-Nichols algebra of

V with surjective map π : R → B(V ) of N0-graded Hopf algebras. Let grR be the
Nθ

0-graded Hopf algebra defined in Proposition 5.2.21. Then N = N (grR,N, f) is
a pre-Nichols system of M , where for all i ∈ I, Ni = gr (R)(αi) is isomorphic to Mi

via fi. Assume that pN : grR → B(M) is an isomorphism. Then π : R → B(M)
is an isomorphism.
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Proof. Since R is generated by V , it is clear that N is a pre-Nichols system
of M . We prove the last claim of the lemma.

(1) For all γ ∈ Nθ
0 let

Rγ =
∑

1≤i1,...,in≤θ
αi1

+···+αin=γ

Mi1 · · ·Min ⊆ R.

Then by definition of grR in Proposition 5.2.21, for all 0 �= α ∈ Nθ
0,

Fα(R) =
∑
γ≤α

Rγ , F<α(R) = Fβ , where β = max{γ | γ < α},

gr (R)(α) = Fα(R)/F<α(R).

For any x ∈ R \ {0} we can write

x = xβ1
+ · · ·+ xβt

, xβl
∈ Rβl

\ {0}, βl ∈ Nθ
0, 1 ≤ l ≤ t,

such that βk < βl whenever k < l. Then π(xβl
) ∈ B(M)(βl) for all l. Moreover,

x ∈ Fβt
(R) and pN (x+ F<βt

) = π(xβt
).

(2) Let x ∈ R with π(x) = 0. Assume that x �= 0. Then there exists a
minimal α ∈ Nθ

0 with respect to < such that x ∈ Fα(R). Note that α �= 0.
Since pN : grR → B(M) is an Nθ

0-graded isomorphism, the residue class of x in
gr (R)(α) = Fα(R)/F<α(R) is zero. Thus x ∈ Fβ(R), where β = max{γ | γ < α}.
This is a contradiction to the minimality of α. �

Definition 13.5.9. Let i ∈ I, M ∈ FH
θ , and let πi : B(M) → B(Mi) be the

Hopf algebra projection defined by the projection
⊕θ

j=1 Mj → Mi in
H
HYD.

Let N = N (S,N, f) be a pre-Nichols system of M . We write

π̃N
i : S → k[Ni], γ̃N

i : k[Ni]→ S

for the canonical Nθ
0-graded maps which are the identity on Ni. Moreover, let

KN
i = Sco k[Ni], LN

i = co k[Ni]S,

where the left and right coinvariant elements are defined with respect to π̃N
i .

If pN induces an isomorphism pN |k[Ni] : k[Ni] → B(Mi), we also define the
maps

πN
i = pN π̃N

i : S → B(Mi), γN
i = γ̃N

i

(
pN |k[Ni]

)−1
: B(Mi)→ S.

Remark 13.5.10. Let i ∈ I and let N = N (S,N, f) be a pre-Nichols system
of M . Then (S, π̃N

i , γ̃N
i ) is a braided Hopf algebra triple over k[Ni].

Assume that pN induces an isomorphism pN |k[Ni] : k[Ni] → B(Mi). Then
πip

N = πN
i and

KN
i = ScoB(Mi), LN

i = coB(Mi)S,

where the left and right coinvariant elements are defined with respect to πN
i .
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Note that K
B(M)
i = KN0

i and L
B(M)
i = LN0

i , where N0 = N (B(M),M, id). The
following diagram commutes.

B(Mi)

=

��

γN
i

�����
���

���
���

KN
i

⊆
��

��

S
πN
i ��

pN

��

B(Mi)

=

��

K
B(M)
i

⊆
�� B(M)

πi �� B(Mi)

Lemma 13.5.11. Let i ∈ I, M ∈ FH
θ , and let N = N (S,N, f) be a Nichols

system of (M, i).

(1) LN
i = S−1

S (KN
i ).

(2) The algebras KN
i and LN

i are generated by the subspaces (adSNi)
n(Nj)

and S−1
S ((adSNi)

n(Nj)), respectively, with j �= i and n ≥ 0.
(3) KN

i and LN
i are Nθ

0-graded subalgebras of S.
(4) Assume that M is i-finite. Then KN

i is an Nθ
0-graded Hopf algebra in

B(Mi)#H
B(Mi)#H YDrat, and pN induces a surjective map KN

i → K
B(M)
i of Hopf

algebras in
B(Mi)#H
B(Mi)#H YDrat.

Proof. (1) Since S is a braided Hopf algebra and since πN
i is a Hopf algebra

map, Proposition 3.2.12 implies that

(id⊗ πN
i )Δ(SS(x)) =(id⊗ πN

i )(SS ⊗ SS)cS,SΔ(x)

=cB(Mi),S(π
N
i ⊗ id)(SS ⊗ SS)Δ(x)

=cB(Mi),S(SB(Mi) ⊗ SS)(π
N
i ⊗ id)Δ(x)

for any x ∈ S. Hence SS(x) ∈ KN
i if and only if x ∈ LN

i .
The claim on KN

i in (2) follows from Theorem 2.6.23 and Lemma 2.6.25 with
R = KN

i , A = S#H and W =
∑

j �=i Nj . The claim on LN
i then follows from (1).

(3) holds since S, B(Mi), π
N
i and ΔS are Nθ

0-graded.
(4) SinceM is i-finite, the vector space

∑
n≥0(adSNi)

n(Nj) is finite-dimensional

for all j �= i by (Sys4), and (2) and (3) imply that KN
i ∈ B(Mi)#H

B(Mi)#H YDrat, see the

proof of Lemma 13.4.8. By Theorem 5.5.6(2), KN
i is an Nθ

0-graded Hopf algebra in
B(Mi)#H
B(Mi)#H YDrat. The rest holds since pN is a surjective Hopf algebra map. �

From the next theorem we will derive a construction which is fundamental
for our analysis of Nichols algebras. Under reasonable assumptions we obtain
from a Nichols system of (M, i) a new Nichols system of (Ri(M), i) (see Propo-
sition 13.5.14).

Theorem 13.5.12. Let i ∈ I and M ∈ FH
θ such that M is i-finite and Mj

is irreducible for all j ∈ I with j �= i. Let N = N (S,N, f) be a Nichols system

of (M, i), Ñi = M∗
i , and Ñj = (adSNi)

−aM
ij (Nj) for all j ∈ I with j �= i. Let

(Ω, ω) = (ΩMi
, ωMi

) and let ·Ω denote the B(M∗
i )-action on Ω(KN

i ).
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(1) For all j �= i and n ≥ 0,

(M∗
i )

n ·Ω Ñj =

{
(adSNi)

−aM
ij −n(Nj) if 0 ≤ n ≤ −aMij ,

0 if n > −aMij .

(2) The Yetter-Drinfeld modules Ñj ∈ H
HYD, where j �= i, are irreducible.

(3) The algebra Ω(KN
i )#B(M∗

i ) is generated by
⋃

j∈I
Ñj.

(4) Ω(KN
i )#B(M∗

i ) is an Nθ
0-graded Hopf algebra in H

HYD with

deg(x⊗ y) = sMi (degS(x) + deg(y))

for all homogeneous elements x ∈ KN
i and y ∈ B(M∗

i ), where B(M∗
i ) is

a Zθ-graded algebra with deg(M∗
i ) = −αi, and degS is the degree of the

graded algebra S. In particular, deg(Ñj) = αj for all j ∈ I. (Here, Ñj,

j �= i, is identified with Ñj ⊗ 1, and Ñi with 1⊗M∗
i .)

Proof. (1) Assume that θ ≥ 2. Let j ∈ I \ {i} and Qj = adSk[Ni](Nj). Since
M is i-finite,

adB(M)B(Mi)(Mj) =

−aM
ij⊕

n=0

(adB(M)Mi)
n(Mj).

Since N is a Nichols system of (M, i), it follows that

Qj = Nj ⊕ adSNi(Nj)⊕ · · · ⊕ (adSNi)
−aM

ij (Nj),

and pN induces an isomorphism Qj
∼= adB(M)B(Mi)(Mj) of objects in the category

B(Mi)#H
B(Mi)#H YD. Since Nj is irreducible, also Qj is irreducible in

B(Mi)#H
B(Mi)#H YD by

Corollary 13.2.5(2). Moreover, Qj is a Z-graded object in
B(Mi)#H
B(Mi)#H YD with

Qj(n) =

{
(adSNi)

n−1(Nj) if 1 ≤ n ≤ 1− aMij ,

0 if n ≤ 0 or n > 1− aMij .

Therefore Ω(Qj) is irreducible and Z-graded in
B(M∗

i )#H

B(M∗
i )#H YD. The non-zero homo-

geneous component of Ω(Qj) of smallest degree is Ñj of degree n0 = −1+aMij , since
for all integers n, Ω(Qj)(n) = Qj(−n). Hence we obtain from Proposition 13.1.2(3c)
that for all n ≥ 0,

(M∗
i )

n ·Ω Ñj = Ω(Qj)(n+ n0)

= Qj(−n+ 1− aMij ) =

{
(adSNi)

−n−aM
ij (Nj) if n ≤ −aMij ,

0 if n > −aMij .

(2) For any j ∈ I\{i}, Qj = adSk[Ni](Nj) is irreducible by the proof of (1) and

has only finitely many non-zero homogeneous components. Hence Ñj is irreducible
by Theorem 13.2.7.

(3) Let S̃′ be the subalgebra of Ω(KN
i )#B(M∗

i ) generated by Ñ1, . . . , Ñθ. For
all ξ ∈M∗

i and x ∈ Ω(KN
i ), the product of 1⊗ ξ and x⊗ 1 in Ω(KN

i )#B(M∗
i ) is

(1⊗ ξ)(x⊗ 1) = ξ ·Ω x⊗ 1 + ξ(−1) · x⊗ ξ(0),

since ξ is primitive in B(M∗
i ). Hence for any H-stable subspace X of Ω(KN

i ) with

X ⊗ 1 ⊆ S̃′ it follows that ξ ·Ω X ⊗ 1 is contained in S̃′. In particular, we see
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by induction on n that (M∗
i )

n ·Ω Ñj ⊗ 1 is contained in S̃′ for all n ≥ 0. Then

adSk[Ni](Nj)⊗ 1 ⊆ S̃′ by (1). The subspaces adSk[Ni](Nj) ⊆ KN
i with j ∈ I \ {i}

generate the algebra KN
i by Lemma 13.5.11(2). They are objects in

B(Mi)#H
B(Mi)#H YDrat.

Since for all subobjects X,Y ⊆ KN
i in

B(Mi)#H
B(Mi)#H YDrat, Ω(X)Ω(Y ) = Ω(XY ), we

conclude that Ω(KN
i ) is generated by the subspaces adSk[Ni](Nj), j ∈ I \ {i}.

Hence Ω(KN
i )⊗ 1 ⊆ S̃′. This implies (3).

(4) Recall that the Hopf algebra B(Mi)#H is Zθ-graded with deg(Mi) = αi

and deg(H) = 0. By Lemma 13.5.11(3), KN
i is an Nθ

0-graded Hopf algebra. We
extend the grading of KN

i to a Zθ-grading by KN
i (α) = 0 for all α �∈ Nθ

0. Then

Lemma 13.5.11(4) implies that KN
i is a Zθ-graded Hopf algebra in

B(Mi)#H
B(Mi)#H YDrat.

Then Ω(KN
i ) is a Zθ-graded Hopf algebra in

B(M∗
i )#H

B(M∗
i )#H YDrat with the same grading

Ω(KN
i )(α) = KN

i (α) for all α ∈ Zθ,

where B(M∗
i )#H is a Zθ-graded Hopf algebra with deg(M∗

i ) = −αi, deg(H) = 0.
This follows from the definition of Ω and ω, since 〈 , 〉 : B(M∗

i ) ⊗ B(Mi) → k
is Zθ-graded, where k(0) = k and k(α) = 0 for all α �= 0. By Theorem 5.5.6(1),
Ω(KN

i )#(B(M∗
i )#H) is a Zθ-graded Hopf algebra. Hence Ω(KN

i )#B(M∗
i ) is a

Zθ-graded Hopf algebra in H
HYD. Shifting the degree by sMi defines the grading of

Ω(KN
i )#B(M∗

i ). Hence deg(Ñi) = sMi (−αi) = αi, and for all j �= i,

deg(Ñj) = sMi (−aMij αi + αj) = αj .

The proof of the theorem is completed. �

Definition 13.5.13. Let M ∈ FH
θ , i ∈ I, and let N = N (S,N, f) be a Nichols

system of (M, i). Assume that Mj is irreducible for all j �= i and that M is i-finite.
Let

Ñ = (Ñ1, . . . , Ñθ), f̃ = (f̃1, . . . , f̃θ), Ri(N ) = N (S̃, Ñ , f̃),

where S̃ = ΩMi
(KN

i )#B(M∗
i ) is the Hopf algebra in Theorem 13.5.12 with genera-

tors Ñ1, . . . , Ñθ, f̃i is the identity on M∗
i , and f̃j : Ñj → Ri(M)j for any j ∈ I \ {i}

is the isomorphism induced by pN . The triple Ri(N ) is called the i-th reflection
of N .

Proposition 13.5.14. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in

H
HYD for all j ∈ I \ {i}. Assume that M is i-finite. Let N be a Nichols system of
(M, i). Then Ri(N ) is a Nichols system of (Ri(M), i).

Proof. Let N (S,N, f) = N and N (S̃, Ñ , f̃) = Ri(N ). For all j ∈ I \ {i}, the
map

f̃j : Ñj = (adSNi)
−aM

ij (Nj)→ (adB(M)Mi)
−aM

ij (Mj) = Ri(M)j

induced by pN is an isomorphism, since N is a Nichols system of (M, i). Hence
Ri(N ) is a pre-Nichols system of Ri(M) by Theorem 13.5.12(3),(4).

The canonical map pRi(N ) of Ri(N ) sends Ñj to Ri(M)j for all j ∈ I. Moreover,

k[Ñi] = B(M∗
i ) ⊆ S̃. Hence (Sys3) holds for Ri(N ) with respect to i ∈ I.
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Let now j ∈ I \ {i} and Qj = ⊕−aM
ij

n=0 (adSNi)
n(Nj). The left action of B(M∗

i )

on ΩMi
(KN

i ) coincides with the restriction of the adjoint action of S̃, and hence

adS̃B(M
∗
i )(Ñj) = Ω(Qj)(13.5.3)

by Theorem 13.5.12(1). Now (Sys4) for N implies that Qj ∈ k[Ni]#H
k[Ni]#HYD is ir-

reducible, see Lemma 13.5.5. Then Ω(Qj) ∈ k[Ñi]#H

k[Ñi]#H
YD is irreducible and hence

(Sys4) holds for Ri(N ) because of Lemma 13.5.5. �

Remark 13.5.15. In the proof of Proposition 13.5.14 we also observed that
ΩMi

(adSk[Ni](Nj))#1 is invariant under the adjoint action of B(M∗
i ) and that

(adM∗
i )

1−aM
ij (Ñj) = 0

(adM∗
i )

n(Ñj) = (adSNi)
−aM

ij −n(Nj)

for any j ∈ I \ {i}, 0 ≤ n ≤ −aMij .

If the canonical map of a Nichols system of (M, i) is an isomorphism, more
detailed information can be obtained.

Lemma 13.5.16. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in H

HYD
for all j ∈ I \ {i}. Assume that M is i-finite. Let N be a pre-Nichols system of
M such that the canonical map of N is an isomorphism. Then N and Ri(N ) are
Nichols systems of (M, i) and (Ri(M), i), respectively, and the canonical map of
Ri(N ) is an isomorphism.

Proof. It is clear from the definition that N is a Nichols system of (M, i), and

that pN induces an isomorphism pN : KN
i → K

B(M)
i . Hence the canonical map of

Ri(N ) is the composition

ΩMi
(KN

i )#B(M∗
i )

ΩMi
(pN )⊗id

−−−−−−−−→ ΩMi
(K

B(M)
i )#B(M∗

i )
Θ−1

−−−→ B(Ri(M)),

where Θ is the isomorphism of Theorem 13.4.9. Thus the Lemma follows from
Proposition 13.5.14. �

Recall from Theorem 3.5.8 the isomorphism ψV between any V ∈ H
HYD and its

double dual.

Definition 13.5.17. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in

H
HYD for all j ∈ I \ {i}. Assume that M is i-finite. Let Θ be the isomorphism in
Theorem 13.4.9. For all j ∈ I let

fM
j : Mj → (R2

i (M))j , x �→
{
Θ−1(x⊗ 1) if j �= i,

ψMi
(x) if j = i.

Let fM = (fM
j )1≤j≤θ : M → R2

i (M).

Remark 13.5.18. The tuple fM in Definition 13.5.17 is well-defined by Re-
mark 13.5.15 applied to the Nichols system N (B(M),M, id).

Proposition 13.5.19. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in

H
HYD for all j ∈ I \ {i}. Assume that M is i-finite. Then

(1) Ri(M)j is irreducible in H
HYD for all j ∈ I \ {i} and Ri(M) is i-finite,
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(2) a
Ri(M)
ij = aMij for all j ∈ I, and

(3) fM : M → R2
i (M) is an isomorphism in FH

θ .

Proof. The claims of the Proposition follow from Remark 13.5.15 applied to
the Nichols system N (B(M),M, id). �

Definition 13.5.20. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in

H
HYD for all j ∈ I \ {i}. Assume that M is i-finite. For any Nichols system N of
(M, i) let

TN
i : L

Ri(N )
i = coB(M∗

i )(ΩMi
(KN

i )#B(M∗
i ))

∼=−→ D((KN
i )cop) = KN

i

be the isomorphism T in Theorem 12.3.3 with B = B(Mi) and C = H
HYD.

Corollary 13.5.21. Let i ∈ I and M ∈ FH
θ such that Mj is irreducible in

H
HYD for all j ∈ I \ {i}. Assume that M is i-finite. Let N be a Nichols system

of (M, i) and let N (S̃, Ñ , f̃) = Ri(N ). Then TN
i : L

Ri(N )
i → KN

i is an algebra
isomorphism in H

HYD such that

(1) For all j ∈ I \ {i}, 0 ≤ n ≤ −aMij , and y ∈ (adS̃M
∗
i )

n(Ñj),

TN
i (S−1

S̃
(y)) = −y,

TN
i

(
S−1

S̃
((adS̃M

∗
i )

n(Ñj))
)
= (adSNi)

−aM
ij −n(Nj).

(2) Let α ∈ Nθ
0, and let x ∈ L

Ri(N )
i (α) be a non-zero homogeneous element.

Then deg(TN
i (x)) = s

Ri(M)
i (α). In particular, s

Ri(M)
i (α) ∈ Nθ

0. Here,

L
Ri(N )
i and KN

i are Nθ
0-graded subalgebras of S̃ and S, respectively.

Proof. If θ = 1 then the claim is trivial. Assume that θ ≥ 2. Let j ∈ I \ {i},
0 ≤ n ≤ −aMij , y ∈ (adS̃M

∗
i )

n(Ñj), and x = S−1

S̃
(y). Remark 13.5.15 implies that

the elements in (adS̃M
∗
i )

n(Ñj) are primitive inKN
i . Hence TN

i (x) = S−1
KN

i

(y) = −y.

This proves (1). Moreover, deg(x) = deg(y) = nαi + αj , since S−1

S̃
is graded by

Corollary 5.1.3. On the other hand,

deg(TN
i (x)) = (−aMij − n)αi + αj = sMi (deg(x)),

since TN
i (x) ∈ (adSNi)

−aM
ij −n(Nj). Now, as sMi = s

Ri(M)
i as a consequence of

Proposition 13.5.19(2), (2) follows from Lemma 13.5.11(2). �
Finally we introduce morphisms of pre-Nichols systems. The results in the

remaining part of this section will be needed in Section 16.3 for the study of small
quantum groups.

Definition 13.5.22. Let N = N (S,N, f) and N ′ = N (S′, N ′, f ′) be pre-
Nichols systems of M for some M ∈ FH

θ . A morphism p : N → N ′ of pre-
Nichols systems of M is a Hopf algebra morphism p : S → S′ such that for any
j ∈ I, p induces an isomorphism pj = p|Nj : Nj → N ′

j satisfying fj = f ′
jpj .

An example of a morphism of pre-Nichols systems of M is the canonical map
pN : N → N (B(M),M, id).

Remark 13.5.23. Let i ∈ I and M ∈ FH
θ . The class of Nichols systems of

(M, i) forms a category NM
i with morphisms as in Definition 13.5.22. We list some

properties of the category which follow from the definitions.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



13.5. NICHOLS SYSTEMS AND THEIR REFLECTIONS 433

(1) For any two pre-Nichols systems N ,N ′ of M , there is at most one mor-
phism p : N → N ′. In particular, NM

i is a thin category.
(2) Let p : N → N ′ be a morphism of pre-Nichols systems of M . Then p is

a surjective morphism of Nθ
0-graded Hopf algebras in H

HYD. For all j ∈ I,
pj is an isomorphism, in particular, ker(p) ∩ Nj = 0.

(3) Let p : N → N ′ be a morphism of pre-Nichols systems of M . If N is a
Nichols system of (M, i), then N ′ is a Nichols system of (M, i).

(4) A morphism p of pre-Nichols systems of M is an isomorphism if and only
if p is bijective.

(5) Let p′ : N → N ′ and p′′ : N → N ′′ be morphisms of pre-Nichols systems
of M with ker(p′) ⊆ ker(p′′). Then there is a morphism p : N ′ → N ′′

satisfying pp′ = p′′. If ker(p′) = ker(p′′), then p is an isomorphism.

The following proposition states the existence of terminal and initial objects
in NM

i for any i ∈ I and M ∈ FH
θ . Note that such objects are unique up to

isomorphism.

Proposition 13.5.24. Let i ∈ I and M ∈ FH
θ .

(1) For any Nichols system N of (M, i), the canonical map is the unique
morphism from N to N (B(M),M, idM ).

(2) There is a Nichols system Nini = N (Ŝ, N̂ , f̂) of (M, i), such that for any
Nichols system N = N (S,N, f) of (M, i) there is a unique morphism
q : Nini → N .

Proof. (1) follows directly from Remark 13.5.23(1). Now we prove (2). Let
V = ⊕θ

i=1Mi and let Ii = I(Mi) and I(V ) be the defining ideals of B(Mi) and
B(V ), respectively, see Definition 7.1.1. For all j ∈ I \ {i} let

Ij = I(V ) ∩ ⊕∞
n=0(adT (V )Mi)

n(Mj).

Let Ŝ be the quotient of T (V ) by the ideal generated by I1, . . . , Iθ. Since I(V )

is an Nθ
0-graded Hopf ideal, we conclude that Ŝ is an Nθ

0-graded Hopf algebra

generated by M1, . . . ,Mθ. Moreover, Nini = (Ŝ,M, id) is a Nichols system of (M, i)
by construction.

Let N = N (S,N, f) be a Nichols system of (M, i). Then f−1 : M → N induces
a Hopf algebra map q : T (V ) → S. Moreover, I1, . . . , Iθ ⊆ ker q because of (Sys3)

and (Sys4) for S. Hence q factors to a Hopf algebra map q : Ŝ → S. Thus q is a
morphism from Nini to N since fjq|Mj

= idMj
for all j ∈ I. The uniqueness of q

follows from Remark 13.5.23(1). �

Proposition 13.5.25. Let i ∈ I and M ∈ FH
θ such that M is i-finite and Mj

is irreducible in H
HYD for all j ∈ I. Let N = N (S,N, f) and N ′ = N (S′, N ′, f ′) be

Nichols systems of (M, i) and (R2
i (M), i), respectively, with dimS(α) = dimS′(α)

for any α ∈ Nθ
0. Then any morphism p : N ′ → R2

i (N ) of Nichols systems of
(R2

i (M), i) is an isomorphism.

Proof. As any morphism of Nichols systems, p is surjective and graded. Let

R2
i (N ) = N (S̃, Ñ , f̃). By Definition 13.5.13 and Proposition 13.5.14,

S̃ = ΩM∗
i
(ΩMi

(KN
i ))#B(M∗∗

i ).
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By Theorem 13.5.12(4), dim S̃
(
s
Ri(M)
i sMi (α)

)
= dimS(α) for all α ∈ Nθ

0. Moreover,

s
Ri(M)
i sMi = idZθ because of Proposition 13.5.19(2). It follows that

dim S̃(α) = dimS(α) = dimS′(α)

for all α ∈ Nθ
0. Thus p is injective. �

Let i ∈ I, M ∈ FH
θ , and let N = N (S,N, f), N ′ = N (S′, N ′, f ′) be Nichols

systems of (M, i). We note that a morphism p : N → N ′ satisfies

pN
′
p = pN , πN ′

i p = πN
i for all 1 ≤ i ≤ θ.(13.5.4)

We denote the induced morphism of Hopf algebras in
B(Mi)#H
B(Mi)#H YD by

pK : KN
i → KN ′

i .

Definition 13.5.26. Let i ∈ I and M ∈ FH
θ such that M is i-finite. For any

morphism p : N → N ′ of Nichols systems of (M, i), we define

Ri(p) = ΩMi
(pK)#id : ΩMi

(KN
i )⊗ B(M∗

i )→ ΩMi
(KN ′

i )⊗ B(M∗
i ).

Lemma 13.5.27. Let i ∈ I and M ∈ FH
θ such that M is i-finite and Mj is

irreducible for all j ∈ I \ {i}.
(1) Ri : N

M
i → N

Ri(M)
i , where N ∈ NM

i is mapped to Ri(N ) and a morphism
p : N → N ′ to Ri(p), is a functor.

(2) Let p : N → N ′ be a morphism of Nichols systems of (M, i). The diagram

L
Ri(N )
i

Ri(p)L
��

TN
i �� KN

i

pK

��

L
Ri(N ′)
i

TN′
i �� KN ′

i

commutes, where Ri(p)L denotes the restriction of Ri(p) to the left coin-
variant elements.

Proof. (1) By Proposition 13.5.14, for any N ∈ NM
i , Ri(N ) is a Nichols

system of (Ri(M), i). It remains to show that Ri(p) is a morphism for any morphism
p. This follows from Corollary 4.3.3 and from (Sys4).

(2) It is enough to check commutativity of the diagram on generators of the form

S−1

S̃
(y), where y ∈ (adS̃M

∗
i )

n(Ñj), n ≥ 0, and j �= i. (We use the notation above

the lemma.) Now (1) implies that Ri(p)S−1

S̃
= S−1

S̃′ Ri(p). Moreover, Ω(pK) = pK
by definition. Hence (2) follows from Corollary 13.5.21(1). �

Now we discuss the compatibility of morphisms of Nichols systems of (M, i)
and quotient constructions.

Proposition 13.5.28. Let i ∈ I and M ∈ FH
θ . Let N = N (S,N, f) be a

Nichols system of (M, i) and let J be an Nθ
0-graded Hopf ideal of S in H

HYD.

(1) Assume that Ni ∩ J = 0. Then

J = (J ∩KN
i )k[Ni] = k[Ni](J ∩KN

i ) = (J ∩ LN
i )k[Ni] = k[Ni](J ∩ LN

i ).
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(2) Assume that Nj ∩ J = 0 for any j ∈ I. Then N = N (S/J,N, f) is
a Nichols system of (M, i), and the canonical map p : S → S/J is a
morphism p : N → N of pre-Nichols systems.

Proof. (1) Let π = π̃N
i : S → k[Ni] be the graded projection from Defini-

tion 13.5.9. Then π(J) =
⊕

n≥0 S(nαi) ∩ J = k[Ni] ∩ J . Since Ni ∩ J = 0, (Sys3)

and Corollary 1.3.11(1) imply that π(J) = k[Ni] ∩ J = 0. Hence π induces a Hopf
algebra morphism π : S/J → k[Ni] in

H
HYD, and πγ = idk[Ni], where γ is the

composition of the inclusion map k[Ni]→ S with the canonical map S → S/J . Let
K = (S/J)co k[Ni]. By Theorem 3.9.2(6) the diagram

KN
i ⊗ k[Ni]

��

∼= �� S

��

K ⊗ k[Ni]
∼= �� S/J

(13.5.5)

commutes, where the horizontal maps are multiplication and the vertical maps are
the canonical maps. We conclude from the diagram that J = (J ∩ KN

i )k[Ni].
Corollary 3.9.3 allows us to interchange the tensor factors in (13.5.5), and the
equality J = k[Ni](J ∩ KN

i ) follows by the same argument. By applying the
antipode of S we obtain the remaining equations.

(2) Since J is an Nθ
0-graded Hopf ideal of S and Nj ∩ J = 0 for all j ∈ J ,

N = N (S/J,N, f) is a pre-Nichols system of M . In the proof of (1) we saw that
π(J) = 0. Hence πN

i (J) = 0 and (Sys3) holds forN and i. Finally, for any j ∈ I\{i}
the canonical map pN : S → B(M) is injective on adSk[Ni](Nj) by assumption and

it factorizes via S/J . Hence pN : S → B(M) is injective on adS/Jk[Ni](Nj). Thus

N is a Nichols system of (M, i). Finally, p is a morphism, since for all j ∈ I,
pj = idNj

. �

Proposition 13.5.29. Let i ∈ I and M ∈ FH
θ such that M is i-finite and Mj

is irreducible for all j ∈ I \ {i}.
(1) Let p : N → N ′ be a morphism in NM

i . Then

ker(Ri(p)) = (TN
i )−1

(
ker(p) ∩KN

i

)
B(M∗

i ),

ker(p) = TN
i

(
ker(Ri(p)) ∩ L

Ri(N )
i

)
k[Ni].

(2) Let N ∈ NM
i , and let q : Ri(N )→ N ′′ be a morphism in N

Ri(M)
i for some

N ′′ ∈ N
Ri(M)
i . Then there exist a morphism p : N → N ′ in NM

i and an

isomorphism r : Ri(N ′) → N ′′ in N
Ri(M)
i such that ker(Ri(p)) = ker(q)

and rRi(p) = q.

Proof. (1) By Proposition 13.5.28 for Ri(N ),

ker(Ri(p)) =
(
ker(Ri(p)) ∩ L

Ri(N )
i

)
B(M∗

i ) = ker(Ri(p)L)B(M∗
i ).

Since TN
i and TN ′

i are isomorphisms, from Lemma 13.5.27(2) it follows that

ker(Ri(p)L) = (TN
i )−1 ker(pK) = (TN

i )−1
(
ker(p) ∩KN

i

)
.

The claim on ker(p) is obtained similarly.
(2) We construct a morphism p using (1) and Proposition 13.5.28(2).
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Let C = H
HYD, N (S,N, f) = N , N (S̃, Ñ , f̃) = Ri(N ), and J̃ = ker(q). Then

J̃ is a graded Hopf ideal of the Nθ
0-graded Hopf algebra S̃ in C and for all j ∈ I,

Ñj ∩ J̃ = 0 by Remark 13.5.23(2). Hence S̃cop/J̃ = (S̃/J̃)cop is a braided Hopf

algebra in C with projection to Acop. Let L̃ = L
Ri(N )
i . Then J̃ ∩ L̃ is a graded Hopf

ideal of the Nθ
0-graded Hopf algebra L̃ in Acop

AcopYD(C). Now by Theorem 12.3.3(2),

TN
i (J̃ ∩ L̃) ⊆ KN

i is a graded Hopf ideal of the Nθ
0-graded Hopf algebra KN

i in
Acop

AcopYD(C). By Corollary 12.3.5 and since TN
i is graded, TN

i (J̃∩L̃) is a graded Hopf

ideal of the Nθ
0-graded Hopf algebra KN

i in B
BYD(C). Hence J = TN

i (J̃ ∩ L̃)k[Ni] is
a graded Hopf ideal of S. By definition, Ni ∩J = 0. Further, it follows from (Sys4)
and Lemma 13.5.5 that Nj ∩ J = 0 for any j ∈ I \ {i}. Let p : N → N (S/J,N, f)
be the morphism from Proposition 13.5.28(2). Then ker(Ri(p)) = ker(q) by (1).
The existence and claimed properties of r follow from Remark 13.5.23(5) applied
to the morphisms Ri(p) and q. �

13.6. The semi-Cartan graph of a Nichols algebra

As before, let H be a Hopf algebra with bijective antipode, let θ ≥ 1 be a
natural number, and I = {1, . . . , θ}.

Definition 13.6.1. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I. Let

l ∈ N0 and i1, . . . , il ∈ I. Let N be a pre-Nichols system of M .

(1) We say that M admits the reflection sequence (i1, . . . , il) if l = 0 or
if M is i1-finite and Ri1(M) admits the reflection sequence (i2, . . . , il).

(2) We say that N admits the reflection sequence (i1, . . . , il) if l = 0 or
if N is a Nichols system of (M, i1), M is i1-finite, and Ri1(N ) admits the
reflection sequence (i2, . . . , il).

(3) We say that M admits all reflections if M admits all reflection se-
quences (j1, . . . , jk) with k ∈ N0 and j1, . . . , jk ∈ I.

(4) We say thatN admits all reflections ifN admits all reflection sequences
(j1, . . . , jk) with k ∈ N0 and j1, . . . , jk ∈ I.

(5) Assume that M admits all reflections. Let

FH
θ (M) = {Rj1(· · ·Rjk(M)) | k ∈ N0, j1, . . . , jk ∈ I}.

Let i ∈ I. According to Lemma 13.4.5, if M is i-finite, then the isomorphism
class ri([M ]) = [Ri(M)] and the Cartan integers aMij with j ∈ I do not depend on
the choice of the representative of the isomorphism class of M .

Theorem 13.6.2. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I.

Assume that M admits all reflections. Let X = {[P ] | P ∈ FH
θ (M)}, and let

r : I×X → X , (i, [P ]) �→ [Ri(P )]. Then

G(M) = G(I,X , r, (AX)X∈X ),

where A[P ] = (aPij)i,j∈I for all [P ] ∈ X , is a semi-Cartan graph.

Proof. Lemma 13.4.5 implies that r and the family (AX)X∈X are well-defined.
For any X ∈ X , AX is a Cartan matrix by Lemma 13.4.4. According to Defini-
tion 9.1.1, it remains to show that G(M) fulfills Axioms (CG1) and (CG2). This
in turn follows from Proposition 13.5.19. �
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Definition 13.6.3. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I.

Assume that M admits all reflections. We call G(M) the semi-Cartan graph of
M , and W(M) = W(G(M)) the Weyl groupoid of M . Often it will be more
convenient to say that G(M) is the Cartan graph of B(M) and W(M) is the Weyl
groupoid of B(M).

Proposition 13.6.4. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I.

Assume that B(M) is a finite-dimensional vector space over k. Then M admits all
reflections, and dimB(P ) = dimB(M) for each P ∈ FH

θ (M).

Proof. Since B(M) is finite-dimensional, M is i-finite for any i ∈ I by de-
gree reasons. Moreover, Ri(M)j is irreducible for all j ∈ I by Corollary 13.4.3
and since Ri(M)i = M∗

i . Hence B(Ri(M)) is finite-dimensional for all i ∈ I by
Theorem 13.4.9. By induction on l it follows that for any κ = (i1, . . . , il) ∈ Il with
l ≥ 0, the tuple M admits the reflection sequence κ and that B(Ril · · ·Ri1(M)) and
B(M) have the same dimension. This implies the claim. �

An important fact relating reflections of tuples in FH
θ to reflections of Nichols

systems is the following.

Proposition 13.6.5. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I.

Let N0 = N (B(M),M, idM ).

(1) Let l ∈ N0 and i1, . . . , il ∈ I. Then M admits the reflection sequence
(i1, . . . , il) if and only if N0 does.

(2) M admits all reflections if and only if N0 does.

Proof. (1) Let N be a pre-Nichols system of M such that pN is an isomor-
phism. We prove by induction on l that M admits the reflection sequence (i1, . . . , il)
if and only if N does. Since pN0 = id is an isomorphism, this proves the proposition.

For l = 0 the claim is trivial. Assume now that l ≥ 1. By Lemma 13.5.16, N is
a Nichols system of (M, i1), Ri(N ) is a pre-Nichols system of Ri(M), and pRi(N )

is an isomorphism. Hence the claim follows from the definitions and the induction
hypothesis.

(2) follows from (1). �

13.7. Notes

13.2. In the discussion of projections of Nichols algebras we follow [AHS10,
Section 3], where Theorem 13.2.7 is shown. Theorem 13.2.8 is a result from
[HS13b].

13.3. The computation of the adjoint action in Theorem 13.3.1 first appeared
in [HS10b, Proposition 6.5].

13.4. Theorem 13.4.9 was shown in [HS13b, Theorem 8.9]. The existence of

the algebra isomorphism Θ̃ : B(Ri(M))
∼=−→ K

B(M)
i #B(M∗

i ) in Corollary 13.4.10
(without the Hopf algebra structure on the right-hand side) was one of the main
results in [AHS10]. The algebra structure of the smash product was defined by
quantum differential operators or as a subalgebra of a Heisenberg double. The
somewhat lengthy proof of the isomorphism in [AHS10, Theorem 3.12] used fam-
ilies of braided derivations. Our categorical proof of the existence of the Hopf

algebra isomorphism Θ̃ is completely different.
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13.5. The notion of Nichols systems and their reflections is new.

13.6. Theorem 13.6.2 was first shown in [AHS10].
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CHAPTER 14

Right coideal subalgebras of Nichols systems,
and Cartan graph of Nichols algebras

We use the theory of reflections from the previous Chapter to study graded right
coideal subalgebras of Nichols systems in the category of Yetter-Drinfeld modules
over Hopf algebras with bijective antipode. In the basic Theorem 14.1.9 we con-
struct right coideal subalgebras of pre-Nichols systems stepwise starting from an
[M ]-reduced representation of a morphism in the semi-Cartan graph G(M). Having
introduced the correct notions, at this point the proof follows easily by induction. In
Section 14.2 we introduce exact factorizations of bialgebras and of Nichols systems.
As applications, among others we prove that a semi-Cartan graph of a Nichols sys-
tem is a Cartan graph, and provide a structural result on commutation relations and
a criterion for the finiteness of the Nichols algebra of a semi-simple Yetter-Drinfeld
module. In the finite case a PBW type decomposition is given.

Throughout, let H be a Hopf algebra with bijective antipode.

14.1. Right coideal subalgebras of Nichols systems

We specialize the bijective correspondence of Theorem 12.4.5 to graded right
coideal subalgebras of Nichols systems.

Lemma 14.1.1. Let M ∈ H
HYD be an irreducible object. Then k1 and B(M)

are the only right or left coideal subalgebras of the Nichols algebra B(M) in H
HYD.

Proof. Recall from Theorem 7.1.2 that B(M) is a strictly graded coalgebra.
Let k1 �= E ⊆ B(M) be a right or left coideal subalgebra in H

HYD. Then 0 �= E∩M
by Corollary 1.3.11(3). Since M is an irreducible object in H

HYD, it follows that
M ⊆ E, hence B(M) = E. �

Let θ ≥ 1 and I = {1, . . . , θ}. In what follows we will heavily use the notation
introduced in Definitions 13.5.9 and 13.5.20.

Lemma 14.1.2. Let M ∈ FH
θ , i ∈ I, and let N = N (S,N, f) be a Nichols

system of (M, i). Assume that Mi is irreducible. Let E ⊆ S be a right coideal
subalgebra in H

HYD. Consider the following conditions.

(1) E ⊆ LN
i .

(2) Ni � E.

Then (1) implies (2). If E is an Nθ
0-graded subspace of S, then (2) implies (1).

Proof. Assume first that (1) holds and that Ni ⊆ E. Then Ni ⊆ LN
i by (1).

Since πN
i |LN

i = ε|LN
i , we obtain that Ni = 0, which is excluded, since Ni

∼= Mi is
irreducible.

Assume now that (2) holds. Then Ni ∩ E = 0 by the irreducibility of Mi. We
prove (1). Since E is a graded subspace of the Nθ

0-graded Hopf algebra S, and

439
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since the projection πN
i : S → B(Mi) is graded, (2) implies that the homogeneous

part of πN
i (E) of degree αi is zero. Hence Mi � πN

i (E). Since πN
i (E) is a right

coideal subalgebra of B(Mi), πN
i (E) = k1 by Lemma 14.1.1. Thus E ⊆ LN

i by
Lemma 2.5.6(2). �

Definition 14.1.3. For any M ∈ FH
θ , i ∈ I, and for any Nichols system

N = N (S,N, f) of (M, i) we define

K(N ) = {E | E ⊆ S Nθ
0-graded right coideal subalgebra in H

HYD},
K+

i (N ) = {E | E ∈ K(N ), Ni ⊆ E},
K−

i (N ) = {E | E ∈ K(N ), Ni � E}.

Theorem 14.1.4. Let M ∈ FH
θ , i ∈ I, and let N be a Nichols system of (M, i).

Assume that M is i-finite, and that Mj is irreducible in H
HYD for all j ∈ I.

(1) The map

tNi : K−
i (Ri(N ))→ K+

i (N ), E �→ TN
i (E)k[Ni],

is bijective with inverse given by E �→ (TN
i )−1(E ∩KN

i ).
(2) The multiplication map TN

i (E)⊗ k[Ni]→ TN
i (E)k[Ni] is bijective for all

E ∈ K−
i (Ri(N )).

Proof. Let N = N (S,N, f), Ri(N ) = N (S̃, Ñ , f̃), and K = KN
i . In order

to apply Theorem 12.4.5, let 〈 , 〉 be the canonical pairing with A = B(M∗
i ),

B = B(Mi). Then

K#B ∼= S

by multiplication and the isomorphism B(Mi) ∼= k[Ni], and

ΩMi
(K)#A = S̃.

By Theorem 12.4.5, the map Er(S̃, L
Ri(N )
i ) → E+

r (S), E �→ TN
i (E)k[Ni], is bijec-

tive with inverse E �→ (TN
i )−1(E ∩ KN

i ). By Corollary 13.5.21(2), this bijection
can be restricted to the Nθ

0-graded subalgebras. Hence the theorem follows from
Lemma 14.1.2. (2) holds by Theorem 12.4.5. �

Lemma 14.1.5. Let M ∈ FH
θ , i ∈ I, and let p : N → N ′ be a morphism of

Nichols systems of (M, i). Assume that M is i-finite, and that Mj is irreducible in
H
HYD for all j ∈ I. Let E ∈ K−

i (Ri(N )) and E′ ∈ K−
i (Ri(N ′)), and assume that

Ri(p) induces an isomorphism E → E′. Then p induces an isomorphism

tNi (E)→ tN
′

i (E′).

Proof. By Lemma 14.1.2, E ⊆ L
Ri(N )
i and E′ ⊆ L

Ri(N ′)
i . Hence the commu-

tative diagram in Lemma 13.5.27(2) induces a commutative diagram

E

��

�� TN
i (E)

��

E′ �� TN ′

i (E′)

,
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14.1. RIGHT COIDEAL SUBALGEBRAS OF NICHOLS SYSTEMS 441

where the horizontal maps are isomorphisms induced by TN
i and TN ′

i , and the ver-
tical maps are induced by Ri(p) and p. Since the left vertical map is an isomorphism
by assumption, p induces an isomorphism

TN
i (E)→ TN ′

i (E′).

Moreover, p induces an isomorphism k[Ni] → k[N ′
i ] by the choice of p. Hence the

claim follows from Theorem 14.1.4(2). �

Remark 14.1.6. Let M ∈ FH
θ such that Mi is irreducible in

H
HYD for all i ∈ I,

and let N be a Nichols system of M . Let i1, . . . , il ∈ I, l ≥ 1. Assume that N
admits the reflection sequence (i1, . . . , il). Let w = id[M ]si1 · · · sil ,

[Ril · · ·Ri1(M)]
sil �� [Ril−1

· · ·Ri1(M)] · · ·
si2 �� [Ri1(M)]

si1 �� [M ]

be a morphism in the Weyl groupoid of M .

By abuse of notation, for all 1 ≤ k ≤ l let Tik = T
Rik−1

···Ri1
(N )

ik
. Recall the

definition of

L
Rik

···Ri1
(N )

ik
, K

Rik−1
···Ri1

(N )

ik

from Definition 13.5.9. We denote the isomorphism

L
Rik

···Ri1
(N )

ik

Tik−−→ K
Rik−1

···Ri1
(N )

ik
by

Rik · · ·Ri1(N )
Tik �������� Rik−1

· · ·Ri1(N ).

Let tik = t
Rik−1

···Ri1
(N )

ik
. By definition

K−
ik
(Rik · · ·Ri1(N )) ⊆ K(Rik · · ·Ri1(N )),

K+
ik
(Rik−1

· · ·Ri1(N )) ⊆ K(Rik−1
· · ·Ri1(N ))

are subsets. We denote the bijective map

K−
ik
(Rik · · ·Ri1(N ))

tik−−→ K+
ik
(Rik−1

· · ·Ri1(N )) by

K(Rik · · ·Ri1(N ))
tik �������� K(Rik−1

· · ·Ri1(N )).

Thus
Tik �������� and

tik �������� are “partially defined maps”, and we can look at their
composition (where it is defined).

Ril · · ·Ri1(N )
Til �������� Ril−1

· · ·Ri1(N ) · · ·
Ti2 �������� Ri1(N )

Ti1 �������� N

K(Ril · · ·Ri1(N ))
til �������� K(Ril−1

· · ·Ri1(N )) · · ·
ti2 �������� K(Ri1(N ))

ti1 �������� K(N )

Let βk = id[M ]si1 · · · sik−1
(αik). Recall from Section 13.5 that Rik−1

· · ·Ri1(N )ik is

the direct summand of Rik−1
· · ·Ri1(N ) of degree αik . Under suitable assumptions
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we will show in the next theorem that

Nβk
= Ti1 · · ·Tik−1

(Rik−1
· · ·Ri1(N )ik) and

EN
(i1,...,il)

= ti1 · · · til(k)

are well-defined. Here, k is the trivial object in K(Ril · · ·Ri1(N )).
The irreducible Yetter-Drinfeld modules Nβk

correspond to the higher root
vectors in quantum groups, and the right coideal subalgebra EN

(i1,...,il)
of the pre-

Nichols algebra (that is, the first entry) of the Nichols system N is decomposed
into the tensor product of the Nichols algebras of the Nβk

.
In the next definition we describe this construction in a more formal way.

Definition 14.1.7. Let M ∈ FH
θ such that Mi is irreducible in H

HYD for all
i ∈ I. Let N = N (S,N, f) be a pre-Nichols system of M . Let l ∈ N0 and let
i1, . . . , il ∈ I. Assume that N admits the reflection sequence (i1, . . . , il). Let

R()(N ) = N , LN
() = S, TN

() = idS , K−
()(N ) = K(N ), tN() = idK(N ),

and for any 1 ≤ k ≤ l define inductively

R(i1,...,ik)(N ) =Rik(· · ·Ri1(N )),

LN
(i1,...,ik)

=
(
T

R(i1,...,ik−1)(N )

ik

)−1(
K

R(i1,...,ik−1)(N )

ik
∩ LN

(i1,...,ik−1)

)
,

TN
(i1,...,ik)

=TN
i1 T

Ri1
(N )

i2
· · ·T

R(i1,...,ik−1)(N )

ik
: LN

(i1,...,ik)
→ S

and

K−
(i1,...,ik)

(R(i1,...,ik)(N )) =(
t
R(i1,...,ik−1)(N )

ik

)−1(
K+

ik

(
R(i1,...,ik−1)(N )

)
∩ K−

(i1,...,ik−1)

(
R(i1,...,ik−1)(N )

))
,

tN(i1,...,ik) = tNi1 · · · t
R(i1,...,ik−1)(N )

ik
: K−

(i1,...,ik)
(R(i1,...,ik)(N ))→ K(N ).

Remark 14.1.8. In Definition 14.1.7, both the objects LN
(i1,...,ik)

and the sets

K−
(i1,...,ik)

(R(i1,...,ik)(N )) are largest with respect to inclusion such that TN
(i1,...,ik)

and tN(i1,...,ik), respectively, are well-defined maps. Moreover, for k = 1 ≤ l the

definitions yield that

R(i1)(N ) = Ri1(N ), LN
(i1)

= LN
i1 , TN

(i1)
= TN

i1 ,

and that

K−
(i1)

(R(i1)(N )) = K−
i1
(Ri1(N )), tN(i1) = tNi1 .

Recall the definitions of an [M ]-reduced sequence from Definition 9.2.1 and of
the semi-Cartan graph of M from Definition 13.6.3.

Theorem 14.1.9. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections. Let N = N (S,N, f) be a pre-Nichols
system of M . Let l ≥ 1 and i1, . . . , il ∈ I. Assume that (i1, . . . , il) is [M ]-reduced in
the semi-Cartan graph G(M) and that N admits the reflection sequence (i1, . . . , il).
For any 1 ≤ k ≤ l, let βk = id[M ]si1 · · · sik−1

(αik).

(1) β1, . . . , βl are pairwise distinct non-zero elements of Nθ
0.
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(2) For any 1 ≤ k ≤ l, R(i1,...,ik−1)(N )ik ⊆ LN
(i1,...,ik−1)

. Let

Nβk
= NN

k (i1, . . . , il) = TN
(i1,...,ik−1)

(R(i1,...,ik−1)(N )ik).

(3) k1 ∈ K−
(i1,...,il)

(R(i1,...,il)(N )). Let EN (i1, . . . , il) = tN(i1,...,il)(k1).

(4) For any 1 ≤ k ≤ l, Nβk
⊆ EN (i1, . . . , il) is a finite-dimensional irreducible

subobject in H
HYD of degree βk.

(5) For any 1 ≤ k ≤ l, the identity on Nβk
induces a graded isomorphism

B(Nβk
) ∼= k[Nβk

] ⊆ S of Nθ
0-graded algebras in H

HYD.
(6) The multiplication map k[Nβl

] ⊗ · · · ⊗ k[Nβ1
] → EN (i1, . . . , il) is an iso-

morphism of Nθ
0-graded objects in H

HYD.

(7) Let EB(M)(i1, . . . , il) = EN0(i1, . . . , il) with N0 = N (B(M),M, id). The
canonical map pN : S → B(M) in H

HYD induces an isomorphism

EN (i1, . . . , il)→ EB(M)(i1, . . . , il).

Proof. By Definition 9.2.1, Λ[M ](i1, . . . , il) = {β1, . . . , βl}.
We proceed by induction on l, where (7) is replaced by

(7’) Let p : N → N ′ = N (S′, N ′, f ′) be a morphism of pre-Nichols systems of
M . Then N ′ admits the reflection sequence (i1, . . . , il), and p induces an

isomorphism EN (i1, . . . , il)→ EN ′
(i1, . . . , il) in

H
HYD.

Since N admits the reflection sequence (i1, . . . , il), Remark 13.5.23(3) implies that
N ′ admits the reflection sequence (i1, . . . , il). Hence (7’) is equivalent to (7) by
(13.5.4).

Let l = 1. Then β1 = αi1 , Nβ1
= Ni1 , and EN (i1) = k[Ni1 ]. Hence (1)–(6)

and (7’) are obvious.
Let l > 1, and assume that (i1, . . . , il) is [M ]-reduced. Then (i2, . . . , il) is

[Ri1(M)]-reduced in G(Ri1(M)) by Lemma 9.2.2. To prove the theorem for the
reflection sequence (i1, . . . , il), we may assume by induction that the theorem holds

for the pre-Nichols system Ri1(N ) = N (S̃, Ñ , f̃) of Ri1(M), for the reflection se-
quence (i2, . . . , il), and (regarding the proof of (7’)) for the morphism

Ri1(p) : Ri1(N )→ Ri1(N ′) = N (S̃′, Ñ ′, f̃ ′)

of pre-Nichols systems of Ri1(M). Explicitly, for any 2 ≤ k ≤ l, we define the roots
γk = id[Ri1

(M)]si2 · · · sik−1
(αik). Then the following are assumed.

(a) γ2, . . . , γl are pairwise distinct non-zero elements of Nθ
0.

(b) For any 2 ≤ k ≤ l, R(i1,...,ik−1)(N )ik ⊆ L
Ri1

(N )

(i2,...,ik−1)
. Let

Ñγk
= T

Ri1
(N )

(i2,...,ik−1)
(R(i1,...,ik−1)(N )ik).

(c) k1 ∈ K−
(i2,...,il)

(R(i1,...,il)(N )). Let ERi1
(N )(i2, . . . , il) = t

Ri1
(N )

(i2,...,il)
(k1).

(d) For any 2 ≤ k ≤ l, Ñγk
⊆ ERi1

(N )(i2, . . . , il) is a finite-dimensional
irreducible subobject in H

HYD of degree γk.

(e) For any 2 ≤ k ≤ l, the identity on Ñγk
induces a graded isomorphism

B(Ñγk
) ∼= k[Ñγk

] ⊆ S̃ of Nθ
0-graded algebras in H

HYD.

(f) The multiplication map k[Ñγl
] ⊗ · · · ⊗ k[Ñγ2

] → ERi1
(N )(i2, . . . , il) is an

isomorphism of Nθ
0-graded objects in H

HYD.
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(g) The morphism Ri1(p) : Ri1(N ) → Ri1(N ′) in H
HYD induces an isomor-

phism ERi1
(N )(i2, . . . , il)→ ERi1

(N ′)(i2, . . . , il).

Since (i1, . . . , il) is [M ]-reduced, αi1 �= γk for any 2 ≤ k ≤ l by Definition 9.2.1. By

(b) and by Corollary 13.5.21(2), Ñγk
has degree γk for all 2 ≤ k ≤ l. Thus

Ñi1 �⊆ ERi1
(N )(i2, . . . , il)(14.1.1)

by (a) and (f), and hence

ERi1
(N )(i2, . . . , il) ∈ K−

i1
(Ri1(N ))(14.1.2)

by (c). This and Remark 14.1.8 imply (3). Moreover,

ERi1
(N )(i2, . . . , il) ⊆ L

Ri1
(N )

i1
(14.1.3)

by (14.1.1) and by Lemma 14.1.2. Hence, by (d),

Ñγk
⊆ ERi1

(N )(i2, . . . , il) ⊆ L
Ri1

(N )
i1

for any 2 ≤ k ≤ l. This proves (2) by Remark 14.1.8 and that TN
i1
(Ñγk

) ⊆ KN
i1

for

any 2 ≤ k ≤ l. Therefore βk = s
Ri1

(M)
i1

(γk) ∈ Nθ
0 for any 2 ≤ k ≤ l, and (1) follows.

Further, we obtain from Theorem 14.1.4 that the multiplication map

TN
i1

(
ERi1

(N )(i2, . . . , il)
)
⊗ k[Ni1 ]→ EN (i1, . . . , il)(14.1.4)

is bijective. Since TN
i1

: L
Ri1

(N )
i1

→ KN
i1

is an algebra isomorphism, we obtain from
(f) that the multiplication map

k[TN
i1 (Ñγl

)]⊗ · · · ⊗ k[TN
i1 (Ñγ2

)]→ TN
i1

(
ERi1

(N )(i2, . . . , il)
)

(14.1.5)

is bijective.

Since TN
i1

is an isomorphism in H
HYD, Nβk

= TN
i1
(Ñγk

) is irreducible in H
HYD

by (d) for any 2 ≤ k ≤ l. We saw already that the degree of Nβk
= TN

i1
(Ñγk

) is βk.
This proves (4).

Since N is a Nichols system of (M, i1), the identity on Ni1 induces an isomor-

phism B(Ni1)
∼= k[Ni1 ]. Since TN

i1
is an algebra isomorphism in H

HYD mapping Ñγk

with any 2 ≤ k ≤ l onto Nβk
, the following chain of algebra isomorphisms in H

HYD
proves (5).

B(Nβk
) ∼= B(Ñγk

) ∼= k[Ñγk
] ∼= k[Nβk

].

Here, the second isomorphism is given in (e), and the first and third isomorphism

are induced by the isomorphism Nβk
= TN

i1
(Ñγk

) ∼= Ñγk
of objects in H

HYD.
Claim (6) follows from the bijectivity of the maps in (14.1.4) and (14.1.5).

Finally, (7’) follows from (g) and Lemma 14.1.5 in view of (14.1.2). �

In Theorem 14.1.9, the notation Nβk
= NN

k (i1, . . . , il) is somewhat misleading,
since Nβk

does depend on the [M ]-reduced sequence (i1, . . . , il). We follow here the
convention for the higher root vectors in quantum groups.

Remark 14.1.10. Under the assumptions of Theorem 14.1.9, the following
inductive properties are clear from Theorem 14.1.9 and its proof.

EN (i1, . . . , ik) = k[Nβk
] · · ·k[Nβ1

] ⊆ EN (i1, . . . , il)(14.1.6)
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for any 1 ≤ k ≤ l,

EN (i1, . . . , il) = TN
i1

(
ERi1

(N )(i2, . . . , il)
)
k[Nβ1

],(14.1.7)

k[Nβl
] · · ·k[Nβ2

] = EN (i1, . . . , il) ∩KN
i1 .(14.1.8)

Recall the definition of FH
θ (M) from Definition 13.6.1(5).

Corollary 14.1.11. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections. Then for any P ∈ FH

θ (M) and any

[P ]-reduced sequence κ, Λ[P ](κ) ⊆ NI
0.

Proof. By Theorem 13.6.2, G(M) = G(I,X , r, A) is a semi-Cartan graph. Let
N0 = N (B(M),M, id). Then N0 admits all reflections by Proposition 13.6.5. Let
X ∈ X . Then, by definition, there exist k ≥ 0 and j1, . . . , jk ∈ I such that X = [P ],
where P = Rjk · · ·Rj1(M). Clearly, P admits all reflections. Moreover, the pre-
Nichols system N[P ] = Rjk · · ·Rj1(N0) of P is isomorphic to N (B(P ), P, idP ) via
the canonical map because of Lemma 13.5.16.

Let now κ be a [P ]-reduced sequence. Then Λ[P ](κ) ⊆ NI
0 by Theorem 14.1.9(1)

applied to N[P ]. �

Theorem 14.1.12. Under the assumptions of Theorem 14.1.9, the following
commutation rules hold. For any 1 ≤ p < q ≤ l, x ∈ Nβp

, y ∈ Nβq
,

xy − (x(−1) · y)x(0) ∈ k[Nβq−1
]k[Nβq−2

] · · · k[Nβp+1
].

Proof. Let N (S̃, Ñ , f̃) = Ri1(N ). Then Nβk
= TN

i1
(Ñγk

) in (14.1.8) for

any 2 ≤ k ≤ l, where γk = id[Ri1
(N)]si2 · · · sik−1

(αik). Since TN
i1

is an algebra

isomorphism in H
HYD, using (14.1.7) and induction on l we may assume that p = 1.

By (14.1.6), it is enough to consider the case q = l. Then by (14.1.8),

xy − (x(−1) · y)x(0) = (adSx)(y) ∈ EN (i1, . . . , il) ∩KN
i1

= k[Nβl
]k[Nβl−1

] · · ·k[Nβ2
],

since y ∈ KN
i1

and x ∈ Ni1 . Hence there are integers aj ∈ N0 for all 2 ≤ j ≤ l

such that deg((adSx)(y)) = β1 + βl =
∑l

j=2 ajβj . Assume that al ≥ 1. Then

αi1 = β1 ∈
∑l

j=2 N0βj , which is not possible, since Nθ
0  βj �= αi1 for all 2 ≤ j ≤ l.

Hence al = 0, which proves the claim. �

Corollary 14.1.13. Under the assumptions of Theorem 14.1.9, for any per-
mutation σ of {1, . . . , l}, the multiplication map

k[Nβσ(l)
]⊗ · · · ⊗ k[Nβσ(1)

]→ EN (i1, . . . , il)

is an isomorphism of Nθ
0-graded objects in H

HYD.

Proof. Let h : Nθ
0 → N0 be an additive map such that h(β) > 0 for any β �= 0.

Let

h̄ : Nl
0 → N0, h̄(k1, . . . , kl) =

l∑
i=1

kih(βi).
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Let Γ = Nl
0 together with the weighted lexicographic ordering <:

(k1, . . . , kl) < (m1, . . . ,ml)⇔ h̄(k1, . . . , kl) < h̄(m1, . . . ,ml) or

h̄(k1, . . . , kl) = h̄(m1, . . . ,ml), k1 = m1, . . . ,

ki−1 = mi−1, ki < mi for some 1 ≤ i ≤ l.

Then Γ is a totally ordered abelian monoid satisfying axioms (M1) and (M2) in
Section 5.2.

We introduce a filtration F of EN (i1, . . . , il) by Γ. For any α ∈ Γ, let us define
Fα(E

N (i1, . . . , il)) to be the sum of all subspaces Nj1 · · ·Njm with m ∈ N0 and
j1, . . . , jm ∈ {1, . . . , l}, such that (n1, . . . , nm) ≤ α, where for any 1 ≤ k ≤ l the
number nk counts the appearances of k in (j1, . . . , jm).

Theorem 14.1.12 implies that in the graded algebra associated to the filtration
F(EN (i1, . . . , il)) the relations

xy = (x(−1) · y)x(0)(14.1.9)

hold for any 1 ≤ i < j ≤ l and any x ∈ Nβi
, y ∈ Nβj

. Then the surjectivity of the
multiplication map in the Corollary follows from (14.1.9), the invertibility of the
braidings cNβi

,Nβj
for all 1 ≤ i < j ≤ l, and from the surjectivity of the map in

Theorem 14.1.9(6). Finally, the injectivity follows from surjectivity and from the
bijectivity of the map in Theorem 14.1.9(6), since for any β ∈ Nθ

0, the dimension
of the homogeneous component of k[Nβσ(l)

] ⊗ · · · ⊗ k[Nβσ(1)
] of degree β does not

depend on σ. �

Corollary 14.1.14. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Let l ≥ 1 and i1, . . . , il ∈ I. Assume that M admits all reflections and that
κ = (i1, . . . , il) is [M ]-reduced in the semi-Cartan graph G(M). If αi ∈ Λ[M ](κ) for
all i ∈ I, then the following hold.

(1) EB(M)(i1, . . . , il) = B(M).
(2) For any pre-Nichols system N = N (S,N, f) of M admitting the reflection

sequence κ, the map pN : S → B(M) is bijective.

Proof. (1) Since EB(M)(i1, . . . , il) ⊆ B(M) is a subalgebra, it is enough to
prove that M1, . . . ,Mθ ⊆ EB(M)(i1, . . . , il). For any i ∈ I there exists 1 ≤ ki ≤ l

with αi = β
[M ],κ
ki

. Hence Mi = Mαi
⊆ EB(M)(i1, . . . , il) by degree reasons.

(2) As in (1) it is clear that EN (i1, . . . , il) = S. Hence (2) follows from Theo-
rem 14.1.9(7) and from (1). �

14.2. Exact factorizations of Nichols systems

Given a group G, an exact factorization of G is a pair of subgroups (G1, G2),
such that the multiplication map G1×G2 → G is bijective. We discuss here a related
notion for braided bialgebras and for pre-Nichols systems. As an application we
deduce Theorem 14.2.12, which tells that the semi-Cartan graph of a tuple M ∈ FH

θ

of irreducible objects, such that M admits all reflections, is a Cartan graph.

Definition 14.2.1. Let B be a bialgebra in the category H
HYD. Let F and

E be a left and a right coideal subalgebra of B, respectively. The pair (F,E) is
called an exact factorization of B, if the multiplication map F ⊗ E → B is an
isomorphism in H

HYD.
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Example 14.2.2. Let G be a finite group and let B = kG be the group algebra
of G. A left (right) coideal subalgebra of B is nothing but a subalgebra of B spanned
by the elements of a subgroup of G. A pair (G1, G2) of subgroups of G is an exact
factorization of G if and only if the pair (kG1, kG2) is an exact factorization of
B. This correspondence provides a bijection between exact factorizations of G and
exact factorizations of B.

Let θ ∈ N and let I = {1, 2, . . . , θ}.

Definition 14.2.3. Let M ∈ FH
θ and let N = N (S,N, f) be a pre-Nichols

system of M . Let F and E be Nθ
0-graded left and right coideal subalgebras of

S, respectively. The pair (F,E) is called an exact factorization of N , if the
multiplication map F ⊗ E → S is an isomorphism in H

HYD.

Example 14.2.4. Let P be a Hopf algebra in H
HYD and let π : P → Q be a

projection to a Hopf subalgebra Q of P in H
HYD. Let R = P coQ be the space of right

coinvariant elements of P with respect to π. Then R is a left coideal subalgebra of
P in H

HYD, and (R,Q) is an exact factorization of P because of (12.4.2).
Let M ∈ FH

θ , i ∈ I, and let N = N (S,N, f) be a pre-Nichols system of M .
Let π : S → k[Ni] be the unique Hopf algebra map such that π(Nj) = 0 for any

j �= i and π|Ni = idNi
. The subspaces k[Ni] and Sco k[Ni] of S are Nθ

0-graded, since
π is Nθ

0-graded. Hence, by the previous paragraph, (Sco k[Ni], k[Ni]) is an exact
factorization of N .

Reflections of Nichols systems provide non-trivial exact factorizations. To deal
with them, we will need a variant of the maps tNi in Theorem 14.1.4 for left coideal
subalgebras.

Definition 14.2.5. For any M ∈ FH
θ , i ∈ I, and for any Nichols system

N = N (S,N, f) of (M, i) we define

L(N ) = {F | F ⊆ S Nθ
0-graded left coideal subalgebra in H

HYD},
L+
i (N ) = {F | F ∈ L(N ), Ni ⊆ F},

L−
i (N ) = {F | F ∈ L(N ), Ni � F}.

Lemma 14.2.6. Let M ∈ FH
θ , i ∈ I, and let N = N (S,N, f) be a Nichols

system of (M, i). Assume that Mi is irreducible. Let F ⊆ S be a left coideal
subalgebra in H

HYD. Consider the following conditions.

(1) F ⊆ KN
i .

(2) Ni � F .

Then (1) implies (2). If F is a graded subspace of S, then (2) implies (1).

Proof. Adapt the proof of Lemma 14.1.2 accordingly. �

For any pre-Nichols system N (S,N, f) of some M ∈ FH
θ , let Sub(N ) denote

the set of all Yetter-Drinfeld submodules of S.

Theorem 14.2.7. Let M ∈ FH
θ , i ∈ I, and let N be a Nichols system of (M, i).

Assume that M is i-finite, and that Mj is irreducible in H
HYD for all j ∈ I.

(1) The map

t̄Ni : Sub(Ri(N ))→ Sub(N ), F �→ TN
i (F ∩ L

Ri(N )
i ),
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induces a bijection t̄Ni : L+
i (Ri(N )) → L−

i (N ), with inverse given by
F �→ (TN

i )−1(F )k[N ∗
i ].

(2) The multiplication map (TN
i )−1(F )⊗ k[N ∗

i ]→ (TN
i )−1(F )k[N ∗

i ] is bijec-
tive for all F ∈ L−

i (N ).

Proof. The claim follows from Theorem 12.4.6 following the arguments in the
proof of Theorem 14.1.4. In the last part of the proof one needs Lemma 14.2.6. �

Analogously to Definition 14.1.7, we introduce a notation for compositions of
maps t̄Ni .

Definition 14.2.8. Let M ∈ FH
θ such that Mi is irreducible in H

HYD for all
i ∈ I. Let l ∈ N0 and let i1, . . . , il ∈ I. For any pre-Nichols system N = N (S,N, f)
of M admitting the reflection sequence (i1, . . . , il) define

t̄N(i1,...,il) = t̄Ni1 t̄
Ri1

(N )
i2

· · · t̄
R(i1,...,il−1)(N )

il
: Sub(R(i1,...,il)(N ))→ Sub(N ).

Theorem 14.2.9. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections. Let κ = (i1, . . . , il) ∈ Il be an
[M ]-reduced sequence in the semi-Cartan graph G(M), where l ≥ 1. Let N be a
pre-Nichols system of M , and assume that N admits the reflection sequence κ. Let

N (S̃, Ñ , f̃) = Rκ(N ). and F = t̄Nκ (S̃).

(1) F ∈ L−
i1
(N ).

(2) (F,EN (κ)) is an exact factorization of N .

Proof. We prove (1) and (2) by induction on l. For l = 1, by definition we
have EN (i1) = k[Ni1 ] (see Theorem 14.1.4(3)) and

F = t̄Ni1 (S̃) = TN
i1 (L

Ri1
(N )

i1
) = KN

i1 ∈ L
−
i1
(N ).

Hence (F,EN (i1)) is an exact factorization of N by Example 14.2.4.
Assume that l ≥ 2. Let N ′ = Ri1(N ) = N (S′, N ′, f ′) and let κ′ = (i2, . . . , il).

By assumption, N ′ admits the reflection sequence κ′. Thus F ′ = t̄N
′

κ′ (S̃) ∈ L(N ′),

and (F ′, EN ′
(κ′)) is an exact factorization of N ′ by induction hypothesis. Theo-

rem 14.1.9 implies that the homogeneous component of EN ′
(κ′) of degree αi1 is

zero. Hence N ′
i1
⊆ F ′, since the multiplication map F ′⊗EN ′

(κ′)→ S′ is surjective.

Thus F ′ ∈ L+
i1
(N ′) and F = t̄Ni1 (F

′) ∈ L−
i1
(N ) by Theorem 14.2.7.

It remains to prove that the multiplication map F ⊗ EN (κ) → S is bijective,
where N = N (S,N, f). By Theorem 14.2.7(2), the multiplication map

(TN
i1 )

−1(F )⊗ k[N ′
i1 ]→ F ′

is bijective. Hence the multiplication map

(TN
i1 )

−1(F )⊗ k[N ′
i1 ]⊗ EN ′

(κ′)→ S′(14.2.1)

is bijective. Moreover, (TN
i1
)−1(F ), EN ′

(κ′) ⊆ LN ′

i1
by definition of TN

i1
and by

Theorem 14.1.9(3), respectively. Thus the multiplication map

(TN
i1 )

−1(F )⊗ EN ′
(κ′)→ LN ′

i1(14.2.2)

is injective. Moreover, for any α ∈ NI
0,

dimS′(α) =
∞∑
k=0

dim
(
(TN

i1 )
−1(F )⊗ EN ′

(κ′)
)
(α− kαi1) dim k[N ′

i1 ](kαi1)
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by the bijectivity of the map in (14.2.1), and

dimS′(α) =
∞∑
k=0

dimKN ′

i1 (α− kαi1) dim k[N ′
i1 ](kαi1)

=

∞∑
k=0

dimLN ′

i1 (α− kαi1) dim k[N ′
i1 ](kαi1)

by (12.4.2) and by Lemma 13.5.11(1),(3). This implies that

dim
(
(TN

i1 )
−1(F )⊗ EN ′

(κ′)
)
(α) = dimLN ′

i1 (α)

for any α ∈ NI
0. Thus the map in (14.2.2) is bijective. Therefore, since TN

i1
is an

algebra map, also the multiplication map F ⊗ TN
i1

(
EN ′

(κ′)
)
→ KN

i1
is bijective.

Then the multiplication map

F ⊗ TN
i1

(
EN ′

(κ′)
)
⊗ k[Ni1 ]→ S

is bijective by (12.4.2). Thus the multiplication map F ⊗ EN (κ) → S is bijective
because of Theorem 14.1.4(2). �

In Proposition 14.2.11 below we will identify the exact factorization in Theo-
rem 14.2.9 with a familiar one for a special reduced sequence. To do so, we will use
a variant of Lemma 14.2.6.

Lemma 14.2.10. Let M ∈ FH
θ , i ∈ I, and let N = N (S,N, f) be a pre-

Nichols system of M such that the canonical map pN induces an isomorphism
k[Ni] ∼= B(Mi). Let F ⊆ S be an Nθ

0-graded left coideal in H
HYD with Ni ∩ F = 0.

Then F ⊆ KN
i .

Proof. Since F is a graded subspace of the Nθ
0-graded Hopf algebra S, and

since the projection πN
i : S → B(Mi) is graded, the homogeneous component of

πN
i (F ) of degree αi is πN

i (Ni ∩ F ) and hence zero. Therefore Mi ∩ πN
i (F ) = 0.

Moreover, πN
i (F ) is a left coideal of B(Mi). Since B(Mi) is a strictly graded coal-

gebra, Corollary 1.3.11(3) implies that πN
i (F ) = 0 or πN

i (F ) = k1. In particular,

πN
i (f) = ε(πN

i (f))1 = ε(f)1

for any f ∈ F . Therefore F ⊆ ScoπN
i (S) by Lemma 2.5.6(1). Since

πN
i (S) = B(Mi) ∼= k[Ni],

we conclude that F ⊆ KN
i . �

Recall the definitions of mX
ij and κX

ij from Remark 9.2.9.

Proposition 14.2.11. Assume that θ ≥ 2. Let M ∈ FH
θ such that Mn is

irreducible in H
HYD for all n ∈ I, and let i, j ∈ I with i �= j. Assume that M admits

all reflections and m
[M ]
ij < ∞. Let N = N (S,N, f) be a pre-Nichols system of M

admitting the reflection sequence κ = κ
[M ]
ij . Let N (S̃, Ñ , f̃) = Rκ(N ). Then

t̄Nκ (S̃) = Sco k[Ni+Nj ], EN (κ) = k[Ni +Nj ].
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Proof. Let G(M) = G(I,X , r, A) be the semi-Cartan graph of M . Then G(M)

satisfies (CG3’) by Corollary 14.1.11. Let m = m
[M ]
ij . Then β

[M ],κ
1 = αi and

β
[M ],κ
m = αj by Lemma 9.2.15. In particular, Ni +Nj ⊆ EN (κ). Conversely,

EN (κ) ⊆
⊕

k1,k2∈N0

S(k1αi + k2αj) = k[Ni +Nj ]

by Theorem 14.1.9(4),(6) and since S is Nθ
0-graded. Thus EN (κ) = k[Ni +Nj ].

By Theorem 14.2.9, F = t̄Nκ (S̃) is a left coideal of S in H
HYD and (F,EN (κ))

is an exact factorization of S. Then (Ni + Nj) ∩ F = 0. We prepare to apply
Lemma 14.2.10. Let h : {1, . . . , θ} → {1, . . . , θ − 1} be a surjective map with
h(i) = h(j). Then h∗(N ) is a pre-Nichols system of h1(M) in the terminology of
Example 13.5.3. Moreover,

h1(N)h(i) = Ni +Nj

by construction. The canonical map ph∗(N ) induces an isomorphism

k[Ni +Nj ] = EN (κ)
∼=→ B(Mi +Mj)

by Theorem 14.1.9(7). Therefore Lemma 14.2.10 applies, and F ⊆ Sco k[Ni+Nj ].
Hence, and since (F, k[Ni +Nj ]), (S

co k[Ni+Nj ], k[Ni +Nj ]) are exact factorizations

of S, it follows that F = Sco k[Ni+Nj ]. �

Theorem 14.2.12. Let M ∈ FH
θ . Assume that Mj is irreducible for all j ∈ I

and that M admits all reflections. Then G(M) is a Cartan graph.

Proof. By Theorem 13.6.2 and Corollary 14.1.11, G(M) = G(I,X , r, A) is a
semi-Cartan graph satisfying (CG3’). Because of Corollary 9.2.20 it suffices to
prove that G(M) satisfies (CG4’).

Let N0 = N (B(M),M, id). Then, by Proposition 13.6.5, N0 admits all reflec-
tions. Let X ∈ X . By definition, there exist k ≥ 0 and j1, . . . , jk ∈ I such that
X = [P ], where P = Rjk · · ·Rj1(M). Clearly, P admits all reflections. Moreover,
the pre-Nichols system

N[P ] = N (S,N, f) = Rjk · · ·Rj1(N0)

of P is isomorphic to N (B(P ), P, idP ) via the canonical map by Lemma 13.5.16.

Let i, j ∈ I. Assume that i �= j and that m = m
[P ]
ij < ∞. Let

κ′ = (i1, . . . , im, k) ∈ Im+1,

where (i1, . . . , im) = κ
[P ]
ij . Assume that k �= i and k �= j. Then

id[P ]si1 · · · sim(αk) ∈ αk + Zαi + Zαj

and β
[P ],κ′

n ∈ Zαi+Zαj for any 1 ≤ n ≤ m. Hence κ′ is [P ]-reduced by Lemma 9.2.5

and since κ
[P ]
ij is [P ]-reduced. Let

N ′ = N (S′, N ′, f ′) = R(i1,...,im)(N[P ]).

Then N ′
k ⊆ L

N[P ]

(i1,...,im) by Theorem 14.1.9(2), and

T
N[P ]

(i1,...,im)(N
′
k) ⊆ t̄N(i1,...,im)(S

′) = Sco k[Ni+Nj ]

by Proposition 14.2.11.
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By Proposition 9.2.14, m = m
[P ]
ji . Hence κ

[P ]
ji = (i2, . . . , im, im+1), where

im+1 = im−1. Let k ∈ I and κ′′ = (i2, . . . , im, im+1, k) ∈ Im+1. Assume that k �= i
and k �= j. By interchanging i and j in the previous paragraph we obtain that κ′′

is [P ]-reduced. Let

N ′′ = N (S′′, N ′′, f ′′) = R(i2,...,im,im+1)(N[P ]).

Then N ′′
k ⊆ L

N[P ]

(i1,...,im,im+1)
by Theorem 14.1.9(2).

Since S′′ is Nθ
0-graded, the map

(
T

N[P ]

(i2,...,im,im+1)

)−1
T

N[P ]

(i1,...,im) sends N ′
k to an

irreducible Yetter-Drinfeld submodule of S′′ of degree

id[N ′′]sim+1
sim · · · si2si1 · · · sim(αk) = id[N ′′](sim+1

sim)m(αk)

∈ αk + N0αi + N0αj .

By Lemma 9.2.15 and Proposition 9.2.14,

id[N ′′](sim+1
sim)m(αi) = αi, id[N ′′](sim+1

sim)m(αj) = αj .

Similarly, by looking at the degree of
(
T

N[P ]

(i1,...,im)

)−1
T

N[P ]

(i2,...,im,im+1)
(N ′′

k ) we obtain

that

(id[N ′′](sim+1
sim)m)−1(αk) ∈ αk + N0αi + N0αj .

The previous results hold for any k ∈ I \ {i, j}. Hence

id[N ′′](sim+1
sim)m(αk) = αk

for any k ∈ I by (9.1.1) and Lemma 9.2.19. Thus, for any k ∈ I \ {i, j}, the

map
(
T

N[P ]

(i2,...,im,im+1)

)−1
T

N[P ]

(i1,...,im) provides an isomorphism of the Yetter-Drinfeld

modules N ′
k and N ′′

k . Moreover,

N ′
im = R(i1,...,im)(N[P ])im = R(i1,...,im−1)(N[P ])

∗
im .

Lemma 9.2.13 implies that TN
(i1,...,im−1)

(R(i1,...,im−1)(N[P ])im) is a Yetter-Drinfeld

submodule of S of degree id[P ]si1 · · · sim−1
(αim) = αj . Hence N ′

im
∼= P ∗

j . On the
other hand,

N ′
im+1

= R(i1,...,im)(N[P ])im+1
= R(i2,...,im)(Ri1(N[P ]))im+1

.

Again, Lemma 9.2.13 implies that N ′
im+1

is isomorphic to Ri1(P )i1 = P ∗
i . Using

similar arguments one shows that N ′′
im
∼= P ∗

j and N ′′
im+1

∼= P ∗
i . Indeed,

N ′′
im = R(i2,...,im,im+1)(N[P ])im

= R(i1,...,im−1)(Ri2(N[P ]))im
∼= Rj(N[P ])j = P ∗

j ,

N ′′
im+1

= R(i2,...,im,im+1)(N[P ])im+1

= R(i2,...,im)(N[P ])
∗
im+1

∼= P ∗
i .

Thus [N ′] = [N ′′] and id[N ′](sisj)
m = id[N ′]. Since [N ′] = rim · · · ri1([P ]), this

implies that id[P ](sisj)
m = id[P ]. Therefore (CG4’) holds. �
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14.3. Hilbert series of right coideal subalgebras of Nichols algebras

In this section we specialize results from Section 14.1 to Nichols algebras and
analyze the setting further in view of the notion of Hilbert series.

Let θ ∈ N and let I = {1, 2, . . . , θ}.
In the next definition, the ti should not be confused with the maps tNi in

Theorem 14.1.4.

Definition 14.3.1. LetX be an Nθ
0-graded vector space, and assume thatX(α)

is finite-dimensional for all α ∈ Nθ
0. For any α =

∑θ
i=1 niαi ∈ Nθ

0 let tα = tn1
1 · · · tnθ

θ

in the polynomial algebra k[t1, . . . , tθ]. The (multivariate) Hilbert series of X is
the formal power series

HX(t) =
∑
α∈Nθ

0

(dimX(α))tα ∈ N0�t1, . . . , tθ�.

We denote the support of X by

supp(X) = {α ∈ Nθ
0 | X(α) �= 0}.

Let s : supp(X)→ Nθ
0 be a mapping. Then we define

s(HX(t)) =
∑
α∈Nθ

0

(dimX(α))ts(α).

Proposition 14.3.2. Let M ∈ FH
θ , i ∈ I, and let N be a Nichols system of

(M, i). Assume that M is i-finite, and that Mj is irreducible in H
HYD for all j ∈ I.

Let E ∈ K+
i (N ). Then

HE(t) = s
Ri(M)
i (HE′(t))HB(Mi)(t)

with E′ = (tNi )−1(E).

Proof. Theorem 14.1.4 implies that E′ ∈ K−
i (Ri(N )) and that

HE(t) = HTN
i (E′)(t)Hk[Ni](t).

Since E′ ⊆ L
B(Ri(M))
i , the claim of the Proposition follows from Corollary 13.5.21(2)

and from (Sys3). �

Definition 14.3.3. Let i ∈ I and M ∈ FH
θ . Assume that Mj is irreducible in

H
HYD for all j ∈ I \ {i} and that M is i-finite. Let

T
B(M)
i : L

B(Ri(M))
i

∼=−→ coB(M∗
i )(ΩMi

(K
B(M)
i )#B(M∗

i ))
∼=−→ K

B(M)
i

be the composition of two isomorphisms in H
HYD, where the first one is defined

by restriction of the isomorphism Θ in Theorem 13.4.9, and the second one is TN0
i ,

where N0 = N (B(M),M, id).

Corollary 14.3.4. Let i ∈ I and M ∈ FH
θ . Assume that Mj is irreducible in

H
HYD for all j ∈ I\{i} and that M is i-finite. Then T

B(M)
i is an algebra isomorphim

in H
HYD and the following hold.

(1) For all j ∈ I \ {i} and 0 ≤ n ≤ −aMij ,

T
B(M)
i

(
S−1
B(Ri(M))

(
(adM∗

i )
n(Ri(M)j)

))
= (adMi)

−aM
ij −n(Mj).
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(2) Let α ∈ Nθ
0, and let x ∈ L

B(Ri(M))
i be a non-zero homogeneous element

with deg(x) = α. Then deg(T
B(M)
i (x)) = s

Ri(M)
i (α). In particular,

s
Ri(M)
i (α) ∈ Nθ

0.

Here, K
B(M)
i ⊆ B(M) and L

B(Ri(M))
i ⊆ B(Ri(M)) are Nθ

0-graded subalgebras with
respect to the standard grading of the Nichols algebras B(M) and B(Ri(M)), re-
spectively.

Proof. The isomorphism Θ : B(Ri(M)) → Ω(K
B(M)
i )#B(M∗

i ) discussed in
Theorem 13.4.9 commutes with the projection πi : B(Ri(M)) → B(M∗

i ) and

with the projection of the smash product π̃i : Ω(K
B(M)
i )#B(M∗

i ) → B(M∗
i ),

since π̃iΘ(x) = πi(x) for all algebra generators x ∈ Ri(M)j ⊆ B(Ri(M)) with

j ∈ I. Hence Θ defines by restriction an isomorphism between L
B(Ri(M))
i and

coB(M∗
i )(Ω(K

B(M)
i )#B(M∗

i )), and the corollary follows from the case of Nichols
algebras of Corollary 13.5.21. �

In analogy to Definition 14.1.3, we introduce a notation for certain sets of right
coideal subalgebras of Nichols algebras, that is, of the pre-Nichols system N0 of M .

Definition 14.3.5. For any M ∈ FH
θ let K(B(M)) denote the set of all Nθ

0-
graded right coideal subalgebras of B(M) in H

HYD, and

K+
i (B(M)) = {E | E ∈ K(B(M)),Mi ⊆ E},

K−
i (B(M)) = {E | E ∈ K(B(M))),Mi � E}.

Corollary 14.3.6. Let i ∈ I and M ∈ FH
θ . Assume that Mj is irreducible in

H
HYD for all j ∈ I and that M is i-finite.

(1) The map

t
B(M)
i : K−

i (B(Ri(M)))→ K+
i (B(M)), E �→ T

B(M)
i (E)k[Mi],

is bijective with inverse given by E �→ (T
B(M)
i )−1(E ∩K

B(M)
i ).

(2) The multiplication map T
B(M)
i (E)⊗ k[Mi] → T

B(M)
i (E)k[Mi] is bijective

for all E ∈ K−
i (B(Ri(M))).

Proof. The corollary follows from Theorem 14.1.4 applied to N0. �
Corollary 14.3.7. Let i ∈ I and M ∈ FH

θ . Assume that Mj is irreducible in
H
HYD for all j ∈ I and that M is i-finite. Let E ∈ K+

i (B(M)). Then

HE(t) = s
Ri(M)
i (HE′(t))HB(Mi)(t)

with E′ = (t
B(M)
i )−1(E).

Proof. Similarly to the proof of Proposition 14.3.2, the claim follows from
Corollaries 14.3.6 and 14.3.4(2). �

We now define a variant of the right coideal subalgebras EB(M)(i1, . . . , il) in
Theorem 14.1.9(7).

Definition 14.3.8. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for
all j ∈ I. Assume that M admits all reflections. For any [M ]-reduced sequence
(i1, . . . , il) in the semi-Cartan graph G(M), where l ∈ N0 and i1, . . . , il ∈ I, let

ÊB(M)(i1, . . . , il) = t
B(M)
i1

t
B(Ri1

(M))
i2

· · · t
B(R(i1,...,il−1)(M))

il
(k1).
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We note an important uniqueness property of this construction.

Corollary 14.3.9. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections. Let (i1, . . . , il) be an [M ]-reduced
sequence in the semi-Cartan graph G(M), where l ∈ N0 and i1, . . . , il ∈ I. Then

ÊB(M)(i1, . . . , il) = EB(M)(i1, . . . , il)

is the only element in K(B(M)) with the same Hilbert series as of EB(M)(i1, . . . , il).

Proof. We proceed by induction on l. For l = 0 the claim is trivial.
Assume that l ≥ 1. Then

ÊB(Ri1
(M))(i2, . . . , il) = EB(Ri1

(M))(i2, . . . , il)

by induction hypothesis, and EB(Ri1
(M))(i2, . . . , il) is the only element in the set

K(B(Ri1(M))) which has the same Hilbert series as EB(Ri1
(M))(i2, . . . , il). Let

N0 = N (B(M),M, idM ). Then Proposition 14.3.2 and Corollary 14.3.7 imply that

ÊB(Ri1
(M))(i2, . . . , il) and ERi1

(N0)(i2, . . . , il) have the same Hilbert series. Thus

ÊB(Ri1
(M))(i2, . . . , il) ∈ K−

i1
(B(Ri1(M))),

since ERi1
(N0)(i2, . . . , il) ∈ K−

i1
(Ri1(N0)). Again by Proposition 14.3.2 and Corol-

lary 14.3.7, ÊB(M)(i1, . . . , il) and EB(M)(i1, . . . , il) have the same Hilbert series.
Finally, let E ∈ K(B(M)) and assume that E has the same Hilbert series

as ÊB(M)(i1, . . . , il). Then (t
B(M)
i1

)−1(E) and ÊB(Ri1
(M))(i2, . . . , il) have the same

Hilbert series by Corollary 14.3.7. Thus they coincide by induction hypothesis and

hence E = ÊB(M)(i1, . . . , il). �

14.4. Tensor decomposable Nichols algebras

Assume that the Cartan graph of a given tuple of irreducible Yetter-Drinfeld
modules is finite. We provide in this section an algebraic interpretation of the (real)
roots of this Cartan graph. We also give a characterization of the finiteness of the
Cartan graph.

For any α ∈ Nθ
0, α =

∑θ
i=1 niαi with ni ≥ 0 for all i ∈ I, we will write

|α| =
∑θ

i=1 ni. For any Nθ
0-graded object V in H

HYD and n ≥ 0 we define

V (n) =
⊕
α∈N

θ
0

|α|=n

V (α).(14.4.1)

Then V =
⊕

n≥0 V (n) is a decomposition into Nθ
0-graded objects in H

HYD.
For the n-fold tensor product V1⊗· · ·⊗Vn of objects V1, . . . , Vn in the monoidal

category H
HYD, where n ∈ N0, we will also write

⊗n
l=1 Vl. Note that

n⊗
l=1

Vl
∼=

n⊗
l=1

Vσ(l)

for any permutation σ ∈ Sn, since H
HYD is braided.

Definition 14.4.1. Let V be an Nθ
0-graded object in H

HYD, and M ∈ FH
θ .
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(1) We say that V is tensor decomposable if there are an integer n ≥ 0,
irreducible Yetter-Drinfeld modulesQ1, . . . , Qn ∈ H

HYD of finite dimension
and pairwise distinct elements β1, . . . , βn in Nθ

0 \ {0} such that

V ∼=
n⊗

l=1

B(Ql)

as Nθ
0-graded objects in H

HYD, where the gradings of B(Ql) are given by
deg(Ql) = βl, 1 ≤ l ≤ n (and where H is trivially Nθ

0-graded).
By convention, tensor decomposability with n = 0 means that V ∼= k1.

(2) The Nichols algebra B(M) is called tensor decomposable if B(M) is
tensor decomposable as an Nθ

0-graded object in H
HYD with the standard

grading, where deg(Mi) = αi for all i ∈ I.

Remark 14.4.2. The notion in Definition 14.4.1 has very strong consequences.
We will not discuss weaker concepts here, because the examples we have in mind
in this book are covered by the definition.

Example 14.4.3. We show that the right coideal subalgebras EN (i1, . . . , il) in
Theorem 14.1.9 are tensor decomposable.

Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I. Assume that M
admits all reflections. Let N = N (S,N, f) be a pre-Nichols system of M . Let l ≥ 1
and i1, . . . , il ∈ I. Assume that (i1, . . . , il) is [M ]-reduced in the semi-Cartan graph
G(M) and that N admits the reflection sequence (i1, . . . , il). Let EN (i1, . . . , il) be
as in Theorem 14.1.9.

For any 1 ≤ k ≤ l, let βk = id[M ]si1 · · · sik−1
(αik). Then β1, . . . , βl are pairwise

distinct non-zero elements of Nθ
0 by Theorem 14.1.9(1). For each 1 ≤ k ≤ l,

Nβk
= NN

k (i1, . . . , il) is a finite-dimensional irreducible object in H
HYD of degree

βk by Theorem 14.1.9(4). Moreover, by Theorem 14.1.9(6), the multiplication map
k[Nβl

] ⊗ · · · ⊗ k[Nβ1
] → EN (i1, . . . , il) is an isomorphism of Nθ

0-graded objects in
H
HYD. Finally, for each 1 ≤ k ≤ l, B(Nβk

) ∼= k[Nβk
] by Theorem 14.1.9(5).

We prove some properties of the tensor decompositions in Definition 14.4.1
such as uniqueness and cancellation which essentially follow from the theorem of
Krull-Schmidt.

Lemma 14.4.4. Let U, V and W be Nθ
0-graded objects in H

HYD with finite-
dimensional homogeneous components. Assume that W (0) ∼= k in H

HYD. If

U ⊗W ∼= V ⊗W or W ⊗ U ∼= W ⊗ V

as Nθ
0-graded objects in H

HYD, then U ∼= V as Nθ
0-graded objects in H

HYD.

Proof. Let n ≥ 0. Since W (0) is the trivial object,

(U ⊗W )(n) ∼= U(n)⊕
n−1⊕
i=0

U(i)⊗W (n− i),

(V ⊗W )(n) ∼= V (n)⊕
n−1⊕
i=0

V (i)⊗W (n− i)

as Nθ
0-graded objects in H

HYD. Since the homogenous components of U, V and W
are finite-dimensional, the claim follows by induction from Krull-Schmidt. �
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Lemma 14.4.5. Let n,m ≥ 1 be integers and Q1, . . . , Qn, P1, . . . , Pm finite-
dimensional irreducible objects in H

HYD with deg(Ql), deg(Pk) ∈ Nθ
0 \ {0} for all

1 ≤ l ≤ n, 1 ≤ k ≤ m. Assume that
⊗n

l=1 B(Ql) ∼=
⊗m

k=1 B(Pk) as Nθ
0-graded

objects in H
HYD. Then n = m, and there is a permutation σ ∈ Sn such that

Pl
∼= Qσ(l) as Nθ

0-graded objects in H
HYD for all 1 ≤ l ≤ n.

Proof. Let r = min{| deg(Ql)|
∣∣ 1 ≤ l ≤ n}, and let L be the set of all l

such that 1 ≤ l ≤ n and | deg(Ql)| = r. Then
⊕

l∈L Ql is the N0-homogeneous

component of
⊗n

l=1 B(Ql) of minimal positive degree. Hence

r = min{| deg(Pk)| | 1 ≤ k ≤ m}
and

⊕
l∈L Ql

∼=
⊕

k∈K Pk, where K = {1 ≤ k ≤ m | | deg(Pk)| = r}. By Krull-
Schmidt there are indices l ∈ L and k ∈ K such that Ql

∼= Pk. The claim follows
now by induction and Lemma 14.4.4 using that H

HYD is braided. �
Lemma 14.4.4 is of particular relevance when we decompose graded right coideal

subalgebras of graded Hopf algebras.

Proposition 14.4.6. Let N = N (S,N, f) be a pre-Nichols system of some
M ∈ FH

θ , let E be a tensor decomposable Nθ
0-graded right coideal subalgebra of S

and let 1 ≤ i ≤ θ. Assume that E(αi) = Ni is irreducible in H
HYD and that the

canonical map k[Ni]→ B(Ni) is bijective. Then E∩Sco k[Ni] is tensor decomposable
and there exist tensor decompositions

E ∩ Sco k[Ni] ∼=
n⊗

l=1

B(Ql), E ∼= B(Ni)⊗
n⊗

l=1

B(Ql),

where n ≥ 0 and deg(Ql) /∈ N0αi for all 1 ≤ l ≤ n.

Proof. By assumption, S admits an Nθ
0-graded projection to its Hopf subal-

gebra ⊕
k≥0

S(kαi) = k[Ni] ∼= B(Ni).(14.4.2)

By Lemma 12.4.3, the multiplication map (E ∩ Sco k[Ni])⊗ k[Ni] → E is bijective.
Clearly, this map is an Nθ

0-graded morphism in H
HYD. By assumption, there exists

a tensor decomposition

E ∼=
n⊗

l=0

B(Ql)

of E. Since Ni = E(αi) is irreducible, we may assume that Q0 = Ni. Moreover,
the homogeneous components of E are finite-dimensional, and hence Lemma 14.4.4
with W = k[Ni] implies that E ∩ Sco k[Ni] ∼=

⊗n
l=1 B(Ql). Finally, from (14.4.2) it

follows that deg(Ql) /∈ N0αi for all 1 ≤ l ≤ n. �
Definition 14.4.7. Let s ∈ Aut(Zθ), α ∈ Zθ, and Q ∈ H

HYD. Let V be an
Nθ

0-graded object in H
HYD, and assume that V is tensor decomposable. We define

s(([Q], α)) = ([Q], s(α)),

ΦV
+ = {([Ql], βl) | 1 ≤ l ≤ n},

ΦV
− = {([Q∗

l ],−βl) | 1 ≤ l ≤ n},
ΦV = ΦV

+ ∪ ΦV
−,
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where Ql and βl, 1 ≤ l ≤ n, are the irreducible Yetter-Drinfeld modules and their
degrees, respectively, in the tensor decomposition of V in Definition 14.4.1(1), and
[ ] means isomorphism class.

In Definition 14.4.7, ΦV
+ ∩ΦV

− = ∅ and the set ΦV has precisely 2n elements by

Definition 14.4.1. By Lemma 14.4.5, ΦV is well-defined, and if V and W are tensor
decomposable Nθ

0-graded objects in H
HYD, then ΦV = ΦW if and only if V ∼= W .

Lemma 14.4.8. Let M ∈ FH
θ and i ∈ I be such that Mi is irreducible in H

HYD.

Assume that B(M) is tensor decomposable. Then ([Mi], αi) ∈ Φ
B(M)
+ .

Proof. Take a tensor decomposition of B(M). Then for any 1 ≤ l ≤ n,
B(Ql) =

⊕
r≥0 B(Ql)(rβl). Hence

Mi
∼= B(M)(αi) ∼=

⊕
r1,...,rn≥0∑

1≤j≤n rjβj=αi

n⊗
l=1

B(Ql)(rlβl).

Since βl ∈ Nθ
0 \ {0} for all l, it follows that Mi

∼=
⊕

1≤j≤n,βj=αi
Qj . This proves

the lemma, since Mi is irreducible. �

Proposition 14.4.9. Let M ∈ FH
θ and i ∈ I. Assume that Mj is irreducible

in H
HYD for all j ∈ I and that B(M) is tensor decomposable. Then M is i-finite,

B(Ri(M)) is tensor decomposable, and ΦB(Ri(M)) = sMi (ΦB(M)).

Proof. Note that B(M) ∼= K
B(M)
i ⊗ B(Mi) and that K

B(M)
i = B(M)coB(Mi)

is tensor decomposable by Proposition 14.4.6 with S = E = B(M) and N = M .

By Lemma 13.5.11(2),(3), K
B(M)
i is an Nθ

0-graded subalgebra of B(M) generated
by all (adB(M)Mi)

n(Mj) with j ∈ I \ {i} and n ≥ 0. Let

φ = {nαi + αj | n ≥ 0, j ∈ I \ {i}, (adB(M)Mi)
n(Mj) �= 0} ⊆ Nθ

0.

None of the elements of φ is a sum of the others. Hence for any α ∈ φ, the set

Φ
K

B(M)
i

+ has to contain a pair ([Qα], α) with Qα ∈ H
HYD. Thus M is i-finite since

Φ
K

B(M)
i

+ is finite.

By Corollary 14.3.4(2), T
B(M)
i defines an isomorphism

L
B(Ri(M))
i

∼=
(
K

B(M)
i

)′
of Nθ

0-graded objects in H
HYD, where

(
K

B(M)
i

)′
= K

B(M)
i as Yetter-Drinfeld mod-

ules, and
(
K

B(M)
i

)′
(α) = K

B(M)
i (s

Ri(M)
i (α)) for all α ∈ Nθ

0. By the first sentence of

the proof and by Lemma 14.4.11 below,
(
K

B(M)
i

)′
is tensor decomposable. Hence

L
B(Ri(M))
i is tensor decomposable. The multiplication map

(14.4.3) L
B(Ri(M))
i ⊗ B(M∗

i )
∼=−→ B(Ri(M))

is an isomorphism of Nθ
0-graded objects in H

HYD, and hence B(Ri(M)) is tensor
decomposable. Moreover,

(14.4.4) Φ
L

B(Ri(M))

i
+ = sMi

(
Φ

K
B(M)
i

+

)
,
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since sMi = (s
Ri(M)
i )−1. Thus

ΦB(Ri(M)) = ΦL
B(Ri(M))

i ∪
{
([Mi], αi), ([M

∗
i ],−αi)

}
= sMi (ΦB(M))

which completes the proof of the proposition. �

Recall the functor F :W(M)→ Zθ from Section 9.1.

Corollary 14.4.10. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections and that B(P ) is tensor decomposable
for some P ∈ FH

θ (M).

(1) For each P ′ ∈ FH
θ (M), B(P ′) is tensor decomposable.

(2) For any Q′, Q′′ ∈ FH
θ (M) and any morphism w : [Q′] → [Q′′] in W(M),

F (w)(ΦB(Q′)) = ΦB(Q′′).
(3) For any α ∈ΔB(M) re there exists Q ∈ H

HYD with ([Q,α]) ∈ ΦB(M).

Proof. By Proposition 13.5.19 and the definition of FH
θ (M), for any tuple

P ′ ∈ FH
θ (M) there exist m ≥ 0, i1, . . . , im ∈ I with P ′ ∼= Rim . . . Ri1(P ). Thus (1)

and (2) follow from Proposition 14.4.9 and the definition of a morphism.
(3) Let α ∈ ΔB(M) re. Then α = w(αi) for some w ∈ Hom([P ′], [M ]), i ∈ I

with P ′ ∈ FH
θ (M). By (1) and Lemma 14.4.8, ([P ′

i ], αi) ∈ ΦB(P ′). Therefore

([P ′
i ], α) ∈ ΦB(M) by (2). �

Lemma 14.4.11. Let S ⊆ Nθ
0 be a submonoid, and s : S → Nθ

0 be an injective
monoid morphism. For all Nθ

0-graded objects V in H
HYD with supp(V ) ⊆ S, define

V ′ = V as Yetter-Drinfeld module with Nθ
0-grading

V ′(α) =

{
V (s−1(α)), if α ∈ s(supp(V )),

0, otherwise,

for all α ∈ Nθ
0. Let X be a tensor decomposable Nθ

0-graded object in H
HYD with

supp(X) ⊆ S. Then X ′ is tensor decomposable, and ΦX′

+ = s(ΦX
+ ).

Proof. Since X is tensor decomposable, there is an isomorphism

X ∼=
n⊗

l=1

B(Ql)

as in Definition 14.4.1. Let 1 ≤ l ≤ n and βl = deg(Ql). Then supp(Ql) ⊆ supp(X).
Moreover, B(Ql) =

⊕
k≥0 Q

k
l , where Qk

l is the subspace of B(Ql) spanned by the
k-fold products of elements of Ql. Hence

B(Ql)
′(s(kβl)) = B(Ql)(kβl) = Qk

l = (Q′
l)
k = B(Q′

l)(ks(βl))

in H
HYD for all k ≥ 0. Thus B(Ql)

′ = B(Q′
l), where deg(Q

′
l) = s(βl). It follows that

X ′ ∼=
( n⊗

l=1

B(Ql)
)′ ∼= n⊗

l=1

B(Q′
l).

Hence ΦX′

+ = {([Q′
l], s(βl)) | 1 ≤ l ≤ n}. The injectivity of s ensures that

s(β1), . . . , s(βn) are non-zero and pairwise distinct. This implies the lemma. �
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Lemma 14.4.12. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections. Let m ≥ 0. Assume that for each
P ∈ FH

θ (M), any [P ]-reduced sequence has length at most m. Then B(P ) is tensor
decomposable for some P ∈ FH

θ (M).

Proof. Let n ≥ 0, P ∈ FH
θ (M), and κ = (i1, . . . , in) be a [P ]-reduced se-

quence. Assume that for each Q ∈ FH
θ (M), the length of any [Q]-reduced se-

quence is at most n. Then for any i ∈ I, (i, i1, . . . , in) is not an ri([P ])-reduced
sequence. Hence αi ∈ Λ[P ](κ) for all i ∈ I by Lemma 9.2.2(2). It follows that
B(P ) = EB(P )(κ) by Corollary 14.1.14, and EB(P )(κ) is tensor decomposable by
Theorem 14.1.9(5),(6),(7). �

Proposition 14.4.13. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for
all j ∈ I. The following are equivalent.

(1) The tuple M admits all reflections and G(M) is finite.
(2) The tuple M admits all reflections and B(P ) is tensor decomposable for

some P ∈ FH
θ (M).

(3) The Nichols algebra B(M) is tensor decomposable.

Proof. Assume that M admits all reflections and that G(M) is finite. Let

m = |Δ[M ] re
+ |. Theorem 14.1.9(1) implies that for each P ∈ FH

θ (M), any [P ]-
reduced sequence has length at most m. Then B(P ) is tensor decomposable for
some P ∈ FH

θ (M) by Lemma 14.4.12. Thus (1) implies (2).
If M ∈ FH

θ admits all reflections and B(P ) is tensor decomposable for some
P ∈ FH

θ (M), then B(M) is tensor decomposable by Corollary 14.4.10(1). Therefore
(2) implies (3).

Assume (3). Then M is i-finite and B(Ri(M)) is tensor decomposable by
Proposition 14.4.9. By induction on k it follows that M admits the reflection
sequence (i1, . . . , ik) and B(Rik · · ·Ri1(M)) is tensor decomposable for any k ≥ 0
and any i1, . . . , ik ∈ I. Thus M admits all reflections. Moreover, ΦB(M) is finite
since B(M) is tensor decomposable. Thus, by Corollary 14.4.10(3), Δ[M ] re is finite.
Hence (3) implies (1). �

The following Theorem is already known due to Theorem 14.2.12. Nevertheless,
the previous considerations allow us to provide a different proof based on the axioms
(CG3) and (CG4). Note that compared with Theorem 14.2.12, we additionally
assume that the semi-Cartan graph is finite.

Theorem 14.4.14. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections and that the semi-Cartan graph G(M)
is finite. Then G(M) is a Cartan graph.

Proof. By Theorem 13.6.2, G(M) is a semi-Cartan graph. Moreover, the
finiteness of G(M) implies that B(P ) is tensor decomposable for any P ∈ FH

θ (M)
by Proposition 14.4.13 and by Corollary 14.4.10(1).

Let α be a real root of the semi-Cartan graph G(M) at a point X. Then
α ∈ Nθ

0 ∪ −Nθ
0 by Corollary 14.4.10(3). This proves (CG3).

To prove (CG4), let Q′ ∈ FH
θ (M), X = [Q′], and i, j ∈ I with i �= j. (We don’t

need to consider the case i = j by Remark 9.1.16(4).) Then mX
ij is finite, since

G(M) is finite. Let Q′′ = (RiRj)
mX

ij (Q′) and Y = [Q′′]. Then Y = (rirj)
mX

ij (X).
We have to show that Y = X.
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Let w = idY (sisj)
mX

ij : X → Y . Then F (w) = idZθ by Theorem 9.2.23 and
(CG3). By Corollary 14.4.10(2),

ΦB(Q′) = F (w)(ΦB(Q′)) = ΦB(Q′′),

and therefore Y = X. �

14.5. Nichols algebras with finite Cartan graph

We prove that semi-simple Yetter-Drinfeld modules with a finite-dimensional
Nichols algebra have a finite Cartan graph. Based on the previous Sections 14.1–
14.4, we establish structural results on Nichols algebras with finite Cartan graph.
A criterion for the finiteness of a Cartan graph in terms of reduced sequences was
given in Proposition 9.2.25. Another one for the Cartan graph of a Nichols algebra
was formulated in Proposition 14.4.13.

Corollary 14.5.1. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for
all j ∈ I. Assume that M admits all reflections and that G(M) is finite. Let
P ∈ FH

θ (M), and let κ = (i1, . . . , im) ∈ Im with m ∈ N0 be a reduced decomposition
of the longest element w0 in Hom(W(M), [P ]). Then κ is [P ]-reduced. For all

1 ≤ k ≤ m let βk = β
[P ],κ
k and Pβk

⊆ B(P ) in H
HYD be as in Theorem 14.1.9(2).

(1) The multiplication map k[Pβm
]⊗ · · · ⊗ k[Pβ1

]→ B(P ) is bijective.

(2) Δ
[P ] re
+ = {β1, . . . , βm}.

(3) Let Q ∈ FH
θ (M), 1 ≤ k ≤ m, i ∈ I, and let w : [Q] → [P ] be a morphism

in W(M). Assume that βk = w(αi). Then Pβk
∼= Qi in

H
HYD.

(4) Let Q ∈ FH
θ (M) and i ∈ I. Then Qi

∼= Pβk
or Qi

∼= P ∗
βk

in H
HYD for

some 1 ≤ k ≤ m.

(5) Let i, j ∈ I, i �= j, and 0 ≤ t ≤ −a
[P ]
ij . Then there exists 1 ≤ k ≤ m

such that αj + tαi = βk and (adPi)
t(Pj) ∼= Pβk

in H
HYD. In particular,

(adPi)
t(Pj) is irreducible in H

HYD.

Proof. By Theorem 14.2.12 or by Theorem 14.4.14, G(M) is a finite Cartan
graph. Thus (2) holds by Corollary 9.3.13. By Theorem 9.3.5(1), κ is [P ]-reduced.
Hence (1) follows from Theorem 14.1.9 and Corollary 14.1.14(1), since for all i ∈ I,
αi ∈Δ

[P ] re
+ . In particular, B(P ) is tensor decomposable.

(3) By Corollary 14.4.10(2), F (w)(Φ[Q]) = Φ[P ]. Since ([Qi], αi) ∈ Φ[Q] by
Lemma 14.4.8, it follows that

F (w)([Qi], αi) = ([Qi], w(αi)) = ([Qi], βk) ∈ Φ[P ].

Hence Qi
∼= Pβk

, since the elements β1, . . . , βm are pairwise distinct.
(4) Since G(M) is connected, there is a morphism w : [Q] → [P ], and by

Corollary 14.4.10(2), F (w)(Φ[Q]) = Φ[P ]. By Lemma 14.4.8, ([Qi], αi) ∈ Φ[Q].
Hence ([Qi], w(αi)) ∈ Φ[P ].

If w(αi) ∈ Nθ
0, then Qi

∼= Pβk
for some k. If w(αi) ∈ −Nθ

0, then by Defini-

tion 14.4.7, ([Q∗
i ],−w(αi)) ∈ Φ

B(P )
+ , hence Q∗

i
∼= Pβk

for some k.
(5) Let i ∈ I. By Lemma 14.4.8, there is an index 1 ≤ h ≤ m such that βh = αi

and Pβh
∼= Pi. Since K

B(P )
i ⊗ B(Pi) ∼= B(P ), it follows from the remark above
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Definition 14.4.1 and from Lemma 14.4.4, that

K
B(P )
i

∼=
⊗

1≤k≤m
k �=h

B(Pβk
).(14.5.1)

We know from Theorem 13.2.8 that the algebra K
B(P )
i is generated by the homo-

geneous subspaces (adPi)
t(Pj) of degree αj + tαi, j �= i, j ∈ I, and 0 ≤ t ≤ −a

[P ]
ij .

Since these subspaces have pairwise distinct degrees, we see that for all j �= i, and

0 ≤ t ≤ −a
[P ]
ij ,

K
B(P )
i (αj + tαi) = (adPi)

t(Pj)

as Nθ
0-graded objects in H

HYD. On the other hand, the homogeneous part of degree
αj + tαi of the right hand side of (14.5.1) is the direct sum of all tensor products⊗

1≤k≤m
k �=h

(Pβk
)nk , nk ≥ 0 for all k,

where
∑

1≤k≤m
k �=h

nkβk = αj + tαi. For all k �= h, βk �∈ N0αi since βk and αi are

real roots of [P ]. Thus the sum can have only one non-zero summand nkβk, and
nk = 1, for some k. Hence (adPi)

t(Pj) ∼= Pβk
in H

HYD for some 1 ≤ k ≤ m. �

Corollary 14.5.2. Under the assumptions of Corollary 14.5.1, let x ∈ Pβk
,

where 1 ≤ k ≤ m. Then

ΔB(P )(x) ∈ x⊗ 1 + 1⊗ x+ k[Pβk−1
]k[Pβk−2

] · · ·k[Pβ1
]⊗ B(P ).

Proof. Let n = | deg(βk)|. Then, by Lemma 1.3.6,

ΔB(P )(x) ∈ x⊗ 1 + 1⊗ x+
n−1⊕
i=1

Bi(P )⊗ Bn−i(P ).

By (14.1.6) we may assume that k = m. Since EB(P )(i1, . . . , ik), as defined in
Theorem 14.1.9(7), is an Nθ

0-graded right coideal subalgebra of B(P ), and since
ΔB(P ) is graded, the claim follows by degree reasons from the tensor decomposition

of EB(P )(i1, . . . , im) in Theorem 14.1.9(6). �

Corollary 14.5.3. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. The following are equivalent.

(1) B(M) is finite-dimensional.
(2) M admits all reflections, and

(a) G(M) is finite.
(b) B(Pi) is finite-dimensional for all P ∈ FH

θ (M) and i ∈ I.

In particular, if B(M) is finite-dimensional, then G(M) is a finite Cartan graph.

Proof. Assume that B(M) is finite-dimensional. Then M admits all reflec-
tions and dimB(P ) = dimB(M) for any P ∈ FH

θ (M) by Proposition 13.6.4.
This implies (2)(b). By Theorem 14.1.9(1) and (4), for each P ∈ FH

θ (M) the
length of any [P ]-reduced sequence is at most dimB(M). Then G(M) is finite by
Lemma 14.4.12 and Proposition 14.4.13.

(2) implies (1) by Corollary 14.5.1(1) and (3). �
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Theorem 14.5.4. Let M ∈ FH
θ such that Mj is irreducible for all j ∈ I.

Let N = N (S,N, f) be a pre-Nichols system of M . Assume that N admits all
reflections and G(M) is finite. Then the canonical map pN : S → B(M) is bijective.

Proof. By Theorem 14.2.12 or 14.4.14, G(M) is a Cartan graph. More-
over, G(M) is finite by assumption. By Proposition 9.3.9 there exist l ≥ 0 and
i1, . . . , il ∈ I such that w0 = id[M ]si1 · · · sil is a longest element of Hom(W(M), [M ])

and �(w0) = l. Then (i1, . . . , il) is [M ]-reduced and Δ
[M ] re
+ = Λ[M ](i1, . . . , il) by

Corollary 14.5.1. Hence αi ∈ Λ[M ](i1, . . . , il) for all i ∈ I. Thus the claim follows
from Corollary 14.1.14(2). �

14.6. Tensor decomposable right coideal subalgebras

We are going to determine all tensor decomposable Nθ
0-graded right coideal

subalgebras of Nichols algebras B(M), where M ∈ FH
θ such that Mj is irreducible

in H
HYD for all j ∈ I, and M admits all reflections. In Theorem 14.6.6 we relate

the poset structure of the set of these right coideal subalgebras to the right Duflo
order on the Weyl groupoid. In Corollary 14.6.8 we provide a variant of this cor-
respondence for those M with finite Cartan graph. We also prove freeness of right
coideal subalgebras over each other.

Lemma 14.6.1. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I.
Let E ⊆ B(M) be an Nθ

0-graded right coideal in H
HYD. If E �= k1, then Mi ⊆ E for

some i ∈ I.

Proof. Let E =
⊕

n≥0 E(n) be the natural N0-grading of (14.4.1). Since

E �= k1, E(n) �= 0 for some n ≥ 1. The map

Bn(M) ⊆ B(M)
ΔB(M)−−−−→ B(M)⊗ B(M)

π1⊗id−−−−→ (M1 ⊕ · · · ⊕Mθ)⊗ B(M)

is injective, since B(M) is strictly graded. Hence

(π1 ⊗ id)ΔB(M)(E(n)) ⊆ π1(E)⊗ B(M) �= 0.

Thus E ∩ (M1 ⊕ · · · ⊕Mθ) = π1(E) is non-zero. Then E ∩Mi �= 0 for some i, since
E is Nθ

0-graded. Since Mi is irreducible, Mi ⊆ E. �

Lemma 14.6.2. Let M ∈ FH
θ be such that Mj is irreducible in

H
HYD for all j ∈ I.

Assume that M admits all reflections. Let w ∈ Hom(W(M), [M ]), and let E be an
Nθ

0-graded right coideal subalgebra of B(M) in H
HYD with a tensor decomposition

E ∼=
⊗n

l=1 B(Ql) such that

{deg(Ql) | 1 ≤ l ≤ n} = Δ[M ] re(w).

Then E = ÊB(M)(κ) for any reduced decomposition κ of w.

Proof. By Theorem 14.2.12, G(M) is a Cartan graph.

We proceed by induction on �(w). If �(w) = 0, then E = k1 = ÊB(M)().
Assume that �(w) ≥ 1, and let κ = (i1, . . . , i�(w)) be a reduced decomposition

of w. Then αi1 ∈Δ[M ] re(w) by Theorem 9.3.5(2), and hence E(αi1) �= 0. Since

E(αi1) ⊆ B(M)(αi1) = Mi1
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and Mi1 is irreducible, it follows that E(αi1) = Mi1 . Let N0 = N (B(M),M, idM ).
By Proposition 14.4.6 for N0, without loss of generality Q1

∼= Mi1 , deg(Q1) = αi1 ,

and E∩K
B(M)
i1

∼= B(Q2)⊗· · ·⊗B(Qn). Then, by Corollaries 14.3.6(1) and 14.3.4(2),

E′ := (T
B(M)
i1

)−1(E ∩K
B(M)
i1

) ∈ K−
i1
(B(Ri1(M)))

and
E′ ∼= B(Q′

2)⊗ · · · ⊗ B(Q′
l)

with Q′
l = Ql in

H
HYD and deg(Q′

l) = sMi1 (deg(Ql)) for all 2 ≤ l ≤ n. It follows
from Theorem 9.3.5(2) that

{deg(Q′
l) | 2 ≤ l ≤ n} = Δ[Ri1

(M)] re(id[Ri1
(M)]si2 · · · si	(w)

).

Therefore E′ = ÊB(Ri1
(M))(i2, . . . , in) by induction hypothesis, and we may con-

clude directly that E = t
B(M)
i1

(E′) = ÊB(M)(κ). �

Proposition 14.6.3. Let M ∈ FH
θ be such that Mj is irreducible in H

HYD for
all j ∈ I. Assume that M admits all reflections. Let E be an Nθ

0-graded right coideal
subalgebra of B(M) in H

HYD.

(1) The following are equivalent.
(a) There exists w ∈ Hom(W(M), [M ]), such that for any reduced de-

composition κ of w, E = EB(M)(κ) = ÊB(M)(κ).

(b) There exists an [M ]-reduced sequence κ such that E = ÊB(M)(κ).
(c) E is tensor decomposable.

(2) If B(Q1)⊗· · ·⊗B(Qn) is a tensor decomposition of E then in (1) one has
Δ[M ] re(w) = {deg(Ql) : 1 ≤ l ≤ n}.

Proof. By Theorem 14.2.12, G(M) is a Cartan graph.
(1) (a) implies (b) since any reduced decomposition of w is [M ]-reduced because

of Theorem 9.3.5. (b) implies (c) by Example 14.4.3 and by Corollary 14.3.9.
Assume that E is tensor decomposable. We prove (a) and (2). Let n ≥ 0 and

let Q1, . . . , Qn ∈ H
HYD be irreducible objects such that

E ∼= B(Q1)⊗ · · · ⊗ B(Qn)

as Nθ
0-graded objects in H

HYD. For each 1 ≤ l ≤ n let βl = deg(Ql). We prove
by induction on n that there exists an element w ∈ Hom(W(M), [M ]) such that

Δ[M ] re(w) = {β1, . . . , βn} and that E = ÊB(M)(κ) for any reduced decomposition
κ of w.

If n = 0 then E = k1 and (a) and (2) hold for w = id[M ].
Assume that n ≥ 1. Then by Lemma 14.6.1 there exists 1 ≤ i ≤ θ with

Mi ⊆ E. Let N0 = N (B(M),M, idM ). By Proposition 14.4.6 for N0, without loss

of generality Q1
∼= Mi, β1 = αi, and E ∩K

B(M)
i

∼= B(Q2)⊗ · · · ⊗ B(Qn). Then, by
Corollaries 14.3.6(1) and 14.3.4(2),

E′ := (T
B(M)
i )−1(E ∩K

B(M)
i ) ∈ K−

i (B(Ri(M)))

and
E′ ∼= B(Q′

2)⊗ · · · ⊗ B(Q′
l)

with Q′
l = Ql in H

HYD and deg(Q′
l) = sMi (deg(Ql)) for all 2 ≤ l ≤ n. Thus, by

induction hypothesis, there exists w′ ∈ Hom(W(M), [Ri(M)]) with

{s[M ]
i (βl) : 2 ≤ l ≤ n} = Δ[Ri(M)] re(w′).
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Let

w = s
[Ri(M)]
i w′ ∈ Hom(W(M), [M ]).

By definition, w′−1(αi) ∈ Nθ
0 since αi /∈Δ[Ri(M)] re(w′). Hence �(w) = �(w′)+ 1 by

Lemma 9.1.21 and Theorem 9.3.5(2). Thus (2) holds with w ∈ Hom(W(M), [M ]),
and then (a) is true because of Lemma 14.6.2 and Corollary 14.3.9. �

Definition 14.6.4. Let G be a semi-Cartan graph, and let X be a point of G.
For all w1, w2 ∈ Hom(W(G), X), we define w1 ≤D w2 if and only if any reduced
decomposition (i1, . . . , ik) of w1, where k = �(w1), can be extended to a reduced
decomposition (i1, . . . , ik, . . . , il) of w2, where l = �(w2). The partial order ≤D on
Hom(W(G), X) is called the (right) Duflo order or the weak Bruhat order.

Proposition 14.6.5. Let G be a semi-Cartan graph, X a point of G, and
w1, w2 ∈ Hom(W(G), X). Let k = �(w1) and l = �(w2). The following are equiva-
lent.

(1) w1 ≤D w2.
(2) k ≤ l, and there is a reduced decomposition (i1, . . . , il) of w2, such that

(i1, . . . , ik) is a reduced decomposition of w1.
(3) �(w2) = �(w1) + �(w−1

1 w2).

Proof. (1) implies (2) trivially.
Assume (2). Let Y = rik · · · ri1(X). Then

w−1
1 w2 = idY sik · · · si1si1 · · · sil = idY sik+1

· · · sil ,

and hence �(w−1
1 w2) ≤ l − k. Assume that m = �(w−1

1 w2) < l − k, and let
(j1, . . . , jm) be a reduced decomposition of w−1

1 w2. Then

w2 = w1w
−1
1 w2 = idXsi1 · · · siksj1 · · · sjm ,

a contradiction to �(w2) = l. Thus (2) implies (3).
Assume (3). Then l − k = �(w−1

1 w2) ≥ 0. We prove that w1 ≤D w2. Let
(i1, . . . , ik) be a reduced decomposition of w1, and let (j1, . . . , jl−k) be a reduced
decomposition of w−1

1 w2. Then

w2 = w1w
−1
1 w2 = si1 · · · siksj1 · · · sjl−k

.

Since �(w2) = l, (i1, . . . , ik, j1, . . . , jl−k) is a reduced decomposition of w2. Hence
w1 ≤D w2. �

For any M ∈ FH
θ let

Ktd(B(M)) = {E ∈ K(B(M)) | E is tensor decomposable}.

Theorem 14.6.6. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all
j ∈ I. Assume that M admits all reflections. Then for all P ∈ FH

θ (M) the map

EB(P ) : Hom(W(M), [P ])→ Ktd(B(P )), w �→ EB(P )(w),

is bijective, order preserving and order reflecting, where EB(P )(w) is defined in
Proposition 14.6.3(1), and Hom(W(M), [P ]) and Ktd(B(P )) are ordered by the Du-
flo order and by inclusion, respectively.
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Proof. By Theorem 14.2.12, G(M) is a Cartan graph, and the general theory
in Section 9.3 applies. The map EB(P ) is well-defined by Proposition 14.6.3. Let
w1, w2 ∈ Hom(W(M), [P ]) with w1 ≤D w2, and let k = �(w1), l = �(w2). Then
k ≤ l, and there are labels i1, . . . , il of G(M) such that (i1, . . . , ik) and (i1, . . . , il)
are reduced decompositions of w1 and w2, respectively. Hence

EB(P )(w1) = EB(P )(i1, . . . , ik) ⊆ EB(P )(i1, . . . , il) = EB(P )(w2).

To prove injectivity of EB(P ), let w1, w2 ∈ Hom(W(M), [P ]), and assume that
EB(P )(w1) = EB(P )(w2). Let κ1 and κ2 be a reduced decomposition of w1 and

w2, respectively. Then ÊB(P )(κ1) = ÊB(P )(κ2) by Corollary 14.3.9. Hence, by
Proposition 14.6.3, Δ[P ] re(w1)=Δ[P ] re(w2). Now Corollary 9.3.8(2) implies that
w1 = w2.

The map EB(P ) is surjective by Proposition 14.6.3(1).
Finally, let w1, w2 ∈ Hom(W(M), [P ]) with EB(P )(w1) ⊆ EB(P )(w2). We have

to prove that w1 ≤D w2. Let (i1, . . . , ik) with k ≥ 0 be a reduced decomposition of
w1. By assumption,

EB(P )(i1, . . . , ik) = EB(P )(w1) ⊆ EB(P )(w2).

We proceed by induction on k. If k = 0 then w1 = id[P ] and we are done. Assume
that k > 0. Then

Mi1 ⊆ EB(P )(i1, . . . , ik) ⊆ EB(P )(w2).

Now Proposition 14.4.6 implies that there is a tensor decomposition of EB(P )(w2)
with tensor factor B(Mi1) such that deg(Mi1) = αi1 . Therefore, using that EB(P )

is injective, Proposition 14.6.3(2) implies that αi1 ∈ Δ[P ] re(w2). Then, by Corol-
lary 9.3.7, there exists a reduced decomposition (j1, j2, . . . , jl) of w2 with i1 = j1.
Using this, Corollary 14.3.6(1) implies that

EB(Ri1
(P ))(i2, . . . , ik) = (t

B(P )
i1

)−1(EB(P )(i1, . . . , ik))

⊆ (t
B(P )
i1

)−1(EB(P )(j1, . . . , jl)) = EB(Ri1
(P ))(j2, . . . , jl).

Thus si1w1 ≤D si1w2 by induction hypothesis, and hence w1 ≤D w2. �

For tuples M with finite Cartan graph, Theorem 14.6.6 has a slightly simpler
variant which we will state in Corollary 14.6.8 below.

Lemma 14.6.7. Let M ∈ FH
θ such that Mj is irreducible in H

HYD for all j ∈ I.
Assume that M admits all reflections. Let E,E′ ∈ K(B(M)) such that E ⊆ E′ and
E′ is tensor decomposable. Then E is tensor decomposable.

Proof. By Theorem 14.6.6, there exists a morphism w ∈ Hom(W(G), [M ])
with E′ = EB(M)(w). We proceed by induction on �(w).

If E = k1, (which holds in particular for �(w) = 0,) then E is tensor decom-
posable. Assume that E �= k1. Then Mi ⊆ E for some i ∈ I by Lemma 14.6.1.
Thus

EB(M)(s
[Ri(M)]
i ) ⊆ E ⊆ E′.

It follows that

(t
B(M)
i )−1(E) ⊆ (t

B(M)
i )−1(E′) = EB(Ri(M))(siw)

and �(siw) = �(w)−1 as in the last paragraph of the proof of Theorem 14.6.6. Thus

(t
B(M)
i )−1(E) is tensor decomposable by induction hypothesis. By Theorem 14.6.6,
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(t
B(M)
i )−1(E) = EB(Ri(M))(v) for some v ∈ Hom(W(G), [Ri(M)]), and therefore

E = EB(M)(siv) is tensor decomposable. �
Corollary 14.6.8. Let M ∈ FH

θ such that Mj is irreducible in H
HYD for all

j ∈ I. Assume that M admits all reflections, and that G(M) is finite. For all
P ∈ FH

θ (M), the map

EB(P ) : Hom(W(M), [P ])→ K(B(P )), w �→ EB(P )(w),

is bijective, order preserving and order reflecting, where EB(P )(w) is defined in
Proposition 14.6.3(1), and Hom(W(M), [P ]) and K(B(P )) are ordered by the Duflo
order and by inclusion, respectively.

Proof. By Proposition 14.4.13, B(M) is tensor decomposable since G(M) is
finite. Thus

Ktd(B(M)) = K(B(M))

by Lemma 14.6.7. Hence the claim follows from Theorem 14.6.6. �
Corollary 14.6.9. Let M ∈ FH

θ such that Mj is irreducible in H
HYD for all

j ∈ I. Assume that M admits all reflections, and that G(M) is finite. Let

E1, E2 ∈ K(B(P ))

with P ∈ FH
θ (M) and E1 ⊆ E2 ⊆ B(P ). Then there are integers 0 ≤ l ≤ m and a

[P ]-reduced sequence (i1, . . . , im) ∈ Im with finite-dimensional irreducible subobjects
Pβk

of B(P ) in H
HYD for all 1 ≤ k ≤ m, as defined in Theorem 14.1.9, such that

k[Pβk
] ∼= B(Pβk

) for all 1 ≤ k ≤ m, and the multiplication maps

k[Pβl
]⊗ · · · ⊗ k[Pβ1

]→ E1,

k[Pβm
]⊗ · · · ⊗ k[Pβ1

]→ E2

are bijective. In particular, E2 is a free right module over E1.

Proof. By Corollary 14.6.8, there are w1, w2 ∈ Hom(W(M), [P ]) such that
EB(P )(w1) = E1 and EB(P )(w2) = E2. Moreover, by the definition of the Duflo
order, there is a reduced decomposition (i1, . . . , im) of w2, such that (i1, . . . , il) is a
reduced decomposition of w1, where 0 ≤ l ≤ m. Then E2 = EB(P )(i1, . . . , im) and
E1 = EB(P )(i1, . . . , il) by Proposition 14.6.3(1).

The bijectivity of the multiplication maps for w1 and w2 follows from Theo-
rem 14.1.9. Since the multiplication map k[Pβm

] · · ·k[Pβl+1
]⊗E1 → E2 is bijective,

E2 is free over E1. �

14.7. Notes

The content of Chapter 14 is mostly new.

14.2. In [Dru11], Section 4.3, it was noted that decompositions of the longest
element of a finite Weyl group into the product of two elements can be realized alge-
braically as a tensor product decomposition of a left and a right coideal subalgebra
of the positive part of the associated quantized enveloping algebra. Section 14.2 is
partially motivated by this observation.

14.3. A variant of Corollary 14.3.6 was proven in [HS13a], Theorem 5.6.

14.6. A variant of Theorem 14.6.6 was proven in [HS13a], Theorem 6.12.
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CHAPTER 15

Nichols algebras of diagonal type

We are going to discuss the general reflection theory of pre-Nichols systems for
pre-Nichols algebras of diagonal type. We study root vector sequences in analogy
to tensor decompositions of graded right coideal subalgebras of Nichols algebras.
In Section 15.3 we classify rank two Nichols algebras of diagonal type with finite
Cartan graph and those of finite dimension. Partial results are provided in rank
three in Section 15.4. In Section 15.5 we prove that finite-dimensional pre-Nichols
algebras of diagonal type are Nichols and that finite-dimensional pointed Hopf
algebras with abelian coradical are generated as algebras by group-like and skew-
primitive elements (over algebraically closed fields of characteristic 0). The proofs
are based on the reflection theory in Chapter 14 and the previous sections in this
Chapter.

15.1. Reflections of Nichols algebras of diagonal type

In this section we study Nichols algebras of braided vector spaces of diago-
nal type in more detail. Among such Nichols algebras, the tensor decomposable
ones in the sense of Definition 14.4.1 are best understood. Decomposability was
characterized in Proposition 14.4.13 in terms of reflections.

Let H be a Hopf algebra with bijective antipode, θ ∈ N, I = {1, . . . , θ}, and
let M = (M1, . . . ,Mθ) ∈ FH

θ be a tuple of one-dimensional Yetter-Drinfeld mod-
ules. A characterization of one-dimensional Yetter-Drinfeld modules was given in
Example 1.4.3 if H is a group algebra, and in Example 3.4.3 in general. In Proposi-
tion 15.1.10 we will define the small Cartan graph Gs(M) of M whenever M admits
all reflections. In Theorem 15.1.14 we show that if M is of Cartan type, then Gs(M)
has only one point, and that Gs(M) is finite if and only if the Cartan matrix of M
is of finite type.

We start the section with a Lemma of Rosso, which is fundamental to deal with
reflections of tuples in FH

θ . Recall the definition of ϕn ∈ ZBn+1 for n ≥ 1 from
Corollary 1.8.14 and let ϕ0 = 0. For any braided vector space V and for all n ≥ 0,
let ϕn also denote the image of ϕn under the representation of ZBn+1 on V ⊗n+1

introduced in Section 1.7.

Lemma 15.1.1. (Rosso’s Lemma) Let V be a braided vector space of dimension
at least two and let (qij)1≤i,j≤2 ∈ (k×)2×2. Choose linearly independent elements
x1, x2 of V . Assume that cV,V (xi⊗xj) = qijxj⊗xi for all 1 ≤ i, j ≤ 2. Let n ∈ N0.
Then the following hold.

(1) For each i ∈ {1, 2}, xn
i = 0 in B(V ) if and only if (n)!qii = 0.

(2) ϕn(x
⊗n
1 ⊗ x2) = (n)q11(1− qn−1

11 q12q21)x
⊗n
1 ⊗ x2.

(3) The following are equivalent.
(a) (adx1)

n(x2) �= 0 and (adx1)
n+1(x2) = 0 in B(V ).

469
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(b) (n+1)q11(q
n
11q12q21−1) = 0 and (k+1)q11(q

k
11q12q21−1) �= 0 for any

0 ≤ k < n.

Proof. (1) Let i ∈ {1, 2}. By Theorem 7.1.2(3), xn
i = 0 if and only if

Sn(x
⊗n
i ) = 0. By (1.9.3), this is equivalent to (n)!qiix

⊗n
i = 0.

(2) We proceed by induction on n. For n = 0 the claim is obviously true. For
n ≥ 1 use Corollary 1.8.14(3) to conclude that

ϕn(x
⊗n
1 ⊗ x2) = (1− c1c2 · · · cn−1c

2
ncn−1 · · · c1 + ϕn−1

↑1c1)(x
⊗n
1 ⊗ x2)

= (1− q2n−2
11 q12q21 + (n− 1)q11(1− qn−2

11 q12q21)q11)x
⊗n
1 ⊗ x2

= (n)q11(1− qn−1
11 q12q21)x

⊗n
1 ⊗ x2.

(3) Let Vi = kxi for i ∈ {1, 2}. Then B(V1⊕V2) ⊆ B(V ) by Corollary 7.1.15(2).
Let m ∈ N0. Then (adx1)

m(x2) = 0 if and only if XV1,V2
m = 0 by Theorem 13.3.1(2).

Now recall that XV1,V2
m = ϕmϕm−1

↑1 · · ·ϕ1
↑m by the definition of XV1,V2

m and by
Corollary 1.8.14(4). Hence (3) follows from (2). �

For all j ∈ I let xj be a basis of Mj , and let gj ∈ H, χj ∈ Alg(H, k) such that

δMj
(xj) = gj ⊗ xj , h · xj = χj(h)xj(15.1.1)

for all h ∈ H. Then gj is an invertible group-like element for all j ∈ I. For all
j, k ∈ I let qjk ∈ k× such that

cMj ,Mk
(xj ⊗ xk) = qjkxk ⊗ xj .

Remark 15.1.2. By Example 3.4.3, gigj = gjgi and χiχj = χjχi for all i, j ∈ I.
For any α =

∑
i∈I

aiαi in Zθ let

gα =
∏
i∈I

gai
i ∈ H, χα =

∏
i∈I

χai
i ∈ Alg(H, k).(15.1.2)

Let k ≥ 0, i1, . . . , ik ∈ I, V = Mi1 ⊗ · · · ⊗Mik , and v ∈ V . Then, by definition,

δV (x) = gα ⊗ x, hv = χα(h)v

for any h ∈ H, where α =
∑k

n=1 αin .

The elements (adxi)
m(xj) in T (M), where i, j ∈ I with i �= j and m ≥ 0, will

play a crucial role in the sequel. We give an explicit form of them in the following
Lemma.

Lemma 15.1.3. Assume that θ ≥ 2. Let i, j ∈ I with i �= j and let m ≥ 0. Then

(adxi)
m(xj) =

m∑
k=0

(−1)kqk(k−1)/2
ii qkij

(
m

k

)
qii

xm−k
i xjx

k
i .

Proof. By Remark 15.1.2, gigj = gjgi. Thus the claim holds by Proposi-
tion 4.3.12(1). �

We discuss the structure of Ri(M), where i ∈ I, see Definition 13.4.2.

Lemma 15.1.4. Let i ∈ I. Then M is i-finite if and only if for all integers
j ∈ I \ {i} there exists m ∈ N0 such that (m+ 1)qii(q

m
ii qijqji − 1) = 0.

Proof. This follows from Lemma 15.1.1(3). �
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Lemma 15.1.5. Let i, j ∈ I. Assume that i �= j and that M is i-finite.

(1) aMij = −min{m ∈ N0 | (m+ 1)qii(q
m
ii qijqji − 1) = 0}.

(2) Ri(M)j = k(adxi)
−aM

ij (xj), and dimRi(M)j = 1.
(3) Let m ∈ N0. Then

δT (M)((adxi)
m(xj)) = gjg

m
i ⊗ (adxi)

m(xj),

h · (adxi)
m(xj) = χjχ

m
i (h)(adxi)

m(xj)

in T (M) for all h ∈ H.

(4) δRi(M)k(yk) = gkg
−aM

ik

i ⊗ yk and h · yk = χkχ
−aM

ik

i (h)yk for all k ∈ I,
yk ∈ Ri(M)k, and h ∈ H, where χ−1

i = χi ◦ S.
Proof. (1) follows from Lemma 15.1.1(3), and (2) holds by the definitions of

Ri(M)j and M , see Definition 13.4.2.
(3) follows from Remark 15.1.2, since (adxi)

m(xj) is a linear combination of

the monomials xm−k
i xjx

k
i with 0 ≤ k ≤ m.

(4) Let yi ∈ M∗
i with 〈yi, xi〉 = 1. Then

δM∗
i
(yi) = g−1

i ⊗ yi, h · yi = χ−1
i (h)yi

for all h ∈ H by Lemma 4.2.2. Thus (4) holds for k = i. For k �= i the claim follows
from (3). �

The following lemma is an immediate consequence of Lemma 15.1.5(1).

Lemma 15.1.6. Let i, j ∈ I. Assume that i �= j and that M is i-finite. Let
m ∈ N0. Then aMij = −m if and only if one of the following holds.

(1) m = 0, qijqji = 1.
(2) m ≥ 1, qijqji = q−m

ii , and qkii �= 1 for all 1 ≤ k ≤ m.
(3) m ≥ 1, qii is a primitive m+ 1-st root of unity, and (qijqji)

m+1 �= 1.
(4) m ≥ 1, char(k) = m+ 1, qii = 1, and qijqji �= 1.

Moreover, no two of the conditions in (1)–(4) can hold simultaneously.

A graph (I, E) is a pair, where I is a set, called the set of vertices, and E,
the set of edges, is a subset of the set of subsets of I of two elements. A labeled
graph with labels in k is a quadruple (I, E, fI , fE), where (I, E) is a graph, and
fI : I → k, fE : E → k are functions. If i ∈ I is a vertex, and {i, j} ∈ E is an edge,
then fI(i) and fE({i, j}) are called the labels of i and {i, j}, respectively.

An isomorphism between labeled graphs (I, E, fI , fE) and (J, F, fJ , fF ) is a
bijective map σ : I → J which induces a bijection

σ̃ : E → F, {i, j} �→ {σ(i), σ(j)} with fI = fJσ, fE = fF σ̃.

Definition 15.1.7. Let V be a θ-dimensional braided vector space of diagonal
type. Let (xi)i∈I be a basis of V and let q = (qij)i,j∈I be a matrix of non-zero
scalars in k with cV,V (xi ⊗ xj) = qijxj ⊗ xi for all i, j ∈ I, see Remark 1.5.4. The
Dynkin diagram of V with respect to the basis (xi)i∈I is a labeled graph D with
θ vertices. The vertices of D correspond to the integers i ∈ I and are labeled by
qii. For any 1 ≤ i < j ≤ θ, there is an edge between vertex i and vertex j if and
only if qijqji �= 1. In this case, qijqji is the label of this edge.

The Dynkin diagram of M = (M1, . . . ,Mθ) ∈ FH
θ with dimMj = 1 for all j ∈ I

is the Dynkin diagram of the braided vector space M1 ⊕ · · · ⊕Mθ with respect to
the basis (xi)i∈I, where 0 �= xi ∈ Mi for all i.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



472 15. NICHOLS ALGEBRAS OF DIAGONAL TYPE

Proposition 4.5.9 implies that up to isomorphism of labeled graphs, the Dynkin
diagram of a braided vector space V of diagonal type does not depend on the choice
of the braiding matrix of V .

Lemma 15.1.8. Let i ∈ I. Assume that M is i-finite. Let aij = aMij for all j ∈ I
and let W =

⊕
j∈I

Ri(M)j.

(1) The braiding matrix of W is (q′jk)j,k∈I, where

q′jk = qjkq
−aij

ik q−aik
ji q

aijaik

ii .(15.1.3)

(2) The labels of the Dynkin diagram of W are

q′jj =

⎧⎪⎨⎪⎩
qii if j = i,

qjj if j �= i, q
−aij

ii qijqji = 1,

qjj(qijqji)
−aijqii if j �= i, (1− aij)qii = 0,

q′jkq
′
kj =

{
qikqki if j = i, k �= i,

qjkqkj if j, k �= i, q
−aij

ii qijqji = 1,

if q−aik
ii qikqki = 1, and

q′jkq
′
kj =

⎧⎪⎨⎪⎩
q2ii(qikqki)

−1 if j = i, k �= i,

qjkqkj(qikqkiq
−1
ii )−aij if j, k �= i, q

−aij

ii qijqji = 1,

qjkqkj(qijqji)
−aik(qikqki)

−aijqii if j, k �= i, (1− aij)qii = 0,

if (1− aik)qii = 0.

Proof. By Lemma 15.1.5(2), yj = (adxi)
−aij (xj) is a basis of Ri(M)j for

j ∈ I \ {i}, and yi ∈ M∗
i with 〈yi, xi〉 = 1 is a basis of Ri(M)i = M∗

i . Since ad is
a morphism in H

HYD, kyj ∈ H
HYD for all j ∈ I. Lemma 15.1.5(4) implies that the

braiding is given by

cRi(M)j ,Ri(M)k(yj ⊗ yk) = χkχ
−aik
i (gjg

−aij

i )yk ⊗ yj

for all j, k ∈ I. This implies (1). Since (1 − aij)qii(q
−aij

ii qijqji − 1) = 0 by
Lemma 15.1.5(1), we obtain (2) directly from (1). �

Assume that M admits all reflections. Then, by Theorem 14.2.12, the semi-
Cartan graph G(M) = G(I,X , r, A) as defined in Theorem 13.6.2 is a Cartan graph.
We use Lemmas 15.1.5 and 15.1.8 to define a quotient Cartan graph of it in Propo-
sition 15.1.10 below. We need some preparation.

Let Y be the set of equivalence classes

[N ]s = {P ∈ FH
θ (M) |P ∼s N}

with respect to the equivalence relation ∼s on FH
θ , where

N ′ ∼s N ′′ ⇔ for all j, k ∈ I, q′jj = q′′jj and q′jkq
′
kj = q′′jkq

′′
kj(15.1.4)

for any N ′, N ′′ ∈ FH
θ with braiding matrix (q′jk)j,k∈I and (q′′jk)j,k∈I, respectively.

Moreover, let r : I× Y → Y , (j, [N ]s) �→ [Rj(N)]s.

Remark 15.1.9. By definition, the Dynkin diagrams of all points of G(M)
in an equivalence class [N ]s coincide. More generally, if τ : I → I is a bijection
and N ′, N ′′ ∈ FH

θ with N ′ ∼s N ′′, then N ′ and (N ′′
τ(j))j∈I have the same Dynkin

diagram.
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Proposition 15.1.10. Assume that M admits all reflections. Then the map
r : I× Y → Y, (j, [N ]s) �→ [Rj(N)]s, is well-defined. The tuple

Gs(M) = G(I,Y , r, As)

with As : I×I×Y, (j, k, [N ]s) �→ aNjk is a Cartan graph. The triple (G(M),Gs(M), π)

with π : X → Y, N �→ [N ]s is a covering.

The Cartan graph Gs(M) is called the small Cartan graph of M .

Proof. Let N,P ∈ FH
θ with N ∼s P . Then AN = AP by Lemma 15.1.5(1).

Thus, for any Y ∈ Y , AY
s is well-defined. Further, Lemma 15.1.8 implies that

Rj(N) ∼s Rj(P ) for any j ∈ I, and hence r is well-defined. Thus the proposition
holds by Proposition 10.1.3 and by Lemma 10.1.4. �

The following definition uses various notions from Definition 8.2.1.

Definition 15.1.11. Let (V, c) be a finite-dimensional braided vector space of
diagonal type and let q = (qij)i,j∈I be a braiding matrix of V . We say that (V, c)
is generic, quasi-generic, and of (finite) Cartan type, respectively, if q is.

Recall from Definition 8.2.1 that q is of (finite) Cartan type if there exists a
Cartan matrix A = (aij)i,j∈I (of finite type) such that for all i, j ∈ I,

qijqji = q
aij

ii , where 0 ≤ −aij < ord(qii) if i �= j.(15.1.5)

Proposition 4.5.9 implies that the definitions of a braided vector space of Cartan
type and of a generic braided vector space do not depend on the choice of the
braiding matrix.

Recall that M1 ⊕ · · · ⊕Mθ ∈ H
HYD is a braided vector space of diagonal type.

We say that M is generic, quasi-generic, and of (finite) Cartan type, respectively,
if the braided vector space M1 ⊕ · · · ⊕Mθ is.

Lemma 15.1.12. Assume that M is of Cartan type with Cartan matrix A. Then
M is i-finite for all i ∈ I and aMij = aij for all i, j ∈ I.

Proof. Let i ∈ I. The i-finiteness of M follows from Lemma 15.1.4. Condi-
tion (15.1.5) implies that if qm+1

ii = 1 for some m ∈ N0 then (qijqji)
m+1 = 1 for

any j ∈ I \ {i}. Thus in Lemma 15.1.6 only the first two cases occur and aMij = aij
by the assumptions on A in Definition 8.2.2 and by Lemma 15.1.6. �

Lemma 15.1.13. Assume that M is of Cartan type with Cartan matrix A. Let
i ∈ I and let W =

⊕
j∈I

Ri(M)j. Then the following hold.

(1) The braiding matrix of W is (q′jk)j,k∈I, where

q′jk = qjkq
−aij

ik qaik
ij for all j, k ∈ I.

(2) The labels of the Dynkin diagram of W and of Ri(M) are

q′jj = qjj , q′jkq
′
kj = qjkqkj

for all j, k ∈ I.
(3) The tuple Ri(M) is of Cartan type with Cartan matrix A.

Proof. Since M is i-finite for all i ∈ I by Lemma 15.1.12, the tuple Ri(M)
is well-defined. The claims in (1) and (2) on the braiding matrix and the Dynkin
diagram follow directly from Lemma 15.1.8. (3) follows from (2). �
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Theorem 15.1.14. Assume that M is of Cartan type. Then the following hold.

(1) M admits all reflections.
(2) Let M ′ ∈ FH

θ (M). Then M ′ is of Cartan type.
(3) The Cartan graph of M is standard.
(4) The small Cartan graph of M has only one point.
(5) The Cartan graph of M is finite if and only if AM is of finite type.
(6) The Nichols algebra B(M) is finite-dimensional if and only if AM is of

finite type and if for all i ∈ I there exists m ∈ N0 such that (m+1)qii = 0.

Note that by Lemma 10.1.4, the Cartan graph of M is finite if and only if the
small Cartan graph of M is finite.

Proof. Let A be the Cartan matrix of M . Then, by Lemma 15.1.12 and
Lemma 15.1.13(3), M is i-finite for all i ∈ I and all tuples Ri(M) with i ∈ I are
of Cartan type with Cartan matrix A. Thus any N ∈ FH

θ (M) is i-finite and of
Cartan type with Cartan matrix A. This implies (1), (2), and (3). (4) follows from
(15.1.4) and Lemma 15.1.13(2). By (4) and by Example 9.1.17, Gs(M) is finite if
and only if AM is of finite type. Thus (5) holds because of Lemma 10.1.4. Finally,
(6) follows from Corollary 14.5.3 because of (1),(4),(5), and Example 1.10.1. �

Corollary 15.1.15. Let q ∈ k×. Assume that θ ≥ 2 and qij = q for all
i, j ∈ I. The following are equivalent.

(1) B(M) is finite-dimensional,
(2) q = 1, char(k) �= 0 or q = −1 or θ = 2, ord(q) = 3.

Proof. If q is not a root of 1, then M is not i-finite by Lemma 15.1.4, and
hence B(M) is infinite-dimensional.

Assume that q is a root of 1 of order N ≥ 1. Then M is i-finite for all i ∈ I by
Lemma 15.1.4. Let A be the Cartan matrix of M . Then, by Lemma 15.1.6, M is
of Cartan type with aij = 0 if q = 1, and aij = N − 2 otherwise. Hence the Cartan
matrix A is of finite type if and only if q2 = 1 or θ = 2, N = 3. Thus the claim
follows from Theorem 15.1.14(6) and Example 1.10.1. �

Corollary 15.1.16. Assume that k is algebraically closed of characteristic 0.
Let G be a finite group of odd order. Then there exist only finitely many isomor-
phism classes of Yetter-Drinfeld modules over G with finite-dimensional Nichols
algebra.

Proof. By Maschke’s theorem, the group algebra of any subgroup of G is
semisimple, and has only finitely many isomorphism classes of simple modules.
Thus, by Corollary 1.4.18 there exist only finitely many isomorphism classes of sim-
ple Yetter-Drinfeld modules over G. Since any finite-dimensional Yetter-Drinfeld
module over G is semisimple by Proposition 1.4.20, it suffices to prove that for any
simple V ∈ G

GYD, B(V ⊕ V ⊕ V ) is infinite-dimensional.
So let V ∈ G

GYD be a simple object. Since k is algebraically closed, by Propo-
sition 1.4.21 there exists q ∈ k× and g ∈ G with Vg �= 0 and g · v = qv for all
v ∈ Vg. Note that q �= −1 since the order of g is odd and char(k) = 0. Thus
W = Vg ⊕ Vg ⊕ Vg is a braided subspace of V of dimension at least 3, and

cW,W (w ⊗ w′) = g · w′ ⊗ w = qw′ ⊗ w

for all w,w′ ∈W . Then the claim follows from Corollary 15.1.15 for W . �
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We note that by Example 1.10.15 there are finite-dimensional Yetter-Drinfeld
modules over the group Z/(2) with Nichols algebra of dimension 2n, n ≥ 1.

Another consequence of Theorem 15.1.14(6) is a general result on Nichols al-
gebras over symmetric groups. Recall the definition of the Yetter-Drinfeld modules
M(g, V ) over groups from Definition 1.4.15.

Corollary 15.1.17. Assume that k is an algebraically closed field of charac-
teristic 0. Let n ≥ 1, g ∈ Sn, and let V �= 0 be an Sgn-module. Assume that the

Nichols algebra of M(g, V ) ∈ Sn

Sn
YD is finite-dimensional. Then g has even order

and g · v = −v for all v ∈ V .

Proof. Since B(M(g, V )) is finite-dimensional, also V is finite-dimensional.
Thus the action of g on V is diagonalizable by the assumptions of k.

First we prove that there is no 0 �= v ∈ V with g · v = v. In particular, g �= 1.
Indeed, otherwise kv is a braided subspace of M(g, V ) for such a v, and B(kv) is
infinite-dimensional by Example 1.10.1, a contradiction.

Assume now that the order of g is two. Then (g+1)(g− 1)v = 0 for all v ∈ V .
By the above it follows that g · v = −v for all v ∈ V , and hence the claim is proven
in this case.

Finally, assume that the order of g is at least three. Then g is a product of
pairwise disjoint cycles, and at least one of the cycles has order at least three. Hence
g−1 �= g and there exists h ∈ Sn with hgh−1 = g−1. (Indeed, g and g−1 have the
same cycle type, and any two permutations of the same cycle type are conjugate in
Sn.) Choose now 0 �= v ∈ V and q ∈ k× with g · v = qv. By the second paragraph
we know that q �= 1. Then W = k1⊗ v + kh⊗ v is a braided subspace of M(g, V )
of diagonal type with braiding matrix

q =

(
q q−1

q−1 q

)
since g(h ⊗ v) = hg−1 ⊗ v = q−1h ⊗ v. If q �= −1, then q and A are of Cartan
type with a12 = a21 = −2. In this case A is not of finite type, B(W ) is infinite-
dimensional by Theorem 15.1.14(6), which is a contradiction. Thus g · v′ = −v′ for
all v′ ∈ V . Consequently, g has even order N , because v′ = gN · v′ = (−1)Nv′ for
all v′ ∈ V . �

We also formulate an important general finiteness condition for B(M) based on
the Cartan graph of M and Example 1.10.1.

Proposition 15.1.18. Assume that B(M) is finite-dimensional. Then for all

α ∈ Δ
[M ] re
+ there exists n ≥ 1 such that (n + 1)q = 0, where q = χα(gα). In

particular, if the Dynkin diagram D of M is connected, and q is the product of all
labels of D, then (n+ 1)q = 0 for some n ≥ 1.

Proof. By Corollary 14.5.3, G(M) is finite and B(N) is finite-dimensional

for all N ∈ FH
θ (M). Let α ∈ Δ

[M ] re
+ . Then Corollary 14.5.1 implies that there

exist an irreducible Yetter-Drinfeld submodule Mα of B(M) of Nθ
0-degree α and

N ∈ FH
θ (M), i ∈ I such that Mα

∼= Ni in
H
HYD. Let v be a basis of Ni. Since Mα

has degree α, it follows from Remark 15.1.2 that

δNi
(v) = gα ⊗ v, hv = χα(h)v

for any h ∈ H. Since B(Ni) is finite-dimensional, we conclude from Example 1.10.1
that (n+ 1)q = 0 for some n ≥ 1.
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Assume that D is connected. Then Lemma 15.1.6 implies that AM is indecom-

posable. By Proposition 10.4.14, α =
∑θ

i=1 αi ∈ ΔM re
+ . Since q = χα(gα), the

second claim follows from the first one. �

An immediate consequence of Proposition 15.1.18 is the following.

Corollary 15.1.19. Assume that char(k) = 0. If the Dynkin diagram D of M
is connected, and the product of all labels of D is 1 or not a root of 1, then B(M)
is infinite-dimensional.

15.2. Root vector sequences

Let H be a Hopf algebra with bijective antipode, θ ∈ N, I = {1, . . . , θ}, and let
M = (M1, . . . ,Mθ) ∈ FH

θ be a tuple of one-dimensional Yetter-Drinfeld modules
admitting all reflections. Then G(M) is a Cartan graph by Theorem 14.2.12. Let
q = (qij)i,j∈I ∈ k×θ×θ be the braiding matrix of M . We introduce the notion of root
vector sequences for pre-Nichols systems of M , which is based on reduced sequences
and right coideal subalgebras. Note that reduced sequences correspond to reduced
decompositions of morphisms in the Weyl groupoid of G(M) by Theorem 9.3.5.
An important application of root vector sequences is to construct PBW bases. A
general result on Nichols algebras in this direction is Theorem 15.2.7 below. We
will also prove a similar result on quantum groups in Sections 16.2 and 16.3.

Definition 15.2.1. Let N = N (S,N, f) be a pre-Nichols system of M . Let
κ = (i1, . . . , it) ∈ It with t ≥ 0 be an [M ]-reduced sequence. A sequence x1, . . . , xt

of elements of S is called a root vector sequence for κ, if

(1) xj ∈ S
(
β
[M ],κ
j

)
\ {0} for any 1 ≤ j ≤ t, and

(2) for any 1 ≤ j ≤ t, the products x
nj

j · · ·xn2
2 xn1

1 with n1, . . . , nj ∈ N0, span

a right coideal subalgebra of S in H
HYD.

Existence and uniqueness of root vector sequences will be discussed under ad-
ditional assumptions in Proposition 15.2.6.

For an example of a root vector sequence we refer to Remark 16.2.6.

Remark 15.2.2. (1) In the setting of Definition 15.2.1, for any root vector se-
quence x1, . . . , xt for κ in S and for any λ1, . . . , λt ∈ k×, the sequence λ1x1, . . . , λtxt

is a root vector sequence for κ in S.
(2) Let p : N → N ′ with N = N (S,N, f) and N ′ = N (S′, N ′, f ′) be a

morphism of pre-Nichols systems of M , and let κ = (i1, . . . , it) ∈ It with t ≥ 0 be
an [M ]-reduced sequence. Then for any root vector sequence x1, . . . , xt for κ in S,
p(x1), . . . , p(xt) is a root vector sequence for κ in S′ if and only if p(xj) �= 0 for any
1 ≤ j ≤ t. Indeed, p is a graded Hopf algebra map in H

HYD and p(C) is a right
coideal subalgebra of S′ for any right coideal subalgebra C of S.

The combination of the two properties in Definition 15.2.1 has strong conse-
quences. Recall the notation KN

i from Definition 13.5.9.

Lemma 15.2.3. Let N = N (S,N, f) be a pre-Nichols system of M and let
κ = (i1, . . . , it) ∈ It with t ≥ 0 be an [M ]-reduced sequence. Let x1, . . . , xt be a root
vector sequence for κ.

(1) For any 2 ≤ j ≤ t, xj ∈ KN
i1
.
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(2) For any 2 ≤ j ≤ t, the products x
nj

j · · ·xn2
2 with n2, . . . , nj ∈ N0, span

Cj ∩KN
i1
, where Cj is the subalgebra of S generated by x1, . . . , xj.

Proof. Assume that t ≥ 2 and let 2 ≤ j ≤ t.
(1) Let C be the subalgebra of S generated by x1, . . . , xj−1, and for all 1 ≤ l ≤ j

let βl = β
[M ],κ
l . By assumption,

ΔS(xj)− xj ⊗ 1 ∈ C ⊗ S.

Let πi1 : S → k[Ni1 ] be the homogeneous Hopf algebra projection with kernel⊕
β/∈N0αi1

S(β). Then xj ∈ KN
i1

if and only if the homogeneous summand of ΔS(xj)

in C(βj−nαi1)⊗S(nαi1) is zero for any n ≥ 1. Since xl ∈ S(βl) for any 1 ≤ l ≤ j−1,
the latter property follows from Proposition 9.3.14 and the definition of C. Indeed,

otherwise there exist n1, . . . , nj−1, n ∈ N0 such that
∑j−1

l=1 nlβl + nβ1 = βj , which
is a contradiction.

(2) Note first that k[x1] = k[Ni1 ], since x1 ∈ S(αi1) \ {0} and Ni1 is one-
dimensional. Hence KN

i1
#k[x1] ∼= S via canonical embedding and multiplication

by Theorem 3.9.2(6). By (1), x
nj

j · · ·xn2
2 ∈ Cj ∩KN

i1
for any n2, . . . , nj ∈ N0. Thus

the second part of the definition of a root vector sequence implies the claim. �

Recall the maps Ti = TN
i from Theorem 12.3.3 and Corollary 13.5.21. They

allow transformations of root vector sequences for Nichols systems.

Proposition 15.2.4. Let i ∈ I, N = N (S,N, f) be a Nichols system of (M, i),

and N (S̃, Ñ , f̃) = Ri(N ). Let t ≥ 1, κ = (i, i2, . . . , it) ∈ It be an [M ]-reduced
sequence, and x1, . . . , xt be a root vector sequence for κ in S. Then

T−1
i (x2), . . . , T

−1
i (xt)

is a root vector sequence for (i2, . . . , it) in S̃.

Proof. The elements T−1
i (xl) ∈ S̃ with 2 ≤ l ≤ t are well-defined since

xl ∈ KN
i for any 2 ≤ l ≤ t by Lemma 15.2.3(1). Moreover,

deg(T−1
i (xl)) = sMi (deg xl) = idRi(M)si2 · · · sil−1

(αil)

for any 2 ≤ l ≤ t by Corollary 13.5.21(2).
If t = 1 then the Lemma is trivial. Assume now that t ≥ 2 and let 2 ≤ j ≤ t.

Let Cj be the subalgebra of S generated by x1, . . . , xj . Then Cj is a right coideal

subalgebra of S in H
HYD containing k[Ni] by assumption. Hence C̃ = T−1

i (Cj∩KN
i )

is a right coideal subalgebra of S̃ in H
HYD by Theorem 12.4.5. Since Ti is an

algebra isomorphism, Lemma 15.2.3(2) implies that C̃ is spanned by the products
T−1
i (xj)

nj · · ·T−1
i (x2)

n2 with n2, . . . , nj ∈ N0. This implies the claim. �

Proposition 15.2.5. Let i ∈ I, N = N (S,N, f) be a Nichols system of (M, i),

and N (S̃, Ñ , f̃) = Ri(N ). Let t ≥ 1, κ = (i, i2, . . . , it) ∈ It be an [M ]-reduced

sequence, and x1 ∈ Ni \ {0}. For any root vector sequence x2, . . . , xt in S̃ for
(i2, . . . , it),

x1, Ti1(x2), . . . , Ti1(xt)

is a root vector sequence in S for κ.
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Proof. For t = 1 the Proposition is trivial.
Assume that t ≥ 2 and let 2 ≤ j ≤ t. Then x2, . . . , xj generate a right

coideal subalgebra C̃ of S̃ in H
HYD by assumption. Moreover, Ñi �⊆ C̃. Indeed,

αi �= deg(xl) ∈ Nθ
0 for each 2 ≤ l ≤ j, since κ is [M ]-reduced. Hence C̃ ⊆ L

Ri(N )
i by

Lemma 14.1.2. Let C = Ti(C̃)k[Ni] ⊆ S. Then C is a right coideal subalgebra of S
in H

HYD by Theorem 12.4.5. Since Ti is an algebra map by Theorem 12.3.3, it follows
that C is spanned by the monomials Ti(xj)

nj · · ·Ti(x2)
n2xn1

1 with n1, . . . , nj ∈ N0.

By choice of x1, deg(x1) = αi. Moreover, deg
(
Ti(xl)

)
= β

[M ],κ
l for any 2 ≤ l ≤ j by

assumption on the degrees of the elements x2, . . . , xt and by Corollary 13.5.21(2).
Finally, Ti(xl) �= 0 for all 2 ≤ l ≤ t, since T is injective. This implies the claim. �

Proposition 15.2.6. Let N = N (S,N, f) be a pre-Nichols system of M . Let
κ = (i1, . . . , it) ∈ It with t ≥ 0 be an [M ]-reduced sequence. Assume that N admits
the reflection sequence κ.

(1) There exists a root vector sequence for κ in S.
(2) Let x1, . . . , xt and y1, . . . , yt be root vector sequences for κ in S. Then

there are λ1, . . . , λt ∈ k× such that yl = λlxl for all 1 ≤ l ≤ t.

Proof. (1) Since dimMj = 1 for all j ∈ I, the vector spaces NN
j (κ) in The-

orem 14.1.9(2) are one-dimensional. For all 1 ≤ j ≤ t choose a non-zero vector
xj ∈ NN

j (κ). By Theorem 14.1.9(4), the elements xj have the correct degree. By

Theorem 14.1.9(6), for any 1 ≤ j ≤ t the monomials x
nj

j · · ·xn1
1 with n1, . . . , nj ≥ 0

span EN (i1, . . . , ij). By Theorem 14.1.9(3) and Theorem 14.1.4(1), EN (i1, . . . , ij)
is a right coideal subalgebra of S for all 1 ≤ j ≤ t. Thus x1, . . . , xt is a root vector
sequence for κ in S.

(2) We proceed by induction on t. For t = 0 the claim is trivial. Assume that
t ≥ 1 and that the claim holds for all reduced sequences of length at most t − 1.

Let N (S̃, Ñ , f̃) = Ri1(N ). Then T−1
i1

(x2), . . . , T
−1
i1

(xt) and T−1
i1

(y2), . . . , T
−1
i1

(yt)

are root vector sequences for (i2, . . . , it) in S̃ by Proposition 15.2.4. By induction
hypothesis there exist scalars λ2, . . . , λt ∈ k× such that T−1

i (yl) = λlT
−1
i (xl) for all

2 ≤ l ≤ t. Moreover, y1 = λ1x1 for some λ1 ∈ k× since dimNi1 = 1. This implies
the claim. �

For any α =
∑θ

i=1 aiαi ∈ Zθ let gα ∈ H and χα ∈ Alg(H, k) be as in Equa-
tion (15.1.2), and let qαα = χα(gα) and N(qαα) be as in Example 1.10.1.

Theorem 15.2.7. Let M ∈ FH
θ such that dimMi = 1 for all i ∈ I. Assume

that M admits all reflections. Let κ = (i1, . . . , it) with t ≥ 0 be an [M ]-reduced

sequence, and for all 1 ≤ k ≤ t let βk = β
[M ],κ
k . Let x1, . . . , xt be a root vector

sequence for κ in B(M).

(1) For any 0 ≤ k ≤ t let (q
(k)
ij )i,j∈I be the braiding matrix of the tuple

Rik · · ·Ri1(M) ∈ FH
θ . Then qβkβk

= q
(k−1)
ikik

for any 1 ≤ k ≤ θ.
(2) The elements xnt

t · · ·xn1
1 with 0 ≤ nk < N(qβkβk

) for all 1 ≤ k ≤ t form a

basis of the right coideal subalgebra EB(M)(i1, . . . , it) of the Nichols algebra
B(M).

(3) Assume that for all i ∈ I, αi ∈ Λ[M ](κ). Then B(M) = EB(M)(κ) and the
elements xnt

t · · ·xn1
1 such that 0 ≤ nk < N(qβkβk

) for all 1 ≤ k ≤ t form
a basis of B(M).
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Proof. By Proposition 15.2.6(2) and the proof of Proposition 15.2.6(1) for

the pre-Nichols system N0 = N (B(M),M, idM ), xk is a basis of NN0

k (κ) (in the
notation of Theorem 14.1.9(2)). Since xk ∈ B(M)(βk), Remark 15.1.2 implies that

cB(M),B(M)(xk ⊗ xk) = χβk
(gβk

)xk ⊗ xk = qβkβk
xk ⊗ xk.(15.2.1)

(1) follows from Theorem 14.1.9(2) and from (15.2.1), since TN0

(i1,...,ik−1)
is an

isomorphism of Yetter-Drinfeld modules.
(2) Example 1.10.1 and (15.2.1) imply that for any 1 ≤ k ≤ t, the Hopf algebras

B(kxk) and k[x]/(xN ) in H
HYD, where N = N(qβkβk

), are isomorphic. Thus the
claim holds by Theorem 14.1.9(5),(6).

(3) is a consequence of (2) and Corollary 14.1.14(1). �

Existence and uniqueness of root vector sequences in a more general context
is less clear. With Proposition 15.2.9 we provide a tool which will be used in
Section 16.3.

Motivated by the notation from Section 12.4, for any i ∈ I and any pre-Nichols
system N (S,N, f) of M we define

E+i
r (S) = {C | C ⊆ S right coideal subalgebra in H

HYD, Ni ⊆ C},
F i

r(S) = {C | C ⊆ KN
i subalgebra in H

HYD,

ΔKN
i
(C) ⊆ C ⊗KN

i , C is ad k[Ni]-invariant}.

Lemma 15.2.8. Let γ : S → S and π : S → S be Hopf algebra maps in H
HYD

with π ◦ γ = idS. Let R be the algebra of right coinvariants

R = {x ∈ S | (id⊗ π)ΔS(x) = x⊗ 1}.
Let J be a Hopf ideal of S such that (adSγ(x))(y) = 0 for any x ∈ J , y ∈ R, and
let J be the ideal of S generated by γ(J).

(1) J ∩ γ(S) = γ(J) and J ∩R = 0.
(2) The canonical map p : S → S/J induces by restriction an isomorphism

p0 : R → (S/J)co γ(S/J) of algebras, coalgebras and left ad γ(S)-modules.

Proof. The multiplication map R⊗γ(S)→ S is bijective by Theorem 3.9.2(6).
Moreover, J is a Hopf ideal of S such that (adSγ(J))(R) = 0, and hence

γ(J)R ⊆ (adSγ(J))(R)γ(S) + (adSγ(S))(R)γ(J) ⊆ Rγ(J)

by the restriction of the formula in Proposition 3.7.2(1)(a) for V = S and H = γ(S)
to γ(J) ⊗ R. We conclude that J = Rγ(J) is a Hopf ideal of S, J ∩ γ(S) = γ(J),

and J ∩R = 0. Thus p induces a linear isomorphism p0 : R → (S/J)co γ(S/J). The
rest follows from the fact that J is a Hopf ideal of S. �

Proposition 15.2.9. Let i ∈ I and let N = N (S,N, f) be a pre-Nichols system
of M satisfying (Sys4) for i. Let x ∈ Ni \ {0}, n = ord(qii), and let J be the ideal
of S generated by xn. Let

ψ : E+i
r (S)→ E+i

r (S/J), ψ(C) = p(C),

where p : S → S/J is the canonical morphism. Let J̄ = J ∩ k[Ni].

(1) The map ψ is bijective. For any E ∈ E+i
r (S/J),

ψ−1(E) =
(
p−1
(
E ∩ (S/J)co k[Ni]/J̄

)
∩KN

i

)
k[Ni].
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(2) For any family (yj)j∈I of generators of a right coideal subalgebra E in

E+i
r (S/J) with yj ∈ (S/J)co k[Ni]/J̄ ∪ Ni for all j ∈ I, there is a unique

family (xj)j∈I of generators of ψ−1(E) ∈ E+i
r (S) such that p(xj) = yj and

xj ∈ KN
i ∪Ni for all j ∈ I.

Proof. By Proposition 2.4.2(5), xn is primitive in S. Moreover, xn is homo-
geneous with respect to the Nθ

0-grading, and kxn ∈ H
HYD. We conclude that J is a

Hopf ideal of S in H
HYD and a graded subspace of S.

(1) Let S̄ = k[Ni] and let J̄ be the (Hopf) ideal of S̄ generated by xn. By
Lemma 12.4.3, the maps

E+i
r (S)→ F i

r(S), C �→ C ∩ Sco S̄ ,

and

E+i
r (S/J)→ F i

r(S/J), C �→ C ∩ (S/J)co S̄/J̄ ,

are bijective. Moreover, (adxn)(y) = 0 for any y ∈ Nj , j ∈ I\{i} by Lemma 13.5.7.
Since (adxn)(x) = 0, it follows that adxn = 0 in End(S). Now Lemma 15.2.8
with S̄ = k[Ni] applies. In particular, J̄ = J ∩ k[Ni], and the canonical map
S → S/J induces an isomorphism S(αi) → (S/J)(αi) and a bijection between
F i

r(S) and F i
r(S/J). This implies the bijectivity of ψ and the description of ψ−1(E),

E ∈ E+i
r (S/J).

(2) Since p restricted to KN
i ∪Ni is injective, the uniqueness in the claim clearly

holds. The existence follows from the description of ψ−1(E) in (1). �

Remark 15.2.10. In the setting of Proposition 15.2.9, the direct analogue of
the map ψ between the sets of right coideal subalgebras in H

HYD contained in
co k[Ni]S and co k[Ni](S/J), respectively, fails to be a bijection. Indeed, assume that
θ = 2, i = 1, and that q11 = q12q21 = q22 = −1 �= 1. Let E1 ∈ M1, E2 ∈ M2

be non-zero elements. Then N (S,M, idM ) is a pre-Nichols system of M , where
S = T (M)/((adE1)

2(E2), (adE2)
2(E1)). Let E12 = E1E2 − q12E2E1. Then

Δ(E12) =E12 ⊗ 1 + 2E1 ⊗ E2 + 1⊗ E12,

Δ(E2
12) =E2

12 ⊗ 1 + 4q21E
2
1 ⊗ E2

2 + 1⊗ E2
12.

Therefore k[E2
12] is a right coideal subalgebra of S/(E2

1) and is left coinvariant with
respect to k[E1], but k[E2

12] is a not a right coideal subalgebra in S.

15.3. Rank two Nichols algebras of diagonal type

The Nichols algebra of a one-dimensional braided vector space was studied in
Example 1.10.1. Here we classify two-dimensional braided vector spaces of diagonal
type. By Remark 1.5.4, these can be realized as Yetter-Drinfeld modules over the
group algebra H of Z2. We assume that char(k) = 0.

Let I = {1, 2}. Let V be a two-dimensional braided vector space of diagonal
type and let q = (qij)i,j∈I be its braiding matrix with respect to a basis x1, x2 of
V . Then kx1 and kx2 are one-dimensional Yetter-Drinfeld modules over H. We
determine whether B(V ) is finite-dimensional in terms of the Dynkin diagram of
V . Our proof uses the existence of a finite Cartan graph of a pair (kx1, kx2) with
finite-dimensional Nichols algebra and the classification of all M ∈ FH

2 such that
G(M) is finite.

For all n ∈ N let Pn denote the set of primitive n-th roots of unity in k.
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Theorem 15.3.1. Assume that char(k) = 0. Let V be a two-dimensional
braided vector space of diagonal type. Let x1, x2 be a basis of V such that

c(xi ⊗ xj) ∈ kxj ⊗ xi

for all i, j ∈ {1, 2}. Then the following are equivalent.

(1) The pair M = (kx1, kx2) admits all reflections, and G(M) is finite.
(2) The Dynkin diagram D of V appears in Table 15.1 (up to isomorphism).

In this case, the Dynkin diagrams of the points of Gs(M) appear in the row of D,
and the same row of Table 15.2 contains the exchange graph of Gs(M).

Remark 15.3.2. We describe the labeled graphs with labels in k and set of
vertices {1, 2} as follows.

� �

q1 q2 , � �

q1 q q2

Here, qi is the label of i ∈ {1, 2}, and q is the label of the edge between 1 and
2, if the set of edges it not empty. Isomorphic labeled graphs are obtained by
interchanging the labels q1 and q2.

In order to be able to display the exchange graphs of the Cartan graphs appear-
ing in Theorem 15.3.1, we introduce the following notation. In row n of Table 15.1,
where 1 ≤ n ≤ 18, let Dn,k be the k-th Dynkin diagram for all k ≥ 1 (if it exists).
For the presentation of the exchange graph of Gs(M) it is important to distinguish
between vertex 1 (on the left) and vertex 2 (on the right) of Dn,k. Therefore we
write τDn,k for the graph Dn,k, if vertex 1 is on the right and vertex 2 is on the
left. As a further simplification, we just write k for Dn,k in Table 15.2.

Proof. First we prove that (2) implies (1). Let M1 = kx1, M2 = kx2 as
Yetter-Drinfeld modules over H = kZ2 and let M = (M1,M2). Then, by con-
struction, M ∈ FH

2 . Assume that the Dynkin diagram D of M appears in Ta-
ble 15.1. Then, by Lemma 15.1.4, M is i-finite for all i ∈ {1, 2}. Moreover, using
Lemma 15.1.5(1) and Lemma 15.1.8(2) one checks that the Dynkin diagram of
Ri(M) for all 1 ≤ i ≤ 2 appears in the same row of Table 15.1 as D. Doing
the same for all diagrams in the row of D implies that M admits all reflections.
Moreover, we obtain that the objects of the small Cartan graph Gs(M), defined in
Proposition 15.1.10, correspond to the Dynkin diagrams in the row of D. We will
apply Theorem 10.3.21 in order to show that Gs(M) is finite. Then G(M) is finite
by Lemma 10.1.4. Our strategy is the following.

The above calculations allow us to check that the exchange graph of Gs(M)
is the one in Table 15.2. In that table, Dm,k is just abbreviated by k. Then
we calculate the minimal number n such that (r2r1)

n(D) = D. We compute the
characteristic sequence (ck)k≥1 of Cs(M) with respect to the first object in the row
of D and the label i = 1. This is just the infinite power of the sequence in the last
column of Table 15.2 in the row of D. Then we calculate κ = 6n −

∑2n
k=1 ck, and

we check that (c1, . . . , c12n/κ) is the sequence in the last column of Table 15.2 in

the row of D. Now, using Corollary 10.3.9, one verifies that (c1, . . . , c12n/κ) ∈ A+.
Then Theorem 10.3.21 implies that Gs(M) is finite.

Now we prove that (1) implies (2). To do so, we use Corollary 10.3.28.
By Proposition 15.1.10, the assumptions in (1) imply that Gs(M) is a finite

Cartan graph. It suffices to show that the Dynkin diagram of one point of Gs(M) is
contained in Table 15.1. Indeed, by the first part of the proof of the theorem, then
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all points of Gs(M) have such a Dynkin diagram. In fact, Corollary 10.3.28 claims
the existence of a point with particular properties. We assume that X = [M ]s is
such a point with i = 1 and j = 2, and we prove that the Dynkin diagram of this
point appears in Table 15.1. We proceed case by case and use Lemma 15.1.6.

Step 1. aX12 = aX21 = 0. Then q12q21 = 1, and hence D = D1,1.
Step 2. aX12 = aX21 = −1. Then

q12q21 = q−1
11 , q11 �= 1, or q11 = −1, (q12q21)2 �= 1,

and

q12q21 = q−1
22 , q22 �= 1, or q22 = −1, (q12q21)2 �= 1

by Lemma 15.1.6. If q12q21 = q−1
11 = q−1

22 , then D = D2,1. Otherwise we obtain that
q12q21 /∈ {1,−1}, and one of the following hold.

(1) q11 = q22 = −1,
(2) q22 = −1, q12q21 = q−1

11 ,
(3) q11 = −1, q12q21 = q−1

22 .

Then D = D3,2, D = D3,1, and D = τD3,1, respectively.

Step 3. aX12 = −2, aX21 = −1, ar1(X)
21 ∈ {−1,−2,−3}. Then

q12q21 = q−2
11 , q11 /∈ {1,−1}, or q11 ∈ P3, (q12q21)

3 �= 1,

and

q12q21 = q−1
22 , q22 �= 1, or q22 = −1, (q12q21)2 �= 1

by Lemma 15.1.6. If q12q21 = q−2
11 , q211 �= 1, q12q21 = q−1

22 , then D = D4,1. If

q12q21 = q−2
11 , q22 = −1, (q12q21)2 �= 1, then D = D5,1. If q11 ∈ P3, (q12q21)

3 �= 1,

and q12q21 = q−1
22 , then D = D6,1 for q22 = −q−1

11 and D = D7,1 for q22 �= −q−1
11 .

Assume now that q11 ∈ P3, (q12q21)
3 �= 1, q22 = −1, and (q12q21)

2 �= 1. Let
W = R1(M)1 ⊕ R1(M)2 and let p = (pij)1≤i,j≤2 be the braiding matrix of W .
Then

p11 = q11, p12p21 = q211(q12q21)
−1, p22 = −q11(q12q21)

2

by Lemma 15.1.8(2).

(a) a
r1(X)
21 = −1. Then

p12p21 = p−1
22 , p22 �= 1, or p22 = −1, (p12p21)2 �= 1

by Lemma 15.1.6. In the first case, q211(q12q21)
−1 = −q−1

11 (q12q21)
−2. This is a

contradiction to q11 ∈ P3, (q12q21)
2 �= 1. In the second case, q11(q12q21)

2 = 1.
Since q11 ∈ P3 and (q12q21)

3 �= 1, we conclude that q12q21 = −q11. Therefore
D = D8,1.

(b) a
r1(X)
21 = −2. Then

p12p21 = p−2
22 , p222 �= 1, or p22 ∈ P3, (p12p21)

3 �= 1

by Lemma 15.1.6. In the first case, q211(q12q21)
−1 = q−2

11 (q12q21)
−4, and hence

q12q21 ∈ P9 and q11 = (q12q21)
−3. Then D = D11,2. In the second case we have

that −q11(q12q21)
2 ∈ P3. Since P3 = {q11, q−1

11 }, we conclude that (q12q21)
2 = −1

or −(q12q21)2 = q11. If (q12q21)
2 = −1, then with ζ = (q11q12q21)

−1 we obtain
that ζ ∈ P12, q11 = −ζ2, q12q21 = ζ3, and D = D10,2. On the other hand, if
q11 = −(q12q21)2, then q12q21 ∈ P12 and D = D9,2 with ζ = (q12q21)

−1.
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(c) a
r1(X)
21 = −3. Then

p12p21 = p−3
22 , p222, p

3
22 �= 1, or p22 ∈ P4, (p12p21)

4 �= 1

by Lemma 15.1.6.
(c1) Assume that p12p21 = p−3

22 , that is, q
2
11(q12q21)

−1 = −q−3
11 (q12q21)

−6. Then
(−q12q21)

5 = q11, and hence −q12q21 = q−1
11 or −q12q21 ∈ P15. If q11 = −(q12q21)−1,

then the braiding matrix (p̃ij)1≤i,j≤2 of R2(M) satisfies p̃11 = q11q12q21q22 = 1 by

Lemma 15.1.8(2), which is a contradiction to a
R2(M)
12 < 0. If −q12q21 ∈ P15, then

D = D17,2 with ζ = (−q12q21)
7.

(c2) Assume that p22 ∈ P4. Then q211(q12q21)
4 = −1, and thus q11 = −(q12q21)4.

We conclude that (q12q21)
12 = −1, and hence q12q21 ∈ P24 since q11 �= 1. Then

D = D14,2 with ζ = (q12q21)
5.

Step 4. aX12 = −1, aX21 = −2, ar1(X)
21 ∈ {−3,−4,−5}. Then

q12q21 = q−1
11 , q11 �= 1, or q11 = −1, (q12q21)2 �= 1,

and

q12q21 = q−2
22 , q22 /∈ {1,−1}, or q22 ∈ P3, (q12q21)

3 �= 1

by Lemma 15.1.6. As in Step 3, we distinguish four different cases. In three of
these cases we identified D (more precisely, τD) already in Step 3.

Assume now that q11 = −1, q22 ∈ P3, and (q12q21)
2, (q12q21)

3 �= 1. Let us
define p = (pij)1≤i,j≤2 to be the braiding matrix of the first reflection of M . Then

p11 = −1, p12p21 = (q12q21)
−1, p22 = −q12q21q22

by Lemma 15.1.8(2).

(a) a
r1(X)
21 = −3. Then

p12p21 = p−3
22 , p222, p

3
22 �= 1, or p22 ∈ P4, (p12p21)

4 �= 1

by Lemma 15.1.6. In the first case, (q12q21)
−1 = −(q12q21q22)−3, and hence

(q12q21)
2 = −1. Let ζ = (q12q21q22)

−1. Then ζ ∈ P12, q12q21 = ζ3, and q22 = −ζ2,
and D = τD10,2. In the second case, (q12q21q22)

2 = −1. Then q22 = −(q12q21)2,
and hence q12q21 ∈ P12. Then D = τD9,2.

(b) a
r1(X)
21 = −4. Then

p12p21 = p−4
22 , p322, p

4
22 �= 1, or p22 ∈ P5, (p12p21)

5 �= 1.

In the first case, (q12q21)
−1 = (q12q21q22)

−4, and hence q22 = (q12q21)
−3. Then

q12q21 ∈ P9 and D = τD11,2. In the second case, −q12q21q22 ∈ P5. It follows that
−q12q21 ∈ P15 and −(q12q21)5 = q22. Then D = τD17,2.

(c) a
r1(X)
21 = −5. Then

p12p21 = p−5
22 , p322, p

4
22, p

5
22 �= 1, or − p22 ∈ P3, (p12p21)

6 �= 1.

In the first case, (q12q21)
−1 = −(q12q21q22)−5, and hence q22 = −(q12q21)4. Then

q12q21 ∈ P24, and D = τD14,2. In the second case, q12q21q22 ∈ P3 and (q12q21)
6 �= 1.

But this is impossible.

Step 5. aX21 = −1, aX12 = −3, ar1(X)
21 = −1, ar2(X)

12 ∈ {−3,−4,−5}. Then

q12q21 = q−3
11 , q211, q

3
11 �= 1, or q11 ∈ P4, (q12q21)

4 �= 1,
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and

q12q21 = q−1
22 , q22 �= 1, or q22 = −1, (q12q21)2 �= 1

by Lemma 15.1.6.
(a) Assume that q12q21 = q−3

11 , q
2
11, q

3
11 �= 1, and q12q21 = q−1

22 . Then D = D12,1.

(b) Assume that q12q21 = q−3
11 , q211, q

3
11 �= 1, q22 = −1 and (q12q21)

2 �= 1. Let
q = q11. Then r2(X) has Dynkin diagram

� �

−q−2
q3 −1

by Lemma 15.1.8(2). Now we are going to analyze the consequences of the assump-

tion a
r2(X)
12 ∈ {−3,−4,−5}.

(b1) Assume that a
r2(X)
12 = −3. Then q3 = −q6, q4 �= 1, or −q−2 ∈ P4. In the

first case, −q ∈ P3 and D = D12,1. In the second case, q ∈ P8 and D = D13,3.

(b2) Assume that a
r2(X)
12 = −4. Then q3 = q8 or −q−2 ∈ P5. In the first

case, q ∈ P5 since q �= 1, and hence D = D15,1. In the second case, q ∈ P20 and
D = D16,1.

(b3) Assume that a
r2(X)
12 = −5. Then q3 = −q10 or −q−2 ∈ P6, q

18 �= 1. In the
first case, −q ∈ P7 since q2 �= 1, and hence D = D18,1. In the second case, q2 ∈ P3,
which is a contradiction to q18 �= 1.

(c) Assume that q11 ∈ P4, (q12q21)
4 �= 1, and q12q21 = q−1

22 . Let ξ = q11 and
q = q22. The first reflection of M has Dynkin diagram

� �

ξ −q ξq−2

by Lemma 15.1.8(2). Since a
r1(X)
21 = −1, this implies that −ξq−1 = 1 or ξq−2 = −1.

In the first case q = −ξ, which contradicts to ξ ∈ P4, q
4 �= 1. In the second case

ξ = −q2, and hence q ∈ P8. Then D = D13,1.
(d) Assume now that q11 ∈ P4, (q12q21)

4 �= 1, and q22 = −1. Let ξ = q11 and
q = q12q21. The first and second reflections of M have Dynkin diagrams

� �

ξ −q−1−ξq3
and � �

−ξq q−1 −1

respectively, by Lemma 15.1.8(2). Since a
r1(X)
21 = −1, this implies that ξq2 = 1 or

ξq3 = 1. In the first case q ∈ P8, ξ = q−2, and hence D = D13,2. In the second case

q6 = −1. Then (−ξq)3 = (−q−2)3 = 1, a contradiction to a
r2(X)
12 ≤ −3.

Now all cases in Corollary 10.3.28 are checked, and the proof of the theorem is
completed. �

Theorem 15.3.3. Assume that char(k) = 0. Let V be a two-dimensional
braided vector space of diagonal type. Let D be the Dynkin diagram of V . Then
B(V ) is finite-dimensional if and only if the following hold.

(1) The graph D appears in Table 15.1.
(2) The labels of all vertices of the Dynkin diagrams in the row of D are

non-trivial roots of 1.
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Dynkin diagrams fixed parameters

1 � �

q r
q, r ∈ k×

2 � �

q q−1 q
q ∈ k× \ {1}

3 � �

q q−1 −1
� �

−1 q −1
q ∈ k×, q2 �= 1

4 � �

q q−2 q2
q ∈ k×, q2 �= 1

5 � �

q q−2 −1
� �

−q−1
q2 −1

q ∈ k×, q4 �= 1

6 � �

ζ −ζ −ζ−1

ζ ∈ P3

7 � �

ζ q−1 q
� �

ζ ζ−1q ζq−1 ζ ∈ P3, q ∈ k×,
q3 �= 1, q �= −ζ−1

8 � �

ζ −ζ −1
� �

ζ−1
−ζ−1 −1

ζ ∈ P3

9 � �

−ζ−2
−ζ3 −ζ2

� �

−ζ−2
ζ−1 −1

ζ ∈ P12

� �

−ζ3
ζ −1

� �

−ζ3
−ζ−1 −1

� �

−ζ2
−ζ −1

10 � �

−ζ−1
−ζ3 −1

� �

−ζ2
ζ3 −1

� �

−ζ2
ζ −ζ2

ζ ∈ P12

11 � �

−ζ2
ζ −1

� �

ζ3
ζ−1 −1

� �

ζ3
ζ−2 −ζ

ζ ∈ P9

12 � �

q q−3 q3
q ∈ k×, q2, q3 �= 1

13 � �

ζ2
ζ ζ−1

� �

ζ2
−ζ−1 −1

� �

ζ −ζ −1
ζ ∈ P8

14 � �

ζ ζ−5 −1
� �

−ζ−4
ζ5 −1

� �

−ζ−4
−ζ−1 ζ6

� �

ζ−1
ζ ζ6

ζ ∈ P24

15 � �

ζ ζ2 −1
� �

−ζ−2
ζ−2 −1

ζ ∈ P5

16 � �

ζ ζ−3 −1
� �

−ζ−2
ζ3 −1

� �

−ζ−2
−ζ3 −1

� �

−ζ −ζ−3 −1
ζ ∈ P20

17 � �

ζ5
−ζ−3 −ζ

� �

ζ5
−ζ−2 −1

� �

ζ3
−ζ2 −1

� �

ζ3
−ζ4−ζ−4

ζ ∈ P15

18 � �

−ζ −ζ−3 −1
� �

−ζ−2
−ζ3 −1

ζ ∈ P7

Table 15.1. Dynkin diagrams of 2-dimensional braided vector
spaces of diagonal type with finite Cartan graph
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exchange graphs n κ sequence in A+

1 1 1 6 (0, 0)

2 1 1 4 (1, 1, 1)

3 1
2

2
1

τ1 3 12 (1, 1, 1)

4 1 1 3 (2, 1, 2, 1)

5 1
2

2 2 6 (2, 1, 2, 1)

6 1 1 3 (2, 1, 2, 1)

7 1
1

2 2 6 (2, 1, 2, 1)

8 1
2

2 2 6 (2, 1, 2, 1)

9

1
1

2

2
2

3
1

4
2

5
1

τ5
1

τ4
2

τ3
1

τ2
2

τ1 5 12 (2, 1, 3, 1, 2)

10 1
2

2
1

3
2

τ2
1

τ1 5 12 (3, 1, 2, 2, 1)

11 1
2

2
1

3 3 6 (4, 1, 2, 2, 2, 1)

12 1 1 2 (3, 1, 3, 1, 3, 1)

13 1
1

2
2

3 3 6 (3, 1, 3, 1, 3, 1)

14 1
2

2
1

3
2

4 4 6 (5, 1, 2, 3, 1, 3, 2, 1)

15 1
2

2 2 3 (3, 1, 4, 1, 3, 1, 4, 1)

16 1
2

2
1

3
2

4 4 6 (3, 1, 4, 1, 3, 1, 4, 1)

17 1
1

2
2

3
1

4 4 6 (2, 1, 4, 1, 4, 1, 2, 3)

18 1
2

2 2 2 (3, 1, 5, 1, 3, 1, 5, 1, 3, 1, 5, 1)

Table 15.2. The exchange graphs of the small Cartan graphs in Theorem 15.3.1

Proof. Let (V, (xi, gi, χi)1≤i≤2) be a realization of the braiding matrix of V
over G = Z2. Let M1 = kx1, M2 = kx2 as Yetter-Drinfeld modules over kG, and
let M = (M1,M2). Then B(M) = B(V ) as N0-graded algebras and coalgebras.
By Corollary 14.5.3, the Nichols algebra B(M) is finite-dimensional if and only
if M admits all reflections, G(M) is finite, and for all N = (N1, N2) ∈ FH

θ (M)
the Nichols algebras B(N1) and B(N2) are finite-dimensional. By Example 1.10.1,
B(N1) and B(N2) are finite-dimensional if and only if the diagonal entries of their
braiding matrices are non-trivial roots of 1. By Remark 15.1.9, the set of Dynkin
diagrams of the points of G(M) is the same as the set of Dynkin diagrams of the
points of Gs(M). Thus the claim follows from Theorem 15.3.1. �

Lemma 15.3.4. Let V be a two-dimensional braided vector space of diagonal
type, and let (qij)1≤i,j≤2 be the braiding matrix of V . If the Dynkin diagram of D
appears in Table 15.1, then one of the following hold.
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(1) q12q21 ∈ {1, q−1
11 , q−1

22 },
(2) q11 = −1 or q22 = −1,
(3) q11(q12q21)

2q22 = −1, D ∈ {D9,1,D10,3,D11,3,D14,3,D17,1}, and q11 ∈ P3

or q22 ∈ P3.

Proof. Check the diagrams in Table 15.1 case by case. �

Lemma 15.3.5. Let q, r ∈ k×. The Dynkin diagram

� �

q r −q

appears in Table 15.1 if and only if r = 1 or q ∈ P3, r = −q−1 or −q ∈ P3, r = q−1,
or q ∈ P4, r ∈ P4.

Proof. Check the diagrams in Table 15.1 case by case. �

Lemma 15.3.6. Let q, r, s ∈ k× such that r �= 1. If the Dynkin diagram

� �

q r s

appears in Table 15.1 then qkr = 1 for some 1 ≤ k ≤ 5 or q ∈ Pk, r
k �= 1 for some

2 ≤ k ≤ 5.

Proof. Check the diagrams in Table 15.1 case by case. �

15.4. Application to Nichols algebras of rank three

We now detect some three-dimensional vector spaces of diagonal type which
have infinite dimensional Nichols algebras. These will be used to prove in Sec-
tion 15.5 that any finite-dimensional pre-Nichols algebra over k in the category
G
GYD, where G is a finite abelian group and char(k) = 0, is a Nichols algebra.

In the following, we will often apply claims on one- or two-dimensional braided
vector spaces, such as the classification in Theorem 15.3.3 of two-dimensional
braided vector spaces of diagonal type with finite-dimensional Nichols algebra, to
a braided subspace of a larger braided vector space. For a braided vector space of
diagonal type with given Dynkin diagram we will say that we apply a claim to a
subset of vertices, if we mean the braided subspace generated by the basis vectors
corresponding to the given subset of vertices.

Lemma 15.4.1. Let V be a three-dimensional braided vector space of diagonal
type. Let q, s ∈ k×. Assume that the Dynkin diagram of D is

� � �

q q2 qs s2 s

Then B(V ) is infinite-dimensional.

Proof. We prove the Lemma indirectly by assuming that B(V ) is finite-
dimensional.

Apply Lemma 15.3.4 to the first two and the last two vertices of D, respectively.
We obtain that

(q2 − 1)(q3 − 1)(q3s− 1)(qs+ 1)(q6s+ 1) = 0,(15.4.1)

(s2 − 1)(s3 − 1)(qs3 − 1)(qs+ 1)(qs6 + 1) = 0.(15.4.2)
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If q = 1 or q is not a root of 1, then B(V ) is infinite-dimensional by Example 1.10.1.
If q6s = −1 and (q2 − 1)(q3 − 1)(q3s− 1)(qs+ 1) �= 0, then Lemma 15.3.4 and the
shape of the Dynkin diagrams D9,1, D10,3, D11,3, D14,3 and D17,1 yield a contradic-
tion. It follows that one of the first four factors in (15.4.1) are 0, and similarly one
of the first four factors in (15.4.2) have to be 0.

Assume that q = −1. Then Lemma 15.3.5 implies that the Dynkin diagram
with the last two vertices appears in Table 15.1 if and only if s2 = 1. In this case,
B(V ) is infinite-dimensional by Example 1.10.1. Otherwise it is infinite dimensional
by Theorem 15.3.3. We argue similarly if s = −1.

Assume that q2 �= 1 and s2 �= 1. The products of the labels of D is (qs)4.
Hence we may assume that qs �= −1 by Corollary 15.1.19. Then q ∈ P3 or q3s = 1.
Similarly, s ∈ P3 or qs3 = 1. If q3s = qs3 = 1 or q = s−1 ∈ P3, then q4s4 = 1,
and B(V ) is again infinite dimensional. Otherwise q = s ∈ P3 or s ∈ P9, q = s−3,
or q ∈ P9, s = q−3. In all cases V is of infinite Cartan type, and hence B(V ) is
infinite-dimensional by Theorem 15.1.14. �

Lemma 15.4.2. Let V be a three-dimensional braided vector space of diagonal
type. Let q, s ∈ k× such that q �= −1. Assume that the Dynkin diagram D of V is

� ��
��

�

�
��

q

s

q2s

q−1 q−2s2

q3

Then B(V ) is infinite-dimensional.

Proof. Assume that B(V ) is finite-dimensional. By Theorem 15.3.3, any sub-
diagram of D with two vertices has to appear in Table 15.1.

By Example 1.10.1 applied to the vertices of D we obtain that q, s, and q2s are
non-trivial roots of 1.

Apply Lemma 15.3.4 to the two vertices at the bottom of D. We obtain that

(q3 − 1)(q4 − 1)(q5s− 1)(q2s+ 1)(q9s+ 1) = 0.

If q3 = 1, then we obtain a contradiction to the finite-dimensionality of B(V ) from
Lemma 15.4.1.

Assume that q9s = −1 and q3 �= 1. Then the labels of the Dynkin diagrams
in Lemma 15.3.4(3) imply that −q ∈ P9 ∪ P15 and q2s ∈ P3. Using again that
q9s = −1, we conclude that (−q)7 = (q2s)−1 ∈ P3, a contradiction.

If q4 = 1, then q ∈ P4, since q2 �= 1 by assumption. Apply Lemma 15.3.5
to the two vertices on the right. Since s �= 1 and −s = q2s �= 1, we conclude
that s ∈ P3 ∪ P4 ∪ P6. If s ∈ P3, then the Dynkin diagram with the lower two
vertices does not appear in Table 15.1. If s ∈ P6, then the same is true for the
Dynkin diagram with the two vertices on the left. Finally, if s ∈ P4, then s = q or
s = −q. Then D is of infinite Cartan type, and hence B(V ) is infinite dimensional
by Theorem 15.1.14.

Assume that q2s = −1. Then q−2s2 = q−6. By Lemma 15.3.6 applied to the
two vertices at the bottom of D we conclude that qk = 1 for some k ≤ 8. By the
above, we may assume that k ≥ 5. The product of the labels of D is q3s4 = q−5.
Hence, if q5 = 1, then we obtain a contradiction to Corollary 15.1.19. If q ∈ P6, then
D is of infinite Cartan type, which is a contradiction to Theorem 15.1.14. If q ∈ P7,
then s = −q−2 ∈ P14 and s10q−1 = 1. Hence the subdiagram of D corresponding
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to the two vertices on the left does not appear in Table 15.1 by Lemma 15.3.6, a
contradiction. Finally, if q ∈ P8, then q4 = −1, and hence Corollary 15.1.19 applied
to the subdiagram of the two vertices at the bottom of D yields a contradiction.

Assume that q5s = 1. Then s = q−5. Since the subdiagram of D containing the
two vertices at the bottom is of Cartan type, Theorem 15.1.14 implies that qk+3 = 1
for some 0 ≤ k ≤ 3. Further, qk �= 1 for 1 ≤ k ≤ 4 by the above considerations,
and q5 �= 1 since s �= 1. Finally, if q ∈ P6 then D is of infinite Cartan type, a
contradiction to Theorem 15.1.14.

Now all cases are considered and the Lemma is proven. �

Lemma 15.4.3. Let V be a three-dimensional braided vector space of diagonal
type. Let m ≥ 2 and let q ∈ k× such that qk �= 1 for all 1 ≤ k ≤ m + 1. Assume
that the Dynkin diagram D of V is

� ��
��

�

�
��

q

qm

q2m+1

q−m q−m(m−1)

qm+2

Then B(V ) is infinite-dimensional.

Proof. Assume that B(V ) is finite-dimensional. By Theorem 15.3.3, any sub-
diagram of D with two vertices has to appear in Table 15.1.

By Example 1.10.1 applied to the vertices of D we obtain that q is a non-trivial
root of 1, and that q2m+1 �= 1.

By Theorem 15.1.14 applied to the two vertices on the left of D we obtain that
m ∈ {2, 3}.

Assume that m = 2. Then q2, q3, q5 �= 1. By Lemma 15.3.4 applied to the two
vertices at the bottom of D we conclude that

(q4 − 1)(q5 + 1)(q9 − 1) = 0

or q14 = −1, q5 ∈ P3. The last case is impossible since q �= −1. Hence q ∈ P4∪P9 or
−q ∈ P5. If q ∈ P4 ∪ P9 then D is of infinite Cartan type, which is a contradiction
to Theorem 15.1.14. If −q ∈ P5 then qkqm+2 �= 1 for 0 ≤ k ≤ 5, and hence
Lemma 15.3.6 applied to the two vertices at the bottom of D yields a contradiction.

Assume now that m = 3. Then q2, q3, q4, q7 �= 1. By Lemma 15.3.6 applied to
the two vertices at the bottom of D we conclude that q ∈ Pk, where 5 ≤ k ≤ 10
and k �= 7. On the other hand, by Lemma 15.3.4 applied to the same two vertices
we obtain that

(q5 − 1)(q6 − 1)(q12 − 1)(q7 + 1) = 0

or q18 = −1, q7 ∈ P3. The last two relations have no solution for q. Hence
q ∈ P5∪P6 by our restriction on the order of q. In both cases, D is of infinite Cartan
type, which is a contradiction to Theorem 15.1.14. This proves the Lemma. �

Lemma 15.4.4. Let V be a three-dimensional braided vector space of diagonal
type. Let m ≥ 2 and let q ∈ k× such that qk �= 1 for all 1 ≤ k ≤ m+1 and q2m �= 1.
Assume that the Dynkin diagram D of V is

� ��
��

�

�
��

q

−1

−qm+1

q−m q−m(m+1)

qm+2
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Then B(V ) is infinite-dimensional.

Proof. Assume that B(V ) is finite-dimensional. By Theorem 15.3.3, any sub-
diagram of D with two vertices has to appear in Table 15.1.

By Example 1.10.1 applied to the vertices of D we obtain that q is a non-trivial
root of 1, and that qm+1 �= −1.

By Lemma 15.3.6 applied to the two vertices on the left of D we obtain that
m ∈ {2, 3, 4, 5}.

Since q /∈ P2 ∪ P3 and qm+1 �= 1, Lemma 15.3.4 applied to the two vertices at
the bottom of D implies that

(qm+2 − 1)(qm+3 − 1)(q2m+3 + 1) = 0

or q3m+6 = 1, −qm+1 ∈ P3.
If qm+2 = 1, then q ∈ Pm+2, q

−m = q2, −qm+1 = −q−1, q−m(m+1) = q−2, and
hence we obtain a contradiction to Lemma 15.4.1.

If qm+3 = 1, then q ∈ Pm+3, q
−m = q3, −qm+1 = −q−2, q−m(m+1) = q−6, and

hence we obtain a contradiction to Lemma 15.4.2 with s = −q−2.
If q3m+6 = 1, −qm+1 ∈ P3, and qk �= 1 for all 1 ≤ k ≤ m+3, then q3m+3 = −1,

−q3 = 1, and hence q ∈ P6, m = 2. This is a contradiction to qm+1 �= −1.
Finally, if q2m+3 = −1 and qm+2, qm+3 �= 1, then −qm+1 = (qm+2)−1, and

hence Theorem 15.1.14 applied to the two vertices at the bottom of D implies that
qm+2+k = 1 for some k ∈ {2, 3}. If k = 2, then q ∈ Pm+4, q

m−1 = −1, and hence
q ∈ P10, a contradiction to m ≤ 5. If k = 3, then q ∈ Pm+5, q

m−2 = −1, and hence
q ∈ P14, a contradiction to m ≤ 5. This completes the proof of the lemma. �

Proposition 15.4.5. Let V be a three-dimensional braided vector space of di-
agonal type. Let m ∈ N0 and let q, s ∈ k× such that qk �= 1 for all 1 ≤ k ≤ m+ 1.
Assume that the Dynkin diagram D of V is

� ��
��

�

�
��

q

s

qm+1s

q−m q−m(m+1)s2

qm+2

Then B(V ) is infinite-dimensional.

Proof. Assume that B(V ) is finite-dimensional. By Theorem 15.3.3, any sub-
diagram of D with two vertices has to appear in Table 15.1.

We assumed that qk �= 1 for 1 ≤ k ≤ m + 1. In particular, if q−m = 1 then
m = 0, and if q−m = q−1, then m = 1. By Lemma 15.3.4 applied to the two
vertices on the left of D we obtain that m = 0, m = 1, s = qm, q = −1, s = −1, or
q1−2ms = −1.

If m = 0, then we obtain a contradiction to Lemma 15.4.1. If m = 1, then
Lemma 15.4.2 yields a contradiction. If m =≥ 2 and s = qm, then we obtain a
contradiction to Lemma 15.4.3. If q = −1, then q2 = 1 and hence m = 0. If s = −1,
s �= qm, and m ≥ 2, then a contradiction is obtained by Lemma 15.4.4.

Assume now that m ≥ 2, s �= qm, and s �= −1. Then q1−2ms = −1, and since
q3 �= 1, Lemma 15.3.4 further implies that qm+1s ∈ P3. By analyzing the Dynkin
diagrams D9,1, D10,3, D11,3, D14,3, and D17,1, and using that q−m is a power of q,
we also obtain that m = 2, −q ∈ P9, or m = 3, −q ∈ P15. If m = 2 and q ∈ P18,
then q14qm+2 = 1. If m = 3 and q ∈ P30, then q25qm+2 = 1. In both cases,
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Lemma 15.3.6 applied to the two vertices at the bottom of D gives a contradiction.
This completes the proof of the proposition. �

15.5. Primitively generated braided Hopf algebras

Let θ ≥ 1 and I = {1, . . . , θ}. The main result in this section is the following.

Theorem 15.5.1. Assume that char(k) = 0. Let M ∈ FH
θ , and assume that

the Yetter-Drinfeld modules Mi with i ∈ I are one-dimensional. Let R be a finite-
dimensional pre-Nichols algebra of M1⊕· · ·⊕Mθ. Then the canonical Hopf algebra
map R → B(M) is bijective.

Remark 15.5.2. Assume that p = char(k) > 0. Let V be the one-dimensional
braided vector space with trivial braiding. Then the polynomial ring k[x] is a
commutative cocommutative Hopf algebra, where x is primitive. It is the coordinate
ring of the additive group. Further, B(V ) = k[x]/(xp) by Example 1.10.1. The Hopf
algebra k[x]/(xpr

) for any r ≥ 1 is a finite-dimensional pre-Nichols algebra, which is
also known as the coordinate ring of the r-th Frobenius kernel of the additive group.
Thus finite-dimensional pre-Nichols algebras over fields of positive characteristic are
not necessarily Nichols algebras.

Before we prove Theorem 15.5.1, we need some preparations. Assume for the
rest of the section that char(k) = 0. Let M ∈ FH

θ and assume that dimMi = 1 for
all i ∈ I. Let N = N (S,N, f) be a pre-Nichols system of M with finite-dimensional
algebra S. Thus, S is a Hopf algebra in H

HYD, N1, . . . , Nθ are one-dimensional
subobjects of S in H

HYD, N = (N1, . . . , Nθ), and f = (fj)j∈I : N → M is an
isomorphism of tuples in FH

θ such that

(1) S is generated as an algebra by N1, . . . , Nθ, and
(2) S is an Nθ

0-graded Hopf algebra in H
HYD with deg(Nj) = αj for all j ∈ I.

For any i ∈ I, let xi and yi be bases of Ni and Mi, respectively, such that
fi(xi) = yi. According to Example 3.4.3, there exist g1, . . . , gθ ∈ G(H) and char-
acters χ1, . . . , χθ ∈ Alg(H, k) such that for any i ∈ I the Yetter-Drinfeld structures
of Ni and Mi are given by

δNi
(xi) = gi ⊗ xi, δMi

(yi) = gi ⊗ yi,

h · xi = χi(h)xi, h · yi = χi(h)yi

for all h ∈ H, respectively. Hence the braiding matrix of
⊕

i∈I
Ni and

⊕
i∈I

Mi

with respect to the bases (xi)i∈I and (yi)i∈I is (qij)i,j∈I, where qij = χj(gi) for all
i, j ∈ I. Let

p = pN : S → B(M), p(xi) = yi for all i ∈ I

be the canonical map of Nθ
0-graded Hopf algebras in H

HYD.

Lemma 15.5.3. Let i ∈ I and let t ≥ 2 such that xt−1
i �= 0 and xt

i = 0 in S.

Then ord(qii) = t, yt−1
i �= 0 and yti = 0 in B(M).

Proof. Since S is finite-dimensional and Nθ
0-graded, there exists t ≥ 1 such

that xt
i = 0. Then yti = 0. By Corollary 7.1.15(2), B(kyi) is a subalgebra of B(M).

Let n = ord(qii). By Example 1.10.1, n < ∞ and yn−1
i �= 0, yni = 0. Hence

xn−1
i �= 0. It suffices to prove that xn

i = 0.
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Assume that xn
i �= 0. Proposition 2.4.2(5) implies that xn

i is primitive in S.
Further,

cS,S(x
n
i ⊗ xn

i ) = qn
2

ii xn
i ⊗ xn

i = xn
i ⊗ xn

i .

Hence 1⊗ xn
i and xn

i ⊗ 1 commute in the algebra S ⊗ S. Since xn
i �= 0 and xt

i = 0,

there exists k ≥ 2 such that x
(k−1)n
i �= 0, xkn

i = 0. For this k we obtain that

0 = Δ(xkn
i ) = Δ(xn

i )
k = (xn

i ⊗ 1 + 1⊗ xn
i )

k =

k∑
l=0

(
k

l

)
xnl
i ⊗ x

n(k−l)
i ,

a contradiction since char(k) = 0 and S is graded. Thus xn
i = 0. �

Since S is finite-dimensional and Nθ
0-graded, for any i, j ∈ I with i �= j there

exists m ≥ 1 with (adxi)
m+1(xj) = 0. Then (ad yi)

m+1(yj) = 0 and hence M is
i-finite for all i ∈ I.

Lemma 15.5.4. For any i, j ∈ I with i �= j, (adxi)
m+1(xj) is primitive in S

for m = −aMij .

Proof. Let m = −aMij . It follows from Lemma 15.1.6 that one of the following
conditions is satisfied.

(a) m ≥ 0 and qijqji = q−m
ii ,

(b) m ≥ 1 and ord(qii) = m+ 1.

We have shown in Proposition 4.3.12 that

Δ((adxi)
m+1(xj)) = (adxi)

m+1(xj)⊗ 1 + 1⊗ (adxi)
m+1(xj)

+

m+1∑
k=1

(
m+ 1

k

)
qii

m∏
l=m+1−k

(1− qliiqijqji)x
k
i ⊗ (adxi)

m+1−k(xj).

Thus we have to prove that

m+1∑
k=1

(
m+ 1

k

)
qii

m∏
l=m+1−k

(1− qliiqijqji)x
k
i ⊗ (adxi)

m+1−k(xj) = 0.(15.5.1)

This is clear in case (a). Assume (b). The summand with k = m + 1 in (15.5.1)
vanishes by Lemma 15.5.3, since ord(qii) = m + 1 ≥ 2. The other summands in
(15.5.1) are zero since

(
m+1
k

)
qii

= 0 for any 1 ≤ k ≤ m by Lemma 1.9.4. This proves

the lemma. �

Proposition 15.5.5. Assume that θ ≥ 2. Let i, j ∈ I with i �= j, and let
m = −aMij . Then (adxi)

m(xj) �= 0 and (adxi)
m+1(xj) = 0 in S.

Proof. By definition of aMij , (ad yi)
m(yj) �= 0 and (ad yi)

m+1(yj) = 0 in B(M).
Hence (adxi)

m(xj) �= 0 in S.
Let x = (adxi)

m+1(xj). Assume that x �= 0. By Lemma 15.5.4, x is primi-

tive, and xm+1
i �= 0, since (adxi)

m+1(xj) = (adxm+1
i )(xj). Since xi is nilpotent,

Lemma 15.5.3 implies that ord(qii) ≥ m+ 2.
Let grS denote the N0-graded braided Hopf algebra corresponding to the corad-

ical filtration S0 = k1 ⊆ S1 ⊆ · · · of S. Then S1 = k1 ⊕ S+
1 . Note that p(x) = 0,

since p(x) = (ad yi)
m+1(yj) is a primitive element of degree m + 2 in the Nichols

algebra B(M). Moreover, yi = p(xi), yj = p(xj) are linearly independent in B(M).

Hence the elements xi, xj , (adxi)
m+1(xj) are linearly independent in grS. Let Ŝ be
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the Hopf subalgebra of grS generated by xi, xj , and x. Then Ŝ is a pre-Nichols alge-

bra of Ŝ(1), and Ŝ is finite-dimensional since dim Ŝ ≤ dimS. Hence Theorem 7.1.7

implies that B(Ŝ(1)) is finite-dimensional.
Let q = qii, s = qjj , and r = qijqji. Lemma 15.1.5(3) implies that the Dynkin

diagram of Ŝ(1) with respect to the basis xi, xj , x is

� ��
��

�

�
��

q

s

q(m+1)2rm+1s

r rm+1s2

q2m+2r

Since aMij = −m and ord(q) ≥ m + 2, by Lemma 15.1.6 it follows that qmr = 1.

Then B(Ŝ(1)) is infinite-dimensional by Proposition 15.4.5, which is a contradiction.
Hence x = 0. �

Corollary 15.5.6. Assume that char(k) = 0. Let M ∈ FH
θ and assume that

dimMi = 1 for all i ∈ I. Let N = N (S,N, f) be a pre-Nichols system of M with
finite-dimensional algebra S. Then the canonical map pN : S → B(M) is bijective.

Proof. For our proof we are going to apply Theorem 14.5.4. We prove first
by induction on k the following claim:

Let k ≥ 0 and i1, . . . , ik ∈ I. Then N admits the reflection sequence (i1, . . . , ik).
Since B(M) is finite-dimensional, M admits all reflections by Proposition 13.6.4.

Thus it suffices to show that for any P ∈ FH
θ (M), any i ∈ I, and any pre-Nichols

system Ñ = N (S̃, Ñ , f̃) of P with dim S̃ < ∞, Ñ is a Nichols system of (P, i).

Let P ∈ FH
θ (M), Ñ = N (S̃, Ñ , f̃) a pre-Nichols system of P with dim S̃ < ∞,

and i ∈ I. Then dimPl = dim Ñl = 1 for any l ∈ I, since dimMl = 1 for any l ∈ I.
By Lemma 15.5.3, the canonical map pÑ induces an isomorphism

k[Ñi]
∼=−→ B(Pi).

By Proposition 15.5.5, for any j ∈ I with j �= i and any n ≥ 0,

(adS̃Ñi)
n(Ñj) �= 0 if and only if (adB(P )Pi)

n(Pj) �= 0.

Thus Ñ is a Nichols system of (P, i).
Now the above claim implies that N admits all reflections. By Corollary 14.5.3,

G(M) is finite. Then Theorem 14.5.4 says that the canonical map pN : S → B(M)
is bijective. �

Finally, we prove Theorem 15.5.1.

Proof. In Proposition 5.2.21 and Lemma 13.5.8, starting with R we con-
structed a pre-Nichols system N = N (grR,N, f) of M . Thus grR is finite-
dimensional since R is. The canonical map pN : grR → B(M) is bijective by Corol-
lary 15.5.6. Therefore the canonical map R → B(M) is bijective by Lemma 13.5.8.

�

Corollary 15.5.7. Assume that k is algebraically closed, and char(k) = 0.
Let A be a finite-dimensional pointed Hopf algebra with abelian coradical. Then A
is generated as an algebra by group-like and skew-primitive elements.
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Proof. Let (An)n≥0 be the coradical filtration of A. Then A0 = kG is the
group algebra of the group G = G(A), and G is abelian by assumption. Let
R = (grA)coA0 be the N0-graded strictly graded Hopf algebra in G

GYD of Corol-
lary 5.3.16. By Theorem 5.4.7, A is generated by group-like and skew-primitive
elements if and only if A is generated by A1. Hence by Corollary 5.3.16, it remains
to be shown that R is generated by R(1).

Let S = R∗gr ∼= R∗ be the N0-graded Hopf algebra defined by the braided
duality in Corollary 4.2.9. By Corollary 4.2.10, S is generated by S(1) since R
is strictly graded. By the assumptions on k and G, S(1) is a direct sum of one-
dimensional Yetter-Drinfeld modules over kG. Thus S is a finite-dimensional pre-
Nichols algebra, hence a Nichols algebra by Theorem 15.5.1. Then R is generated
by R(1) by Corollary 4.2.10. �

Corollary 5.4.9 of the weak Theorem of Taft-Wilson allows to describe the
skew-primitive generators of the previous corollary more precisely.

Corollary 15.5.8. Assume that k is algebraically closed, and char(k) = 0.
Let A be a finite-dimensional pointed Hopf algebra with abelian group G = G(A),
and coradical filtration (An)n≥0. Let R = Aco kG, and V = R(1) ∈ G

GYD. Choose a
decomposition of the Yetter-Drinfeld module V ∈ G

GYD,

V =

θ⊕
i=1

kxi, 0 �= xi ∈ V χi
gi , gi ∈ G, χi ∈ Ĝ for all 1 ≤ i ≤ θ,

and preimages ai of xi, 1 ≤ i ≤ θ, under the canonical map A1 → A1/A0.
Then A is generated as an algebra by {a1, . . . , aθ}∪G, the elements 1, a1, . . . , aθ

are a basis of A1 as a right kG-module by restriction and

Δ(ai) = gi ⊗ ai + ai ⊗ 1, gaig
−1 = χi(g)ai, 1 ≤ i ≤ θ, g ∈ G.

Proof. The multiplication map V#kG → A1/A0 is an isomorphism, and for
all g ∈ G, xig ∈ Pχi

gig,g(grA). Hence A1/A0 =
⊕

1≤i≤θ,g∈G kxig, and for all i, g,

kxig ⊆ Pχi
gig,g(grA). Note that possibly there are indices i �= j with gi = gj ,

χi = χj . The corollary follows from Corollary 5.4.9 and Corollary 15.5.7. �

Sometimes the information in the last corollary about the generators of A is
sufficient to find defining relations for A. A very easy example is the following.

Proposition 15.5.9. Assume that k is algebraically closed, and char(k) = 0.
Let A be a finite-dimensional pointed Hopf algebra with group G(A) = G = {1, g}
of order two. Let χ be the non-trivial character of G with χ(g) = −1. Then

A ∼= B(V )#kG, dimA = 2n+1,

where V = V χ
g ∈ G

GYD, dimV = n, and B(V ) ∼= Λ(V ).

Proof. By Example 1.10.15, V = V χ
g ∈ G

GYD, and B(V ) ∼= Λ(V ). Let

x1, . . . , xn be a basis of V , and choose elements ai ∈ Pχ
g,1(A) as in Corollary 15.5.8.

Then for all i,

ΔA(a
2
i ) = (g ⊗ ai + ai ⊗ 1)2 = 1⊗ a2i + a2i ⊗ 1.

Assume that a2i �= 0 for some i. Then it follows from the binomial formula that
the elements (a2ni )n≥0 are linearly independent. This contradicts our assumption
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on the dimension of A. Hence for all i, a2i = 0, and for all i �= j, (ai + aj)
2 = 0,

and aiaj + ajai = 0. By Example 1.10.15,

Φ : B(V )#kG→ A, xi �→ ai, 1 ≤ i ≤ n, g �→ g,

is a well-defined Hopf algebra map. By Corollary 15.5.8, Φ is surjective. The first
term of the coradical filtration of B(V )#kG is kG ⊕ (V#kG), since B(V )#kG is
coradically graded by Proposition 5.3.18. Hence Φ is injective by Theorem 5.4.5. �

15.6. Notes

15.1. Lemma 15.1.1(1) and (3) is [Ros98, Lemma 14].
Theorem 15.1.14 describes the basic properties of diagonal braidings of Cartan

type. In [AS00a, Theorem 1.1], it was shown (under some restrictions for small
primes) that a finite-dimensional Nichols algebra of Cartan type must be of finite
Cartan type. The first success of the idea of the root system of a Nichols algebra,
where the roots were defined as the degrees of Kharchenko’s PBW-basis of a Nichols
algebra of diagonal type, was [Hec06, Theorem 1], which says that these restrictions
can be removed.

Corollaries 15.1.15 and 15.1.16 are taken from [Gn00b]. Corollary 15.1.17 was
proven originally in [AZ07].

15.2. The definition and the theory of root vector sequences is new. Note that
for the definition of a root vector sequence the maps Ti from Theorem 12.3.3 and
Corollary 13.5.21 are not needed.

15.3. Theorem 15.3.1 was proved first in [Hec08]. That proof also used
Kharchenko’s theory of Lyndon words. The proof in the book is based on [HW15].

The classification of finite-dimensional rank two Nichols algebras of diagonal
type in Theorem 15.3.3 was obtained first in [Hec07] and in the unpublished paper
[Hec04] based on Kharchenko’s theory. A closer look at the dimensions of the
obtained Nichols algebras resulted in the observation that there should exist an
equivalence relation preserving the dimension but not necessarily the Hilbert series
of the Nichols algebras. This lead to the discovery of the Weyl groupoid in [Hec06]
and the explicit description of the equivalence relation in [Hec05] as well as to a
new classification in [Hec08].

15.5. Corollary 15.5.7 was shown in [AS10, Theorem 5.5], under additional
assumptions on the braiding.

An equivalent version of Theorem 15.5.1 was proven in [Ang13]. Our proof
uses Theorem 14.5.4. Thus we have to show in Corollary 15.5.6 that certain
pre-Nichols systems are Nichols systems. This follows mainly from the equality
(ad Sxi)

m+1(xj) = 0 in Proposition 15.5.5. This equality is the first Proposition
in Angiono’s proof, [Ang13, Proposition 4.1]; it was shown by similar methods in
[AS10, Lemma 5.4], under additional assumptions on the braiding. In the remain-
ing part of his proof Angiono needs his description of Nichols algebras by generators
and relations in [Ang13, Theorem 3.1].

Proposition 15.5.9 is a very early classification result in [Nic78, Theorem 4.2.1].
A rather large class of finite-dimensional pointed Hopf algebras A was classified in
[AS10] starting from the lifted generators ai of the basis elements xi of the braided
vector space R(1) of diagonal type in Corollary 15.5.8.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



The preliminary version made available with permission of the publisher, the American Mathematical Society.



CHAPTER 16

Nichols algebras of Cartan type

Let G be an abelian group, K1, . . . ,Kθ ∈ G, and χ1, . . . , χθ ∈ Ĝ, and for all
1 ≤ i ≤ θ let Mi ∈ G

GYD be one-dimensional with basis Ei ∈ (Mi)
χi

Ki
. Assume

that the braiding matrix q = (qij)1≤i,j≤θ, qij = χj(Ki) for all i, j, is of finite
Cartan type. We are going to give presentations of the Nichols algebra of the tuple
M = (M1, . . . ,Mθ) by generators and relations, and determine PBW bases attached
to reduced decompositions of the longest element of the Weyl group of the Cartan
matrix. In particular, our results apply to the positive parts U+

q and u+
q of quantum

groups in the generic case and of small quantum groups. In Section 16.2 we assume
that the braiding matrix is quasi-generic. In Section 16.3 we consider the case
when all qii are roots of 1. In this case a technical assumption is added in order to
ensure that all defining relations are quantum Serre or root vector relations. To be
able to apply reflection theory, we develop first a theory of Yetter-Drinfeld modules
over bosonizations of Nichols algebras of one-dimensional Yetter-Drinfeld modules,
which in fact is a variation of the well-studied representation theory of Uq(sl2). In
the last two sections of the Chapter we characterize Nichols algebras of diagonal
type which are domains of finite Gelfand-Kirillov dimension, and pointed Hopf
algebras of finite Gelfand-Kirillov dimension with abelian coradical and generic
braiding.

16.1. Yetter-Drinfeld modules over a Hopf algebra of polynomials

Let G be an abelian group, let χ ∈ Ĝ be a character of G and let g ∈ G.
We write k[x;χ, g] for the Hopf algebra k[x]#kG, where kx is a one-dimensional
Yetter-Drinfeld module over G such that

h · x = χ(h)x, δ(x) = g ⊗ x

for all h ∈ G. By Example 2.6.13, the elements xkh with h ∈ G, k ∈ N0, form a
k-basis of k[x;χ, g].

Lemma 16.1.1. For all k ∈ N0 let k[x;χ, g](k) be the k-span of all xkh with
h ∈ G. Then

k[x;χ, g] =
⊕
k∈N0

k[x;χ, g](k)

is an N0-graded Hopf algebra with coradical k[x;χ, g](0) = k1#kG. In particular,
k[x;χ, g] is pointed and has a bijective antipode.

Proof. Clearly, k[x;χ, g] is an N0-graded bialgebra, where x has degree 1
and the elements of G have degree 0. In particular, the vector space filtration

497
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F(k[x;χ, g]) = (Fk(k[x;χ, g]))k≥0, where

Fk(k[x;χ, g]) =
k⊕

i=0

k[x;χ, g](i)

for all k ∈ N0, is a coalgebra filtration of k[x;χ, g]. Therefore k[x;χ, g] is pointed
with coradical k1#kG by Proposition 5.4.2(1). Then k[x;χ, g] is a Hopf algebra
with bijective antipode by Corollary 5.2.11(2). �

Proposition 16.1.2. Assume that char(k) = 0.

(1) Assume that χ(g) = 1 or χ(g) is not a root of 1. Then (k[x;χ, g]j)j≥0,

where k[x;χ, g]j =
⊕j

i=0 k[x;χ, g](i) for all j ≥ 0, is the coradical filtra-
tion of k[x;χ, g].

(2) Let n > 1 and assume that χ(g) is a primitive n-th root of 1. Then
(k[x;χ, g]′j)j≥0, where

k[x;χ, g]′j =
j∑

i=0

j−i∑
k=0

k[x;χ, g](i+ nk)

for all j ≥ 0, is the coradical filtration of k[x;χ, g].

Proof. Let j ∈ N0. Since Δ(xj) = Δ(x)j and since Δ(x) = x⊗ 1+ g⊗ x and
(g ⊗ x)(x⊗ 1) = χ(g)(x⊗ 1)(g ⊗ x), Proposition 1.9.5 implies that

Δ(xj) =

j∑
i=0

(
j

i

)
χ(g)

xj−igi ⊗ xi.(16.1.1)

(1) For any j ≥ 2, the map

Δ1,j−1 : k[x;χ, g](j)→ k[x;χ, g](1)⊗ k[x;χ, g](j − 1)

is injective if and only if (j)χ(g) �= 0. Therefore, if χ(g) = 1 or χ(g) is not a root of
1, then k[x;χ, g] is coradically graded by Proposition 5.3.13.

(2) For any j ∈ N0 let X
′(j) =

⊕min{j,n−1}
k=0 k[x;χ, g](k+n(j−k)). Since χ(g) is

a primitive n-th root of 1, xn ∈ Pgn,1(k[x;χ, g]) by Proposition 2.4.2(5). Moreover,
gn ⊗ xn and xn ⊗ 1 commute in k[x;χ, g]⊗ k[x;χ, g]. Therefore

Δ(xk+n(j−k)) = Δ(x)kΔ(xn)j−k

=

k∑
i=0

(
k

i

)
χ(g)

xk−igi ⊗ xi ·
j−k∑
m=0

(
j − k

m

)
x(j−k−m)ngmn ⊗ xmn

=
k∑

i=0

j−k∑
m=0

(
k

i

)
χ(g)

(
j − k

m

)
x(j−k−m)n+k−igmn+i ⊗ xmn+i

for any 0 ≤ k ≤ min{j, n− 1} and any j ∈ N0. We conclude that

Δ(X ′(j)) ⊆
j⊕

i=0

X ′(j − i)⊗X ′(i),

and hence k[x;χ, g] =
⊕∞

j=0 X
′(j) is an N0-graded coalgebra. Since

Δ1,j−1(x
k+n(j−k)) =(k)χ(g)xg

(j−k)n+k−1 ⊗ x(j−k)n+k−1

+ (j − k)xng(j−k−1)n+k ⊗ x(j−k−1)n+k
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for any j ≥ 2, 1 ≤ k ≤ min{n − 1, j}, Proposition 5.3.13 implies that k[x;χ, g] is
a coradically graded coalgebra. Then the claim in (2) follows from the equation

k[x;χ, g]′j =
⊕j

m=0 X
′(m). �

In the remaining part of this section we study Yetter-Drinfeld modules over
k[x;χ, g]. We are particularly interested in weight modules.

Definition 16.1.3. A Yetter-Drinfeld module V ∈ k[x;χ,g]
k[x;χ,g]YD is said to be a

weight module if the action of g on V is diagonalizable.

Example 16.1.4. Let V be a kG-module. Then V becomes a k[x;χ, g]-module
via xv = 0 for all v ∈ V . Define a trivial k[x;χ, g]-comodule structure on V via
δV (v) = 1 ⊗ v for all v ∈ V . If these module and comodule structures define a
Yetter-Drinfeld module structure, then

0 =δ(xv)

=x(1)S(x(3))⊗ x(2)v

=x⊗ v + g ⊗ xv + g(−g−1x)⊗ gv

=x⊗ (v − gv)

for all v ∈ V , and hence gv = v for all v ∈ V . In particular, V is a weight
module. Conversely, if gv = v and xv = 0 for all v ∈ V , then δV as above defines a
Yetter-Drinfeld module structure on V over k[x;χ, g].

Let π : k[x;χ, g]→ kG = k1#kG be the homogeneous projection.

Lemma 16.1.5. Let V ∈ k[x;χ,g]M and let v ∈ V and h ∈ G. Assume that
(π ⊗ id)δV (v) = h⊗ v. Then

δV (v) = h⊗ v +
∑
n>0

xng−nh⊗ vn

for some vn ∈ V , n > 0, where vn = 0 for all but finitely many n.

Proof. Since V ∈ k[x;χ,g]M and v ∈ V , for any n ∈ N0 and f ∈ G there exists
vn,f ∈ V such that δV (v) =

∑
n,f xnf ⊗ vn,f . Since (ε⊗ id)δV (v) = v, we conclude

that v =
∑

f∈G v0,f . Moreover,

(π ⊗ id⊗ id)(Δ⊗ id)δV (v) =
∑
n,f

gnf ⊗ xnf ⊗ vn,f(16.1.2)

since (π ⊗ id)Δ is an algebra map and since

(π ⊗ id)Δ(x) = g ⊗ x, (π ⊗ id)Δ(f) = f ⊗ f

for all f ∈ G. On the other hand, the expression in (16.1.2) is equal to

(π ⊗ id⊗ id)(id⊗ δV )δV (v) = (id⊗ δV )(π ⊗ id)δV (v) = h⊗
∑
n,f

xnf ⊗ vn,f .

In particular, vn,f = 0 whenever gnf �= h. This implies the claim. �

Proposition 16.1.6. Let V ∈ k[x;χ,g]
k[x;χ,g]YD. For any h ∈ G let

Vh = {v ∈ V | (π ⊗ id)δV (v) = h⊗ v}.
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Then V =
⊕

h∈G Vh, GVf = Vf , xVf ⊆ Vgf , and

δV (v) ∈
∞∑

n=0

k[x;χ, g](n)⊗ Vfg−n

for any f ∈ G, v ∈ Vf .

Proof. For any V ∈ k[x;χ,g]
k[x;χ,g]YD, the map δ′V = (π ⊗ id)δV : V → kG ⊗ V

defines a left kG-comodule structure on V . By Proposition 1.1.17 we obtain that
V =

⊕
h∈G Vh. The Yetter-Drinfeld condition implies that

δV (hv) =hv(−1)h
−1 ⊗ hv(0),(16.1.3)

δV (xv) =xv(−1) ⊗ v(0) + gv(−1) ⊗ xv − gv(−1)g
−1x⊗ gv(16.1.4)

for any v ∈ V , h ∈ G. Therefore δ′V (hv) = f ⊗ hv and δ′V (xv) = gf ⊗ xv for any
f, h ∈ G, v ∈ Vf , that is,

GVf = Vf , xVf ⊆ Vgf .

It remains to prove the formula on δV (v), v ∈ Vf , f ∈ G.
Let f ∈ G and v ∈ Vf . By Lemma 16.1.5 there exist vn ∈ V , n ≥ 0, such that

δV (v) =
∑
n≥0

xnfg−n ⊗ vn,

where v0 = v. Then∑
n≥0

xnfg−n ⊗ δ′V (vn) =(id⊗ π ⊗ id)(Δ⊗ id)δV (v)

=
∑
n≥0

(id⊗ π)Δ(xnfg−n)⊗ vn

=
∑
n≥0

xnfg−n ⊗ fg−n ⊗ vn

because of (id⊗π)Δ(x) = x⊗1 and (id⊗π)Δ(h) = h⊗h for any h ∈ G. Therefore
vn ∈ Vfg−n for any n ≥ 0. �

Remark 16.1.7. Let V ∈ k[x;χ,g]
k[x;χ,g]YD be a weight module and let h ∈ G. Since

gVh = Vh, the restriction of the action of g to Vh is diagonalizable.

Definition 16.1.8. Let V ∈ k[x;χ,g]
k[x;χ,g]YD be a weight module. For any h ∈ G,

λ ∈ k× let

Vh;λ = {v ∈ Vh | gv = χ(h)−1λv}.
The scalars λ with Vh;λ �= 0 for some h ∈ G are called the weights of V . For any
weight λ, the sum

⊕
h∈G Vh;λ is called the weight space of λ and the elements of

such a weight space are called weight vectors.

Lemma 16.1.9. Let V ∈ k[x;χ,g]
k[x;χ,g]YD, v ∈ V , n ∈ N0 and h ∈ G. Assume that

δV (v) = h⊗ v. Then

δV (x
nv) =

n∑
i=0

(
n

i

)
χ(g)

xn−igih⊗ xi
n−1∏
k=i

(1− χ(h)χ(g)kg)v.
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Proof. Let q = χ(g). For n = 0 the claim holds by assumption. For n > 0 it
follows by induction using (16.1.4):

δV (x
nv) =δV (x(x

n−1v))

=
n−1∑
i=0

(
n− 1

i

)
q

xxn−1−igih⊗ xi
n−2∏
k=i

(1− χ(h)qkg)v

+

n−1∑
i=0

(
n− 1

i

)
q

gxn−1−igih⊗ xxi
n−2∏
k=i

(1− χ(h)qkg)v

−
n−1∑
i=0

(
n− 1

i

)
q

gxn−1−igihg−1x⊗ gxi
n−2∏
k=i

(1− χ(h)qkg)v.

By using the commutation rules in k[x;χ, g] this yields that

δV (x
nv) =

n−1∑
i=0

(
n− 1

i

)
q

xn−igih⊗ xi
n−2∏
k=i

(1− χ(h)qkg)v

+
n∑

i=1

qn−i

(
n− 1

i− 1

)
q

xn−igih⊗ xi
n−2∏

k=i−1

(1− χ(h)qkg)v

−
n−1∑
i=0

qn−1+iχ(h)

(
n− 1

i

)
q

xn−igih⊗ xig

n−2∏
k=i

(1− χ(h)qkg)v.

Now use that
n−2∏

k=i−1

(1− χ(h)qkg)v = (1− χ(h)qi−1g)

n−2∏
k=i

(1− χ(h)qkg)v

and the formulas in Lemma 1.9.3 on the q-binomial numbers. �

Lemma 16.1.10. Let V ∈ k[x;χ,g]
k[x;χ,g]YD and let h ∈ G, v ∈ Vh and λ ∈ k×.

Assume that v has weight λ. Then xnv has weight χ(g)2nλ for any n ∈ N0.

Proof. Let n ∈ N0. Then xnv ∈ Vhgn by Proposition 16.1.6. Moreover,

gxnv = χ(g)nxngv = χ(g)nxnχ(h)−1λv = χ(hgn)−1χ(g)2nλxnv.

Thus the weight of xnv is χ(g)2nλ. �

Lemma 16.1.11. Let V ∈ k[x;χ,g]
k[x;χ,g]YD and let h ∈ G, v ∈ V , λ ∈ k× and

r ∈ N. Assume that (g − χ(h)−1λ)rv = 0. For any n ∈ N0 let vn ∈ V such that
δV (v) =

∑∞
n=0 x

nhg−n ⊗ vn. Then vn ∈ Vhg−n and

(g − χ(h)−1χ(g)−nλ)rvn = 0

for any n ∈ N0.

Proof. The existence of vn for n ∈ N0 follows from Lemma 16.1.5. Moreover,
Proposition 16.1.6 implies that vn ∈ Vhg−n for any n ∈ N0. By induction on s we
obtain from the Yetter-Drinfeld condition on V that

δV ((g − χ(h)−1λ)sv) =

∞∑
n=0

xnhg−n ⊗ (χ(g)ng − χ(h)−1λ)svn
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for any s ∈ N0. Since (g − χ(h)−1λ)rv = 0, by comparision of the terms for each
n ∈ N0 on the right hand side with 0 we obtain the claim. �

Recall from Example 1.4.2 that any simple Yetter-Drinfeld module U over kG
is a simple kG-module and there exists a unique h ∈ G such that δU (u) = h ⊗ u
for any u ∈ U . Conversely, for any simple kG-module U and any h ∈ G, the left
coaction δU : U → kG⊗U , u �→ h⊗u, turns U into a simple Yetter-Drinfeld module
over kG.

In Proposition 4.5.1 we discussed induced Yetter-Drinfeld modules in general.
Now we look at a special case of this construction.

Lemma 16.1.12. Assume that g ∈ G has infinite order. Let U ∈ G
GYD be a

simple object and let W = k[x;χ, g] ⊗kG U ∈ k[x;χ,g]
k[x;χ,g]YD. Let h ∈ G such that

δU (u) = h⊗ u for all u ∈ U .

(1) Let X ⊆ W in
k[x;χ,g]
k[x;χ,g]YD with X �= 0. Then X = k[x]xn ⊗ U for some

n ∈ N0.
(2) If W is not simple then there exists n ∈ N0 such that 1 ⊗ u ∈ W has

weight χ(g)−n for any u ∈ U .

Proof. By Proposition 4.5.1 we know that W ∈ k[x;χ,g]
k[x;χ,g]YD. Since 1⊗U ⊆ Wh

and since g ∈ G has infinite order, Proposition 16.1.6 tells that W =
⊕

n∈N0
Wgnh,

where Wgnh = kxn ⊗ U for any n ∈ N0.

Let now X ⊆ W in
k[x;χ,g]
k[x;χ,g]YD with X �= 0. Then there exist u ∈ U \ {0} and

a smallest n ∈ N0 such that xn ⊗ u ∈ X. Lemma 16.1.9 and the minimality of n
imply that δW (xn⊗u) = gnh⊗(xn⊗u). In particular, the summand of δW (xn⊗u)
in Lemma 16.1.9 for i = 0 vanishes. Hence

xnh⊗
n−1∏
k=0

(1− χ(h)χ(g)kg)u = 0.

Therefore there exist u′ ∈ U \ {0} and an integer k ∈ {0, 1, . . . , n − 1} such that
(1−χ(h)χ(g)kg)u′ = 0. Since U = kGu = kGu′ and G is abelian, we conclude that
gv = χ(h)−1χ(g)−kv and that xn ⊗ v ∈ X for any v ∈ U . This implies both (1)
and (2). �

Proposition 16.1.13. Assume that g ∈ G has infinite order. Let U ∈ G
GYD,

h ∈ G, n ∈ N0, and let W = k[x;χ, g]⊗kGU ∈ k[x;χ,g]
k[x;χ,g]YD. Assume that U is simple,

δU (u) = h ⊗ u, gu = χ(h)−1χ(g)−nu for any u ∈ U , and that χ(g)k �= χ(g)n for
any 0 ≤ k < n.

(1) W is a weight module with weights χ(g)2m−n, m ≥ 0.
(2) k[x]xn+1 ⊗ U is the only maximal Yetter-Drinfeld submodule of W .

Proof. By Proposition 4.5.1, W ∈ k[x;χ,g]
k[x;χ,g]YD. Since W = k[x]⊗ U and 1⊗ u

has weight χ(g)−n for any u ∈ U , (1) follows from Lemma 16.1.10.
(2) By assumption, (1− χ(h)χ(g)ng)u = 0 for any u ∈ U . Thus Lemma 16.1.9

implies that δW (xn+1 ⊗ u) = gn+1h ⊗ (xn+1 ⊗ u) for any u ∈ U . Using again
Lemma 16.1.9 with v = xn+1⊗u we conclude that k[x]xn+1⊗U is a Yetter-Drinfeld
submodule of W .
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Let X be a non-zero Yetter-Drinfeld submodule of W with X �= W . By
Lemma 16.1.12(1), there exists an m ∈ N0 such that X = k[x]xm ⊗ U . More-
over, m > 0 since X �= W . By the previous paragraph, it suffices to prove that
m ≥ n+ 1.

Assume that 0 < m ≤ n. Let u ∈ U \ {0}. Then xm ⊗ u ∈ X and hence
δW (xm ⊗ u) ∈ k[x;χ, g] ⊗X. Therefore the summand of this expression for i = 0
in Lemma 16.1.9 vanishes, that is,

0 = xmh⊗
m−1∏
k=0

(1− χ(h)χ(g)kg)u =

m−1∏
k=0

(1− χ(g)k−n)xmh⊗ u.

Since χ(g)k �= χ(g)n for any 0 ≤ k ≤ n− 1, we obtain a contradiction. This proves
(2). �

Corollary 16.1.14. Assume that g ∈ G has infinite order. Let U ∈ G
GYD,

h ∈ G, n ∈ N0, and let W = k[x;χ, g]⊗kGU ∈ k[x;χ,g]
k[x;χ,g]YD. Assume that U is simple,

δU (u) = h ⊗ u, gu = χ(h)−1χ(g)−nu for any u ∈ U , and that χ(g)k �= χ(g)n for
any 0 ≤ k < n.

(1) Assume that χ(g) is not a root of 1. Then xn+1W is the unique non-trivial
Yetter-Drinfeld submodule of W .

(2) Assume that χ(g) is a primitive root of 1 of order p ≥ 1. Then the non-
zero Yetter-Drinfeld submodules of W are xn+1+mpW and xmpW with
m ∈ N0.

Proof. By Proposition 16.1.13, xn+1W = k[x;χ, g]xn+1 ⊗ U is the unique
maximal Yetter-Drinfeld submodule of W and kxn+1 ⊗ U is a subspace of weight
χ(g)2n+2. Moreover, kxn+1⊗U is a simple kG-module. Lemma 16.1.9 implies that

δW (xn+1 ⊗ u) = hgn+1 ⊗ (xn+1 ⊗ u)

for any u ∈ U . We conclude that

xn+1W ! k[x;χ, g]⊗kG (kxn+1 ⊗ U).

(1) By assumption, the weight χ(g)2n+2 of kxn+1 ⊗ U differs from χ(g)−l for any
l ∈ N0. Hence the Yetter-Drinfeld module xn+1W is simple by Lemma 16.1.12(2).
Thus the claim follows from Proposition 16.1.13(2).

(2) By assumption, n < p. Assume that n = p− 1. Then

χ(g)−n+(2n+2) = χ(g)−n.

It follows from Proposition 16.1.13(2) by induction on m that x(m+1)pW is the
unique maximal Yetter-Drinfeld submodule of xmpW for any m ∈ N0. This proves
the claim in this case.

Assume that 0 ≤ n < p − 1. Then kxn+1 ⊗ U has weight χ(g)−(p−2−n). By
induction on m it follows that xn+1+mpW is the unique maximal Yetter-Drinfeld
submodule of xmpW and that x(m+1)pW is the unique maximal Yetter-Drinfeld
submodule of xn+1+mpW for any m ∈ N0. �

In the next Proposition, for any kG-module U , for any n, l ∈ N0 with 0 ≤ n ≤ l,
and for any u ∈ U we write un for the element in U l+1 which has u in the n+ 1-st
entry and 0 elsewhere. Then (u′, u′′, . . . , u′′′) ∈ U l+1 is nothing but u′

0+u′′
1+· · ·+u′′′

l .
We use the convention ul+1 = 0 for any u ∈ U .
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Proposition 16.1.15. Assume that g ∈ G has infinite order. Let U be a simple
kG-module, h ∈ G, and l ∈ N0 such that gu = χ(h)−1χ(g)−lu for any u ∈ U . Then
U l+1 is a Yetter-Drinfeld weight module over k[x;χ, g] with left k[x;χ, g]-module
structure

f · un = χ(f)n(fu)n, x · un = un+1

and left k[x;χ, g]-comodule structure

δV (un) =
n∑

i=0

(
n

i

)
χ(g)

( n−1−l∏
m=i−l

(1− χ(g)m)
)
xn−igih⊗ ui(16.1.5)

for any f ∈ G, u ∈ U , and any integer 0 ≤ n ≤ l. We write M(U, h, l) for this
Yetter-Drinfeld module. It is simple if and only if χ(g) is not a root of 1 of order
p ∈ {1, 2, . . . , l}.

Proof. Consider U as a Yetter-Drinfeld module over kG with δU (u) = h⊗ u

for any u ∈ U . Then k[x;χ, g]⊗kG U ∈ k[x;χ,g]
k[x;χ,g]YD by Proposition 4.5.1.

For any n ∈ N0 and u ∈ U let un = xn ⊗ u ∈ k[x;χ, g]⊗kG U . Then

fun = χ(f)n(fu)n

for any f ∈ G. Moreover, Lemma 16.1.9 implies that δ(un) is given by (16.1.5)
with ui replaced by ui for all 1 ≤ i ≤ n. Since gu = χ(hgl)−1u for any u ∈ U ,
Proposition 16.1.13(2) implies that k[x;χ, g]xl+1⊗U is a Yetter-Drinfeld submodule
of k[x;χ, g]⊗kG U . Hence M(U, h, l) exists and

M(U, h, l) ! k[x;χ, g]⊗kG U/k[x;χ, g]xl+1 ⊗ U.

By Proposition 16.1.13(2), M(U, h, l) is simple if and only if χ(g)−k �= χ(g)−l for
any 0 ≤ k < l. This happens if and only if χ(g) is not a root of 1 of order
p ∈ {1, 2, . . . , l}. �

Remark 16.1.16. Assume that χ(g)p �= 1 for any 1 ≤ p ≤ l. Then the proof of
Proposition 16.1.15 also shows that M(U, h, l) is isomorphic to the unique simple
quotient of k[x;χ, g]⊗kG U .

Remark 16.1.17. Let U be a simple kG-module, h ∈ G, and l ∈ N0 with
gu = χ(hgl)−1u for any u ∈ U . The weights of M(U, h, l) in Proposition 16.1.15
are the scalars χ(g)−l+2m with 0 ≤ m ≤ l. In particular, χ(g)n for n ∈ Z is a
weight of M(U, h, l) if and only if χ(g)−n is. Moreover, the weight spaces of χ(g)n

and of χ(g)−n have the same dimension.

Corollary 16.1.18. Assume that χ(g) is not a root of 1. Let V ∈ k[x;χ,g]
k[x;χ,g]YD

and let v ∈ V , h ∈ G, be such that v �= 0, δV (v) = h ⊗ v, and that kGv is a
simple kG-module and dim k[x]v < ∞. Then there exists a unique l ∈ N0 such that
gu = χ(hgl)−1u for any u ∈ kGv. Moreover, k[x;χ, g]v is simple and isomorphic

to M(kGv, h, l) in
k[x;χ,g]
k[x;χ,g]YD.

Proof. Since χ(g) is not a root of 1, the integer l is unique and g ∈ G has
infinite order. Since v �= 0, δV (v) = h ⊗ v, and dim k[x]v < ∞, we conclude from
Lemma 16.1.9 that k[x;χ, g]v is isomorphic to a non-trivial Yetter-Drinfeld module
quotient of k[x;χ, g]⊗kG kGv. Then Lemma 16.1.12 implies the existence of l ∈ N0

such that gu = χ(hgl)−1u for any element u ∈ kGv. By Corollary 16.1.14(1),
k[x;χ, g]⊗kG kGv has a uniqe non-trivial quotient which is then necessarily simple.
By Remark 16.1.16, this quotient is isomorphic to M(kGv, h, l). �

The preliminary version made available with permission of the publisher, the American Mathematical Society.



16.1. YETTER-DRINFELD MODULES OVER A HOPF ALGEBRA 505

Proposition 16.1.19. Let V ∈ k[x;χ,g]
k[x;χ,g]YD be a simple object. Assume that

dim k[x]v < ∞ for all v ∈ V and that g ∈ G has infinite order. Then there exist
h ∈ G, a simple kG-module U and l ∈ N0 with χ(g)n �= 1 for all 0 ≤ n < l such
that V ! M(U, h, l). Moreover, h and l are uniquely determined and U is unique
up to isomorphism of kG-modules.

Proof. Since k[x;χ, g] is pointed with coradical kG by Lemma 16.1.1, all
simple subcoalgebras of k[x;χ, g] are of the form kh for some h ∈ G. Since V �= 0,
Proposition 2.2.13 implies that there exist v ∈ V \ {0} and h ∈ G such that
δV (v) = h⊗ v. In particular, δV (fv) = h⊗ fv for any f ∈ G and hence kGv ⊆ Vh.
Lemma 16.1.9 implies that k[x;χ, g]v is a Yetter-Drinfeld submodule of V . Since V
is simple, k[x;χ, g]v is isomorphic to a simple quotient of k[x;χ, g]⊗kG kGv, where
the isomorphism maps v to 1 ⊗ v. Moreover, xnu ∈ Vgnh for any n ∈ N0 and any
u ∈ kGv by Proposition 16.1.6. Since g ∈ G has infinite order, we conclude that
h is uniquely determined and that k[x;χ, g]U is a Yetter-Drinfeld submodule of V
for any kG-submodule U of kGv. Hence the simplicity of V implies that kGv is a
simple kG-module and as such it is uniquely determined up to isomorphism. Since
dim k[x]v < ∞, Lemma 16.1.12(2) implies that there exists a unique integer l ≥ 0
such that χ(g)n �= 1 for all 0 ≤ n < l and that kGv has weight χ(g)−l in V . By
Proposition 16.1.13(2), k[x;χ, g] ⊗kG kGv has a unique maximal Yetter-Drinfeld
submodule, and by the assumption on l and by Remark 16.1.16 the unique simple
quotient of k[x;χ, g]⊗kG kGv is isomorphic to M(kGv, h, l). �

Lemma 16.1.20. Let V ∈ k[x;χ,g]
k[x;χ,g]YD and let W ⊆ V be a subobject which is a

weight module. Let h ∈ G and λ ∈ k×. Assume that

v ∈ Vh \Wh, gv − χ(h)−1λv ∈ W, δV (v)− h⊗ v ∈ W.

If λ /∈ {χ(g)k | k ≥ 2} then δV (v + w) = h⊗ (v + w) for some w ∈ Wh.

Proof. Since v ∈ Vh, Proposition 16.1.6 yields that gv ∈ Vh. Therefore
gv − χ(h)−1λv ∈ Wh by assumption. Since W is a weight module, there exist
pairwise distinct scalars μ1, . . . , μr, r ≥ 0, and vectors wμi

∈ Wh;μi
, 1 ≤ i ≤ r,

such that gv − χ(h)−1λv =
∑r

i=1 wμi
. Therefore there exists w ∈ Wh such that

g(v+w)−χ(h)−1λ(v+w) ∈ Wh;λ. Thus in order to prove the claim we may assume
that gv − χ(h)−1λv is a weight vector of W of weight λ.

By Lemma 16.1.5, δV (v) =
∑

n∈N0
xng−nh ⊗ vn for some vn ∈ V with v0 = v

and vn = 0 for all but finitely many n. Since (g−χ(h)−1λ1)2v = 0, Lemma 16.1.11
implies that (g − χ(h)−1χ(g)−nλ1)2vn = 0 for all n ∈ N0. Since vn ∈ W for
any n > 0 by assumption and since W is a weight module, we conclude that
vn ∈Whg−n;λχ(g)−2n for any n > 0.

Let m ∈ N0 maximal with vm �= 0. Assume that m > 0. The comodule axiom
for δV applied to v implies that δV (vm) = hg−m⊗ vm. Then Lemma 16.1.9 implies
that

δV (x
mvm) =

m∑
i=0

(
m

i

)
χ(g)

xm−igi−mh⊗ xi
m−1∏
k=i

(1− χ(h)χ(g)k−mg)vm

=

m∑
i=0

(
m

i

)
χ(g)

xm−igi−mh⊗ xi
m−1∏
k=i

(1− χ(g)k−2mλ)vm
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since gvm = χ(h)−1χ(g)−mλvm. Now, if λ /∈ {χ(g)k | k ≥ 2} then the coefficient ζ
of xmg−mh⊗ vm in δV (x

mvm) is

ζ =

m−1∏
k=0

(1− χ(g)k−2mλ) �= 0.

Thus δV (v − ζ−1xmvm) ∈
∑m−1

n=0 xng−nh ⊗ V . Note that xmvm ∈ Wh;λ. Now
replace v by v − ζ−1xmvm and apply the arguments of the proof to this element.
After finitely many iterations we arrive at an element v ∈ Vh with δV (v) = h⊗v. �

Theorem 16.1.21. Assume that χ(g) is not a root of 1. Let V ∈ k[x;χ,g]
k[x;χ,g]YD be

such that V is a semisimple kG-module and dim k[x]v < ∞ for any v ∈ V . Then V
is a semisimple Yetter-Drinfeld module and any simple subobject of V is isomorphic
to M(U, h, l) for some simple kG-module U , some h ∈ G and some l ∈ N0.

Proof. By Proposition 16.1.19, all simple subobjects of V are isomorphic to
M(U, h, l) for some simple kG-module U , some h ∈ G and some l ∈ N0. Let W be
the sum of all simple Yetter-Drinfeld submodules of V .

Assume that V �= W . By Lemma 16.1.1, k[x;χ, g] is pointed with coradical kG.
Hence all simple subcoalgebras of k[x;χ, g] are of the form kh for some h ∈ G. Since
V/W �= 0, Proposition 2.2.13 implies that there exists v ∈ V \W and h ∈ G such
that δV (v)−h⊗v ∈ k[x;χ, g]⊗W . In particular, v+W ∈ Vh+W . Proposition 16.1.6
implies that we may choose this v such that v ∈ Vh. Since

δV (fv)− h⊗ fv ∈ k[x;χ, g]⊗W

and fv ∈ Vh for any f ∈ G, by the semisimplicity of V as a kG-module we may
additionally choose v to be in a simple kG-module. Since dimk[x]v < ∞, by
Corollary 16.1.18 there exists a unique l ∈ N0 such that gu − χ(hgl)−1u ∈ W for
any u ∈ kGv. Then, since χ(g) is not a root of 1, by Lemma 16.1.20 we may choose
the representative v of v+W such that δV (v) = h⊗ v. Then k[x;χ, g]v is a simple
subobject of V by Corollary 16.1.18 which is a contradiction to the choice of v and
W . This proves the theorem. �

Corollary 16.1.22. Assume that χ(g) is not a root of 1. Let V ∈ k[x;χ,g]
k[x;χ,g]YD

be such that V is a semisimple kG-module and dim k[x]v < ∞ for all v ∈ V . Then
V is a weight module, the weights of V are of the form χ(g)m with m ∈ Z, and for
any m ∈ Z the dimension of the weight space of any weight χ(g)m coincides with
the dimension of the weight space of χ(g)−m.

Proof. This follows immediately from Theorem 16.1.21, Proposition 16.1.19
and Remark 16.1.17. �

In the remaining part of the section let t ∈ N with t ≥ 2. If χ(g) �= 1 is
a primitive t-th root of 1, then there is another class of Yetter-Drinfeld modules
which plays a similarly important role, in particular in the description of u+

q in

Section 16.3. Let kred[x;χ, g] = k[x;χ, g]/(xt). Since xt is (gt, 1)-primitive in
k[x;χ, g] by Proposition 2.4.2(5), kred[x;χ, g] is a quotient Hopf algebra of k[x;χ, g]
by Proposition 2.4.4. Since xt is homogeneous of degree t in k[x;χ, g] with respect
to the grading in Lemma 16.1.1, the Hopf algebra kred[x;χ, g] is N0-graded with
deg xmh = m for all 0 ≤ m < t, h ∈ kG. Let πred : kred[x;χ, g]→ kG = k1#kG be
the homogeneous Hopf algebra projection.
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There is no analogue to Theorem 16.1.21 for the category
kred[x;χ,g]
kred[x;χ,g]

YD, but we

are able to describe all simple objects. We proceed as for k[x;χ, g].

Definition 16.1.23. A Yetter-Drinfeld module V ∈ kred[x;χ,g]
kred[x;χ,g]

YD is called a

weight module if the action of g on V is diagonalizable.

Lemma 16.1.24. Let V ∈ kred[x;χ,g]M and let v ∈ V and h ∈ G. Assume that
(πred ⊗ id)δV (v) = h⊗ v. Then

δV (v) = h⊗ v +
t−1∑
n=1

xng−nh⊗ vn

for some vn ∈ V , 1 ≤ n ≤ t− 1.

Proof. Similar to the proof of Lemma 16.1.5. �

Proposition 16.1.25. Let V ∈ kred[x;χ,g]
kred[x;χ,g]

YD. For all h ∈ G let

Vh = {v ∈ V | (πred ⊗ id)δV (v) = h⊗ v}.
Then V =

⊕
h∈G Vh, GVf = Vf , xVf ⊆ Vgf , and

δV (v) ∈
t−1∑
n=0

xnkG⊗ Vfg−n

for all f ∈ G, v ∈ Vf .

Proof. Similar to the proof of Proposition 16.1.6. �

Definition 16.1.26. Let V ∈ kred[x;χ,g]
kred[x;χ,g]

YD be a weight module. For any h ∈ G,

λ ∈ k× let

Vh;λ = {v ∈ Vh | gv = χ(h)−1λv}.
The scalars λ with Vh;λ �= 0 for some h ∈ G are called the weights of V . For any
weight λ, the sum

⊕
h∈G Vh;λ is called the weight space of λ.

Lemma 16.1.27. Let V ∈ kred[x;χ,g]
kred[x;χ,g]

YD, v ∈ V , h ∈ G and n ∈ N0 with n < t.

Assume that δV (v) = h⊗ v. Then

δV (x
nv) =

n∑
i=0

(
n

i

)
χ(g)

xn−igih⊗ xi
n−1∏
k=i

(1− χ(h)χ(g)kg)v.

Proof. Literally the same as the proof of Lemma 16.1.9. �

Lemma 16.1.28. Let V ∈ kred[x;χ,g]
kred[x;χ,g]

YD and let h ∈ G, v ∈ Vh and λ ∈ k×.

Assume that v has weight λ. Then xnv has weight χ(g)2nλ for any n ∈ N0.

Proof. Analogous to the proof of Lemma 16.1.10. �

Lemma 16.1.29. Let U ∈ G
GYD and W = kred[x;χ, g] ⊗kG U ∈ kred[x;χ,g]

kred[x;χ,g]
YD

such that U is simple. Let h ∈ G such that δU (u) = h⊗ u for all u ∈ U .

(1) W =
⊕t−1

n=0 Wgnh and Wgnh = xn ⊗ U for any 0 ≤ n < t.

(2) Let X ⊆ W in
kred[x;χ,g]
kred[x;χ,g]

YD with X �= 0. Then X = k[x]xn ⊗ U for some

n ∈ N0, n < t.
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(3) If W is not simple then there exists n ∈ N0, n < t−1, such that 1⊗u ∈ W
has weight χ(g)−n for any u ∈ U .

Proof. By Proposition 4.5.1 we know that W ∈ kred[x;χ,g]
kred[x;χ,g]

YD. Since the order

of χ(g) ∈ k× is t, the order of g ∈ G is at least t. Since 1⊗ U ⊆ Wh, we obtain (1)
from Proposition 16.1.25.

Let now X ⊆ W in
kred[x;χ,g]
kred[x;χ,g]

YD with X �= 0. Similarly to the previous para-

graph we conclude that there exist u ∈ U \ {0} and a smallest n ∈ N0 such that
n < t and xn ⊗ u ∈ X. Lemma 16.1.27 and the minimality of n imply that
δW (xn ⊗ u) = gnh ⊗ (xn ⊗ u). In particular, the summand of δW (xn ⊗ u) in
Lemma 16.1.27 for i = 0 vanishes. Hence

xnh⊗
n−1∏
k=0

(1− χ(h)χ(g)kg)u = 0.

Thus there exist u′ ∈ U \{0} and k ∈ {0, 1, . . . , n−1} with (1−χ(h)χ(g)kg)u′ = 0.
Since U = kGu = kGu′ and G is abelian, we conclude that gv = χ(h)−1χ(g)−kv
and that xn ⊗ v ∈ X for all v ∈ U . This implies both (2) and (3). �

Proposition 16.1.30. Let h ∈ G, n ∈ N0 with n < t and U ∈ G
GYD. Assume

that δU (u) = h ⊗ u and that gu = χ(h)−1χ(g)−nu for all u ∈ U . Moreover, let

W = kred[x;χ, g]⊗kG U ∈ kred[x;χ,g]
kred[x;χ,g]

YD.

(1) W is a weight module with weights χ(g)2m−n, 0 ≤ m < t.
(2) If U is simple then k[x]xn+1 ⊗ U is the only maximal Yetter-Drinfeld

submodule of W .

Proof. (1) By assumption, W is spanned by the elements xm⊗ u with u ∈ U
and 0 ≤ m < t. Moreover, 1⊗ u has weight χ(g)−n for any u ∈ U . Thus the claim
follows from Lemma 16.1.28.

(2) Lemma 16.1.29 implies that there is a unique maximal Yetter-Drinfeld sub-
module W ′ of W , and it is of the form k[x]xm ⊗ U for some 1 ≤ m ≤ t.

By assumption, (1−χ(h)χ(g)ng)u = 0 for all u ∈ U . Thus, by Lemma 16.1.27,

δW (xn+1 ⊗ u) = gn+1h⊗ xn+1u

for all u ∈ U . Then Lemma 16.1.27 implies that k[x]xn+1 ⊗ U ⊆ W ′ and hence
m ≤ n+ 1.

Let u ∈ U with u �= 0. By Lemma 16.1.27, the coefficient of xnh ⊗ (1 ⊗ u) in

δW (xn ⊗ u) is
∏n−1

k=0(1 − χ(g)k−n)(1 ⊗ u), which is non-zero since ord(χ(g)) = t.
Thus xn ⊗ u /∈W ′ and m = n+ 1. �

Theorem 16.1.31. Assume that χ(g) is a primitive root of 1 of order t. For

any U ∈ G
GYD let W (U) = kred[x;χ, g]⊗kG U ∈ kred[x;χ,g]

kred[x;χ,g]
YD.

(1) Let U1, U2 ∈ G
GYD be simple objects. Then U1

∼= U2 in G
GYD if and only

if W (U1) ∼= W (U2) in
kred[x;χ,g]
kred[x;χ,g]

YD.

(2) Let U be a simple Yetter-Drinfeld module over kG and let h ∈ G. Assume
that δU (u) = h ⊗ u and that gu /∈ ku for any non-zero element u ∈ U .

Then W (U) is simple in
kred[x;χ,g]
kred[x;χ,g]

YD.

(3) Let V ∈ kred[x;χ,g]
kred[x;χ,g]

YD be a simple object. For any h ∈ G let

V(h) = {v ∈ V | δV (v) = h⊗ v}.
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Then there exists a unique element h ∈ G such that V(h) �= 0. Moreover,

V(h) ∈ G
GYD is simple.

(4) Let V ∈ kred[x;χ,g]
kred[x;χ,g]

YD be a simple object and let h ∈ G with V(h) �= 0.

Assume that gv /∈ kv for any v ∈ V(h) \ {0}. Then V ∼= W (V(h)).

Proof. (1) An isomorphism f : U1 → U2 in G
GYD induces an isomorphism

kred[x;χ, g]⊗kGU1 → kred[x;χ, g]⊗kGU2 in
kred[x;χ,g]
kred[x;χ,g]

YD by the functoriality of the

construction of induced Yetter-Drinfeld modules.
Assume now that there is an isomorphism f : W (U1)→ W (U2) in

kred[x;χ,g]
kred[x;χ,g]

YD.

Let h1, h2 ∈ G such that δUi
(ui) = hi ⊗ ui for any i ∈ {1, 2} and ui ∈ Ui. Since

W (Ui) =
⊕t−1

n=0 W (Ui)gnhi
and W (Ui)gnh = xn ⊗ Ui for any 0 ≤ n < t and any

i ∈ {1, 2} by Lemma 16.1.29(1), there exists 0 ≤ k < t such that

f(1⊗ u) ∈ xk ⊗ U2, h1 = gkh2

for any u ∈ U1. Then f(W (U1)) ⊆ k[x]xk ⊗ U2, and the surjectivity of f implies
that k = 0 and f(1⊗ U1) = 1⊗U2. Thus Ui

∼= 1⊗Ui for i ∈ {1, 2} are isomorphic
in G

GYD via restriction of f to 1⊗ U1.
(2) Let W ′ be a Yetter-Drinfeld submodule of W (U). Lemma 16.1.29(1) implies

that

W ′ =
t−1⊕
n=0

(W ′ ∩W (U)gnh).

Let 0 ≤ n < t and 0 �= v ∈ W ′ ∩W (U)gnh. Then v = xn ⊗ u = xn(1⊗ u) for some
u ∈ U \ {0} by Lemma 16.1.29(1). By assumption, gu′ /∈ ku′ for any u′ ∈ U \ {0}.
Thus, by Lemma 16.1.27, the summand of δW (U)(v) in xnh⊗ U is

xnh⊗
(
1⊗

n−1∏
k=0

(1− χ(hgk)g) · u
)
�= 0.

Thus W ′ ∩ U �= 0. Since U is simple, we conclude that W ′ ∩ U = U and hence
W ′ = W (U).

(3) Since kred[x;χ, g] is pointed (as a quotient of k[x;χ, g]), V(h) �= 0 for some
h ∈ G by Proposition 2.2.13. Since kGV(h) = V(h) and since V is simple, we
conclude that V = kred[x;χ, g]V(h) = k[x]V(h). Let h′ ∈ G with V(h′) �= 0. Assume
that h′ �= h. Then V(h′) ⊆ Vh′ . Hence h′ = gnh and V(h′) ⊆ xnV(h) for some
1 ≤ n < t. Similarly, h = gmh′ and V(h) ⊆ xmV(h′) for some 1 ≤ m < t. Then
h = gm+nh, and hence m+ n ≥ t since ord(χ(g)) = t. Thus V(h) ⊆ xm+nV(h) = 0,
a contradiction. It follows that h′ = h.

For any kG-submodule U �= 0 of V(h), k[x]U is a Yetter-Drinfeld submodule of
V by Lemma 16.1.27. Since xnU ⊆ Vgnh for any 0 ≤ n < t and since ord(g) ≥ t, it
follows that k[x]U ∩ V(h) = U . Thus the simplicity of V implies that V(h) is simple

in G
GYD.

(4) Since V(h) ∈ G
GYD and V is simple in

kred[x;χ,g]
kred[x;χ,g]

YD, Lemma 16.1.27 implies

that V = k[x]V(h). Thus V is isomorphic to a quotient of W (V(h)). Hence the claim
follows from (2). �

Theorem 16.1.32. Assume that χ(g) is a primitive root of 1 of order t. For

any U ∈ G
GYD let W (U) = kred[x;χ, g]⊗kG U ∈ kred[x;χ,g]

kred[x;χ,g]
YD.
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(1) Let U be a simple Yetter-Drinfeld module over kG and let h ∈ G and
λ ∈ k×. Assume that

δU (u) = h⊗ u, gu = χ(h)−1λu

for any u ∈ U . Let

W (U)red =

{
W (U) if λ /∈ {χ(g)−m | 0 ≤ m < t− 1},
W (U)/(k[x]xn+1 ⊗ U) if λ = χ(g)−n, 0 ≤ n < t− 1.

Then W (U)red is simple in
kred[x;χ,g]
kred[x;χ,g]

YD.

(2) Let U1, U2 ∈ G
GYD be simple objects. Assume that g acts on U1 and on

U2 by a multiple of the identity. Then U1
∼= U2 in G

GYD if and only if

W (U1)red ∼= W (U2)red in
kred[x;χ,g]
kred[x;χ,g]

YD.

(3) Let h ∈ G and V ∈ kred[x;χ,g]
kred[x;χ,g]

YD with V(h) �= 0 and gu = χ(h)−1λu for

some u ∈ V(h) \ {0}, λ ∈ k×. Then V(h) ∈ G
GYD is simple, gv = χ(h)−1λv

for any v ∈ V(h), and V ∼= W (V(h))red.

Proof. (1) If λ = χ(g)−n for some 0 ≤ n < t − 1, then W (U)red is sim-
ple by Proposition 16.1.30(2). Otherwise the proof is analogous to the proof of
Theorem 16.1.31(2).

(2) Analogous to the proof of Theorem 16.1.31(1).
(3) By Theorem 16.1.31(3), V(h) ∈ G

GYD is simple. Hence V(h) is a simple kG-

module. Since G is abelian and gu = χ(h)−1λu, it follows that gv = χ(h)−1λv for
all v ∈ V(h). Moreover,

V = kred[x;χ, g]V(h) = k[x]V(h).

Thus V is isomorphic to a quotient of W (V(h)). If λ = χ(g)−n for some 0 ≤ n < t,
then V ∼= W (V(h))red by Proposition 16.1.30(2). Otherwise W (V(h)) = W (V(h))red
is simple by (1) and hence V ∼= W (V(h))red. �

16.2. On the structure of U+
q

Let θ ≥ 1, I = {1, . . . , θ}, and let q = (qij)i,j∈I be a family of non-zero elements
in k. We choose a realization of q as the braiding matrix of a Yetter-Drinfeld
module as follows. Let G be an abelian group, H = kG its group algebra, and
let K1, . . . ,Kθ ∈ G and χ1, . . . , χθ ∈ Alg(kG, k) be such that χj(Ki) = qij for all
i, j ∈ I. (Elements K1, . . . ,Kθ and maps χ1, . . . , χθ as required exist for example
if G = Zθ.) For all j ∈ I, let Mj ∈ H

HYD be a one-dimensional object in H
HYD,

Ej ∈ Mj \ {0} with

δMj
(Ej) = Kj ⊗ Ej , h · Ej = χj(h)Ej(16.2.1)

for all h ∈ H, and M = (M1, . . . ,Mθ). The existence of M is guaranteed by
Example 1.4.3.

Assume that the matrix q is quasi-generic in the sense of Definition 8.2.1. Then
by Lemma 15.1.4, M is i-finite for all i if and only if q is of Cartan type, that is,
there is a Cartan matrix (aij)i,j∈I with

qijqji = q
aij

ii for all i, j ∈ I.(16.2.2)

In this case, aij = aMij for all i, j ∈ I.
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Thus D = D(G, (Ki)i∈I, (χi)i∈I) is a quasi-generic YD-datum of Cartan type
with braiding matrix q.

Assume (16.2.2) for the rest of the section. By Theorem 15.1.14, M admits all
reflections, and its Cartan graph is standard. By Example 1.10.1, B(Mi) = k[Ei]
is a polynomial algebra for all i ∈ I. Moreover, for any N ∈ FH

θ (M), the set
Hom(W(M), [N ]) carries a natural group structure isomorphic to the Weyl group
of A by Proposition 9.3.15.

If A is of finite type, then we know already a basis of B(M).

Theorem 16.2.1. Assume that A is of finite type. Let w be the longest element
of the Weyl group of A and let κ = (i1, . . . , il) be a reduced decomposition of w. Let
x1, . . . , xl be a root vector sequence for κ in B(M). Then B(M) = EB(M)(κ), and
the monomials

xnl

l · · ·xn1
1 , n1, . . . , nl ≥ 0,

form a basis of B(M).

At the end of the section, see Remark 16.2.6, we relate the root vector sequences
in Theorem 16.2.1 for braiding matrices q = (qdiaij )i,j∈I to the root vectors of
quantized enveloping algebras defined by Lusztig.

Proof. By the above, M admits all reflections. By Theorem 9.3.5, κ is [M ]-
reduced. Since (i, i1, . . . , il) is not [Ri(M)]-reduced by assumption and by Theo-
rem 9.3.5, αi ∈ Λ[M ](κ) for all i ∈ I. Hence the claim follows from Theorem 15.2.7

and Example 1.10.1. Indeed, for any α ∈Δ
[M ] re
+ , qαα = qjj for some j ∈ I and qjj

is not a root of unity or qjj = 1, char(k) = 0. �

Let N = N (S,N, f) be a pre-Nichols system of M . Thus S is an Nθ
0-graded

Hopf algebra in H
HYD generated by N , and the canonical map pN : S → B(M) is a

surjective morphism of Hopf algebras inducing the isomorphism Ni
fi−→ Mi in

H
HYD

with deg(Mi) = deg(Ni) = αi for all i ∈ I.
For all i ∈ I, let 0 �= xi ∈ Ni. Note that the first axiom of a Nichols system is

satisfied for N , that is, pN induces an isomorphism k[xi] → k[Ei] = B(Mi), both
being isomorphic to the polynomial ring in one indeterminate by Example 1.10.1.
Since the Yetter-Drinfeld modules Ni are one-dimensional for all i, N is a Nichols
system of (M, i) for all i ∈ I if and only if

(adSxi)
1−aM

ij (xj) = 0 for all i, j ∈ I with i �= j.(16.2.3)

A tool to verify (16.2.3) was formulated in Lemma 13.5.6.
Recall that for all i ∈ I, the diagram

k[Ei]#H

γN
i #id

����
��
��
��
��
��
�

=

��

S#H
πN
i #id

�� k[Ei]#H

commutes. By definition, KN
i is the set of right coinvariant elements of the pro-

jection πN
i #id : S#H → k[Ei]#H. Hence KN

i ∈ k[Ei]#H
k[Ei]#HYD, where KN

i is a left

k[Ei]#H-module via the adjoint action. Recall thatKN
i is an Nθ

0-graded subalgebra
of S.
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Now we fix i ∈ I. We want to apply the theory of weight modules over k[Ei]#H
in Section 16.1 with x = Ei, g = Ki and χ = χi.

For all α =
∑θ

j=1 ajαj , a1, . . . , aθ ∈ Z, we define

Kα =
θ∏

j=1

K
aj

j , χα =
θ∏

j=1

χ
aj

j .

Note that for all α ∈ Nθ
0 and x ∈ S(α),

g · x = χα(g)x for all g ∈ G.(16.2.4)

In particular, KN
i is a semisimple H-module, and a weight module for k[Ei]#H.

Lemma 16.2.2. Let α ∈ Zθ and i ∈ I. Then

χi(KsMi (α)) = χα(Ki)
−1, χsMi (α)(Ki) = χi(Kα)

−1.

Proof. Let α =
∑θ

j=1 ajαj , where a1, . . . , aθ ∈ Z. By definition of the reflec-

tion sMi , sMi (α) = α− (
∑θ

j=1 ajaij)αi. Hence

χi(KsMi (α)) =
θ∏

j=1

q
aj

ji

θ∏
j=1

q
−ajaij

ii =
θ∏

j=1

q
aj

ji

θ∏
j=1

(qijqji)
−aj = χα(Ki)

−1,

and the second equation follows from the first, since (sMi )2 = id. �

Note that in the notation of Proposition 16.1.6, (KN
i )Kα

= KN
i (α).

Let V ⊆ KN
i be a subobject in

k[Ei]#H
k[Ei]#HYD, and λ ∈ k. For all α ∈ Nθ

0 let

V (α)λ = {v ∈ V (α) | Ki · v = χ−1
i (Kα)λv}.(16.2.5)

Recall from Definitions 16.1.3 and 16.1.8 that λ ∈ k is a weight of V , if V (α)λ �= 0
for some α. If λ is a weight of V , then Vλ =

⊕
α∈Nθ

0
V (α)λ is the weight space of

V of weight λ.
The next theorem mainly follows from the theory of Yetter-Drinfeld modules

over a Hopf algebra of polynomials from Section 16.1.

Theorem 16.2.3. Let α ∈ Nθ
0, and i ∈ I. Assume that qii is not a root of unity.

Then

dimKN
i (α) = dimKN

i (sMi (α)).

Proof. We separate the αi-part of α and write α = β + mαi, where m ≥ 0,

β =
∑θ

j=1 bjαj with b1, . . . , bθ ≥ 0, bi = 0. Let

V =
⊕
p≥0

KN
i (β + pαi).

(1) We claim that V ⊆ KN
i is a subobject in

k[Ei]#H
k[Ei]#HYD.

For all γ ∈ Nθ
0, adEi(K

N
i (γ)) ⊆ KN

i (γ + αi). In particular, V ⊆ KN
i is a

k[Ei]#H-submodule.
We denote the comultiplication of S by ΔS(x) = x(1)⊗x(2) for all x ∈ S. Then

the k[Ei]#H-comodule structure of KN
i is

KN
i

δ−→ k[Ei]#H ⊗KN
i , x �→ πN

i (x(1))#x(2)
(−1) ⊗ x(2)

(0).
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For all p ≥ 0, x ∈ KN
i (β + pαi),

πN
i (x(1))⊗ x(2) ∈

⊕
γ+λ=β+pαi

γ,λ∈N
θ
0

πN
i (S(γ))⊗KN

i (λ)

=
⊕

γ=rαi,0≤r≤p
λ=β+(p−r)αi

πN
i (S(γ))⊗KN

i (λ),

since πN
i (Ej) = 0 for all j �= i. Hence V ⊆ KN

i is a k[Ei]#H-subcomodule.
(2) We next show that for all p ≥ 0, KN

i (β + pαi) is 0 or the weight space of
V of weight λp = χβ+pαi

(Ki)χi(Kβ+pαi
).

For any p ≥ 0,

Ki · v = χβ+pαi
(Ki)v for all v ∈ KN

i (β + pαi)(16.2.6)

by (16.2.4). Now (16.2.5) and (16.2.6) imply that

KN
i (β + pαi) = KN

i (β + pαi)λp

with λp = χβ+pαi
(Ki)χi(Kβ+pαi

) = χβ(Ki)χi(Kβ)q
2p
ii . Then the claim in (2)

follows from the definition of V , since qii is not a root of unity.
(3) Note that the assumptions in Corollary 16.1.22 are satisfied for V , since V

is a semisimple H-module, and KN
i is a rational k[Ei]-module under the adjoint

action by Lemma 13.5.11 and by the assumption that M is i-finite. Let p ≥ 0. We
prove the theorem for α = β + pαi.

(a) Assume that KN
i (β + pαi) �= 0. By (2), KN

i (β + pαi) = Vλp
. Hence by

Corollary 16.1.22, λ−1
p is a weight of V , and dimVλp

= dimVλ−1
p
. By (2), there is

an integer r ≥ 0 such that Vλ−1
p

= KN
i (β + rαi), and

λ−1
p = χβ+rαi

(Ki)χi(Kβ+rαi
) = χβ(Ki)χi(Kβ)q

2r
ii .(16.2.7)

On the other hand, by Lemma 16.2.2,

(16.2.8)
λ−1
p =χβ+pαi

(Ki)
−1χi(Kβ+pαi

)−1

=χsMi (β+pαi)(Ki)χi(KsMi (β+pαi)).

Let t = −
∑θ

j=1 bjaij − p. Then sMi (β + pαi) = β + tαi, and it follows from

(16.2.8) that λ−1
p = χβ(Ki)χi(Kβ)q

2t
ii . Since qii is not a root of 1, and t ≥ 0 by

Theorem 13.5.12(4), (16.2.7) implies t = r. Thus β + rαi = sMi (β + pαi), and

dimKN
i (β + pαi) = dimVλp

= dimVλ−1
p

= dimKN
i (sMi (β + pαi)).

(b) Assume that KN
i (β+pαi) = 0. Then KN

i (sMi (β+pαi)) = 0 by (a) applied
to KN

i (sMi (β + pαi)) and since (sMi )2 = id. �

Definition 16.2.4. Let T (M) = T (M1 ⊕ · · · ⊕Mθ) be the tensor algebra as a
Hopf algebra in H

HYD. By Proposition 4.3.12, the elements (adT (M)Ei)
1−aij (Ej),

i �= j, are primitive in T (M). Hence the quotient algebra

U+
q = T (M)/

(
(adT (M)Ei)

1−aM
ij (Ej), 1 ≤ i, j ≤ θ, i �= j

)
is a Hopf algebra in H

HYD. We also use the notation

U+
q = k〈E1, . . . , Eθ | (adEi)

1−aij (Ej) = 0 for all i, j ∈ I, i �= j〉.(16.2.9)
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Note that U+
q = U(D), where D = D(G, (Ki)i∈I, (χi)i∈I) (see Definition 8.3.1).

An explicit form of the elements (adEi)
1−aij (Ej) of the tensor algebra T (M)

was given in Lemma 15.1.3.

Theorem 16.2.5. Let q = (qij)i,j∈I be a family of non-zero elements in k, and
assume that q is quasi-generic and of Cartan type with Cartan matrix (aij)i,j∈I. Let
G be an abelian group, H = kG, K1, . . . ,Kθ ∈ G, and χ1, . . . , χθ ∈ Alg(H, k) such
that χj(Ki) = qij for all i, j ∈ I. For all j ∈ I, let Mj ∈ H

HYD be a one-dimensional
object in H

HYD and let Ej ∈ Mj\{0} satisfying (16.2.1), and let M = (M1, . . . ,Mθ).

(1) Let N be a pre-Nichols system of M such that (adNi)
1−aij (Nj) = 0 for

any i, j ∈ I with i �= j. Then N admits all reflections.
(2) Assume that the Cartan matrix (aij)i,j∈I is of finite type. Then

B(M) ∼= k〈E1, . . . , Eθ | (adEi)
1−aij (Ej) = 0 for all i, j ∈ I, i �= j〉.

Proof. (1) Let N = N (S,N, f) and let i ∈ I. As argued below Theo-

rem 16.2.1, N is a Nichols system of (M, i). Then Ri(N ) = N (S̃, Ñ , f̃) is a Nichols

system of (M, i) by Proposition 13.5.14. For all j ∈ I let Ẽj ∈ Ñj .
By Lemma 15.1.8, the braiding matrix (q′ij)i,j∈I of Ri(M) satisfies

q′jj = qjj for all j ∈ I,

q′jkq
′
kj = qjkqkj = q′jj

ajk for all j, k ∈ I.

Hence it is enough to prove that

(adS̃Ẽj)
1−ajk(Ẽk) = 0 for all j, k ∈ I with i �= j �= k.

(We know already from Remark 13.5.15 that the same equation for i = j �= k
holds.) We distinguish two cases.

(a) j �= i, k = i.
(b) j �= i, k �= i, j �= k.

(a) Let j ∈ I with j �= i. If qii = 1 and char(k) = 0, then qijqji = 1 and

aij = aji = 0. Hence adS̃Ẽi(Ẽj) = 0 as mentioned before and thus adS̃Ẽj(Ẽi) = 0.
Assume now that qii is not a root of unity. By Lemma 13.5.6 it is enough to

show that for any m ≥ 0, dim S̃(αi +mαj) = dimS(αi +mαj).
Let m ≥ 0. We first claim that

dimS(αi +mαj) = dimKN
i (αi +mαj) + 1,(16.2.10)

dim S̃(αi +mαj) = dimΩ(KN
i )(αi +mαj) + 1.(16.2.11)

Since S ∼= KN
i #k[Ei], we compute

dimS(αi +mαj) =
∑
γ∈Nθ

0

dimKN
i (γ) · dim k[Ei](αi +mαj − γ)

= dimKN
i (αi +mαj) + dimKN

i (mαj),

where the last equality follows, since for any γ ∈ Nθ
0, the following are equivalent.

(i) dim k[Ei](αi +mαj − γ) �= 0,
(ii) αi +mαj − γ = tαi for some t ≥ 0,
(iii) γ = (1− t)αi +mαj with t = 0 or t = 1.
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This finishes the proof of (16.2.10), since dimKN
i (mαj) = 1, and (16.2.11) follows

in the same way, since S̃ = Ω(KN
i )#k[E∗

i ].
Now we can prove our claim.

dim S̃(αi +mαj) = dimΩ(KN
i )(αi +mαj) + 1 (by (16.2.11))

= dimKN
i (sMi (αi +mαj)) + 1 (by Thm. 13.5.12(4))

= dimKN
i (αi +mαj) + 1 (by Thm. 16.2.3)

= dimS(αi +mαj). (by (16.2.10))

(b) Let j, k ∈ I. Assume that i, j, k are pairwise distinct. Again it is enough to

show that for all m ≥ 0, dim S̃(αk +mαj) = dimS(αk +mαj). We argue as in (a).

dim S̃(αk +mαj) = dimΩ(KN
i )(αk +mαj)

= dimKN
i (sMi (αk +mαj)) (by Thm. 13.5.12(4))

= dimKN
i (αk +mαj) (by Thm. 16.2.3)

= dimS(αk +mαj).

In fact, if qii = 1 and char(k) = 0, in the second last step we cannot use Theo-
rem 16.2.3. However, then aij = aik = 0, and hence sMi (αk +mαj) = αk +mαj .

(2) Since the quantum Serre relations are homogeneous, U+
q is Nθ

0-graded, where

deg(Ei) = αi for all i ∈ I. Hence N = N (U+
q ,M, id) is a pre-Nichols system of

M and (adNi)
1−aij (Nj) = 0 for all i, j ∈ I with i �= j. By Theorem 15.1.14, the

Cartan graph of M is finite. Hence (2) follows from (1) and Theorem 14.5.4. �

We note that the second part of the above Theorem holds without the finiteness
assumption on the Cartan matrix. However, the proof of the general case requires
other techniques.

Remark 16.2.6. This remark is based on formulas and facts which are not
proven in this book. It is intended to prove that Lusztig’s root vectors form a root
vector sequence in the sense of Definition 15.2.1.

Assume that k = Q(v), A is of finite type, and qij = vdiaij for all i, j ∈ I, where
di ∈ {1, 2, 3} and diaij = djaji for all i, j ∈ I. Let W be the Weyl group of A. In
Section 1.1 and Theorem 3.1 in [Lus90b] Lusztig defines the quantized enveloping
algebra U attached to the pair (A, (di)i∈I), and automorphisms Ti, i ∈ I, of U. We
follow these definitions without spelling them out explicitly. Lusztig proves that
for any reduced decomposition κ = (i1, . . . , il) of an element w ∈ W and any i ∈ I
with w(αi) > 0 the element Tκ(Ei) = Ti1 · · ·Til(Ei), called a root vector, is in the
positive part U+ of U. Moreover, Tκ(Ei) is homogeneous of degree w(αi) and does
not depend on the choice of the reduced decomposition of w. Let us prove that the
root vectors

Ei1 , Ti1(Ei2), . . . , Ti1Ti2 · · ·Til−1
(Eil)(16.2.12)

for a reduced decomposition

κ = (i1, . . . , il)

of an element w ∈ W form a root vector sequence for κ in U+ in the sense of
Definition 15.2.1. Note that the conditions on the degrees of the root vectors
are satisfied. Moreover, Lusztig’s root vectors satisfy Levendorskii-Soibelman type
commutation relations as in Theorem 14.1.12, and hence their ordered products
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(in reverse ordering) form a subalgebra of U+. Let us write Δ for the (braided)
comultiplication of U+. Then it remains to show for each 1 ≤ k ≤ l that

Δ(E)− E ⊗ 1 ∈ Ck−1 ⊗U+,(16.2.13)

where E is the k-th member of the sequence (16.2.12) and Ck−1 is the subalgebra of
U+ generated by the first k−1 members of the sequence (16.2.12). To do so, we use
the braided commutators from Definition 6.2.16. Moreover, we may assume that
the submatrix of A formed by the rows and columns i1, . . . , il is indecomposable.
Recall from [Lus90b] the notation

[n]d =
vnd − v−nd

vd − v−d
, [m]!d =

m∏
k=1

[k]d

for all n ∈ Z, m ∈ N0, and d > 0.
Before starting, it will be helpful to collect some formulas. Define for each

i, j ∈ I with i �= j and for each k ≥ 0 inductively

Ei0,j = Ej , Eik+1,j = [Ei, Eik,j ]c,(16.2.14)

Ej,i0 = Ej , Ej,ik+1 = [Ej,ik , Ei]c.(16.2.15)

In particular, we have Ei1,j = [Ei, Ej ]c, Ei2,j = [Ei, [Ei, Ej ]c]c, Ej,i1 = [Ej , Ei]c,
and Ej,i2 = [[Ej , Ei]c, Ei]c. By induction on k one obtains that

(−1)k
[k]!di

Eik,j =
∑

r+s=k

(−1)r v
dis(aij+k−1)

[r]!di
[s]!di

Er
i EjE

s
i ,(16.2.16)

(−1)k
[k]!di

Ej,ik =
∑

r+s=k

(−1)s v
dir(aij+k−1)

[r]!di
[s]!di

Er
i EjE

s
i(16.2.17)

for all i, j ∈ I with i �= j and all k ∈ N0. Moreover,

FiEik,j − Eik,jFi = [1− aij − k]di
[k]di

Eik−1,jK
−1
i(16.2.18)

for all i, j ∈ I with i �= j and all k ∈ N0.
Setting k = −aij in (16.2.16) one obtains that

Ti(Ej) =
(−1)−aij

[−aij ]!di

Ei−aij ,j .

With this and (16.2.18) one obtains quickly by induction on k that

Ti(Ej,ik) =
(−1)−aij [k]!di

[−aij − k]!di

Ei−aij−k,j(16.2.19)

for all i, j ∈ I with i �= j and for all k ∈ N0.
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In order to check (16.2.13), we will also use the following formulas for Δ(Eik,j)
and Δ(Ej,ik), k ≥ 0, which again can be obtained by induction on k:

Δ(Eik,j) = Eik,j ⊗ 1

+

k∑
r=0

vdir(k−r)
k−1∏
s=r

(1− v2di(aij+s))
[k]!di

[r]!di
[k − r]!di

Ek−r
i ⊗ Eir,j ,

(16.2.20)

Δ(Ej,ik) = 1⊗ Ej,ik

+

k∑
r=0

vdir(k−r)
k−1∏
s=r

(1− v2di(aij+s))
[k]!di

[r]!di
[k − r]!di

Ej,ir ⊗ Ek−r
i .

(16.2.21)

Step 1: There exist i, j ∈ I, i �= j, with {i1, . . . , il} ⊆ {i, j}. Then either
aij = aji = 0 or aijaji ∈ {1, 2, 3}. Moreover, in the second case we may assume
that aji = −1 and aij ∈ {−1,−2,−3}. If aij = −3 then let m = 6, and let
m = 2 − aij otherwise. It suffices to look at the sequences κ1 = (i, j, i, j, . . . ) and
κ2 = (j, i, j, i, . . . ) of length m.

Case 1.1: aij = aji = 0. Then m = 2, Ti(Ej) = Ej , and (16.2.13) is trivial.
Case 1.2: aij = aji = −1. Then m = 3 and the root vectors for κ1 and κ2 are

Ei, Ti(Ej) = −[Ei, Ej ]c, TiTj(Ei) = Ej ,(16.2.22)

and

Ej , Tj(Ei) = −[Ej , Ei]c, TjTi(Ej) = Ei,(16.2.23)

respectively, by (16.2.19). Then (16.2.13) follows for both sequences from (16.2.20).
Case 1.3: aij = −2, aji = −1, m = 4. The root vectors for κ1 and κ2 are

Ei, Ti(Ej) =
1

[2]di

[Ei, [Ei, Ej ]c]c, TiTj(Ei) = −[Ei, Ej ]c, Ej ,

and

Ej , Tj(Ei) = −[Ej , Ei]c, TjTi(Ej) =
1

[2]di

[[Ej , Ei]c, Ei]c, Ei,

respectively, because of (16.2.19). Thus (16.2.13) for the root vectors in the first
sequence follows from (16.2.20), and for the root vectors in the second sequence
from (16.2.21).

Case 1.4: aij = −3, aji = −1, m = 6. The root vectors for κ1 and κ2 are

Ei,

Ti(Ej) =
−1
[3]!di

Ei3,j ,

TiTj(Ei) =
1

[2]di

Ei2,j ,

TiTjTi(Ej) =
1

[3]!di

[Ei2,j , [Ei, Ej ]c]c,

TiTjTiTj(Ei) =− [Ei, Ej ]c,

Ej ,
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and

Ej ,

Tj(Ei) =− [Ej , Ei]c,

TjTi(Ej) =
1

[3]!di

[[Ej , Ei]c, Ej,i2 ]c,

TjTiTj(Ei) =
1

[2]di

Ej,i2 ,

TjTiTjTi(Ej) =
−1
[3]!di

Ej,i3 ,

Ei,

respectively, because of (16.2.19). Again, (16.2.13) follows from (16.2.20), (16.2.21),
and an explicit calculation of the coproduct of the root vectors T1T2T1(E2) and
T2T1(E2).

Step 2: θ ≥ 1, l ≥ 2, and there exists 0 ≤ p ≤ l− 2 such that si1 · · · sip(αj) > 0
for all j ∈ {il, il−1}, and in ∈ {il, il−1} for all p < n ≤ l. Assume that (16.2.13)
holds for all sequences of length at most p+ 1. Let λ = (i1, . . . , ip), i = ip+1, and
j = ip+2. As above, for each p ≤ k ≤ l let Ck be the subalgebra of U+ generated
by the first k root vectors in (16.2.12). Then

Δ(Tλ(Ei))− Tλ(Ei)⊗ 1,Δ(Tλ(Ej))− Tλ(Ej)⊗ 1 ∈ Cp ⊗U+(16.2.24)

by assumption on the sequences (i1, . . . , ip, i) and (i1, . . . , ip, j), respectively. More-
over,

[x, Tλ(Ej)]c ∈ Cp ⊗U+(16.2.25)

for all x ∈ Cp by the Levendorskii-Soibelman type commutation relations, and
hence

[x′ ⊗ x′′, Tλ(Ej)⊗ 1]c ∈ Cp ⊗U+(16.2.26)

for all x′ ⊗ x′′ ∈ Cp ⊗U+.
Since type G2 was already discussed in Step 1, we may assume additionally

that aijaji ∈ {0, 1, 2}.
Case 2.1: aij = aji = 0. Then l = p + 2 and TλTi(Ej) = Tλ(Ej). Thus

(16.2.13) holds by (16.2.24).
Case 2.2: aij = aji = −1. Then p+ 2 ≤ l ≤ p+ 3. Let

E = −TλTi(Ej) = [Tλ(Ei), Tλ(Ej)]c.

Then

Δ(E) =Δ([Tλ(Ei), Tλ(Ej)]c)

∈ [Tλ(Ei)⊗ 1 + Cp ⊗U+, Tλ(Ej)⊗ 1 + Cp ⊗U+]c

⊆ [Tλ(Ei), Tλ(Ej)]c ⊗ 1 + [Cp ⊗U+, Tλ(Ej)⊗ 1]c + Cp+1 ⊗U+

by (16.2.24). Hence Δ(TλTi(Ej))− TλTi(Ej)⊗ 1 ∈ Cp+1 ⊗U+ by (16.2.26).
Note that TλTiTj(Ei) = Tλ(Ej). Thus, if l = p + 3 then (16.2.13) holds for

k = l by (16.2.24).
Case 2.3: aij = −2, aji = −1. Then p+ 2 ≤ l ≤ p+ 4. Let

E′ = −TλTiTj(Ei) = [Tλ(Ei), Tλ(Ej)]c, E′′ = [2]di
TλTi(Ej) = [Tλ(Ei), E

′]c,
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see Case 1.3. Thus

Δ(E′) =Δ([Tλ(Ei), Tλ(Ej)]c)

∈ [Tλ(Ei)⊗ 1 + Cp ⊗U+, Tλ(Ej)⊗ 1 + Cp ⊗U+]c

⊆ [Tλ(Ei), Tλ(Ej)]c ⊗ 1 + Cp+1 ⊗U+,

Δ(E′′) =Δ([Tλ(Ei), E
′]c)

∈ [Tλ(Ei)⊗ 1 + Cp ⊗U+, E′ ⊗ 1 + Cp+1 ⊗U+]c

⊆ [Tλ(Ei), E
′]c ⊗ 1 + Cp+1 ⊗U+

by (16.2.26). This implies (16.2.13) for k ≤ p+ 3. If l = p+ 4 then (16.2.13) holds
for k = l by (16.2.24), since TiTjTi(Ej) = Ej .

Case 2.4: aij = −1, aji = −2. Then p+ 2 ≤ l ≤ p+ 4. Let

E′ = −TλTi(Ej) = [Tλ(Ei), Tλ(Ej)]c, E′′ = [2]di
TλTiTj(Ei) = [E′, Tλ(Ej)]c,

see Case 1.3. Thus

Δ(E′) =Δ([Tλ(Ei), Tλ(Ej)]c)

∈ [Tλ(Ei)⊗ 1 + Cp ⊗U+, Tλ(Ej)⊗ 1 + Cp ⊗U+]c

⊆ [Tλ(Ei), Tλ(Ej)]c ⊗ 1 + Cp+1 ⊗U+,

Δ(E′′) =Δ([E′, Tλ(Ej)]c)

∈ [E′ ⊗ 1 + Cp+1 ⊗U+, Tλ(Ej)⊗ 1 + Cp ⊗U+]c

⊆ [E′, Tλ(Ej)]c ⊗ 1 + Cp+3 ⊗U+

by (16.2.26), since Tλ(Ej) = TλTiTjTi(Ej). This implies (16.2.13) for k ≤ p+ 3. If
l = p+ 4 then (16.2.13) holds for k = l again by (16.2.24).

Step 3: General setting. Let θ ∈ N, I = {1, 2, . . . , θ}, and proceed by induction
on the length l of the sequence κ. The claim for l ≤ 1 is trivial.

Assume that l ≥ 2 and that the claim is proven for elements of W of length at
most l − 1. Then, by induction hypothesis, it remains to prove (16.2.13) for k = l.
Note that the algebra Cl−1 in (16.2.13) generated by the first l−1 root vectors is in-
dependent of the choice of the reduced decomposition of wsil = si1 · · · sil−1

. Indeed,
if 1 ≤ k ≤ l − 4, ik+2 = ik, ik+3 = ik+1, and siksik+1

siksik+1
= sik+1

siksik+1
sik ,

then (by Step 1, Case 3,) Cl−1 is generated as an algebra by the root vectors
Ti1 · · ·Tin−1

(Ein) with 1 ≤ n ≤ l − 1, n /∈ {k + 1, k + 2}, and the same algebra is
generated by the root vectors corresponding to the reduced decomposition

(i1, . . . , ik−1, ik+1, ik, ik+1, ik, ik+4, . . . , il−1).

The argument for the other Coxeter relations is analogous by the other cases in
Step 1.

By the previous paragraph, and by Kostant’s decomposition of wsil , see Corol-
lary 9.4.17 with J = {il, il−1}, we may assume that there exists 0 ≤ p ≤ l− 2 such
that in ∈ {il, il−1} whenever p < n ≤ l, and si1 · · · sip(αj) > 0 for all j ∈ {il, il−1}.
Then (16.2.13) for k = l follows from Step 2.

Remark 16.2.7. We keep the notation of the previous remark. Let G be a
free abelian group with basis (Ki)i∈I, and for all j ∈ I, let Mj = kEj ∈ G

GYD
the one-dimensional object with Ej ∈ (Mj)

χj

Kj
, where χj(Ei) = qij = vdiaij for all
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i, j ∈ I. Then U+ = B(M) by Theorem 16.2.5. We want to relate the Hopf algebra
isomorphism

T
B(M)
i : L

B(Ri(M))
i → K

B(M)
i , i ∈ I,

defined in Definition 14.3.3, with the Lusztig automorphism Ti : U→ U.
Let i ∈ I, and E∗

i ∈ (kEi)
∗ with E∗

i (Ei) = 1. We have shown in [HS13a,
Section 7] that there is an isomorphism ϕi : B(M) → B(Ri(M)) of N0-graded
algebras and coalgebras with

ϕi(Ej) =

{
ad (E

(−aij)
i )Ej , if j �= i,

(v−3
i − v−1

i )−1E∗
i , if j = i,

and an injective algebra map ιi : K
B(M)
i #B(M∗

i )→ U such that the composition

B(M)
ϕi−→ B(Ri(M))

Θ̃−→ K
B(M)
i #B(M∗

i )
ιi−→ U

is the restriction of Ti to U+ = B(M). The Hopf algebra isomorphism Θ̃ is the map
defined in Corollary 13.4.10. The restriction of ϕi defines an algebra isomorphism

ϕi :
coB(Mi)B(M) → coB(M∗

i )B(Ri(M)) = L
B(Ri(M))
i . The restriction of Θ̃ defines

the isomorphism T
B(M)
i : L

B(Ri(M))
i → K

B(M)
i . The map ιi restricted to K

B(M)
i

is the inclusion K
B(M)
i ⊆ B(M) ⊆ U. It follows that Ti defines by restriction an

algebra isomorphism T+
i between the subalgebras coB(Mi)B(M) and B(M)coB(Mi)

of U+ such that the following diagram commutes.

coB(Mi)B(M)
T+
i ��

ϕi
����

���
���

���
K

B(M)
i = B(M)coB(Mi)

L
B(Ri(M))
i

T
B(M)
i



�������������

16.3. On the structure of u+
q

In this section we study a setting similar to Section 16.2, however the braiding
matrix is now non-generic. Let θ ≥ 1, I = {1, . . . , θ}, and let q = (qij)i,j∈I be
a family of non-zero elements in k. We choose a realization of q as the braiding
matrix of a Yetter-Drinfeld module. Let G be an abelian group, H = kG its group
algebra, and let K1, . . . ,Kθ ∈ G and χ1, . . . , χθ ∈ Alg(H, k) such that χj(Ki) = qij
for all i, j ∈ I. For all j ∈ I, let Mj ∈ H

HYD be a one-dimensional object in H
HYD

and let Ej ∈ Mj \ {0} satisfying (16.2.1) for all h ∈ H. Let

M = (M1, . . . ,Mθ)

and V =
⊕θ

i=1 Mi. Then V ∈ H
HYD and (V, cV,V ) is a braided vector space of

diagonal type with braiding matrix q, see Example 1.5.3 and Remark 1.5.4.
Assume that qii �= 1 is a root of unity for all i ∈ I and that q is of Cartan type,

that is, there is a Cartan matrix A = (aij)i,j∈I with

qijqji = q
aij

ii , where 0 ≤ −aij < ord(qii) for all i �= j.(16.3.1)

In this case, aij = aMij for all i, j ∈ I by Lemma 15.1.12. Finally, we assume that
the Cartan matrix A is of finite type. Then Lemma 8.2.4 applies. Moreover, M
admits all reflections by Theorem 15.1.14, and Ri1(· · · (Rik(M))) is of Cartan type
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with Cartan matrix A for all k ∈ N0 and i1, . . . , ik ∈ I. Let W denote the Weyl
group of A.

Definition 16.3.1. Let q = (qij)i,j∈I and M = (M1, . . . ,Mθ) ∈ FH
θ as above

in the beginning of this section. We define

u+
q = B(M),

U+
q = T (M)/

(
(adT (M)Ei)

1−aM
ij (Ej) | i, j ∈ I, i �= j

)
.

The tensor algebra T (M) is a Hopf algebra in H
HYD, and by Proposition 4.3.12,

the elements (adT (M)Ei)
1−aM

ij (Ej), i �= j, are primitive in T (M). Therefore U+
q is

a Hopf algebra in H
HYD. Moreover, N (U+

q ,M, id) is a pre-Nichols system of M . In

some settings, also the notation U+(M) will be used for U+
q .

Remark 16.3.2. The Hopf algebra U+
q is a variant of the positive part of the

quantized enveloping algebra of the complex Lie algebra associated to the Cartan
matrix A. The positive parts of the small quantum groups are special cases of u+

q ,
see Notes to Section 16.3. Our notation is very close to the usual notation in the
theory of quantum groups. However, in our context the notations of u+

q and U+
q

are somewhat sloppy, since the objects depend on the Yetter-Drinfeld module M
rather than on the matrix q. This is one of the reasons why we introduce two
different notations. The second reason is that occasionally we will need the above
construction for reflections of M . Note that the matrix q can be recovered from
M ∈ H

HYD. Indeed, if ei and ej are basis vectors of Mi and Mj , respectively, where
i, j ∈ I, then

cMi,Mj
(ei ⊗ ej) = qijej ⊗ ei.

The braiding matrix q′ = (q′jk)j,k∈I of Ri(M) with i ∈ I was determined in

Lemma 15.1.8(1).

By Example 1.10.1, N(q) is the order of q for all 1 �= q ∈ k of finite order.

Recall that for any α =
∑

i∈I
aiαi in Zθ, gα =

∏
i∈I

gai

i ∈ G,χα =
∏

i∈I
χai

i ∈ Ĝ,

and qαα = χα(gα). Since q is of Cartan type, it is easy to see that for all α ∈ Zθ

and all i ∈ I,

qαα = qsi(α)si(α).(16.3.2)

Theorem 16.3.3. Let q = (qij)i,j∈I and W be as above in the beginning of this
section. Let (i1, . . . , it) be a reduced decomposition of the longest element of W .
Then there is a root vector sequence x1, . . . , xt in B(M) for (i1, . . . , it), and the
elements

xnt
t · · ·xn1

1 , 0 ≤ nk < N(qikik) for all 1 ≤ k ≤ t,

form a basis of u+
q = B(M).

Proof. By Theorem 15.1.14, M admits all reflections. Hence by Proposi-
tion 15.2.6, there is a root vector sequence x1, . . . , xt in B(M) for (i1, . . . , it). Let

κ = (i1, . . . , it), and for all 1 ≤ k ≤ t, let βk = β
[M ],κ
k . By (16.3.2), qikik = qβkβk

for all k, since M is of Cartan type. Hence the claim on the basis of u+
q follows

from Theorem 15.2.7. �
The relevance of U+

q is indicated already by the following lemma.
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Lemma 16.3.4. Let N = N (S,N, f) be a pre-Nichols system of M and for
all j ∈ I let ej ∈ Nj \ {0}. Then (Sys4) holds for all i ∈ I in S if and only if
(adSei)

1−aij (ej) = 0 for all i, j ∈ I with i �= j.

Proof. Assume that (Sys4) holds in S for all i ∈ I. Since the element
(adT (M)Ei)

1−aij (Ej) is primitive in T (M) by Proposition 4.3.12 for any i, j ∈ I
with i �= j, it is mapped to zero in B(M) by the canonical map. Therefore (Sys4)
implies that (adSei)

1−aij (ej) = 0 in S for all i, j ∈ I with i �= j.
Conversely, assume that (adSei)

1−aij (ej) = 0 for all i, j ∈ I with i �= j. Since
N is a pre-Nichols system of M , ej �= 0 for any j ∈ I. Moreover,

(adSNi)
m(Nj) = k(adSei)m(ej)

for all i, j ∈ I with i �= j and for all m ∈ N0. Now

Δ1,m

(
(adSei)

m(ej)
)
= (m)qii(1− qm−1

ii qijqji)ei ⊗ (adSei)
m−1(ej)

by Proposition 4.3.12 for all i, j ∈ I with i �= j and for all m > 0. Therefore
(adSei)

m(ej) �= 0 in S for all i, j ∈ I with i �= j and for all 0 ≤ m ≤ −aij . Hence
(Sys4) holds in S for all i ∈ I because of aMij = aij for all i, j ∈ I. �

Remark 16.3.5. Let i ∈ I. By Example 1.10.1 and since qii �= 1, the validity of
(Sys3) for a pre-Nichols system N of M is equivalent to eni = 0, where ei ∈ Ni \{0}
and n = ord(qii).

Our goal in this section is to provide a basis of U+
q , see Theorem 16.3.14, and

to define the Nichols algebra quotient u+
q of U+

q by generators and relations, see
Theorem 16.3.17. Our claims require an additional technical assumption on the
set {qii | i ∈ I, di = 1} which leads us to the notion of a braiding matrix which is
genuinely of finite Cartan type. The necessity of this assumption is discussed at
the end of Remark 16.3.19.

We say that q is genuinely of finite Cartan type if for all i ∈ I with di = 1
one of the following holds:

(1) the component containing i has a Cartan matrix of type A1, A2, or B2,
(2) ord(qii) ≥ 3, and the component containing i has a Cartan matrix of type

Aθ, θ ≥ 3, or Dθ, θ ≥ 4, or Eθ with 6 ≤ θ ≤ 8,
(3) ord(qii) ≥ 5, and the component containing i has a Cartan matrix of type

Bθ, θ ≥ 3, or Cθ, θ ≥ 3, or F4,
(4) ord(qii) /∈ {1, 2, 3, 4, 6}, and the component containing i has a Cartan

matrix of type G2.

By Lemma 8.2.4, the scalars qii with di = 1 depend only on the component contain-
ing i. Hence the above conditions have to be checked only once for each component.

The definition of a braiding matrix of genuinely finite Cartan type has a tech-
nical interpretation in Lemma 16.3.7 below which will be crucial for the proof of
the main results of this section. The next lemma will be used to prove this inter-
pretation.

Lemma 16.3.6. Let j ∈ I, i, k ∈ I\{j}, and bijk = aijajk−aij−aik ∈ Z. Then
the following hold.

(1) bijk ≥ 0 if and only if i �= k or i = k, aij < 0.
(2) bijk ≤ max{−aij ,−aik} except the following cases:

– i = k, aijaji = 3; then bijk = 1− aij.
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– i �= k, aij = −1, aik < 0; then bijk = 1− aik.
– i �= k, aij = −1, aik = 0, ajk < 0; then bijk = 1− ajk.
– i �= k, aij = −2, ajk = 0, aik = −1; then bijk = 3.
– i �= k, aij = −2, ajk = −1, aik = 0; then bijk = 4.

Proof. (1) If i = k then bijk = aijaji − aij − 2. If moreover aij = 0, then
bijk = −2, and otherwise aij , aji ≤ −1 and bijk ≥ 0.

If i �= k then aij , ajk, aik ≤ 0 and hence bijk ≥ 0.
(2) Assume first that i = k. Then

bijk = aijaji − aij − 2 ≤ 3− aij − 2 = 1− aij

since A is of finite type. Moreover, bijk = 1− aij if and only if aijaji = 3.
Assume now that i �= k. If aij = 0 then bijk = −aik and we are done. If

aij = −3 then aik = ajk = 0 since A is of finite type. In this case, bijk = −aij and
the lemma is again proven. If aij = −2 then aik + ajk ∈ {0,−1} since A is of finite
type. Hence max{−aij ,−aik} = 2 and bijk = −2ajk + 2 − aik. If ajk = −1 then
bijk = 4, if aik = −1 then bijk = 3, and if ajk = aik = 0 then bijk = 2.

Assume now that i �= k and aij = −1. Then bijk = −ajk − aik + 1. Since A is
of finite type, we conclude that aikajk = 0 and aik, ajk ∈ {0,−1,−2}. If aik < 0
then ajk = 0 and bijk = 1 − aik. Finally, if aik = 0 then bijk = 1 − ajk. Hence
bijk ≤ −aij if and only if ajk = 0. �

Lemma 16.3.7. For all i, j, k ∈ I with i �= j and j �= k let

bijk = aijajk − aij − aik.

Then q is genuinely of finite Cartan type if and only if ord(qii) > bijk for all
i, j, k ∈ I with i �= j and j �= k.

Proof. Assume first that ord(qii) > bijk for all i, j, k ∈ I with i �= j, j �= k.

We show that q is genuinely of finite Cartan type. Let i ∈ I with di = 1 and let Â
be the Cartan matrix of the component of i.

Assume that Â is of type G2. Let j be the second entry of the component of i.
Then

biji = 1− aij = 4, bjij = 1− aji = 2

and hence ord(qii) > 4 and ord(qjj) > 2. Since qjj = q3ii, we conclude that
ord(qii) �= 6.

Assume that Â is of type Am, m ≥ 3, or Dm, m ≥ 4, or Em, m ∈ {6, 7, 8}. Let
j, k be two other entries in the component of i such that aij = −1 and aik+ajk = −1.
Then bijk = 2 and hence ord(qii) > 2.

Assume that Â is of type Bm, m ≥ 3. There are unique entries j, k in the
component of i such that dj = dk = 2 and aij = −2, ajk = −1, aik = 0. Then
bijk = 4 and hence ord(qii) ≥ 5.

Assume that Â is of type Cm, m ≥ 3, or F4. There are unique entries l, j, k in
the component of i such that dl = 1, dj = 1, dk = 2, alj = −1, ajk = −2, alk = 0.
Then bljk = 3 and hence ord(qii) ≥ 4. Moreover, bkjl = 2 and hence ord(qkk) > 2.
Since qkk = q2ii, we conclude that ord(qii) ≥ 5. Thus q is genuinely of finite Cartan
type.

We proved the first half of the claim. To proceed with the other half, assume
that q is genuinely of finite Cartan type. We have to show that ord(qii) > bijk for
all i, j, k ∈ I with i �= j, j �= k. We assumed already below Equation (16.3.1) that
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0 ≤ −ail < ord(qii) for all i, l ∈ I with i �= l. Therefore we only have to consider
the triples (i, j, k) with

bijk > max{−aij ,−aik}.(16.3.3)

These are described in detail in Lemma 16.3.6.
Let (i, j, k) ∈ I3 with i �= j, j �= k, such that (16.3.3) holds. Lemma 16.3.6

implies that i, j, k belong to the same component. Let Â be the Cartan matrix of
this component. Again from Lemma 16.3.6 we conclude that the type of Â is none
of A1, A2, B2. Moreover, i = k if and only if Â is of type G2.

Assume that Â is of type G2. Then k = i. If di = 1 then ord(qii) /∈ {1, 2, 3, 4, 6}
by assumption, biji = 4, and hence ord(qii) > biji. On the other hand, if di = 3
then dj = 1, aij = −1, qii = q3jj , ord(qjj) /∈ {3, 6} and hence ord(qii) > 2 = biji.

Assume that Â is of type Am, m ≥ 3, or Dm, m ≥ 4, or Em, m ∈ {6, 7, 8}.
Then i �= k, aij = −1, aik + ajk = −1 and bijk = 2 by Lemma 16.3.6. Moreover,
ord(qii) ≥ 3 since q is genuinely of finite Cartan type. Therefore ord(qii) > bijk.

Assume that Â is of type Bm, m ≥ 3, or Cm, m ≥ 3, or F4. If di = 1 then
ord(qii) ≥ 5 by assumption, bijk ≤ 4 by Lemma 16.3.6, and hence ord(qii) > bijk.
On the other hand, if di = 2 then aij = −1, dj = 1, aji = −2, and hence aikajk = 0,
aik, ajk ∈ {0,−1}, and bijk = 2 by Lemma 16.3.6. Moreover, ord(qii) > 2 by
assumption. Thus ord(qii) > bijk. This finishes the proof of the lemma. �

Recall the definition of Ri(N ) from Definition 13.5.13, where i ∈ I and N
is a Nichols system of (M, i). The following Proposition is fundamental for the
definition and study of u+

q .

Proposition 16.3.8. Assume that θ ≥ 2 and that the braiding matrix q is
genuinely of finite Cartan type. Let i ∈ I, N = N (S,N, f) be a Nichols system of

(M, i) and let Ri(N ) = N (S̃, Ñ , f̃). Let j, k ∈ I with j �= k and let xj ∈ Nj \ {0},
xk ∈ Nk \ {0}, yj ∈ Ñj, and yk ∈ Ñk. Assume that (adSxj)

1−ajk(xk) = 0. Then
(adS̃yj)

1−ajk(yk) = 0.

Proof. Assume first that j = i. By Proposition 13.5.14, Ri(N ) is a Nichols

system of (Ri(M), i). Since a
Ri(M)
ik = aMik = aik by Proposition 13.5.19(2), we

conclude from (Sys4) that (adS̃yj)
1−ajk(yk) = 0.

Secondly, assume that i = k and aij = 0. Then aji = 0. Let q′ij , q
′
ji be as in

Lemma 15.1.13. Then q′ijq
′
ji = 1 since aij = 0. Hence

adS̃yj(yi) = yjyi − q′jiyiyj = −q′ji(yiyj − q′ijyjyi) = −q′jiadS̃yi(yj),

and adS̃yi(yj) = 0 by the last paragraph. Therefore the Proposition is proven in
this case.

Assume for the rest of the proof that i �= j and that aij < 0 if i = k. If

i �= k then let xi ∈ Ni \ {0}. Let Nini = N (Ŝ, N̂ , f̂) be a Nichols system of
(M, i) as in Proposition 13.5.24. Let p : Nini → N be the unique morphism from

Proposition 13.5.24. We identify xi, xj , and xk with their unique preimage in N̂i,

N̂j , and N̂k, respectively, with respect to p. Let

sjk = (adŜxj)
1−ajk(xk) ∈ Ŝ(αk + (1− ajk)αj).

Then sjk ∈ ker(p) by assumption.
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Next we show that sjk �= 0. By the construction in Proposition 13.5.24, the

defining ideal of Ŝ consists of elements of degree mαi for some m ≥ 2 and of
elements of degree αl + (1 − ail)αi, l ∈ I \ {i}. Since k �= i or k = i, aij < 0, we
conclude that for any m ≥ 0 the elements

xn
j xkx

m−n
j , 0 ≤ n ≤ m,

form a basis in Ŝ(αk +mαj). Hence, sjk �= 0 in Ŝ.

By Proposition 4.3.12, sjk ∈ Ŝ is primitive. Further, j �= k implies that
αk + (1− ajk)αj /∈ N0αi, and hence

sjk ∈ Ŝco k[Ni](αk + (1− ajk)αj).

Recall the definition of kred[x;χi,Ki] from Section 16.1. There is a unique injective

Hopf algebra map ϕi : kred[x;χi,Ki]→ Ŝ#H which is the identity on H and sends

x to xi. Clearly, ϕi(kred[x;χi,Ki]) = k[Ni]#H. Since Ŝco k[Ni] ∈ k[Ni]#H
k[Ni]#HYD, we

may regard Ŝco k[Ni] as a Yetter-Drinfeld module over kred[x;χi,Ki] via ϕi. Since

sjk is primitive in Ŝ and

δŜ(sjk) = K
1−ajk

j Kk ⊗ sjk, K · sjk = χ
1−ajk

j χk(K)sjk

for all K ∈ G, we conclude from Proposition 4.5.1(2) that there is a unique mor-

phism Fi in
kred[x;χi,Ki]
kred[x;χi,Ki]

YD from kred[x;χi,Ki]⊗H ksjk to Ŝco k[Ni] which sends sjk
to sjk.

We record that

χi(K
1−ajk

j Kk)
−1 =q

ajk−1
ji q−1

ki

=(qijqji)
ajk−1(qikqki)

−1q
1−ajk

ij qik

=q
aijajk−aij−aik

ii q
1−ajk

ij qik,

Ki · sjk =q
1−ajk

ij qiksjk

=χi(K
1−ajk

j Kk)
−1q

aij+aik−aijajk

ii sjk,

and hence ksjk is a weight vector of weight q
−bijk
ii in the sense of Definition 16.1.8,

where

bijk = aijajk − aij − aik.

Note that bijk ≥ 0 by Lemma 16.3.6(1), since either i �= k or i = k, aij < 0 by
assumption. Moreover, ord(qii) > bijk by Lemma 16.3.7 since q is genuinely of
finite Cartan type. Therefore Proposition 16.1.30 implies that

0 �= Fi(x
bijk ⊗ sjk) = (adŜxi)

bijk(sjk)

in Ŝco k[Ni]. Moreover, (adŜxi)
bijk(sjk) ∈ ker(p) since sjk ∈ ker(p), and hence

ker(p) ∩ Ŝco k[Ni](αk + (1− ajk)αj + bijkαi) is non-zero. Note that

si(αk + (1− ajk)αj + bijkαi) = αk + (1− ajk)αj .

Thus ker(Ri(p)) contains a non-zero element in degree αk + (1− ajk)αj by Theo-
rem 13.5.12(4) and Lemma 13.5.27(1). This and Lemma 13.5.6 imply the claim. �

Proposition 16.3.8 and Lemma 16.3.4 imply directly the following claim.
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Corollary 16.3.9. Assume that q is genuinely of finite Cartan type. Let k ∈ I
and let N be a Nichols system of (M,k) for which (Sys4) holds for all i ∈ I. Then
(Sys4) holds for Rk(N ) for all i ∈ I.

We also conclude an important information about reflections of particular
Nichols systems.

Corollary 16.3.10. Assume that q is genuinely of finite Cartan type. Let
k ∈ I and let n = ord(qkk). Let J be the (Hopf) ideal of U+

q generated by En
k .

(1) N = N (U+
q /J,M, id) is a Nichols system of (M,k).

(2) Let ek ∈ M∗
k \ {0} and let J ′ be the (Hopf) ideal of U+(Rk(M)) generated

by enk . Then the Nichols systems Rk(N ) and

N (U+(Rk(M))/J ′, Rk(M), id)

of (Rk(M), k) are isomorphic.

Proof. (1) Since En
k is homogeneous and primitive by Proposition 2.4.2(5),

the ideal J is a Hopf ideal in H
HYD and a graded subsapce of S in the sense of the

definition in Section 5.1. Moreover, J ∩
⊕

i∈I
Mi = 0, and hence N is a pre-Nichols

system of M . Finally, (Sys4) holds for k by Lemma 16.3.4, and (Sys3) is valid by
Remark 16.3.5.

(2) Let N ′′ = N (U+(Rk(M))/J ′′, Rk(M), id). Then N ′′ is a Nichols system

of (Rk(M), k) for the same reason as for N . Let N (S̃, Ñ , f̃) = Rk(N ). Note that

q is genuinely of finite Cartan type by assumption. Hence (Sys4) holds in S̃ for

any i ∈ I by Corollary 16.3.9. Moreover, (Sys3) holds in S̃ by construction. Hence
there is a morphism p : N ′′ → Rk(N ) of Nichols systems of (Rk(M), k).

By Proposition 13.5.19, R2
k(M) and M are isomorphic in FH

θ . Hence there is an
isomorphism f : U+(M) → U+(R2

k(M)) of Nθ
0-graded Hopf algebras in H

HYD. Let
N ′ = N (U+(R2

k(M))/f(J), R2
k(M), id). By the arguments of the previous para-

graph there exists a morphism p′ : N ′ → Rk(N ′′) of Nichols systems of (R2
k(M), k).

The composition
Rk(p)p

′ : N ′ → R2
k(N )

is an isomorphism by Proposition 13.5.25. Since p′ is surjective, Rk(p) is an iso-
morphism, and then so is p. �

Proposition 16.3.11. Assume that q is genuinely of finite Cartan type. Let
N = N (S,N, f) be a pre-Nichols system of M such that axiom (Sys4) holds for all
1 ≤ i ≤ θ. Let w ∈ W and κ = (i1, . . . , it) be a reduced decomposition of w, where
t = �(w).

(1) There exists a root vector sequence for κ in S.
(2) Let x1, . . . , xt and y1, . . . , yt be root vector sequences for κ in S. Then

there exist λ1, . . . , λt ∈ k× with yl = λlxl for all 1 ≤ l ≤ t.

Proof. We proceed by induction on t. For t = 0 the claim is trivial. Assume
that t ≥ 1 and that the Proposition holds for all words of length at most t− 1. Let
J be the Hopf ideal of S generated by xn

1 , where x1 ∈ Ni1 \ {0} and n = ord(qi1i1).

Then N ′ = N (S/J,N, f) is a Nichols system of (M, i1). Let N (S̃, Ñ , f̃) = Ri1(N ′).

Because of Corollary 16.3.9, (Sys4) holds in S̃ for all i ∈ {1, . . . , θ}. Since (i2, . . . , it)
is a reduced decomposition of si1w, by induction hypothesis there exists a root

vector sequence x2, . . . , xt for (i2, . . . , it) in S̃. Moreover, any other root vector
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sequence for (i2, . . . , it) in S̃ is of the form λ2x2, . . . , λtxt with λ2, . . . , λt ∈ k×.
(We call this uniqueness up to scaling.) Then from Proposition 15.2.5 it follows
that there exists a root vector sequence x′

1, . . . , x
′
t for (i1, . . . , it) in S/J . Moreover,

this root vector sequence is unique up to scaling because of Proposition 15.2.4 and
since dimNi1 = 1. By Lemma 15.2.3, x′

l ∈ Ni1 ∪KN ′

i1
for any 1 ≤ l ≤ t. Thus (1)

and (2) hold by Proposition 15.2.9(2) and by Lemma 15.2.3(1). �

Corollary 16.3.12. Assume that q is genuinely of finite Cartan type. Let
p : N → N ′ be a morphism of pre-Nichols systems of M , where

N = N (S,N, f), N ′ = N (S′, N ′, f ′)

such that (Sys4) holds in S for any i ∈ {1, . . . , θ}. Let κ = (i1, . . . , it) be a reduced
decomposition of an element w ∈ W , where t = �(w). Then for any root vector
sequence x′

1, . . . , x
′
t for κ in S′, there is a unique root vector sequence x1, . . . , xt for

κ in S such that p(xl) = x′
l for all 1 ≤ l ≤ t. Moreover, kxl

∼= kx′
l for all 1 ≤ l ≤ t

in H
HYD.

Proof. Since (Sys4) holds in S for all i, it also holds in S′ by Lemma 16.3.4.
Let x′

1, . . . , x
′
t be a root vector sequence for (i1, . . . , it) in S′, and let (x̃1, . . . , x̃t) be

a root vector sequence for (i1, . . . , it) in S. These exist by Proposition 16.3.11(1).
By (1), p(x̃1), . . . , p(x̃t) is a root vector sequence for (i1, . . . , it) in S′, too. Hence
by Proposition 16.3.11(2) there exist λ1, . . . , λt ∈ k× such that x′

l = λlp(x̃l) for all
1 ≤ l ≤ t. Let xl = λlx̃l for all 1 ≤ l ≤ t. Then x1, . . . , xt is the desired root
vector sequence for (i1, . . . , it) in S (see Remark 15.2.2(1)). The uniqueness follows
again from Proposition 16.3.11(2). The last claim of the Corollary follows from
Remark 15.1.2 by degree reasons, since p is a morphism in H

HYD. �

Lemma 16.3.13. Assume that the braiding matrix q is genuinely of finite Cartan
type. Let N = N (S,N, f) be a pre-Nichols system of M such that (Sys4) holds for
any i ∈ {1, . . . , θ}. Let κ = (i1, . . . , it) be a reduced decomposition of an element
w ∈ W , where t = �(w). Let x1, . . . , xt be a root vector sequence for κ in S, and
for all 1 ≤ j ≤ t let bj be the multiplicative order of qijij . Then the ideal J of S

generated by xb1
1 , . . . , xbt

t is a graded Hopf ideal in H
HYD.

In the Lemma, we consider S as an Nθ
0-graded Hopf algebra in H

HYD and J as
a graded subspace of S as introduced in Section 5.1.

Proof. Induction on t. If t = 0, then the claim is trivial. Assume that t = 1.
Then xb1

1 is primitive by Proposition 2.4.2(5), and kxb1
1 is a graded subspace of S

in H
HYD. This implies the claim.
Assume now that t ≥ 2 and that the claim holds for all words in W of length

at most t − 1. Let J be the ideal of S generated by xb1
1 . Then J is a subobject

of S in H
HYD, a graded subspace of S and has trivial intersection with Ni for any

1 ≤ i ≤ θ. Hence N ′ = N (S/J,N, f) is a Nichols system of (M, i1), and x1, . . . , xt

is a root vector sequence for (i1, . . . , it) in S/J by Remark 15.2.2(2). Let

N (S̃, Ñ , f̃) = Ri1(N ′).

Because of Corollary 16.3.9, (Sys4) holds in S̃ for any i ∈ {1, . . . , θ}. More-

over, T−1
i1

(x2), . . . T
−1
i1

(xt) is a root vector sequence for (i2, . . . , it) in S̃ by Propo-

sition 15.2.4. Hence the ideal J̃ of S̃ generated by T−1
i1

(xl)
bl = T−1

i1
(xbl

l ) with
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2 ≤ l ≤ t is a Hopf ideal of S̃ by induction hypothesis. Since

T−1
i1

(xbl
l ) ∈ L

Ri1
(N ′)

i1

for any 2 ≤ l ≤ t, Proposition 13.5.29 implies that there is a morphism p : N ′ → N ′′

of Nichols systems of (M, i1) such that ker(p) is generated by xbl
l , 2 ≤ l ≤ t. This

yields the claim. �

Theorem 16.3.14. Assume that q is genuinely of finite Cartan type. Let
x1, . . . , xt, t ∈ N0, be a root vector sequence in U+

q for a reduced decomposition
(i1, . . . , it) of an element w ∈ W with �(w) = t.

(1) The elements

xnt
t · · ·xn1

1 , n1, . . . , nt ∈ N0,

form a vector space basis of the (right coideal) subalgebra of U+
q generated

by x1, . . . , xt.
(2) Assume that w is the longest element of W . Then the elements

xnt
t · · ·xn1

1 , n1, . . . , nt ∈ N0,

form a vector space basis of U+
q .

Remark 16.3.15. Assume that qij = εdiaij for some root ε of 1. Then, using
the observation in Remark 16.2.6, one can specialize Lusztig’s root vectors in the
generic case to get a root vector sequence in U+

q .

Proof of Theorem 16.3.14. (1) Induction on t. If t = 0, then the claim is
trivial.

Assume that t ≥ 1. Let i = i1, let n be the multiplicative order of qii, and
let J be the (Hopf) ideal of U+

q generated by xn
1 . Then N = N (U+

q ,M, id) is a

pre-Nichols system of M and N = N (U+
q /J,M, id) is a Nichols system of (M, i).

Let N (S̃, Ñ , f̃) = Ri(N ). Corollary 16.3.10 implies that there is a morphism

p : N (U+(Ri(M)), Ri(M), id)→ Ri(N )

with ker(p) = (En
i ). Moreover, x1, . . . , xt is a root vector sequence for (i1, . . . , it) in

U+
q /J by Remark 15.2.2(2). Hence T−1

i (x2), . . . , T
−1
i (xt) is a root vector sequence

for (i2, . . . , it) in S̃ by Proposition 15.2.4, and by Corollary 16.3.12 there is a unique
root vector sequence y2, . . . , yt for (i2, . . . , it) in U+(Ri(M)) with p(yl) = T−1

i (xl)
for all 2 ≤ l ≤ t. In particular, the monomials ynt

t · · · yn2
2 with n2, . . . , nt ∈ N0 form

a vector space basis of a right coideal subalgebra C of U+(Ri(M)) by induction
hypothesis. Note that

C ⊆ co k[M∗
i ]U+(Ri(M))

and that J∩co k[M∗
i ]U+(Ri(M)) = 0, by Lemma 15.2.8(1) and using that J is a Hopf

ideal. In particular, p|C is injective. Hence the monomials T−1
i (xnt

t ) · · ·T−1
i (xn2

2 )
with n2, . . . , nt ∈ N0 form a vector space basis of the right coideal subalgebra p(C)

of S̃. Since p(C) ⊆ L
Ri(N)
i , the monomials xnt

t · · ·xn2
2 xn1

1 with n1, n2, . . . , nt ∈ N0,
n1 < n, form a vector space basis of the right coideal subalgebra Ti(C)k[x1] of
U+
q /J by Theorem 12.4.5. This and Proposition 15.2.9 imply the claim.

(2) follows directly from (1), since the subalgebra of U+
q generated by x1, . . . , xt

contains a non-zero element of degree αi for any 1 ≤ i ≤ θ, and hence it coincides
with U+

q . �
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We also have a variant of Theorem 14.1.12 for U+
q .

Theorem 16.3.16. Assume that q is genuinely of finite Cartan type. Let
x1, . . . , xt, t ∈ N0, be a root vector sequence in U+

q for a reduced decomposition
(i1, . . . , it) of an element of W . Then for any 1 ≤ i < j ≤ t,

xixj − (g · xj)xi ∈ k[xj−1] · · ·k[xi+1],

where g ∈ G(H) such that δU+
q
(xi) = g ⊗ xi.

Proof. Let κ = (i1, . . . , it), 1 ≤ i < j ≤ t, y = xixj − (g · xj)xi, and let

Cj = k[xj ] · · ·k[x1]. Let K = (U+
q )co k[x1] with respect to the Nθ

0-graded projection

π : U+
q → k[x1]. We prove by induction on i that y ∈ k[xj−1] · · ·k[xi+1].

Assume first that i = 1. By assumption, Cj is a right coideal subalgebra of U+
q .

In particular, y ∈ Cj . Moreover, xj ∈ K by Lemma 15.2.3 and hence y ∈ K. This
and Lemma 15.2.3 imply that y is a linear combination of the monomials x

nj

j · · ·xn2
2

with n2, . . . , nj ≥ 0 and

j∑
l=2

nlβ
[M ],κ
l = αi1 + β

[M ],κ
j .

Thus y ∈ k[xj−1] · · ·k[x2] by degree reasons.
Assume that i ≥ 2. Then xi, xj ∈ K, and hence y is a linear combination of

the monomials x
nj

j · · ·xn2
2 ∈ K with n2, . . . , nj ≥ 0 by Lemma 15.2.3. Let J be the

Hopf ideal of U+
q generated by xn

1 with n = ord(qi1i1), and let p : U+
q → U+

q /J be
the canonical map. Then p : N → N ′ is a morphism of pre-Nichols systems of M ,
where

N = N (U+
q ,M, idM ), N ′ = N (U+

q /J,M, idM ).

Moreover, p(x1), . . . , p(xt) is a root vector sequence for κ in U+
q /J by Remark 15.2.2

and Lemma 15.2.8. By the same references it suffices to show that p(y) is contained
in k[p(xj−1)] · · ·k[p(xi+1)].

Let Ti1 = TN ′

i1
. By Corollary 16.3.10, N ′ is a Nichols system of (M, i1). Hence,

by Proposition 15.2.4, T−1
i1

(p(x2)), . . . , T
−1
i1

(p(xt)) is a root vector sequence for

(i2, . . . , it) in S̃, where N (S̃, Ñ , f̃) = Ri1(N ′). Moreover, Corollary 16.3.10(2)
implies that there is a morphism

p′ : N (U+(Ri1(M)), Ri1(M), id)→ Ri1(N ′).

By Corollary 16.3.12 there is a root vector sequence y2, . . . , yt for (i2, . . . , it) in
U+(Ri1(M)) such that p′(yl) = T−1

i1
(p(xl)) and kyl ∼= kT−1

i1
(p(xl)) in

H
HYD for any

2 ≤ l ≤ t. By induction hypothesis,

yiyj − (g · yj)yi ∈ k[yj−1] · · ·k[yi+1].

Since p′ and T−1
i1

are algebra maps, this implies the claim. �

Theorem 16.3.17. Assume that q is genuinely of finite Cartan type. Let
x1, . . . , xt, t ∈ N0, be a root vector sequence in U+

q for a reduced decomposition

(i1, . . . , it) of the longest element of W . Let J be the ideal of U+
q generated by

xb1
1 , . . . , xbt

t , where for any 1 ≤ j ≤ t, bj = ord(qijij ). Then U+
q /J is isomorphic as

a Hopf algebra in H
HYD to the Nichols algebra u+

q = B(M).
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Proof. Let p′ : U+
q → U+

q /J and p : U+
q /J → B(M) be the canonical maps.

By Remark 15.2.2(2) and by Theorem 15.2.7, the monomials pp′(xt)
nt · · · pp′(x1)

n1

with 0 ≤ nk < ord(qikik) for all 1 ≤ k ≤ t form a vector space basis of B(M).
Indeed, qikik = qβkβk

for all 1 ≤ k ≤ t in Theorem 15.2.7, since M is of Cartan
type. Moreover, the monomials p′(xt)

nt · · · p′(x1)
n1 with 0 ≤ nk < ord(qikik) for

all 1 ≤ k ≤ t span U+
q /J by Theorem 16.3.14(2). Hence dimU+

q /J ≤ dimB(M).

Moreover, J contains no primitive elements of degree 1. Hence U+
q /J ∼= B(M). �

Remark 16.3.18. The relations x
bj
j = 0, 1 ≤ j ≤ t, in u+

q are usually called
the root vector relations.

In other approaches to u+
q in the literature one constructs root vector sequences

explicitly and uses certain normalization to achieve uniqueness. In our approach the
root vector sequences are only unique up to scaling and are defined by characterizing
properties instead of ad hoc constructions.

Remark 16.3.19. Angiono determines for any finite-dimensional Nichols alge-
bra of diagonal type over a field of characteristic 0 the defining relations. His result
implies (whenever char(k) = 0) that B(M) is the quotient of U+

q by root vector
relations if and only if q is genuinely of finite Cartan type.

Remark 16.3.20. In the literature there exist various definitions of (plus parts
of) quantum groups at roots of unity ε, mostly under some restrictions on the order
of ε. A usual way is to take an integral form and specialize it to ε. Another way
is to write down the (Hopf) algebra by generators and relations. Interestingly, it
seems that before the study of Nichols algebras of diagonal type by generators and
relations it was unnoticed that the Lusztig automorphisms are not well-defined in
the second approach for particular, very small orders of ε, that is, if the braiding
matrix (εdiaij )i,j∈I is not genuinely of finite Cartan type. This concerns among
others the examples of type Bθ and Cθ, θ ≥ 3, at third roots of 1.

16.4. A characterization of Nichols algebras of finite Cartan type

Our aim in this section is to discuss pre-Nichols systems where the braided
Hopf algebra is a domain of finite Gelfand-Kirillov dimension generated by one-
dimensional Yetter-Drinfeld modules. In Theorem 16.4.23 we relate these braided
Hopf algebras to U+

q . As a special case, we provide in Corollary 16.4.24 a charac-
terization of finite-dimensional braided vector spaces V of diagonal type such that
the Nichols algebra of V is a domain of finite Gelfand-Kirillov dimension.

Recall that a ring R is a domain if ab �= 0 for any a, b ∈ R \ {0}. In this section
we consider algebras in the category of vector spaces over the field k. After some
preliminaries we will prove in Propositions 16.4.5 and 16.4.6 that U+

q is a domain.

Lemma 16.4.1. Let A be an algebra with a filtration F(A) = (Fα(A))α∈N0
. If

grA is a domain, then A is a domain.

Proof. Assume that grA is a domain. Let a, b ∈ A \ {0}. Let m,n ∈ N0 such
that a ∈ Fm(A) \ Fm−1(A) and b ∈ Fn(A) \ Fn−1(A). Then

ab+ Fm+n−1(A) = (a+ Fm−1(A))(b+ Fn−1(A)) �= 0

since grA is a domain. Hence ab �= 0. �

Ore extensions have been discussed in Remark 2.6.14.
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Lemma 16.4.2. Let A be a domain. Then any Ore extension A[x;σ, δ] with
σ ∈ Aut(A) is a domain.

Proof. Let σ be an automorphism of A and let δ : A → A be a (σ, idA)-
derivation. By Remark 2.6.14, the elements of A[x;σ, δ] are polynomials of the
form

∑n
i=0 aix

i with n ≥ 0 and a0, . . . , an ∈ A. By (2.6.5).

xka− σk(a)xk ∈
k−1∑
i=0

Axi

for any k ≥ 0 and a ∈ A. An element
∑n

i=0 aix
i = 0 with a0, . . . , an ∈ A in

A[x;σ, δ] is zero if and only if ai = 0 for all 0 ≤ i ≤ n. Let now

ā =

m∑
i=0

aix
i, b̄ =

n∑
j=0

bjx
j ∈ A[x;σ, δ]

with am, bn �= 0. Then āb̄− amσm(bn)x
m+n ∈

∑m+n−1
i=0 Axi. Since σ is invertible,

am, bn �= 0, and A is a domain, it follows that amσm(bn) �= 0 and hence āb̄ �= 0. �
Proposition 16.4.3. Let n ∈ N0 and for any 1 ≤ j < i ≤ n let qij ∈ k×. Then

the algebra

Qq[x1, . . . , xn] = k〈x1, . . . , xn〉/(xixj − qijxjxi | 1 ≤ j < i ≤ n)

of quantum polynomials, where q = (qij)1≤j<i≤n, is a domain and the mono-
mials xm1

1 · · ·xmn
n with m1, . . . ,mn ∈ N0 form a basis of Qq[x1, . . . , xn].

Proof. Let us write Qq for Qq[x1, . . . , xn]. Let A denote the polynomial ring
k[X1, . . . , Xn]. For any 1 ≤ i ≤ n let ξi ∈ End(A) such that

ξi(X
m1
1 · · ·Xmn

n ) =

(
i−1∏
j=1

q
mj

ij

)
XiX

m1
1 · · ·Xmn

n

for any 1 ≤ i ≤ n and m1, . . . ,mn ∈ N0. Then ξiξj(a) = qijξjξi(a) for any a ∈ A
and 1 ≤ j < i ≤ n. Thus there is a unique algebra map ρ : Qq → End(A) with
ρ(xi) = ξi for any 1 ≤ i ≤ n. Since

ρ(xm1
1 · · ·xmn

n )(1) = ξm1
1 · · · ξmn

n (1) = Xm1
1 · · ·Xmn

n ,

we conclude that the elements xm1
1 · · ·xmn

n with m1, . . . ,mn ∈ N0 are linearly in-
dependent in Qq. Hence it follows from the defining relations of Qq that these
elements form a basis of Qq.

The defining relations of Qq imply that for any k1, . . . , kn, l1, . . . , ln ∈ N0 there
exists λ ∈ k× such that

xk1
1 · · ·xkn

n xl1
1 · · ·xln

n = λxk1+l1
1 · · ·xkn+ln

n .(16.4.1)

For any

a =
∑

m1,...,mn≥0

am1,...,mn
xm1
1 · · ·xmn

n ∈ Qq \ {0},

let N(a) denote the set of all tuples (m1, . . . ,mn) ∈ Nn
0 such that am1,...,mn

�= 0,
and let

lm(a) =xt1
1 · · ·xtn

n ,

where (t1, . . . , tn) ∈ N(a) is maximal with respect to the total order on Nn
0 in-

troduced in Example 5.2.1. Axiom (M2) in Section 5.2, which is valid for the
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total order above, and Equation (16.4.1) imply that lm(ab) = lm(a)lm(b) for any
a, b ∈ Qq \ {0}. Hence Qq is a domain. �

Since Qq is an iterated Ore extension, where the skew derivation is zero in each
step, another proof of Proposition 16.4.3 can be given using Lemma 16.4.2.

Lemma 16.4.4. Let A be an algebra, l ≥ 0 and y1, . . . , yl ∈ A. Assume that
the elements ynl

l · · · yn1
1 with n1, . . . , nl ≥ 0 form a basis of A. Let h1, . . . , hl be

positive integers and let λij ∈ k× for all 1 ≤ i < j ≤ l. Assume that for any
1 ≤ i < j ≤ l, yiyj−λijyjyi is a linear combination of monomials ynl

l · · · yni+1

i+1 such
that ni+1, . . . , nl ≥ 0 and hi+1ni+1 + · · ·+ hlnl ≤ hi + hj. Then A is a domain.

Proof. The main idea of the proof is to use the filtration introduced in the
proof of Corollary 14.1.13.

Let Γ = Nl
0 together with the weighted lexicographic ordering <:

(k1, . . . , kl) < (m1, . . . ,ml)⇔ h1k1 + · · ·hlkl < h1m1 + · · ·hlml or

h1k1 + · · ·hlkl = h1m1 + · · ·+ hlml, k1 = m1, . . . ,

ki−1 = mi−1, ki < mi for some 1 ≤ i ≤ l.

Then Γ is a totally ordered abelian monoid satisfying axioms (M1) and (M2) in
Section 5.2.

We introduce a filtration F of A by Γ. For any α ∈ Γ, let Fα(A) be the
span of all monomials yj1 · · · yjm with m ≥ 0 and j1, . . . , jm ∈ {1, . . . , l}, such that
(n1, . . . , nl) ≤ α, where for any 1 ≤ k ≤ l the number nk counts the appearances
of k in (j1, . . . , jm). Then F is an algebra filtration because of Axiom (M2) for Γ.

By assumption, in the graded algebra grA associated to the filtration F of A
the relation

yiyj = λijyjyi(16.4.2)

holds for any 1 ≤ i < j ≤ l. Let Q = Qλ[x1, . . . , xl], where λ = (λ−1
ji )1≤j<i≤l.

For any α ∈ Nl
0 let Fα(Q) be the linear span of all monomials xml

l · · ·xm1
1 with

(m1, . . . ,ml) ≤ α. The elements xnl

l · · ·xn1
1 with n1, . . . , nl ≥ 0 form a basis of

Qλ by Proposition 16.4.3. Since the elements ynl

l · · · yn1
1 with n1, . . . , nl ≥ 0 form

a basis of A, there is an isomorphism f of the filtered vector spaces Q and A
sending any monomial xml

l · · ·xm1
1 to yml

l · · · ym1
1 . Thus gr f : Q → grA is an

isomorphism. Moreover, gr f is an algebra map by (16.4.2). Then grA is a domain
by Proposition 16.4.3. Hence A is a domain by Lemma 16.4.1. �

Recall the definition of U+
q for quasi-generic q from (16.2.9).

Proposition 16.4.5. Let M and q be as in Section 16.2. Assume that q is
quasi-generic and of finite Cartan type. Then U+

q is a domain.

Proof. By Theorem 16.2.5, U+
q
∼= B(M). Thus it suffices to show that B(M)

is a domain.
Let A be the Cartan matrix of finite type such that q is of Cartan type with

Cartan matrix A. Let w0 be the longest element of the Weyl group of A. Let
κ = (i1, . . . , il) with l = �(w) be a reduced decomposition of w. Then κ is [M ]-
reduced by Theorem 9.3.5. Let y1, . . . , yl be a root vector sequence for κ in B(M).
This exists by Proposition 15.2.6. Then B(M) = EB(M)(κ), and the monomials
ynl

l · · · yn1
1 with n1, . . . , nl ≥ 0 form a basis of B(M) by Theorem 16.2.1.
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Let h : Nθ
0 → N0 be an additive map with h(β) > 0 for any β �= 0. For any

1 ≤ i ≤ l let hi = h
(
β
[M ],κ
i

)
. Since B(M) is Nθ

0-graded, Theorem 14.1.12 implies
that for any 1 ≤ i < j ≤ l there exists a scalar λij ∈ k× such that yiyj − λijyjyi is
a linear combination of monomials y

nj−1

j−1 · · · yni+1

i+1 with

n1, . . . , nl ≥ 0, hi+1ni+1 + · · ·+ hj−1nj−1 = hi + hj .

Hence B(M) is a domain by Lemma 16.4.4. �

Proposition 16.4.6. Let M and q be as in Section 16.3. Assume that q is
genuinely of finite Cartan type. Then U+

q is a domain.

Proof. Let A be the Cartan matrix of finite type such that q is of Cartan
type with Cartan matrix A. Let w0 be the longest element of the Weyl group of
A. Let κ = (i1, . . . , il) with l = �(w) be a reduced decomposition of w. Then κ is
[M ]-reduced by Theorem 9.3.5. By Proposition 16.3.11 for N = N (U+

q ,M, idM ),

there exists a root vector sequence y1, . . . , yl for κ in U+
q . The monomials ynl

l · · · yn1
1

with n1, . . . , nl ≥ 0 form a basis of U+
q by Theorem 16.3.14.

Let h : Nθ
0 → N0 be an additive map with h(β) > 0 for any β �= 0. For any

1 ≤ i ≤ l let hi = h
(
β
[M ],κ
i

)
. Since U+

q is Nθ
0-graded, Theorem 16.3.16 implies that

for any 1 ≤ i < j ≤ l there exists a scalar λij ∈ k× such that yiyj − λijyjyi is a
linear combination of monomials y

nj−1

j−1 · · · yni+1

i+1 with

n1, . . . , nl ≥ 0, hi+1ni+1 + · · ·+ hj−1nj−1 = hi + hj .

Hence U+
q is a domain by Lemma 16.4.4. �

Now we discuss the Gelfand-Kirillov dimension of algebras. Recall that the
limes superior of a real sequence (xm)m≥0 is defined by

lim sup
m→∞

xm = inf
k≥0

sup
m≥k

xm ∈ R ∪ {−∞,+∞}.

Remark 16.4.7. Let (xm)m≥0 be a real sequence which is bounded below. If
the sequence is not bounded above, then lim supm→∞ xm = ∞. If it is bounded
above, let sk = supm≥k xm for all k ≥ 0. Then (sk)k≥0 is decreasing, hence
convergent, and lim supm→∞ xm = limk→∞ sk. We note the following easy rules
for sequences (xm)m≥0 and (ym)m≥0 which are bounded below.

(1) If xm ≤ ym for all m ≥ 0, then lim supm→∞ xm ≤ lim supm→∞ ym.
(2) lim supm→∞(xm + ym) ≤ lim supm→∞ xm + lim supm→∞ ym.
(3) If (ym)m≥0 is convergent, then lim supm→∞ ym = limm→∞ ym, and

lim supm→∞(xm + ym) = lim supm→∞ xm + limm→∞ ym.

Definition 16.4.8. Let A be an algebra. For any finite subset V of A contain-
ing 1 = 1A and for any m ≥ 0 let

g(V )
m = spank{v1 · · · vm | v1, . . . , vm ∈ V }, dV = lim sup

m→∞

log dim g
(V )
m

logm
.

Proposition 16.4.9. Let A be an algebra. Let V,W be finite subsets of A

containing 1 such that
⋃

m≥0 g
(V )
m ⊆

⋃
m≥0 g

(W )
m . Then dV ≤ dW .
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Proof. Let n ∈ N such that V ⊆ g
(W )
n . Such n exists by assumption. Then

g
(V )
m ⊆ g

(W )
mn for any m ∈ N0, and hence

dV = lim sup
m→∞

log dim g
(V )
m

logm
≤ lim sup

m→∞

log dim g
(W )
mn

logm

= lim sup
m→∞

log dim g
(W )
mn

logmn
= dW .

This proves the claim. �

Proposition 16.4.9 directly yields the following claim.

Corollary 16.4.10. Let A be a finitely generated algebra. Then dV = dW for
any two finite generating sets V,W of A containing 1.

Definition 16.4.11. Let A be an algebra. Then

GKdimA = sup{dV | V is a finite subset of A containing 1}
is called the Gelfand-Kirillov dimension of A.

Remark 16.4.12. Let A be a finitely generated algebra. Then

GKdimA = dV

for any finite generating subset V of A containing 1 because of Corollary 16.4.10.

The Gelfand-Kirillov dimension of a finitely generated graded algebra can be
obtained from its Hilbert series.

Lemma 16.4.13. Let A =
⊕∞

m=0 A(m) be a finitely generated N0-graded algebra
with A(0) = k. Then

GKdimA = lim sup
m→∞

log dimAm

logm
,

where for any m ∈ N0, Am =
∑m

i=0 A(i).

Proof. Let d = lim supm→∞(log dimAm)/ logm. Let V be a finite set of

homogeneous generators of A containing 1. Then for all m ∈ N0, Am ⊆ g
(V )
m .

Hence d ≤ GKdimA.
On the other hand, let n ∈ N0 such that A is generated by An. Let V be a

homogeneous basis of An. Then for any m ∈ N0, g
(V )
m ⊆ Amn and hence

GKdimA = lim sup
m→∞

log dim g
(V )
m

logm
≤ lim sup

m→∞

log dimAmn

logm

= lim sup
m→∞

log dimAmn

logmn
≤ d.

This proves the lemma. �

Lemma 16.4.14. Let A,B be finitely generated N0-graded algebras such that
A(0) = B(0) = k. Assume that for all m ∈ N0, dimA(m) = dimB(m). Then
GKdimA = GKdimB.

Proof. This follows directly from Lemma 16.4.13. �
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Example 16.4.15. Let θ ∈ N, let H be the group algebra of Zθ, and let
M ∈ FH

θ . Assume that the matrix q of M is quasi-generic of finite Cartan type,
or genuinely of finite Cartan type. Let AM be the Cartan matrix of M and let
β1, . . . , βt with t ∈ N0 be the positive roots attached to a reduced decomposition of
the longest element of the Weyl group of AM .

Let B be the polynomial ring in t indeterminates X1, . . . , Xt. Define a grading
on B such that for all i, deg(Xi) is the height of βi.

Regard U+
q as a graded algebra such that for all i, degEi = 1. By Theo-

rems 16.2.1 and 16.2.5 (if q is quasi-generic of finite Cartan type) and by Theo-
rem 16.3.14(2) (if q is genuinely of finite Cartan type), respectively, U+

q and B have
the same Hilbert series. Hence

GKdimU+
q = GKdimB = t

by Lemma 16.4.14.

The following lemma is of general interest. We will use it in the proof of
Corollary 16.4.24.

Lemma 16.4.16. Let A be an algebra generated by elements

e1 . . . , ek, f1, . . . , fl where k, l ≥ 1.

Assume that for any 1 ≤ i ≤ k and 1 ≤ j ≤ l there exists qji ∈ k× such that

fjei = qjieifj .(16.4.3)

Let B and C be the subalgebras of A generated by e1, . . . , ek and f1, . . . , fl, respec-
tively. Then A = BC and

GKdimA ≤ GKdimB +GKdimC.

Proof. Let V = {1, e1, . . . , ek, f1, . . . , fl}. Since A is spanned by the mono-
mials a1 · · · am with ai ∈ V , m ≥ 0, we conclude from Equations (16.4.3) that
A = BC. Let

VB = {1, e1, . . . , ek}, VC = {1, f1, . . . , fl}.
Then

g(V )
m =

m∑
n=0

g(VB)
n g

(VC)
m−n ⊆ g(VB)

m g(VC)
m

because of Equations (16.4.3). Thus

GKdimA = dV ≤ lim sup
m→∞

log(dim g
(VB)
m · dim g

(VC)
m )

logm

≤ lim sup
m→∞

(
log dim g

(VB)
m

logm
+

log dim gVC
m

logm

)
≤GKdimB +GKdimC.

Hence the Lemma is proven. �

In what follows let H be the group algebra of an abelian group.

Lemma 16.4.17. Let θ ≥ 2 and let S be an Nθ
0-graded Hopf algebra in H

HYD.
Let α, β ∈ Nθ

0 \{0} with Qα �= Qβ and let e ∈ S(α), f ∈ S(β). Assume that ke and
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kf are one-dimensional objects in H
HYD and that e and f are primitive in S. For

all m ≥ 0 let ym = (adSe)
m(f). If ym �= 0 for all m ≥ 0, then the monomials

ym1
· · · ymk

, k ≥ 0, 0 ≤ m1 < m2 < · · · < mk(16.4.4)

are linearly independent in S.

Proof. Assume that ym �= 0 for all m ≥ 0 and that the monomials in
(16.4.4) are linearly dependent. The Nθ

0-degree of the monomial ym1
· · · ymk

with
k,m1, . . . ,mk ∈ N0 is (m1 + · · · + mk)α + kβ. Since S is an Nθ

0-graded algebra
and Qα �= Qβ, there exist m, k ∈ N0, k ≥ 2, and a scalar λm1,...,mk

for any tuple
(m1, . . . ,mk) ∈ Nk

0 with 0 ≤ m1 < · · · < mk, m1 + · · ·+mk = m, such that∑
m1,...,mk

λm1,...,mk
ym1

· · · ymk
= 0

and not all λm1,...,mk
are zero. Further we may assume that the monomials in

(16.4.4) with k − 1 factors are linearly independent. Let n ∈ N0 be the smallest
integer such that there exists (m1, . . . ,mk) ∈ Nk

0 with m1 = n and λm1,...,mk
�= 0.

Since S is an Nθ
0-graded coalgebra, the homogeneous summand of∑

m1,...,mk

λm1,...,mk
Δ(ym1

· · · ymk
)

in S(nα+ β)⊗ S((m− n)α + (k − 1)β) has to vanish. Since Qα �= Qβ, the latter
and Proposition 4.3.12 imply that∑

m2,...,mk

λn,m2,...,mk
yn ⊗ ym2

· · · ymk
= 0.

This violates the assumption that the monomials in (16.4.4) with k − 1 factors are
linearly independent. Thus the Lemma is proven. �

Proposition 16.4.18. Let θ ≥ 2 and let S be an Nθ
0-graded Hopf algebra in

H
HYD. Let α, β ∈ Nθ

0 \ {0} with Qα �= Qβ and let e ∈ S(α), f ∈ S(β). Assume that
ke and kf are one-dimensional objects in H

HYD and that e and f are primitive in
S. If GKdimS < ∞ then there exists m ≥ 0 such that (adSe)

m(f) = 0.

Proof. Assume that ym = (adSe)
m(f) �= 0 for all m ≥ 0, and let

V = {1, e, f} ⊆ S.

Note that ym ∈ gVm+1 for any m ≥ 0. Thus for any n ∈ N0 the monomials

ym1
· · · ymk

with 0 ≤ m1 < · · · < mk < n are contained in g
(V )
n(n+1)/2 and hence

in g
(V )
n2 . Since there are 2n such monomials and they are linearly independent by

Lemma 16.4.17, we conclude that

dim g
(V )
n2 ≥ 2n,

log dim g
(V )
n2

log n2
≥ n log 2

2 log n

for any n ∈ N0. This is a contradiction to GKdimS < ∞. �

Corollary 16.4.19. Let θ ≥ 1 and let M ∈ FH
θ such that dimMk = 1 for any

1 ≤ k ≤ θ. Let N (S,N, f) be a pre-Nichols system of M such that GKdimS < ∞.
Assume one of the following.

(1) S is a domain.
(2) M is quasi-generic.

Then M is of Cartan type.
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Proof. For any 1 ≤ i ≤ θ let ei ∈ Ni \ {0}, gi ∈ G(H), χi ∈ Alg(H, k) such
that for all h ∈ H,

h · ei = χi(h)ei, δNi
(ei) = gi ⊗ ei.

For all 1 ≤ i, j ≤ θ let qij = χj(gi), hence cS,S(ei ⊗ ej) = qijej ⊗ ei. Thus by
Proposition 4.3.12, for all m ∈ N0,

ΔS((adSei)
m(ej)) =(adSei)

m(ej)⊗ 1

+

m∑
k=0

(
m

k

)
qii

(m−1∏
l=k

(1− qliiqijqji)
)
em−k
i ⊗ (adSei)

k(ej).

By Proposition 16.4.18, for any 1 ≤ i, j ≤ θ with i �= j there exists mij > 0 such
that (adSei)

mij (ej) = 0 and (adSei)
mij−1(ej) �= 0. In particular, the homogeneous

summands of ΔS((adSei)
mij (ej)) contained in

S(mijαi)⊗ S(αj) ⊕ S(αi)⊗ S((mij − 1)αi + αj),

that is, the summands with k = 0 and with k = mij − 1, are zero. We conclude
that

(a)
∏mij−1

l=0 (1− qliiqijqji)e
mij

i = 0,

(b)
(

mij

mij−1

)
qii
(1− q

mij−1
ii qijqji) = 0.

Assume (1). Then e
mij

i �= 0. By (a), 1 − qliiqijqji = 0 for some 0 ≤ l ≤ mij − 1.

Assume (2). Then
(

mij

mij−1

)
qii
�= 0. By (b), 1 − q

mij−1
ii qijqji = 0. In both cases we

have shown that the braiding of M is of Cartan type. �

In the following remark we discuss two examples which indicate potential dif-
ficulties regarding a general classification of pre-Nichols systems N (S,N, f), where
S is a domain of finite Gelfand-Kirillov dimension.

Remark 16.4.20. (1) The entries of the Cartan matrix of the braiding of M
and the quantum Serre relations of S in Proposition 16.4.18 are not necessarily
directly related. Assume that H is the group algebra of the trivial group and that
θ = 2. Let M ∈ FH

2 and e1 ∈ M1 \ {0}, e2 ∈ M2 \ {0}. Let U be the universal
enveloping algebra of the Heisenberg Lie algebra

spank{e1, e2, e12}, e12 = [e1, e2], [e1, e12] = [e2, e12] = 0.

Then U is a domain with GKdimU = 3, N (U,M, id) is a pre-Nichols system of
Cartan type A1 ×A1, but ad e1(e2) �= 0.

(2) Let M ∈ FH
2 such that dimM1 = dimM2 = 1. Let x1 ∈ M1 \ {0} and

x2 ∈ M2 \ {0}, and for all i, j ∈ {1, 2} let qij ∈ k× such that

cMi,Mj
(xi ⊗ xj) = qijxj ⊗ xi.

Let q ∈ k× with ord(q) = 3 and assume that

q12q21 = q−1
11 = q−1

22 = q.

Then N = N (S,M, idM ) with

S = T (M)/((adT (M)x1)
2(x2), (adT (M)x2)

3(x1))

is a pre-Nichols system of M . The braiding of M is of Cartan type A2, and hence
N is not a Nichols system of (M, 2). One can show that S is a domain with
GKdimS = 4.
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Proposition 16.4.21. Let θ ∈ N and let M ∈ FH
θ such that dimMk = 1 for

any 1 ≤ k ≤ θ. Let 1 ≤ i ≤ θ and let p : N = N (S,N, f) → N ′ be a morphism
of pre-Nichols systems of M such that ker(p) is generated by ker(p) ∩ k[Ni]. Let
E ⊆ S be an Nθ

0-graded right coideal subalgebra which is a domain containing Ni.
Assume that N is i-finite, (Sys4) holds for N and i, and that N ′ is a Nichols

system of (M, i). Let N (S̃, Ñ , f̃) = Ri(N ′) and Ẽ = (tN
′

i )−1(p(E)). Then Ẽ is a

right coideal subalgebra of S̃ and Ẽ is a domain.

Proof. Let N ′ = N (S′, N ′, f ′). Since p is an Nθ
0-graded Hopf algebra map,

p(E) is an Nθ
0-graded right coideal subalgebra of S′. Since Ni ⊆ E, it follows that

N ′
i ⊆ p(E), and hence Ẽ is an Nθ

0-graded right coideal subalgebra of S̃.
Let q = (qjk)1≤j,k≤θ be the braiding matrix of M . Let π : S → k[Ni] be the

Nθ
0-graded projection, let x ∈ Ni \ {0}, n = ord(qii), and let y = 0 if n = ∞ and

y = xn otherwise. Let J be the Hopf ideal of k[Ni] generated by y. Then ker(p)
is generated by y by construction and the assumption on ker(p), since N ′ satisfies
(Sys3) for i. Moreover, adSy(x

′) = 0 for any x′ ∈ S since N satisfies (Sys4) for i.
Thus, by Lemma 15.2.8 for J = ker(p), S̄ = k[Ni] and by the surjectivity of p, p

induces an algebra isomorphism p0 : Sco k[Ni] → S′co k[N ′
i ] in H

HYD. In particular,

p0(E ∩ Sco k[Ni]) is a domain. Therefore,

Ẽ = (TN ′

i )−1(p(E) ∩ S′co k[N ′
i ]) = (TN ′

i )−1(p0(E ∩ Sco k[Ni]))

is a domain since TN ′

i is an algebra isomorphism. �
Corollary 16.4.22. Let θ ∈ N and M ∈ FH

θ be such that dimMk = 1 for any
1 ≤ k ≤ θ. Assume that the braiding matrix of M1⊕ · · · ⊕Mθ is genuinely of finite
Cartan type. Let N = N (S,N, f) be a pre-Nichols system of M such that (Sys4)
holds for S for all 1 ≤ i ≤ θ. Let t ≥ 0, 1 ≤ i1, . . . , it ≤ θ, and x1, . . . , xt ∈ S
such that κ = (i1, . . . , it) is an [M ]-reduced sequence and x1, . . . , xt is a root vector
sequence for κ in S. Assume that the right coideal subalgebra E of S generated by
x1, . . . , xt is a domain. Then the monomials xnt

t · · ·xn1
1 with n1, . . . , nt ≥ 0 form a

basis of E.1

Proof. We proceed by induction on t. If t = 0 then E = k1 and the claim is
trivial.

Assume that t > 0. Let q = (qij)1≤i,j≤θ be the braiding matrix of M and
let n = ord(qi1i1). Then Ni1 = kx1 ⊆ E and n < ∞. Let J be the ideal of
S generated by xn

1 . Then J is a Hopf ideal and N ′ = N (S/J,N, f) is a Nichols
system of (M, i1). Moreover, p : S → S/J is a morphism of pre-Nichols systems

p : N → N ′ of M . Let N (S̃, Ñ , f̃) = Ri1(N ′). According to Proposition 16.4.21,

Ẽ = (tN
′

i1
)−1(p(E)) is a right coideal subalgebra of S̃ and Ẽ is a domain. Moreover,

p(x1), . . . , p(xt) is a root vector sequence for κ in S/J by Remark 15.2.2(2), and

y2, . . . , yt, where yi = (TN ′

i1
)−1(p(xi)) for any 2 ≤ i ≤ t, is a root vector sequence for

(i2, . . . , it) in S̃ by Proposition 15.2.4. By assumption and by Lemma 15.1.13(2),
the braiding matrix of Ri1(M) is genuinely of finite Cartan type. By assumption
and by Corollary 16.3.9, Ri1(N ′) is a Nichols system of (Ri1(M), i1) for which
(Sys4) holds for all 1 ≤ i ≤ θ. Thus, by induction hypothesis, the monomials

ynt
t · · · yn2

2 with n2, . . . , nt ≥ 0 form a basis of Ẽ. Then Theorem 14.1.4 implies
that the monomials p(xt)

nt · · · p(x2)
n2p(x1)

n1 with n2, . . . , nt ≥ 0 and 0 ≤ n1 < n

1If t = 0 then by convention the basis consists of the single monomial 1.
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form a basis of p(E) = tN
′

i1
(Ẽ). Since x2, . . . , xt ∈ KN

i1
, the claim follows from

Proposition 15.2.9(1). �

Theorem 16.4.23. Let θ ∈ N, and let M ∈ FH
θ such that dimMk = 1 for any

1 ≤ k ≤ θ. Let q be the braiding matrix of M1 ⊕ · · · ⊕Mθ, and let N (S,N, f) be a
pre-Nichols system of M . Assume that GKdimS < ∞.

(1) If S is a domain, then the braiding matrix q is of Cartan type.
(2) If q is quasi-generic, then it is of finite Cartan type and S ∼= U+

q .
(3) If S is a domain, q is genuinely of finite Cartan type and N (S,N, f)

satisfies (Sys4) for all 1 ≤ i ≤ θ, then S ∼= U+
q .

Proof. (1) holds by Corollary 16.4.19.
(2) By Corollary 16.4.19, the braiding of M is of Cartan type. For all 1 ≤ i ≤ θ

let xi ∈ Ni \ {0}. Let A be the Cartan matrix such that q
aij

ii = qijqji for all
1 ≤ i, j ≤ θ. By Lemma 15.1.12, aMij = aij for all 1 ≤ i, j ≤ θ.

By Proposition 16.4.18, for any 1 ≤ i, j ≤ θ with i �= j there exists an integer
m ≥ 1 such that (adSxi)

m(xj) = 0 and (adSxi)
m−1(xj) �= 0. Then by the proof

of Corollary 16.4.19, 1 − qm−1
ii qijqji = 0. Hence m = 1 − aij . Consequently,

N (S,N, f) admits all reflections by Theorem 16.2.5(1). Let κ = (i1, . . . , it) be an

[M ]-reduced sequence. For any 1 ≤ k ≤ t let βk = β
[M ],κ
k . By Lemma 15.1.13 and

Theorem 15.2.7(1), qβkβk
= qikik is not a root of unity or equal to 1 (if char(k) = 0)

for any 1 ≤ k ≤ t. Hence the elements xnt
t · · ·xn1

1 with n1, . . . , nt ≥ 0 form a basis

of EB(M)(κ) by Theorem 15.2.7(2). Thus

GKdimEB(M)(κ) = GKdim k[x1, . . . , xt] = t

by Lemma 16.4.14, see also Example 16.4.15. We conclude that

t = GKdimEB(M)(κ) ≤ GKdimB(M) ≤ GKdimS < ∞.

In particular, G(M) is finite by Proposition 9.2.25. Hence the small Cartan graph
Gs(M) of M defined in Proposition 15.1.10 is finite by Lemma 10.1.4 and therefore
A is of finite type by Example 9.1.17.

Since N (S,N, f) is a Nichols system of (M, i) for all 1 ≤ i ≤ θ, S is isomorphic
as a graded Hopf algebra to a quotient of U+

q , and there is a natural graded sur-

jection from S to B(M). On the other hand, B(M) and U+
q are isomorphic graded

Hopf algebras by Theorem 16.2.5(2). Thus S ∼= U+
q .

(3) Let A be the Cartan matrix corresponding to q. Let κ be a reduced decom-
position of the longest element w0 of the Weyl group of A. By Proposition 16.3.11
there exists a root vector sequence x1, . . . , xt for κ in S, where t = �(w0). In
particular, the monomials

xnt
t · · ·xn1

1 , n1, . . . , nt ≥ 0(16.4.5)

span S. Because of Axiom (Sys4) for S there exists a surjective Hopf algebra map
f : U+

q → S in H
HYD. Hence, in view of Theorem 16.3.14(2), it suffices to prove

that the monomials in (16.4.5) form a basis of S. This is true by Corollary 16.4.22
with E = S. �

Corollary 16.4.24. Let (V, cV,V ) be a finite-dimensional braided vector space.
The following are equivalent.
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540 16. NICHOLS ALGEBRAS OF CARTAN TYPE

(1) V is of diagonal type and B(V ) is a domain with GKdimB(V ) < ∞.
(2) V is quasi-generic of finite Cartan type.

In this case, B(V ) ∼= U+
q .

Proof. Assume that (1) holds. Let H be the group algebra of Zθ and let

M ∈ FH
θ such that dimMk = 1 for any 1 ≤ k ≤ θ and that V and

⊕θ
k=1 Mk

are isomorphic as braided vector spaces. Since B(V ) is a domain, Example 1.10.1
implies that the diagonal entries of the braiding are 1 (if char(k) = 0) or not roots
of 1. Thus V is quasi-generic. Since GKdimB(V ) < ∞ by (1), V is of finite Cartan
type by Theorem 16.4.23(2).

Assume now that (2) holds. Then V is of diagonal type by definition. Moreover,
B(V ) ∼= U+

q by Theorem 16.2.5. Hence B(V ) is a domain by Proposition 16.4.5 and
GKdimB(V ) < ∞ by Example 16.4.15. �

The structure of B(V ) when the equivalent conditions of Corollary 16.4.24 hold,
is discussed in Section 16.2.

Corollary 16.4.25. Let R =
⊕

n∈N0
R(n) be a locally finite N0-graded Hopf

algebra in H
HYD. Assume that R(0) = k and R(1) = M1⊕· · ·⊕Mθ with Mi ∈ H

HYD
and dimMi = 1 for each 1 ≤ i ≤ θ. Let q be a braiding matrix of R(1). Assume
that q is quasi-generic and GKdimR < ∞. The following are equivalent.

(1) P (R) = R(1), that is, R is a strictly graded coalgebra.
(2) R is generated as an algebra by R(1), that is, R is a pre-Nichols algebra

of M .
(3) R is a Nichols algebra of M , the braiding matrix q is of finite Cartan type,

and R ∼= U+
q .

Proof. (2)⇒ (3). LetN (grR,N, f) be the pre-Nichols system of M described
in Lemma 13.5.8, where grR is the Nθ

0-graded Hopf algebra constructed from R in
Proposition 5.2.21. By Theorem 16.4.23(2), grR is a Nichols algebra of M , q is
of finite Cartan type, and B(M) ∼= U+

q . Hence R ∼= B(M) is a Nichols algebra by
Lemma 13.5.8.

(3) ⇒ (1) is trivial.
(1) ⇒ (2). Recall from Corollary 4.2.9 that there exists a braided monoidal

equivalence (( )∗gr , ϕ0, ϕ) : (N0-Gr(HHYD)lf)op → N0-Gr(HHYD)lf . By (1) and Corol-
lary 4.2.10(1), R∗gr is a pre-Nichols algebra. Thus GKdimR∗gr = GKdimR < ∞
by Lemma 16.4.14 and R∗gr is strictly graded by (2) ⇒ (3) for R∗gr . Then Corol-
lary 4.2.10(2) implies that R is a pre-Nichols algebra. �

Remark 16.4.26. Corollary 16.4.25 should be compared with Theorem 15.5.1.
There we assumed that R is finite-dimensional and char(k) = 0 instead of q is
quasi-generic and GKdimR is finite.

16.5. Application to the Hopf algebras U(D, λ)

In this section we study the Hopf algebras U(D, λ) of Section 8.3 when D is
generic and of finite Cartan type. In Theorem 16.5.5 we compute a PBW basis, the
coradical filtration, the associated graded Hopf algebra, and the Gelfand-Kirillov
dimension of U(D, λ). Recall that the quantum groups Uq(g), g a semisimple Lie
algebra, and q not a root of unity, are special cases in this class of Hopf algebras.
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16.5. APPLICATION TO THE HOPF ALGEBRAS U(D, λ) 541

In the second half of the section we look at the lifting problem: Given a
coradically graded pointed Hopf algebra H, determine all pointed Hopf algebras A
with grA ∼= H as coradically graded Hopf algebras. In Theorem 16.5.10 we assume
that k is algebraically closed. We show that a pointed Hopf algebra with abelian
coradical and finite Gelfand-Kirillov dimension is isomorphic to U(D, λ) as above,
if its infinitesimal braiding is generic.

We begin with some general results on the Gelfand-Kirillov dimension of a class
of pointed Hopf algebras.

Lemma 16.5.1. Let (A,F(A)) be an N0-filtered algebra. Then

GKdimgrA ≤ GKdimA.

Proof. Let V ⊆ grA be a finite subset containing 1grA. Let

U = {bi | i ∈ I} ⊆ grA

be the subset of all homogeneous components of elements in V , where I is a finite
index set. For all i ∈ I we choose an element ai ∈ Fdi

(A), where di = deg(bi), and
bi = ai + Fdi−1(A). Let W = {ai | i ∈ I} ⊆ A.

Let m ≥ 0. Then g
(V )
m ⊆ g

(U)
m ⊆ grA.

To prove that dim g
(U)
m ≤ dim g

(W )
m , let X = g

(U)
m ⊆ grA, Y = g

(W )
m ⊆ A. Let

Fd(Y ) = Fd(A)∩Y , d ≥ 0, be the induced filtration on Y . Let d ≥ 0. The inclusion
Fd(Y ) ⊆ Fd(A) defines a linear map

ϕ : Fd(Y )/Fd−1(Y )→ Fd(A)/Fd−1(A) = (grA)(d).

For all i1, . . . , im ∈ I with di1 + · · ·+ dim = d,

ϕ(ai1 · · · aim + Fd−1(Y )) = bi1 · · · bim .

Hence the restriction ϕ−1(X(d))
ϕ−→ X(d) of ϕ is surjective. It follows that

dimX =
∑
d≥0

dimX(d) ≤
∑
d≥0

dimFd(Y )/Fd−1(Y ) = dimY.

Here, F−1(Y ) = 0. We have shown that dim g
(V )
m ≤ dim g

(U)
m ≤ dim g

(W )
m , which

implies that dV ≤ dW , and the lemma follows. �

Proposition 16.5.2. Let G be an abelian group, and A a left kG-module al-
gebra. Assume that A is finitely generated as an algebra and locally finite as a
kG-module. Then

GKdimA#kG = GKdimA+GKdim kG.

If G is finitely generated, then GKdim kG is the rank of the group G.

Proof. Any finite subset of A#kG is contained in A#kG0 for a finitely gen-
erated subgroup G0 of G. Thus, by definition of the Gelfand-Kirillov dimension,
we may assume that G is finitely generated.

(1) We first assume that G = 〈g〉 is infinite cyclic. Let X ⊆ A be a finite-
dimensional G-stable subspace which generates the algebra A and contains the
unit element 1 of A. Such a subspace exists by our assumptions. Let

V = X +Xg +Xg−1 ⊆ A#kG.
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542 16. NICHOLS ALGEBRAS OF CARTAN TYPE

Then for all n ≥ 1, V n =
⊕n

k=−n Xngk, and dimV n = (2n+ 1) dimXn. Hence

GKdimA#kG = lim sup
n→∞

( log(2n+ 1)

log n
+

log(dimXn)

log n

)
= GKdimA+ 1,

since the sequence log(2n+1)
logn converges to 1. In particular, GKdim kG = 1, by taking

A = k.
(2) Now we assume that G = 〈g〉 is a finite cyclic group of order N . Let X as in

(1), and define V = X + Xg. Then V n =
⊕N−1

k=0 Xngk, and dimV n = N dimXn,
for all n ≥ N − 1. Hence GKdimA#kG = GKdimA, and GKdim kG = 0.

(3) If G1, G2 are abelian groups, then A#k(G1×G2) ∼= (A#kG1)#kG2, where
the G2-action on A#kG1 is defined by

g2 · (a#g1) = g2 · a#g1 for all g1 ∈ G1, g2 ∈ G2, a ∈ A.

Hence the general case of the proposition follows by induction from (1) and (2). �
Lemma 16.5.3. Let H be a Hopf algebra with bijective antipode, and R an N0-

graded connected coalgebra in H
HYD. Then A = R#H is an N0-graded coalgebra

with A(n) = R(n)#H for all n ≥ 0. Let C ⊆ A be an N0-graded subcoalgebra.
Then C ⊆ R#(C ∩H).

Proof. Let π = ε ⊗ idH : A → H be the projection onto degree 0. It follows
from the definition of ΔA, that

(idA ⊗ π)ΔA = idR ⊗ΔH : A → A⊗H,

and idA = (idR ⊗ ε ⊗ idH)(idA ⊗ π)ΔA. Since C ⊆ A is a graded subcoalgebra,
C(0) = C ∩H, and (idC ⊗ π|C)ΔC : C → C ⊗ (C ∩H). Hence C is contained in
R#(C ∩H). �

Theorem 16.5.4. Let A be a pointed Hopf algebra. Assume that G = G(A) is
abelian and A is generated by G and by finitely many skew-primitive elements. Let
R = (grA)co kG with respect to coradical filtration of A and the projection grA→ kG
onto degree 0, and assume that R(1) is finite-dimensional. Then

GKdimA = GKdimgrA = GKdimR +GKdim kG.

Proof. By Corollary 5.3.16, grA ∼= R#kG, R is strictly graded, and by Propo-
sition 1.3.14, dimR(n) < ∞ for all n ≥ 1. Thus we know from Lemma 16.5.1 and
Proposition 16.5.2 that

GKdimR+GKdim kG = GKdimgrA ≤ GKdimA.

Hence it suffices to show the inequality

GKdimA ≤ GKdimR+GKdim kG.(16.5.1)

By assumption, any finite subset of A is contained in a subalgebra of A generated
by finitely many skew-primitive and group-like elements. Thus for the proof of
(16.5.1) we may assume that G is finitely generated.

By assumption there is a finite set S of skew-primitive elements in A and a
finite subset T ⊆ G such that A is generated by S ∪ T . We may assume that
for all x ∈ S, Δ(x) = g ⊗ x + x ⊗ h, where g, h ∈ T , and that 1 ∈ T . Then
C =

∑
x∈S kx+

∑
g∈T kg is a subcoalgebra of A.

(1) Let n ≥ 1, and Cn the k-span of all products a1 · · · an, a1, . . . , an ∈ C. We

claim that Cn ∩ kG = g
(T )
n .
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We define a coalgebra filtration F0(C
n) ⊆ · · · ⊆ Fn(C

n) = Cn, where for all
0 ≤ i ≤ n, Fi(C

n) is the k-span of all products a1 · · · an of elements in S ∪ T
such that at most i elements of the (aj)1≤j≤n are in S. By Proposition 1.3.2,

g
(T )
n = F0(C

n) = Corad(Cn). This proves our claim, since Corad(Cn) = Cn ∩ kG
by Corollary 5.3.5.

(2) Let n ≥ 1. Then gr (Cn) ⊆ grA is a graded subcoalgebra by Theorem 5.4.5.
Note that Cn ⊆ An, since C ⊆ A1. Hence gr (Cn) ⊆ ⊕n

k=0(grA)(k) = Rn#kG by
Corollary 5.4.6, where Rn = ⊕n

i=0R(i). Hence it follows from (1) and Lemma 16.5.3

that grCn ⊆ Rn#g
(T )
n , and

dimCn = dimgr (Cn) ≤ dimRn dim g(T )
n .

Using Lemma 16.4.13 we conclude that

GKdimA = lim sup
n→∞

log dimCn

log n
≤ lim sup

n→∞

log(dimRn dim g
(T )
n )

log n

≤ lim sup
n→∞

log dimRn

log n
+ lim sup

n→∞

log dim g
(T )
n

log n

≤ GKdimR+GKdim kG.

�

Let G be an abelian group, D = D(G, (gi)i∈I , (χi)i∈I) a generic YD-datum of
finite Cartan type with Cartan matrix A, and λ a linking parameter for D. Choose
a decomposition I = I− ∪ I+, I− ∩ I+ = ∅, as in Section 8.3. Let X be the Yetter-
Drinfeld module in G

GYD with basis (xi)i∈I , and xi ∈ Xχi
gi for all i ∈ I. Recall

that U(D, λ) = (T (X)#kG)/I(D, λ). Let X− ⊆ X (respectively X+ ⊆ X) be the
subobject in G

GYD with basis (xi)i∈I− (respectively (xi)i∈I+). We denote the n-th
term of the coradical filtration of U(D, λ) by U(D, λ)n, n ≥ 0.

Theorem 16.5.5. Let G be an abelian group, D = D(G, (gi)i∈I , (χi)i∈I) a
generic YD-datum of finite Cartan type with Cartan matrix A, and λ a linking
parameter for D. Use the notation above.

(1) There are injective Hopf algebra maps

B(X−)#kG→ U(D, λ), xi �→ xi, g �→ g, for all i ∈ I−, g ∈ G,

B(X+)#kG → U(D, λ), xi �→ xi, g �→ g, for all i ∈ I+, g ∈ G,

which we view as inclusions. The algebras B(X−) and B(X+) have PBW-
bases constructed in Theorem 16.2.1.

(2) The multiplication map

(B(X−)⊗ B(X+))#kG→ U(D, λ)

is an isomorphism of coalgebras, and (B(X−) ⊗ B(X+))#kG, the smash
coproduct coalgebra, is coradically graded.

(3) For all n ≥ 0, U(D, λ)n is the k-span of

{xi1 · · ·xikg | i1, . . . , ik ∈ I, k ≤ n, g ∈ G}.
(4) U(D, λ)1 = kG⊕

⊕
(i,g)∈I×G kxig, and xig �= 0 for all i ∈ I, g ∈ G.

(5) There is an isomorphism of Hopf algebras

U(D, 0)→ grU(D, λ), xi �→ xi, g �→ g, for all i ∈ I, g ∈ G.
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(6) U(D, λ) is isomorphic to a two-cocycle deformation of grU(D, λ).
(7) GKdimU(D, λ) = t+GKdimkG, where t is the number of positive roots

attached to a reduced decomposition of the longest element of the Weyl
group of the Cartan matrix A.

Proof. (1), (2). Recall the definition of U(D−) and U(D+) from Section 8.3.
By Theorem 16.2.5, U(D−) = B(X−), and U(D+) = B(X+). By Proposition 1.3.17
and Proposition 5.3.18, (B(X−) ⊗ B(X+))#kG is coradically graded. Hence (1)
and (2) follow from Theorem 8.3.9 and Theorem 16.2.1.

(3) and (4) follow from (2).
(5) By (3), there is a well-defined surjective map of Hopf algebras in G

GYD
ϕ : U(D, 0)→ grU(D, λ), xi �→ xi, g �→ g,

for all i ∈ I and g ∈ G. Hence ϕ is an isomorphism by Theorem 5.4.5, since the
restriction of ϕ to U(D, 0)1 is injective by (4).

(6) follows from (4), Lemma 8.3.8 and Theorem 8.3.9.
(7) follows from Theorem 16.5.4 and Example 16.4.15. �

Lemma 16.5.6. Let G be a free abelian group, R a domain and a left kG-module
algebra. Then R#kG is a domain.

Proof. Assume that G has rank 1 with basis element g. Let x, y ∈ R#kG
be non-zero elements, and write x =

∑
a≤i≤b rig

i, y =
∑

c≤j≤d sjg
j , where a, b, c, d

are integers, ri, sj ∈ R for all i, j, rb �= 0, sd �= 0. Then xy =
∑

a+c≤k≤b+d tkg
k,

where tk ∈ R for all k, and tb+d = rb(g
b · sd) �= 0.

Then the lemma follows by induction, since we may assume that G has finite
rank, and since R#k(G1×G2) ∼= (R#kG1)#kG2 for all abelian groups G1, G2. �

Corollary 16.5.7. Let G be a free abelian group, D = D(G, (gi)i∈I , (χi)i∈I)
a quasi-generic YD-datum of finite Cartan type with Cartan matrix A, and λ a
linking parameter for D. Then U(D, λ) is a domain.

Proof. In the notation of Section 16.4, U+
q = U(D). Recall that by Propo-

sition 8.3.2(4), U(D, 0) ∼= U(D)#kG. Hence U(D, 0) is a domain by Proposi-
tion 16.4.5 and Lemma 16.5.6, and U(D, λ) is a domain by Theorem 16.5.5(5) and
Lemma 16.4.1. �

Lemma 16.5.8. Let G be an abelian group, and R an N0-graded Hopf algebra
in H

HYD with R(0) = k1. Assume that V = R(1) is finite-dimensional with basis

(xi)i∈I , where for all i ∈ I, xi ∈ V χi
gi , gi ∈ G, and χi ∈ Ĝ. Let (qij)i,j∈I be the

braiding matrix, where qij = χj(gi) for all i, j, and assume that (qij)i,j∈I is generic

of Cartan type. Let R#kG be the bosonization. For all g, h ∈ G, χ ∈ Ĝ we define
Pχ
g,h(V#kG) = Pχ

g,h(R#kG) ∩ (V#kG). Then

(1) V#kG =
⊕

(χ,g,h)∈Ĝ×G×G Pχ
g,h(V#kG).

(2) For all i ∈ I, g ∈ G, Pχi
gig,g(V#kG) is one-dimensional with basis xi ⊗ g.

(3) Let χ ∈ Ĝ, a, b ∈ G. If Pχ
a,b(V#kG) �= 0, then there is an element i ∈ I

with (χ, a, b) = (χi, gib, b).

By letting G to be the trivial group one can easily see that Lemma 16.5.8(2)
does not hold if the braiding matrix is assumed to be quasi-generic instead of
generic.
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Proof. We first note that for all i, j ∈ I,

if i �= j, then (gi, χi) �= (gj , χj).(16.5.2)

Indeed, if (gi, χi) = (gj , χj), then qij = qji = qii, hence q2ii = q
aij

ii , where (aij)i,j∈I

is the Cartan matrix of (qij)i,j∈I . Then (16.5.2) follows, since qii is not a root of
unity.

The elements (xi ⊗ g)i∈I,g∈G form a basis of V ⊗ kG, and

xi ⊗ g ∈ Pχi
gig,g

(V#kG) for all g, i.

Let 0 �= x =
∑

i∈I,g∈G αi,gxi ⊗ g, where αi,g ∈ k. Let a, b ∈ G, χ ∈ Ĝ, and assume

that x ∈ Pχ
a,b(V#kG), where a, b ∈ G, and χ ∈ Ĝ. Since x ∈ Pa,b(V#kG), there is

a finite non-empty subset J ⊆ I with

x =
∑
i∈J

αi,bxi ⊗ b, and for all i ∈ J , gib = a, αi,b �= 0.

Since g · x = χ(g)x for all g ∈ G, it follows that χi = χj for all i, j ∈ J . Hence
|J | = 1 by (16.5.2), and

x = αi,bxi ⊗ b ∈ Pχi

gib,b
, where a = gib, χ = χi.

The lemma is proved. �

Proposition 16.5.9. Let k be algebraically closed, and A a pointed Hopf algebra
with coradical filtration (An)n≥0, and abelian group G = G(A). Let R = (grA)co kG

with respect to the projection of grA onto degree 0. Assume that V = R(1) ∈ G
GYD

is finite-dimensional with basis (xi)i∈I , where for all i ∈ I, xi ∈ V χi
gi

, gi ∈ G, and

χi ∈ Ĝ. Let (qij)i,j∈I be the braiding matrix, where qij = χj(gi) for all i, j, and
assume that (qij)i,j∈I is generic of Cartan type. Then

(1) A1 = A0 ⊕
⊕

(g,i)∈G×I P
χi
gig,g(A).

(2) For each i ∈ I, there is a non-zero element ai ∈ A1 such that xi is the
residue class of ai in A1/A0, and

Δ(ai) = gi ⊗ ai + ai ⊗ 1, gaig
−1 = χi(g)ai for all g ∈ G.

For all g ∈ G, i ∈ I, Pχi
gig,g(A) is one-dimensional with basis aig.

(3) Let ε �= χ ∈ Ĝ, a, b ∈ G. If Pχ
a,b(A) �= 0, then there is an element i ∈ I

with (χ, a, b) = (χi, gib, b).

Proof. This follows from Proposition 5.4.16(2) and Lemma 16.5.8. �

Let A be a pointed Hopf algebra with abelian group G(A). As in Corol-
lary 5.3.16, there is a decomposition grA ∼= R#kG. We say that the infinitesimal
braiding of A is generic, if the Yetter-Drinfeld module V = R(1) has a finite basis

(xi)i∈I with xi ∈ V χi
gi , gi ∈ G, χi ∈ Ĝ, such that χi(gi) is not a root of unity for all

i ∈ I.

Theorem 16.5.10. Assume that k is algebraically closed. Let A be a pointed
Hopf algebra such that G = G(A) is abelian and GKdim kG < ∞. Then the
following are equivalent.

(1) The infinitesimal braiding of A is generic, and GKdimA < ∞.
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(2) There are a generic YD-datum D of finite Cartan type with group G, and
a linking datum λ for D with

A ∼= U(D, λ).

Assume (2) and that G(A) is finitely generated. Then A is a domain if and only if
G(A) is free abelian.

Proof. (1)⇒ (2). Let grA ∼= R#kG be the decomposition of Corollary 5.3.16,
and let V = R(1) ∈ H

HYD. By assumption, V has a finite basis (xi)i∈I , where

xi ∈ V χi
gi , gi ∈ G, χi ∈ Ĝ, such that χi(gi) is not a root of unity for all i ∈ I. Let

qij = χj(gi) for all i, j. Since R is strictly graded, R(n) is finite-dimensional for all
n ≥ 0 by Proposition 1.3.14.

Note that GKdimR ≤ GKdimgrA ≤ GKdimA < ∞ by Lemma 16.5.1.
Hence by Corollary 16.4.25, R is the Nichols algebra B(V ), and the braiding ma-
trix (qij)i,j∈I is of finite Cartan type with Cartan matrix (aij)i,j∈I . By Proposi-
tion 16.5.9(2), for all i ∈ I, we can choose preimages ai ∈ Pχi

gi,1
(A) of xi under the

canonical map A1 → A1/A0.
Let i, j ∈ I, i �= j. We claim that

(a) There is no l ∈ I with g
1−aij

i gj = gl, and χ
1−aij

i χj = χl.

(b) If i ∼ j, then χ
1−aij

i χj �= ε.
(c) If i ∼ j, then (ad ai)

1−aij (aj) = 0.
(d) If i �∼ j, then aiaj − qijajai = λij(gigj − 1), where λij ∈ k, and χjχj = ε

if λij(gigj − 1) �= 0.

To prove (a), assume that g
1−aij

i gj = gl, and χ
1−aij

i χj = χl for some l. Then

qail
ii = χl(gi)χi(gl) = χ

1−aij

i (gi)χj(gi)χi(gi)
1−aijχi(gj) = q

2−aij

ii ,

hence aij + ail = 2, since qii is not a root of unity. Then i = l and aij = 0, which
implies gj = 1. This is imposible, since qjj �= 1.

To prove (b), assume that i ∼ j and χ
1−aij

i χj = ε. Then

1 = χi(gi)
1−aijχj(gi) = qiiq

−1
ji , 1 = χi(gj)

1−aijχj(gj) = q
1−aij

ji qjj ,

hence qjj = q
aij−1
ii . By Lemma 8.2.4, there are an element q ∈ k (depending on the

connected component containing i, j), and di, dj ∈ {1, 2, 3} with qii = qdi , qjj = qdj .
Since q is not a root of unity, we obtain the contradiction dj + (1− aij)di = 0.

By Proposition 4.3.12, (ad ai)
1−aij (aj) ∈ P

χ
1−aij
i χj

g
1−aij
i gj ,1

(A). Hence (c) follows from

(a),(b) and Proposition 16.5.9(3).
To prove (d), assume that i �∼ j. Then aij = 0, and

aiaj − qijajai = (ad ai)(aj) ∈ P
χiχj

gigj ,1
(A).

Suppose that (ad ai)(aj) �= 0. Then it follows from (a) and Proposition 16.5.9(3)
that χiχj = ε. Thus (ad ai)(aj) ∈ kG, and (d) follows, since for all g ∈ G,
Pg,1(kG) = k(g − 1).

Let D = D(G, (gi)i∈I , (χi)i∈I), and define λ = (λij)i,j∈I,i �∼j by (d). Then D is
a generic YD-datum of finite Cartan type, and λ is a linking parameter for D. By
(c) and (d), we have constructed a Hopf algebra map

ϕ : U(D, λ)→ A, xi �→ ai, g �→ g for all i ∈ I, g ∈ G.
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The induced Hopf algebra map

B(V )#kG ∼= grU(D, λ)
grϕ−−→ grA ∼= B(V )#kG

is the identity, where the first isomorphism follows from Theorem 16.5.5(4). Hence
grϕ is an isomorphism. Then ϕ is an isomorphism by Lemma 5.2.14.

(2) ⇒ (1) follows from Theorem 16.5.5.
Assume (2). If G(A) is free then A is a domain by Corollary 16.5.7. If A is a

domain, then kG(A) is a domain, and G(A) must be free if it is finitely generated.
�

16.6. Notes

16.1. The theory of Yetter-Drinfeld modules over the Hopf algebra k[x;χ, g],
developed in Section 16.1, is a variation of the standard representation theory of
Uq(sl2). Although the obtained results are very similar to those in the classical
setting, there also exist essential differences.

We refer to the books [Lus93], [Kas95], [Jan96], [KS97] for the representation
theory of Uq(sl2) when q is not a root of 1. The irreducible finite-dimensional
representations of Uq(sl2) for q a root of 1 have been determined first in [RA89].

16.2. In [Lus93] Lusztig defined the positive part U+ of his quantum group
U over the rational function field Q(v) by a universal property (modding out the
radical of a bilinear form). It is not difficult to see that this universal property de-
fines U+ as a Nichols algebra, see [Sch96], and Proposition 2.7 in [AS04]. Lusztig
proves in [Lus93], Theorem 33.1.3, that U+ is given by the Serre relations. Thus
U+
q , defined in Proposition 8.1.3, is a Nichols algebra for any symmetrizable Cartan

matrix. Here q is transcendental, and k = Q(q). This was noted independently in
[Ros95], [Ros98]. In [Lus93], Corollary 40.2.2, a PBW-basis of U+

q over k = Q(q),
q transcendental, with Cartan matrix of finite type was constructed. In another
approach, the algebra U+

q was constructed by Ringel in [Rin95] from the Hall al-
gebra of the path algebra of a Dynkin quiver over finite fields. The Hopf algebra
structure in this approach was found by Green [Gre95].

In the special case of Uq(g), q not a root of unity, g a semisimple Lie algebra,
Theorem 16.2.5(2) follows from Corollary 8.30 in [Jan96], and Theorem 16.2.1 is
shown in Theorem 8.24 in [Jan96]. The proofs of these results in [Jan96] are long
and technical using the explicit relations and case by case considerations (referring
to [Lus93] for the case of G2).

Independently of [Lus93], Theorem 16.2.5(2) and Theorem 16.2.1 were shown
in [Ang09] (over algebraically closed fields of characteristic zero). Angiono’s work is
based on the theory of Lyndon words, the construction of a PBW-basis in [Kha99],
and on the Weyl groupoid in [Hec06]. He discusses the Cartan matrices of finite
type case by case.

16.3. In [Lus90a], [Lus90b] Lusztig defined a new class of finite-dimensional
Hopf algebras, the so-called small quantum groups or Frobenius-Lusztig kernels u.
This was a break-through in the theory of finite-dimensional pointed Hopf algebras.

Let (aij)i,j∈I be a finite Cartan matrix, diaij = djaji for all i, j ∈ I, where
di ∈ {1, 2, 3} for all i. Assume that char(k) = 0. Let 1 �= q ∈ k be a primitive
root of 1 of order N . We consider the braiding matrix q = (qdiaij )i,j∈I. Let B be
the quotient of Q[v, v−1] by the ideal generated by the N -th cyclotomic polynomial
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(where v is an indeterminate). In [Lus90b, Section 8] Lusztig defines the algebra
u+ over the field B. Let B → k be the field homomorphism given by v �→ q, and
define u+

k
= u+ ⊗B k by specialization. Then by [Lus90b, Theorem 8.3], u+

k
is a

pre-Nichols algebra of M (defined in the beginning of Section 16.3) of dimension∏t
i=1 Ni, where Ni is the order of q2di = qii for all 1 ≤ i ≤ t in the notation of

Theorem 16.3.3. Since by Theorem 16.3.3, the Nichols algebra B(M) has the same
dimension, it follows that u+

k
∼= u+

q = B(M).
It was observed independently in [Ros92] and in [Mue98], Section 2, that

the positive part of the small quantum group is a Nichols algebra (under some
restrictions on the order of the root of 1).

Let us go back to the situation of M in the beginning of Section 16.3 of a braid-
ing matrix q of finite Cartan type, where the qii �= 1 are roots of 1. In [AD05, The-
orem 3.9], Andruskiewitsch and Dăscălescu gave a presentation of type A Nichols
algebras of diagonal type by generators and explicit relations under the assumption
that each entry of the braiding matrix is ±1. They noticed that for the presentation
of these Nichols algebras the quantum Serre relations and the root vector relations
are not sufficient. Then Angiono in [Ang09, Theorem 5.25] described the Nichols
algebra B(M), where M is as above, by generators and relations. ([AA17] contains
a more explicit list but also some unfortunate mistakes in types F4 and Cθ, θ ≥ 3,
when q has order 4, and in type G2 when q has order 6. Additional relations in
these cases are given in [Ang13, Theorem 3.1].) Angiono introduced root vectors
xα for all positive roots α in the tensor algebra T (V ) as iterated commutators com-
ing from the theory of Lyndon words. In his list the relations consist of only the
Serre relations and the root vector relations if and only if q is genuinely of finite
Cartan type.

In view of Remark 16.3.15, the algebras in Theorem 16.3.14(1) for qij = εdiaij

for some root ε of 1, and their analogs for generic parameters have been studied in
detail already in [DCP93] and were denoted by Uw

ε and Uw, respectively.

16.4. The filtration in the proof of Proposition 16.4.5 goes back to De Concini
and Kac, see 10.1 in [DCP93]. The main part of the proof are the Levendorskii-
Soibelman relations which we derived over any field as a special case of Theo-
rem 14.1.12. They were shown in [DCP93], Theorem 9.3 and Appendix, over the
field of rational functions C(q), q transcendental, by reduction to rank two and
going through all cases in rank two.

The first classification results on the braiding of Nichols algebras with diagonal
braiding and finite Gelfand-Kirillov dimension were obtained in [Ros98] over the
field k = C, where the qii are positive real numbers.

16.5. Lemma 16.5.1 is Lemma 6.5 in [KL00], and the following results on the
Gelfand-Kirillov dimension are special cases of the theory of Zhuang in [Zhu13]. In
Theorem 5.4 he proves the following. Let G be a group, A a pointed Hopf algebra
with G = G(A), and R = (grA)co kG. Assume that R is a finitely generated algebra,
and R(1) is finite-dimensional. Then

GKdimR+GKdim kG = GKdimgrA = GKdimA.

His proof depends heavily on Takeuchi’s construction of free Hopf algebras in
[Tak71]. Our proof of Theorem 16.5.4 is a modification of Zhuang’s proof. We
avoid the use of [Tak71] by giving a direct argument under the additional assump-
tions of Theorem 16.5.4.
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The coradical filtration of Uq(g), g a semisimple Lie algebra, and k = Q(q), q
transcendental, was determined in [CM00] without the theory of Nichols algebras.

The rest of Section 16.5 is essentially taken from [AS04], where the field is
algebraically closed of characteristic 0, and where the braiding was assumed to be
positive depending on a result of Rosso in [Ros98]. The results from [AS04] were
then extended in [AA08] to the case of generic braidings using [Hec06]. Our proof
(in arbitrary characteristic) follows instead from the previous theory in Chapter 8,
Theorem 8.3.9, and Chapter 16, in particular from Corollary 16.4.25. We give a
detailed exposition of the ideas of [AS04], where the arguments have been sketchy
and partly unclear (in Lemma 4.4).

Let us consider the class of Hopf algebras A over an algebraically closed field
satisfying the following axioms:

– A is a pointed Hopf algebra with free abelian group G(A) of finite rank,
– A is a domain with GKdimA < ∞,
– A is reductive (i.e., all finite-dimensional A-modules are semisimple),
– the infinitesimal braiding of A is generic.

By Theorem 16.5.10 together with Theorem 5.3 in [ARS10], the Hopf algebras
in this class are up to isomorphism the Hopf algebras U(D

red
, �), where D

red
is a

generic, reduced YD-datum of finite Cartan type with free abelian group G of
finite rank, linking parameter �, and finite quotient group G/G2 (see Notes to
Section 8.4). The relations in Example 8.4.7 show that they are very close to the
classical quantum groups Uq(g), q not a root of unity, g semisimple, and to their
multiparameter versions.
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CHAPTER 17

Nichols algebras over non-abelian groups

Let G be any finite non-abelian group. In this chapter we focus on appli-
cations of the reflection theory to the structure of Nichols algebras over G. In
particular, we prove that the Nichols algebra of a direct sum of at least two irre-
ducible Yetter-Drinfeld modules over a finite simple group is infinite-dimensional.
A more surprising application concerns the structure of Nichols algebras of irre-
ducible Yetter-Drinfeld modules, which is possible due to the functoriality of the
Nichols algebra and the independence of the defining group.

In Sections 17.2 and 17.3 we collect the outcomes of certain classification results
without proofs in order to provide more examples. We end the Chapter with a
discussion of further main research directions which are not covered in the book.

17.1. Finiteness criteria for Nichols algebras over non-abelian groups

Let G be a finite non-abelian group. Assume that the characteristic of the field
k does not divide the order of G. Let H = kG.

Definition 17.1.1. Let O′,O′′ be conjugacy classes of G. We say that O′ and
O′′ commute if st = ts for any s ∈ O′, t ∈ O′′.

Proposition 17.1.2. Let O′,O′′ be conjugacy classes of G and V =
⊕

s∈O′ Vs

and W =
⊕

t∈O′′ Wt be irreducible objects in G
GYD.

(1) If adV (W ) = 0 in B(V ) then O′ and O′′ commute.
(2) If (adV )2(W ) = 0 in B(V ) then O′ commutes with O′ or with O′′.

Proof. (1) By Theorem 13.3.1, adV (W ) is isomorphic in H
HYD to

XV,W
1 = T1(V ⊗W ) = (id− cW,V cV,W )(V ⊗W ).

Let g ∈ O′, h ∈ O′′ and assume that gh �= hg. Then

cW,V cV,W (Vg ⊗Wh) = cW,V (Wghg−1 ⊗ Vg)

= Vghgh−1g−1 ⊗Wghg−1 �= Vg ⊗Wh

since ghg−1 �= h. Hence cW,V cV,W �= idV⊗W and adV (W ) �= 0.
(2) Let c1 = cV,V ⊗ idW and c22 = idV ⊗ cW,V cV,W in Aut(V ⊗ V ⊗W ). By

Theorem 13.3.1, (adV )2(W ) is isomorphic in H
HYD to

XV,W
2 = (S2 ⊗ id)T2(V ⊗ V ⊗W )

= (id + c1)(id− c22c1)(id− c22)(V ⊗ V ⊗W ).

Assume that (adV )2(W ) = 0 and that O′ and O′′ do not commute with O′. Let
g ∈ O′ and let f ∈ O′, h ∈ O′′ with fg �= gf , gh �= hg.

551
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Let v1 ∈ Vf , v2 ∈ Vg, and w ∈ Wh be non-zero. Then XV,W
2 (v1⊗ v2⊗w) is the

sum of non-zero tensors ti, 1 ≤ i ≤ 8, where ti ∈ Vr ⊗ Vs⊗Wt, (r, s, t) = Yi for any
1 ≤ i ≤ 8, and

(Yi)1≤i≤8 =
(
(f, g, h), (f, gh � g, g � h), (f � g, fh � f, f � h),

(fgh � g, fghg−1 � f, fg � h), (f � g, f, h), (fgh � g, f, g � h),

(fgh � f, f � g, f � h), (fgh � f, fgh � g, fg � h)
)
,

and � means left adjoint action in G. Since XV,W
2 (v1 ⊗ v2 ⊗ w) = 0, the triple

Y1 = (f, g, h) (like any Yi with 1 ≤ i ≤ 8) has to coincide with one of the other
seven triples. Since fg �= gf and gh �= hg, only Y1 = Y4 or Y1 = Y8 is possible,
and hence h = fg � h. Thus Y1, Y4, Y5 and Y8 have h as the third entry. Moreover,
g � h �= h and hence h = fg � h �= f � h, that is, f and h do not commute. Hence
Y4 = Yi for some i ∈ {1, 5, 8}. By comparing the first entries, only Y4 = Y1 remains
possible, hence f = gh � g.

We started with an arbitrary f ∈ O′ and h ∈ O′′ with fg �= gf and gh �= hg,
and obtained that f = gh�g. Hence precisely one element of O′ does not commute
with g, which is absurd. This implies the claim. �

Let Cf (G) denote the set of conjugacy classes O of G such that B(V ) is finite-
dimensional for some V ∈ G

GYD with V =
⊕

s∈O Vs �= 0.

Remark 17.1.3. Assume that the characteristic of k is 0. Then the conjugacy
class {1} is not contained in Cf (G). Indeed, Let V = V1 ∈ G

GYD with V �= 0
and let v ∈ V \ {0}. Then cV,V (v ⊗ v) = v ⊗ v, and hence B(kv) = k[v] by
Example 1.10.1 and since the characteristic of k is 0. Hence B(kv) and B(V ) are
infinite-dimensional.

Theorem 17.1.4. Assume that any two conjugacy classes in Cf (G) do not
commute. Let U ∈ G

GYD. If B(U) is finite-dimensional, then U = 0 or U is
irreducible in G

GYD.

Proof. By Proposition 1.4.20, U is the direct sum of irreducible subobjects.
By Remark 1.6.19, any injection f : V → W with V,W ∈ G

GYD induces an injec-
tion B(f) : B(V ) → B(W ). Hence it suffices to prove that B(V ⊕W ) is infinite-
dimensional for any two irreducible objects V,W ∈ G

GYD.
Let V,W ∈ G

GYD be irreducible objects and let O′,O′′ be conjugacy classes of
G such that V =

⊕
s∈O′ Vs, W =

⊕
t∈O′′ Wt. Assume that B(V ⊕W ) is finite-

dimensional. Then B(V ) and B(W ) are finite-dimensional by the above and hence
O′,O′′ ∈ Cf (G). Let M = (V,W ) ∈ FH

2 . By Corollary 14.5.3, M admits all
reflections and G(M) is a finite Cartan graph. By Theorem 10.2.18, there exists
P ∈ FH

2 (M) such that A[P ] is of finite type. Since dimB(P ) = dimB(M) by
Proposition 13.6.4, we may assume that P = M (and hence AM is of finite type).

By assumption, O′ and O′′ neither commute with themselves nor with each
other. Hence

(adV )2(W ) �= 0, (adW )2(V ) �= 0

by Proposition 17.1.2. Therefore aM12 , a
M
21 < −1. Then AM is not of finite type, a

contradiction. This finishes the proof of the theorem. �
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Corollary 17.1.5. Assume that G is a non-abelian finite simple group and
that the characteristic of k is 0. Let U ∈ G

GYD. If B(U) is finite-dimensional, then
U = 0 or U is irreducible in G

GYD.

Proof. Let O ∈ Cf (G). Then O �= {1} by Remark 17.1.3 and since the
characteristic of k is 0. The subgroup 〈O〉 of G generated by O is normal in G.
Hence 〈O〉 = G, since G is simple and O �= {1}. Since G is non-abelian, it follows
that any two conjugacy classes of G in Cf (G) do not commute. Hence the Corollary
follows from Theorem 17.1.4. �

We prepare another corollary of Theorem 17.1.4 with two lemmas.

Lemma 17.1.6. Assume that k contains a primitive third root of 1 and the
characteristic of k is 0. Then the conjugacy class of (1 2 3) is not in Cf (S3).

Proof. Let g = (1 2 3) and let V ∈ G
GYD with V = Vg ⊕ Vg−1 , V �= 0. Since

g3 = 1 in G, by assumption there exists ζ ∈ k and v ∈ Vg \ {0} such that ζ3 = 1

and gv = ζv. If ζ = 1, then kv ∈ G′

G′YD for some group G′ by Remark 1.5.4. Thus
dimB(kv) = ∞ by Example 1.10.1, and hence dimB(V ) = ∞. Assume now that
ζ �= 1. Let w = (1 2)v. Then w ∈ Vg−1 and gw = (1 2)g−1v = ζ−1w. Hence
V ′ = kv ⊕ kw is a braided vector space of diagonal type with braiding matrix
(qij)1≤i,j≤2, where

q11 = q22 = ζ, q12 = q21 = ζ−1.

Again, kv, kw ∈ G′

G′YD for some group G′. Moreover, V ′ is of Cartan type with
Cartan matrix A = (aij)1≤i,j≤2, a12 = a21 = −2. Thus B(V ′) and B(V ) are infinite
dimensional by Theorem 15.1.14(6). This proves the Lemma. �

Lemma 17.1.7. Assume that the characteristic of k is 0. Then the conjugacy
class of (1 2)(3 4) is not in Cf (S4).

Proof. Let G = S4, g = (1 2)(3 4), h = (1 3)(2 4) ∈ G and let

V = Vg ⊕ Vh ⊕ Vgh ∈ G
GYD

be an irreducible object. The centralizer G0 of g in S4 is generated by (1 2) and h
and has order 8. Moreover, g = (1 2)h(1 2)h.

Assume first that dimVg = 1 and let v ∈ Vg \ {0}. Then (1 2)v = εv, hv = ηv
for some ε, η ∈ {1,−1}. Thus

gv = (1 2)h(1 2)hv = ε2η2v = v

and hence dimB(kv) =∞ by Example 1.10.1.
Assume that dimVg > 1. Since g2 = h2 = 1 and gh = hg, it follows that

dimVg = 2 and Vg is the kG0-module induced by a one-dimensional representation
of the abelian subgroup of G0 generated by g and h. Let v ∈ Vg \ {0} and let
ε, η ∈ {1,−1} such that gv = εv, hv = ηv. If ε = 1, then again dimB(kv) =∞ by
Example 1.10.1. If ε = −1, then let

v1 = (1 2)v ∈ Vg, v2 = (1 3)v ∈ Vgh, v3 = (1 4)v ∈ Vh.

Then V ′ = kv1 + kv2 + kv3 is a three-dimensional braided vector space of diagonal
type with braiding matrix ⎛⎝−1 −η η

η −1 −η
−η η −1

⎞⎠ .
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Since η2 = 1, this braiding is of Cartan type with Cartan matrix (aij)1≤i,j≤3, where
aij = −1 for all 1 ≤ i, j ≤ 3, i �= j. Thus B(V ′) and B(V ) are infinite dimensional
by Theorem 15.1.14(6). This proves the Lemma. �

Corollary 17.1.8. Assume that G = Sn is the symmetric group with n ≥ 3,
the characteristic of k is 0, and if n = 3 then k contains a primitive third root of
1. Let U ∈ G

GYD. If B(U) is finite-dimensional, then U = 0 or U is irreducible in
G
GYD.

Proof. Assume first that n ≥ 5. Then the alternating group An is simple
and is the only non-trivial normal subgroup of G. Let O ∈ Cf (G) and let G0

be the subgroup of G generated by O. Then G0 �= {1} by Remark 17.1.3, since
the characteristic of k is 0. Moreover, G0 is a normal subgroup of Sn, and hence
An ⊆ G0. Since An is non-abelian, it follows that any two conjugacy classes of G
in Cf (G) do not commute. Hence the Corollary follows from Theorem 17.1.4.

Assume that n = 3 or n = 4. Again, {1} /∈ Cf (G) by Remark 17.1.3. Moreover,
the class of (1 2 3) is not in Cf (S3) by Lemma 17.1.6, and the class of (1 2)(3 4) is
not in Cf (S4) by Lemma 17.1.7. It follows that any two conjugacy classes of G in
Cf (G) do not commute. Hence the Corollary follows from Theorem 17.1.4. �

We also formulate an application of Corollary 14.5.1(5) for H = kG.

Proposition 17.1.9. Assume that k is algebraically closed and the character-
istic of k does not divide the order of G. Let O′ and O′′ be conjugacy classes of
G and let V =

⊕
g∈O′ Vg and W =

⊕
h∈O′′ Wh be irreducible Yetter-Drinfeld mod-

ules over G. Assume that adV (W ) ⊆ B(V ⊕ W ) is irreducible in G
GYD. Then

(gh)2 = (hg)2 for any g ∈ O′, h ∈ O′′.

Proof. By Theorem 13.3.1, adV (W ) ⊆ B(V ⊕W ) is isomorphic in H
HYD to

(idV⊗W − cW,V cV,W )(V ⊗W ). Let now g ∈ O′, h ∈ O′′, v ∈ Vg and w ∈ Wh, and
let y = (idV⊗W − cW,V cV,W )(v ⊗ w). Then

y = v ⊗ w − ghg−1 · v ⊗ g · w ∈ (V ⊗W )gh.

By Proposition 1.4.21 there exist qV , qW and q in k× such that

g · v = qV v, h · w = qWw, gh · y = qy.

In particular,

qW gh · v ⊗ g · w − q−1
V ghgh · v ⊗ ghg · w = qv ⊗ w − qq−1

V gh · v ⊗ g · w.

Since

gh · v ⊗ g · w ∈ V ⊗Wghg−1 ,

ghgh · v ⊗ ghg · w ∈ V ⊗Wghgh(ghg)−1 ,

v ⊗ w ∈ V ⊗Wh,

we conclude that ghgh(ghg)−1 = h. This implies the claim. �

Corollary 17.1.10. Assume that k is algebraically closed and the characteris-
tic of k does not divide the order of G. Let O′ and O′′ be conjugacy classes of G and
let V =

⊕
g∈O′ Vg and W =

⊕
h∈O′′ Wh be irreducible Yetter-Drinfeld modules over

G. If M = (V,W ) admits all reflections and G(M) is finite, then (gh)2 = (hg)2 for
any g ∈ O′, h ∈ O′′.
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Reference dimV dimB(V )
Example 17.2.1 1 N(q)
Example 17.2.2 3 12
Example 17.2.4 4 72
Example 17.2.6 4 5184
Example 17.2.7 5 1280
Example 17.2.7 5 1280
Example 17.2.2 6 576
Example 17.2.3 6 576
Example 17.2.5 6 576
Example 17.2.7 7 326592
Example 17.2.7 7 326592
Example 17.2.2 10 8294400
Example 17.2.3 10 8294400

Table 17.1. Examples of finite-dimensional Nichols algebras of
simple Yetter-Drinfeld modules over groups

Proof. If M admits all reflections and G(M) is finite, then adV (W ) is zero
or irreducible by Corollary 14.5.1(5). Hence the Corollary follows from Proposi-
tions 17.1.2(1) and 17.1.9. �

Corollary 17.1.11. Assume that k is algebraically closed and the character-
istic of k does not divide the order of G. Let V ∈ G

GYD and assume that B(V ) is
finite-dimensional. Then (gh)2 = (hg)2 for all g, h ∈ G with Vg �= 0, Vh �= 0 such
that g is not conjugate to h in the subgroup 〈g, h〉.

Proof. Let S = 〈g, h〉, and W =
⊕

s∈S Vs. Then W ∈ S
SYD, and B(W ) is em-

bedded into B(V ) by Lemma 7.1.5. Hence the claim follows from Corollary 17.1.10
and Corollary 14.5.3. �

17.2. Finite-dimensional Nichols algebras
of simple Yetter-Drinfeld modules

Assume that the field k is algebraically closed and its characteristic is not two.
In this section we list all known irreducible Yetter-Drinfeld modules V =

⊕
g∈G Vg

over a group G such that G is generated by

supp(V ) = {g ∈ G | Vg �= 0}

and B(V ) is finite-dimensional. The results rely on [Gn+11], [HLV12] and the
references therein. In Table 17.1 we list some basic data of the examples in this
section.

Example 17.2.1. Let G be an abelian group and let V be an irreducible Yetter-
Drinfeld module over G. Example 1.4.2 implies that dimV = 1. Let v ∈ V \ {0}
and let g ∈ G and q ∈ k× such that

δV (v) = g ⊗ v, cV,V (v ⊗ v) = qv ⊗ v.
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If G is generated by supp(V ) then G is cyclic. By Example 1.10.1, the Nichols
algebra B(V ) is finite-dimensional if and only if N(q) is an integer. In that case,
B(V ) ∼= k[x]/(xN(q)).

Example 17.2.2. Let n ≥ 3 and G = Sn. Let O2 = {(i j) | 1 ≤ i < j ≤ n}
be the conjugacy class of transpositions in Sn. As in Example 1.4.7 let Vn be the
Yetter-Drinfeld module in Sn

Sn
YD with basis xt, t ∈ O2, such that

δVn
(xt) = t⊗ xt, s · xt = sign(s)xs�t for all t ∈ O2, s ∈ Sn.

Then Vn is irreducible in Sn

Sn
YD.

As mentioned in Example 1.10.3,

dimB(V3) = 12, dimB(V4) = 576, dimB(V5) = 8.294.400,

and for none of the integers n ≥ 6 it is known whether B(Vn) is finite-dimensional.
The defining relations of B(Vn) for 3 ≤ n ≤ 5 are the following quadratic relations.

x2
t = 0 for all t ∈ O2,

xsxt + xtxs = 0 for all s, t ∈ O2 with st = ts, s �= t,

xsxt + xtxt�s + xt�sxs = 0 for all s, t ∈ O2 with st �= ts.

These Nichols algebras appeared first in [MS00, §5].
Example 17.2.3. We discuss another family of examples related to those in

Example 17.2.2. They appeared first in [MS00, §5] and in [FK99]. Let n ≥ 3
and G = Sn. Let O2 = {(i j) | 1 ≤ i < j ≤ n} be the conjugacy class of

transpositions in Sn. Let Wn be the Yetter-Drinfeld module in Sn

Sn
YD with basis xij

with 1 ≤ i < j ≤ n, such that

δWn
(xij) = (i j)⊗ xij , s · xij = xs(i)s(j) for all 1 ≤ i < j ≤ n, s ∈ Sn,

where xji = −xij for any 1 ≤ i < j ≤ n. Then Wn is irreducible in Sn

Sn
YD.

Proposition 1.4.17 implies that the Yetter-Drinfeld modules Vn in Example 17.2.2
and Wn are isomorphic for n = 3 but non-isomorphic for n > 3.

As in Example 17.2.2,

dimB(W3) = 12, dimB(W4) = 576, dimB(W5) = 8.294.400,

and for none of the integers n ≥ 6 it is known whether B(Wn) is finite-dimensional.
The defining relations of B(Wn) for 3 ≤ n ≤ 5 are the following quadratic relations.

x2
ij = 0 for all 1 ≤ i < j ≤ n,

xijxkl − xklxij = 0 for all i, j, k, l ∈ {1, . . . , n}, #{i, j, k, l} = 4,

xijxjk + xjkxki + xkixij = 0 for all i, j, k ∈ {1, . . . , n}, #{i, j, k} = 3.

The remaining examples are presented in terms of racks and two-cocycles. All
of them can be realized as Yetter-Drinfeld modules over finite groups.

For the sake of completeness, next we recall Example 1.10.4.

Example 17.2.4. Let X = {1, 2, 3, 4} and let ϕi with i ∈ X be the permuta-
tions

ϕ1 = (2 3 4), ϕ2 = (1 4 3), ϕ3 = (1 2 4), ϕ4 = (1 3 2).

Then (X, �) is a quandle with x � y = ϕx(y) for all x, y ∈ X. Let q be the constant
2-cocycle with qx,y = −1 for all x, y ∈ X. Then (kX, cq) with

cq(x⊗ y) = −x � y ⊗ x for all x, y ∈ X
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is a braided vector space of group type, and dimB(kX) = 72. This Nichols algebra
appeared first in [Gn00b]. A description of B(V ) by generators and relations is
given in Example 1.10.4.

Example 17.2.5. Let (X, �) be the conjugacy class of 4-cycles in S4 considered
as a rack. Using the enumeration

x1 = (1 2 3 4), x2 = (1 3 4 2), x3 = (1 4 2 3),

x4 = (1 3 2 4), x5 = (1 2 4 3), x6 = (1 4 3 2),

the corresponding maps ϕi : X → X, xj �→ xi �xj , can be written in cycle notation
as

ϕ1 = (x2 x4 x5 x3), ϕ2 = (x1 x3 x6 x4), ϕ3 = (x1 x5 x6 x2),

ϕ4 = (x1 x2 x6 x5), ϕ5 = (x1 x4 x6 x3), ϕ6 = (x2 x3 x5 x4).

Then (kX, cq) with the constant 2-cocycle cq = −1 is a braided vector space of
group type, and dimB(kX) = 576. The algebra B(kX) can be presented by gener-
ators x1, . . . , x6 and relations

x2
1 = x2

2 = x2
3 = x2

4 = x2
5 = x2

6 = 0,

x1x6 + x6x1 = 0, x2x5 + x5x2 = 0, x3x4 + x4x3 = 0,

x1x2 + x2x4 + x4x1 = 0, x1x3 + x3x2 + x2x1 = 0,

x1x4 + x4x5 + x5x1 = 0, x1x5 + x5x3 + x3x1 = 0,

x2x3 + x3x6 + x6x2 = 0, x2x6 + x6x4 + x4x2 = 0,

x3x5 + x5x6 + x6x3 = 0, x4x6 + x6x5 + x5x4 = 0.

The Nichols algebra B(kX) appeared first in [AGn03].

Example 17.2.6. Let X and ϕi with i ∈ X be as in Example 17.2.4. Again,
(X, �) is a quandle with x � y = ϕx(y) for all x, y ∈ X. Let q ∈ k. Assume that
q2 + q + 1 = 0. Let q be the 2-cocycle given by the matrix

(17.2.1) (qx,y)x,y∈X =

⎛⎜⎜⎝
q q q q
q q −q −q
q −q q −q
q −q −q q

⎞⎟⎟⎠
Then (kX, cq) with

cq(x⊗ y) = qx,yx � y ⊗ x for all x, y ∈ X

is a braided vector space of group type, and dimB(kX) = 5184. This example
appeared first in [HLV12, §7]. We write a, b, c, and d for the standard basis vectors
of kX. Then B(V ) has the following presentation by generators and relations:

a3 = b3 = c3 = d3 = 0,

−q2ab− qbc+ ca = −q2ac− qcd+ da = 0,

qad− q2ba+ db = qbd+ q2cb+ dc = 0,

a2bcb2 + abcb2a+ bcb2a2 + cb2a2b+ b2a2bc+ ba2bcb

+bcba2c+ cbabac+ cb2aca = 0.
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Example 17.2.7. Let (X, �) be one of the affine quandles Aff(5, 2), Aff(5, 3),
Aff(7, 3), Aff(7, 5) in Example 1.5.14. Let q be the constant 2-cocycle −1. Then
(kX, cq) with

cq(x⊗ y) = −x � y ⊗ x for all x, y ∈ X

is a braided vector space of group type with finite-dimensional Nichols algebra.
The Nichols algebra of (kX, cq) for Aff(5, i) with i ∈ {2, 3} has dimension 1280.

The Nichols algebra for i = 2 can be presented by generators x0, x1, x2, x3, x4 and
relations

x2
i = 0, i ∈ X,

x0x1 + x1x3 + x3x2 + x2x0 = 0,

x0x2 + x2x1 + x1x4 + x4x0 = 0,

x0x3 + x3x4 + x4x1 + x1x0 = 0,

x0x4 + x4x2 + x2x3 + x3x0 = 0,

x1x2 + x2x4 + x4x3 + x3x1 = 0,

x1x0x1x0 + x0x1x0x1 = 0

if k has characteristic zero. Similarly, the Nichols algebra for i = 3 can be presented
by generators x0, x1, x2, x3, x4 and relations

x2
i = 0, i ∈ X,

x0x1 + x1x4 + x4x3 + x3x0 = 0,

x0x2 + x2x3 + x3x1 + x1x0 = 0,

x0x3 + x3x2 + x2x4 + x4x0 = 0,

x0x4 + x4x1 + x1x2 + x2x0 = 0,

x1x3 + x3x4 + x4x2 + x2x1 = 0,

x1x0x1x0 + x0x1x0x1 = 0

if k has characteristic zero. These examples appeared in [AGn03]. The Nichols
algebra of (kX, cq) for Aff(7, i) with i ∈ {3, 5} has dimension 326592. These exam-
ples appeared first on the web page of M. Graña. The Nichols algebra for i = 3 can
be presented by generators x0, x1, x2, x3, x4, x5, x6 and relations

x2
0 = x2

1 = x2
2 = x2

3 = x2
4 = x2

5 = x2
6 = 0,

x0x1 + x1x3 + x3x0 = 0, x0x2 + x2x6 + x6x0 = 0,

x0x3 + x3x2 + x2x0 = 0, x0x4 + x4x5 + x5x0 = 0,

x0x5 + x5x1 + x1x0 = 0, x0x6 + x6x4 + x4x0 = 0,

x1x2 + x2x4 + x4x1 = 0, x1x4 + x4x3 + x3x1 = 0,

x1x5 + x5x6 + x6x1 = 0, x1x6 + x6x2 + x2x1 = 0,

x2x3 + x3x5 + x5x2 = 0, x2x5 + x5x4 + x4x2 = 0,

x3x4 + x4x6 + x6x3 = 0, x3x6 + x6x5 + x5x3 = 0,

x0x1x2x0x1x2 + x1x2x0x1x2x0 + x2x0x1x2x0x1 = 0

if k has characteristic zero. (The Gröbner basis calculation for this algebra over
the rationals runs with the GBNP package of GAP using the ordering

x0, x1, x2, x3, x6, x4, x5
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of generators in a reasonable time.) Similarly, the Nichols algebra for i = 5 can be
presented by generators x0, x1, x2, x3, x4, x5, x6 and relations

x2
0 = x2

1 = x2
2 = x2

3 = x2
4 = x2

5 = x2
6 = 0,

x0x1 + x1x5 + x5x0 = 0, x0x2 + x2x3 + x3x0 = 0,

x0x3 + x3x1 + x1x0 = 0, x0x4 + x4x6 + x6x0 = 0,

x0x5 + x5x4 + x4x0 = 0, x0x6 + x6x2 + x2x0 = 0,

x1x2 + x2x6 + x6x1 = 0, x1x3 + x3x4 + x4x1 = 0,

x1x4 + x4x2 + x2x1 = 0, x1x6 + x6x5 + x5x1 = 0,

x2x4 + x4x5 + x5x2 = 0, x2x5 + x5x3 + x3x2 = 0,

x3x5 + x5x6 + x6x3 = 0, x3x6 + x6x4 + x4x3 = 0,

x0x1x2x0x1x2 + x1x2x0x1x2x0 + x2x0x1x2x0x1 = 0

if k has characteristic zero. The Gröbner basis calculation of GAP with the ordering
x0, x1, x2, x3, x4, x5, x6 terminates. A slightly better performance can be achieved
using the ordering x0, x1, x6, x2, x3, x5, x4.

17.3. Nichols algebras with finite root system of rank two

Assume that the field k is algebraically closed and its characteristic is neither
two nor three. Let G be a finite non-abelian group. Let O′ and O′′ be conjugacy
classes of G and V =

⊕
g∈O′ Vg, W =

⊕
h∈O′′ Wh be irreducible Yetter-Drinfeld

modules over G. Assume that the group G is generated by O′ ∪ O′′ and that
cW,V cV,W �= idV⊗W . Without proofs we give a sufficient and necessary condition
for the pair (V,W ) such that M = (V,W ) admits all reflections and G(M) is finite.
The results are based on the series of papers [HS10a,HV14,HV15,HV17b]. For
the notation we refer mainly to Section 1.4.

For any n ≥ 2 let Γn be the group given by generators a, b, ν and relations

ba = νab, νa = aν−1, νb = bν, νn = 1.

Following [HV17b], for n = 3 we will use another presentation of Γn. Let Γ′
3 be

the group given by generators γ, ζ, ν and relations

γν = ν−1γ, γζ = ζγ, ζν = νζ, ν3 = 1.

Then there is a group isomorphism e : Γ3 → Γ′
3 with e(a) = γ, e(b) = ζν−1,

e(ν) = ν. Its inverse is given by e−1(γ) = a, e−1(ζ) = bν, e−1(ν) = ν.
Let T be the group given by generators ζ, χ1, χ2 and relations

ζχ1 = χ1ζ, ζχ2 = χ2ζ, χ1χ2χ1 = χ2χ1χ2, χ3
1 = χ3

2.

An epimorphic image of Γn is non-abelian if and only if the image of ν is not 1. An
epimorphic image of T is non-abelian if and only if the image of χ1χ

−1
2 is not 1.

The following Theorem was proven in [HV15, Th. 7.3] and [HV17b, Th. 2.1].
As in the previous section, we use the notation

supp(V ) = {g ∈ G | Vg �= 0}
for any group G and any Yetter-Drinfeld module V ∈ G

GYD.

Theorem 17.3.1. Assume that k is an algebraically closed field and its char-
acteristic is neither two nor three. Let G be a non-abelian group and let V and
W be finite-dimensional irreducible Yetter-Drinfeld modules over G. Assume that

The preliminary version made available with permission of the publisher, the American Mathematical Society.



560 17. NICHOLS ALGEBRAS OVER NON-ABELIAN GROUPS

cW,V cV,W �= idV⊗W and that the group G is generated by supp(V ⊕W ). Then G is
an epimorphic image of one of the groups Γ2,Γ3,Γ4 and T . Moreover, the following
are equivalent.

(1) The pair M = (V,W ) ∈ FkG
2 admits all reflections and G(M) is finite.

(2) The Nichols algebra B(V ⊕W ) is finite-dimensional.
(3) One of the pairs (V,W ), (W,V ) appears in Examples 17.3.2, 17.3.3, 17.3.4,

17.3.5, 17.3.6, 17.3.7, or 17.3.8.

We now list the examples in Theorem 17.3.1 one by one.

Example 17.3.2. Let f : Γ2 → G be a group epimorphism and let g = f(a),
h = f(b), and ε = f(ν). Assume that ε �= 1. Let V,W ∈ G

GYD. Assume that
V ∼= M(g, ρ) and W ∼= M(h, σ), where ρ is a character of Gg = 〈ε, g, h2〉 and σ is a
character of Gh = 〈ε, h, g2〉. Assume that ρ(εh2)σ(εg2) = 1 and ρ(g) = σ(h) = −1.
Then dimV = dimW = 2 and dimB(V ⊕W ) = 64. This example appeared first
in [HS10a, Th. 4.6] and in a special case in [MS00, Ex. 6.5].

Example 17.3.3. Let f : Γ′
3 → G be a group epimorphism and let g = f(γ),

z = f(ζ), and ε = f(ν). Let V,W ∈ G
GYD. Assume that V ∼= M(g, ρ) and

W ∼= M(εz, σ), where ρ is a character of Gg = 〈g, z〉 and σ is a character of
Gεz = 〈ε, z, g2〉. Assume that

ρ(g) = σ(εz) = −1, ρ(z2)σ(εg2) = 1, 1 + σ(ε) + σ(ε)2 = 0.

Then dimV = 3, dimW = 2, and dimB(V ⊕W ) = 10368. This example appeared
first in [HV17b, Ex. 1.9].

Example 17.3.4. As in Example 17.3.3, let f : Γ′
3 → G be a group epimorphism

and let g = f(γ), z = f(ζ), and ε = f(ν) �= 1. Let V,W ∈ G
GYD. Assume that

V ∼= M(g, ρ) and W ∼= M(εz, σ), where ρ is a character of Gg = 〈g, z〉 and σ is a
character of Gεz = 〈ε, z, g2〉. Differently from Example 17.3.3, assume that

ρ(g) = σ(εz) = −1, ρ(z2)σ(εg2) = 1, σ(ε) = 1.

Then dimV = 3, dimW = 2, and dimB(V ⊕ W ) = 2304. This example also
appeared first in [HV17b, Ex. 1.9].

Example 17.3.5. Let f : Γ′
3 → G be a group epimorphism and let g = f(γ),

z = f(ζ), and ε = f(ν) �= 1. Let V,W ∈ G
GYD. Assume that V ∼= M(g, ρ) and

W ∼= M(z, σ), where ρ is a character of Gg = 〈g, z〉 and σ is a character of Gz = G.
Assume that

ρ(g) = −1, 1− σ(z) + σ(z)2 = 0, ρ(z)σ(gz) = 1.

Then dimV = 3, dimW = 1, and dimB(V ⊕W ) = 10368. This example appeared
first in [HV17b, Ex. 1.10].

Example 17.3.6. Let f : Γ′
3 → G be a group epimorphism and let g = f(γ),

z = f(ζ), and ε = f(ν) �= 1. Let V,W ∈ G
GYD. Assume that V ∼= M(g, ρ)

and W ∼= M(z, σ), where ρ is a character of Gg = 〈g, z〉 and σ is an irreducible
representation ofGz = G of degree two. Then σ(1+ε+ε2) = 0, and the isomorphism
class of σ is uniquely determined by the constants σ(g2) and σ(z). (Note that g2

and z are in the center of G.) Assume that

ρ(g) = σ(z) = −1, ρ(z2)σ(g2) = 1.
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Then dimV = 3, dimW = 2, and dimB(V ⊕W ) = 2304. This example appeared
first in [HV17b, Ex. 1.11].

Example 17.3.7. Let f : Γ4 → G be a group epimorphism and let g = f(a),
h = f(b), and ε = f(ν). Let V,W ∈ G

GYD. Assume that V ∼= M(h, ρ) and
W ∼= M(g, σ), where ρ is a character of Gh = 〈ε, h, g2〉 and σ is a character of
Gg = 〈ε2, ε−1h2, g〉. Assume that

ρ(h) = σ(g) = −1, ρ(ε) = ρ(g2)σ(ε−1h2), ρ(ε2) = −1.
Then dimV = 2, dimW = 4, and dimB(V ⊕W ) = 262144. This example appeared
first in [HV15, Th. 5.4].

Example 17.3.8. Let f : T → G be a group epimorphism and let z = f(ζ),
x1 = f(χ1), and x2 = f(χ2). Then z is a central element of G. Let V,W ∈ G

GYD.
Assume that V ∼= M(z, ρ) and W ∼= M(x1, σ), where ρ is a character of Gz = G
and σ is a character of Gx1 = 〈x1, x

2
2x1x

−1
2 , z〉. Assume that

σ(x1) = −1, σ(x2
2x1x

−1
2 ) = 1,

(ρ(x1)σ(z))
2 − ρ(x1)σ(z) + 1 = 0, ρ(x1z)σ(z) = 1.

Then dimV = 1, dimW = 4, and dimB(V ⊕ W ) = 80621568. This example
appeared first in [HV15, Th. 2.8].

17.4. Outlook

Besides the theory presented in our book, many problems on Nichols and related
algebras have been studied in the literature. Let us describe some of those results,
which are closely related to the theory discussed here.

In Section 15.3 we classified rank two braided vector spaces of diagonal type
which have a finite Cartan graph and finite-dimensional Nichols algebra, respec-
tively. The corresponding classification of higher rank braided vector spaces of
diagonal type is much more involved and has been done in [Hec09], over fields of
characteristic 0, based on the theory of reflections and the Weyl groupoid.

For a better understanding of finite-dimensional Nichols algebras of diagonal
type it is desirable to provide a presentation by generators and relations. Such
an explicit presentation was obtained in [Hec07, Section 8] for rank two Nichols
algebras using Stern-Brocot trees and in [Ang15] and [Ang13] in general for each
braided vector space from the list in [Hec09]. In the approach of Angiono, reflec-
tion theory and the structure theory of coideal subalgebras of Nichols algebras of
diagonal type are fundamental ingredients.

Given a tensor decomposition of a Nichols algebra B(V ) of diagonal type in
the sense of Definition 14.4.1, it is easy to deduce the Gelfand-Kirillov dimension
of B(V ). Using this idea, in [Hec06] it was pointed out that any Nichols algebra
of diagonal type admitting a finite Cartan graph has finite Gelfand-Kirillov dimen-
sion. The converse statement, that is, if the Nichols algebra of a finite-dimensional
braided vector space V of diagonal type has finite Gelfand-Kirillov dimension, then
V admits a finite Cartan graph, is an open problem. By [AAH19], the answer is
positive in characteristic 0 if dimV = 2.

In [Hec06], to any Nichols algebra B(V ) of diagonal type a root system was
attached, based on the theory of Lyndon words [Kha15]. The real roots of this
root system can be explained by the theory of reflections. However, only very little
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is known about imaginary roots. If B(V ) is the free algebra, then all roots and their
multiplicities, which depend on the braiding, can be determined. In [HZ18] all V
of diagonal type with B(V ) = T (V ) have been classified in terms of polynomial
equations for the entries of the braiding matrix. These equations appeared before
in a variation in [Fd+01].

Any braided vector space of diagonal type can be realized as a Yetter-Drinfeld
module over an abelian group. The converse is not true: a Yetter-Drinfeld module
over an abelian group is not necessarily a braided vector space of diagonal type.
Finite Gelfand-Kirillov dimensional Nichols algebras of such examples appeared in
[CLW09] in positive characteristic, and later many more in [AAH16] in charac-
teristic 0.

One of the main motivations and applications of the theory of Nichols algebras
of diagonal type is the classification of finite-dimensional complex pointed Hopf
algebras with abelian coradical by the lifting method, as explained first in [AS98],
see also [And14]. By now this project can be considered to be completed. For
a survey with emphasis on the calculation of the liftings we refer to [AI18]. A
generalization of the lifting method to other types of Hopf algebras was presented
in [AC13].

Finite-dimensional pre-Nichols algebras with some emphasis on braidings of
diagonal type have been studied recently from the perspective of geometric invariant
theory in [Mei19].

Another direction of research related to Nichols algebras of diagonal type was
initiated by Kolb and Yakimov in [KY19] with their study of symmetric pair coideal
subalgebras with Iwasawa decomposition.

Finite-dimensional Nichols algebras over non-abelian groups are much less un-
derstood. The main reason for this is that the braided vector space structure of
a Yetter-Drinfeld module is typically very complicated. Conjecturally, non-abelian
finite simple groups have no non-trivial finite-dimensional complex Nichols algebra.
For the alternating groups this was proven in [AF+11a]. Unexpectedly, the proof
relies among others on the reflection theory applied to specific braided subspaces.
Partial results for other non-abelian finite simple groups have been obtained in a
series of papers such as [F+10], [AF+11b], [ACG15], [ACG16], and [ACG17].
Typically, in these papers for all simple Yetter-Drinfeld modules not appearing in
a specific list it is shown that its Nichols algebra is infinite dimensional. Related
results for symmetric and dihedral groups appeared in [AFZ09] and [FG11].

Albeit only little is known about finite-dimensional Nichols algebras of irre-
ducible Yetter-Drinfeld modules over non-simple non-abelian groups, the classifica-
tion of those semisimple non-simple Yetter-Drinfeld modules over any non-abelian
group, which have a finite Cartan graph, has been obtained in [HV17b] and
[HV17a]. (In fact, in the precise claim some natural technical assumptions on
the group and on the Yetter-Drinfeld modules appear.) The outcome in rank two is
presented in Section 17.3. It turned out that all the corresponding Nichols algebras
are finite-dimensional. Note that the latter is false for abelian groups. Up to few
exceptions, the finite-dimensional Nichols algebras in the classification have been
constructed much earlier from Nichols algebras of diagonal type in [Len14].

Not much is known about Nichols algebras over Hopf algebras which are not
group algebras. An interesting nontrivial example was studied in [Xio19]. Among
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others, it is shown there that the Nichols algebra of any non-semisimple Yetter-
Drinfeld module over the 12-dimensional Hopf algebra without the dual Chevalley
property is infinite dimensional. In [AA18], structure theory and examples of
Nichols algebras over basic Hopf algebras are studied. The example in [Xio19] is
a particular case, and again non-semisimple Yetter-Drinfeld modules have infinite-
dimensional Nichols algebras. This indicates that reflection theory is likely to be-
come a useful tool in very general settings.

The theory of Nichols algebras is potentially also crucial for the representation
theory of pointed Hopf algebras. Fairly general problems have been studied among
others in [RS08b], [ARS10], [HY10], and [AYY15].

Other areas of applications of the theory of Nichols algebras include Schubert
calculus on Coxeter groups [Baz06], [Liu15], [Bär19] and quasi-quantum groups
[Ang10], [HL+17], [BHK17], [GLO18]. The former is based on the observation
that the classical coinvariant ring can be embedded into a Fomin-Kirillov algebra.
The latter is a non-associative version of the theory of Nichols algebras originated
in the theory of tensor categories.

Nichols algebras appear to be an important algebraic tool in the representation
theory of vertex operator algebras realized in non-semisimple logarithmic conformal
field theory models. The key point here is that the algebra generated by screening
operators, regarded as a braided Hopf algebra, is a Nichols algebra of diagonal type.
The analysis of this structure enjoys increasing interest [ST12], [ST13], [Sem14],
[FL18], [Len17], [FL19].

More recently, Nichols algebras over groups have been used to prove a conjec-
ture of Malle on the number of extensions of a global field [ETW17]. In a related
work [KS19] the Nichols algebra of an object V in a k-linear abelian braided
monoidal category is interpreted as the collection of the intersection cohomology
extensions of the local systems on the open configuration spaces associated to the
tensor powers of V .

Cartan graphs are closely related to simplicial arrangements via their sets of
real roots. The classification of finite Cartan graphs was performed algorithmically
in [CH15]. In contrast to the classification in rank two, in each rank only finitely
many isomorphism classes of finite Cartan graphs exist. In recent research papers
on the topic, additional properties of the arrangements of Cartan graphs, general-
izations, and associated algebraic structures are studied. For more details we refer
to [BC12], [CMW17], [CL17], [AY18], [DW19].

17.5. Notes

17.1. The results in Section 17.1 are taken essentially completely from [HS10b,
Sect. 8]. Corollary 17.1.11 and variations of it have been used among others in
[AF+11a] and [AF+11b] to prove infinite dimensionality of most of the Nichols
algebras over certain groups.
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dimensional pointed Hopf algebras over finite simple groups of Lie type I.
Non-semisimple classes in PSLn(q), J. Algebra 442 (2015), 36–65, DOI
10.1016/j.jalgebra.2014.06.019. MR3395052

[ACG16] Nicolás Andruskiewitsch, Giovanna Carnovale, and Gastón Andrés Garćıa, Finite-
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