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Preface

This book is an introduction to Hopf algebras in braided monoidal categories
with applications to Hopf algebras in the usual sense, that is, in the category of
vector spaces. By now there exists a wide variety of deep results in this area, and
we don’t aim to provide a complete overview. We will discuss some of these topics
in Chapter 7

Our main goal is to present from scratch and with complete proofs the theory of
Nichols algebras (or quantum symmetric algebras) and the surprising relationship
between Nichols algebras and (generalized) root systems. Hopefully our book makes
the vast literature in the area more accessible, and it is useful for future research.

Since its beginnings some 70 years ago, the theory of Hopf algebras has de-
veloped rapidly into various directions. Its origins came from algebraic topol-
ogy, algebraic and formal groups, and operator algebras. The influential book
of Sweedler from 1969 [Swe69] laid the foundations of a general theory of ab-
stract (non-commutative and non-cocommutative) Hopf algebras. After the work
of Drinfeld and Jimbo on quantum groups, and Drinfeld’s report “Quantum groups”
[Dri87] at the International Congress of Mathematicians 1986, the interest in the
topic drastically increased.

Quantum groups are prominent examples of pointed Hopf algebras (their irre-
ducible comodules are one-dimensional). Several years after their discovery, general
classification results for pointed Hopf algebras were obtained ([ASO02]; [AS04],
[AAO08], [AS10] depending on [Ros98|, [Kha99], [Hec06|, [Hec08]). In these
papers, the classical theory of quantum groups and of the small quantum groups
as developed in [Lus93] is applied.

Although quantum groups are intrinsically related to Lie theoretical structures,
it is not at all obvious to which extent this is true for general pointed Hopf algebras.
The lifting method introduced in [AS98] showed that the classification of Nichols
algebras is an essential step in the classification theory of pointed Hopf algebras.
And here, in the theory of Nichols algebras, the combinatorics of root systems and
Weyl groups, or better Weyl groupoids, plays an important role. Weyl groupoids
were introduced in [Hec06] for diagonal braidings using Kharchenko’s PBW basis
[Kha99] based on the theory of Lyndon words, and in [AHS10| in general.

Nichols algebras as a special class of braided pointed Hopf algebras are studied
in great detail in this book. They appeared first in [Nic78]|, independently as
braided algebras in [Wor89]. It follows from the work of Lusztig [Lus93| that
Uq"‘ (9), g symmetrizable Kac-Moody Lie algebra, ¢ transcendental, is a Nichols
algebra; see [Ros98| (where a dual description of Nichols algebras as quantum
shuffle algebras is used), [Gre97], and [Sch96].

xi
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xii PREFACE

We emphasize categorical constructions and one-sided coideal subalgebras. The
introduction of Nichols systems, which are generalizations of Nichols algebras to-
gether with a grading by a free abelian group, allows us to develop the theory in
a very general setting. We do not use the theory of Lyndon words, and we do
not assume results from quantum groups. Our theory can be applied to quantum
groups, and some of our results on right coideal subalgebras are new also in the
special case of quantum groups.

Prerequisites. The reader is expected to be familiar with linear algebra and
algebra on the graduate level including tensor products of modules, basic non-
commutative algebra, and the language of categories, functors, and natural trans-
formations. For a better understanding, a course in semisimple Lie algebras would
be helpful but is not strictly necessary.

We now describe the contents of the book in more detail.

(1) Foundations. We begin in Chapter [l with a quick introduction to Nichols
algebras. Our goal is to give a complete exposition of the basics of Nichols algebras
which are scattered over various papers.

The most important example of a braided monoidal category in this book is the
category YD of Yetter-Drinfeld modules over some Hopf algebra H with bijective
antipode. If H = kG is the group algebra of a group G over a field k, then an
object in YD is a G-graded vector space V = ®geG Vy with a G-action such that
forall g,h € G, g- Vi, = Vypg-1. The braiding cy,w between objects V,W € 2yD
is given by

cvw VoW -=WeV, vow—g-w®v, veV,weW

The maps cy,w are G-graded and G-linear, where the monoidal structure is given
by the usual grading and diagonal action on the tensor product V @ W. For any
object V' € HYD, the Nichols algebra B(V) is defined as follows. We want an
No-graded Hopf algebra R in the braided category #YD in which the elements of
V' are primitive and generators of the algebra. Moreover, R should be minimal in
the sense that there are no other primitive elements than those in V. Of course,
the tensor algebra T'(V) is an Ny-graded Hopf algebra generated by V', where the
elements of V' are primitive. But in general there are more primitive elements in
higher degrees. We define the Nichols algebra B(V) by

B(V)=T(V)/I(V), I(V) the largest coideal in degree > 2.

This is an Ng-graded braided quotient Hopf algebra of the tensor algebra. Thus the
Nichols algebra is defined by a universal property, which means that it is very often
quite difficult to really compute B(V). In Corollary [LO.7]we prove that the relations
of the Nichols algebra can be described by the quantum symmetrizer maps defined
by the action of the braid group. This is an important theoretical result. However,
it does not immediately help, for example, to decide which Nichols algebras are
finite-dimensional.

Let A be a Hopf algebra whose coradical Ag = H is a Hopf subalgebra, and
let gr A be the associated Ng-graded Hopf algebra with respect to the coradical
filtration. Then the Nichols algebra over H appears naturally as a subalgebra of
gr A (see Corollary [[.1.17)). Hence Nichols algebras are essential for the classification
problem of such Hopf algebras A.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



PREFACE xiii

ChapterRlis a collection of fairly standard results in the theory of Hopf algebras
which we will need later on or which motivate more general constructions later.

In Chapter Bl the theory of Hopf algebras in braided (strict) monoidal cate-
gories C is presented, partly with new proofs. To our knowledge, this theory didn’t
appear so far in a textbook. Sections B.8] and B0 contain detailed proofs of the
Radford-Majid-Bespalov theory of bosonization and Hopf algebras with a projec-
tion in braided categories. Theorem on left and right coinvariant subobjects
seems to be new; it is used to prove the existence of the Hopf algebra isomorphism T’
in Theorem [[2Z.3.3] which in this book plays the role of the Lusztig automorphisms
of quantum groups.

In Chapter [ we specialize Chapter [3] to the braided category #YD. By The-
orem ILATT] a finite-dimensional Hopf algebra in Z£YD has bijective antipode and
is a Frobenius algebra. This was shown in the pioneering paper [LS69] for usual
Hopf algebras.

In Chapter [f] a fairly general theory of filtrations by abelian monoids is pre-
sented, which will be applied in particular to Ng, @ > 2, to obtain appropriate
gradings of Nichols algebras. In addition we study the coradical filtration assuming
standard results from the theory of the Jacobson radical of algebras.

Chapters [0 and [ deal with general braided vector spaces and their Nichols
algebras. They are rather independent of the remaining parts of the book. In
Corollary [[.2.8 we establish the fundamental non-degenerate pairing between B(V*)
and B(V), where V is a finite-dimensional object in £YD.

In Chapter Bl we discuss quantized enveloping algebras and, more generally,
linkings of Nichols algebras. We define Hopf algebras U (D, A) which generalize the
quantum groups U,(g); they are given by the Serre relations in each connected com-
ponent of the Dynkin diagram and linking relations such as the relations between
the E; and F; for quantum groups (introduced in [AS02]).

(2) The main motivating problem. Lusztig in [Lus93] defines the positive
part U, q+ of the deformed universal enveloping algebra of a Kac-Moody Lie algebra
by a universal property which is easily seen to be an alternative description of the
Nichols algebra of the degree one part V' of U, ;r . In this case V is a Yetter-Drinfeld
module over the group algebra of a free abelian group G with basis K,..., Ky,
and

n
V=EkE;, Ei€Vk, K E;=q“" foralli,j.

i=1
Here, ¢ is not a root of unity, and (d;ai;)1<; j<n is the symmetrized Cartan matrix.
(In Lusztig’s book, ¢ is transcendental, and char(k) = 0.) The Nichols algebras
of the summands kFE; are simply polynomial algebras in the variable E;. Much
later in his book, Lusztig shows that U;f is explicitly given by the quantum Serre
relations.

Assume more generally that

0
V=M ejyp
i=1
is a finite direct sum of finite-dimensional irreducible objects M; € #YD, where
H is a Hopf algebra with bijective antipode. If H is the group algebra of a finite
group, and if the characteristic of the field does not divide the order of the group,
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then any finite-dimensional object V in £YD is semisimple. The Nichols algebra
B(V) has an additional important structure. It is an Ng—graded Hopf algebra in
HYD. We denote the standard basis of 7% by ai,...,ap, and define the degree of
M; as ;. Suppose we know the B(M;). Which additional information is needed
to understand B(V)? For example, when is B(V) finite-dimensional? Is there an
analog of Lusztig’s PBW-basis depending on the longest element in the Weyl group
of a semisimple Lie algebra?

Note that in our general situation no Cartan matrix is given a priori. The key to
the missing information will be the root system and the Weyl groupoid of the tuple
M = (M, ..., Mp). We define the Nichols algebra of the tuple by B(M) = B(V).

(3) The combinatorics of Cartan graphs and their Weyl groupoids.
This is a generalization of the notion of a Cartan matrix and its Weyl group to a
family of Cartan matrices. Right now there are several approaches to this theory.
Nevertheless we restrict ourselves in Part 2 of the book to a presentation based
on families of Cartan matrices, since this approach appears to be most useful to
explain the combinatorics in the theory of Nichols algebras. Part 2 is independent
of the theory of Nichols algebras.

Let 8§ > 1 be a natural number, T = {1,...,6}, X a non-empty set, (7;)ier
a family of maps r; : X — X, and (A%X)xex a family of (generalized) Cartan
matrices. The quadruple G = G(I, X, (r;), (A%X)) is called a semi-Cartan graph
if the following axioms hold.

(CG1) For alli € I, 72 = id y.

(CG2) Foralli €1, X € X, AX and A"(X) have the same i-th row.

For all X € X and i € I let sX € Aut(Z’) be the reflection map defined by
sy (aj) = o — asa; for all j € I. Let W(G) be the groupoid with objects X
and morphisms generated by formal maps s : X — r;(X). Composition of such
morphism is given by multiplication in Aut(Z?). Note that W(G) is a groupoid (a
category where every morphism is an isomorphism), since s:i(X) is inverse to s;¥.
The real roots of X are the elements in Z which can be written as w(a;) for some
morphism w: Y — X and i € I (w(e;) = f(;), where w is given by f € Aut(Z%)).

The axioms of a semi-Cartan graph are not yet strong enough to be useful. For
example, we want that the real roots are positive or negative, that is, in Ng or in
—NY. We define in Definition a Cartan graph by two additional axioms
(CG3) and (CG4). If G is a Cartan graph, we call W(G) the Weyl groupoid of
G. The importance of the axioms of a Cartan graph G comes from Theorem [0.4.8]
where we show that the Weyl groupoid of a Cartan graph G is a Coxeter groupoid
(in a different language this is a result of [HYO08]), that is, the Weyl groupoid has
defining relations of the same type as Coxeter groups have.

Most of the results in Part 2 have been already published in [HYO08], [CHO09b],
[CHO09a], and [CH12|. However, in Section 0.2 we present new axioms (CG3’) and
(CG4’) of a Cartan graph in terms of reduced sequences. These axioms are those
appearing most naturally for semi-Cartan graphs of Nichols systems.

(4) The Cartan graph of a Nichols algebra. Let M = (My,..., My) as
above. First we have to define reflection operators on tuples of Yetter-Drinfeld
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PREFACE xv
modules. For each i € Ilet R;(M) = (Mj, ..., M)), where

Mj = —aM oo .
(ad M;) =% (M;) if j #1,

and where we assume that ] = —max{m € Ny | (ad M;)"™(M;) # 0} exists. The
i-th component is the dual Yetter-Drinfeld module M}, and ad is the braided
adjoint action in the Nichols algebra B(M) = B(@le M;). By Lemma [3.1.4
(a/,f\jl)i)jeﬂ is a (generalized) Cartan matrix, when we set a}/ = 2. By Corol-
lary [3:43] the components of R;(M) are again irreducible. Note the formal simi-
larity with Lusztig’s isomorphisms T; of quantum groups, where

T(E,) —-FK; if j =1,
S (ad B ) (By)if G #£

The set of points X of G(M) is the set of isomorphism classes of all R; --- R;, (M),
n > 0, which we assume to exist. We have attached to each X = [M] € X a Cartan
matrix AX = (a%f)meﬂ, and we have defined maps r; : X — X, [M] — [R;(M)]
([M] denotes the isomorphism class of M). By Theorem 03.6.2] G(M) is a semi-
Cartan graph. This result was first obtained in [AHS10] with a different proof.

In order to implement the remaining axioms of a Cartan graph, sequences of
graded right coideal subalgebras of Nichols algebras and their compatibility with
reflections are studied in Chapter [4l Important results in this respect are Theo-
rem [[4.1.4] and in particular Theorem [[4.1.9] The latter relates sequences of right
coideal subalgebras of Nichols algebras to reduced sequences in the semi-Cartan
graph. In Section we introduce the notion of an exact factorization of bial-
gebras and Nichols systems. With this tool we prove in Theorem that the
semi-Cartan graph of a Nichols algebra admitting all reflections is indeed a Cartan
graph. This is a new result; it was first shown in [HS10b]| for finite semi-Cartan
graphs G(M). It is more general than what was shown in the existing approaches,
where the root system of the Nichols algebra, usually based on the theory of Lyndon
words, was assumed.

(5) Categorical tools, and the role of the Lusztig isomorphisms. The
proofs of these results on the Cartan graph G(M) depend on Chapters [[2] and
For all 7 € I, let K f M) he the set of right coinvariant elements of the canonical

projection B(M) — B(M;). By the braided version of the Theorem of Radford
on projections of Hopf algebras, KZ-B M) ig a Hopf algebra in the braided category

gg%z;yD(C)mt, where C = ZYD, and B(M) is isomorphic to the smash product

Hopf algebra K iB Myp (M;). In Theorem (which first appeared in [HS13b]
in an equivalent version and with a very different proof) we show that there is a
braided isomorphism

B(M; B(M}
(va) : BEJZ\V/Ijigy,D(C)rat — BEN[:;yD(C)rat-

Hence Q(Kf(M)) is a Hopf algebra in gEﬁf:;yD(C)rat, and we may consider its
bosonization Q(KB(M))#B(MZ»*). By Theorem [3.4.9] this bosonization is isomor-

(3

phic to B(R;(M)). The deeper results on B(R;(M)) depend on this isomorphism.
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Theorem [[2.33] is another categorical result on the isomorphism (Q,w). It
implies a very close relationship between B(M) and B(R;(M)). There is an isomor-
phism of braided Hopf algebras

B(R;(M))

)

B(R,(M)) = QK7 #B(M) — B(M;)

between the left coinvariants L of the projection

and the right coinvariants (KZB (M))C"p of B(M). To make sense, this Hopf algebra
isomorphism has to be understood in the formulation of Theorem [[2.3.3] which did
not appear in print before.

(M) play the role of the Lusztig automorphisms to con-

(M)

The isomorphisms TiB

struct a PBW basis of U; . Since the maps TiB can be seen as isomorphisms
of Hopf algebras, they can be used in Theorem [IZ.1.9 to construct right coideal
subalgebras in B(M) stepwise (Lusztig’s isomorphisms are maps of algebras not of
coalgebras).

If the Cartan graph G(M) is finite, that is, there are only finitely many real
roots, then we obtain by this procedure in Corollary [[4.5.3] a tensor decomposition

(0.0.1) B(Mg,,) ©--- @ B(Mg,) = B(M),

depending on the longest element in Hom(W(M), [M]), where Mg, ,..., Mg, are
irreducible subobjects of B(M) in ZyD which correspond to the higher root vectors
of quantum groups, and deg(Mp,) = 3; € N§ for all 4. For all 1 < < m, the image
of B(Mg,) ®---® B(Ma,) in B(M) is a right coideal subalgebra.

Assume that the components M; of M are one-dimensional. Then the Mg, in
([@0OJ) are one-dimensional, the algebras B(Mg,) are polynomial rings or truncated
polynomial rings. Thus we have constructed a PBW basis of B(M). In particular,
we obtain Lusztig’s PBW basis of U;’(g)7 g a semisimple Lie algebra, without any
case by case considerations; see also Remark The Levendorskii-Soibelman
commutation relations are also shown in the general context of Nichols algebras
over any field; see Theorem and Theorem

In Corollary we prove that G(M) must be finite if B(M) is finite-
dimensional.

Assume that G(M) is finite. In Corollary [[Z.6.8 we prove that the construction
of right coideal subalgebras mentioned above defines a bijection

Hom(W(M), [M]) — K(B(M))

between morphisms in the Weyl groupoid ending in [M] and the set of all graded
right coideal subalgebras of B(M). Kharchenko [Khall] conjectured that the num-
ber of such right coideal subalgebras in U, (g) (for simple Lie algebras) is equal to
the order of the Weyl group. Our work on right coideal subalgebras in [HS13al
was motivated by this conjecture, which is now proved as a special case of Corol-
lary I4.6.8] As a novelty, in Theorem we generalize the correspondence in
Corollary TZ4.6.8 to tuples with not necessarily finite Cartan graph.

The categorical results in Chapter [[2] are very general. They can be applied to
any Hopf algebra K in g%j;yD(C)m, not just to KiB(M). This leads to a new and
substantial extension of the theory of Nichols algebras in Section There we
introduce Nichols systems and define reflection operators for Nichols systems. The
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stepwise construction of right coideal subalgebras in Section [[4.1] works for Nichols
systems.

We use Nichols systems to establish criteria when a given pre-Nichols algebra
is Nichols. By Theorem 04.5.4] any pre-Nichols system admitting all reflections
and having a finite Cartan graph is in fact a Nichols algebra. Theorem [[45.4 is
fundamental for several proofs later on in the book. We would like to highlight The-
orem [[5.5.1] (finite-dimensional pre-Nichols algebras of diagonal type are Nichols),
Theorem [[6.2.5(2) (the positive part U™ of a quantum group attached to a Cartan
matrix of finite type, ¢ not a root of 1, is a Nichols algebra), Theorem [[6.4.23(2) (a
pre-Nichols algebra with finite Gelfand-Kirillov dimension of a braided vector space
of quasi-generic Cartan type is the Nichols algebra U}"), and Corollary 16.2.24] (a
braided vector space of diagonal type with a Nichols algebra being a domain of
finite Gelfand-Kirillov dimension is quasi-generic of finite Cartan type); see below
for more details.

(6) Applications. After some basic observations on reflections of Yetter-
Drinfeld modules of diagonal type in Section [5.1] we study root vector sequences
in pre-Nichols systems. In the special case of usual quantum groups, the root vec-
tors of Lusztig are shown later in Remark to form root vector sequences.
This has advantages for both approaches: Lusztig’s root vectors satisfy integrality
properties, and root vector sequences are defined by defining properties which can
be used to develop new methods (such as braided commutators associated to Lyn-
don words) to construct them. Further important differences in the two approaches
to quantum groups are that our root vectors are only unique up to scalar multi-
ples, we don’t use an analog of the braid relations for Lusztig’s automorphisms,
and we don’t need to perform case by case analysis (except in Remark to
prove the correspondence). Note that root vector sequences, similarly to Lusztig’s
root vectors, are defined for any reduced decomposition of an element of the Weyl
group(oid).

Using root vector sequences, Theorem [[5.2.7] describes a basis of any right
coideal subalgebra of a Nichols system attached to a reduced decomposition of an
element of the Weyl groupoid.

Following [HW15], in Theorem [I53.Tlwe classify two-dimensional braided vec-
tor spaces of diagonal type which have a finite Cartan graph, where the field k has
characteristic 0. This classification uses explicitly the combinatorics of finite Cartan
graphs of rank two from Section [[0:3] The classification in [Hec09] of all finite-
dimensional braided vector spaces of diagonal type and with finite Cartan graph is
beyond the scope of this book.

Angiono in [Angl5] (using the results on right coideal subalgebras in Corol-
lary [26.8]) and [Angl3] found a celebrated presentation of the Nichols algebras
appearing in [Hec09] in terms of generators and relations, where the ground field
is algebraically closed of characteristic 0.

A conjecture in [AS00a] says that any finite-dimensional pointed Hopf algebra
H over an algebraically closed field of characteristic 0 is generated as an algebra
by group-like and skew-primitive elements. In Theorem [[5.5.1] we prove that finite-
dimensional pre-Nichols algebras of diagonal type over a field of characteristic 0 are
Nichols algebras. This proves the conjecture when the group of group-like elements
of H is abelian. This theorem was originally proved by I. Angiono in [Angl3]
using his list of defining relations of the finite-dimensional Nichols algebras classified
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in [Hec09]. In contrast, our proof is based on the aforementioned Theorem [[4.5.4]
and some results in rank two and partially in rank three.

In Chapter[I6] especially in Theorems [I6.2.5 and [[6.3.17] we recover the results
of Angiono on generators and relations for Nichols algebras of finite Cartan type
(which include the algebras studied by Lusztig when the Cartan matrix is of finite
type) except for a few cases with parameters of small order. In the discussed cases
the Nichols algebras are presented by the quantum Serre relations and by root vector
relations. The proof of Theorem [[6.2.5] where the braiding matrix is quasi-generic,
is a more or less direct application of Theorem [4.5.4l A proof of Theorem [16.3.17
along the same line, where the entries of the braiding matrix are roots of unity,
appears to be problematic since the root vector relations depend on the choice of
a presentation of the longest element of the Weyl group. Instead, we provide first
in Theorem [[6.3.14] a basis of the Hopf algebra U; defined by the quantum Serre
relations by analyzing root vector sequences. This together with an easy dimension
argument yields the claim.

It is known that for the excluded exceptional cases additional defining relations
are needed.

In Section [I6.4] we study Nichols algebras of diagonal type, which are domains
of finite Gelfand-Kirillov dimension. By Corollary [6.4.24] these are the Nichols
algebras of finite Cartan type, where the diagonal entries of the braiding are 1 (only
in characteristic 0) or not roots of 1.

In Theorem [I6.5.10] we show that the pointed Hopf algebras with abelian corad-
ical, generic infinitesimal braiding, and finite Gelfand-Kirillov dimension are exactly
the Hopf algebras U(D, \) defined in Section generalizing the quantum groups
U,(g). This was shown in [AS04] for positive braidings using [Ros98|, and ex-
tended in [AAO8] to the general case using [Hec06].

In Chapter [I7] Nichols algebras over non-abelian groups are studied. Among
others we prove in Corollary (partly following [HS10Db]) that the Nichols
algebra of a non-zero non-simple Yetter-Drinfeld module over a finite simple group
is necessarily infinite-dimensional. A similar result for the symmetric groups S,
with n > 3 is shown in Corollary I7.1.8l

The theory of reflections does not give direct information about Nichols alge-
bras of irreducible Yetter-Drinfeld modules over groups. However, it can be helpful
to prove that a given Nichols algebra of an irreducible Yetter-Drinfeld module is
infinite-dimensional by finding a braided subspace which can be realized over some
other group with decomposable Yetter-Drinfeld module and which has infinite-
dimensional Nichols algebra. This is demonstrated in Corollary [T.T.TT] which led
to the definition of racks of type D. The rack theoretical formulation of Corol-
lary IZ.I.1T] (finite racks of type D collapse) was used for example in [AF™11a]
to show that any finite-dimensional pointed Hopf algebra H over C with group
G(H) =2 A,, n > 5, is isomorphic to the group algebra CA,, of the alternating
group. (Racks of type D were not used for Aj.)

We collect the known finite-dimensional examples of Nichols algebras of ir-
reducible Yetter-Drinfeld modules over groups in characteristic 0 in Section
without proofs. Finally, in Section [[7.3] the finite-dimensional Nichols algebras of
direct sums of two simple Yetter-Drinfeld modules are listed without proof; this clas-
sification uses the finiteness of the corresponding Cartan graph by Corollary
For references, see Chapter [I71
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CHAPTER 1

A quick introduction to Nichols algebras

The structure theory of Nichols algebras is a central theme throughout the
book. In this chapter we introduce the concepts which are needed to deal with
Nichols algebras of group type and also in the general case later in Chapters [6] and
ik

In Section we study Ng-graded connected coalgebras which are strictly
graded, that is, the only primitive elements are in degree 1. For any Ny-graded
connected coalgebra C, let I(n) be the kernel of

n—1 ﬂ,®n
C(n) C C 2 c®m Ji, 0(1)®m.

Then Ic = @,,~, Ic(n) is the largest coideal of C' in degree > 2, and B(C) = C/I¢
is a universally defined strictly graded coalgebra quotient of C' which coincides with
C in degree 0 and 1.

The tensor algebra of a Yetter-Drinfeld module V' (over a group algebra or in
the general case in Chapter [7]) is a braided Hopf algebra, where the elements in V/
are primitive. In Section we define the Nichols algebra of V' by

B(V)=B(T(V)) =T(V)/Irw).

This is a braided Hopf algebra quotient of the tensor algebra. In Section [[.9] we
describe the comultiplication of the tensor algebra T (V') by braided shuffle maps,
and the relations of the Nichols algebra as the kernels of the braided symmetrizer
maps.

In the last section we will discuss several important examples and mention
others with reference to a proof.

1.1. Algebras, coalgebras, modules and comodules

Convention. The ground field is denoted by k. This is an arbitrary field. If
we use additional assumptions on the field, we will say so explicitly.

We write k* for the subgroup of non-zero elements of k. Vector spaces are
vector spaces over k, and linear maps between vector spaces are k-linear maps. If
V, W are vector spaces, then Hom(V, W) is the set of all linear maps from V to W,
and V@ W =V ®, W is the tensor product over k. In this book we will use the
following convention. If U, V, W are vector spaces, then we will identify

UV)eW=U(VeW)
using the natural isomorphism
UeV)aW SUR(VeW), uov)@wr— u® (v w).
3
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4 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Hence we will omit the brackets in tensor products of several vector spaces. Occa-
sionally we will also suppress the natural isomorphisms

]](®V—E—>V7 a®v— av, V®]k—g—>V, VR o au.

Thus we will write V =k®V and V=V k.

The dual of a vector space V is denoted by V* = Hom(V, k).

Let A be a vector space, and p: A x A — A a map (called multiplication)
whose images will be denoted by p(a,b) = ab for all a,b € A. Then A together
with p is an algebra (with unit element) if there exists an element 14 =1 € A
such that for all a,b,c € A and « € k,

a(be) = (ab)c,
a(b+ c¢) = ab+ ac, (a+ b)c = ac+ be,
a(ab) = (aa)b = alabd),
la =a=al.
The unit element 14 of an algebra is uniquely determined. It defines a linear map

n:k — A, o~ aly. The multiplication map p is a k-bilinear map. Hence it is
given by a linear map

p:ARA—>A a®br ab.
Let V, W be vector spaces. The linear map
Tvw VW WeV, vew—wdw,

is called the flip map of V and W.
Let A, B be algebras. The tensor product of vector spaces A ® B is an algebra
with unit 1 ® 1 and multiplication given by

(1.1.1) (a®b)(a @b) =ad @ bb
for all a,a’ € A, b,b' € B. Thus the multiplication map of A® B is the composition

ida®Tp, A®idp
S/

(1.12) (A®B)® (A® B) (A® A)® (B® B) L2212, A4 B.

This algebra structure on A ® B is called the tensor product of the algebras A
and B. Note that for algebras A, B, C, the canonical isomorphism

(AR B) C =2 A® (B®(O)

is an isomorphism of algebras, and following our convention, we will identify these
algebras.

The opposite algebra A°P is A as a vector space, where the elements are
denoted by a°®? = a € A, and where the multiplication is given by

a®Pb%P = (ba)°P

for all a,b € A.

An algebra homomorphism (or algebra map) p : A — B is a linear map
satisfying p(1) = 1 and p(ab) = p(a)p(b) for all a,b € A. An algebra anti-
homomorphism p: A — B is an algebra homomorphism p : A — B°P. We write
Alg(A, B) for the set of algebra homomorphisms from A to B.
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 5

An algebra can equivalently be defined as a triple (A, u,n), where A is a vector
space and 4 : A® A — A and i : k — A are linear maps such that the following
diagrams commute.

A Ao A2 Ag A

(1.1.3) lidA ®u ll‘ (associativity)
ARA—F"— A

Ak UM 494 kAU Ap 4

wo Sl SOp

A A

Let A and B be algebras. An algebra homomorphism p : A — B is a linear map
such that the following diagrams commute.

Ao A—"% .BeB

s oo

A—" B

A—" B

N

We introduce coalgebras by formally inverting the arrows in the definiton of an
algebra.

DEFINITION 1.1.1. Let C be a vector space, andlet A: C - C®C,e:C —k
be linear maps called comultiplication and counit. Then (C, A, ¢) or simply C
is a coalgebra if the following diagrams commute.

c— 2 L0oxC

(1.1.7) lA
coc 28 coceC

Jidc ®A (coassociativity)

C-—2.00C C-2.00C

(1.1.8) \ Jidc(@a \ J8®idc (counit)

Cek ko C

A subspace D of a coalgebra C is called a subcoalgebra if A(D) C D® D.
Let C, D be coalgebras. The vector space C ® D is a coalgebra with counit
ec ® ep and comultiplication

Ac®Ap

(1L19) CoD 222, 0g0gDep Lo2eriis,

(C®D)®(C®D).
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6 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

This coalgebra structure on C® D is called the tensor product of the coalgebras
C and D.

A linear map ¢ : C' — D is a coalgebra homomorphism or a coalgebra
map if the following diagrams commute.

cC—F——D

i e |

coc -2 .peD

c— D

(1.1.11) \ /

We denote by Coalg(C, D) the set of all coalgebra homomorphisms from C to D.
The coalgebra C' is called cocommutative if the diagram

c—2,0c%C

(1.1.12) X lm,c (cocommutativity)

cCeC
commutes.
The coopposite coalgebra C°°P is C' as a vector space with comultiplication
Te,c A and counit €. A coalgebra anti-homomorphism f : C' — D is a coalgebra
homomorphism f : C' — D®P.

EXAMPLE 1.1.2. Let T be a set and kI' the vector space with basis I'. Then
kT is a coalgebra with A(g) = g® g, e(g) =1 for all elements g € T".

EXAMPLE 1.1.3. Let C be a 3-dimensional vector space with basis g, h, z. De-
fine linear maps A: C — C ® C and € : C — k on the basis of C' by

Alg) =9®g, A(h) =h® h, Ax)=gQz+zQh,
e(g) =1, e(h) =1, e(x) = 0.
It is easily checked by direct computation that C' is a coalgebra.

DEFINITION 1.1.4. Let C be a coalgebra.
(1) An element g € C' is called group-like if A(g) = g ® g and €(g) = 1. Let
G(C)={g € C| g is group-like}.
(2) Let g,h € G(C). Let P, ;,(C) = {z € C | z is (g, h)-primitive}, where
x € C is called (g, h)-primitive if A(z) =g®z+ 2 ® h.
(3) An element z € C is called skew-primitive if there are group-like ele-
ments g, h € G(C) with x € P, ;,(C).

Note that g € C' is group-like if A(g) = g ® g and g # 0, since g = €(g)g. The
sets Py (C) with g, h € G(C) are subspaces of C. If © € Py ;(C), then ¢(z) = 0,
since x = €(g)x + €(x)h because of the counit axiom.

EXAMPLE 1.1.5. Let n € N and let C = M,(k)* denote the dual space of
the vector space of n by n matrices. Let (u;;)1<;j<n be the dual basis of the
standard basis (E;;)1<i j<n of M,(k), where E;; is a matrix having entry 1 in the
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 7

i-th row and j-th column, and zeros elsewhere. Then C together with the linear
maps A:C - C®Cande:C — Kk,

A(U”) = Z’uik ® ukjv a(uij) = 5ij
k=1

for all i,5 € {1,...,n}, is a coalgebra.

The next result is a version of Dedekind’s Lemma in Galois theory on the linear
independency of characters.

PROPOSITION 1.1.6. Let C be a coalgebra. Then G(C) is a linearly independent
subset of C'.

PrOOF. We show by induction on n that each subset of G(C) of n elements
is linearly independent. This is clear for n = 1. Assume that each subset of
G(C) of n elements is linearly independent. Let g1,...,g,+1 € G(C) be pairwise
distinct elements. Assume that there are non-zero scalars as,...,a,+1 € k with
Z;z:ll a;g; = 0. Then g,41 = Z?:l Bigi, where (§; = _ﬁ for all 1 < i <n. By
applying A to this equation we get

> Bigi@gi :A( > 5z‘gz’)

1<i<n 1<i<n
=A(gn41) = gn1 O gnir = Y BiBigi @ g;.
1<i,j<n
Hencen = 1 and 81 = 1 by linear independency of ¢1, . . ., g,. Thisis a contradiction
to g1 # g2. Hence ¢1,..., gn+1 are linearly independent. ]

LEMMA 1.1.7. Let C, D be vector spaces and let A C C, B C D be subspaces.
Then

AB={te C®D|(idc®g)(t) € A for all g € D",
(f®idp)(t) € B for all f € C*}.

PROOF. The inclusion C is clear. Conversely, any t € C' ® D can be written
ast=> 1 ¢ ®d; withn €Ny, c1,...,¢, € C, and dy,...,d, € D. Take such a
presentation of ¢ for a minimal n. Then both cy,...,¢, and dy,...,d, are linearly
independent. If (f ®idp)(t) € B for all f € C*, then d; € B for all i € {1,...,n}.

Similarly, if (ide ® ¢)(t) € A for all g € D* then ¢; € A for all . This implies the
inclusion D. O

LEMMA 1.1.8. A subspace D of a coalgebra C' is a subcoalgebra if and only if
(ide ® f)A(zx) € D, (f®idc)A(x) € D for allx € D, f € C*.

PROOF. The subspace D of C' is a subcoalgebra if and only if A(x) € D® D

for all z € D. Thus the claim follows from Lemma [[L.T.7 |
PRrROPOSITION 1.1.9. The intersection of subcoalgebras of a given coalgebra is a
subcoalgebra.
Proor. Apply Lemma [[L.T.8 with D the intersection of subcoalgebras. O

If X C C is a subspace of a coalgebra C, by Proposition [[L1.9] we can define
the subcoalgebra of C' generated by X as the intersections of all subcoalgebras
of C' containing X.
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8 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS
REMARK 1.1.10. For all elements c in a coalgebra C' it is useful to symbolically
write
Ae) = cay ® cay- (Sweedler notation)
In this notation the axioms of a coalgebra are equivalent to the equations
(1.1.13) Alcqy) @ ca) = ¢y ® A(ez))s (coassociativity)
(1.1.14) e(eqy)ey = ¢ = cye(c)) (counit)

for all ¢ € C. Let ¢ € C. Choose finitely many elements ci;,co; € C, 1 < i < n,

with A(c) = > | ¢1; @ ¢a;. Then the symbolic equations (LII3) and (LITI4) say
that

Z Aler;) ®@ e = Z c1i ® Acai),
i=1 i=1

n

n
Z e(cri)ea; =c= Z c1i€(C2:)-
=1

i=1
Let C be a coalgebra. The iterations A", n > 0, of A are defined inductively by
(1.1.15) A’ =ide : C = C, A" = (idg ® A" HA: ¢ — 2 +D

for all n > 1. We extend the symbolic notation above to the iterations of A. For
all c € C and n > 1, we write

A(e) = cq) ® c2),
A%(c) = c1) ® e(2) @ c(a),
An(C) = c(1) R Cln+1)-

This notation is useful since implicitly it expresses the axiom of coassociativity.
Thus for an element ¢ in a coalgebra,

A(C(l)) &) =c1)® A(C(g)) = c(1) ®c2) ® c(3).

Note that c(1) alone does not make sense. But if F': C' x --- x C — V is an n-fold
———

n
multilinear function to a vector space V', where n > 2, then
F(c@y,-- - cmy) = fF(A"(e))

is a well-defined expression, where f : C®" — V is the linear map defined by F.
Let C, D be coalgebras. The formulas for the comultiplication and counit of
the tensor product coalgebra C'® D are

(1.1.16) Ale®d) = (C(l) ® d(l)) ® (6(2) ® d(g)), e(c®d) = e(c)e(d)
forallce C, d e D.

Quotients of algebras are described by ideals. We define coideals to describe
coalgebra quotients.
We first note a lemma on the tensor product of linear maps.

LEMMA 1.1.11. Let f : V — X, g: W —= Y be linear maps between vector
spaces VW, X, Y. Then ker(f ® g) =V ® ker(g) + ker(f) @ W.
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 9

PRrROOF. Choose subspaces V! C V, W/ C W such that V = ker(f) & V' and
W =ker(g) @ W’. Then

VoW = (Vaker(g)® (ker(f) @ W) & (V' @ W),

and the restriction of f ® g to V' @ W’ is injective. O

DEFINITION 1.1.12. Let C' be a coalgebra. A vector subspace I C C is a
coideal if

AI)CI®C+CRI, =(I)=0.

PropoSITION 1.1.13. Let C, D be coalgebras, f: C — D a coalgebra map.

(1) If I CC is a coideal, then f(I) C D is a coideal, and the quotient vector
space C/1 is a coalgebra with

A@) =70y ®Tp), &) =c(r)

for all x € C, where T = x + I is the residue class of x in C/I. The
quotient map C — C/I is a coalgebra homomorphism.
(2) Let I =ker(f), and let f: C/I — D be the map induced by f. Then I is

a coideal of C, and f is an injective coalgebra homomorphism.
(3) If J C D is a coideal, then f=1(J) C C is a coideal.

PROOF. (1) is clear from the definition, and (2) follows from Lemma [[CT1T]
since A(ker(f)) C ker(f ® f). (3) follows from (2) applied to the composition

cL DD/ O

The next lemma demonstrates another setting in which coideals appear natu-
rally.

LEMMA 1.1.14. Let C be a coalgebra and let B C C be a subspace satisfying
A(B) CB®C or A(B) C C® B. Then Bt =ker(e : B — k) is a coideal of C,
and B # BT if B #0.

PROOF. Assume that B # 0 and A(B) C B ® C. By the counit axiom there
exists b € B with e(b) = 1. Hence B=kb® B*. Let x € BT. Then

Alz)eboy+BT®C

for some y € C, and y = z by applying € ® id¢ to the above formula. Thus
A(BT) C C®BT+B*®C. If A(B) C C®B, then the claim is shown similarly. [

Let V be a vector space, (A, u,n) an algebra, and A : A®V — V a linear map.
The pair (V, A) is a left A-module if the following diagrams commute.

A AoV 2NV Agy koV ™M Agy

(1.1.17) Jidmx A l,\ \ l/\

AQV ———V |4
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10 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Let V, W be left A-modules. An A-module homomorphism f: V — W is a linear
map such that the following diagram commutes.

AoV 8 e w

(1.1.18) J}v ) lxw

V——Ww

We denote the category of left A-modules with A-linear maps as morphisms by
aM. The category of right A-modules, defined analogously, is denoted by M 4.

We introduce comodules over a coalgebra by formally inverting the diagrams
defining a module over an algebra.

DEFINITION 1.1.15. Let (C, A,e) be a coalgebra, V a vector space, and let
§:V = C®YV be a linear map. Then (V,0) or simply V is a left C-comodule if
the following diagrams commute.

V— 9% LoV

(1.1.19) k
CoV22 cocev

lAQ@idv (coassociativity)

V200V

(1.1.20) \f:\\N l€®ﬂv (counit)

koV

If (V,0v) and (W, 0w ) are left C-comodules, and f : V' — W is a linear map, then f
is a left C'-comodule homomorphism or a left C'-colinear map if the following
diagram commutes.

v— 7w

(1.1.21) Jﬁv léw

Cov -2 cow

Let (V,4) be a left C-comodule. A subcomodule of V is a subspace U C V with
U)cowU.

The category of left C-comodules with C-colinear maps as morphisms is de-
noted by © M. Right C-comodules and right C-colinear maps are defined similarly.
Their category is denoted by M.

We write Hom® (V, W) for the set of all left (or right) C-colinear maps between
two left (or right) C-comodules V, W.

REMARK 1.1.16. Comodules over a coalgebra C form an abelian category like
modules over an algebra. In particular, let (V,dy) € M, and let U C V be a
subcomodule. Let V/U be the quotient vector space, and let m : V. — V/U be
the quotient map. Then (V/U,dy,y) is a left C-comodule, where the comodule
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1.1. ALGEBRAS, COALGEBRAS, MODULES AND COMODULES 11
structure is uniquely defined by the commutative diagram

v—" Lscav

lﬂ- J/id@ﬂ'
Sy

viv—"" s ceV/iU

IfV,W €M, and f:V — W is left C-colinear, then ker(f) C V and im(f) C W
are subcomodules, and V/ker(f) =N im(f), T+ f(v), is an isomorphism in € M.

Let " be a set. Comodules over kI' are given by I'-graded vector spaces. A
I-grading of a vector space V is a family V = (V(g))ger of subspaces of V' such

that
V=EPvi.
gel

A T-graded vector space is a pair (V,V), where V is a vector space with a
grading (or a gradation) V. For a graded vector space V = (V,V) we denote by
7r_(‘]/ : V.= V(g), g € T, the canonical projection. An element v € V is called
homogeneous of degree g € ' if v € V(g). We write deg(v) = g, if v € V(g).

We also use the notation V; = V(g), in particular, when G is a monoid or a
group.

Let I-Gr My be the category of I'-graded vector spaces, where a morphism
f+(V,V) = (W, W) is a graded map or a homogeneous map (of degree 0),
that is a k-linear map with f(V(g)) C W(g) for all g € T.

PrOPOSITION 1.1.17. Let I be a set. The functor
F:D-Gr My = T M, (V. (V(g))yer) = (D V(9).9).
ger

where §(v) = g @ v for allv € V(g), g € T, and where morphisms f are mapped
onto f, is an isomorphism of categories. The inverse functor maps a comodule

(V,98) onto V with grading V(g) =V, ={veV |v) =g®v} forallgel.
PROOF. Let (V,J) be a left kI'-comodule. We prove that V =
Vo={veV]dv)=gu}foralgel.

ger Vg, where

For any v € V there are elements v, € V, g € I', such that vy # 0 only for finitely
many g € I' and such that §(v) = der g ® vg. By coassociativity,

Y 9®o(v) =) gog@u,
ger ger

Hence 6(vg) = g ® vy for all g € T'. Moreover, v =3 e(g)vg = > cr vy. Hence
V=3 ,er Vg Let now (vg)ger be a family of elements of V', where vy € V(g)
for all g € I and vy # 0 only for finitely many g € I'. Assume that der vy = 0.
Applying & gives > g ® vy =0, hence vy =0 for all g € I'.

The isomorphism of categories now follows easily. ]

REMARK 1.1.18. If (V,0) is a right C-comodule, we define inductively
"V VC® foralln >0
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12 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

by 6° = idy, §' = 0y, and 6" = (6 ® idgem-1))6" ! for all n > 2. Extending the
Sweedler notation to comodules we write
6(v) = v(0) ® V(1)
§%(v) = v(0) ® Avr)) = V(o) ® V(1) ® V(2),
" (v) = () ® V) B -+ B V()
for all v € V. For left C-comodules (V) we use negative indices.
d(v) = v(—1) ® V),
6%(v) = A(v(-1)) @ v(0) = V(-2) @ V(1) B (o),
0" (V) = V(p) ® -+ R V(_1) ® V(o)
for all v € V.

1.2. Bialgebras and Hopf algebras

We continue with the introduction of bialgebras, Hopf algebras, quotients of
them, and their graded versions.

DEFINITION 1.2.1. Let H be a vector space, and let
w:H®H—-H, n:k—H A:H—-H®H e:H-—>k

be linear maps. Then (H,u,n,A,e) is a bialgebra if (H,u,n) is an algebra,
(H, A, ¢) is a coalgebra, and A and e are algebra maps.

Let H,H' be bialgebras. A bialgebra homomorphism ¢ : H — H' is
an algebra and a coalgebra homomorphism. A subbialgebra of a bialgebra is a
subalgebra and a subcoalgebra.

PROPOSITION 1.2.2. Let H be a vector space, and let
w:HH —-H, n:k—H A:H—-H®H, e:H-—=k
be linear maps. Assume that (H,p,n) is an algebra and (H, A €) is a coalgebra.

Then the following are equivalent.

(1) A and e are algebra maps.
(2) p and n are coalgebra maps.

PROOF. By definition, (1) is equivalent to the commutativity of the diagrams
(LI5) and ([LI0) for A and €, and (2) is equivalent to the commutativity of the

diagrams (LITI0) and (LTI for p and 7.
Let T =7gn: H® H— H ® H be the flip map. Then

prer(A®A) = (1 p)(id®TRid)(A®A) = (L p)Aneh.

Hence (LI3) for A and ([II0) for i coincide. Obviously, the diagrams (II.6]) for

A and (LII0) for n, (CLIH) for ¢ and (LIII) for p, as well as (ILIG) for £ and
(CIII) for n coincide. O

ExXAMPLE 1.2.3. Let G be a monoid, that is a set G together with an associative
map G x G — G and a unit element e. The monoid algebra kG (or group
algebra, if G is a group) is the vector space with basis G. Its algebra structure
kG kG — kG, n: k — kG, is given by (g, h) = gh (the product of g and h
in G) for all g,h € G and by n(1) = e. Then kG is a bialgebra where the elements
of G are group-like. The bialgebra axioms are trivially verified on the basis.
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DEFINITION 1.2.4. Let H be a bialgebra.
(1) Let V,W € gM. The map

HVeQW VW, h®v®w»—>h(1)v®h(2)w,

is called the diagonal action of H on V @ W. The trivial action of H
on k is defined by H @ k = k, h® 1+ ¢(h).
(2) Let V,W € # M. The map

VoW ->HVeW, VR W V(—1)W(-1) D V() ® W(o),
is called the diagonal coaction of H on V @ W. The trivial coaction

of H on k is defined by k - H®k, 1 — n(l) ® 1.

For modules over kG, G a monoid, the diagonal action is given by the familiar
formulas from representation theory of groups:

gv @ w) = gv ® gw, ga = a,

forallveV,weW, ack.

It is a fundamental consequence of the axioms of a bialgebra that modules
and comodules over a bialgebra can be multiplied in the sense of the following
proposition.

PROPOSITION 1.2.5. Let H be a bialgebra. The tensor product of two left H -

(co)modules is a left H-(co)module with diagonal (co)action. Moreover, for all
UV,W e ugM (for all U, V,W € H M, respectively) the canonical isomorphisms

UV)eW U (VeW), kV =V, Veok—V,
are left H-(co)linear.

ProoOF. This is easily checked using the Sweedler notation. ]

Of course, the same result holds for right modules and right comodules where
the diagonal action and coaction is defined in a similar way.

The next remark shows that in fact the last proposition gives a natural expla-
nation of the axioms of a bialgebra.

REMARK 1.2.6. Let H be an algebra together with algebra maps
A:H—-H®H, ¢: H—-k

We will again write A(h) = h(1) ® hg) for all h € H.

The trivial one-dimensional left H-module is the vector space k with H-action
hly =¢e(h) for all h € H.

Let V, W be left H-modules. Then V ® W is a left H ® H-module by

(z@y)(vew)=rveyw
forall z,y € H,v eV, we W. Hence V@ W is a left H-module induced by the
algebra map A. Thus

h(v ®w) = hyv @ hgyw
forallhe HiveV,weW.

The coalgebra axioms in the definition of a bialgebra can now be explained in
a very natural way.
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14 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

(1) The map A satisfies (LT if and only if for all left H-modules U, V, W
the canonical isomorphism

UV)eW —-U® (VeW)

is left H-linear.
(2) The map ¢ satisfies (LLE)) if and only if for all left H-modules V' the
canonical isomorphisms V®k — V and k ® V — V are left H-linear.

DEFINITION 1.2.7. Let I' be a monoid and let V, W be I'-graded vector spaces.
Then V ® W is a I'-graded vector space by

(Ve W)(g) = @ Via) @ W(b), forall geT.

(a,b)er?
ab=g

This grading on V@ W is called the diagonal I'-grading. The trivial grading on
a vector space V is defined by V(e) =k, e the unit element of ', that is, V(g) =0
foralle # g eT.

REMARK 1.2.8. Let I' be a monoid.
(1) For all T-graded vector spaces U, V, W the canonical isomorphisms

UeV)eW U (VeW), kaV-oV, Vek-ol,

are I'-graded. The flip maps Ty, : V@ W — W ® V are only graded for all V, W
if I' is commutative.

(2) The category isomorphism F : I'-Gr My — *' M of Proposition [LT.I7
preserves the trivial objects and the tensor product with diagonal structure, that
is, F(k) =k, and for all T'-graded vector spaces V, W,

F(VeW)=FV)® F(W) in M.

The following algebra structure on Hom(C, A) for a coalgebra C' and an algebra
A will be an important tool to study the existence of the antipode of a bialgebra.

DEFINITION 1.2.9. Let C be a coalgebra, A an algebra, and f, g € Hom(C, A)
linear maps. The convolution f * g € Hom(C, A) of f and g is defined by

(f*9)(c) = fleq))g(ce)
for all ¢ € C, that is by the composition
frg=(CCceci® Anal a).

The coassociativity of the comultiplication A of C' and the associativity of the
multiplication map p of A imply that the convolution product of Hom(C, A) is
associative. Thus Hom(C, A) is an algebra with unit element ne.

In the next proposition we will identify Hom(C, A) with an algebra of endomor-
phisms. This will give very useful information about the structure of the inverse of
an element in Hom(C, A). We define

End5(A®C)={f: A®C = A® C | f left A-linear and right C-colinear},

where A ® C' is a left A-module by y ® id¢, and a right C-comodule by id4 ® A.
Then Endi(A@C ) becomes an algebra with composition of maps as multiplication.
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LEMMA 1.2.10. Let C be a coalgebra, and X a vector space. For any right
C-comodule V', the map

Hom®(V, X ® C) = Hom(V, X), f— (id®e)f,

is bijective with inverse given by ¢ — (e®id)dy. Here, X®C' is a right C'-comodule
with comodule structure idx ® A.

PROOF. Let f € Hom®(V, X ® C). Then f(v()) ® vy = (idx ® A)f(v) for
all v € V, since f is C-colinear. By applying id ® € ® id to this equation we
obtain ¢(v(g)) ® v(1) = f(v), where ¢ = (id ® €) f. Conversely, let ¢ € Hom(V, X)
and define f = (¢ ® id)dy. Then f € HomC(V,X ® C) by coassociativity of dy .
Moreover, ((id®¢)f)(v) = @(v))e(vay) = w(v) for all v € V. O

Lemma [[ZI0 implies that the functor My — M%, X — X ® C, is right
adjoint to the forgetful functor M — M.

PrOPOSITION 1.2.11. Let C be a coalgebra and A an algebra.

(1) The map ® : Hom(C, A) =N EndS (A ® C) given by

fo (A0 24 4g 00 289 4 A0 L2 40 0)

is an algebra anti-isomorphism, where Hom(C, A) is an algebra with con-
volution as multiplication.
(2) Let f € Hom(C,A). Then f is invertible if and only if ®(f) is an iso-
morphism. If ®(f) is an isomorphism with inverse map ®(f)~1, then
. —1 .
Fl=(C=koC ™% go0 2, 4 g0 M5 g
is the inverse of f in Hom(C, A).

PROOF. (1) Let V=A®C and X = A in Lemma [[2T0 Since the comodule
structure oy = id ® A of V is left A-linear, the isomorphism in Lemma [L.2.10]
restricts to an isomorphism ®; : HomG (A ® C, A® C) — Homa(A ® C, A). Let

. —1
& : Hom(C, A) = Homa(A® C, A) 2 Hom$(A® C, A® C)
be the composition of <I>f1 with the isomorphism
Hom(C, A) = Homu(A ® C, A), s (a®cr af(c)).
Then
O(f)la®c)=af(cay) ®ce forall feHom(C,A),ac A, ceC.
Hence for all f, f' € Hom(C, A) and a € A, c € C,
(@(f)2(f) (a@c) = 2(f)(af(ca)) ®crz))
= af'(cay) fle@) @ ey = @(f' * f)la®c).
The inverse of @ is given by
®~1: End§(A®C) — Hom(C, A), F— (id®e)F(ns @ide).
(2) follows from (1). O

Let C be a coalgebra. The algebra C* = Hom(C, k) in Definition with
A =k is called the dual algebra of C'. It is easy to see that for any coalgebra map
@ :C — D the map ¢* : D* — C*, f— f oy, is an algebra homomorphism.
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16 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

EXAMPLE 1.2.12. Let G = {g1,..., gn} be a finite set of n elements. The vector
space kG with basis G is a coalgebra with A(g) = g® g, e(g) = 1 for all g € G.
Let (e;)1<i<n be the dual basis of (¢i)1<i<n. Then e;e; = d;j5e; for all 7,7, and
>t e; = 1. Hence C* = k™ as algebras.

EXAMPLE 1.2.13. Let C' = M, (k)* be the coalgebra in Example For all

i,j € {1,...,n} consider E;; € M, (k) as an element in C* via the natural iso-
morphism M, (k)** = M, (k), that is, E;;(uw) = 056, for all 4,5, k, 1 € {1,...,n}.
Then

(EU * Ekl urs Z Ez] Urm, Ekl ums) = 51T6jk5ls = jk:Ezl(urs)
m=1

for all 4,5, k,1,7,s € {1,2,...,n}. Hence the natural isomorphism
C* — M, (k)
is an algebra isomorphism, where the multiplication in C* is the convolution prod-

uct.

DEFINITION 1.2.14. A Hopf algebra H is a bialgebra such that idy is in-
vertible in the convolution algebra Hom(H, H). The inverse S (or Sp) of idy is
called the antipode of H. A Hopf algebra homomorphism between two Hopf
algebras is a bialgebra homomorphism. A Hopf subalgebra of a Hopf algebra H
is a subbialgebra H' C H such that S(H') C H'.

REMARK 1.2.15. Let H be a bialgebra. Then H is a Hopf algebra (with an-
tipode S) if there is a linear map S : H — H such that
(121) h(l)S(h(g)) = €(h)1 = S(h(l))h(2) (antipode)

for all h € H, or equivalently such that the following diagrams commute.

H- 2 .HoH H- 2 HeoH

(1.2.2) J"E l3®idH J"E lidh@s (antipode)
He'-HeH H«'-HeH
By uniqueness of inverses, each bialgebra has at most one antipode.

EXAMPLE 1.2.16. Let G be a group. Then the bialgebra kG of the monoid G
in Example [[2.3] is a Hopf algebra with antipode defined by S(g) = ¢! for all
g€ aqG.

ProOPOSITION 1.2.17. Let H be a Hopf algebra with antipode S.

(1) The antipode S is an algebra anti-homomorphism and a coalgebra anti-
homomorphism, that is, for all x,y € H
(a) S(y) = S(y)S(a), S(1) =1,
(b) AS(@)) = S(z) @ S(zry), £(S(a)) = e(a).

(2) Let H' be a Hopf algebra, and let ¢ : H — H' be a bialgebra map. Then
Suip = pSh.

PrOOF. (1) (a) Define F,G € Hom(H ® H, H) by
Floy) =Sy), Gla@oy)=S5y)S()
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for all z,y € H. Then both F' and G are convolution inverses of pug. Indeed,
wg * F=ne and ug * G = ne since

Ty S(T@)Ye) = (x)e(y),
1)y SW@)S(@@2) = e(2)e(y)
for all x,y € H. Similarly, F xug = G*pug = ne. Hence F = G. Further, (1) =1
since 18(1) = ¢(1)1.
(b) Define F,G € Hom(H, H ® H) by

Fz) = A(S(2)), G(z) = S(z(2)) @ S(z(1))

for all x € H. Then both F' and G are convolution inverses of Agy. Indeed,
AxF=(n®n)e and Ax G = (n®n)e since

A(,T(l))F(.Z‘(Q)) = A(CL‘(DS(.’L'(Q))) = E(.’L’)l ®1,
Alz1))G(z(2)) = 2(1)S(2(1)) ® 2(2)S(2(3)) = 2(1)S(T(2)) ® 1 = £(2)1 ® 1
for all z € H. Similarly, F+ A = Gx A = (n®n)e. Hence F = G. Further,

€08 = g, since both are convolution inverses of ¢.
(2) Both Spr¢ and ¢Sy are convolution inverses of ¢ € Hom(H, H'). O

REMARK 1.2.18. Let H be a bialgebra, and § : H — H an algebra anti-
homomorphism. For any left H-module V, the dual space V* = Hom(V,k) is a
right H-module in the natural way by (fh)(v) = f(hv) for all h € H, f € V*,
v € V. Since § is an algebra anti-homomorphism, V* becomes a left H-module by

(hf)(v) = F(S(h)v)

forallhe H, f e V* ve V. If Vis aright H-module, then the dual vector space
V* is a right H-module by

(fh)(v) = f(vS(h))
forallhe H, feV*, veV.

The map S satisfies (L2.1)) if and only if for all left H-modules V' and all right
H-modules W the evaluation maps

VeV =k puepl), WW" -k wqg— qlw),
are left H-linear and right H-linear, respectively.

Bialgebras are generalizations of monoids and Hopf algebras are generalizations
of groups. Proposition [L2ZI7(1) says that (gh)~! = h=1g~! for all elements g,h
of a group. By Proposition [[2.T7(2), a monoid homomorphism between groups
preserves inverses.

However, the rule (g~1)~! = g for the elements g of a group does not generalize
to Hopf algebras. In general, the antipode S of a Hopf algebra does not satisfy
8% = id. There are (rather pathological) Hopf algebras whose antipode is not
bijective. If the antipode is bijective, then its order as a vector space automorphism
could be infinite.

A monoid M is a group if and only if the canonical map

M x M — M x M, (z,y) = (zy,y),

is bijective. We note the corresponding characterization for Hopf algebras.
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18 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

PRrROPOSITION 1.2.19. Let H be a bialgebra. We denote the “Galois map” by
G=(HoH Y% o HoH Y He H).
(1) The following are equivalent.
(a) H is a Hopf algebra.
(b) G: H® H— H® H is an isomorphism.
(2) If G is an isomorphism with inverse G, then

S=H"™Y yeon 9 HeH 9% g
is the antipode of H.
PROOF. Note that G € End¥(H ® H). The isomorphism
& : Hom(H, H) = End? (H ® H)
of Proposition [L2.T1] maps the identity onto G. Hence the claim follows from

Proposition [L21T)(2). O

By slight altering of the multiplication or comultiplication one can get new
bialgebras and Hopf algebras. We will discuss this phenomenon in a more general
setting in Proposition 3.2.15.

DEFINITION 1.2.20. Let H be a bialgebra. Then H°P with comultiplication
Ap and counit ey is called the opposite bialgebra. Similarly, H°P with multi-
plication py and unit iy is called the coopposite bialgebra.

It is easy to check that for any bialgebra H, H°P and H°P are again bialgebras.
Moreover, if H is a Hopf algebra then H°P and H°P are Hopf algebras if and only
if S is bijective. In this case, S~ is the antipode of H°P and of H°°P.

To define quotients of bialgebras and Hopf algebras we introduce the subobjects
which are the kernels of the corresponding quotient maps.

An ideal or two-sided ideal I in an algebra A is a linear subspace I C A
such that ax € I and za € I for all z € I and a € A.

DEFINITION 1.2.21. Let H be a bialgebra. A subspace I C H is a bi-ideal of
H if I C H is an ideal and a coideal.
Let H be a Hopf algebra. A Hopf ideal of H is a bi-ideal I of H with S(I) C I.

PROPOSITION 1.2.22. Let H and H' be bialgebras, I C H a bi-ideal, and let

¢ : H— H' a morphism of bialgebras.
(1) The quotient coalgebra and quotient algebra H = H/I is a bialgebra. If H
is a Hopf algebra, and I C H is a Hopf ideal, then H is a Hopf algebra

with antipode Sz(T) = S (x) for all z € H.

(2) ker(p) C H is a bi-ideal, and the natural map @ : H/ker(¢) — H' is an
injective bialgebra homomorphism. If H and H' are Hopf algebras, then

ker(p) is a Hopf ideal of H.

ProOOF. (1) follows directly from the definitions, and (2) follows from Propo-
sition [LT.13] and [L2ZT7(2). O

It can be quite difficult or impossible to verify the axioms of a Hopf algebra on
a vector space basis, since usually there is no easy formula for the comultiplication
on all elements of a basis.
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However, it is sufficient to check the axioms on algebra generators. We say that
a subset M of an algebra A is a set of algebra generators, or that M generates A
as an algebra, if any element of A is a k-linear combination of products of elements
of M. We write A =k[M] if M is a set of algebra generators.

ProOPOSITION 1.2.23. Let H be an algebra and M C H a set of algebra gener-
ators. Let

A:H—->H®H, ¢:H—k, S:H-—HY

be algebra maps. Assume that the diagrams (L), (LL8) and (C2Z2) commute
forallh € M. Then (H,A,e,S) is a Hopf algebra.

PROOF. In the diagrams in (LT7) and (LI8) for (H, A, €) all maps are algebra
maps. Hence the diagrams commute, since they commute when applied to elements
of M.

But the maps in the diagrams in (LZ2) are in general not algebra maps. Let H’
be the subset of all elements of H on which the first diagram in ([.2.2]) commutes.
Thus H = {h € H | S(h(1))h(2) = €(h)1} is a subspace of H containing the unit
element 1 of H. Let z,y € H'. Then zy € H’, since

S((zy) 1)) (@y)(2) = S(rmya))T@Y@) (A is an algebra map)
= S(ym)S(za))z@Ye)
S(ya))e(@)y) (since x € H')
=e(z)e(y) (since y € H')
= e(zy), (¢ is an algebra map)

where the second equality holds since S is an algebra anti-homomorphism.
Hence H’ is a subalgebra of H. This shows that H' = H, since M C H'. In
the same way it follows that the second diagram in (LZ2]) commutes. O

For the next example we need the notion of shuffle permutations. We will study
them in more detail in Section [[.8

Let n be a natural number, and i € {0,1,...,n}. A permutation w € S, is
called an (i,n — i)-shuffle or simply an i-shuffle if

w(l) < - <w(i), and w(i +1) < -+ < w(n).
Note that any (0,n)- or (n,0)-shuffle is the identity.

ExXAMPLE 1.2.24. Let X be a set which we view as an alphabet. Let k(X)
be the free algebra in the alphabet X. If X = {a1,...,a,,} is a finite set of m
elements, we write k(X) = k(a,...,an).

The formal words

r1---T,, where x1,...,2, € X, n € Ny,

form a basis of the vector space k(X), and the multiplication is defined by con-
catenation of words. By definition, the length of the word z; ---x, is n, where
T1,...,Tn € X, n € Ng. The empty word is the unit element.

The free algebra has the following universal property: Let A be an algebra
and (a;)zex a family of elements a, € A. Then there is exactly one algebra map
¢ : k(X) — A such that p(z) = a, for all z € X.
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20 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Using the universal property, we define algebra maps
AK(X) 2 k(X)) @k(X), e:k(X)—=k §:k(X)—=k(X)P
with
Al)=1@z+2z®1, ez)=0, S()=-z

for all x € X. Tt follows from Proposition [[Z23] that (k(X), A,¢e,S) is a Hopf
algebra. Explicitly, one obtains for all z4,...,z, € X, n > 1,

Ay an) =101+ 1) (1Qx, +2,®1)

=D D T T @ Turn)  Tu:

=0 w i-shuffle

This formula follows easily since the elements 1® x; and z; ® 1 commute for all 4, j.

ExXAMPLE 1.2.25. Let V be a vector space. For all natural numbers n > 0 let
VO =V ®---®V, where V®° = k. The tensor algebra of V is the vector space
—_————

n

T(V)=ve"

n>0
with multiplication given by
VEM @ yen L yemin) s oy r ey,

for all m,n > 0. We also write T"(V') for V®" for all n > 0. Up to an isomorphism
depending on the choice of a basis (x;);cr of V, the tensor algebra is the free algebra
in X = {x; | i € I}. The algebra map

]k<X>—>T(V), T xy, 1€,

is an isomorphism.
As in Example [[.22224] T'(V) is a Hopf algebra with

Alv)=1v+v®1l, &v)=0, Sk)=-v
for allv e V.

We end this section with some general definitions.

DEFINITION 1.2.26. (1) An Nyp-graded coalgebra is a pair (C,C), where
C' is a coalgebra, (C,C) is an Ny-graded vector space, and
(1.2.3) A(C(n) € €D C(r)@C(s) for all n >0,
r+s=n
(1.2.4) g(C(n)) =0 for all n > 0.
We write

Apn:Clm+n)CC 4090 8, C(m)® C(n), m,n € Ny,

for the components of the comultiplication A.
(2) An Np-graded algebra is a pair (4, .A), where A is an algebra, (A,.A) is
an Ny-graded vector space, and

(1.2.5) A(m)A(n) € A(m + n) for all m,n > 0,
(1.2.6) 14 € A(0).
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The components of the multiplication are

P A(m) @ A(n) — A(m +n), »®@y = zy, m,n > 0.

(3) An Ny-graded bialgebra H is a bialgebra and an Ny-graded vector space
(H,H) such that H is an Ny-graded algebra and an Ny-graded coalgebra
with respect to H. An Ng-graded Hopf algebra is an Ny-graded bial-
gebra which is a Hopf algebra.

COROLLARY 1.2.27. Let C be an Ny-graded coalgebra, and A an Ng-graded
algebra. If f € Hom(C, A) is an invertible graded map, then its inverse f=1 is
graded.

PROOF. By Proposition 211l ®(f) and f~! are graded. O

By Corollary [L2Z27 the antipode of an Ny-graded Hopf algebra is graded.
We note that in Example [[2.25] T(V) is an Ny-graded Hopf algebra with
grading (T™(V))n>0-

1.3. Strictly graded coalgebras

DEFINITION 1.3.1. An Ny-filtered coalgebra is a pair (C, F(C)), where C is
a coalgebra and F(C) = (F,(C))n>0 is a family of subspaces F,(C) C C, n > 0,

such that

(1.3.1) F,(C) C F,(C) for all 0 <m <mn,

(1.3.2) c=|JFu0),
n>0

(1.3.3) A(Fo(C) € > Fo(C) @ Fy(C) for all n > 0.
r+s<n

Note that the subspaces F;,(C) C C, n > 0, of a filtered coalgebra are subcoal-
gebras. If (C, (C(n))n>0) is an Ng-graded coalgebra, then (C, F(C)) is an Ny-filtered
coalgebra with F,(C) = @' _, C(m) for all n > 0.

We want to prove two useful results about filtered coalgebras. We first look at
their simple subcoalgebras. A coalgebra C is called simple if C' # 0, and if 0 and

C are the only subcoalgebras of C.

PROPOSITION 1.3.2. Let (C, F(C)) be an No-filtered coalgebra. Then any simple
subcoalgebra of C' is contained in Fy(C').

PROOF. Let D C C be a simple subcoalgebra. Since Fy(C) N D is a subcoal-
gebra of C' by Proposition [[LT.] it is enough to prove that F(C) N D is non-zero.
Let » > 0 be minimal such that F,,(C) N D # 0, and let x € F,,(C) N D with
x#0. If A(z) € Fyp(C) @ D, then x = (id ® €)A(z) € Fy(C'), and we are done. If
A(x) ¢ Fo(C)® D, then there exists f € C* = Hom(C, k) such that f(x(1))z(2) # 0
and f(Fo(C)) = 0. Since f(z(1))z(2) € F—1(C) N D, we obtain a contradiction to
the minimality of n. O

We introduce at this point a basic coalgebra notion.

DEFINITION 1.3.3. A coalgebra C is called pointed if every simple subcoalge-
bra of C' is one-dimensional.
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If C is a one-dimensional coalgebra, then there is a unique group-like element
l¢ in C, and C = kl¢. In this section we study pointed coalgebras with a unique
group-like element.

The main examples of coalgebras and Hopf algebras which appear in this book
are pointed. We will say more on pointed coalgebras and Hopf algebras in Sec-

tions 2.4] and [£.41

COROLLARY 1.3.4. Let (C,F(C)) be an Ny-filtered coalgebra. If Fo(C) is one-
dimensional, then Fy(C) is the unique simple subcoalgebra of C. The coalgebra C
then has a unique group-like element which spans Fy(C).

PROOF. The subcoalgebra Fy(C) is one-dimensional, hence simple. Thus the
claim follows from Proposition |

We prove Takeuchi’s criterion for invertibility in Hom(C, A).

PROPOSITION 1.3.5. Let (C,F) be a filtered coalgebra and assume that Fy(C')
s one-dimensional with unique group-like element 1¢. Let A be an algebra and
f:C — A alinear map with f(1¢) = 1. Then f is invertible in Hom(C, A) with
respect to convolution, and its inverse is

=Y e =
n>0

ProOOF. Let g = ne — f. We first show that ano g™ is well-defined. Let
m >0, and z € F,,(C). Then for all n > m,

g'@e D 9(F(C)---g(Fi,(C) =0,
k4t <m
since g(Fo(C)) = 0. Hence Y-, 5,9"(x) = >0, ¢"(z). Then in the algebra

Hom(C, A),
(P me=n")@) = (-9 9") @)
n>0 n>0
= (e(z) — 9(z1) Y _ 9" (z(2)
n=0
=g - Y @)
n=0 n=0

= ne(x).

The equation (3, -q(ne — f))f = ne follows in the same way. O

Let C be a coalgebra with exactly one group-like element, which we call 1o = 1.
The space of primitive elements of C' is defined by

PC)=P1(C)={zeC|Alx)=1@z+z®1}.

Note that e(x) = 0 for each z € P(C) by the counit axiom.
The primitive elements of a bialgebra H are the elements in

PH)=P . (H) ={zecH|A@x) =10z +z®1}.

Let C be an Ny-graded coalgebra. We call C' connected if C(0) is one-
dimensional. Then F,(C) = @;_,C(i), n > 0, is a coalgebra filtration of C
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with one-dimensional Fy(C) = k1, and 1 is the unique group-like element of C. If
C' is connected, then P(C') C C is a graded subspace, since P(C) is the kernel of
the graded map C - C®C,z— Alz) - 1@z —z® 1.

LEMMA 1.3.6. (1) Let (C,F(C)) be an Ny-filtered coalgebra. Assume that
Fo(C) =Kkl is one-dimensional. Letn > 1 and x € F,(C). Then

Alz)el@z+z@ 1+ F,_1(C)® F,,_1(C).
(2) Let C be a connected No-graded coalgebra. Then
n—1
Alr)el@r+ze1+PCH) @ Cn—i)
i=1
for alln > 1 and x € C(n). In particular, C(1) C P(C).

(3) Let C be an Ng-graded coalgebra. Then the maps Ag,, and A, o are in-
jective for all n > 0.

PRrROOF. (1) Since F(C) is a coalgebra filtration with F(C') = k1, there exist
y,z € F,(C) such that A(z) —1®@y—2® 1€ F,_1(C) ® F;,_1(C). Then

Alz) - 1@z—-201-10 y—z)—(z—2)®1 € F,_1(C)® F,_1(C).
By the counit axioms, x —y —e&(2)1 € F,,_1(C) and x — z —e(y)1 € F,,_1(C). Since
n > 1, this implies (1).

(2) Let n > 1 and = € C(n). Since C is a connected graded coalgebra, there
exist y,z € C(n),w € EB?:_ll C(i) ® C(n — i) such that A(z) =1®@y+ 2@ 1+ w.
By applying id ® € and € ® id to this equation we see that z = y = z. In particular,
C(1) C P(C).

(3) Let n > 0 and = € C(n). Then A(z) =>.7"  Ain—i(x), hence

z = (idec ® e)A(z) = (ide @ ) (A 0(2)) = (e @ ide) (Ao,n(x))
since €(C(7)) = 0 for all 4 > 1. This implies the claim. O

In general, a connected Ng-graded coalgebra has non-zero primitive elements
in degrees > 2.

EXAMPLE 1.3.7. If H is a bialgebra, then for all z,y € P(H), the commutator
[z,y] = zy — yx is a primitive element in H. In particular, in the free algebra in
Example [[.2.24] iterated commutators of the primitive generators are primitive.

ExXAaMPLE 1.3.8. Let H = k[z] be the polynomial algebra in one variable x.

Then H is an Ny-graded coalgebra (and bialgebra) with
H(n) =ka", A(a") = Z (n) ' @a" " e(z") = bp, for all n > 0.
i
i=0

Note that H is the universal enveloping algebra of the one-dimensional abelian Lie
algebra. Assume that the characteristic of k is 0. Then it is easy to see (and
follows from the Theorem of Poincaré, Birkhoff, Witt) that P(H) = H(1). But if
the characteristic of k is p > 0, then for all m > 1 the binomial coefficients (p l)
are zero for all 1 <4 < p™ — 1, hence x?" is primitive.

DEFINITION 1.3.9. ([Swe69] Section 11.2]) An Ny-graded coalgebra is called
strictly graded if it is connected with P(C) = C(1).
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The next proposition is a very special case of the following theorem of Heyne-
mann and Radford: If f: C' — D is a homomorphism of coalgebras such that the
restriction of f to the first part C of the coradical filtration is injective, then f is
injective. See [Mon93| Theorem 5.3.1] for a proof of this result.

PRrROPOSITION 1.3.10. Let (C, F(C)) be an Ny-filtered coalgebra and assume that
Fy(C) =Kkl is one-dimensional.

(1) Let 0 # I C C be a coideal. Then I N P(C) # 0.
(2) Let D be a coalgebra, and f : C — D a coalgebra homomorphism such
that f|P(C) is injective. Then f is injective.

PRrROOF. The homomorphism theorem for coalgebras, Proposition [[1.13] im-
plies that (1) and (2) are equivalent. We prove (2). We show by induction on
n that f|F,(C) is injective for all n. If n = 0, then f|Fy(C) is injective, since
1 =¢(f(1)). Let n > 1 and assume that f|F,_1(C) is injective. Let z € F,,(C)
with f(z) = 0. By Lemma 1.3.6() there is an element w € F,,_1(C) ® F,,_1(C)
such that A(z) =1® 2+ 2 ® 1+ w. Then

0=A(f(z)) = f(D) @ flz) + fx) @ F(1) + (f & [)(w).

Thus (f®f)(w) = 0, and hence w = 0 by Lemma[[LT.TTland by induction. Therefore
x € P(C) and then z = 0 by the injectivity of f|P(C). O

COROLLARY 1.3.11. Let C be a strictly graded coalgebra.

(1) Let 0 £ I C C be a coideal. Then INC(1) # 0.

(2) Let D be a coalgebra, and f : C — D a coalgebra homomorphism such
that f|C(1) is injective. Then f is injective.

(3) Let 0 # E C C be a subspace with ENC(1) =0. Assume A(E) CE®C
or A(E) CC®E. Then E =kl¢.

PrROOF. (1) and (2) follow from Proposition[[3.T0lusing the coalgebra filtration
F(C) with F,(C) = @!_,C(n) for all n > 0, since P(C) = C(1).

(3) By Lemma [[TT4] F N ker(e) is a coideal of C and E ¢ ker(e). Then
E Nker(e) = 0 by (1), and hence E is one-dimensional. Since C' is connected, we
conclude that E = kl¢. O

We will characterize strictly graded coalgebras in terms of the components of
the graded map A and of its iterations.

DEFINITION 1.3.12. Let C = @ C(n) be a graded coalgebra with projec-

n€Ny
tions 7, = ¢ for all n > 0. For all n > 1 we denote the (1,...,1)-th component
of A"~1 by

Anfl ®n ﬂ-i@" @n
(1.3.4) An 1 C(n) CC —— C®" — C(1)®™.

Let Ic(n) = ker(Aqn) for all n > 1, and

Ic = @Ic(n) = @IC(”)-

n>1 n>2
Note that Io(1) = 0 since A; = id.
LEMMA 1.3.13. Let C' be an Ng-graded coalgebra.
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(1) (a) Letn>1and m>0. Then

Aln /Lfm =n,
0 if m #n.

(b) Let 1 <i<n—1. Then Ain = (Ayi @ Ayn—i) A s
(2) Assume that C is connected. Then Ic C C is a coideal of C.

T@" A C(m) = {

PrOOF. (1)(a) Since A is graded,
AHCm) S P Cli) @@ Clin).

Thus 7" A" C(m) = 0 if m # n.

To prove (1)(b) let n > 2 and & € C(n). Then A(x) = Z?:o Ajn—j(x) by
definition of the components of A. Note that A"~! = (A=! @ A?~"1)A for all
1 <% < n—1 by coassociativity. Hence

Apn(x) = 78" A" (2)

=P AT e AN (Y A (@)
j=0
Do AT @ a T ATT) (A ()
=0
= (A1 ® Ayn-i) A —i(),
where the last equality holds by (1)(a).
(2) Let n>2,z € Ic(n)and i € {1,...,n—1}. By (1)(b),

0=A(z) = (A1 @ Apn-i) A p—i(z).

Hence A; ,,—i(z) € ker(Ayi @ Ajn—i) = C(i) ® Ie(n — i) + Ic(3) ® C(n — i) by
Lemma [[LT.1T] Therefore

n—1
Alx)=1@z+2®1+ Y Aj,i(x)eCelc+Ic@C
i=1
by Lemma 1.3.6(2]). O

PropPOSITION 1.3.14. Let C be an Ny-graded coalgebra.

(1) The following are equivalent.
(a) For allm > 2, Ayn : C(n) — C(1)®" is injective.

(b) Foralli,j >0, A;,;:C(i+j) — C>i) ® C(j) is injective.

(¢c) Foralln>2, A,_11:C(n) = C(n—1)®C(1) is injective.

(d) Foralln>2, Ay g :C(n) = C(1)®C(n—1) is injective.
(2) Assume that C is connected. Then the following are equivalent.

(a) C is strictly graded.

(b) Conditions (a) — (d) in (1).

(C) IC =0.

PrOOF. (1) (a) = (b): By Lemma [L3I3I[AD), A;; is injective for all 4,5 > 1.
This proves (b) by Lemma 1.3.6(3).
(b) = (c) and (b) = (d) are trivial.
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(d) = (a) follows by induction on n, since by Lemma [[3.T3|(11),
Aln = (ldc(l) ® Alnfl)Al,nfl

for all n > 2. The implication (¢) = (a) is shown similarly.

(2) By definition of I, (&) holds if and only if I = 0. Assume that C is
strictly graded. By Lemma [[3T3([2), Ic is a coideal of C. Hence Ic = 0 by
Corollary [L3TT[(1). Conversely, assume that I = 0. Then for all n > 2 and
x e C(n)NP(C), Ap_11(x) =0, and = 0 by ([Id). Thus C is strictly graded. O

DEFINITION 1.3.15. Let C be a connected Ny-graded coalgebra. The coalgebra
B(C) = C/I¢ is called the associated strictly graded coalgebra to C. Let
e+ C — B(C') denote the canonical graded coalgebra map.

The next theorem gives a characterization of the coalgebra B(C').

THEOREM 1.3.16. Let C be a connected Ny-graded coalgebra.

(1) The coideal I is the only graded coideal I of C such that
(a) C/I is strictly graded, and
(b) w(1) : C(1) — (C/I)(1) is bijective, where m : C — C/I s the

canonical map.

(2) The cotdeal I¢: is the largest coideal of C' contained in @, ~, C(n).

(3) The coideal Ic is the only coideal I of C contained in @;22 C(n) such
that P(C/I) = C(1).

(4) Let D be an Ng-graded coalgebra and m : C — D a surjective graded
coalgebra map such that w(1) : C(1) — D(1) is bijective. Then there is
exactly one graded coalgebra map 7 : D — B(C) with ¢ = 7.

PRrOOF. We first show that I satisfies (1)(a) and (1)(b). By Lemmal[[3.13/[2),
Ic C C is a graded coideal of C. By definition, the grading of B(C) is given by
B(C)=kl® C(1) ® €D, 5, C(n)/Ic(n). Thus (1)(b) holds. To prove that B(C) is

strictly graded we use Proposition [[L3.14[2). We show that A’ﬁEC) is injective for
all m > 2. Let n > 2. Since n¢ : C — B(C) = C/I¢ is a graded coalgebra map and
(1) = B(C)(1),

B(C)

AS, = (C(n) My On)/Io(n) 22y cm@n) .

Hence Af,@ is injective, since by definition, Ic(n) = ker(A$.).

(2) Let J C C be the sum of all coideals of C' contained in ,,~, C(n). Then J
is the largest coideal of C contained in €, -, C(n). Hence Ic C J, and the induced
map f : C/Ic — C/J is a coalgebra map which is injective when restricted to
C/I=(1) = C(1). Since C/I¢ is strictly graded, f is injective by Corollary [3111(2).
Thus Ic = J.

(3) By the first paragraph of the proof, P(C/Is) = C(1). Let I be a coideal of
C contained in @,,~, C(n) with P(C/I) = C(1). Then I C I¢ by (2). The induced
coalgebra homomorphism C/I — C/I is injective by Proposition [C3.I0(), since
it is injective on P(C/I). Note that the image of the natural filtration of C is a
coalgebra filtration of C'//I with one-dimensional Fy(C/I).

(4) Let I =ker(w). Then I C C is a graded coideal. By assumption, I(1) = 0.
Further, I(0) = 0 since C' is connected and €(1¢) = 1. Hence I C I by (2). This
proves existence and the uniqueness of 7, since 7 is surjective.
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To finish the proof of (1), we have to show that each coideal I of C satisfying

(a) and (b) coincides with I». Let I C C be such a coideal. Then I C Ix by
( ) and the induced map C/I — C/I¢ is bijective by Corollary [L3.T1(2). Hence
Ic. O

We finally note a useful property of the tensor product of strictly graded coal-
gebras.

PROPOSITION 1.3.17. Let C, D be strictly No-graded coalgebras. Assume that
the tensor product C ® D of the vector spaces C, D has a coalgebra structure with
comultiplication Acgp and counit ecgp = ¢ ® ep such that

(1) (C®D,Acgp, €C®D) s an Ng-graded coalgebra with grading
(C®D)(n)= @ C(i)® D) for alln > 0,

i+j=n
(2) (ide¢ ® ep ® ec ®idp)Acep = idcep,
3) deg®ep:C®D —-CRk=2C andec®idp : C®D - k® D XD are
coalgebra maps.

Then C ® D 1is a strictly graded coalgebra.

PROOF. Let n > 2 and z € (C ® D)(n) a primitive element. We write

n—1

r=1lc®@d+y+c®1p, ce C(n), de D(n yE@C )® D(n —i).

By assumption,

Alz)=201c®@1p+1lec@1lp@reC®DC®D.
We apply f = ide ® ep ® ec ® idp to both sides of this equation. Then by (2),
fA(z) =z. Hence x = 1¢ ® d+ ¢ ® 1p. Moreover, ¢ = (ide ® ep)(x) € P(C) and
d= (ec¢ ®idp)(x) € P(C) by (3). Hence c =0, d =0 and z = 0, since C and D
are strictly graded. O

Proposition [[L3.17] can be applied to the usual tensor product of coalgebras,
but also to more general “braided tensor products”.

1.4. Yetter-Drinfeld modules over a group algebra

In this section, let G be a group. We write g > h = ghg™?, g,h € G, for the
adjoint action of G on itself. The center of G is denoted by Z(G).

If V is a left kG-module, and x € G =Gr (G,k*) is a character of G, we define
VX ={veV]|gv=x(g) forall g € G}.

DEFINITION 1.4.1. A Yetter-Drinfeld module over the group algebra
kG is a G-graded vector space V = e Vg, and a left kG-module with module
structure kGRV — V, g ®v — g - v, where g € G, such that

(1.4.1) g- Vi, CVysy forall g,h € G.

We denote the category of Yetter-Drinfeld modules over the group algebra kG by
gyD. Objects of gyD are the Yetter-Drinfeld modules over kG, morphisms are
the G-graded and G-linear maps. Let gnyd be the full subcategory of gyD of
finite-dimensional objects.
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If V is a Yetter-Drinfeld module over kG, then g- V), = Vyp for all g, h € G,
since g-Vi, C Vyop and g~ Vs, € Vj,. If G is abelian, then Yetter-Drinfeld modules
over kG are G-graded vector spaces and G-modules such that each homogeneous
component is stable under the action of G.

EXAMPLE 1.4.2. Assume that G is abelian. Let h € G. Then any kG-module
U is a Yetter-Drinfeld module over kG with U = U. On the other hand, let V
be a non-zero Yetter-Drinfeld module over kG. Then there is an h € G such that
Vi, # 0. Moreover, for any h € G the subspace V}, is a Yetter-Drinfeld submodule
of V and any subspace of V}, is a kG-submodule of V}, if and only if it is a Yetter-
Drinfeld submodule. In particular, the set of isomorphism classes of irreducible
Yetter-Drinfeld modules over kG is in bijection to G x Irrep G, where Irrep G is the
set of isomorphism classes of simple kG-modules.

EXAMPLE 1.4.3. Let us determine one-dimensional Yetter-Drinfeld modules
V =kz € gyD. The action on V' and the degree of = are given by a character

x € G = Gr (G,k*) and an element g € G with
h-z=xh)z, zeV,,

for all h € G. The Yetter-Drinfeld condition (L4IJ) holds if and only if for all
h € G, hgh™! = deg(h - x) = deg(x(h)z) = g, that is, if and only if g € Z(G).
Thus there is a bijection between the set of isomorphism classes of one-dimensional
Yetter-Drinfeld modules in YD and Z(G) x G.

ExXAMPLE 1.4.4. Assume that G is abelian, and k is algebraically closed. Let
V be a finite-dimensional irreducible kG-module, and let p : kG — End(V) be
the representation of V. Then there is a common eigenvector for the set p(kG) of
pairwise commuting endomorphisms. Hence V' is one-dimensional.

It follows from the two previous examples that the finite-dimensional irreducible
objects in gyD are one-dimensional and given by elements in G x G.

LEMMA 1.4.5. Let G be an abelian group and V € gyD. Then the following
are equivalent:

(1) V is a direct sum of one-dimensional Yetter-Drinfeld modules in &Y D.
(2) V is a direct sum of one-dimensional G-modules.

PrOOF. Clearly, (1) implies (2). Assume now (2). Since G is abelian, the
comodule decomposition V = @gec Vy is a decomposition of G-modules. By (2),
all direct summands V,, g € G, are direct sums of one-dimensional Yetter-Drinfeld

modules. O

PROPOSITION 1.4.6. Let G be a finite abelian group and V € gnyd. Assume
that k is algebraically closed and that char(k) does not divide the order of G.
(1) Any finite-dimensional kG-module is a direct sum of one-dimensional kG-
modules.
(2) Any V € gnyd is the direct sum of one-dimensional Yetter-Drinfeld
modules.

PRrooF. (1) is well-known (and follows from the Theorem of Maschke and Ex-
ample [[L44), and (2) follows from (1) and Lemma 25 O
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EXAMPLE 1.4.7. We denote the symmetric group of n elements {1,...,n} by
Sp. Let Oy = {(ij) | 1 <1i < j < n} be the set of all transpositions in S,,, n > 3.
Let V,, be the Yetter-Drinfeld module in 2: YD with basis z;, t € Oy, and

deg(zy) =t, 8-y = sign(s)zsst forallt € Oy, s €S,

Note that V,, is irreducible in g:yD, since any non-zero subobject contains x; for
some t, and the elements g - x; with g € S,, span V,,, since O3 is a conjugacy class
of S,,.

REMARK 1.4.8. Yetter-Drinfeld modules V in gyD can equivalently be defined
as left kG-modules with a left kG-comodule structure

0:V—=kG®V, v v_1) ®@v), such that
5(g-v) =gvng ' ®g- v

forallv € V, g € G. This follows from the category isomorphism between G-graded
vector spaces and kG-comodules in Proposition [LT.17

Let VW € gyD. Note that V' ® W is an object in g)}D with diagonal action
and diagonal coaction of GG. The trivial object k with grading k = k. and G-action
g-1=1for all g € G is an object in gyD.

PROPOSITION 1.4.9. (1) Let V,\W,V!\W' € GYD. Then for all mor-
phisms f : V. — V' and g : W — W' in GYD, the tensor product
f®g: VoW = V' @ W' is a morphism in GYD.

(2) For all U,V,W € &YD the canonical isomorphisms
UV)aW SUR(VeaW), kaV =V, Veak =V

are morphisms in gyD.

PRrOOF. (1) is clear from the definition, and (2) is a special case of Proposi-
tion [[.2.5] O

Let H be a bialgebra. Suppose that the canonical isomorphism of vector spaces

Tvw VAW SWeV, v@w— wev,

is H-linear for all left H-modules V, W and the diagonal action. Then H is co-
commutative. Similarly, H is commutative, if 7y is H-colinear for all left H-
comodules V, W with the diagonal coaction.

Hence it is quite remarkable that a commutativity rule for objects in gyD does
exist. It is not the flip map 7y, but it is a natural isomorphism in gy’D which
behaves like a commutativity law.

DEFINITION 1.4.10. For all VW € g)iD the linear map
(1.4.2) cy,w VoW WV

defined by cyw(v@w) =g-w®uv forall g€ G, v € V, and w € W, is called the
braiding of V, .

PROPOSITION 1.4.11. (1) For al V,\W € YD, cyw : VOW - WV
s an wsomorphism in gy’D.
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(2) For all objects U, V,W,V' W' in GYD and all morphisms f : V. — V',
g: W — W' in GYD, the following diagrams commute.

Vew —Y s wev

(1.4.3) lf@)g | };@f

VoW’ ‘viw! W eV

CU, VW

URVeW VWU
(14.4) cy,v ®id id®cy,w
VoUW
UaVeWw eV WeUeV
(1.4 e,
UWeV
Ck,V CV,k
kV —Vek Veok——koV
V—— 5V V—— 5V

(Note that Proposition 1.4.9 is used in the formulation of (2).)

We will meet the diagrams of Proposition 1.4.11 later in Section in the
axioms of a braided monoidal category.

PrOOF. (1) To see that ¢y, is G-linear and G-graded, let g,h € G, and let
v € Vg, w € W), be homogeneous elements. Then for all a € G,

cvw(a-(vw))=cyw(a-v®a-w)
=aga ta-w®a-v=a cyw(vew),
deg(cv,w (v ® w)) = deg(g - w @ v) = ghg™'g = deg(v @ w).

The map cy,w is an isomorphism with inverse

c‘j}w:W®V—>V®W’, WRUH VIR w,

forallveV,, ge G, and we W.
(2) The commutativity of the diagrams is easily checked on homogeneous ele-
ments. ]

DEFINITION 1.4.12. Let G be an abelian group, and x : G x G — k* a bichar-
acter of G, that is, a mapping x such that for all f,g,h € G

X(f +g.h) = x(f,h)x(g,h), x(f,g+h)=x(f,9)x(f h).

Let gy'D be the full subcategory of gy'D whose objects are G-graded vector spaces
V =@, cq Vy with G-action defined by g-v = x(g,h)v for allv € V}, g, h € G.
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Note that a bicharacter x satisfies x(g,0) = 1 = x(0, g) for all g € G.
Let G be a free abelian group with basis (a;)icr, and let (gi;)i jer be a family
of non-zero scalars in k. Then

X:GxG—Kk*, (v,a;) — g foralli,jel,
defines a bicharacter of G.

PROPOSITION 1.4.13. Let G be an abelian group and x a bicharacter of G. Let
V,W e $yD.

() VeWe gy'D with diagonal G-grading and G-action. The trivial object
k of gyD is an object of gy’D.

(2) The braiding c=cyw : VW =WV in YD is given by

c(v@w) =x(g,h)w @ v
forallveVy,, we Wy, g,h€G.
Proor. Let f,g,h € G, and v € V;, w € W},. Then
frlveow)=fv®f w=x(fgvex(f,h)w=x(fg+hvew.
This proves that V@ W € gyD, and the remaining claims are obvious. O

If x is a bicharacter of an abelian group, then Proposition [[L4.13] says that the
subcategory )ijD - gyD is closed under tensor products.

EXAMPLE 1.4.14. Let G = Z/(2) and x : Z/(2) x Z/(2) — k* the non-trivial
bicharacter with x(i,j) = (=1)¥, i,j € {0,1}. Assume that char(k) # 2. Then
S = f)ﬂD is called the category of super vector spaces. Objects of S are Z/(2)-
graded vector spaces V = Vy @ Vi, where V; = V5, i € {0,1}. For a homogeneous

element v € V; we write |v| =i VW € S, thelr,l the grading of V ® W is given
by
VoW)=VgWedV1W;, (VW) =VW; &V, W,
and the braiding cy,w : VO W — W ®V by
clv@w) = (=1)"I*ly @ v

for homogeneous elements v € V., w € W.

In the remainder of this section, we want to construct the objects in YD
explicitly for arbitrary groups.
For an element g € G we denote the centralizer of g by

G? ={h e G| hg = gh},
and the conjugacy class of g by
O,={hrg|heG}

Let {O; | I € L} be the set of all conjugacy classes of G, and assume that Oy # O,
for all kK # [ in L.
Any Yetter-Drinfeld module M € gy'D has a decomposition

(1.4.7) M= P M.
leL s€Oy

into a direct sum of Yetter-Drinfeld modules €, Ms, [ € L.
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We first consider one conjugacy class O C G. We denote by g)ﬂD(O) the full
subcategory g)}D((’)) of gyD consisting of all M € gyD with M = @, M.
Choose an element g € G. Thus O = O, and the map

G/GY — Oy, h=hG? — hpg,

is bijective. Recall that Mp,, = h- M, for all M € #YD(O,) and h € G. We will
see that M is completely determined by the G9-module M,.

DEFINITION 1.4.15. Let g € G, and let V be a left kG9-module. Define
M(g, V) =kG Qkga V

as an object in §YD(O,), where M(g,V) is the induced kG-module, and the
G-grading is given by
deg(h®v) =h>gforal h e GiveV.

Note that the grading is well-defined and M (g, V) is a Yetter-Drinfeld module
over GG, since for allv € V, h € G and a € GY,

deg(ha®@v) = (ha)>g=h>g=deg(h®a-v),
and since for all v € V and h,h' € G,
deg(h' - (h®@v)) = deg(h'h @ v) = (W'h) > g = b’ > deg(h @ v).
Let VW be left kG9-modules, and f : V — W a left kGY9-linear map. Then
id® f: M(g,V)— M(g,W) is a morphism in §YD.
Thus we have defined a functor
Fy tkgeM = GYD(O,)
with Fy(V) = M(g,V) and Fy(f) =id ® f for all left kG9-modules V, W and all
left kG9-linear maps f:V — W.
LEMMA 1.4.16. Let g € G, V € ygs M, and M € EYD(O,).
(1) The decomposition of M (g, V') into G-homogeneous components is given
by

M(g, V)= M(g,V)s, M(g,V)ig=h@V forallhegG.
s€0y

2) VvV = M(g,V)g, v— 1®w, is a left kG9-linear isomorphism.
(3) M(g,M,) = M, h@m — h-m, is an isomorphism of Yetter-Drinfeld
modules in g)}D.

PROOF. Let (h,).cx be a complete set of representatives of the cosets in G/GY,
where X is a set of the same cardinality as O,. We can assume that h,, = 1 for
some xo € X. Since kG is a free right kGY9-module with basis (hy)zex,

(1.4.8) M(g,V) =kG @as V= h ® V.
zeX
By (T48), M(9,V)hwg = ha @V, since hy @ V. C M(g,V)p,pq for all z € X.

In particular, M(g,V); = 1®V, and V S1® V,v— 1®wv, is a kG9-linear
isomorphism. This proves (1) and (2).
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(3) The map f: M(g, My) = kG ®xgs My = M, h®m +— h-m, is a morphism
in #YD(0,). By (2), f induces an isomorphism

fo: M(g,Mg)g — M,
of left G9-modules. Hence for all h € G, f induces a bijection
fh|>g : M(Q,Mg)hbg = hM(gaMg)g — Mhbg =h- Mga
since f(h-m)=h- f(m) for all m € M(g, M,),. Thus f is bijective. O

PROPOSITION 1.4.17. Let g € G. Then F, : ygaM — GYD(0,) is an equiva-
lence of categories with quasi-inverse functor given by M — M.

PROOF. Let F) : GVD(Oy) — xgs M be the functor given by F}(M) = M,
for all M € SYD(O,). Since the isomorphisms in Lemma [LZT6(2) and (3) are
natural transformations in V' € ygeM and in M € GYD(O,), F)F, = id and

F,F! = id. 0

We choose for any conjugacy class Oy, [ € L, an element g; € O;. It follows
from Proposition [[4.17 and (L4.1) that there is a category equivalence

(1.4.9) [ xcaMm = Eyp.
leL
COROLLARY 1.4.18. There is a bijection between the disjoint union of the iso-
morphism classes of the simple left kG9 -modules, | € L, and the set of isomorphism
classes of the simple Yetter-Drinfeld modules in 8))D.

PrROOF. This follows from Proposition [LZ17 and (I4.1), where for all I € L
and all simple left kG9'-module V;, the isomorphism class of V; is mapped onto the
isomorphism class of M(g;, V}). O

EXAMPLE 1.4.19. Let G = Z and let g be a generator of G. For any A € k*
and any k > 2, there is a kG-module V = V(A k) with dimV = k such that
(g — NV =0, (9 — N* 1V # 0, and any two such modules are isomorphic. Note
that V is cyclic, indecomposable, and not irreducible as a kG-module, since any
non-zero submodule of V' contains the one-dimensional eigenspace to the eigenvalue
A of the action of g. Since G is abelian, Fy (V') = V as a G-module and the G-grading
of Fy(V) is given by Fy(V) = F,(V),. By Proposition [LZIT F,(V () k)) € YD
is an indecomposable but not irreducible Yetter-Drinfeld module.

PROPOSITION 1.4.20. Let G be a finite group, and assume that the characteristic
of k does not divide the order of G. Then gyD is a semisimple category. For any
M e EYyD,

M= P M(gr,Va) in YD,
AEA
where A is an index set, gy € G, and V) is a simple left KG9*-module for all X € A.

PROOF. Let M € §YD. It follows from Proposition [L417 and (LAT) that M
is a direct sum of Yetter-Drinfeld modules of the form M (g, V'), where g € G and
V € kgsM. By our assumption and the Theorem of Maschke, the group algebra
kG is semisimple. Hence V is a direct sum of simple left kG9-modules. The functor
F, commutes with direct sums by the additivity of the tensor product. Hence M
is a direct sum of Yetter-Drinfeld modules of the form M (g,V'), where g € G and
V is a simple left kG9-module. This proves the claim by Corollary [L4.18] O
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We end the section with an invariant of irreducible Yetter-Drinfeld modules.

PROPOSITION 1.4.21. Assume that k is an algebraically closed field. Let'V be a
finite-dimensional irreducible object in GYD. Then there exists qy € k* such that
g-v=gqyv forallge G andv € V.

PrOOF. We may assume that V # 0. Let h € G with V}, # 0. Since V is
irreducible, V' € GYD(0;,). Since V, is finite-dimensional and k is algebraically
closed, there exists gy € k* and v € V}, with v #0, h-v = qyv. Let

W={weV,|h w=gqgyw}.

Then W € yonM. Proposition [L417] implies that kG - W is a Yetter-Drinfeld
submodule of V. Thus W =V}, since V is irreducible and (kG - W), = W. Finally,
for all g € G and v € V},

ghg™" - (g-v) =gh-v=qvg-v
which implies the claim. O
1.5. Braided vector spaces of group type

Let V be a vector space and ¢: V ® V — V ® V a linear endomorphism. For
any natural number n > 2 and 1 < i < n — 1 we define ¢; € End(V®") by applying
¢ at the i-th position, that is

c® idv®(n72), ifi = 1,
(151) C; = idv®(i—1) XRec® idv®(n—i—1), if 2 S 7 S n — 2,
idv@(n—2) X c, ifi=n-—1.

Note that ¢; depends on n. It will be clear from the context which n is meant.

DEFINITION 1.5.1. A braided vector space (V,¢) is a pair consisting of a
vector space V and a linear automorphism ¢: V ® V — V ® V satisfying

C1C2C] = CaC1Cy  In End(V®3).

If (V,c) is a braided vector space, the automorphism c is called a braiding (or a
Yang-Baxter operator). If (V, ¢) and (W, d) are braided vector spaces, a braided
linear map (or a morphism of braided vector spaces) f : (V,¢) — (W, d) is a linear
map f:V = W with (f @ fle=d(f ® f).

Clearly, the inverse of a bijective braided linear map is braided linear.
COROLLARY 1.5.2. Let V € GYD. Then (V,cvy) is a braided vector space.
Proor. By (L4H), c¢ic2 = cvgy,v. Hence we have to show that

VeV, Vel = C2CVeV,V-

Since ¢; = ¢®idy and ¢z = idy ®c, this follows since by (L43]), cygv,v is a natural
transformation with respect to endomorphisms of V® V. (Il

EXAMPLE 1.5.3. Assume that G is abelian. If V € gyD, and g € G, x € @,
we define

(1.5.2) Vi={veVy|h-v=x(hv}
Then VgX C V is a subobject in gyD.
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An important class of Yetter-Drinfeld modules over G is constructed as follows.
Let I be an index set, and V a vector space with basis x;, ¢ € I. For all ¢ € I, let
g; € G, x; € G. Then
(1.5.3) V =ke; € YD, where ka; € V¥ for all i € I.

i€l
By Definition [[LZ10] the braiding cy,y is given by
(1.5.4) cvy (T @ x5) = qijx; @ x4, qij = Xx;(g:) foralli,jel.

REMARK 1.5.4. Let I be an index set, and let (g;;)i jer be a family of non-zero
scalars in k. Let V' be a vector space with basis x;, i € I. We define a linear map
c: VeV ->VeVby
(155) C(l‘i & .Ij) = QT Q x; for all 1,7 €1.

Then c is a linear automorphism of V @ V', and for all i, j, k € I,
c16261 (2 @ 5 ® o) = gijc102(T) @ T ® Tk) = GijGkdjpTr @ Tj © T4,
cacico(z; @ T ® ) = qjrcaci (@ @ T ® Tj) = ¢ikGikGijTh O T Q ;.
Thus (V, ¢) always is a braided vector space. One says that (V, ¢) is a braided vector
space of diagonal type, and that cis a diagonal braiding. The matrix (g;;) jer
is called the braiding matrix of (V,c¢) with respect to the basis z;, i € I.

The braiding of a braided vector space (V,¢) of diagonal type can be realized

as the braiding of a Yetter-Drinfeld module over an abelian group. For example,

let G be a free abelian group with basis g;, ¢ € I. Define characters x; € G by
x;(9:) = qij for all i,j € I. Then V € YD by (L53) and cy,y = ¢ by (LE4).

The following class of braided vector spaces was introduced by Takeuchi to
characterize braidings of Yetter-Drinfeld modules over groups.

DEFINITION 1.5.5. Let (V, ¢) be a braided vector space. We call (V, ¢) of group
type if there are a basis (x;);cr of V and elements g;(z;) € V for all 4, j € I such
that

(1.5.6) c(z; @ xj) = gi(z;) ®x,; foralli,jel.

Note that it follows from the bijectivity of ¢, that the family of elements g;(z;),
i,j € I, defines linear automorphisms g; € Aut(V) for all i € I.

PROPOSITION 1.5.6. Let (V,¢) be a braided vector space. Then the following
are equivalent:

(1) (V,c) is of group type.
(2) There are a group G and a kG-module and a kG-comodule structure on
V' such that V € 8))13 and c=cyy.

PROOF. We prove first that (1) implies (2). Let (z;);er be a basis of V and let
(gi)ier be a family of linear automorphisms of V' satistying (L5.6). For all 4,5,k € I
we compute

creacr(x; @ T ® ap) = c(gi(x;) @ gi(wr)) ® @i,
caci1e2(; @ x5 ® k) = g:95(Tk) ® gi(2) @ ;.
Since (V,¢) is a braided vector space, we obtain that

(1.5.7) c(gi(zj) ® gi(zr)) = gig;(xk) ® gi(x;) for all i,j,k € I.
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Let G C Aut(V) be the subgroup generated by the automorphisms g;, i € I. Hence
V is a G-module. We define a G-grading on V' by

deg(x;) =¢g; foralliel.
Then V is a Yetter-Drinfeld module over G if
(158) gi(xj) eV

909597 for all i,5 € I.
Let i,j € I, and write g;(x;) = > aéjxl, where I’ C I is a non-empty finite

subset, and 0 # aéj €k foralllel'. Then for all k € I,

elgi(z) @ gilon)) = oY alm @ gi(en) ) = S al i) @ .
ler ler
Hence by (L5, ¢19:(zx) = ¢igj(zx) for all k € I, 1 € I'. Thus for all [ € I,
9= 9ig59; ' and gi(z;) € Vo 1.

The equality ¢ = cy,y is clear from the definition of V' € g)}D.

Now we prove that (2) implies (1). Let G be a group and let V € &YD be
such that ¢ = cy,y. Choose a basis (z;);cr of V' of G-homogeneous elements, that
is, with z; € V, for all ¢ € I, where g; € G for all 4 € I. Then

clz; ®xj) =9 -5 @y
for all i,j € I by Definition [[4ZT0 This proves (1). O

In order to describe braided vector spaces of group type without referring to
the group, the notions of racks and two-cocycles are very useful.

DEFINITION 1.5.7. Let X be a non-empty set and > : X x X — X a map
denoted by (z,y) — x>y for all z,y € X. The pair (X,>) is called a rack if
(1) For all z € X, the map ¢, : X — X, y — x>y, is bijective.
(2) The map b is left self-distributive, that is, for all z,y, 2z € X,
x> (y>z) = (xpy)> (x> 2).

A rack (X,p) is called a quandle if z>a = « for all x € X. Two racks (or quandles)
(X,>) and (Y,>’) are called isomorphic if there is a bijection f : X — Y such that
flx>z) = f(z)> f(z) for all x, 2z € X.

ExaMpPLE 1.5.8. Let G be a group. The union X of any non-empty set of
conjugacy classes of G is a quandle, where z >y = xyz~! for all x,y € X is the
adjoint action of the group. The pair (G,>') with g’ h = gh~lg for all g,h € G is
a quandle.

ExaMPLE 1.5.9. Let A be an abelian group. Let ¢ be an automorphism of A
and let>: Ax A— A avy=x+0(y—x). Then (A,>) is a quandle and is called
an affine rack or affine quandle. Indeed, for any = € A the inverse of ¢, is given
by

pr ) =a+o H(y—a)
Moreover,
papy(2) = pa(y+o(z —y)) =z + 0y —2) +0*(2 = y) = usypa(2)
for all z,y, z € A.
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ExAMPLE 1.5.10. Let G be a group, g € G and V a left kG9-module. As in the
proof of Lemma [[LZT@ let (h;)zcx be a complete set of representatives of G/GY.
For all z,y € X, define x>y € X and u(z,y) € GY by the equation

(hx > g)hy = hzbyu(xu y)

Then (X,) is a rack.
Condition (1) of Definition [[5.7] clearly holds, since G/GY is a left G-space,
and left multiplication with A, > g is bijective. To check (2), let z,y,z € X. By

definition,

(hm > g)hz = hrbzu(l'v Z), (hr > g)hybz = hxb(ybz)u(xa yb Z)v

(hy > g)hz = hybzu(ya 2)7 (ha:l>y > g)hzbz = h(zby)b(mbz)u(x >y, x> Z)
Hence

) hy Dg)(hybg)hm

hwb(ybz)u(x’ y > 2)u(y, z) = (
z,2) = (hapy > g)(ha > g)h.

= (

= (

B(avy)o (@) (T >y, 2 > 2)u(z,
((ha > g)hyu(z,y)~") > g) (he > g)
ha > g)(hy > g)h=,
where the last equality holds since u(z,y) € G9. This proves (2). Moreover,
(1.5.9) u(z>y, x> 2)u(x, z) = ulx, y > 2)u(y, 2)

for all z,y,z € X.
The braiding of M(g,V) = kG ®kgs V' can hence be written as

clhy @ v, hy @w) = (he>g)hy @W R hy Qv
= Napy @ u(2,Y) W hy ®V
= hasy ® qm7y(w) ®hy @v
forall z,y € X, v,w € V, where q,, , € Aut(V), q,, ,(w) = u(z,y) w for allw € V.
The braiding in Example [[5.10 can easily be formulated for any rack.

DEFINITION 1.5.11. Let (X,>) be a rack, and let ¢ : X x X — H for some
group H be a map which we write as g(z,y) = q,, foral z,y € X. Then q is
called a two-cocycle if

(1510) qa:l>y7$>zqw,z = qw7yl>zqyxz

for all z,y, z € X. We say that g is constant if H = Aut(V) for some vector space
V' and there exists A € k such that q, , = Aidy for all z,y € X.

A constant map g : X x X — Aut(V) is always a two-cocycle. The map u in
Example [5.101is a two-cocycle with values in G by (L5.9).

PRrROPOSITION 1.5.12. Let X be a non-empty set, V be a vector space, and
P X XXX, g:XxX = Au(V)
be maps. Let M = kX @V and let c?: M @ M — M & M be the linear map with
(1.5.11) A((rev)® (yew)) = ((zry) ®q, ,(0) @ (x0v)

for all z,y € X, v,w € V. Then (M,c?) is a braided vector space if and only if
(X,>) is a rack and q is a two-cocycle. In this case, (M, c?) is of group type.
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PrROOF. In the proof we write zv instead of x ® v for all x € X, v € V. Let
x,y,2 € X and v,w,u € V. Then

C1C2C1 (ZL”U Qyuw Z’LL) = (:E > y) > (LE > Z)qmby,zbz(qr,z(u)) & (l' > y)qr,y(w) & zv,
cac1ca(20 @ yw @ zu) = (2> (Y 2))qy 42 (g, . (v) © (2> Y)g, (W) © 2v.
This implies the first part of the claim. The rest is clear. O
EXAMPLE 1.5.13. Let X = {1,2,3,4} and let ¢;, i € X, be the permutations
01 =1(234), ¢2=(143), ¢3=(124), ¢s=(132).
Then (X,r) is a quandle, where x>y = ¢,(y) for all x,y € X. More precisely,
consider the affine quandle structure on the field F4 with 4 elements and the auto-
morphism determined by left multiplication with an element of multiplicative order
3 in F4. This quandle and (X,>) are isomorphic.
Let V be a one-dimensional vector space, (X,>) arack, M = kX®V 2 kX, and

let ¢? be as in Proposition [[5.12] where A € k* and q is the constant two-cocycle
with q, , = A for all z,y € X. Then

Ar®y)=Azry) @
for all z,y € X.

ExXaMPLE 1.5.14. Let m > 2 be a positive integer and let 1 < i < m with
ged(m, i) = 1. Multiplication with ¢ in Z/(m) is an automorphism. Hence

Aff(m, i) = (Z/(m),>), z>y=2x+i(y—x),
is an affine quandle. For i =1, x>y =y for all z,y € Z/(m).

1.6. Braided Hopf algebras and Nichols algebras over groups

Let again G be a group. To simplify the notation, we write C = gyD.

The tensor product of two objects in C is an object in C, the tensor product
of two morphisms in C is a morphism in C, and the canonical isomorphisms in
Proposition [L23] for U, V, W € C are morphisms in C by Proposition 1.4.9.

Let A€ C,and let p: A® A — A, n:k — A be morphisms in C. Then
(A, u,m) is an algebra in C if the diagrams (II3) and (LI4) commute. If A, B
are algebras in C, and p : A — B is a morphism in C, then p is a morphism of
algebras in C, if the diagrams ([.ITH) and (.I.6) commute.

Let C €eC,and let A : C = C®C, € : C — k be morphisms in C. The triple
(C,A,¢) is a coalgebra in C if the diagrams (LI.7) and (ITI8) commute. If C, D
are coalgebras in C, and ¢ : C — D is a morphism in C, then ¢ is a morphism of
coalgebras in C, if the diagrams (L.II0) and (CIII) commute.

Thus algebras and coalgebras in C are algebras and coalgebras in the sense of
Section [T whose structure maps are morphisms in C. In the same way modules in
C and comodules in C are modules and comodules, respectively, whose structure
maps are morphisms in C.

COROLLARY 1.6.1. Let C be a coalgebra in C, A an algebra in C, and f an
invertible map in Hom(C, A). If f is a morphism in C, then so is f~*.

ProoF. This is another application of Proposition [L2.T11 |

PROPOSITION 1.6.2. Let V € C, and T(V) = @,,5,T" (V) the tensor algebra
of the vector space V. -
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(1) T(V) is an algebra in C, where T"(V) = V@™ n >0, is the n-fold tensor
product in C.

(2) For any algebra A in C and any morphism f :'V — A inC, there is exactly
one algebra morphism ¢ : T(V) — A in C extending f.

Proor. This is clear from the universal property of the tensor algebra (or the

®n n—1
free algebra), since for all n > 2, V& I qom By Ajsa morphism in C, where

pu"~1is the (n — 1)-fold iteration of the multiplication map . a

DEFINITION 1.6.3. (1) Let (A, pua,mna) and (B, up,np) be algebras in C.
Define pagp and nagp by

id®cp, 4®id
ey

(A® B)® (A® B) (A® A) ® (B® B) L4212, A g B,

k~kok 2275, A g B.

Then (A® B, pagB, Nags) is called the tensor product of algebras in
C.

(2) Let (C,Ac¢,ec) and (D,Ap,ep) be coalgebras in C. Define Aggp and
ecep by

Ac®Ap

C @D 2%, (0 )@ (Do D) 22,

(Ce®D)® (C® D),

ec®epD

C®D —=kook=k.
Then (C® D, Acep,ccep) is called the tensor product of coalgebras
in C.
By Definition [LZT0l the product pagp is defined for elements a,x € A and
be By, ye B,ge G, by
(1.6.1) (a@b)(x®y) =a(g- ) by.
The unit element of AQ Bis 14 ® 15.

PrOPOSITION 1.6.4. Let A, B,C, D be algebras in C.
(1) (A® B, pagp,Nagp) s an algebra in C.
(2) The canonical isomorphism (AQ B)®C =2 A® (B®C) is an isomorphism
of algebras in C.
(3) Let p : A — C and ¢ : B — D be morphisms of algebras in C. Then
pRY: AR B — C® D is a morphism of algebras in C.

PRrROOF. (1) It is clear from the definition that pagp and nagp are morphisms
in C. To check associativity, consider elements a,u,x € A and b € By, v € By,
y € B, where g, h € G. Then deg(bv) = gh, since the multiplication map BB — B
is G-graded. Hence

((a®b)(u@v))(z@y) = (a(g-u) @bv)(z®@y) = alg - u)((gh) - ©) @ buy,
(@@b)((u@v)(z®y)) = (a@b)(ulh-2) ®vy) = alg - (u(h-z))) @ bvy.

This proves associativity, since the multiplication map A ® A — A is left G-linear,
hence (g - u)((gh) - x) = g - (u(h - z)).
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(2) Let a,z € A, b€ By, y € B, c € Cp, z € C, where g,h € G. We compute
in A® (B®C) and thenin (A® B)® C,

(@®(b®c))(z®(y®2)) =a((gh) =)@ (b&c)(y®z2)

= a((gh) - ) @ b(h - y) ® cz,
(ab)@c)(z@y)®2)=(a@b)(h-z2Q@h-y)@cz
=a((gh) -x) ®b(h - y) ® cz.

(3) Let a,u € A, b,v € B, and assume that b € By, g € G. Then

(p@P)((a®b)(u®v)) = plalg-u)) @ Y(bv)
= @(a)(g-p(u) @ P(b)Y(v)
= (¢(a) @ ¥(b))(p(u) © ¥(v)).
This implies the claim. 0O

PropoOSITION 1.6.5. Let C, D, E, F be coalgebras in C.
(1) (C® D,Acgp,ecep) is a coalgebra in C.
(2) The canonical isomorphism (C@D)QE = C®(D®E) is an isomorphism
of coalgebras in C.
(3) Let ¢ : C — E and v : D — F be morphisms of coalgebras in C. Then
pRY:C®D— E®LF is a morphism of coalgebras in C.

ProOOF. This can be shown as in the proof of Proposition [[L6.4] by direct
computation using the comodule description of Yetter-Drinfeld modules in Re-

mark [.4.8] O

We will see in Section that Propositions [[L6.4] and formally follow
from the properties of the braiding in Proposition 1.4.11. Proposition [I.6.4] holds
in braided monoidal categories, and Proposition is Proposition [[L6.4] in the
dual category.

DEFINITION 1.6.6. (1) Let R be an object in C, and let
u:R®R—R, n:k— R, A:R—-R®R, e:R—k

be morphisms in C. Then (R, u,n, A, ) is a bialgebra in C if (R, 1, 7) is an algebra
in C, (R,A,¢) is a coalgebra in C, and A and ¢ are algebra maps in C.

(2) Let R be a bialgebra in C, and § : R — R a morphism in C. Then (R, S)
is a Hopf algebra in C with antipode S, if the diagrams (L22) commute.

(3) Let R, R’ be bialgebras in C, and ¢ : R — R’ a morphism in C. Then ¢
is a bialgebra morphism in C, if ¢ is a morphism of algebras and coalgebras in
C. A Hopf algebra morphism in C between Hopf algebras in C is a bialgebra
morphism in C.

PROPOSITION 1.6.7. Let R be an object in C, and let
u:RIR— R, n:k—-R, A:R—>R®R, e:R—k

be morphisms in C. Assume that (R, p,n) is an algebra and (R, A, €) is a coalgebra
in C. Then the following are equivalent.

(1) A and € are morphisms of algebras in C.
(2) wu and n are morphisms of coalgebras in C.
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PRrOOF. Replace in the proof of Proposition [[.2.2] the flip map 7r r by the
braiding cg, r. O

REMARK 1.6.8. (1) Let (R,S) be a Hopf algebra in C. Then S is uniquely
determined as the inverse of id in Hom(R, R).

(2) If R is a bialgebra in C, and the inverse S of id in Hom(R, R) exists, then
S is a morphism in C by Corollary [[L6.1] hence (R, S) is a Hopf algebra in C.

(3) Let R, R’ be Hopf algebras in C an ¢ : R — R’ a bialgebra morphism in C.
Then ¢Si = Sgrrp by the proof of Proposition [L2.17(2).

LEMMA 1.6.9. Let R be a bialgebra in C. Then P(R) C R is a subobject in C.

PRrROOF. By definition, P(R) is the kernel of the morphism
R—-R®R, z—~Alz)— (z®1+1®x)

in C. This implies the claim. |

An Nyp-graded object in C is an object V € C with a family of subobjects
V(n) CV,n>0,inC such that V =P, , V(n) in C. The category of No-graded
objects in C with graded morphisms in C as morphisms is denoted by No-Gr(C).

An Ny-graded algebra, coalgebra, bialgebra and Hopf algebra in C
is an algebra, coalgebra, bialgebra and Hopf algebra, respectively, in C with an
Np-grading of subobjects in C such that the structure maps are graded.

For V € C, the tensor algebra T'(V') is an algebra in C by Proposition
The usual Ny-grading with T'(V)(n) = T"(V) = V" for all n > 0 turns T'(V') into
an Ny-graded algebra in C by construction.

COROLLARY 1.6.10. Let R be an Ny-graded connected bialgebra in C. Then R
is an Ng-graded Hopf algebra in C.

PROOF. Since R is an algebra and a coalgebra, Hom(R, R) is an algebra with
convolution product. The identity map in Hom(R, R) is invertible by Proposi-
tion Hence the claim follows from Remark [[.6.8 O

DEFINITION 1.6.11. Let V' € C, and T(V) the tensor algebra of V in C. By
Proposition [[L6.2] there are uniquely determined algebra morphisms in C

A:TV)->TV)T(V), e:T(V) =k
such that
Av)=v®14+1®v, e(v)=0

for all v € V, where T(V) @ T'(V) is the tensor product of algebras in C.

EXAMPLE 1.6.12. Let V = @, ka; € EYD, where 2; € V)Xi, x;(g:) = qi; for
all 4,7 € I. Then in T(V) for all i,j € I,

Alzz;) =(z; 91 +1Qx;)(z; ® 1 +1®@xy)
=z, Q1+ 2, 97 +qi;T; @ + 1 ® z5375.
ProPoOsSITION 1.6.13. Let V € C.

(1) The tensor algebra T(V') is an No-graded Hopf algebra in C with comulti-
plication A and counit £ of Definition [LG.TIl

(2) Let R be a bialgebra in C, and f : V — P(R) a morphism in C. Then
there is exactly one bialgebra map ¢ : T(V) — R in C extending f.
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(3) Let R be an Ny-graded connected bialgebra in C, and f : V — R(1) a
morphism in C. Then there is exactly one bialgebra map ¢ : T(V) — R
in C extending f, and ¢ is Ng-graded.

PRrROOF. (1) Since A and ¢ are homogeneous on V, they are Ny-graded algebra
morphisms in C. Then (T(V'), A, ¢) is an Ny-graded coalgebra in C, since by Propo-
sition [[L6.4)(2), the diagrams (I.I.7) and (I8 are diagrams of algebra morphisms
which commute on the generators v € V. Thus T'(V) is an Ny-graded bialgebra in
C. Then T(V) is a Hopf algebra in C by Corollary [L6.T0l

(2) By Proposition [[L6.2] there is a unique algebra map ¢ : T(V) — R in C
extending f : V — R. It remains to show that ¢ is a coalgebra map, that is, the

diagrams
(V) ———R T(V)—— >R
lA P \ /
TWV)oT(V) 2% Re R k

commute. All maps in the diagrams are algebra maps, and it is enough to prove
commutativity on the generators in V. It is clear from the assumption on f that
both diagrams commute on elements of V.

(3) This follows from (2), since R(1) C P(R) by Lemma 1.3.6(2). O

Ideals, coideals, bi-ideals and Hopf ideals in C are subobjects in C which
are ideals, coideals, bi-ideals and Hopf ideals, respectively. They describe quotients
of algebras, coalgebras, bialgebras and Hopf algebras in C as in Propositions [LT.13]
and

LEMMA 1.6.14. Let A be a bialgebra in C, and I C A a coideal in C. Then Al
and T A are coideals of A in C.

PrROOF. Since the multiplication map A ® A — A is a morphism in C, A is a
subobject of A in C. Since ¢ is an algebra map, e(AI) C e(A)e(I) = 0. Since A is
an algebra map,

AADN) CAAAI) C(ARA)I®A+ARI)
=Ac(AR A+ Ac(AR A)T=AT @ A+ A® Al
Hence AT is a coideal of A in C. Similarly, A C A is a coideal of A in C. ]

COROLLARY 1.6.15. Let R = €D, R(n) be an No-graded connected Hopf al-
gebra in C, and let Ir C R be the largest coideal contained in €P,,-, R(n). Then
R/Ig is an Ny-graded connected quotient Hopf algebra in C with

P(R/Ir) = (R/Ir)(1) = R(1).

PRrOOF. By Theorem[[3.16] Iz = P,,~, ker(Ain), and R/IR is strictly graded,
that is, P(R/Ir) = (R/Ir)(1) = R(1). For all n > 2, the maps A%, are Ny-graded
morphisms in C. Hence I C R is an Ny-graded subobject in C, and R/Ig is
an Np-graded coalgebra quotient of R in C. By the maximality of Ir and by
Lemmal[lL6.14] I is a bi-ideal of R. Then R/Ig is an Ny-graded Hopf algebra in C
by Corollary [LG.10 O
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DEFINITION 1.6.16. Let V € C. An Ny-graded connected Hopf algebra R in C
is a pre-Nichols algebra of V, if

(N1) R(1) =V inC,

(N2) R is generated as an algebra by R(1).

A pre-Nichols algebra of V' is a Nichols algebra of V, if
(N3) R is strictly graded, that is, P(R) = R(1).

It is a remarkable fact that by Theorem [[L6.I8 below the structure of a Nichols
algebra of V' € C is completely determined by V. This is somewhat similar to
the situation of irreducible cocommutative Hopf algebras U over a field of charac-
teristic 0. The structure of U is completely determined by the Lie algebra of its
primitive elements. In this analogy, the Nichols algebra corresponds to the universal
enveloping algebra of a Lie algebra.

The Nichols algebra can be constructed as the smallest Ny-graded Hopf algebra
quotient of T(V) which is isomorphic to V' in degree one. Recall from Proposi-
tion [[L6.13] that T(V') is an Ny-graded connected coalgebra.

DEFINITION 1.6.17. Let V € C. Let I(V) be the largest coideal of T'(V') con-
tained in €p,,», 7" (V). The Nichols algebra of V' is defined by

B(V) =T(V)/I(V).
Note that I(V) = @,,5, ker(A7")) = I by Theorem

THEOREM 1.6.18. Let V € C.
(1) B(V) is a Nichols algebra of V.
(2) Let R be a pre-Nichols algebra of V', f : R(1) =V oan isomorphism in C.
(a) There is exactly one morphism © : R — B(V) of Ng-graded Hopf
algebras in C such that f is the restriction of m to R(1), and 7 is

surjective.
(b) 7 is bijective if and only if R is a Nichols algebra of V.

PrROOF. (1) follows from Corollary

(2) (a) Let ¢ : T(V) — R be the surjective Ny-graded braided bialgebra map
extending f~! by Proposition [L6.I3I(3). Then ker(y) C I(V), since ¢ is bijective
in degree 0 and 1. The induced map

m: R=T(V)/ker(p) = T(V)/I(V) =B(V)

is a surjective map of Ny-graded braided Hopf algebras with 7(1) = f.
(b) If P(R) = R(1), then m in (1) is bijective by Proposition [[310(2). Con-
versely, if R = B(V), then P(R) = R(1) by (1). O

REMARK 1.6.19. Let U,V € C, and f : U — V a morphism in C. Then f
induces a morphism T'(f) : T(U) — T(V) of Ny-graded Hopf algebras in C. Since
T(f) is a coalgebra morphism, T'(f)(I(U)) C I(V). Hence the construction of the
Nichols algebra is a functor from C to the category of Ny-graded Hopf algebras in
C. Clearly, f is surjective if and only if B(f) is surjective.

Suppose that f is injective. Then T'(f)"'(I(V)) C @,5,T"(U). Hence
T(f)"Y(I(V)) = I(U), and B(f) is injective.
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REMARK 1.6.20. Direct sum decompositions of Yetter-Drinfeld modules give
rise to important gradings of the Nichols algebra, see Corollary

Let & > 1 be an integer. Then Nf is a monoid with componentwise addition
of natural numbers. The standard basis of Z? is denoted by a1, ..., as. Thus for

0 0

a=(ai,...,a9) ENG, o =>",_, a;a;.

Let V € C with subobjects V; C V' in C such that V =P, ., Vi. Then B(V)
is an N§-graded Hopf algebra in C, where for all 1 < i < 6, deg(V;) = a;.

1.7. Braid group and braided vector spaces

We begin by recalling some general facts about the symmetric group. Let W
be a group and S C W a subset of elements of order 2. In particular, S does not
contain the identity element 1 of W. For all s,s" € S let m(s, s’) be the order of ss’.
The pair (W, S) is called a Coxeter system, and W is called a Coxeter group
[Bou68, Ch. IV, §1, 1.3], if

(S| (s8)™=5) =1 forall's,s' € S with m(s,s') < 00) — W, s s,

is a group isomorphism, that is, if W is generated by the set S with (only) relations
(ss')™(=5) =1 for all s,s" € S with m(s,s’) < co.

Let n > 2. We denote the elementary transpositions of the symmetric group
S, by s; = (i +1) for all 1 <4 <n — 1. Note that

1, ifi=j,
ord(s;sj) =43, if|i—j| =1,
2, if|i—j| > 1.
THEOREM 1.7.1. For alln > 2, (S,,{s1,...,8n-1}) is a Cozeter system, that

s, S, is generated by S1,...,Sp_1 with defining relations
(1.7.1) 8i8i+18i = Si+18iSi+1 foralll <i<n—2,
(1.7.2) 5i8j = 5;8; foralll1<i,57<n-—1,]i—j]>1,
(1.7.3) s2=1 for all 1.

PROOF. For n = 2 the claim is trivial. Assume that n > 3. Let W,, denote the
Coxeter group given by generators si, ..., s,—1 and relations (LZI)-(L73). The
elementary transpositions of S,, satisfy Equations (LZI)-(.73]), hence there is a
surjective map W, — S,,. On the other hand,

W, ={w, wsp_1,WSn—-18p—2, ..., WSp_18p—2-+-S1 | W € (s1,...,8p—2)}.

Indeed, let 4,5 € {1,...,n — 1}. Then

Sj_l(Sn_lsn_Q .- Sz) lfj > 1,

) Sn—1Sn—2 - Siy1 if j =1,
(Sn—18n—2--8§)8; = .
Sp—1Sn—2 """ Si—1 lfj =i—1,
Sj(Sn_lsn_g-"Si) lfj <1—1.
Hence {w, ws,—1,WSp—18n—2,+,WSp—_18p—2---81 | W € (S1,...,8,—2)} is a sub-

group of W,, containing all generators of W,, and hence coincides with W,,. We
conclude that |W,| < n|W,,_1| and hence |W,,| < n! by induction on n. Therefore
W, =S, since |S,| = nl. a
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Let
A={(a,b) eN?|1<a,b<n, a##b},
A; ={(a,b) € A|a< b},
A_ ={(a,b) € A|a >0},
and define

o =(1,2), 2 =(2,3), ..., ap_1 = (n—1,n) € A.
The symmetric group S,, acts on A by
Sn x A= A, (w,(a,b)) — (w(a),w(d)).

For w € S,, let
Ay ={aeA; |wla)e A_}.
The elements of A,, are called inversions of w.

The length ¢(w) of a permutation w € S,, is defined as the smallest natural
number ! € Ny such that there exist 1 < iq,...,9 <n—1with w =s;, ---5;. A
sequence (i1,...,4) with 1 <i,...,4 < n—1Iis called a reduced decomposition
ofwifw=s; --s;,and if | = {(w).

In practice, the length of a permutation is computed by counting the number
of its inversions.

THEOREM 1.7.2. Let w € S,, and let i € N with i <n — 1.
(1) l(ws;) =L(w) + 1 if and only if w(i) < w(i+1).
(2) l(ws;) =Ll(w) — 1 if and only if w(i) > w(i +1).
(3) For any reduced decomposition (i1, ...,14;) of w,

Ay = {Siz T Siz(ai1)>siz o '8i3(ai2)7 <oy 84 (O‘iz—1)7aiz}
and I = L(w) = |Ay].

ProoF. (a) Letv e W, 1 <m<n,and 1 < j<k<n-—1. If j =m and
k =m+1, then (4, k) is an inversion of v if and only if it is not an inversion of vs,,.
Otherwise, (j, k) is an inversion of v if and only if (s,,(j), $m(k)) is an inversion of
VSy,. Therefore

(1.7.4) am € Ay = Nys,. = (A \ {am}), |Avs,, | = |Ay] — 1,
(1.7.5) am & Ay = Nys,, = $Sm(Ay) U{am}, [Avs,, | = Ay + 1.

(b) Clearly, w = ids, if and only if A,, = (. By induction on ¢(w), it follows
from (I74) and (LT3 that |A,| < ¢(w). On the other hand, if A, # 0 then
there exists 1 < m < n such that w(m) > w(m + 1). Then |A,;, | = |Ay| —1 by
(L74). By induction on |A,| it follows that there exist ji,...,J; with [ = |A,]
such that Ay, ...s; = 0, and hence w = s;, -+ s5,. Thus £(w) < [A,|. Therefore
l(w) = |Ayl.

(c) Since £(w) = |Ay] by (b), (1) and (2) follow from ([74) and (L73) with
v =w, m = i. Finally, (3) follows by induction on ¢(w) from (1) and (LZH). O

1

DEeFINITION 1.7.3. Let n > 1 be a natural number. The Artin braid group

B,, is the group generated by elements o1, ...,0,_1 with relations
(1.7.6) 0i0i110; = 0i410;0441 forall 1 <i <n — 2
(1.7.7) oi0; =0j0; forall 1 <i,j<n-—1,[i—j| > 1

The preliminary version made available with permission of the publisher, the American Mathematical Society.



46 1. A QUICK INTRODUCTION TO NICHOLS ALGEBRAS

Thus B, is the trivial group with one element, and By = Z.
It follows from the description of S,, in Theorem [[.’71] that

B, —S,, og+—s,1<i<n-—1,

defines a surjective group homomorphism.

The following Theorem, attributed to Matsumoto, is a special case of an im-
portant tool in the theory of Coxeter groups. Here it will be used to describe the
components of the comultiplication of the tensor algebra of a braided vector space,
see e. g. Theorem [[LO11

THEOREM 1.7.4. Letn > 2. Then
UZSn —)Bn, W = 84 84 '—)0'7;1"‘0'1‘“
where (i1,...,14;) is a reduced decomposition of w, is a well-defined map.

PROOF. Let w € S,, | = ¢(w), and let (i1,...,4), (j1,...,51) be two reduced
decompositions of w. We have to show that

(1.7.8) Oiy =+ 04y = 04y ** Ojy.
We proceed by induction on I. If | < 1 then (I’C8) clearly holds. Assume that
[ > 2. 1If iy = j; then (i1,...,4-1) and (j1,...,j1—1) are reduced decompositions of

ws;, and hence (I7.8) holds by induction hypothesis.

Assume that 4; < j; — 1. Then (4,4,41) and (ji,Ji+1) are inversions of w.
Theorem [[L7.2(2) implies that w = usj; s;, = us;,s;, for some u € S,, £(u) =1—2.
Therefore

Oiy "0y = U(u)ojlail = U(u)oizajl =050
by induction hypothesis and by (7.7).

Assume that j; = 4, + 1. Then (i;,4%41) and (441,%+2) are inversions of w.
Hence (i;,%142) € Ay,. Theorem [LT.2(2) implies that w = wus;,s;,s;, for some
u € Sy, such that ¢(u) =1 — 3. Then w = usj,s;,s; and

l

O'il...

by induction hypothesis and by (L7.6]). a

oy = 0(u)0y,05,0i, = o(u)oj,0i,05 = 0j, - 0j,.

The map o in Theorem [[.74] is a section of the canonical map 7 : B, — S,,
that is, mo = ids,. It is called the Matsumoto section.

Recall the notation ¢; : V&* — V®* p >2 1< <n-—1,in (L5EI) for a
vector space V with endomorphism ¢: V ® V — V ® V. By abuse of notation we
thus identify ¢; with ¢; ® idy,em for all m > 0.

LEMMA 1.7.5. Let (V,¢) be a braided vector space, and n > 2. Then
B, — Aut(V®"), o;rc, 1<i<n—1,
defines a group homomorphism.

PRrROOF. This follows from the definition of the braid group, since the automor-
phisms ¢; satisfy the relations of the generators o; of B,,. O

The action of B, on V®" defined in Lemma will be denoted by
(1.7.9) kB, @ V" 5 VO s @1z — ox,

forall o € B, z € VO,
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DEFINITION 1.7.6. Let (V,c) be a braided vector space, and n > 2. For all
w € S,, we denote the image of w under the composition

S, & B, — Aut(Ve")
by ¢ = ¢iy -+ - ¢y, if (i1,...,41) is a reduced decomposition of w.
COROLLARY 1.7.7. Let (V,c) be a braided vector space, and n > 2. Then

Cia = idyen, ¢, =¢; for alll <i <n—1, and Cyyw, = Cw, Cw, fOr any w1, ws € Sy,
with L(urwse) = £(wy) + £(ws).

PRroOOF. This follows from Lemma and Theorem [[.7.4] a

If ¢ is the flip map, Definition [[L’7.6] describes the natural left action of the
symmetric group S,, on V& with

Cw(l‘l ® ®l‘n) = Tow—-1(1) ®"'®Iw*1(n)

forall n > 2 and x; € V for all 1 < i < n. More generally, there is an explicit
formula for ¢,, in the case of diagonal braidings.

PROPOSITION 1.7.8. Let V' be a vector space with basis (x;);cr and braiding c
given by
cle; ®xj) = qijr; Qs 4,5 €1,
where the q;;, i,j € I, are non-zero scalars in k. Then for alln > 1, w € S,, and
all functions k: {a e N|1<a<n}—1I,

cwl@n@ @ @akm) = [ G re)ew—10) @ Brgwr (-
a<b,
w(a)>w(b)

PROOF. For w = s;, 1 < i < n — 1, the claim holds by definition of ¢,, = ¢;,
and since Ag, = {(i,i+ 1)}. If the length of w is [ > 2, let (i1, ...,4;) be a reduced
decomposition of w. Write w = s;,u, u = s;, - - - 5;,. By induction on the length of
w we may assume that the formula holds for u. Let

Tp=Tp1) @ @ Tpmy, ki{aeN|[1<a<n} — 1.
We know from Theorem [LT.2(3) that A, = A, U {(u"t(i1),u (i1 + 1))} and
|Ay| = |Ay| + 1. Therefore

cw(@k) = ¢y culay) = Cil( 11 Qk(a),k(b)fﬂkml)
a<b,
u(a)>u(b)

H Ak (a),k(b)Dku=1(i1),ku=1(i1+1) Thu—1s;,
a<b,
u(a)>u(b)

= H dk(a),k(b)Lhkw—1-
a<b,
w(a)>w(b)
This proves the claim. O
We introduce the following useful notation. For all natural numbers 2 < m <n
and 0 <7 < n —m there are embeddings of groups

(1.7.10) shi, . Sm = Sp, 55 8j44, 1 <j<m—1.
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We will write
(1.7.11) shi, . (w) = w', w€ES,,.

Thus we identify S,, with {w € S, | w(j) = jforallm +1 < j < n}. The
shift operators 1 ¢ can also be defined for the braid group. There are group
homomorphisms shfnvn : By, = By, 05 = 0544, 1 < j <m — 1. These maps are
embeddings, but we will not use this fact. However, we will write

(1.7.12) shfn’n(o) =o' o0 €B,,.

Another type of shift operators are defined for automorphisms:

(1.7.13) Aut(VE™) = Aut(VO"), fs 1 =idye: @ f @ idyen-—m—i.
Then cj“ = ¢j4i and colt=cyri forall1<j<m—1and w € S,,.

DEFINITION 1.7.9. Let (V,¢) be a braided vector space. For m,n > 1 let

. 1 2 ... m m+1lm+2 ... m+n
Sm,n = (n+1 n+2 ... n+m 1 2 ... n ) € Sm+n7

Cmn = Cspp.p € Aut(V®m+").

We write k = V®° and denote for all n > 0 by ¢, 0 : V" @k — k® V" and
Con k@ VE" — VO @k the canonical isomorphisms. By abuse of notation we
again identify ¢, , with ¢y, ® idyer for all p > 0.

COROLLARY 1.7.10. Let (V,¢) be a braided vector space, and l,m,n > 1. Then
(1) mm = (encn1---c1)(Cntnr---c1) Tt (enCny - e)T™

( ) Cmon = (0102 A Cm)Tn—1(0102 e cm)T”—Q e (0102 A cm)7

(3) (Cmm)_l = (C_l)nﬂm

( ) Cl4+m,n = cl,ncm,nTl;

(5) Clom+n = Cl,nTmCl,m-

In particular, for all n > 1 we obtain that
(1.7.14) Clyn = CpCp—1 - C1, Cn,1 = C1C2 -+ Cp.

PROOF. By counting the inversions of s, , we see that £(s,, ) = mn. Hence

(nym—1,...,1,n+1n,....;.2,....n+m—1n+m-—2,...,m),
(nym+1,...,n4+m—1,...,2,3,...,m+1,1,2,...,m)
are reduced decompositions of s, ,. Thus (1) and (2) follow from Theorem [.7.4
The equality in (3) follows by computing the left-hand side with (1) and the right-

hand side with (2). The equations in (4) and (5) follow from the formulas in (1)
and (2). O

For any group G and any V' € gyD (or V in a braided strict monoidal category,
see Section 3.2]), the braid group acts on tensor powers of V as in Lemma [[.7.5]
The maps ¢, arise naturally in this context.

LEMMA 1.7.11. Let G be a group, and V € g)ﬂD with braiding ¢ = cy,y. Then
for allm,n >1,

Cyem yen = Cmn-
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Proor. By Corollary [LTI0(2) it suffices to show that for all m,n > 1,

cyem yon = (CnCng1 - Cngm—1) -~ (C2€3 - Cmy1)(C1C2 - Cm).
(1) By induction on m we first prove that cyem v = c1¢2 - - ¢y, for all m > 1. This
is clear for m = 1. Let m > 1. Then
Cyem+ly =Cyemgy,y = (CV@m,)V ® idv)Cerl

by (LZH), and the claim follows by induction.
(2) Now we show for fixed m by induction on n that cyem yen = cp,p for all
n > 1. For n =1 this holds by (1). Let n > 1. Then by (1) and (44,

Cyom yam+l) = (idv(gm ® CV@mJ/)(CV@m,’V@n ® idV)
= (Cn+lcn+2 T Cner)(CV@m,V@" & idV)v

and the claim follows by induction. O

1.8. Shuffle permutations and braided shuffle elements

Recall the notion of a shuffle permutation from Section

DEFINITION 1.8.1. Let n be a natural number, and 0 < ¢ < n. A permutation
w € S, is called an (i,n — i)-shuffle or simply an é-shuffle if

w(l) < - <w(i), and w(i +1) < --- < w(n).

Let S; ,—; denote the set of all i-shuffles in S,,.

Note that Sy, = {id} = S, 0. The cardinality of S; ,_; is (’Z) To obtain all
(n—1,1)- and (1,n — 1)-shuffles, one looks at the image of n and 1, respectively.

Let 1 <7 <n. Then

siSit1 - sno1 = (Hi+1..n) = (137 Tl ™t h)

is an (n — 1, 1)-shuffle of length n — ¢, and

sicsicg s =(ii—1... 1) =113 5, )
is a (1,n — 1)-shuffle of length ¢ — 1. Thus
(1.8.1) Sn—11 ={id} U {sisit1---sn—1]1<i<n-—1},
(1.8.2) Sipn—1 ={id} U{sisic1---s1|1<i<n-—1}

Shuffle permutations can be described inductively.

PROPOSITION 1.82. Letn>2and 1 <i1<n-—1.
(1) Sin—i =Sin-1-i USi—1n—iSn—18n—2 - - 8; (disjoint union,).
(2) Let w € Sp—1. Then L(wsp—18p—2---5;) = b(w) +n —i.

PROOF. Let u € S; ,,—;. If u(n) = n, then u € S;,,—1—;. If u(n) # n, then
u(?) = n, since u is an i-shuffle. Note that s,_18,-2---8; = (nn —1---4). Define
up =wu(ii+1...n). Then ui(n) =n,

ui(l) <ur(2) < - <u(i —1)
and
ui(i) =uli+ 1) <wu(i+1)=u(i+2) < - <u(n—1) =u(n).

Hence u = u18p—18n—2 - 8i, and u3 € S;_1 —;. This proves the inclusion C in (1),
and the other inclusion follows similarly.
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We prove (2) by induction on n—i. Let u3 = ws,—1 - - S;4+1 and u = uys;. Then
f(u1) = €(w) +n —i—1 by induction hypothesis. As u1(i) = w(i) <n=wu1(i+ 1),
we conclude that £(u) = £(u1) +1 by Theorem [[L72)(1). This implies the claim. O

In the next Proposition we show that the i-shuffles are a complete set of rep-
resentatives of S,, modulo the subgroup

(Sit1y-+vs8n—1)(51,-..,8i—1) = Sp_s X S;.

PROPOSITION 1.8.3. Letn>2 and 1 <i<n—1.
(1) The map
Si,n—i XS,_i XS; — Sn, (’U,, S,t) — USTit,
1s bijective.
(2) Let u € Sipn—i, $ € Sp—i, t €S;. Then L(usTt) = £(u) + £(s) + £(t).
PrOOF. (1) Let w € S,,. Total orderings of the sets {w(l) | 1 <[ < i} and
{w(l) | i4+1 <1< n} define permutations v, of {1,...,i} and vy of {i +1,...,n}
with
woy (1) < -+ <wwy (i) and woe(i + 1) < -+ < wva(n).
Thus v1 € (s1,...,8i—1), V2 € {Si+1,---,Sn—1), and wv1v2 € S; ;. Set u = wWV1v2,
t =o' and s € S,_; such that s = vy;'. Then w = us'. Hence the map
Sin—i X Sp—i X S; = Sy, in (1) is surjective. It is bijective since
|Si,n7i X Snfi X Sl| =nl= |Sn|
To prove (2), we count the inversions of w = us™. Let 1 < k <1 < n. We
distinguish three cases. If [ < ¢, then (k,!) is an inversion of w if and only if (k,1)
is an inversion of ¢. If i + 1 < k, then (k,[) is an inversion of w if and only if (k,1)
is an inversion of s'. If k < i < I, then (k,l) is an inversion of w if and only if
(t(k),s'(1)) is an inversion of u. This implies (2) by Theorem [7.2(3). O
COROLLARY 1.8.4. Letn > 2.
(1) The multiplication map Sp—11 X Sp_g1 X -++ X S11 = Sy, is bijective.
(2) Let w; €S, foralll <i<n-—1. Then
é(wn,lwn,g s ’U)l) = E(wn,l) + Z(wn,g) + 4 ﬁ(wl)

PrROOF. By Proposition [[[83 the multiplication map S,_11 X S,—1 = S, is
bijective, and ¢(ut) = €(u) + £(t) for all u € S,,_11 and ¢ € S,,_;. Hence the claim
follows by induction on n. |

COROLLARY 1.8.5. Let n > 2. Then Si’n,iSn,iTi = Snfl,lgnfll .. 'Si,l for
any 1 <1< n.

PrRoOOF. Both subsets Si,nﬂ'Snﬂ'Ti and S;,_1,1S,-2,1---S;1 of S,, have cardi-
nality n(n —1) --- (¢ + 1) by Proposition [[L83|(1) and Corollary [L84(1). Moreover,
both sets consist of representatives of minimal length of the left S; cosets of S,, by
Proposition [[L83(2) and Corollary [[84] O

REMARK 1.8.6. Using Corollary [[8 4 together with (.81 one obtains reduced
decompositions for any element of S,,. In particular,

(1,2,....n—1,1,2,....,n—2,...,1,2,1)

The preliminary version made available with permission of the publisher, the American Mathematical Society.



1.8. SHUFFLE PERMUTATIONS AND BRAIDED SHUFFLE ELEMENTS 51

is a reduced decomposition of the unique longest element

wo= (5,210 7)

n(n—1)
2

in S,,, and wy has length and order two. Conjugation with wq in S,, is the

inner automorphism
(1.8.3) Qn Sy = Sn, 8i+ Sp_i, 1<i<n-—1.

Since the map «, permutes the elementary reflections, it preserves the length of
elements in S,,.

Theorem [[L7.2(1) implies that any reduced decomposition of an element w € S,
can be extended to a reduced decomposition of wy. Hence
(1.8.4) £(wo) = L(w) + £(w  wp)
for all w € S,,.

We introduce the following important elements in the group algebra ZB,, of the
braid group with integer coefficients. Recall the Matsumoto section o : S,, — B,
of Theorem [[7.41

DEFINITION 1.8.7. Let n > 2 and 0 < i < n. We define the braided sym-
metrizer and the braided shuffle elements in ZB,, by

Sy = Z O'(w), Sz’,n—z’ e Z O'(wil).

WES, WES; n—i

Note that Sy, =1 = S,,0, and by (L.8.1) and (L.8.2),

(1.8.5) Sipn-1=1401+0102+ -+ 0100 - 0p_1,

(1.8.6) Sp—11=140p_14+0n_10n_2+ -+ 0n_1---0201.
We define an algebra automorphism of ZB,, by

(1.8.7) op IB, - ZB,, 0;i— op_i, 1 <i<n-—1,
and an algebra antiautomorphism by

(1.8.8) Bn : IB,, — ZB,, o;+— o0, 1 <i<n-—1.

Applying ay,, B, or B,a, gives new representations of elements in ZB,,. In partic-
ular, by (L83) and (L86), ay,(S1,n—1) = Sn—1.1-

For all natural numbers 2 < m < n, and 0 < ¢ < n — m the shift operation of
the braid groups extends to an algebra map

ZBm—)ZBn, 0j|—>ai+j,1§j§m—1.

Let 2! denote the image of x € ZB,, under this map. For i = 0 we write = instead
of 0. With this convention, expressions like S;S,,—;1%S; ,—; for 1 <i < n—1 make
sense in ZBy, for all k > n, see Corollary [[8.8 below.

By Theorem [[L74] the reduced decompositions of permutations we have ob-
tained above translate directly into equalities in the group algebra ZB,,.

COROLLARY 1.8.8. Letn>2 and 1 <i<mn. Then

(1) Sipn—i=Sin-1-i+0i0ip1- - Opn_1Si—1,n—i,
(2) Sn = SiSnfiTiSi,nfh

(3) Sn=51,1521 " Sn-1,1,

(4) Sn—i"S; i =Si1Si411" " Sn—1.1-
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ProOF. (1), (2), and (3) follow from Proposition [[.82, Proposition [.83] and
Corollary [[L84] respectively. (4) follows from Corollary L85 Proposition [[L83(2),
and Corollary [[L84)(2). O

REMARK 1.8.9. By applying a,,, 8, and S, a, to the product decomposition of

Sy, in Corollary [L88|[B]) we obtain three more formulas. In particular,

Sy =1,

So =14 01,

S3=(14+01)(14 03 + 0201),
(1+02)(1+ 01+ 0102),
(14 09+ 0102)(1 4 01),
(14 01+ 0201)(1 + 02)
( )
(
(

S4 =(1 + 0’1)(1 + 092 + 0207 (1 —|—O'3 —|—0’30’2 + 0’30’20’1),
]. + 0'3)(]. + 09 -|— 0'2(73)(]. -|— g1 + 0109 + 0'1(7203),
14+ 05+ 0203 + 010203)(1 + 02 + 0102)(1 + 01),

= (1 + 01+ 02071+ 0'30'20'1)(1 + o9 + 0'30'2)(1 + 0'3).

The braided symmetrizer and the braided shuffle elements in ZB,, define en-
domorphism on n-fold tensor products of braided vector spaces (V,¢). Recall the
ZB,,-module structure

IB, @ VO VO g e, 1< <,
of V®" in Lemma [[L7.5]
DEFINITION 1.8.10. Let (V,c) be a braided vector space. Let n > 2, and
1 < i< n-—1. The braided shuffle map sl — Sin—i: V" — VO and the

i,n—1i

braided symmetrizer map S\% = S, : VO™ — V" are defined by
Si,nfi = Z Cy—1, Sn = Z Cw-
WES; n—i wES,

The inductive description of the braided shuffle map and the braided sym-
metrizer map in the next corollary is an immediate consequence of Corollary [L.S|[])

and (2.

CoOROLLARY 1.8.11. Let (V,¢) be a braided vector space. Let 1 < i < n. Then
the following equations hold in End(V®"):

(1.8.9) Sin—i = Sin—1—i ®idy + ¢icip1 - cn—1(Si—1,n—i ®idy),
(1.8.10) Sn = (8 ® Sn—i)Sin—i-

The braided shuffle elements S,,_1,; in ZB,, have an interesting description as
rational functions. For the proof we need an easy commutation rule in the braid

group.
LEMMA 1.8.12. Letn > 2, and pp_1 = 0p_10p_2---01 € B,. Then

0i—1Pn—1 = Pn—10;

forall2<i<n-—1.
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ProoOF. Using the relations of the braid group we compute

Pn—10; = 0n—-1""0i410;0;-10;—2" 0103

=O0p—1"""0i{4104{0;-10404—2" " 01 (by (m))
=0p—1°0i410i-10i0i—10;—2 " 01 (by (LT.6))
=0i-1Pn—1- (by (LZT)

This proves the Lemma. (Il

PROPOSITION 1.8.13. Let n > 2. Then

(1) Sp-11(l—0p10p-2-01)=(1—02_104-201)Sp_21"".
(2) Sp—11(l—op_10p—2---01) (1 —0p_10p_9---02) - (L —0op_1)
=(l—0p 10n2-01)(l—0p_10n9--02)- (L —05_y).

PROOF. (1) Let p,—1 = 01052+ - 01. It follows from (C84G) that
(1811) O’nflsnfg’l = Snfl,l - 17
(1.8.12) Sy o™ +pp1="5 1.1

It follows from Lemma that

(1.8.13) Prn-19n-21"" = Sp_21pn-1.
Then
(1= 0n-1Pn-1)Sn—21" =S, 21" —0n 15021901 (by (L813)
=Sn-21™ — (Sn-11— 1)pn_1 (by (C3I1)
= n—2,1T1 — On—1,1Pn—1 + Pn—-1
= Sn-1,1(1 = pn-1) (by (L3.12)).
(2) follows from (1). O
COROLLARY 1.8.14. For alln > 1 let p, = 0,0,_1---01 and
(1.8.14) T,=(1—-020, 1-01) (1 —=020,1)(1 —02) € ZB, 1,
(1.8.15) ©n = Bn+1(S1.n-1) — Bnt1(Sn—11)0npn € ZB,41.

Let g = 0. Then the following hold for alln > 1.

) T, = (1—anan_1~-~01)~-~(1—anon_l)(l—an).

2) SpTn = Spv1(l—opop_1---01) (L —0popn_1)(1 — o).
) Qon — 1 - ﬂnJrl(pn)pn + Son 1T101

4) Sni1Tnt1 = Pn1Sn T = onpaon™ o™

(1
(
(3
(
REMARK 1.8.15. For 1 < n < 3 the definition of ¢,, says that
Y1 = 1- 017
po=1401 — agal — 010301,

2 2 2
w3 =14 01+ 0201 — 030201 — 02050201 — 0102050207

ProOOF OF COROLLARY [L8T4l (1) holds by Proposition [[L813(2), and (2) fol-
lows from (1), since Sp41 = SpSn,1 by Corollary [LEJ|[2).
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(3) holds for n = 1 by definition, since p; = 1 — o?. For n > 2 the claim is

obtained from (XTI and (L8I2) using the maps «, and §,. Indeed,
Pn = ﬁnJrlan(Snfl,l) - ﬁnJrl(Snfl,l)Unpn
= ﬁnJrlan(l + O—nflsan,l) - BnJrl(San,lTl + pnfl)o'npn
=1+ But1(S1n—2' o1
— Brt1(Sn—21™)(0n—1Pn-1)"01 — Bus1(GnPn_1)pn
=1= Bus1(Pn)pn + on-1""01.
(4) To prove the first equation, by definition of 7,11 it suffices to show that
Sni1(1 = 0pi1Pnt1) = @na1S,t. We obtain that
Spt1(1 = 0 1Pnt1) = Bt (S1.0)Sn™ = Bus1(Sn1)SnOnt1Pnt1
= ﬁnJrl(Sl,n)SnTl - BnJrl(Sn,l)O'nJrlanrlSnTl = (pn+ISnT1>
where the first equation follows from Corollary [L88|[2]), the second equation from
Lemma [[.812] and the third from (LXI5H).

The second equation in (4) follows by induction from the first one and from
Sllel—O'%:gOl. U

1.9. Braided symmetrizer and Nichols algebras

In this section we fix a braided vector space (V, ¢), where V € gy’D, G a group,
and ¢ = cy,y. In Section [6.4] we will see that the results in this section hold for any
braided vector space (V,¢) with exactly the same proofs.

Recall that by Proposition [LG.I3] the tensor algebra T'(V) is an Ny-graded Hopf
algebra in g)}D with braiding given for all m,n > 0 by

Cm : VET QVET 5 VE @ VO™,

In the next theorem we prove an explicit formula for the components of the co-
multiplication in terms of the braiding of V. This formula is similar to the one
for the usual comultiplication of T'(V) in Example However, the case of a
non-trivial braiding is more involved.

THEOREM 1.9.1. Foralln>2and1 <i:<n-—1,
Aipnei =Sip_i : T"(V) =V 5 TH(V)@ T (V) = V",
where A is the comultiplication of T(V).
PRrROOF. Let n > 1 and vy, ...,v, € V. For clarity we will write vyvs - - - v, for
the element v; @ vy ® -+ - ® v, € V™. We show by induction on n that

n—1
(1.9.1) Avy - -vp) = 1®v1---vn—|—ZSi,n_i(v1-~-vn)—|—1}1---vn®1.
i=1

For n = 1 the formula clearly holds.
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Let n > 2 and vy,...,v, € V. By induction hypothesis,
Avy - vp) = A(vy -+ - vp—1) A(vp)

n—2
= (1 QU1 Up_1+ Z Sim—1—i(V1- - Vp_1) + V1 Vo1 ® 1)
i=1

X (1®v, +v, ®1).

Multiplication of the first factor with 1 ® v,, gives the sum

n—2
1®vy- v, + E Simn—1—i(V1 - Vp—1)Vp + V1 -+ V1 @ Uy
i=1

For the multiplication with v,, ® 1 we need the braiding. First,
(1 1 @D (v, ®1)=v1 -0, ® 1,
and by Lemma [[L711] and (714,
1@uv-vp_1) (v, ®1)=c1- - cpn1(V1 @+ Q@ vy).
To compute the middle terms
Sim—1-i(v1- v 1) (v, @1) € (THV) QT (V)N(THV) @ 1)

for 1 <4 <mn — 2, we note that by Lemma [[.711] and (L.ZI4) in T(V) @ T'(V) for
allz € TH(V), y € TP 174V,

(z@y) (v, ®1) = cn_l_ivlﬁ(x RYRUp) = Cit1Cita - Cn-1(T R Y R vy).
Hence

n—2
Z Si;n—l—i(vl T 'Un—l)(vn ® 1)
i=1
n—2
= Z Cit1Cit2 - Cn-1(Sin—1—; @idy) (11 @ -+ @ vy)
i=1

n—1
= citit1 1 (Sic1n—i ®idy) (11 @ - @ vy).
i=2

By adding up and reordering the summands we obtain

Avy - vp) =1®v v +v1- 0, @14+ A+ B+ C,

where
n—2

A= Z (Si,nflfi @idy + ¢ o1 (Sicin—i ® idv)) (v1 - vg),

=2
B=(S1n2®idy)(vi---vy) +c1- - Cpo1(v1---vp),
C= V1 Up—1 ® Un + Cn—l(Sn—27l &® idV)(Ul e Un)-
By (L39),

n—2
A= Z Si,nfi(qh .. -’Un), B = Sl’nfl(vl .. '”n)> C = Snfl,l(vl . "'Un)
=2

which implies (L97). O
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We note that Theorem [[L9T]is related to the g-binomial formula.

DEFINITION 1.9.2. Let Q(v) be the field of rational functions in the indetermi-
nate v over the rational numbers. For all natural numbers n > 0 and 0 < i < n
define elements in Q(v) by

(n)y=14+v+02 4+ 40" 1=

(n)y = (1u(2)o- - (n)o,  (0), =1,

(
(}). = o

For all i < 0 and all ¢ > n let (?) =0.

LEMMA 1.9.3. Let n > 0.
(1) Forall0<i <n, (7), = (), = (=), + o ("),

(2) Forall0 <i<n, (7), =v""'(;5), + ("7),
(3) Forall0 <i<mn, (}), €Z].

PRrOOF. The first equation in (1) holds by definition, and the second is clear
for i = 0 and for i = n. For 0 < i < n, (1) follows by direct computation:

(n—1> +vi(n—1)v_ (n*l)i}(i)“r i(n—=1),(n— i),

i—1), i ), @Ohn-0L " @m0

L=, (e ¥ v =)
which clearly equals (’Z)U (2) follows from (1) with ¢ replaced by n — ¢, and (3)
follows from (1) by induction on n. O

Let g be any element in k, and let n,i € Ng with ¢ < n. Lemma [[L9.3] allows us
to define the g-numbers and ¢-binomial numbers (n), and (?)q in k as the images

of (n), and (?)v under the ring homomorphism Z[v] — k mapping v onto g.
LEMMA 1.94. Let n > 2 and let q € k be a primitive n-th root of unity. Then
(?)q =0 for all0 < i <n.

PROOF. By assumption, ¢ # 1. Hence (m), = (¢ —1)/(¢—1) for any m € Ny.
Let 0 <i < n. Then (i);, (n— z); # 0 in k by assumption. Hence

(5), = s =
in k, since (n), = 0. O

For any ring A, let Z(A) = {a € A| ax = za for all € A} denote its center.

PROPOSITION 1.9.5. Let A be an algebra, q € Z(A), and z,y € A. Assume
that yxr = qxy. For oll 0 < i < n, let (?)q € A be the image of (?)v under the ring
homomorphism Z[v] — A mapping v onto q. Then for alln >0,

(@)™ =i (), 2" = il (D2 'y

PRrROOF. This follows by induction on n as in the proof of the usual binomial

formula using yx® = ¢'z'y for all i > 0, and Lemma [L3.3(1). O
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EXAMPLE 1.9.6. Let us consider the special case of Theorem[[.9.Jlwhen V' = kz
is one-dimensional. Then there is a non-zero scalar ¢ € k such that the braiding is
given by c(z®@x) = qr®@x. Let n > 2 and w € S,,. The linear map c¢,, : V& — V&
is multiplication with the scalar ¢“(*), and by (L&9) we see that

Sin—i=Sin—i-1+q" " Si—1n—i

in End(V®") for all 1 <i < n — 1. These formulas are the recursion formulas for
the g-binomial coefficients, see Lemma [[L9.3(2). Hence

1.9.2 Sini= (") idforallo<i<n,
’ VA
q

(1.9.3) S, =(n ) id,

where the second formula follows from (L810]).
By Theorem [[.9.1]

Aim_i(in) = Sim_i(z”) = <1Z) Ii ® l’nii.
q

The same result follows from the ¢g-binomial formula in Proposition Indeed,
(I®z)(zr®1) =q(z®1)(1 ®x) and hence

(1.9.4) A" =(z@l+1a)" = zn: (?) i @2

=0

We will now see that explicit relations of the Nichols algebra are given by the
braided symmetrizer maps.

COROLLARY 1.9.7. Letn > 2, and let S,, = SV'® : VO™ s V" be the braided
symmetrizer map.

(1) Ain = S, in End(V®"), where A is the comultiplication of the tensor
algebra T(V).
(2) BV)=kaVad,s, V" /ker(Sn).
PROOF. (1) We proceed by induction on n. The case when n = 1 is trivial.
Let n > 2, and assume that A;»—1 = S,,_1. Then

Apn = (A1 ® A1"*1)A1 n—1 = (51 & Sn—l)sl n—1= Sn,

where the first equation holds by Lemma [[3T3|(ID), the second by induction and
Theorem [[LO] and the third was shown in (C8I0]).
(2) follows from (1) and Definition [L6.17 O

COROLLARY 1.98. Letn > 2, 1 < i <n-—1, and for all1 < j < n let
: V® — Vi [ker(S;) be the canonical map. Then

ker(AT( )) = ker ((7’(1 & ani)Si,nfi)'

PROOF. The claim follows directly from Corollary [[L9.7] and (L8IQ), since
ker(Si X Sn—z) = ker(m X ﬂ-n—i)- O

It is important to note that the Nichols algebra B(V) = T(V)/I(V) as an
algebra and a coalgebra only depends on the braided vector space (V,c). Let G’ be
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another group, and V' € gin such that there is a linear isomorphism f: V — V’
with

(f® fHlevy = (f @ fev v
Then f induces an isomorphism B(V) — B(V’) of algebras and coalgebras.

1.10. Examples of Nichols algebras

We are going to describe several examples of Nichols algebras.

Throughout we will use the following notation for algebras given by generators
and relations. Let X be a set, and let f;,g; € k(X), i € I, be elements in the
free algebra, where I is some index set. Let (f; — g; | ¢ € I) be the ideal of k(X)
generated by the elements f; — g;, i € I. Then

k(X|fi=giforallieI) =k(X)/(fi—gi i€l

is the algebra generated by X with relations f; = ¢;, i« € I. By abuse of notation
we denote the residue class of z € X in k(X | f; = g¢; for all i € I) by the same
symbol z.

In the whole section let G be a group.

The Nichols algebra of a one-dimensional object V' € gy’D is easy to compute.

ExaMPLE 1.10.1. Let V € gyD be one-dimensional with basis x € V, and
¢ = cy,yv. Then there is a non-zero scalar ¢ such that c(z ® 2) = gz ® x. Let

ord(q) if ¢ # 1 and ord(q) is finite,
(1.10.1) N(g)=<p if ¢ =1 and char(k) =p > 0,
00 otherwise.
Thus if (m), = 0 for some natural number m > 2, then N(q) is the smallest

such m; otherwise N(q) = co. We have seen in (L33) that S, = (n)}id. Hence

k[z]/(2M(@) i N(q) # oo,
k[z] otherwise.

B(V) = {

ExXAMPLE 1.10.2. Let V € gy’D be finite-dimensional with basis 1, ..., z¢ and
r; € V)Y, 9 € G, xi € G for all 1 <4 < 6. Assume that char(k) = 0, and that
B(V) is finite-dimensional. Then for all 1 <4 < 6, x;(g;) # 1. This follows from
Example [[LT0.1] and Remark [[.6.19

In the next two examples we discuss Nichols algebras of irreducible but not
one-dimensional Yetter-Drinfeld modules over non-abelian groups.

EXAMPLE 1.10.3. Let V,,, n > 3, be the irreducible Yetter-Drinfeld module
in g:yp in Example [[4.7] with basis xz;, t € Oy. Then the quadratic relations of
B(V,,) in ker(idy ez + ¢) are

x7 =0 for all t € O,
xsxy + xpxs = 0 for all st € Oy with st =ts, s £ t,

TsXt + T Typs + Ty sxs = 0 for all s,t € Oy with st # ts.
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Let B(V,)) = T(V,))/(z € V&2 | ¢(z) = —x) be the algebra generated by zy, t € Oy,
with the above quadratic relations of the Nichols algebra only. It is known that

dim B(V3) = 12, dimB(V4) =576, dim B(Vs) = 8,294,400,

and that B(V,,) = B(V,,) for n = 3,4,5. For n = 3,4 this was shown in [MS00],
and for n = 5 by M. Grafna (with help by J.-E. Roos). But for n > 6, the Nichols
algebra of V,, is a mystery. It is not even known whether Bi (V) is finite-dimensional
for one n > 6.

EXAMPLE 1.10.4. Let (X,>) and g be the rack and constant two-cocycle in
Example [5.13 with X = {1,2,3,4} and A = —1. We write z; for the basis vector
of kX corresponding to i € X. Then (kX,c?) is a braided vector space of group
type by Proposition By Proposition [[5.6, kX € SYD for some group G.
The Nichols algebra of kX appeared first in [Gn00b]. We follow the presentation in
[HV18]. The Nichols algebra B(kX) can be presented as an algebra by generators
x;, © € X, and relations

2_ .2 .2 _ 2
z] =xy = x5 = xy =0,

T1T2 + Taw3 + x3w1 =0,
173 + 2374 + 2421 =0,
174 + 2472 + 2221 =0,
ToXy + Ty3 + T3X9 :O,

(1 + 22+ x3)6 =0.

Let y = x123 + x322 + 2921 € B(kX). The elements

P (@1 + wo) "2 ayPy" 0y, where ny,ns,ng € {0,1},n2,n0 € {0,1,2},

form a basis of B(kX). In particular, dim B(kX) = 72. Note that the quadratic
relations of B(kX) can easily be obtained using Corollary [L9.8

For the next example we need the logarithm of an automorphism.

LEMMA 1.10.5. Assume that char(k) = 0. Let V' be a vector space and let
w:VxV =V, uluv) =uv, be a bilinear map. Let o be an automorphism of

(V,u). Assume that o —id is locally nilpotent, that is, for allv € V there is m >0
with (o —id)™(v) = 0. Then

log(o) = i %(O’ —id)™ € End(V)

m=1

is a derwation of (V,p), that is, log(c)(uwv) = log(o)(u)v + ulog(c)(v) for all
u,v € V.

PROOF. Let x = 0 — id. First note that for any k > 1,

(1.10.2) a’fZ(—l)”c;iI 1):10" =idy

n=0

in End(V). Indeed the claim is true for k = 1, and for k& > 1 it follows by induction
on k by substituting o* = o*~1(z +idy).
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For any v € V, log(o)(v) is well-defined since z is locally nilpotent. More-

over, z(uwv) = z(u)o(v) + uz(v) for all u,v € V. Since z and o are commuting
endomorphisms, it follows for any u,v € V that

X 1 ym+1
log(o)(uv) = Z wxm(uv)

S
— Z ( 1m Z (k)xk(u)dkl'm_k(’l))
m=1 k=0

oo oo _1ym+ /o, -
=ulog(o)(v) + ;xk(u)% ( 7)n <k>akxm k(v)

0 Nkl 0o n .
—uog(o)w) + 3t S (" )t
ul (_1)k+1 i
=ulog(c)(v) + ; ¢ (u)v
—ulog(o)(v) + log(o) (w),

where (LI0.2) is used in the fifth equation. This proves the claim. O

EXAMPLE 1.10.6. Assume that char(k) = 0. Let J* = F,(V(1,2)) € 2YD
be the Yetter-Drinfeld module in Example Thus J* = Jf, where g is a
generator of Z, and there is a basis vy, vy of JT such that g-vy = v1, g-vy = vy +vy.
We prove that

1
B(I*) = k(v1,v2)/ (va0r = viv + 503

and that the monomials
(1.10.3) ofvh, k1 >0,
form a basis of B(J ™).
Let © = vov; — V109 + %v% € T(J*). Then
Apgry(z) =z @1+ 1@+ v @ vy +v1 ® V2
— 01 Qus — (V1 +v2) U1 + 11 ® vy
=zQ®R1+1®x.
Hence z = 0 in B(J*). Hence B(J*) is spanned by the monomials vfvl, k,1 > 0.
Let o be the automorphism of the algebra B(J ") with o(v) = g-v for allv € B(J ™).
Then o — id is locally nilpotent, and hence 9 = log(o) is a derivation of B(J") by
Lemma [[I0.5l By definition, 0(v1) =0, O(v2) = vy. Let iq,...,im € {1,2},m > 1.
Then by induction on n it follows that

" (viy -+ vi,,,) = nlot"*

where n =iy + -+ + i, — m. Let (ar)o<i<m € K™ with Y7 a™ b =0, and
let 0 <lgp < m such that a; =0 for all [ > [y. Then

m
b (E awi"—lvé> = aj,lolv".
1=0
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Since v]* # 0 by Example [LI01] it follows that a;, = 0, and hence a; = 0 for all
0 <! < m by induction on m — I. Hence the monomials in ([I03) are linearly
independent in B(J™").

EXAMPLE 1.10.7. Assume that char(k) = 0. Let J~ = F,(V(-1,2)) € ZyD
be the Yetter-Drinfeld module in Example Thus J~ = J;, where g is a
generator of Z, and there is a basis vy, vy of J~ with g-vy = —vy, g-v2 = —v9 4 vy.

We prove that

B(J7) = k{vi, va) /(v3, v3v1 — 0103 — v1v901)
and that the monomials
(1.10.4) vt (veuy)®2v5®,  ay € {0,1}, ag, a3 > 0,

form a basis of B(J ™).

For all k > 2 let 7y : (J7)®F — (J7)®*/ker(Sk) be the canonical map. Since
gv1 = —uy, it follows that c¢(v; ® v1) = —v; ® vy and hence v? = 0 in B(J~). Let
T = v3v; — v1v5 — vivguy € T(J 7). By Corollary [LO.8, x € ker(As) if and only if
(idj- ® m2)S1,2(z) = 0. Since S12 =id 4 ¢1 + c1c2 by (L8I), it follows that

(idj- ® m2)S1,2(x) = v2 @ Vav1 + gua ® Va1 + ¢*u1 ® v% -1 ® v%

2 2 2
— gu2 ® v1v2 — g U2 ® V1V2 — V1 ® VU1 — U2 ® V] — g U1 ® v1v2
=0

because of v? € ker(my). Hence z = 0 in B(.J ™), and therefore B(.J~) is spanned by
the monomials in (I0A). Below we will further need that

(1105) ’02(’02’01)k = (U1U2)k1)2 + k(’Ul’Ug)k’Ul

for all £ > 1 which follows from « = 0 by induction on k.

Assume that there is a non-trivial linear combination of the monomials in
(CI04) which is zero in B(J~). By multiplying this with v; from the left or vo
from the right if necessary, it follows that there is m > 2, m even, and a non-trivial
linear combination of the monomials vy (vovy)®vy* " 172% 0 < a < (m — 1)/2, which
is zero in B(J 7).

Let o be the automorphism of the algebra B(J~), where o(v) = (—1)"gv for
all v € B(J7)(n), n > 0. Then o(vy) = vy, o(v2) = v2 — v1, and the map o — id is
locally nilpotent. Hence & = —log(o) is a derivation of B(J~) by Lemma
By definition, d(vy) = 0, O(vy) = v1. For any n > 1 let

M, = {(i1,42,...,d2n) € {1,2}*" | iy = 1,V1 < k < n :ig = 2}.

Since v}, z € I(J7), it follows by induction on n that

(1.10.6) Vo > 1, (1,dg, .. ., i9n) € {1,212\ My, : 0104, -+ -v;,, =0
in B(J7). Then by induction on k it follows from (CI0.6) that
(1.10.7) (g, -y, ) = El(vrw)"™, O (vg, - v, ) =0

in B(J™) for any (i1,...,%2,) € M,, where k = E?Zl i9j—1 — n is the number of
2’s at the odd positions. Let (al)0§l<m/2 € k™/2 be such that

m/2—1

> o)™ =0
=0
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in B(J~), and let 0 <y < m/2 with a; = 0 for all [ > ly. Then
m/2—1
oo Z al(vlvg)mm*lvgl = alolol(vva)m/z
1=0

by ([I077). We prove that for any n > 1, (v1v2)™ and (vev1)™ are linearly indepen-
dent in B(J~). Then it follows that a;, = 0, and hence a; = 0 for all 0 <[ < m/2
by induction on m/2 — . Hence the monomials in (I.I0.4) are linearly independent

in B(J7).

Since
(1108) 5171(’[)11)2) =1 QU2 + (—Ug + ’Ul) & vy,
(1109) S1’1(’U2’U1) = v QU — V1 K V2,

the monomials v1v2 and vev; are linearly independent in B(J~). Let now n > 1
and assume that (v1v2)"™ and (vev1)™ are linearly independent. Then

(id ® T25,)S1 20 (v102) 1) = v1 ® (vav1)™ + ¢*"v1 @ (v1v2)"

by ([LI0.6), and hence (v1v2)"vy # 0 by (L8J3)).
Let now A\, A2 € k. Then

(id @ T2541)S1 2n+1 (A1 (V102)" T + Ao (vavy)™ )
= A1 (01 @ (v201)" 03 + g*" 01 @ (v102) 02 + 2" oy @ (v109)"01)
+ A2 (v2 ® (v102)"01 + gv1 @ va(v2v1)™ + g2 vy ® (v2v1)"v2)
= (A2 = A1)v2 @ (v1v2)"v1 + (A1 — A2)v1 ® (v2v1)"v2
+ (A1 — A)v; ® (v1v2)" e + (A1 (2n 4+ 1) — Aan)v; ® (viv2) vy,

where the first equation follows from (I.I0.6]), and the second from (LI0.5). Since
(v1v2)™v1 # 0, we conclude from (L8J) that (v1v2)" ! and (vgvq)" Tt are linearly
independent. This finishes the proof.

As Example [[.TO.I] shows, it can happen that the tensor algebra of an object
V € YD is strictly graded, or equivalently that (V) = 0. In the next proposition
we find general necessary conditions for I(V) # 0.

LeEMMA 1.10.8. Let (V,c) be a braided vector space, n > 2, and assume that
Sfl‘i?l # 0 is not an isomorphism. Then
ker(idyem — ¢2,_1Cm_g---c1) #0
for some 2 < m <n.

PROOF. The identity of Proposition [[813|(2) in the group algebra of the braid
group implies the following equation in Aut(V®"), n > 2.

Sn,171(idv®n — Cp—1Cp—2 " Cl)(idv®n — Cp—1Cp—2 " CQ) cee (idv@n — Cnfl)
= (idv@n — Ci_lcn_g s Cl)(idv®n — Ci_lcn_g L Cz) R (idv®n — Ci_l).

Thus ker(idyen — c2_1cp_a---¢;) # 0 for some 1 <4 < n — 1, since S,,_1 1 is not
an isomorphism. The lemma follows with m =n — i+ 1. O

ProrosiTION 1.10.9. Let V € g)}D be finite-dimensional with dimV = d,
¢ =cyy, and assume that I(V) # 0.
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(1) There exists n > 2, such that ker(idyen — ¢2_jcp_9---c1) # 0.
(2) If the braiding is diagonal with matriz (qep)i1<ab<d, then there is an in-
teger n > 2 and a sequence (ky,...,ky,) € {1,...,d}" such that

H Qs oy oy by = 1.
1<i<j<n

PROOF. (1) The tensor algebra T'(V) is not strictly graded, since I(V) # 0.
Hence by Proposition [[L3.174] and Theorem [[.9.1],

Ap11="8,11: V" 5 ven

is not injective for some n > 2. Thus (1) follows from Lemma [[T0O.8
(2) By (1) there is an integer n > 2 and a non-zero element z € V®" such that
c2_1cn_o-ci(x) =x. Let x1,...,24 be a basis of V such that

c(xg @ Tp) = qapTp @ Ty for all a, b e {1,...,d}.

Then there is a unique presentation of x, = = Zk:(kh_” kn)E{1
ap €k forall ke {1,...,d}", where ), = x4, ® - ® x1,,. Now

d}" AT With

2

Cp1Cn-z - C1(Th, @ - Dy, ) =

Qe ko Qher ks *** Qhr ko1 Gk o, T i oy @ Thg @+ @ T,y & Ty @ T,

2 ~1
(ch_1Cn—z )" (xh, ®---Qay,) = H Thoy oy Thj ki Thy @ -+ @ T,
1<i<j<n

Since ¢2_jcp_2---c1(x) = =, it follows that (¢2_jcp_2---c1)""(z) = =, which
implies (2) by the above equations. a

ExaMPLE 1.10.10. Let 0 # V € gy'D be finite-dimensional, ¢ = cy,y, such
that c(x ® y) = qy ® « for all z,y € V, where 0 # ¢ € k. Then by Example [[T0.1]
and Proposition [[T0.9(2), the following are equivalent.

(1) B(V) =T(V).
(2) (a) g is not a root of 1, or
(b) ¢ =1, dimV =1, and char(k) = 0.

One of the main problems we want to discuss in this book is the structure of
the Nichols algebra of a direct sum of objects in g)ﬂD.

We now study the easy case of a direct sum V; & V5 of subobjects Vi, V5 of V
in gyD such that

. CV;,Vj eV, V4
dyev, = (VioV; —=V;@Vi ——=V;@Vj)

for all 7 # j.
For a Hopf algebra H in gyD let

idp®cH, 1
—

ad =(He H 222 po Ho H

idy QidypSH
RSEHEOR,

HoH®H

;U'r(idH ®:“‘H)
—_—>

HeH®H H)

be the braided adjoint action.
For elements z,y € H, we write

ad (z®y) = adz(y) = ad .x(y), where c = cp u.
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If € P(H), y € H, then adxz(y) = xy — (x(—1) - ¥)x(o) is the braided
commutator of x and y. If x € P(H) is homogeneous of degree g € G, then

adz(y) = zy — (9 y)=.

LEMMA 1.10.11. Let H be a Hopf algebra in gyD with braiding ¢ = ¢y g, and
x,y € P(H). Then

Aadz(y)) = adz(y) © 1 + 1@ adz(y) + (iduen — &) (z @ y)

PrROOF. Let z be homogeneous of degree g € G. Then

Aladz(y)) = A(z)Ay) — (9- Ay))A(z)
=@el+1lez)(yel+1xy)
~(gry®@l+leg-y)(rel+law)
=zy@1l+zy+g-y@rx+1Qzy
— (g yrel-gyvr—clg-y®r) -1 (g y)
=adz(y) @1+ 1®@adz(y) + (i[dper — ) (z @ 7y).
O

ProposITION 1.10.12. Let V4, V5 € 8)219, V=VieoVy, and c=cyy. For all
1 <4 <2, identify B(V;) with the image of the injective map B(V;) — B(V') induced
by the inclusion V; CV (see Remark [L6.19).
Hi12

(1) The multiplication map B(V1) @ B(Va) — B(V) is an injective map of
No-graded coalgebras in GYD, where B(V1) ® B(Vz) is the tensor product
of coalgebras in GYD.

(2) The following are equivalent.

(a) w12 is bijective.

(b) Vo @ Vi =idv,ev;-

(c) B(V1) ® B(Va) is a Hopf algebra in EYD, where the coalgebra and
algebra structure is the tensor product of coalgebras and of algebras
mn gyD.

If (¢) holds, then w12 is an isomorphism of Hopf algebras in gyD.

Proposition [LTO.T12] and its proof below generalize directly to pairs of Yetter-
Drinfeld modules over Hopf algebras with bijective antipode using the definitions
in Section [T.11

PrOOF. (1) By Remark [[6.19] the inclusion maps V; C V, 1 < i < 2, define
injective mophisms of No-graded Hopf algebras B(V;) — B(V) in YD which we
view as inclusions. The map

p12 = (B(Vi) @ B(Vz) C B(V) ® B(V) & B(V))

is a coalgebra homomorphism by Proposition [[LG.71 Hence the tensor product
coalgebra B(V1) ® B(V2) in YD is an Ny-graded subcoalgebra of B(V)® B(V). By
Proposition [[Z317 the coalgebra B(V;) ® B(Vs) is strictly graded with

P(B(V1)®@B(Vz) =Vi@1+1® Vs,

Since p1o defines an isomorphism V3 @ 1 +1® Vo — Vi @ Vo, we conclude with
Corollary L3110l that 112 is injective.
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(2) (a) = (b). By (a), B(V1)B(Vz) = B(V), and V} Vo + V2 + V2 = B2(V). By
Definition [[6.17 and Corollary [L9.7], the symmetrizer maps S, : T"(V) — T™(V)
factorize over the Nichols algebra B(V). Thus there are linear maps 7, ¢ such that

T2(V) 5 T2(V)
N A
B*(V)

commutes, where 7 is the second component of the quotient map T'(V) — B(V).
Then So(T?(V)) = Sa(Vi @ Va + V1 @ Vi + Vo @ Va).
Recall that Sy =id +c¢. Let a € Vo ® V. Then

(id — ¢®)(a) = Sa(id — ¢)(a) = So(b + uy + uz)

for some b € Vi @ Vo, ug € Vi @ Vi, us € Vo @ Vo. Since c?(a) € Vo ® Vi and
c(b) € Vo @ V4, it follows that b= 0 and (id — ¢?)(a) = 0.

(b) = (c). Assume that 2|V ® Vi = idy,gv,. Let 2 € Vi, y € Va. By
Lemma [[LTOTT] ad y(z) is primitive, hence

0=ady(z) =yr — ppw)c(y @ z)

in B(V), and p12 : B(V1) @ B(Va) — B(V) is an algebra map, where B(V;) @ B(V2)
is the tensor product algebra. Then p;2 is an isomorphism, since the algebra B(V)
is generated by Vi and V5. This proves (c).

(¢) = (a). By (¢), R = B(V1) ® B(V2) is a pre-Nichols algebra of V1 @ 1®1® Vs.
By Theorem [[LG.I8 there is a surjective map m : R — B(V) of Hopf algebras in
gyD, where m(1) is the isomorphism V4 @ 1®1® Vo = V. Then m = pg is
surjective. O

We combine Example [LT0.I] with Proposition [LT0.12

EXAMPLE 1.10.13. Let (gij)i<ij<n, 7 > 2, be a family of non-zero scalars in
k with ¢;;q;;, = 1 for all ¢ # j. For all 1 < ¢ < n, we define N; = N(¢;). Let
V € §YD be a vector space with basis z1,...,x, and diagonal braiding given by
clx; ® ;) = gijr; @ for all 1 < 4,5 < n. Assume that the elements z1,...,z,
span one-dimensional subobjects of V' in gyD. The braided vector space (V,c¢) is
called a quantum linear space. Note that c¢?(x; ® zj) = x; ® x; for all 4 # j, and
adz;(x;) = x;x; — gi;xjz; for all ¢, j. Hence for all i # j, z;z; = ¢;jxjz; in B(V)
by Lemma [[LT0.11l Let

A=k(z1,..., 2, |TiT; = gijzjzi, xfgv’” =0 for all 4,7, k,i < j, N, < 00).
By Example [LT0.I] there is a well-defined algebra map
w: A= B(V), x;—a;forall<i<n.

It is clear from the relations that the elements zil coexle 0 <t; < N;jy 1 <i<m,
span the vector space A. (Here, t < oo for all t € Ny.) Their images under ¢ are
a basis of B(V), since the multiplication map B(kz1) ® --- ® B(kz,) — B(V) is
bijective by Proposition Hence ¢ is an isomorphism.
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ExXAMPLE 1.10.14. Assume in Example [[TO.I3l that ¢;; = 1 for all 4, j, that is,
clx®y) =y for all ,y € V. Then by Example [[T0.T3]

B(V) = S(V), the symmetric algebra of V, if char(k) = 0;
SV /(P v e V), if char(k) =p > 0.

EXAMPLE 1.10.15. (a) Assume in Example [[TOI3] that ¢;; = —1 for all 4, j,
that is, ¢c(z ® y) = —y @ x for all x,y € V. By Example [[TO.13]

B(V) 2 k(zy,...,x, |27 =0,z2; + x;2; = 0 for all i # j) = A(V)

is the exterior algebra of V of dimension 2”. By Example [[.4Z.14] the braiding can
be realized by a Yetter-Drinfeld module V' over the group G of order 2.

(b) Let char(k) = 0, G = {1,g} the group with two elements, and G = {e, x},
where x(g) = —1. Let V € §YD. Then V = V¢ ® VX as kG-module. Assume that
B(V) is finite-dimensional. Then, by Example [[T0.2, V' = VX as Yetter-Drinfeld
module. Hence B(V) =2 A(V) by (a).

EXAMPLE 1.10.16. Let char(k) = 0, and let V = V& V3 be a finite-dimensional
super vector space. By Example [ZI4 V € YD, where G = Z/(2), and the
braiding is given by

CVO’V:T:V()@V—)V@VO, CV7V0:T:V®V0—>V0®V,
vy =-T: V10V = V1V,

where 7 is the flip map. Then by Examples [[10.13] [LT0.14 and [LI0.15]
B(V) = 5(Vo) ® A(V4)
is the graded-symmetric algebra of V, & V.

If the assumption on the braiding in Proposition [[LTO.12(2) is not satisfied, then
the description of B(V; @ V3) is much more difficult.

Without proof we mention the fundamental example of a Nichols algebra B(V)
coming from the theory of quantum groups. Here, the braiding of V is given by a
Yetter-Drinfeld structure over a free abelian group of finite rank, and V' is a direct
sum of finitely many one-dimensional Yetter-Drinfeld modules V;. The Nichols
algebras of each summand V; are simply polynomial algebras in one variable, but
B(V) is given by the complicated quantum Serre relations.

DEFINITION 1.10.17. Let I be a non-empty finite set. Recall from [Kac90, §1.1]

that a (generalized) Cartan matrix A = (a;;); jer is a matrix in Z”*! such that

(1) a;; =2 and aj, <0 for all 4,5,k € I with j # k,

(2) ifi,j € I and a;; =0, then aj; = 0.
A Cartan matrix A = (aij)i jer is called symmetrizable, if there are integers
d; > 1for all i € I such that d;a;; = djay; for all4,j € I. A Cartan matrix (a;;); jer
is called of finite type if it is symmetrizable and if the symmetric bilinear form
()RR = R, (z,y) = Ei,jel x;d;ai5y;, is positive definite.

The classification of Cartan matrices of finite type is well-known and is easily
obtained from the definition by induction on the cardinality of I. We follow the
convention in [Kac90l §4.8].
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THEOREM 1.10.18. Let I > 1. Then up to a bijection of the index set, the
indecomposable Cartan matrices of finite type in Z'*!, see Definition I0L10), are
the following.

(1) Type Ay, 1> 1: a5 = - zf|z _]| -
0, if |1 —j] > 2.
Then d; =1 for all 1 <i <.
=1, ifli—j]=1,i#1,
(2) Type B;, 1 >2:a;5=1 -2, ifi=1,j=1-1,
0, if |t — 7] > 2.
Then d; =2 for all1<i<Il—1 andd;, = 1.
_1, Zf|Z—]|:1,j7él,
(3) Type Ci, 1> 3: ai; =14 -2, ifi=1—1,j=I,
0, if li =gl > 2.
Then d; =1 forall1 <i<IlI—1 and d; = 2.
(4) Type Dy, 1 > 4: aj; = -1 ifli—j|l =1, 4,5 <l; qj—21 = agj—2 = —1;
a;; = 0 otherwise, whenever i # j. Then d; =1 for all 1 <i <.
(5) Type Ey, 6 <1 <8:a;;=—-1ifli—jl=1,4]j<l;asi=an-3=-1;
a;; = 0 otherwise, whenever i # j. Then d; =1 for all 1 <14 <.
(6) Type Fiy, L= 4: ai; — {1, i li=jl=1,6.0) # (3,2)
0, if |i —j| > 2,
azp = —2. Then dl = dg = 2, d3 = d4 =1.
(7) Type GQ, [ =2: ajp = —]., a1 = —3. Then d1 = 3, dg =1.
In particular, for any such Cartan matriz A there exist unique integersd;, 1 <i <r,
such that d;a;; = djaj; for all 1 < i,j <7, and {d; | 1 <1i <r} is one of the sets

{1}, {1,2}, {1,3}.
The following example is an immediate consequence of Theorem [[LT0.18

EXAMPLE 1.10.19. A Cartan matrix A € Z2?*? is of finite type if and only
if ajpas1 € {0,1,2,3}. An indecomposable Cartan matrix A € Z3*3 is of finite
type if there exist i,7,k € {1,2,3} such that a;x = ag; = 0, a;; = aj; = —1, and
ajkak; € {1,2}.

ExaMPLE 1.10.20. Let ¢ € k be non-zero and not a root of one, G = Z" a
free abelian group of rank n > 1 with basis K, ..., K,, and (a;j)1<i j<n a Cartan
matrix of finite type, where (d;a;;) is symmetric and d; € {1,2,3} for all i. We
define a Yetter-Drinfeld module V' € gyD with basis x; € Vf’é, 1 < i < n, where
X1, - -+, Xn are characters of Z" with '

xi(K;) = ¢ for all 1 <4,j < n,
that is
deg(z;) = K;, g-x; = xi(g)z; for all g € G,1 <i < n.
Then V = ko1 @ --- @ ka,, is the direct sum of one-dimensional Yetter-Drinfeld
modules kz;. We prove in Theorem that

B(V) = k(z1,...,2n | (adz;)' "% (z;) = 0 for all i # j)

is given by the quantum Serre relations. Thus B(V) = U/ (g), where g is the
semisimple Lie algebra defined by the matrix (a;;)1<i j<n-
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We note that the elements (adz;)' =% (z;) € T(V), i # j, are primitive by
Proposition 312 hence k(x1, ..., 2, | (adz;)' =% (z;) = 0 for all i # j) is a Hopf
algebra in gyD.

REMARK 1.10.21. Nichols algebras of Yetter-Drinfeld modules play an impor-
tant role in the classification theory of Hopf algebras. They appear naturally as
subalgebras of graded Hopf algebras associated to the coradical filtration, see Corol-

lary [LT17

1.11. Notes

Il The first comultiplication appeared in a paper by Heinz Hopf [Hop41]
written in German and published in the Ann. of Math. in 1941.

1.4. Yetter-Drinfeld modules over a Hopf algebra, in particular over a group
algebra, together with their braiding were introduced 1990 by Yetter in [Yet90].

The explicit description of Yetter-Drinfeld modules over groups was given in
the equivalent category of Hopf bimodules in several early papers, beginning with
[Nic78| over finite abelian groups in the semisimple case, [DPR90| over finite
groups over the complex numbers as modules over the Drinfeld double of the group
algebra, and in the general case in [CR97].

1.5. The fruitful idea to describe braided vector spaces of group type by racks
was introduced in [AGnO03].

Nichols defined in [Nic78] a bialgebra of type one as the image of a
canonical map from the tensor algebra to the cotensor algebra of a Hopf bimodule.
Bialgebras of type one contain Nichols algebras as subalgebras. Hopf bimodules
are equivalent to Yetter-Drinfeld modules, see Notes to Section B.7l It was shown
independently in several papers ([Sch96], [Ros95], [R6296], [BD97]) that the
Nichols algebra can be seen as the image of a canonical map from the tensor algebra
to the shuffle algebra of the braided vector space. See the notes to Section for
the definition of the shuffle algebra which is dual to the braided tensor algebra.

@.7. We have found the notation 1 ¢ for the shift operator in [IO09].
.8l The equations in Proposition [L8.13 appeared in [DK™97, Lemma 6.12].

Theorem [.9.7] about the comultiplication of the tensor algebra already
was shown in [HHH92| Proposition 4.8].

The braided (anti)symmetrizer map was introduced by Woronowicz in [Wor89),
where he defined the braiding for Hopf bimodules (which he called bicovariant bi-
modules). Corollary [[L9.7] describing the relations of the Nichols algebra as a Hopf
algebra by the braided symmetrizer map was shown in the papers mentioned in the
notes to Section [[LG] since the canonical map from the tensor algebra to the shuffle
algebra is given by the quantum symmetrizer.
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[L.I0l Proposition [LI0.9(2) is shown in [Fd™01, Corollary (5.2.b)], by a differ-
ent method. Example [[TOI0lis a very special case of the main result of [HZ18|,
where the finite-dimensional braided vector spaces V of diagonal type satisfying
B(V) =T(V) are determined.

Proposition also holds for the general braidings in Chapter [l The
equivalence of (a) and (b) was first shown in [Gn00a] for finite-dimensional Nichols
algebras.
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CHAPTER 2

Basic Hopf algebra theory

In the book we will need many basic properties of coalgebras and Hopf algebras,
which are collected mainly in this chapter. In particular, module and comodule alge-
bras will appear frequently. Two-cocycle deformations of bialgebras are a standard
tool in the theory which we will use later in the discussion of quantized enveloping
algebras and of linkings of Nichols algebras.

2.1. Finiteness properties of coalgebras and comodules
We start with a characterization of right comodules.

LEMMA 2.1.1. Let C be a coalgebra, V' a vector space, and dy 1V —- V & C
a linear map. Let (v;)ier be a basis of V, and dy(v;) = Y .o, vi ® ¢ij for all j,
where (c;j)ijer s a family of elements of C such that for all j € I, ¢;; # 0 only
for finitely many indices i € I. Then the following are equivalent.

(1) (V,dv) is a right C-comodule.
(2) For alli,j €I, Alcij) = Ypes it @ crjy €(cis) = 83y = {1 =,
0 ifij.
The subspace C(V) C C spanned by the elements c;j, i,j € I, is the smallest
subspace C' C C' such that oy (V) CV @ C’, and it is a subcoalgebra of C.

PROOF. By definition, (V,dy) is a right C-comodule, if for all j € I,

25\/(’01‘) R cij = Zvi ® Alciz),

i€l i€l

Z ’UiE(Cij) = vj.

i€l
Since dy (v;) = Y ,c; v ® ¢ for all @ € I, the equivalence of (1) and (2) follows by
comparing coefficients. The claim about C (V) is obvious. ]

Note the special case of Lemma 2.1.0]l when V is finite-dimensional with basis
v1,...,U,. By Lemma 2Tl there is a bijection

{6v | (V,dv) is a right C-comodule } = Coalg(M, (k)*,C),
where M, (k)* is the coalgebra in Example

LEMMA 2.1.2. Let C be a coalgebra and (V,dy) a right C-comodule. Let v € V,
and let (¢;)ier be a basis of C. Write

A(Ci):ZCij®Cj foralli eI, 5‘/(@):2%@%

JjeI i€l
71
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72 2. BASIC HOPF ALGEBRA THEORY

where for all i,5 € I, ¢;; € C, v; € V, such that for all i € I, c;; # 0 only for
finitely many j € I, and where v; # 0 only for finitely many i € I. Then

ov (vj) Zvl ® cij for all j € 1.
el

PROOF. By coassociativity of 5\/,
Zév(vi)®0i7(5v®1d )y (v ZUZ®A i) Zm@cw@cj

i€l i€l i,J€T1

The claim follows by comparing coefficients. O

Coalgebras and comodules over coalgebras are easier objects than algebras and
modules over algebras, since they satisfy the following finiteness property.

THEOREM 2.1.3 (Finiteness Theorem). Let C be a coalgebra and V' a right C-
comodule. Then V is the union of its finite-dimensional subcomodules, and C is
the union of its finite-dimensional subcoalgebras.

PRrROOF. We have to show the following.

(1) Any element of V is contained in a finite-dimensional subcomodule.
(2) Any element of C' is contained in a finite-dimensional subcoalgebra.

(1) Let v € V. By Lemma [ZT.2 the vector space V' spanned by the elements v;,
i € I, is a finite-dimensional subcomodule of V. Moreover, v = 3, vie(c;) € V',

(2) Let ¢ € C. By (1) applied to C as a right C-comodule via A, there is a
finite-dimensional subspace V C C with c € V|, A(V) C V ® C. By Lemma 2T]
A(V)CV®C(V), and C(V) is a finite-dimensional subcoalgebra of C. Moreover,
c € C(V) since ¢ = (e ® ide) (A(c)). O

The unions in Theorem 2.T.3] are ascending unions, that is, finitely many finite-
dimensional subcomodules, respectively subcoalgebras, are always contained in a
finite-dimensional subcomodule, respectively subcoalgebra, namely in their sum.
Thus comodules and coalgebras are direct limits of finite-dimensional subob-
jects.

An algebra A is called residually finite-dimensional if there exists a family
of ideals of A of finite codimension whose intersection is zero.

COROLLARY 2.1.4. Let C be a coalgebra.
(1) The dual algebra C* is residually finite-dimensional.
(2) Let f € C*, and assume that for all finite-dimensional subcoalgebras D of
C, the image of f under the restriction map C* — D* is invertible in D*.
Then f is invertible in C*.

ProOF. (1) For all finite-dimensional subcoalgebras D C C' the kernel of the
restriction map wp : C* — D* is an ideal of C* of finite codimension, and by

Theorem 2.1.3]
m{ker(ﬁD) | D C C a finite-dimensional subcoalgebra} = 0.

(2) For all finite-dimensional subcoalgebras D C C let gp € D* be the inverse of
fID. Let g : C =k, x — gp(z), where F C C' is a finite-dimensional subcoalgebra
containing = which exists by Theorem ZT.3l Then ¢ is well-defined since for all
finite-dimensional subcoalgebras F C F, gp|E = gg by uniqueness of the inverse.
Hence f is invertible in C* with inverse g. O
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It is clear from Corollary 214 that not any algebra is of the form C* for some
coalgebra C'. In particular, infinite-dimensional algebras which are simple, that is,
have no proper non-zero ideals, are not residually finite-dimensional. Examples of
infinite-dimensional simple algebras are infinite field extensions or the Weyl algebra
over a field of characteristic zero (see Example 2.6.10]).

2.2. Duality

If A is an algebra and V is a right A-module, then the dual vector space
V* = Hom(V, k) is a left A-module in a natural way. This also works for comodules
which are finite-dimensional.

LEMMA 2.2.1. Let X,Y be vector spaces. The linear map
oxy : X' QY - Hom(X,Y), f@y— (x — f(x)y),
1s injective, and it is bijective if X is finite-dimensional.
PrOOF. We leave the elementary proof to the reader. O

For a coalgebra C, we denote the category of finite-dimensional right or left C-
comodules with C-colinear maps as morphisms by M ¢ and ¢ M| respectively.
A duality between categories is a contravariant equivalence.

PROPOSITION 2.2.2. Let C' be a coalgebra.

(1) Let V€ MC. Then V* = Hom(V,k) is a left C-comodule, where the
comodule structure oy« : V* — C @ V*, f = f_1)® f), is defined by
the equations

fn foy(v) = f(ve))va) for allve V.
(2) The functor
MIEC S CME (Y 5y) = (VF, Gy ),
where comodule maps f are mapped onto f*, is a duality.
PrROOF. (1) By Lemma 22T, the map
CoV* = Hom(V,C), c¢®fr— (v f(v)e),
is bijective. For any f € V* let oy~ (f) = f(—1) ® fo) € C ® V* with
fenfoy(v) = flve)va)

for all v € V. This defines a linear map oy« : V* — C®V™*. To prove that (V*,dy+)
is a left C-comodule, we have to show for all f € V*,

(2.2.1) fen ®@ov-(fio)) = Alf(-1)) ® flo) ECRC VT,
(2.2.2) e(f-)fo) =1

Using Lemma [Z2T] we check the equality (Z21]) by evaluating on elements of V.
By evaluation of the left-hand side of (2211 on v € V we get

f=1) ® fooy(voy)vay = fve))va) ® v
On the other hand

A(f—n) foy(v) = Alf—1) fro)(v)) = A(f (v0))v1)) = fv0))v) @ v(2)-
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Finally,

e(f=)fioy(w) = e(f—1) fio)(v)) = e(f (v(0))v(r)) = f(v(o))e(viry) = f(v)

for all v € V, which proves ([Z22)).

(2) follows easily from (1), since for all V€ M:C the natural isomorphism

VoV™ v (f = f(v),

is an isomorphism of right C-comodules. O

LEMMA 2.2.3. Let X,Y be vector spaces. Then the map

exy : XTQYT = (XQY)", fog— (z@y— f(z)g(y)),

s injective, and a natural transformation in both variables X and Y. If X orY

are finite-dimensional, then ¢xy is an isomorphism.

PROOF. The proof of this Lemma is rather elementary as well, and is left to
the reader. ]

We note that in the cases when the maps ¢ x y of LemmaZ2Tland Lemma[Z2.3]
are isomorphisms, there is no natural way (that is, without using bases) to write
down a formula for their inverses.

In the next proposition we write C' for the category of finite-dimensional coal-
gebras with coalgebra homomorphisms as morphisms, and A™ for the category of
finite-dimensional algebras with algebra maps as morphisms.

PROPOSITION 2.2.4. (1) For any finite-dimensional algebra A, the dual
vector space A* is a coalgebra with £(f) = f(1), A(f) = fa) ® f2),
foy@) fio)(y) = flzy) for all f € A*, 2,y € A. It is called the dual
coalgebra of A.

(2) For any algebra map p : A — B between finite-dimensional algebras A, B,
the map p* : B* — A*, f+— fop, is a coalgebra map.

(3) The functor C* — A mapping a coalgebra C to its dual algebra C*,
and a coalgebra homomorphism f to f*, is a duality. The inverse functor
Af — €' sends an algebra A to its dual coalgebra A*, and an algebra
map p to the coalgebra map p*.

PRroOF. (1) By definition, the comultiplication of A* is defined by
A2 (A A) A4 4v g A7,
where @4 4 is the isomorphism in Lemma 223l To check coassociativity of A, we
use the isomorphism
A" QA QA" 5 (ARARA), fRgQ®h— (z2Qy® 2z~ f(x)g(y)h(2)),
which is a consequence of Lemma 223l Let f € A* and x,y,z € A. Then
foya) @) faye W) fio)(2) = fay(@y) fio)(2) = f(zyz),
fay@) fey0) W) fe)e)(2) = fa)(@) fie)(yz) = flzyz).

The counit axioms are checked similarly.
(2) For any f € B*, x,y € A, one has

p*(f)(xy) = fp(zy)) = f(p(z)p(y)) = p* (f1))r" (f2))
and p*(f)(1) = f(p(1)) = f(1).
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(3) The functorial isomorphism X — X** z — (f — f(x)), for finite-
dimensional vector spaces X defines a coalgebra isomorphism C — C** for any
finite-dimensional coalgebra C, and an algebra isomorphism A — A** for any
finite-dimensional algebra A. ]

Let A be an algebra. We denote by M the category of finite-dimensional right
A-modules with A-linear maps as morphisms. Proposition 2.2.4 follows essentially
from Lemma 2.2.3] The next proposition is shown in the same way.

PRrROPOSITION 2.2.5. Let C' be a coalgebra and A = C* its dual algebra.

(1) Let (V,0y) be a right C-comodule. Then V* is a right A-module with
module structure

A = (V@ 0" 255 (Vo o) 25 v,
(2) Assume that C is finite-dimensional. The functor
MO ML (V,oy) = (VF, Ave),
where a comodule map [ is mapped onto f*, is a duality.

The duality functor in Proposition 2.2.4 induces a bijective correspondence
between subcoalgebras of a finite-dimensional coalgebra and ideals or quotient al-
gebras of the dual algebra.

REMARK 2.2.6. For any vector space V there is a correspondence between
subspaces of V' and of the dual space V*. If U CV and X C V* are subspaces, we
define subspaces U+ C V* and X+ C V with respect to the pairing V* @ V — k,
f@uve f(v), by

Ut ={feV*| f(u)=0forallucU},
Xt={veV|fw)=0forall fecX}.
By definition, U' is the kernel of the restriction map V* — U*, and X' is the

kernel of the map px : V — X*, v — (f — f(v)). If V is finite-dimensional, then
X+ is canonically isomorphic to (V*/X)*. The following rules are easy to check.

(1) If U C V is a subspace, then U++ = U.
(2) Assume that V is finite-dimensional. Then

{U | U C Va subspace} — {X | X C V* a subspace}, U — U+,
is bijective and inclusion reversing with inverse given by X +— X*.

A non-zero coalgebra C is simple if 0 and C are the only subcoalgebras of
C. By Theorem 2.1.3] simple coalgebras are finite-dimensional, and by Proposi-
tion 2.2.4 a coalgebra C' is simple if and only if C* is a finite-dimensional simple
algebra, that is if it has no non-trivial quotient algebras.

EXAMPLE 2.2.7. The coalgebra M, (k)* in Example is simple since by
Example [[2T3] its dual is isomorphic to the matrix algebra M, (k) which is a
simple algebra.

We denote the set of all (two-sided) maximal ideals of an algebra A by Max(A).
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COROLLARY 2.2.8. Let C be a finite-dimensional coalgebra. The maps
{D | D subcoalgebra of C} — {I | I ideal of C*}
{D | D simple subcoalgebra of C'} — Max(C™),

defined by D — D=+ are bijective.

PrOOF. The bijectivity of the first map in the claim follows by duality from
Proposition 2.2.4. Since the map D — DY is inclusion reversing, simple subcoal-
gebras correspond to maximal ideals. O

Our next goal is to prove a dual version of Nakayama’s lemma using the duality
principle in Proposition 2.2.5]

DEFINITION 2.2.9. Let C be a coalgebra, V € M, and W € “ M with struc-
ture maps oy : V=V RC, dw W > CQW.

(1) The cotensor product VO-W is defined as the kernel of
oy idwy —idy Q0w : VRIW - VeCeW.
(2) Let D C C be a subcoalgebra. We define V(D) = §;,'(V @ D).

REMARK 2.2.10. (1) Let f: V — V' and g : W — W' be a map of right and
left C-comodules, respectively. Then f® g : V @ W — V' @ W’ induces a linear
map fOcg : VOcW — V'OcW’. Thus the cotensor product is a functor in two
variables O¢ : MY x “M — M.

(2) The cotensor product commutes with arbitrary direct sums in both vari-
ables, that is, if V€ M and (W;);e; is a family of left C-comodules, then the map
D,c;(VOcW;) — VOc (P, Wi), defined for all i € I on the summand VO W;
by idoe;, is an isomorphism, where ¢; : W; — @ie ; W; is the inclusion map; in
the same way @, ;(ViOcW) = (B,; Vi)W, where (V;);cr is a family of right
C-comodules, and W € € M.

(3) It follows from the coassociativity of dy (or from Lemma[ZT2)) that V(D) in
Definition [2.2.9(2) is a right D-comodule by restriction of dy. It is easy to see that
dy induces an isomorphism &y (py : V(D) — VOc D, where D is a left C-comodule
via A. The inverse map is induced from V@ D — V, v ® d — ve(d).

(4) Let A be an algebra and V€ My, W € 4M A-modules with structure
maps puy : VA=V, uw: AQW — W. Then the tensor product V@4 W can
be defined as the cokernel of the map

py @id—id@uw : VO AQW = V @ W.

Thus the cotensor product for comodules over a coalgebra is dual to the tensor
product of modules over an algebra.

LEMMA 2.2.11. Let C be a coalgebra, D C C a subcoalgebra, and V' a finite-
dimensional right C'-comodule. Let I be the kernel of the restriction map C* — D*.
Then I is an ideal in C*, and V(D)* 2 V*/V*I as right modules over C* /I = D*.

PROOF. By definition, V(D) is the kernel of the map

V2% ve o dveen v e o/p.
Since I = (C'/D)*, the claim follows by duality using Lemma 2:2.3] O
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The following remark is a standard result in algebra. The reader may use
it as a motivation or (together with Lemma 22TT)) for an alternative proof of
Proposition 2.2.14] below by duality.

REMARK 2.2.12. Let A be a finite-dimensional algebra and M a right A-module.
By Wedderburn-Artin, there are finitely many maximal ideals P, ..., P, of A, and
i, Pi = Rad(A) is the Jacobson radical of A. By the Chinese remainder theorem,
there is a right A-linear isomorphism

M/MRad(A) = ﬁ M/MP;

given by the diagonal map.

Let M, N be finite-dimensional right A-modules, and f : M — N a right
A-linear map. By Nakayama’s Lemma, f is surjective if and only if the induced
map M/MRad(A) — N/NRad(A) is surjective. Thus by the Chinese remainder
theorem, f is surjective if and only if for all maximal ideals P C A, the induced
map M/MP — N/NP is surjective.

PROPOSITION 2.2.13. Let C be a coalgebra, and V € MC.

(1) If V is simple, then C(V) is a simple subcoalgebra of C.
(2) If V #£0, then there is a simple subcoalgebra D C C' such that V(D) # 0.

PrOOF. (1) By Theorem 213l V is finite-dimensional. Let vq,...,v, be a
basis of V and ¢;; € C(V) with 1 <4, <n as in Lemma 2T1] Then Lemma 2.TT]
implies that for any 1 < k < n the linear map fi : V. — C(V), v; — cp, I8 a
comodule map, where C(V) is a right C'(V')-comodule via A. Hence C(V) is a sum
of simple C-comodules, each of them isomorphic to V. Thus C(U) = C(V) for all
simple subcomodules U of C(V). Tt follows that C(V') has no proper subcoalgebra.

(2) Theorem ZT3]implies that V has a simple subcomodule W. By (1) applied
to W, D = C(W) is a simple subcoalgebra of C' and W C V(D). O

PROPOSITION 2.2.14. Let C be a coalgebra, V,W € M, and f:V — W a
C-colinear map. Then the following are equivalent.

(1) The map f:V — W is injective.
(2) For all simple subcoalgebras D C C, the map V(D) — W (D) induced by
f is injective.

PRrROOF. Clearly, (1) implies (2). Assume now that ker(f) # 0. Let U be a
simple subcomodule of ker(f). Then D = C(U) is a simple subcoalgebra of C' by
Proposition 2213 and U C V(D). Hence f|V (D) is not injective. O

DEFINITION 2.2.15. Let C be a coalgebra, and V a right C-comodule with
comodule structure dy : V — V ® C. Then py : C* ® V — V defined by

fv=pv(f®v) = f(va)vo)
for all f € C*, v € V, is called the adjoint C*-module structure to Jy .

It is easy to see that V is indeed a left C*-module with the adjoint module
structure.
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LEMMA 2.2.16. Let C be a finite-dimensional coalgebra, and V' a vector space.
There is a bijection

{0v | (V,0v) is a right C-comodule} — {pv | (V,uv) is a left C*-module}

where a Tight C'-comodule structure is mapped onto its adjoint left C*-module struc-
ture.

ProOF. Let c¢q,...,¢c, be abasis of C, and fi, ..., f, its dual basis in C*. The
linear map

Hom(V,V ® C) — Hom(C* @ V, V), éy — uy,

where py (f; @ v) = v; for all 1 <4 <n and v € V with dy(v) = Z?zl v; @ ¢y, is
bijective. Note that if dy- is mapped onto py, and if we write dy (v) = vy ® v(1),
then py (f @ v) = f(va))v) forallv e V, f e C*.

Then one checks that under this bijection comodule structures correspond to

module structures. O

Let A be an algebra. A left A-module V is called locally finite if any element
of V' is contained in some finite-dimensional A-submodule. The full subcategory of
4M consisting of locally finite A-modules is denoted by 4 M.

PROPOSITION 2.2.17. Let C be a coalgebra.

(1) The functor M® — o MY, which maps a comodule V to V with the
adjoint module structure, and a comodule homomorphism f to f, is fully
faithful.

(2) If C is finite-dimensional, then the functor M — oM in (1) is an
isomorphism of categories.

ProOF. (1) It follows from Theorem [ZT3] that for any right C-comodule V,
the left C*-module V' with the adjoint module structure is locally finite.

Let V,IWW € M and let F : V — W be a linear map. We have to show that
F is right C-colinear if and only if F is left C*-linear. Colinearity of F' means that
F(v)0) @ F(v)q) = F(v(0)) ® v(1y for all v € V, or equivalently

J(F())F )y = f(va)) F(vo))

for all v € V and f € C*. The claim follows, since

FF@) @) F(v)0) = [F(v),
fw@)F(ve)) = F(f(vay)ve) = F(fv).
(2) follows from (1) and Lemma O

COROLLARY 2.2.18. Let C be a coalgebra, V. € M%, and X C V a subspace.
Then X C V is a right C-subcomodule if and only if it is a left C*-submodule
with respect to the adjoint C*-module structure of V. In particular, C*X is the C-
subcomodule of V' generated by X, that is, the smallest subcomodule containing
X.

Proovr. This follows from Proposition 22217 Alternatively we give a direct
proof. Let § : V — V ® C, v = v ® v(1), be the comodule structure of V. If X
is a subcomodule of V', then it is obviously a submodule. Conversely, assume that
X C Visa C*submodule. Then X is a subcomodule of V, that is, §(X) C X ®C,
since z(g) f(x(1)) = fr € X forall z € X, f € C*. O
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Finally we extend the duality between finite-dimensional algebras and coalge-
bras to Hopf algebras.

PROPOSITION 2.2.19. Let H be a finite-dimensional bialgebra. Then H* is a
bialgebra with structure maps defined for all f,g € H* and all x,y € H by

(f9)(@) = flx@)g(z2), e(f) = fF(1), foy(@)fixy(y) = f(zy), 1u- =en.
If H is a Hopf algebra, then H* is a Hopf algebra with antipode
S(f)(x) = f(S(x))
forall f € H* and x € H.

ProOOF. We know from the previous section that H* is an algebra and a coal-
gebra. The bialgebra axiom holds, since for all f,g € H* and z,y € H,

(fy9)(@)(f292) W) = foy(@w)ga) (ze) fro) ()9 (Ye)
= f(ff(l)y(l))g(fu)y(z))
= (f9)(xy).

Moreover, e(fg) = (fg)(1) = f(1)g(1) = &(f)e(g)-
If H has an antipode, then for all f € H* and = € H,

fay@m) fi)(S(z2))) = flz)S(z2)) = fle(@)1n) =e(f)la-(2).
Hence f(l)S(f(2)) = E(f)lH*- Similarly, S(f(l))f(g) = 5(f)]-H*~ g

ExXaAMPLE 2.2.20. Let G be a finite group and kG the group algebra as a Hopf
algebra defined in Example The dual Hopf algebra (kG)* can be identified
with the function algebra k. Let ¢4, g € G, be the dual basis in (kG)* of the basis
G. Then for all g € G,

eqen = Ogneg, Aleg) = Z ea @ ep, (eg) =041, S(eg) =e4-1,
a,beG
ab=g

and Lgys =D cq €q-

2.3. The restricted dual

In many situations it is helpful to consider dual objects of infinite dimensional
(Hopf) algebras. In this section we discuss elements of the corresponding theory.

LEMMA 2.3.1. Let X,Y be vector spaces such that X is finite-dimensional.
Then

exy : X@Y* - Hom(X,Y)", 2 ® f — (F — f(F(z))),
is an isomorphism.
Proor. The map ¢x y is the composition of the isomorphisms
XYV 2X"YV"2(X*"®Y)" 2Hom(X,Y)",

where the first isomorphism is induced from the canonical map X — X** the
second is the isomorphism of Lemma 2.2.3] and the third is the dual of the isomor-
phisms of Lemma 2.2.1] O
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DEFINITION 2.3.2. Let A be an algebra and V a finite-dimensional left A-
module. For all v € V and f € V* let c}/ﬂ) = cj» € A" be defined by

cto(e) = flzv)

for all z € A. The linear function cy,, is called a matrix coefficient of V. Let
C"V be the k-linear span of all matrix coefficients ¢, f € V*, v € V.

LEMMA 2.3.3. Let A be an algebra, and V a finite-dimensional left A-module
with representation p : A — End(V), z — (v — zv), and annihilator I = ker(p).

(1) CV =im(p*) = {f € A* | F(I) = 0} = (4/T)".

(2) CV is a coalgebra which is isomorphic to the dual coalgebra of the finite-
dimensional algebra A/I by (1). Let F, Fy;, Fo; € CV foralli € {1,...,n},
n > 1. Then the following are equivalent.
(a) Agv(F) =>"1 Fi;i @ Fy.
(b) F(zy) =Y i, Fri(x)Fe(y) for all z,y € A.

PROOF. (1) Note that for all v € V, f € V*, the matrix coefficient ¢, is the

image of v ® f under the composition V @ V* 22Y End(V)* LN A*, where py v

is the isomorphism of Lemma [Z.3.1]
(2) By Proposition 2.2.4(1) and by (1), End(V)* and CV are coalgebras. The
rest follows from the definition of Aov. O

LEMMA 2.3.4. Let H be an algebra, and V, W finite-dimensional left H-modules.
(1) If V=W, then CV = CW. If V. C W is a left A-submodule, then
CV C O is a subcoalgebra.
(2) CVOW =V + OV,
(3) Let H be a bialgebra. Then CV®W = CVCW | where the product in H* is
the convolution product.

PRrROOF. (1) is clear by Lemma 233

(2) Let fe (VeW)* =2 V*@W*. Then cfyiw = Cpv,p + Cfjw,w for allv € V
and w e W.

(3) Let f € (V@W)*, f1,...,fn € V* and g1,...,9, € W*,n > 1, with
fo@w) =" fi(v)gi(w) forallv € V, w € W. Then for allv € V, w € W,

Cfoow = Dy Cf; vCqiw- Hence the claim follows from Lemma 223 O

REMARK 2.3.5. Let A be an algebra and V € s MM, Let vi,...,v,, n > 1,
be a basis of V and fi,..., f, the dual basis of V*. Then for all x € A, v € V|,
fev* and je{l,...,n},

n n

TUj = Zcfiavj (@)vi,  Acv(cre) = Zcfﬂ% QCf;p-

=1 i=1

DEFINITION 2.3.6. Let H be an algebra, and C C g M™ a class of finite-
dimensional left H-modules. Let Hg = ZVEC cV C H*.

We define the following conditions for C, where H is assumed to be a bialgebra
for (C2) and (C3), and a Hopf algebra for (C4).

(C1) fV,W eC,then VoW (.
(C2) If VW €C, then VW €C.
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(C3) k € C, where ;k = k is the trivial H-module with 1 = ¢(z)1 for all
r € H.
(C4) IV €C, then V* € C.

PROPOSITION 2.3.7. Let H be an algebra and C a class of finite-dimensional
left H-modules.

(1) Assume that C satisfies (C1). Then HQ is a coalgebra with comultiplication
and counit given by Ayo(F) = Acv (F), egy(F) = F(1) for all F' € cv,
Vec.

(2) Let H be a bialgebra. Assume that C satisfies (C1), (C2) and (C3). Then
Hg is a bialgebra, where HCO C H* is a subalgebra of the dual algebra of
the coalgebra H, and where the coalgebra structure of Hg is defined in (1).

(3) Let H be a Hopf algebra. Assume that C satisfies (C1) — (C4). Then HQ is
a Hopf algebra with antipode defined by SH(C)(F) = FoSy for all F € HY.

PROOF. (1) Since the subspaces CV are coalgebras by Lemma 2.3.3, we have
to show that the definition of Apyg(F) does not depend on the choice of V. Let
V,V' € C with F € CV and F € CV'. By (C1) and Lemma Z34(1) and (2),
W:=VaV' e, and CV and CV are subcoalgebras of C"'. Hence it follows that
ACV (F) = ACW (F) == Acv’ (F)

(2) Let F € CV and G € CW, where V,IW € C. Choose Fy;, Fy; € CV
and Gi;,Go; € CW, 1€ {1,...,71}, n > 1 with ACV(F) = Z?:l Fy; ® Fs; and
Acw (G) = Y7 G1; ® Goi. Then FG, F1;G1j, F2;Goj € CVEW for all elements
i,j in {1,...,n} by Lemma 2374(3). The computation in the proof of Proposi-
tion shows that

Acvew (FG) = Z FliGlj & FQisz =Acv (F)ACW (G)
1<i,5<n
Hence Apo(FG) = Apo(F)Apo(G). By (€3), cia,1 = en € HQ is the identity
element of the algebra HY. Since £y is an algebra map, A go is unitary.

(3) Let F = c}/ﬂ], where V€ C,v eV, and f € V*. By (C4), V* € C, where for
all feV*, x € Handv eV, (zf)(v) = f(Su(z)v). Let V — V** v — ¢,, be the
canonical isomorphism with ¢, (f) = f(v) for all f € V*. Then Sy (c}/’v) = cg:’f,
and hence SHg (F) € HQ. As in the proof of Proposition 22219, it follows that SHg
is the antipode of H. O

DEFINITION 2.3.8. Let H be an algebra, and H° = HQ, where C = y M.
The coalgebra HY of Proposition E:3.7(1) is called the dual coalgebra of H. If
H is a bialgebra or a Hopf algebra, H® of Proposition 2.3.7(3) is called the dual
bialgebra or the dual Hopf algebra of H.

To characterize the elements of H°, we note

LEMMA 2.3.9. Let A be an algebra. Then any left or right ideal of A of finite
codimension contains an ideal of A of finite codimension.

ProOOF. Let I C A be a left ideal, and assume that [ is of finite codimension,
that is, dim A/I < oo. Let p : A — End(A/I), a — (T — aZ), be the natural
representation of A over A/I. Then the kernel of p is an ideal of A of finite
codimension which is contained in I. The proof for right ideals is similar. (]
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COROLLARY 2.3.10. Let H be an algebra, and H® the dual coalgebra.

(1) For any F € H*, F € H° if and only if F(I) = 0 for some ideal I of H
of finite codimension.

(2) Let F,Fy, Fy; € H°, i € {1,...,n}, n > 1. Then the following are
equivalent.
(a) Apo(F) =37 F1; ® Fy.
(b) F(zy) = > i, Fui(x)Fe(y) for all z,y € H.

(3) Let F,Fy;,Fo € H*, i € {1,...,n}, n > 1, such that (2)(b) holds. Then
F e HY.

PrOOF. (1) and (2) are clear from Proposition 237 and Lemma 233

(3) Let I = (), ker(F;). Then I has finite codimension in H, since finite
intersections of subspaces of finite codimension have finite codimension. By (2)(b),
F(HI)=0. Hence F € H° by (1) and Lemma 2.3.0 O

For algebras A, B, a triple (M, \, p) is an (A, B)-bimodule if (M,\) € s M,
(M,p) € Mp, and if p(A ®id) = A(id ® p) as maps A ® M ® B — M, that is,
(am)b=a(mb) for alla € A, b€ B, m € M.

Let A be an algebra and let M be an (A, A)-bimodule. A linear mapd: A — M
is called a derivation if for all z,y € A, d(zy) = zd(y) + d(z)y.

Let A, B be algebras, and 0,7 € Alg(A, B). Let , B, be the vector space B with
(A, A)-bimodule structure given by A® B — B, (a,b) — o(a)b, and B® A — B,
(b,a) — br(a). A (o0,7)-derivation (or a skew derivation) d : A — B is a
derivation from A to the (A, A)-bimodule ,B,, that is, a linear map d : A — B
such that

d(zy) = o(x)d(y) + d(x)7(y) for all z,y € A.

Let (o, 7)-Der(A, B) be the set of all (o, 7)-derivations d : A — B. The next obvious
lemma is useful to construct skew derivations.

LEMMA 2.3.11. Let A and B be algebras, o,7 : A — B algebra homomorphisms,
and d: A — B a linear map. Then the following are equivalent.

(1) d is a (o, T)-derivation.
(2) The map

A= My(B), z— ("

S
~—
QL
—~

S
N—
v

is an algebra homomorphism.
Skew derivations are related to skew-primitive elements of a coalgebra.

COROLLARY 2.3.12. Let H be an algebra, and H° the dual coalgebra.
(1) G(H®) = Alg(H k).
(2) Let o,7 € Alg(H,k). Then P, (H) = (o,7)-Der(4,k).

ProoOF. This follows from Corollary 2310l O

2.4. Basic Hopf algebra examples

Group-like and skew-primitive elements play a fundamental role in many Hopf
algebras. We discuss some examples and some theory from this perspective.

PROPOSITION 2.4.1. Let H be a Hopf algebra.
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(1) The set G(H) is a subgroup of the group of invertible elements of H. The
subalgebra of H generated by G(H) is isomorphic to the group algebra of
G(H). Moreover, S(g) = g=' for each g € G(H).
(2) Let g,h € G(H) and x € Py p(H). Then S(z) = —g~tzh~1.
PRrROOF. (1) Clearly, G(H) is a submonoid of H. Let g € G(H). By definition
of the antipode, 1 = ¢S(g) = S(g)g. Hence g~ = S(g) € H, and g~ € G(H).
The remaining claim follows from Proposition
(2) Since A(z) =g®x+ 2z ® h, and e(x) = 0, we obtain that

0=38(zm)z@ =9 'z+S()h.
Hence S(x) = —g~tah~!. O
PROPOSITION 2.4.2. Let 0 # q € k. Let H be a bialgebra, g,h € G(H), and

x€Py1(H), ye Pn1(H). Then

(1) g—h € Pyu(H).

(2) If gh = hg, then hx,xh € Py, p(H).

(3) If gy = qyg, ha = ¢~ 'xh, and gh = hg, then xy — qyz € Py 1(H).

(4) If x,y € P(H), then xy —yx € P(H). If the characteristic of k is p > 0,
then P € P(H).

(5) Letn > 2. If (n— 1)} # 0 and gz = qzg, then a™ € Py 1(H) if and only
if (n)g =0.

PRrROOF. (1) follows from the computation
Alg—h)=9g®9g—h®@h=9g®(g—h)+(g—h)®h.

Regarding (2), note that haz € Pyg (H) and xh € Py, 5 (H).
For (3) we compute
Alzy —qyz) = (9@ +201)(h@y+y®1)
—qhey+yel)(¢gozr+r®1l)
=gh@ry+gy@r+2h@y+rye1
—qghg®@yr —qghz @Yy —qug @z —qyr ® 1
= gh @ (vy — qyz) + (zy — qyr) ® 1
+ (zh — qhz) © y + (9y — qug) ® =,
where we have used gh = hg in the last equality. This implies (3).
The first part of (4) is a special case of (3). The second part of (4) follows from
the binomial formula, since in characteristic p
AEP)=(1@z+z )P =12+ 2P @ 1.
(5) holds by Proposition [[L9H(2) since (¢ @ z)(z ® 1) = ¢z ® 1)(g ® ). O

The next claim is an important generalization of Proposition [ZZ4.2(3). We
will apply it in Proposition where H is the bosonization of a braided Hopf
algebra and z™ > y is an iterated adjoint action. The skew-primitive elements
of the form z™ > y will also be used in the construction of quantum groups, see
Proposition BT.3
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PROPOSITION 2.4.3. Let H be a bialgebra, q,r,s € k, g, h € G(H) with gh = hg,

and x € Py1(H), y € Py1(H). Assume that gz = qxg, gy = ryg, and hx = sxh.
For all m € Ny let

m

">y = z:(—r)qu(kfl)/2 (Z)qukyxk.

k=0

(1) For any m € Np,

A(xmby)—xmby@)l—l—i(k) (“i_[ l—qrs) m=kokh @ 2* > .

(2) Let m € Ng. If ¢™rs =1, then 2™ >y € Pymiay, ;.

PROOF. (1) We proceed by induction on m. Clearly, z° >y = y. Therefore the
claim holds for m = 0 since y € P, 1. Let m € Nyg. Lemma [[L9.3)2) implies that

2" >y = 2(2™ > y) — ¢ (@™ > y)r.

For 0 <k <mletay = (?)q( ;’;;1(1 — qlrs)). Then induction hypothesis implies

that
(@A™ >y) —¢"rA™ >y)(z®1)
m
="M pyel+ Zak(l — ¢ Frs)am TR b @ b sy
k=0
and that
(9@ 2)A@™ > y) —¢"rA™ >y)(g @ )
m
=Y ™ g h @ (¢ et o y) - ¢ > y)r)
k=0
m
= Z apg™ P RGPy @ 2 sy
k=0
m—+1
_ Z ak;,lqm-i_l_kl'm—i_l_kgkh ® .’L'k > y.
Therefore

A" > y) =2 >y 1
m—+1

+ Z (ar(l = g™ rs) + ap_1g™ T F)a™ P gFh @ 2P >y,
k=0
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where a_; = 0 and a,,+1 = 0. From Lemma [[.9.3[1),(2) we obtain that

ap(l — qm+krs) + ak_lqurl*k

m—1
m 'IYL m m -
:(k> — "ty Hl—qrs (k_1>q+1k H(l—qlrs)
q q

=k

= ((Z)q(l —q"rs) + (krf 1)(1(1’”“"“(1 - (J’Hm)) 11 (1-4q'rs)

— (m;r 1>q(1 —q™rs) :ﬁ:(l —q'rs)

for 0 < k < m + 1. This implies the formula for A(z™+! > y).
(2) is a direct consequence of (1). O

In the next proposition we describe a standard method to construct bi-ideals
and Hopf ideals.

PROPOSITION 2.4.4. Let H be a bialgebra, and X C H a subset of skew-
primitive elements. Let (X) denote the ideal of H generated by X. Then (X)
is a bi-ideal of H. If H is a Hopf algebra, then (X) is a Hopf ideal of H and
H/(X) is a Hopf algebra.

PROOF. Any element of (X) is a sum of elements of the form azb with a,b € H
and z € X. To see that (X) is a bi-ideal it is enough to show that for any x € X
and a,b € H, A(axb) is contained in (X) ® H + H ® (X). For any € X, there
are g,h € G(H) such that A(z) =g ®z + 2 ® h. Then

A(axb) = a(l)gb(l) ® a(g)xb(g) + a(l):z:b(l) ® a(g)hb(g) EH® (X)+ (X)® H.
If H is a Hopf algebra, then Propositions [LZ.17(1) and ZZ.T(2) imply that
S(axb) = S(b)S(x)S(a)
= -S(b)g 'zh™S(a) € (X).
Hence (X) is a Hopf ideal. Finally, H/(X) is a Hopf algebra by Proposition
O

ExaMPLE 2.4.5. Recall that a Lie algebra is a vector space g together with
a k-bilinear map
[ lraxg—=g (2,y) = [,y
called the Lie bracket, such that
[z,2] =0,
[z, [y, 2]l + [y, [z, 2] + [2, [2,4]] = 0

for all z,y,z € g.
The universal enveloping algebra of g is the quotient algebra

Ulg) = T(e)/1,
where I is the ideal of T'(g) generated by the elements x @ y — y ® x — [z, y| with
x,y € g. We view T(g) as a Hopf algebra by Example Then U(g) is a
quotient Hopf algebra of the tensor algebra by Proposition[2.4.4] since I is generated
by primitive elements by Proposition 2-4.2)).
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If g is a finite-dimensional Lie algebra with basis x1, ..., z, and multiplication

table
[z, 2] = E alja:k,

where afj € k for all i, j, k, then by deﬁmtlon

n
Ulg) =k(z1,...,zp | zizj — xjo; = Za?jxk forall 1 <i,5 <my),
k=1
and the elements z1,...,z, are primitive.

EXAMPLE 2.4.6. Let sly be the Lie algebra of 2 x 2-matrices with trace 0, and
with Lie bracket [z,y] = 2y — yx for all z,y € sls. Then sly is 3-dimensional with

basis
0 1 00 1 0
(@) =0 0) 2= %)
Hence U(sle) 2 k(e, f,h | ef — fe = h, he —eh = 2e, hf — fh = —=2f).

EXAMPLE 2.4.7. Let A = Kk[z;;]1<s,j<n be the commutative polynomial algebra

in n? variables xij, 1 < 4,7 < n, where n > 1. Using the universal property of A

one shows quickly that A is a bialgebra, where A and ¢ are given by
zzy Z‘I’Lk & Tk, 5(xij) = 5ij

forall 1 <+i,5 <n. Let X, X1, X2 be the n x n-matrices with entries x;;, ;; ®1 and
1 ® x;; in the i-th row and j-th column, respectively. Then A(X) = XX, where

A(X) = (A(z4j))1<i,j<n- The determinant d = det(X) # 0 of X is group-like.
Indeed, ¢(det(X)) = det(p(X)) for any commutative algebra B and any algebra
map ¢ : klz;;]1<i j<n = B, where ¢(X) = (¢(xi;))1<i,j<n. Hence

A(det(X)) = det(A(X))
= det(Xng) = det(Xl) det(Xg) = det(X) X det(X)
Thus A/(d — 1) is a bialgebra by Propositions 2.4.4] and 2-2.2/[).
For any commutative algebra R, the bijective map

Alg(4/(d = 1), R) = SLn(R), ¢ = (¢(Tij) 1<ij<n,

is a homomorphism of monoids, where Alg(A/(d—1), R) is a monoid under convolu-
tion, and the multiplication in SL,,(R) is matrix multiplication. Hence the monoid
Alg(A/(d—1), R) is a group, since SLy, (R) is. Thus id 4 /(4—1) is convolution invert-
ible, and A/(d — 1) is a Hopf algebra.

ExAMPLE 2.4.8. Let 0 # ¢ € k, and n > 1 a natural number. The free algebra
k(g, x) is a bialgebra with

Alg) =g@y, e(g) =1,
Alz) =gz+z®1, e(z) =0.

This is easily checked on the generators. Hence the algebras

kg, x| g = qzg), k(g,z|g" =1,g9z = qzg)
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are quotient bialgebras of the free algebra by PropositionZ42l[),([2]). The bialgebra
k(g,x | gx = qxg, g™ = 1) is a Hopf algebra, since the antipode can be defined as
the algebra anti-homomorphism S with

Slg)=¢""", S(x)=-g""z
To see that S is well-defined, one has to check that
Sl =1, S(@)S(9) = ¢5(9)S(x).

EXAMPLE 2.4.9. Let 0 # q € k. The free algebra k(g,g~ !, x) is a bialgebra
with

Alg)=g®g, Alg ) =g"®g™h, Al@)=z@1l+g®u,
e(g) =1, e =1, e(z) =0.
It admits an antipode, and hence a Hopf algebra structure, such that
Sg)=97", SlgT=9, Sa)=-g 'z
The elements gg=! — 1, g7'g — 1, and gz — grg are skew-primitive by Proposi-

tion 242, ([@). Therefore
Hy=k(g,9g7 " x|gg~ " =1,97 g = 1,92 = qug)

1

becomes a Hopf algebra by Proposition 2441

EXAMPLE 2.4.10. Let n > 2 be an integer, and ¢ € k a primitive n-th root of
unity. Then

Tyn =k(g,7 | g" = 1,9z = qzg, 2" = 0)
is a Hopf algebra with

Alg) =g@g, e(9)
Alz)=gRzx+x®1, e(x)

L, S(g)=g""",
0, S(x)=—g" 'z

and is known as the Taft Hopf algebra. By Proposition 2242, T, ,, is a quotient
Hopf algebra of the Hopf algebra k(g, z | gx = qxg, g™ = 1) in Example 2248

EXAMPLE 2.4.11. Let 0 # q € k with ¢? # 1. Then

U, (sly) :k<E,F, KK | KK™'=1=K'K,

K—-K!
KE = ¢*EK,KF = ¢ *FK,EF — FE = ——_)
a—q
is a Hopf algebra with
A(Kil) _ Kil ®Ki1, e(Kil) — 1’ S(Kil) _ Kil,
AE)=K®FE+E®]1, e(E) =0, S(E)=-K'E,
AF)=10F+Fo K, e(F) =0, S(F) = —FK.

As in Example [2.4.8 it follows from Proposition that
Uy(sly) =k(E,F,K,K"' |[KK~' =1=K 'K,
KE = ¢*EK,KF = ¢ °FK)
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is a Hopf algebra, where A, € and S are defined on the generators by the same
formulas as for Uy(slz). Let F' = FK in Ug(slz). Then F is (K, 1)-primitive and
EF — ¢ 2FE is (K?,1)-primitive by Proposition Moreover,

K? -1

q—q

and K2 — 1 is (K2, 1)-primitive by Proposition ZZZ.2|(]). Therefore

—~ -~ = K2-1
Uglste) = Uy(ste) / ( BF —q *FE = —

EF — ¢ *FE =EFK — ¢ *FKE = EFK — FEK =

is a Hopf algebra.

The Hopf algebras in Examples [2.4.8 and [2.4.9] are special cases of the general
class of Hopf algebras A, in the next example.

ExXAMPLE 2.4.12. Let X be a set, G a group and (g, ).cx a family of elements
in G. Assume that X NG = . Let A = k(X UG). By the universal property of
the tensor algebra, A has a unique bialgebra structure such that

Az) =g @z +2®1, g(x) =0 forallze X,
Alg) =g®y, e(g)=1 forallged.

Since products of group-like elements are group-like, the elements
li—1g, pilg®h) —pc(g,h)

with g, h € G are skew-primitive by Proposition ZZ2(). Thus the ideal I generated
by them is a bi-ideal and A = A/I is a bialgebra by Proposition 224l We denote
by & : A — A°P the algebra map with

S(x) =—g;'x, S(g)=g"
forallz € X, g€ G. Since S(1; —1g) =15 — 1 and

S(palg@h) = pa(gh) =psh ' @g ") —pa(h g ) el

for all g,h € I, the map S induces an algebra map S : A — A°P which fulfills the
equations

S(xm)z@) = S(g:)r +S(@)l =g, 'z — g, 'z =0
for all z € X. Similarly, 2(1yS(z(2)) = e(z) for all x € X,

91)S(92) = nalg®g™") = pa(g.g7") =1

and S(g(1))g¢2) = €(g)1 for all g € G. Hence A is a Hopf algebra by Proposi-
tion [[LZ.231 The group algebra of G is contained in A, since there is a well-defined
surjective algebra map A — kG mapping the residue classes of g € G and = € X
onto g and 0, respectively. Thus the images of the elements g € G are linearly
independent in A.

Assume that G is abelian. Let x : X — (A;, Z — Xz, be a map and let A, be
the quotient algebra

Ay =A/(gr — x2(9)zglg € G,z € X).
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By Proposition Z42[Q), for any g € G, z € X the element gz — x.(g9)zg € A is
(99z, g)-primitive and hence A, is a Hopf algebra by Proposition 2.4.4l Note that

Ay =k(g,z|geG e X, 1=1¢g, gh=pa(g,h) for all g,h € G,
gx = Xz(g)zg for all g € G,z € X)
with A(g) =g®g, Alx) =g, @x+z®1forallge G, z€ X.

REMARK 2.4.13. Let n € N and let A = (a4j); je{1,....n} be a Cartan matrix.
Let b be a complex vector space of dimension 2n—rank A and let o € b, a; € h* for
1 <4 <n be elements with a;(a)) = a;;. Assume that a1,...,a, and of ..., ay
are linearly independent in h* and b, respectively.

Let hi,...,haimy be a basis of h. Let g(A) be the complex Lie algebra given
by generators hj, e;, fi, where 1 < j <dimb, 1 < ¢ < n, and relations

(1) [hj, hi] =0,
(2) [hy, el = ai(hy)es, [hy, fil = —ai(hj) fi,
(3) leis frn] = dimaer)/
for all i,m € {1,...,n}, j,k € {1,...,dimbp}. There is a unique maximal ideal ¢

of g(A) having trivial intersection with h = Zqimh Ch;. The quotient Lie algebra

Jj=1
g(A) = g(A) /v is called a Kac-Moody algebra.
The Lie algebra g(A) has a triangular decomposition

g(A) :ﬁ.l,_ @h@ﬁ—a

where ny and n_ are the Lie subalgebras of g(A) generated by ey,...,e, and
fi,--., fn, respectively. Then v = (rNny) @ (tNn_) and

T Q [ﬁ+,ﬁ+] D [ﬁ_,ﬁ_].

It is reasonable and fruitful to view the Hopf algebra A, in Example as
the analog of ny @ b with the abelian Lie algebra § replaced by an abelian group
G. The analog of h & ny /(N ny) then will be the quotient Hopf algebra of A, by
the maximal Hopf ideal contained in (X?2).

2.5. Coinvariant elements

The main topics in this section are Hopf modules, one-sided coideal subalgebras
and coinvariant elements.

DEFINITION 2.5.1. Let C be a coalgebra with a distinguished group-like element
1o € G(C). Let V be a left C-comodule with comodule structure dy : V — CQV,
and let W be a right C-comodule with comodule structure dy : W — W @ C. The
C-coinvariant elements of V' and W with respect to 1¢ are defined by

OV ={veV|dy(v) =1c @},
Wl ={weW|dww) =welc}

LEMMA 2.5.2. Let C be a coalgebra with a distinguished group-like element 1¢,
and let X be a vector space. Then the linear maps

X 50 ®X), z—1lc®r,
X > (X0)°% -1 lg,
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are bijective, where the C-comodule structures of C ® X and X ® C are A ® idx
and idx ® A, respectively.

ProOOF. We only consider C ® X. For all x € X, 1¢ ® x is coinvariant since
1c is group-like. Conversely, let >°7" | ¢; @ z; € °“(C ® X). Then

n

201(1) @ Ci(2) @ T = Z le ® ¢ ® ;.

i=1 i=1
Applying ide ® e ® idx to this equation gives > 1", ¢; @ z; = 1 @ Y1, e(e;)xi,
hence Y1 ¢; ®x; € 1 ® X. O

If H is a bialgebra, we define H-coinvariant elements of H-comodules with
respect to the unit element 1 € H.

DEFINITION 2.5.3. Let H be a Hopf algebra, V a vector space, (V,p) € My,
and (V,6) € M. Then (V, p, ) is a right Hopf module over Hif§: V — V®H,
v () ® v(1), is right H-linear, that is,

8(v-h) = v) - hay ® vy o)
for all h € H and v € V, where p(v®h) =v-h for allv € V, h € H. The category

Mg of right Hopf modules over H has right Hopf modules over H as objects and
right H-linear and right H-colinear maps as morphisms.

Let M be a vector space. Then (M ® H,idy ® p,idy ® A) is a right Hopf
module over H.
The following result is also known as the fundamental theorem of Hopf modules.

THEOREM 2.5.4 (Larson-Sweedler). Let H be a Hopf algebra, and (V,p,d) a
right Hopf module over H.
(1) The map ¥ :V — VH v v)S(vay), is well-defined.
(2) Let h € H and v € V. Then 9(vh) = 9(v)e(h).
(3) The multiplication map V<°H @ H — V, v @ h + vh, is an isomorphism
of right Hopf modules over H with inverse given by v — 9(v(g)) ® v(1)-

PRrOOF. (1) Let v € V. Then J(v) € V¥  since
3(v0)S(v)) = v0)S(u) @ vy S(ve) = v S(vm) © 1.
(2) Forallv eV, he H,
19(vh) = ’U(O)h(l)S(U(l)h(g)) = U(O)h(l)s(h(Q))S(v(l)) = 19(7})5(]1).
(3) follows easily from (1) and (2). O
We note that by Theorem 2Z.5.4] and by Lemma 2.5.2] the functor
My = ME, M — M@ H,
mapping a linear function f onto f ® idy, is an equivalence of categories.

DEFINITION 2.5.5. Let C be a coalgebra, and B C C a subspace. Then B is
called a right coideal of C if A(B) C B® C (that is, B is stable under the right
coaction of C). It is called a left coideal of C'if A(B) C C ® B.

LEMMA 2.5.6. Let C be a coalgebra. Let I C C be a coideal with canonical
coalgebra map m : C — C/I, ¢ — T, and let u € C be a fived element. Let
gy :C = C/I, c— e(c)u.
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(1) Define
CoCN ={ceC|cu @) =cou}.
Then C°C/1 is a left coideal of C, and w|C°C/T = ¢,|C°C/T. Moreover,
any left coideal D of C such that w|D = &,|D is contained in C<°/1.
(2) Define
wC/lc={ceC| C1) ® @) =u®ch.

Then < C/1C is a right coideal of C, and 7|*°C/1C = ,|°¢/1C. More-

over, any right coideal D of C such that w|D = €,|D is contained in
coC/IC.

PROOF. (1) Define linear maps A, i; : C — C @ C/I by
Alc) =y ®ca), iilc)=c®@u
for all ¢ € C. Thus C°°¢/! = ker(A —i;). Since A and i, are left C-colinear,
C°C/T ig a left coideal of C. Note that
m(c) = m(e(ey)eqe)) = elcqy)m(c)) = e(c)u = eu(c)

for any ¢ € C° /1,
Let now D C C be a left coideal with 7|D = €, |D. Then

d) @ dez) = d) @ m(d()) = dr) @ e(dr))u=d @7

for any d € D, and hence D C C° /T,
The proof of (2) is analogous to the one of (1). O

If G is a group and G’ C G is a subgroup, then the quotient set G/G’ of left
cosets is in general not a group but just a set on which G acts from the left. We now
define homogeneous spaces such as G/G’ for Hopf algebras or bialgebras. Thus we
have to define general quotient objects and dually general subobjects of a bialgebra.

DEFINITION 2.5.7. Let A be a bialgebra and B C A a subspace. Then B is
a right (left) coideal subalgebra of A if B is a subalgebra and a right (left)
coideal of A.

There is a correspondence between right or left coideal subalgebras and quotient
coalgebras and left or right modules of a bialgebra. These are the quotients and
subobjects of a Hopf algebra which generalize homogeneous spaces for groups.

PROPOSITION 2.5.8. Let A be a bialgebra.

(1) Let B be a right or left coideal subalgebra of A. Let BT = ker(¢|B). Then
AJABT is a quotient coalgebra and a quotient left A-module of A, and
A/BTA is a quotient coalgebra and a quotient right A-module of A.

(2) Let I be a coideal and a left or right ideal of A. Then

A = Lg e Alany ®ag =a® 1}
is a left coideal subalgebra of A, and

o p={acAlam ®ap =1®a}
s a right coideal subalgebra of A.
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PROOF. (1) By Lemma [LT.14, BT is a coideal of A, hence AB™ is a coideal
and a left A-submodule of A. Then A/ABT™ is a quotient coalgebra and a quotient
left A-module of A. Similarly, A/B* A is a quotient coalgebra and a quotient right
A-module of A.

(2) Let I be a coideal and a left ideal of A. By Lemma Z5.6(1), A4/ is a
left coideal of A. It is also a subalgebra of A. Indeed,

(aa’)(1) @ (aa’) () = a@)a(ry ® a)a(y) = a)a) @ @)y

for all a,a’ € A, since A/T is a left A-module. If a,a’ € A°°4/! then

(aa") 1) ® (aa’) o) = a@yd’ @ a)l = ayd’ @ ap) = ad’ @ 1.
Similarly it is shown that A°4/7 is a left coideal subalgebra of A if I is a coideal
and a right ideal, and that ®©4/! A4 is a right coideal subalgebra of A if T is a coideal
and a left or right ideal of A. |

EXAMPLE 2.5.9. Let G be a group, G’ C G a subgroup and G/G’ the set of left
residue classes § = gG’, g € G. Then the vector space kG /G’ with basis g, g € G,
is a left kG-module and a coalgebra by

g =79, Mgya(9)=9®7
for all z,g € G.
Since (kG")T = ker(e : kG’ — k) is the subspace of kG’ spanned by the elements
g —1,¢ € G, we see that kG(kG')* = (kG’)". Hence

kG/kG(kG')T = kG/G', g g for all g € G,

is an isomorphism of left kG-modules and of coalgebras.
Thus the group algebra kG’ is not only the vector space kernel of the quotient
map kG — kG/G’, but if A =KkG and B = kG, then

B — A©A/ABT _ coAJABT 4

We will see in Theorem that pointed Hopf algebras have a rich quotient
theory. There is a one-to-one correspondence between all quotient objects of H and
a large class of subobjects.

In the following example we will use the notion of the coequalizer of two mor-
phisms.

DEFINITION 2.5.10. Let C be any category and f,g : X — Y be morphisms.
An equalizer of f and g is a morphism e : E — X such that fe = ge, and for
each morphism ¢’ : £/ — X with fe’ = ge’ there is a unique morphism h: £/ — FE
with eh = ¢/. The diagram

f
E—~+X—=Y
g

is called the equalizer diagram. Dually, a coequalizer of f and g is a morphism
c¢:Y — C such that ¢f = cg, and for each morphism ¢ : Y — (' satisfying
c f = g there is a unique morphism h : C' — C’ with hc = ¢/. The corresponding
diagram ;
X ?; Yy —=—C

is called the coequalizer diagram.
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If they exist, both equalizers and coequalizers are known to be unique up to
unique isomorphisms. Moreover, the morphism e in the equalizer diagram is a
monomorphism, that is, if di,ds : D — E with ed; = eds, then d; = dy. Similarly,
the morphism ¢ in the coequalizer diagram is an epimorphism.

If C is the category of abelian groups, the kernel of f — g with the inclusion
map e is an equalizer of f and g, and the cokernel of f — g with its quotient map ¢
is a coequalizer of f and g.

ExaAMPLE 2.5.11. Let A be a bialgebra and B C A a left coideal subalgebra.
Let py € Hom(A ® B, A), a® b — ae(b), and let p : A® B — A denote the
multiplication map. Then the canonical map 7 : A — A/ABT is the coequalizer
of p; and u. If A is finite-dimensional, then by duality, B* is a coalgebra and left
A*-module quotient of A*, and 7* : (A/ABT)* — A* is the equalizer of the maps
pi,p*: A* = (AR B)* & A*® B*. Thus (A/AB™)* is the left coideal subalgebra of
right B*-coinvariant elements of A*. In particular, if G is a finite group and G’ C G
is a subgroup, then k&/¢" = (kG/G')* is naturally embedded into k& = (kG)* as
the left coideal subalgebra of right k% -coinvariant elements of k€.

EXAMPLE 2.5.12. Let n > 2 be an integer and ¢ € k a primitive n-th root
of unity. The following subalgebras of the Taft Hopf algebra 77, ,, are left coideal
subalgebras.

(1) R=Kklz],

(2) k[g™], 1 <m < n, m|n,

(3) k[g™, z], 1 <m < n, m|n,

(4) Ry =k[z+ ag], 0 # a € k.
The only proper Hopf subalgebras in this list are in (2). Moreover, R, # Rg in (4)
for all 0 # «a,8 € k, a # 5. One can show that this list contains all left coideal
subalgebras of Ty ;,.

2.6. Actions and coactions

Abstract groups are studied via their actions on sets, that is, as transformation
groups. Hopf algebras form the natural framework to describe actions on algebras.

DEFINITION 2.6.1. Let H be a bialgebra, and A an algebra. Assume that A is
a left H-module with module structure A\: H® A — A, h® a — h-a. Then (A, \)
is called a left H-module algebra if for all h € H and a,b € A,

(2.6.2) h-1=¢(h)l.
If no confusion is possible, we suppress A in the notation.

Equations (Z6.1) and (Z6.2]) should be read as a very general Leibniz rule.
Indeed, according to them, primitive elements act by derivations of A.

REMARK 2.6.2. Let H be a bialgebra and (A, A) a left H-module algebra.

(1) Let g € G(H). Then A — A, a — g - a, is an algebra homomorphism. If
g is invertible, then the same map is an algebra automorphism of A.

(2) Let g,h € G(H) and define 0,7 € Alg(A,A) by o(a) =g-a, 7(a) =h-a
foralla € A. If x € Py ;(H) then A — A, a — x-q, is a (o, 7)-derivation.

This follows from the explicit formulas of the comultiplication.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



94 2. BASIC HOPF ALGEBRA THEORY

Let H = kG be the group algebra of a group G. Then by (1), there is a
bijection between all left kG-module algebra structures kG ® A — A and all group
homomorphisms G — Aut(A), where Aut(A) is the group of algebra automorphisms
of A.

Let H = U(g) be the universal enveloping algebra of a Lie algebra g. Then
by (2) (with ¢ = h = 1), there is a bijection between all left U(g)-module algebra
structures on A and all Lie algebra homomorphisms g — Der(A), where Der(A) is
the Lie algebra of derivations of A with commutator of derivations as Lie bracket.

EXAMPLE 2.6.3. Let H be a Hopf algebra. Then H acts on itself via the left
adjoint action

H® H— H, h®x»—>adh(x):h(1)x8(h(2))
With this action, H becomes a left H-module algebra, since
ad h(zy) = ha)zyS(he)) = ha)aS(he)h@)yS(hay) = ad ha)(z) ad he)(y)
for all h € H and z,y € A.

EXAMPLE 2.6.4. Let A be an algebra, H a Hopf algebra, and v : H — A an
algebra morphism. Define

ady : H@A— A, h®a—v(ha))ay(S(he))-
Then A is a left H-module algebra with action ad,.

PROPOSITION 2.6.5. Let H be a bialgebra and A an algebra which has a left
H-module structure H ® A — A, h® a — h-a. Assume that the algebra H is
generated by a subset M C H such that for all h € M and a,b € A

h-(ab) = (h@1y-a)(h@) -b), h-1=c¢e(h)l.
Then A is a left H-module algebra.
PROOF. As in the proof of Proposition [[L2.23] let
H' ={heH|h-(ab) = (hu)-a)(h() -b) for all a,b e A, h-1=¢e(h)1}.

Then M C H'. We show that H’ is a subalgebra of H. Clearly, 1 € H and H' is
a subspace of H. If g,h € H', then gh € H’ since

(gh) - (ab) = g - (h - (ab))
=g+ ((hq) - a)(h@) - b))
= ((gyh)) - a)((92)h2)) - b)
= ((gh) 1y - a)((gh)(2) - b)
for all a,b € A, and (gh)-1=g- (h-1) =e(g)e(h)l = e(gh)1. O
LEMMA 2.6.6. Let H be a bialgebra, A a left H-module algebra, and V. C A

a subspace of A. Then the subalgebra of A generated by H -V is an H-module
subalgebra of A.

Proor. Let hy,...,h, € H,vy,...,v, € V,n>1,and h € H. Then

hoe((hy-v1) - (hn - vn)) = ((hayha) - v1) - ((hnyhn) - vn).-
Thus the subalgebra of A generated by H -V is an H-submodule of A. O
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LEMMA 2.6.7. Let H = k{g,z) be the free algebra as a bialgebra in Ezam-
ple 248 with g € G(H) and v € Py (H). Let A be an algebra, 0 : A — A an
algebra endomorphism, and § : A — A a (0,ida)-derivation. Then A is a left
H-module algebra with g -a = o(a), z-a=0(a) for all a € A.

PROOF. Since H is the free algebra in g,z, a left A-module structure on A,
that is, an algebra homomorphism H — Hom(A, A), is given by any action of g
and z. By Proposition Z.6.5] A is an H-module algebra since the axioms (2.6.1))
and ([Z6.2) are satisfied for g,z € H by Remark O

DEFINITION 2.6.8. Let H be a bialgebra and A a left H-module algebra. The
smash product algebra A#H is A ® H with the algebra structure

(2.6.3) (a#tx)(b#y) = a(z) - D)#r@2)y, Naga(l) = 1#1
fora,b € A, z,y € H, where we write a#th = a®h to indicate the algebra structure.

PROPOSITION 2.6.9. Let H be a bialgebra and (A, \) a left H-module algebra.
Then A#H is an algebra. The embeddings

A— A#H, a— adtl, H — A#H, h 1#h,

are injective algebra homomorphisms, and the multiplication map A Q@ H — A#H,
a® h — (a#1)(14h), is bijective.

PrOOF. The multiplication map A#H @ A#H — A#H is well-defined since
it can be written as a composition of linear maps

AQH® Ag H 9A@A8daA8dn . 4 o ro o Ae H

Aaidn@Tma®dn 4 o o Ao Ho H

AR @idn, 4 o 4 o [ o F PARHE, A o
To check associativity, let a,b,c € A and x,y,z € H. Then
(a#tz)((bty)(c#2)) = (a#x)(b(y) - ©)#Y(2)2)
= a(zq) - (0(yq) - ) #7(2)Y(2)
= @(l’(l b)(w T2)Ya) - )#l’ 3)Y(2)%
((agtx)(b#y))(c#2) = (alzq) - b)#2)y) (c#2)
= a(zq) - b)(z@)yq) - )#T3)Y2)%

The remaining claims are obvious. O

REMARK 2.6.10. There is a natural left action of the smash product algebra
A#H in Proposition on A defined by

A#HR® A — A, a#h @z a(h-x).

It corresponds to the natural left action of A#H on (A#H)/(A® H™). Thus there
is a natural algebra homomorphism

A#H — End(A),
of A#H into the algebra of linear endomorphisms of A.
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We will follow the convention to write ah instead of a#h in A#H for alla € A,
h € H. Thus we identify A and H with subalgebras of A#H. The multiplication
in A#H is then determined by the rule

(2.6.4) ha = (h(l) . a)h(g)
foralla € A, h € H.

Smash products generalize several familiar constructions in algebra.

EXAMPLE 2.6.11. Let G be a group, A an algebra, and G — Aut(A) a group
homomorphism. Thus A is a left kG-module algebra. The smash product algebra
Ax G = A#kG is called the skew group algebra.

EXAMPLE 2.6.12. Let m,n > 2 be natural numbers, and 0 # ¢ € k with
q" = 1. Let G = (g) be a cyclic group of order n with generator g, and k[z| the
polynomial algebra in the indeterminate . Then the quotient algebra k[z]/(z™) is
a left kG-module algebra with G-action given by the group homomorphism

G — Aut(klz]/(z™)), g~ (T~ qT).
The algebra map
kg, x| g" =1,2™ = 0,9z = qug) = k[z]/(«")#klg], g — 1#g, © — TH#1,

is bijective, since the elements z'¢g’, 0 < i < m—1, 0 < j < n — 1 span the
vector space on the left-hand side, and their images are a vector space basis in
K[z]/(+™)4kG.

In particular, we have found a vector space basis of n? elements of the Taft
Hopf algebra T, in Example ZZI0 As an application, we can now prove that
the order of the linear automorphism S? of the Taft Hopf algebra is n. Indeed,
S(z) = —g~tx and §?(x) = g~ lwg = ¢ tu.

EXAMPLE 2.6.13. The argument in Example[Z.6.12] easily extends to the general
case of the Hopf algebras A, in Example The free algebra k(X) is a left
kG-module algebra by the group homomorphism

G — Aut(k(X)), g+ (x+— xz(9)x for all z € X),
and the algebra map
Ay > k(X)#KG, g 1#g, v a#lforallge G,z € X,
is bijective.
Smash products allow us to define Ore extensions and to prove their associa-

tivity in a natural way.

REMARK 2.6.14. Let A be an algebra, o : A — A an algebra endomorphism,
and 6 : A — A a (0,id)-derivation. Let H = k(g,x) be the free algebra, and
A the left H-module algebra defined in Lemma [Z6.71 Then the subalgebra of H
generated by z is the polynomial algebra k[x]. Since z is (g, 1)-primitive,

A#k[z] C A#k(g, z)

is a subalgebra. We define the Ore-extension A[f;0,d] of A as the subalgebra
A#k|x] of the smash product, where we write 6§ instead of 2. By Proposition 2:6.9]
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A#k[z] is a free left A-module with basis z°, i > 0. With other words, the elements
of Al6;0,0] can be written in a unique way as left polynomials

n
Zazﬂi, a; € A, 0<i<n.
i=0

Multiplication is determined by the rule
(2.6.5) fa =o(a)f+6(a)
for all a € A.
In case o is the identity of A, we write A[0;6] = A[f;id,]. This algebra is a
formal differential operator algebra.
In case § = 0, we write A[f; o] = A[f;0,0].

Ore extensions, in particular iterations of them, are often suitable to construct
vector space bases of algebras.

DEFINITION 2.6.15. Let A be an algebra, and B a subalgebra of A. Let n > 1,
and 1,...,2, € A. Let I be a subset of {1,...,n} and let N : I — N be a map
with N (i) > 2 for each ¢ € I. If A is a free left B-module with basis

xiteexi an,...,an > 0,0, < N() for all i € I,

then this basis is called a restricted PBW basis of A over B. If [ is the empty
set, then the basis is said to be a PBW basis of A over B. If B = k1 then one talks
about a (restricted) PBW basis of A.

EXAMPLE 2.6.16. Let k[t] be the polynomial algebra in the indeterminate ¢, and
let ¢ : k[t] — k[t] be the derivation d(f) = % for all f € k[t]. Then A; = KkJt][0; ]
is the Weyl algebra. Note that

kiz,y|zy—yz=1) = A1, z—0, y—t,
is an algebra isomorphism, since the elements z'y7, i, j > 0, span the vector space
k(z,y | xy — yx = 1), and their images form a PBW basis of A;. Under the action

defined in Remark 2610, = acts on k[t] as the derivative 4 and y as multiplication
with ¢.

EXAMPLE 2.6.17. We describe the quantum group U, (sly) of Example 41T

as an iterated Ore extension. First let
A=k(F,K,K'| KK '=1=K 'K, KFK™' =q?F).
The algebra k|K, K| =k(K,K ' | KK~! =1= K~'K) is the group algebra of
the infinite cyclic group generated by K. Let
o1 k[K, K™ = k[K, K™
be the algebra automorphism given by o1(K) = ¢?K. Then the algebra homomor-
phism
A—Kk[K, K '[0;01], F—0, Kis K, K'— K1

is bijective, since the elements K*FJ, 4,5 € Z, j > 0, span A as a vector space, and

their images in the Ore extension are a basis.
The map

c:A— A Fw— F, K*'— P2k,
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is a well-defined algebra automorphism. By Lemma [2.3.17] it is easy to check that
there is a (o,1d)-derivation

g1
§:A— A, S§(K)=0, 5(F):%.

Then the algebra homomorphism
U,(sly) — Al;0,6], K*'— K*' F > F, E—0,
is bijective. Again this follows since the elements
K'FIE* i j ke, j k>0,

span Uy (sly) and their images form a vector space basis of the Ore extension.
In particular, we have found a PBW basis of U, (sly) over k[K, K1].

For the complete picture, in addition to actions on algebras we have to consider
coactions of bialgebras on algebras.

DEFINITION 2.6.18. Let H be a bialgebra and A an algebra which is a right
H-comodule with structure map 0 : A - A® H, a = a(y) ® a). Then (A,0)
(or simply A) is called a right H-comodule algebra if the structure map § is an
algebra homomorphism, where A ® H is the usual tensor product of algebras. In
terms of elements this means that for all a,b € A,

(2.6.6) d(ab) = ayb) ® aq)b),
(2.6.7) i(l)=1®1.
Left H-comodule algebras are defined similarly.
REMARK 2.6.19. For any bialgebra H and right H-comodule algebra A,
AT =fae Alagy®any=a®1}

is the set of right H-coinvariant elements. It is a subalgebra of A. If A is a left
H-comodule algebra,

ol g — {a €A | a(-1) ®a(0) =1 ®a}
is the subalgebra of left H-coinvariant elements of A.

EXAMPLE 2.6.20. Let A, H be bialgebras, and w : A — H a bialgebra homo-
morphism. Then A is a right H-comodule algebra with structure map

AL Aw Al 4o

EXAMPLE 2.6.21. Let H = k[x;j]1<i j<n be the bialgebra in Example 247
The commutative polynomial algebra k[z1,...,x,] is a right H-comodule algebra
with structure map

kl[z1,..., 2] i)k[xl,...,xn]®H7 xjHiné@xij, 1<j<n.
i=1

The map § represents multiplication of n X n-matrices on the n-dimensional affine
space, since

(5(:171), ey 5(In)) = (Il, ce 7l‘n) X (xij)lfi,jfn-
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In general, actions of affine group schemes on affine schemes are given by com-
mutative comodule algebras of commutative Hopf algebras.

Smash product algebras A# H have an essential additional structure. They are
right H-comodule algebras.

LEMMA 2.6.22. Let H be a bialgebra and A a left H-module algebra. Then
A#H is a right H-comodule algebra with comodule structure map

d=1ds®@A: A#H — A#H ® H,
and (A#H)°H = A@kl = A.
ProOF. To see that § is an algebra map, let a,b € A and xz,y € H. Then
S((at#tx)(b#ty)) = (a(zq) - D)#a(2)y)
= a(z@) - b)#r2)ya) ® T(3)Y(2)
d(aftx)d(bi#ty) = (aftz (1) @ 2(2)) (bH#Y(1) @ Y(2))
= a(z() - O)#T(2)y01) @ T(3)Y(2)-
The equality (A#H)°H" = A®kl = A follows from Lemma a

It is easy to see that H-module algebras and H-comodule algebras can be
defined alternatively as algebras A whose structure maps g : A ® A — A and
1 :k — A are H-linear and H-colinear, respectively.

In the next theorem we formulate a necessary and sufficient condition for a
comodule algebra to be a smash product.

THEOREM 2.6.23. Let H be a Hopf algebra and (A,d) a right H-comodule
algebra with § : A — A® H, a > aq) ® a(y).

(1) Assume that there is an algebra map v : H — A which is right H-colinear,
where H is a right H-comodule via A. Then

R=A" ={aeAlap ®an) =a®1}
is a left H-module algebra with H-action
adp: HOR— R, h@r = y(ha)rv(S(he))-
The map
V:A—= R, a— ay(S(an))),
is a well-defined left R-linear map with 9|R = idr. The maps
®: R#H — A, r#h = ry(h), V:A—= R#H, a— I(aw))#an),

are mutually inverse right H-colinear algebra isomorphisms.
(2) Conversely, assume that there is a left H-module algebra R and a right
H-colinear algebra isomorphism ® : R#H — A. Then

~v:H — A, h— ®(1#h),
is a right H-colinear algebra map.

Proor. (Il) We first show that R is a left H-module algebra. By Example[Z.6.4]
A is a left H-module algebra under the action ad,. For all h € H,

5(v(h)) = v(ha)) ® h(z),
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since -y is right H-colinear. Hence for all h € H, r € R,

S(y(h))rv(S(h))) = 0(v(h1)))d(r)6(S(hz))
= v(h@))ry(S(ha ))®h2>15(h )
= y(h@)rv(S(h))) ®

Thus the map ady : H ® A — A restricts to adg : H ® R = R.

The vector space A is a Hopf module in M with H-comodule structure ¢ and
H-module structure A H —» A, a® h — av(h). By Theorem 254 ¢ : A — R is
a well-defined map, and ¢, ¥ are inverse isomorphisms.

The map @ is clearly right H-colinear, and it is an algebra map, since for all
g,h € Hand r,s € R,

(r#g)®(s#h) = rvy(g)sy(h)
= 17(9(1))57(S(9¢2)))7(9(3))7(h)
r(gq) - 8)#92)h)

@) is obvious. O

REMARK 2.6.24. In the situation of Theorem 2.6.23] we note the following rules
for ¥ which are easily checked. For all a € A, h € H,

(1) d(ay(h)) = I(a)e(h),
(2) d(v(h)a) = h-d(a).

Here is a useful tool to compute R = A% H

LEMMA 2.6.25. Under the assumptions of Theorem 2.6.23], let W C R be a
vector subspace such that A as an algebra is generated by W and y(H). Then the
algebra R is generated by (adgy(H))(W).

PROOF. Let R’ be the subalgebra of R generated by (adgry(H))(W). By
Lemma2.6.6] R’ is an H-module subalgebra under the adjoint action. Hence R'# H
is a subalgebra of R#H. The restriction of the isomorphism ® in Theorem 2:6.23|(1)
to R'#H is surjective, since W and v(H) generate A. Thus R’ = R. O

2.7. Cleft objects and two-cocycles

We have seen in Theorem [2.6.23] that smash products have an elegant descrip-
tion as right H-comodule algebras which admit a right H-colinear algebra map
~v: H — A. In this section we study a more general situation.

DEFINITION 2.7.1. Let H be a Hopf algebra and (A4,d) with 0 : A - A® H
a right H-comodule algebra. Then A is H-cleft if there is a right H-colinear map
v : H — A which is invertible with respect to convolution. Then v is called a
section if y(1) = 1. An H-cleft object is an H-cleft right H-comodule algebra
with A«H = k1.

We note that in the definition, v can always be assumed to be a section by
replacing v by vy(1)~!. Let R be a left H-module algebra, and A = R#H the
smash product. The map H — A, h — 1 ® h, is a right H-colinear algebra map.
Hence A is H-cleft, since any algebra map v : H — A is invertible with inverse 7S.
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The explicit description of H-cleft H-comodule algebras as an algebra structure
on R ® H is much more complicated than for smash products. It involves some
kind of general two-cocycle. In this section we will only consider H-cleft objects.
They are completely described by two-cocycles defined as follows.

DEFINITION 2.7.2. Let H be a bialgebra over a field k. Amapo: H® H — k
is called a two-cocycle for H, if it is convolution invertible and satisfies

(2.7.1) o(z1) @ ya))o(@@)ye) ®2) = o(ya) ® 21))0(@ @ y@2)2(2))
for all z,y,z € H. We say that o is normalized if c(1® 1) = 1.
REMARK 2.7.3. (1) By Definition [L2.9] a linear map o : H ® H — k is con-

volution invertible if and only if there is a linear map ¢~ ! : H ® H — k such
that

oz @ym))o (ze) ®ya) =0 (z0) @ ya)o(ze) @ ye)) = e(x)e(y)
for all x,y € H.

(2) For any two-cocycle o for a Hopf algebra H and for any A € k with A # 0, the
map Ao is a two-cocycle for H with convolution inverse A~'o~!. The invertibility
of o implies that (1 ® 1) # 0. Therefore, any two-cocycle for H is a multiple of a
normalized two-cocycle.

(3) Let H be a bialgebra and let o be a two-cocycle for H. Then the map
o H®H -k, 2@y — o(y®z), is a two-cocycle for H°P. The convolution
inverse of 0P is (o~ 1)°P.

(4) The inverse of a two-cocycle o for a bialgebra H is a two-cocycle for HP.
Indeed, 2771)) is equivalent to

(c@e)*xo(u®id) =(e®0) *o(id @ u)
in Hom(H ® H ® H,k). Convolution multiplication of the latter from the left with
e ® o~ ! and from the right with 0~ (y ® id) results in
(2.7.2) o ya) @ 2)a(z @ ye) = o(za) @Yyayz)o (T@Ye) © 2@2)
for all z,y,z € H. Then additional convolution multiplication from the left with
o~ !(id ® p) and from the right with 0 ~! @ ¢ yields
o Mz @ya)21))0 " (Ye) © 22)) = 0 (zmya) @ 2)0 " (@(2) @ Y2)

for all x,y,z € H.
(5) Let o be a two-cocycle for a bialgebra H. Then

(2.7.3) clzel)=c(l®z)=cx)o(1®1),

(2.7.4) clzel)=c(1®2)=c(x)o (1®1)

for any € H. Indeed, o(z ® 1) = e(x)o(1 ® 1) by 72) with y = z =1 and by
the definition of 0~1. Then o(1®z) = e(z)o(1® 1) for any x € H using the latter

equation for the bialgebra H°P with the two-cocycle o°P. The equations in (2.7.4)
follow from (Z7.3) applied to HP and o~ 1.

REMARK 2.7.4. Let G be a group with neutral element e and kG the group
algebra. A function o : G x G — k* is a normalized two-cocycle of the group G
(with respect to the trivial action), if for all z,y,z € G,

o(x,y)o(ry, z) = o(y,z)o(z,yz),
o(z,e) =oc(e,z) = 1.
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A linear map o : kG ® kG — k is a normalized two-cocycle for the Hopf algebra
kG if and only if the restriction of o defines a normalized two-cocycle of the group
G. Note that for any two-cocycle o for kG, o(g® h) # 0 for all g, h € G, since o is
convolution invertible.

Let G be abelian. Then any bilinear form ¢ : G x G — k* is a normalized
two-cocycle.

Let G be a free abelian group with basis g1, .. ., gg. Then any family (4;)1<s <o
of non-zero elements in k defines a normalized two-cocycle o : kG @ kG — k which
is determined by the bilinear form o : G x G — k* given by o(g;, g;) = 0y; for all

i,7€{L,...,0}.

LEMMA 2.7.5. Let H be a Hopf algebra and o a two-cocycle for H. Then for
allz € H,
(2.7.5) o(zy @ S(22))o " (S(z(3)) ® z4)) = &(2).

ProoF. Equation Z7.2) with z ® y ® 2z = x(1) ® S(7(2)) ® x(3) yields
o7 (S () ® 2))o(z) © S(x(z))

= o (1) ® S(xw)rs))o (22 S(23) @ ()
for all z € H. The left hand side of ([Z77.6) is just the left hand side of (273]). The

right hand side of (277.0) equals e(x) because of the antipode and counit axioms
and Remark 27.3(5). O

LEMMA 2.7.6. Let H be a Hopf algebra, and let (A,0) be an H-cleft object with
section v : H — A. Then
(1) 6(v(z)) = v(xzn)) @22y for allx € H,
(2) 6(v M=) =7 Hz@) @ S(x@)) for allz € H.
PROOF. (1) just says that ~ is right H-colinear, and (2) follows since § induces

an algebra map Hom(H, A) — Hom(H, A ® H) with respect to convolution, and
the formula in (2) is an expression for dy~1(x). O

(2.7.6)

REMARK 2.7.7. The axiom of a two-cocycle is explained by the following equiv-
alence which is easily checked.
Let H be a bialgebra and let 0 : H ® H — k be a linear map. Define a new
product on the vector space H by
oy HOH — H, @y o(za) @ ym)T@)ye)-
Then H with p sy is an associative algebra with the old unit 1 if and only if o

satisfies (27.1)), 273)), and if c(1® 1) = 1.

DEFINITION 2.7.8. Let H be a bialgebra and ¢ a normalized two-cocycle for
H. We denote by H(,) the vector space H with algebra structure given by

(2.7.7) H®H—>H, zRy— a(x(l) ® y(l))x(z)y(g).
The next theorem shows that H-cleft objects are given by two-cocycles, and
that two-cocycles can be constructed by finding a section of an H-cleft object.
THEOREM 2.7.9. Let H be a bialgebra.

(1) Let o be a normalized two-cocycle for H. Then H(yy is an H-cleft object
with H-comodule algebra structure A : H,y — Hy @ H and section
y=id: H = Hy.
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(2) Let A be an H-cleft object with section v and comodule algebra structure
0:A—>AQH, a = ag) ® a()y- Let

oz ®y) =v(zn)v ) (Teye)

for all x,y € H. Then o is a normalized two-cocycle for H, and the map
v : Hy — A is a right H-colinear algebra isomorphism.

ProOF. (1) By Remark 2.7.7 and Definition 7.8, H,) is a right H-comodule
algebra. Lemma implies that v = id is invertible with inverse

7 N z) =07 (S(22)) @ (3))S (1))

forall x € H.

(2) Using Lemma it follows easily that for all z,y € H and a € A, the
elements o(z®y) = v(z1))7(ya)7  (@@)Y@) and a@gyy(aq)) are in A7 =KkI1.
Hence o defines a multiplication p’ in H,, and

A A— H(U), a —r a(o)’yfl(a(l))a(z),

is a well-defined linear map. Now it is easy to check that YA =id4, Ay = idy, that
o: H® H — k is invertible with inverse given by

o Nz @y) =v(zayya)r W) (ze)
for all z,y € H. Moreover, for all 7,y € H(,),
(W (x @ y)) = v(0(x0) © ya))z@)Ye)
= ()W) @eye)r(@e)ye) = (@) (Y)

by definition of o. Thus, v : H,) — A commutes with the multiplication. Hence
H . is an associative algebra, and o is a two-cocycle by Remark 277l This proves
(2). O

2.8. Two-cocycle deformations and Drinfeld double

Two-cocycles play an important role for the construction of new bialgebras.

DEFINITION 2.8.1. Let H be a bialgebra and o a two-cocycle for H. Let
H, = H as a coalgebra with multiplication

fio : Hy @ Hy = Hy, 2@y — 0(z1) @ Y1) Z@)¥2)0 (@) @ Ya)-

THEOREM 2.8.2. Let H be a bialgebra and let o be a two-cocycle for H. Then
H, is a bialgebra. If H is a Hopf algebra, then H, is a Hopf algebra with antipode
S,, where

SU(.’[) = O’(SL’(l) & S(.’[(g)))S(.’[(g)) 071(8(1’(4)) & 1’(5))

forallx € H,.
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PRroOOF. (1) We first show that H, is a bialgebra. For any z,y, z € H we obtain
that

Po (T ® 1o (y @ 2)) = (Y1) @ 2(1)) pho (T @ y(z)z(z))afl(y(s) ® 2(3))
= 0(ya) © 2(1))o(T(1) ® Y(2)2(2))T(2)Y(3)%(3)
oM @) @ Yuyzw)o (Yes) © 2(5))
= 0(z) ©y))o(T@)¥2) ® 21))T(3)Y(3)%2)
o Nz © 23)0 " (zs) @ Yes)
= po(o(r1) ® y(1))$(2)y(2)071($(3) ®Y3)) ® 2)
= i (pte ®1d) (2 @ y @ 2)

by Remark 2-73|(4). Therefore p, is associative.
The unit 1 € H is a unit for H,. Indeed,

pio(x ©1) = () @ Dr@go (2 @ 1)
= 6(.’[(1))0'(1 ® 1)%(2)6(.’[(3))071(1 ® 1)
=z
for all x € H by Remark 27.3(5). Similarly, p,(1 ® ) = x for all x € H.

Clearly, the counit of H, is an algebra map. Finally, the comultiplication of
H, is an algebra map. Indeed, for any z,y € H, we obtain that

Alpo(x ®@y)) = o(z) @ Y1) Az y@e)o (2@ @ yE)
(1) @ Y1) T2 Y@ D @Y (@ DY)
=o(z(1) @ Y1) T2 Y20 (T3 @ Y@E)
® o (T4) DY) T 5y (T6) @ Ye)
= o (T(1) ® Y1) @ to(T(2) @ Y(2))-
(2) Now let H be a Hopf algebra. Let € H. Then

to (1) @ So(2(2)))
= 0(z(2) @ S(z(3)) o (T(1) @ S(w(4)))0 ™ (S(2(5)) © (5))
=0(x4) @ S(z(5))0(z1) @ S(2(v)))
22)S(x(n)o " (2(3) ® S(x(5))0 " (S(2(9) ® T(10))-

The underlined factors can be simplified to (x(3))e(x4))e(2(5))e(x(6))1 by the def-
inition of o~!. Therefore the expression simplifies further to

o(z1) @ S(4))2@2)S(x3)0  (S(x) © ()
= 0’(1’(1) ® S(.T(Q)))O'il(s(x(g)) & $(4)) = 8(%),
where the last equation holds by ([ZZ7.H). The equation
MU(SU(x(l)) (24 x(2)) = €($)
is proven analogously. ]

The bialgebra H, in Theorem is called a two-cocycle deformation of
H.
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REMARK 2.8.3. Let H be a bialgebra, and og, 01 two-cocycles for H. Using
Remark 73(4) it is easy to see that the convolution product p = o * o5 ' is a
two-cocycle for H,,. Then, by Definition 28]

Ho’l = (HJO)P'

If H is the tensor product of two bialgebras, then two-cocycles can be con-
structed via skew pairings.

DEFINITION 2.8.4. Let A,U be bialgebras over a field k. A skew pairing of
A and U is a linear map 7 : A ® U — k satisfying the equations

(2.8.1) T(a®1l)=¢(a), T(1®z)=c(x),
(2.8.2) T(ab® ) = 7(a ® x(1))7(b @ 2(2)),
(2.8.3) T(a®zy) = 7(aq) @ y)7T(ae) ® )

for any a,b € A and z,y € U.

REMARK 2.8.5. Let A, U be bialgebras. A skew pairing 7 of A and U is nothing
but a bialgebra homomorphism ¢ from AP to the dual bialgebra U® of U. The
correspondence is given by the equation

(p(a), ) = 7(a @)

for any @ € A and x € U, where ( , ) denotes evaluation. Therefore, very often skew
pairings can be constructed explicitly, if the algebra A is given by generators and
relations. We will show in Proposition 2.8.7 below that any invertible skew pairing
defines a two-cocycle. This is a very elegant way to actually find two-cocycles.

LEMMA 2.8.6. Let A, U be bialgebras, and 7 : AQU — k a skew pairing. If A is
a Hopf algebra, or U is a Hopf algebra with bijective antipode, then T is invertible,
and for alla € A, x € U,

T Ha®r)=7(S@)®z), T Ha®z)=T1(a®S (x)),
respectively.
PROOF. Assume that A is a Hopf algebra. Then
7 e @ 2)T(a) @ 72)
= T7(S(ap)) ® x))T(a@) ® x2)) = 7(S(an))a@)l ® z) = (a)e(x)

for all a,b € A, u € U, where the second and third equations follow from Defini-
tion 284l The equation 777! = £ ® ¢ is proven analogously.
If U is a Hopf algebra with bijective antipode, the proof is similar. |

PROPOSITION 2.8.7. Let A,U be bialgebras and let H = A® U. For any
invertible skew pairing T of A and U, the map

o H®H =k o((a@2)®(b®y))=-=cla)r(b®x)e(y),
s a two-cocycle for H. The inverse of o is given by
o (a@x)® (bay)) =e(a)r H(b®x)e(y)
foralla,b e A and x,y € U.
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PROOF. Let 07! : H® H — k be as in the proposition. We check first that
o~ ! is the inverse of 0. For any a,b € A and z,y € U we obtain that

o((aq) ®z)) ® (b)) @ yy))o~ ((a(z) ®1(2)) ® (b2) ® Y(2)))
= e(a)7(bay @ T1))e(ya))elag) T (be) ® z2))e(y@)
= e(a)e(b)e(x)e(y)

1 1

and hence oo~ " = €. Similarly, 070 = €.
Now we verify [2.7.1]). Let a,b,c € A and z,y,z € U. Then

a((aq) @ 1)) @ (b)) ® y1)))o((a@)be) ® (2)Y@2) @ (c® 2))
= e(a))T(bay @ za))e(y))e(ae)be))T(c @ 2y 2))e(2)
=7(b®@x1))T(c® 2(2)y)e(a)e(2)
=7(b® .’E(l))T(C(l) ® y)T(C(Q) & x(g))s(a)s(z).
On the other hand,
a((ba) ®y)) @ (c1) ® 2(1)))o((a @ z) ® (baycz) ® Y2)2(2)))
= e(b))T(cay @ yy)e(z))e(a)T(ba)c2y @ 2)e(y(2)2(2))

T(cay ® y)7(be(a) @ x)e(a)e(z)
=7(cy @Y)T(b ® 2(1))7T(C(2) ® T(2))e(a)e(2).
This proves the claim. O

COROLLARY 2.8.8. Let A,U be bialgebras, T : A Q@ U — k an invertible skew
pairing, and let o be the two-cocycle for the bialgebra A® U defined by T in Propo-
sition 22871

(1) (A®U)s is a bialgebra with the comultiplication of A® U. The maps
A= (A®U)y, a—a®1, U—=(A®U)y, 2— 1z,
are injective bialgebra maps. For alla € A, z € U, in (A®U),,

(e®)(1®z)=a®uw,
(1® m)(a ®1)= T(a(l) ® x(l))a(g) ® :E(Q)T_l(a(g) ® :L‘(g)).

(2) If A and U are Hopf algebras, then (AQU), is a Hopf algebra with antipode
Sy, and for alla € A, x € U,

Sg(a (24 1’) = T(S(a(l)) (24 1’(1))(8(61(2)) & S(SE(Q)))T_l(a(:;) & S(.’t(g))).

PRrROOF. (1) By Theorem and Proposition 2287 (A® U), is a bialgebra.
For all a,b € A, the product of a® 1 and b® 1 in (A® U), is given by

o((a@y @ 1) © (by ® 1)) (a@2) @ 1)(by ® o~ ((a@) ® 1) @ (bs) © 1))
= T(b(l) ® 1)ab(2) ® 17’71(1)(3) ® 1)
=ab® 1.
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Similarly, U - (A®U),, z — 1 ® x, is an algebra map. Moreover, for any a € A
andzelU, (a®1)(1®z)=a®z, and

1®z)(a®1)
=o((1®xa)) ® (aq) @ 1))a@) @20 (1@ 2(3) © (a@) © 1))
=7(aq) @ 2))ae) @227 (0@ ©2()-
(2) follows from Theorem and Proposition [Z87] O

The bialgebra (A ® U), in Corollary 2.8.8] is known as Drinfeld’s quantum
double of A and U.

REMARK 2.8.9. Let U be a finite-dimensional Hopf algebra. Then the eval-
uation map 7 : U* ® U — k is an invertible skew pairing of (U*)®P and U by
Lemma Let o be the two-cocycle given by 7 as in Proposition .87 Then
((U*)°P @ U), is called the Drinfeld double of U. It is a Hopf algebra by the
results of this section.

We now discuss two ways to define an algebra map on (A ® U),.

LEMMA 2.8.10. Let C be an algebra and let A,U be subalgebras of C' such
that the multiplication map A ® U — C is bijective. Assume that A and U
are given by generators (a;)icr, and (bg)ker, and relations r;((a;)icr,), j € Ja,
and s;((bk)ker,), § € Ju, respectively. Let Vi = spamy{l,a; | i € I4}, and
Vu = span {1,b; | k € Iy}. Assume that VyVa C VaVy. Then C is canoni-
cally isomorphic to {(a;,bx | i € Ia,k € Iy)/Z, where T is the ideal generated by
ri((ai)icra), J € Ja, sj(bk)kery ), § € Ju, and the quadratic relations of C in
VoVa +VaVy.

PRrROOF. The algebra C is generated by the set {a;, by | i € Ix,k € Iy}. Let
C = {a;,by | i € Ia,k € Iy)/Z. Then, by construction, there is a surjective algebra
map f : C — C with f(a;) = a;, f(bg) = by for all i € I4, k € Iy. Let A
and U be the subalgebras of C generated by (a;)icr, and (by)rer,, respectively.
Then f|[A: A — A and f|U : U — U are bijective by construction. Moreover,
biVy CViVy for all k € Iy and n € N, and hence C = AU. Thus the diagram

A®U mult =

C
fZ@fUl lf
c

AQU ——

mult
of surjective maps commutes, where mult denotes the multiplication map. Hence
f:C — C is bijective. |

PROPOSITION 2.8.11. Let A,U be bialgebras, T an algebra, ¢4 : A — T and
wu : U — T algebra maps, and 7 : A® U — k an invertible skew pairing with
corresponding two-cocycle o for AQ U. Let P C A x U be the subset of all pairs
(a,x) € A X U satisfying

eulzm))palam)r(ae) ®z@) =7(aq) ® zq))palae)pu(@@e)-
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Let (ak)kex and (x;)1er, be generators of the algebras A and U, respectively,
and let C' = span{ay | k € K}. Assume
(1) C C A is a subcoalgebra,
(2) (ag,z;) € P forallke K,l e L.

Then the map
0: (AU)s =T, a®z+— pala)pu(x),

is an algebra map. If T is a bialgebra, and pa, py are bialgebra maps, then ¢ is a
bialgebra map.

PrOOF. Let D = span{x; | I € L}. Note that by (2), (a,z) € P for all a € C,
reD.
Let z,y € U, and assume that for all @ € C, (a,z) € P and (a,y) € P. Then
for all @ € C, (a,zy) € P, since
pu(zayyay)ealam)(ag) ®$<2>y(2>)
= v (@) eu(ya))ealan)T(ae) @ ye)T(as) @ o)
= u(za))T(an) ®ya))e A(a(2))<ﬂU( @)7(a) @ 2(2))
= T(a@) ®za))palas)eu(e)T(an) @ya))eu(Ye)
= 7(aq) @ z1)Y))ralae)rv(®@y@)
where the first equality follows from (Z83]), the second and the third, since the
pairs (a(1),y), (a(2), ) are elements in P, and the last again from (2.8.3)).
It follows that C x U C P, since the elements (z;);cr generate U. Since C
generates the algebra A, a similar computation using ([2.82]) proves that AxU = P.
Hence the formula for the multiplication in (A®U), in Corollary 2.8.8|(1) shows
that ¢ is an algebra map. If T is a bialgebra and @4, ¢y are bialgebra maps, then

¢ is a bialgebra map, since A and U are subbialgebras of (A ® U),, and (A®U),
is generated by AU U. ]

9. Notes

For general Hopf algebra theory, we refer to the books [Swe69], [Mon93|,
[Rad12].

2.4l The Hopf algebras T, ,, in Example have been introduced by Taft
n [Taf71]. The algebra U,(sly) in Example 2Z.4.11] was introduced by Kulish and
Reshetikhin in [KR81), its Hopf algebra structure in 1985 by Sklyanin. The small
quantum group u,(slz), ¢ a root of unity of order 3, was already defined by Nichols
in [Nic78).

Hopf modules have been introduced for abstract Hopf algebras by Larson
and Sweedler in [LS69].

2.7l For general cleft extensions, see [Mon93|, Section 7.2] and the references
therein.

2.8l For the Drinfeld double of U see [Dri87], or [DT94, Remark 2.3]. We
follow the exposition by Doi and Takeuchi in [DT94].
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CHAPTER 3

Braided monoidal categories

Throughout the book, braidings of different type appear and have a strong
impact on many structures. Most of the braidings arise naturally in categories of
Yetter-Drinfeld modules of vector spaces or in other braided categories. In this
chapter we present the general theory of braided (strict) monoidal categories. We
extend basic notions and results from Chapter[Iland Chapter 2lto braided monoidal
categories. This is usually possible, but the proofs can be much more involved. In
Section [3.8] we discuss bosonization in this general context, and in Section B.10] we
prove the important theorem of Radford, Majid and Bespalov which can be viewed
as an extension of the theory of semidirect products of groups.

3.1. Monoidal categories

Let C be a category. We write X € C, if X is an object of C. The class
of morphisms f : X — Y between objects X,Y is denoted by C(X,Y) or by
Home(X,Y). Let ® : C x C — C be a functor. As for the tensor product of vector
spaces, we denote the image under ® of a pair (X,Y") of objects of C by X ® Y,
and the image of a pair of morphisms (f: X = X',g:Y = Y’) by f ® g. Let

a=(axyz: (XQY)®Z—=X® (Y ®2))xyzec

be a natural isomorphism, called an associativity constraint. One says that a
satifies the pentagon axiom, if for all W, X, Y, Z € C the diagram

(WeX)eY)®Z

(3.1.1) WeX)o (Y ®2) We(XeY)eZ

J{aW,X,Y(@Z J{aw,xcgy,z

WeXe (Y e2Z) We(XeY)® 2)

idw®ax,v,z

commutes.
Let I € C be an object, called the unit object, and let

l:(lin®X—>X)Xec, T:(TxiX®I—>X)Xec

109
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110 3. BRAIDED MONOIDAL CATEGORIES

be natural isomorphisms, called unit constraints. They satisfy the triangle
axiom with respect to I, if for all XY € C the diagram

ax,1,y

(Xe)eY X@IRY)
(3.1.2) \ /
Tx®idy ldx@ly
XY

commutes.

DEFINITION 3.1.1. A collection (C,®,I,a,l,7) consisting of a category C, a
functor ® : C x C — C, a unit object I, an associativity constraint a, and unit
constraints [,r is called a monoidal category, if the pentagon axiom and the
triangle axiom hold. Occasionally, such a collection is abbreviated by C.

The pentagon and triangle axioms in a monoidal category imply the commu-
tativity of any diagram constructed from a, !, r and identity maps by tensoring and
composition. This follows from Mac Lane’s coherence theorem, see [Kas95, Theo-
rem XI.5.3].

EXAMPLE 3.1.2. The category M of vector spaces over the field k is monoidal,
where ® is the tensor product of vector spaces, I =k, and a,l,r are the standard
associativity and unit constraints.

EXAMPLE 3.1.3. Let H be a bialgebra. The category g M of left H-modules is
monoidal, where the tensor product of V, W € g M is the tensor product V@ W of
the underlying vector spaces as a left H-module with the diagonal action defined in
Definition [L2.4] The unit object is I = k with trivial action defined by hv = e(h)v
for all h € H, v € V. The associativity and unit constraints are the same as for
vector spaces. In the same way, the category My of right H-modules is monoidal.

ExAMPLE 3.1.4. This example is dual to Example The category MH of
right H-comodules (and similarly the category of left H-comodules) over a bialgebra
H is monoidal, where the tensor product of right H-comodules is the underlying
vector space of the tensor product of the vector spaces with diagonal coaction
defined in Definition [[LZ4l The unit object is I = k together with the H-coaction
k—-k®H,1— 1®1. The associativity and unit constraints are the same as for
vector spaces.

A monoidal category (C,®,I,a,l,r) is called strict if the maps ax y,z,lx and
rx are the identity maps for all XY, Z € C. In this book the monoidal categories
of interest are all categories of vector spaces with an additional algebraic structure
and with associativity and unit constraints as for vector spaces. We follow the
convention to suppress the associativity and unit constraints for these examples,
that is, we view the category of vector spaces and related monoidal categories as
strict monoidal categories.

In many cases it is justified to prove a result for general monoidal categories
by assuming that the categories are strict, see [Kas95l Section XI.5].

Let (C,®,I) be a strict monoidal category.

The dual category C°P has the same objects as C with reversed arrows. Thus
for all objects X,Y in C, Homeor (X,Y) = Home(Y, X). We write f°P : X — Y for
the morphism f:Y — X. Composition of morphisms is defined by

g for = (fg)",
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where f : X — Y and g : Z — X are morphisms in C. The dual category
C°P is strict monoidal with the same tensor product on objects as C and with
fP®g°P = (f ® g)°P for morphisms f, g. We call (C°?,®, I) the dual monoidal
category of (C,®,I).

The reversed tensor product ®"" is defined by

X®YEVY:Y®X, f®revg:g®f

for objects X, Y and morphisms f, g in C. The monoidal category C*V = (C, @™V, I)
is called the reversed category of C.

Algebras, modules, coalgebras and comodules and their morphisms in
a strict monoidal category C are defined as in Chapter [Ilin the category of vector
spaces.

An algebra in C is a triple (A, u,n), where A is an object in C with morphisms
p:A®A— A, n:I— Asuch that the following diagrams commute.

ARAR A2 A A

(3.1.3) u@idJ P

AA—" 4

ToA— "9 A9 A Ael— 2" agA

NN

Let A, B be algebras in C and p: A — B a morphism in C. Then p is an algebra
morphism if the diagrams

ApA—L22 s BeB A—" B
(3.1.5) J/IJ«A lus \ /
nA nB
A— " B I

commute.
Let A be an algebra in C, V an object in C, and A : A® V — V a morphism.
Then (V, A) is a left A-module if the diagrams

A AV 9 Ay Tev—""0 Asv

H®idl J)\ \ /
AQV —2 vV
commute. Let (V, Ay) and (W, Ay ) be left A-modules, and f : V' — W a morphism
in C. Then f is a morphism of left A-modules if

AV —2 L Aew

(3.1.6) J}v ) lAw

V——W

commutes.
Right A-modules and their morphisms are defined similarly.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



112 3. BRAIDED MONOIDAL CATEGORIES

A coalgebra (C,A,¢) in C, where C € Cand A: C - C®C,e:C — I are
morphisms, is an algebra in C°P. If C' is a coalgebra, V € C,and 6 : V - C®V is
a morphism in C, then (V,¢) is a left C-comodule in C if (V,0) is a left C-module
in C°P. Right comodules are defined similarly, and morphisms of coalgebras and
comodules are defined dually to morphisms of algebras and modules.

If C is a coalgebra in C, and A is an algebra in C, we denote by “C and C® the
categories of left and of right C-comodules, and by 4C and C4 the categories of left
and of right A-modules in C, respectively.

LEMMA 3.1.5. Let (A4, 1,m), (A, u,n') be algebras and (C, A ), (C, A, e") coal-
gebras in C. Thenn=1n' ande ==¢'.

Proor. By BI4), n = p(id®@ 7')(n®id) = p(n ®@id)(id @ ') = . The
equality e = ¢’ follows by duality. |

DEFINITION 3.1.6. Let C be a coalgebra and A an algebra in C. The convo-
lution product of morphisms f,g € Hom¢(C, A) is defined by

frg=(C 2% Co0 2% 40 A 1% 4),

It follows easily from the algebra and coalgebra axioms that Home(C, A) is a
monoid with product * and unit C' < I % A.

DEFINITION 3.1.7. Let C and D be strict monoidal categories. A monoidal
functor from C to D is a triple (F, ¢q, p) consisting of a functor F' : C — D, an
isomorphism ¢q : Ip — F(I¢), and a natural isomorphism

p=(pxy : F(X)@F(Y) = F(X®Y))xvec
such that for all objects X,Y, Z € C, the diagrams

F(X)® F(Y)® F(Z) “229%%, p(X) g F(Y @ Z)

(3.1.7) wXX@idl s&x,Y®zl

PXRY,Z

FXeY)oF(Z) 2224, PXeY®Z)

F(X)® I —=—— F(X) [®F(X) —= F(X)

(3.1.8) idm{ l_ midl l_

FX)oF(I) 2L F(Xeol)  F(I)eF(X) 25 FI @ X)

commute. The pair (g, ¢) is called a monoidal structure of F if (F, g, ¢) is a
monoidal functor.

A monoidal equivalence (respectively isomorphism) is a monoidal functor
(F, 0, ) where F' is an equivalence (respectively an isomorphism) of categories.
Recall that a functor F' : C — D is called an equivalence (respectively an isomor-
phism) if there is a functor G : D — C with FG = idp, GF = id¢ (respectively
FG =1idp, GF =idc¢).

In many cases g is the identity. Then the axioms in (B8] say that

(3.1.9) wr,x =idpx) = ©x,1-
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We denote the monoidal functor (F,id, ) by (F,¢) and call ¢ the monoidal struc-
ture of F.
A monoidal functor (F,y) is called strict if ¢ = id.

If (F,¢):C — D and (G,v) : D — & are monoidal functors, then the compo-
sition
(3.1.10) (GF7 )\) :C— €, )\va = G(@XVY)U)F(X)’F(}/) forall X,Y €C,
is a monoidal functor.

Let (F,¢) : C — D be a monoidal isomorphism of categories with inverse
functor G : D — C. Then (G, 1)) is a monoidal functor with
(3.1.11) Yo = Clpawy.aw) ™ GU) 0 GV) = GU V)
for all U,V € D.

REMARK 3.1.8. A monoidal functor (F, @q, @) from C to D preserves algebraic
structures defined in terms of the tensor product, in particular algebras, coalgebras,
their modules and comodules, and the convolution product.

(1) Let (A, p,m) be an algebra in C and (V, A) a left A-module. Then F(A) is
an algebra in D with multiplication and unit

F(A) ® F(A) 224 F(A® A) 2 pea), 125 p1) 2% F(a),

denoted by (F, ¢p,¢)(A), and F(V) is a left F(A)-module with module structure

FA) e F(V) 2% paev) 2% pv),
denoted by (F, o, ¢)(V). For a coalgebra (C,A,¢) and a left C-comodule (V,9),

F(C) is a coalgebra with comultiplication and counit

F(0) X2 roe 0) 2% Foye FO), Fe) D Fa) P

denoted by (F, ¢, ¢)(C), and F(V) is a left F(C)-comodule with comodule struc-
ture

Fv) 29 pe e vy L2 poy e F(V),

denoted by (F, ¢, ) (V).
(2) Let A be an algebra and C a coalgebra in C. Then
HomC(Cv A) - HOD’ID(F(C), F(A))v [ F(f)a
is a monoid homomorphism with respect to convolution.
EXAMPLE 3.1.9. The duality functor M — MV s V* is a monoidal
equivalence with monoidal structure pxy : X*@Y* - (X ® Y)* in Lemma 22.3]

and g : k — k*, 1 — idg. This explains the duality between finite-dimensional
algebras and coalgebras.

Here is an example of a monoidal isomorphism which is far from being strict.
Let H be a bialgebra, and 0 : H® H — k a convolution invertible linear map. Recall
from Definition and Remark [Z73(5) that o is a normalized two-cocycle for
H if and only if for all z,y,2z € H,

(3.1.12) o(z@) @ Ym))o(@@)Ye) ® 2) = oY) ® 21))0(T @ Yo %)),
(3.1.13) o(z®1)=0(1®z) =e(z).
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ProproOSITION 3.1.10. Let H be a bialgebra and 0 : H ® H — k a normalized
two-cocycle for H. Let F : M — o M be the identity functor. For all X,Y in
HM et

Yoxy " FX)FY)—=>FXQY), zQy— G(x(_l) X y(_l)):c(o) ® Y(0)-
Then (F,¢,) : M — o M is a monoidal isomorphism.

PrOOF. Let X,Y € # M. For simplicity, let pxy = ¥ox,y- The Hy-comodule
structures of F(X) ® F(Y) and of F(X ® Y) are denoted by dpx)gr(y) and
dr(x@y)- To prove that pxy is a morphism in HopM, let z € X and y € Y.
Then

Srx)er) (T ®Y) = pe(T(—1) @ Y(—1)) ® T(0) @ Y(0)
= o ((—3) ® Y(=3))T(—2)Y(~20  (T(—1) @ Y(=1)) @ T(0) @ Y(0),
Ir(xey) (T ©Y) = T 1)Y(-1) @ Z0) @ Yo)-

Hence
(idu, © px,v)0rx)ery) (T ©Y) = 0(2(—2) @ Y(-2))T(1Y(-1) © L) ©Y(o)
= dr(xey)Px,y (T ®Y).
The linear map ¢x,y is bijective with inverse
XY 5X®Y, 2y— o0 (zC 1) ®@y—1)To0) @ Yo)-

The axioms of the monoidal structure of ¢, are equivalent to the axioms of a
normalized two-cocycle, since the commutativity of the diagrams (BI7) and the

identities B.I9) are equivalent to (BI12) and BII3). O

3.2. Braided monoidal categories and graphical calculus

Many important monoidal categories, in particular categories of Yetter-Drinfeld
modules, are braided. We fix here the terminology and introduce the graphical
calculus, which typically improves the clarity of proofs.

DEFINITION 3.2.1. Let (C,®,1I,a,l,r) be a monoidal category, and
c= (CX7Y XY — Y®X)X,YEC

be a family of natural isomorphisms, that is, for all objects X,Y, X’, Y’ and mor-
phisms f: X - X', g:Y -Y'inC,cxy: X®Y — Y ® X is an isomorphism in
C and the diagram

XY S yeXx
(3.2.1) lf®g lg@f

Cx’ y!

XYV —Y X
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commutes. Then c is called a braiding of (C,®,I,a,l,r) if for all objects X,Y, Z
in C the following diagrams commute.

CX,Y®Z

XYe2)— (Y®2)X

(323) Xo(Y®2) (ZeX)®Y
id% B Aidy
X0 (ZoY)-Z5(X02)QY

Let ¢ be a braiding of (C,®,I,a,l,7). Then (C,®,1,a,l,r c) is called a braided
monoidal category.

We note that in a braided monoidal category C, for all X € C, the following
diagrams commute.

Xol 2L 1ex IoX L5 xor

(3.2.4) lrx ) Jlx Jlx ) lrx

X —= 53X X — X

I

For a proof, see [Kas95| Proposition XIII.1.2].

A braided strict monoidal category is a quadruple (C,®,I,¢) such that
(C,®,1I) is strict monoidal and c¢ is a braiding of C. Then the axioms (B.2.2)) and
BZ3) say that for all X,Y, Z € C the diagrams

CX,Y®Z

XRYQRQZ ———YRZQX

(3.2.5) \ /
cx,y ®idz idy ®cx,z

YRX®Z

CXQY,Z

XRQYR~L——mm7ZRXRQY

(3.2.6) \ /
idx ®CY,Z CX,Z(gidY

X®ZQY
commute. The commutativity of the diagrams ([8.2.4]) reduces to the equations
(3.2.7) crx =1ldx =cex 1

Note that [B.2.7) follows immediately from B.2.3) with (X,Y,Z) = (X,I,I) and
B250) with (X,Y,2) = (1,1, X).
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In the concrete examples of braided monoidal categories in this book which
are not strict monoidal, the objects are vector spaces with additional structure and
the monoidal structure is the same as for the underlying vector spaces. In these
examples, the diagrams in ([B.2.4) are clearly commutative. We will therefore view
them as braided strict monoidal categories, where the equalities in (B227]) are to be
interpreted as the commutative diagrams in ([B3.2.4)).

Let (C,®,1I,c) be a braided strict monoidal category. The dual category
of (C,®,1,c) is the braided strict monoidal category (C°P,®, I, c°P) with braiding
given by ¢y = (5 x)°P for objects X,Y.

The mirror category of (C,®,1I,c) is the braided strict monoidal category
C=(C,®,1,¢), where ¢xy = (cy.x) ! for all X,Y € C.

The reversed category of (C,®,I,¢) is the braided strict monoidal category
C* = (C,®", I, c™) with braiding ci¢%y = cyx for all X,Y € C. We note that
by the left-right symmetry of the axioms, algebras, coalgebras, bialgebras and Hopf
algebras in C are algebras, coalgebras, bialgebras and Hopf algebras in C*¢V.

DEeFINITION 3.2.2. If C and D are braided strict monoidal categories, then a
monoidal functor (F, ¢, ) is braided if for all X,Y € C the diagram

F(X)®F(Y) 225 F(X®Y)
(3.2.8) CF(X),F(Y)J/ F(CX,Y)l

FY)® F(X) X%, F(Y ® X)

commutes. A braided monoidal equivalence (isomorphism, respectively) is a
monoidal equivalence (isomorphism, respectively) (F, ¢q, ¢) such that (F, ¢, ) is
a braided monoidal functor.

REMARK 3.2.3. Sometimes it is useful to consider a more general situation.
A prebraiding of C is a family ¢ = (cyw : VW — W ® V)ywece of nat-
ural morphisms (not assumed to be isomorphisms) satisfying [B2.3]), [32.6) and
BZT). Prebraided strict monoidal categories and prebraided monoidal functors,
equivalences and isomorphisms are defined in the obvious way.

Let C = (C,®, 1, ¢) be a braided strict monoidal category. We use the following
convention for the graphical calculus. Diagrams are read from top to bottom. Let
[ X—=Y,9g:Y—=Z f: X' —-Y and

h:X1® X, Y1 -QY,,

m,n > 1, be morphisms in C. We denote the identity morphism idy : X — X, the
morphisms f, h, the tensor product f® f' : X ® X’ — Y ® Y’, the composition
gf X = Z, the braiding cx,y : X ® Y — Y ® X and the inverse braiding ¢x y by
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X X Xl Xm X X/
ldX: ’ f:f7 h = h ) f®f/:f f/a
X Y Yl Yn Y Y,
X
f XY XY
gf = , CX)Y = , Cx)y =
J Y X Y X
A

By definition of the inverse braiding,

XY XY XY

(3.2.9) - -

XY XY XY

By B27), the braiding acts trivially on the identity object I. Hence for any

X q
morphisms p: X — I, ¢: I — X, denoted by p = ,q = ,
D X
XY XY Y X Y X
(3.2.10) = , = :
p p p p
Y Y Y Y
Y Y Y Y
(3.2.11) 11 = | L4, -9
Y X Y X XY XY

Let V € C. Axioms (B25]) and (B.2.6) and the naturality of the braiding (3.2.1])
imply the following important rules.
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h
(3.2.12) = :
h
i Y,V v, Y,V
X, X,V X X,V
h
(3.2.13) =

V Y1 Yn V Yl YTL
Let U,V,W € C. We note the special case of (3212) with h = cy,w:
uvw uv w

(3.2.14) -

wv U wv U

Let U =V = W. Then [B:2.14) is the braid equation cjcac1 = cac162, 1 = cy,y ®id,
¢z =idy ® cy,v. In knot theory, (3.2.9) and (B:2.14) are known as the second and
the third Reidemeister move.

Here is an application of the rules above.

X1V Xy X1V X,

X,V X, X,V X,
3.2.15 h = h =
( ) N : .
Y, V VY,
Y, V ! vV Y, !

To prove the first equality in (3215, apply (BZI2) with the inverse braiding ¢
to the lower part of the left-hand side, and then use [B.2.9); the second equality
follows in the same way from ([B.2.13]).
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Finally we want to mention the case of morphisms A : X; ®---® X,,, — I which
X, X

m
we denote by h = . By B212), B213) and (3.210),
h
|4 Xl XnL X1 Xm \%4
VX Xn X1 XpV
(3.2.16) = no = n
h h
Vv 14
Vv Vv

Moreover, by B.215) and B2ZI0).
X1 Vv Xg Xl |4 X2

(3.2.17) -

|4 Vv

We denote the structure maps of an algebra (A, p,n), a left A-module (V, ),
and a right A-module (V, A,.) by

A A AV V A
n= y N = ENES |7 Ar = | ’

A A Vv |4

respectively. Then the axioms of an algebra and a left module are

A AA A A A

(3.2.18) - 7 - |, - |,

(3.2.19) = : | = |

1% |4

ProroSITION 3.2.4. Let A, B,C, D be algebras and ¢ : A — C, ¢p : B — D
algebra morphisms in C, V a left A-module and W a left B-module in C.
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(1) (A® B, pagns,;Nagn) is an algebra in C with unit na @ np and multipli-
cation

ida®cp,A®idp
RN

A®B® A®B A® Ao B® B *4212, 4 B.

(2) @Y : A® B— C® D is an algebra morphism in C.
(3) VoW is aleft A® B-module with module structure

Av @Aw

MaBenv@dw, g oy o BoW 22, v W,

ARBV W

(4) The algebra structures on (A® B) ® C and A® (B ® C) defined by (1)
coincide.

PROOF. (1) It is easy to see that nagp is a unit. To prove associativity we
write p = pagp. The equality pu(p ® id) = p(id ® p) is shown by

ABABARB A B ABARB A B ABARB

A B A B A B

where the first equality follows from associativity of A and from BZI3) with
h = pup, and the second from associativity of B and BZ12) with h = p4.

(2) follows easily from BZI3]) with A = ).

(3) follows from the proof in (1) by replacing the third pair (A, B) by (V, W),
and the multiplications (p4, pp) by the module structures (Ay, Aw ).

(4) The equality of the algebra structures is equivalent to the equality of the
morphisms

id®cc, a9 B cB,A®id®id
L LN 2

BC®A®B B A®B®C A®B®B®C,

cepCc,A®id id®id®cc, B
—_— _—

BC®A®B A®B®C®B A®B®B®C,

which follows easily from the axioms of a braiding. O

By Proposition [3.22.4] the category of algebras in C with algebra morphisms as
morphisms is strict monoidal with ® defined in Proposition B2-4(1) and (2). The
unit object is the algebra (7, id, id).

We now dualize. The structure maps of a coalgebra (C, A, ), a left C-comodule
(V,6;) and a right C-comodule (V,4,.) are denoted by

v v
A= , €= ) 5l: |7 67‘: |
v v

cc C C
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The axioms of a coalgebra and a left comodule are

C C

(3.2.20) = - -

(3.2.21) = , | = |

ccv c CcVv

We next show that the category of coalgebras in C with coalgebra morphisms
as morphisms is strict monoidal. The unit object is (I, id,id).

PRrROPOSITION 3.2.5. Let C, D, E, F be coalgebras and p : C — E, ¢ : D — F
coalgebra morphisms in C, V a left C-comodule and W a left D-comodule in C.

(1) (C®D,Acep,ecep) is a coalgebra in C with counit ec ®ep and comul-
tiplication

idg®ce,p®idp
%

CoD 2%, cocoDeD C®D®C®D.

(2) @Y :C®D — EQ®F is a coalgebra morphism in C.
(3) VW is aleft C ®@ D-comodule with comodule structure

Oy ®@dw

Veow XEW, ooy gDew Lefvodidy,

CeDRVeW.

(4) The coalgebra structures on (A® B)® C and A® (B ® C) defined by (1)
coincide.

PROOF. Apply Proposition B:224 to the dual braided category. O

The tensor product of algebras and of coalgebras will always be equipped with
the algebra and coalgebra structure of Propositions [3.2.4] and [3.2.5]

DEFINITION 3.2.6. Let H € C. Assume that (H, p,n) is an algebra and (H, A, €)
is a coalgebra in C. Then H = (H, u,n,A,¢) is a bialgebra in C if the following
equivalent conditions hold.

(1) A and ¢ are algebra morphisms in C.
(2) p and 7 are coalgebra morphisms in C.

Let H, H' be bialgebras in C. A morphism ¢ : H — H’ in C is a morphism of
bialgebras if it is a morphism of algebras and of coalgebras in C.
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It is clear that (1) and (2) in Definition B2.6] are both equivalent to

H H
H H
(3.2.22) = and
H H
H H
HH HH
(3.2.23) = , = ; = idy,
HH HH

where ([B2:23)) are the pictures of the equations

(3.2.24) Apny =nNHoH, E€HUH =E€HoH, €HNH =idI.

If (H, u,m, A, e) is a bialgebra in C, then (H, A°P £°P ;,°P 7°P) is a bialgebra in C°P.
Indeed, reading the axioms of a bialgebra in the graphical calculus from bottom to
top gives the same axioms up to a permutation.

The next proposition says that the category of left H-modules over a bialgebra
H is strict monoidal.

PRrROPOSITION 3.2.7. Let H be a bialgebra in C. The category gC of left H-
modules in C is strict monoidal, where
(1) for all V,W € gxC, the tensor product of V,W in gC is the object V@ W

i C with module structure

ew=(HoVeW 22 HeHoVeW

v He Ve HeW 22, v g w),

(2) the identity object is (I, ®id), and
(3) for all morphisms f,g in gC, the tensor product f ® g in C is the tensor
product of f and g in gC.
PROOF. (a) Since A : H — H ® H is an algebra morphisms, it follows from
Proposition B:22:4)(3) that (V ® W, Avgw) is a left H-module.
(b) Let U, V,W € gC. Then U® (VW) =(U®V)® W as left H-modules,
since

H U VW H uvw H U VW
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where the first equality follows from [B.2.I3) with A = Ay, and the second from
coassociativity of H.

(c)Let f:V — X and g: W — Y be morphisms in gC. Then the morphism
f®g: VW — X QY is left H-linear, since (f ® idy)cy,v = cy,x(idg ® f), and
since f,g are H-linear.

(d) It is easy to check that for all V. € gC, I®@ V =V =V ® I, where I is the
trivial left H-module with module structure £ ® id. O

Conversely, the diagonal action in Proposition B.2.7 can be used to check the
bialgebra axiom.

PROPOSITION 3.2.8. Let H be an object of C, and (H,u,n) an algebra and
(H,A,€) a coalgebra in C. Assume that € : H — I is an algebra morphism. Then
the following are equivalent.

(1) H is a bialgebra.

(2) Let (V,Av),(W,A\w) € gC. Then (V @ W, Avgw) € uC, where Aygw is
the diagonal action defined in Proposition B.2.7.

(3) (2) holds for V.=W = H with left module structure .

PrOOF. By Proposition B277] it suffices to prove that (3) implies (1). Let
V,W € gC. Then Aygw (idy @ Avgw) is equal to

H H VW H H VW H H VW

v W 14 w 1% w

where the first equality follows from naturality of the braiding (B212) with h = Ay,
and from the module axioms for V and W, and the second from B2.13) with h = p.
On the other hand,

HHVW
Avew (1 ®@idy @ idw) =
|4 w
Assume (3). Then Avgw (idg ® Avew) = Avew (1 ®@idy ®idw) for V=W = H.

Hence

AV@W(idH ® >\V®W)(1dH ®idyg ® ne& 77) =
Mew(p®idy @ idy)(idg @ idg @ 1@ n),
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which is the bialgebra axiom ([B.2.22]). The first bialgebra axiom in ([B.223), that
is, A is unitary, follows since the H-module H ® H is unitary. O

PROPOSITION 3.2.9. Let H be a bialgebra in C. The category C of left H-
comodules in C is strict monoidal, where

(1) for all V,W € HC, the tensor product of V,W in HC is the object V@ W
in C with comodule structure
Svow = (VaW 22, g o Vo He W

v HeHeVeWw Y2 Hevew),

(2) the identity object is (I,n ®id), and
(3) for all morphisms f,g in 2C, the tensor product f @ g in C is the tensor
product of f and g in FC.

PROOF. Apply Proposition B:2.7 to the dual category. O

We note that Propositions B.2.7 and [B.2.9] have obvious versions for right mod-
ules and for right comodules.

DEFINITION 3.2.10. Let H be a bialgebra in C, and S : H — H a morphism in
C. Then H = (H,S) is a Hopf algebra with antipode S, if S is the convolution
inverse of idy in the monoid Home (H, H).

The antipode S : H — H of a Hopf algebra H in C, and its inverse S~! if S is
an isomorphism in C, are denoted by

H H
S= 1, St= /4
H H
Thus the axioms of the antipode are
H H H
(3.2.25) o= = o -
H H H

Let (H,u,n,A,e,S) be a Hopf algebra in C. Then (H, A°P, P, ;%P 7°P S°P) is a
Hopf algebra in C°P.

LEMMA 3.2.11. Let H, H' be Hopf algebras, and @ : H — H' a morphism of
bialgebras in C. Then Sgrp = Sy .

PROOF. It is easy to see that in the convolution algebra Home (H, H'),
Surpxp =0 xSgrp = e,
since ¢ is a morphism of coalgebras. By duality,
PSH * @ = 9 * Su = e,

since ¢ is a morphism of algebras. Hence ¢ is invertible in the convolution algebra
with inverse Sgp = pSg. O

The preliminary version made available with permission of the publisher, the American Mathematical Society.



3.2. BRAIDED MONOIDAL CATEGORIES AND GRAPHICAL CALCULUS 125

PROPOSITION 3.2.12. Let (H, u,n,A,e,S) be a Hopf algebra in C. Then

(1) CH®H(S ® S) = (S ® S)CH,H;
(2) Sp=pcaa(S®S),

(3) AS = (S ® S)cn,uA,

(4) Sn=m,

(5) eS=e.

PRrROOF. (1) follows since the braiding is a natural transformation.
(2) We prove (2) by showing that both sides of (2) are convolution inverse to
w in Home(H ® H, H). This is easy for Sp:

Spxp= = =NEHRH

by B222), BZ28), and B223). The equality p* Sp = neggpy follows in the
same way.
We compute (S ® S)cm, i * .

= = = = + :77€H®H)

where the first equality follows from [B.2I3) with A = A, the second from asso-
ciativity, and the third and the last from the axiom of the antipode. To prove the
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fourth equality, note that

H H

by the algebra axiom for the unit and ([B.2.10]).
The equality u* p(S ® S)en,u = negen follows similarly.
(4) In the convolution algebra Home¢ (I, H) with product ,

by [B223)) and the axiom of the antipode. Hence Sn = 7, since the unit element
in the algebra Home (I, H) is ner = 1.

(3) and (5) follow by duality from (2) and (4). O
The pictures for the rules of the antipode in Proposition [3.2.12] are
H H H
H H H
+ + H H
_|_
(3.2.26) - , - =, -
4 +
+ & H H
H H H

H H H

REMARK 3.2.13. Braided monoidal functors preserve bialgebras and Hopf al-
gebras. They are an important machinery for constructing new Hopf algebras.

Let D be a braided strict monoidal category, and (F,¢) : C — D a braided
monoidal functor.

If A, B are algebras in C, then

vap:F(A)® F(B)— F(A® B)

is an algebra morphisms in D, where F(A), F(B) and F(A ® B) are the algebras
(F,9)(A), (F,9)(B), and (F,¢)(A® B), respectively. In the same way, for coalge-
bras C, D in C,

vop: F(C)® F(D)— F(C® D)

is a morphisms of coalgebras in D.
If H=(H,p,n,Ac) is a bialgebra in C, then

(F,o)(H) = (F(H), F()emm F0), ¢5.q F (D), F(e))
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is a bialgebra in D. If H has an antipode S, then (F, ¢)(H) is a Hopf algebra with
antipode F(S).

We next extend the notions of the opposite algebra and coopposite coalgebra
to braided monoidal categories. This can be done in different ways. We fix one of

the possible definitions.

DEFINITION 3.2.14. For a bialgebra H = (H, p,n, A, ¢) in C let

H = (H, pcu,m,1m, A, €),
H®P = (HvﬂanvzH,HA’s)'

It turns out that for a bialgebra H, H°P and HP are not bialgebras in C but
in C.

PROPOSITION 3.2.15. (1) Let (A, u,n) and (C,A,e) be an algebra and a
coalgebra in C. Then (A, pca a,n) is an algebra and (C,cccA,¢) is a
coalgebra in C.

(2) Let H be a bialgebra in C. Then H°P and HP are bialgebras in C.
(3) Let H be a Hopf algebra in C. Then the following are equivalent.
(a) The antipode S of H is an isomorphism in C.
(b) H°P is a Hopf algebra in C.
(c) H®°P is a Hopf algebra in C.
In this case, S is the antipode of H°P and of HP.

PROOF. (1) We prove associativity of y/ = pcy 4.

(W ®id) = = , widey) = = ’

A A

by B2ZI3) and BZI2) with h = pu. Hence associativity of pcy 4 follows from
associativity of A and (32Z14).

By B211)), n is a unit for puca 4, since 7 is a unit for p.

The coalgebra axioms for (C,cc,cA,¢) follow by duality.

(2) By assumption, H is an algebra and a coalgebra in C, and hence in C. By
(1), H°P is an algebra and a coalgebra in C. We prove the bialgebra axiom ([(.2.22))
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for H°P in C.
H H H H
H H H H
H H
H H
H H H H
H H H H

The first equality in this proof follows from the bialgebra axiom ([B.2.22) for H,
the second and the third from FZI3) and BZI2) with h = p, and the last from
BZ9).

The bialgebra axiom B2Z23]) for HP is easy to check, and the claim for He°P
follows by duality.

(3) Assume (a). We show that ey g(S™! ® id)A = ne, which is half of the
antipode axiom for H°P. By Proposition B2ZI2(3), cy u(S ® S)A = AS. Hence
pen g (S @id)A = p(id ® S)AS™! = ne by the properties of the antipode of H.
The other half of the axiom of the antipode follows similarly. Thus (a) implies (b),
and S~! is the antipode of H°P.

Assume (b) and let T' be the antipode of H°P. Similar computations as in the
previous paragraph show that T'S and ST are convolution inverse to S. Hence
T = S8~1. Thus (b) implies (a).

The equivalence of (a) and (c¢) follows by duality. O

Let H be a Hopf algebra in C with antipode S, and assume that S is an
isomorphism. By Proposition 3.2.15, S~! is the antipode of H°P. Hence

(3.2.27) =4 =

COROLLARY 3.2.16. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism in C.

(1) S: H°P — H®P is an isomorphism of Hopf algebras in C.
(2) (H°P)°P and (H®°P)°P are Hopf algebras in C with antipode S, and

S:H — (H®P)?, S:(HP)? - H
are isomorphisms of Hopf algebras in C.

Proor. This follows from Propositions 3.2.15 and O
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REMARK 3.2.17. Let A, B be bialgebras in C. Then in general A® B (with the
algebra and coalgebra structure of the tensor product) is not a bialgebra in C, see
Proposition [[L10.12]

3.3. Modules and comodules over braided Hopf algebras

Let C = (C,®, I, ¢) be a braided strict monoidal category.
The braiding can be used to change the sides of modules and comodules.

PROPOSITION 3.3.1. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism in C. Then the functors

F,: gC— (_:’Hop, (V, /\) — (V, )\EV,H)7
Fo:Cx — gorC, (V) = (V, Xemv),
where morphisms f are mapped onto f, are strict monoidal isomorphisms.

PROOF. Let F' = F},.. We first show that I is a strict monoidal functor.
Let (V,A) be a left H-module, and A\, = A¢y . Then (V, \,) is a right H°P-

module in C (and in C), since
V HH V HH V HH
: : w : W ) \H =\ (\ ®id),
14 Vv 14 v

V- HH
where the second equality follows from [B.2.12)) with h = ¢y g, the third from the
module axiom for (V, \), and the fourth from [B2ZI3]), where A is the upper module
action A. Note that (V) A,) is unitary by B.2.11).
To show that F' is strict monoidal, let V, W be left H-modules. Then

A (id © p2)

VW H
V- W H
\ W H
Ar(vew) = = = L = Ar(V)oF (W)
1% W
%4 w
% w

where the second equality follows from [B.2.12) with h = A, and the third from
EZ9). By @20, F(I) = 1.
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In the same way it follows that F.; is a strict monoidal functor. Both functors
are isomorphisms, since Fj,. for H and F).; for H°P are inverse functors. O
The next proposition follows by duality from Proposition B.3.11

PROPOSITION 3.3.2. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism in C. Then the functors

FirHe 2™ (V,6) o (Ve v o),
e HYTC(V,6) = (VB md),
where morphisms [ are mapped onto f, are strict monoidal isomorphisms.

Let A, B be algebras in C, and ¢ : A — B an algebra morphism. We define the
obvious restriction functors

(3.3.1) @1 8C = AC,  (V.A) = (VA (p ®@id)),
(3.3.2) ¢ :Cp = Ca, (V,A) = (VA ® ¢)).
For coalgebras C, D and coalgebra morphisms ¢ : C' — D in C we let
(3.3.3) et 9c=Pc, (V,8)— (V,(p®id)d),
(3.3.4) eh:c% =P, (V) — (V,(id ® 9)é).

In each case, morphisms f are mapped onto f. It is clear that ¢, and ¢! are well-
defined functors. If A, B are bialgebras, and ¢ : A — B is a bialgebra morphism,
then the functors ¢, and ¢ are strict monoidal.

We use the notation ¢! = € for the braiding of C.

DEFINITION 3.3.3. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism.

(1) For (V,A) € ugC, let
o= (Ve B 9857 v g v gy Ay
(2) For (V,\) € Cp, let

A= (Hov 329 oy C0nv, yog Ay,

COROLLARY 3.3.4. Let H be a Hopf algebra in C such that the antipode S of
H is an isomorphism in C. Then the functors changing sides of modules in C,
Fy — Ff
gC — Ceon,  geonC —2 Cyy,
F = = FY
CH —'l> HCOPC, CHCOP —'l> HC,

with FE(V,\) = (V,Ax) for all modules (V,\) € yC, and FX(V,\) = (V,\y) for
all modules (V,\) € Cy, and where morphisms f are mapped onto f, are strict
monotdal isomorphisms.

ProoF. By Corollary B.2.16] S—': H®P — H°P ig an isomorphism of Hopf
algebras in C. Since

- _ Fir Cgh
'F‘lr — (HC CHop Emm— CHCOP)
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it follows from Proposition B.3.1l that F), is a strict monoidal isomorphism. The
same argument works for F_ . It follows that Fli' and Fjl' are strict monoidal
isomorphisms, since FZJ; and Fﬁ are the functors F}  and F, with H replaced by

HeepP, O
DEFINITION 3.3.5. Let H be a Hopf algebra in C, and assume that the antipode
S of H is an isomorphism.
(1) For (V,8) € fC, let

+1 . +1
bp=(VESHev MY, o N85y g ),

(2) For (V,\) € CH, let
ot +1 g5
b= (VEVern S goy ST gay,
The next result follows by duality from Corollary B.3.4]

COROLLARY 3.3.6. Let H be a Hopf algebra in C such that the antipode S of
H is an isomorphism in C. Then the functors changing sides of comodules in C,

Flf _ P op— Flir
He =, ¢C HY e+, cH,

Fri op— _grop i
A A )
with Fir(V,8) = (V,6+) for all comodules (V,6) € 1C, and F{(V,58) = (V,6+) for
all comodules (V,8) € CH, and where morphisms f are mapped onto f, are strict
monotdal isomorphisms.

A fundamental construction in Hopf algebra theory is the module structure
over the dual algebra C* of a comodule over a coalgebra C' in Definition
This construction is based on the evaluation pairing C* ® C' — k. To generalize it
to braided categories we formulate the natural axioms for an abstract pairing.

DEFINITION 3.3.7. Let A and B be bialgebras in C. A morphism

p:A®B —1
in C is called a Hopf pairing, if the following diagrams commute.
A®B®B 12, Ag B ApAeB2 A B
AA®id®idJ id®id®ABl
ARA®RB®B p ARA®R B®B P
id®p®idl id®p®idl
AoB—2" 47 A@B—2 T
[oB—"% L AgpB A9l — 2", AeB

I I
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Let A, B be bialgebras in My, and
p:A®B—=k, a®bw— pla,b) =pla®b)
a linear map. In Sweedler notation the axioms of a Hopf pairing are
p(a,bb") = p(acy, b")pacz),b), p(1,0) = e(b),
plad’,b) = p(a, bea))p(a’, by), p(a,1) =¢(a)
for all a,a’ € A and b, € B. Thus for a finite-dimensional bialgebra H, the
evaluation map H*°?“°? @ H — k is a Hopf pairing.

In Section we will define an important Hopf pairing between the Nichols
algebra of the dual of a Yetter-Drinfeld module V' and the Nichols algebra of V.

A Hopf pairing p: A ® B — I is denoted by p = A B,

By definition of a Hopf pairing,

A B B A A B

A B B
(3.3.5) = , = :

(3.3.6) =1, =

In addition we note the rules (3:22.106) and (3:2.I7) when h = p is a Hopf pairing.

PrOPOSITION 3.3.8. Let A and B be Hopf algebras inC, andp: A B— 1 a
Hopf pairing.
(1) p(Sa®id) =p(id®S): A® B — 1.
(2) pt = (B®A%B®ACB—’A>A®B £>I) is a Hopf pairing.
(3) Assume that the antipodes of A and B are isomorphisms. Then

PP =p(S;' ®idp) : AP @ BP — I
is a Hopf pairing of AP, BP in C, and p°°P = p(ids ® Sgl).

ProoF. (1) For all f,g € Home(A® B,I)let f-g=g(id® f ®id)(As ® Ap).
Since C is a monoidal category and A, B are coalgebras in C, Hom¢(A ® B, 1) is a
monoid with product - and unit e = e 4®ep. Let p; = p(Sa®id) and ps = p(id®SE).
Then py -p=c4 ®ep = p- p2, hence p; = po.

(2) See Figure B30l with pt = B A The first equality follows from the

_l’_
definition of p* and (B:226), the second from ([B.212) with h = paca 4, the third
from axiom [B33) of a Hopf pairing, the fourth from (BZI3]) with h = Ap and
BZ24)), the fifth from B216) with A = p, and finally the sixth from BZT0]) with
h = peCB,A-

The second equation in ([3.3.3) is shown in the same way, and ([8:3.6]) is easy to
check.

(3) The first part of the claim follows from the rules of the antipode in Propo-
sition B2Z.T2] and the second from (1). O
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B A4
BA A
Lo BAA
DO DE
OO OO @
D@
BAA
+
B AA B AA
DODODD dPhped B 44
+
+

FIGURE 3.3.1. Proof that p* is a Hopf pairing

PROPOSITION 3.3.9. Let A and B be bialgebras in C, andp : AQ B — I a Hopf
pairing. The functors

Dl : BOPE — Aca (‘/7 5) = (‘/7 >‘)7 El : BC — ACOng (‘/7 6) = (Va A)a

with A= (Ao V 2% Ag Be v 2245 1),

DT S, (V,6) s (), D :CA = Cren, (V,0) s (V,N),

with A= (Vo B4 Ve Ag B 225 v),
where in all cases morphisms f are mapped onto f, are strict monoidal.
PROOF. Forgetting the monoidal structure, we first show that the functor
D' = ﬁl :Bc = 4C

is well-defined.
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For any object (V,6) € BC, DY(V,8) = (V, (p®idy ) (ida®4)) is a left A-module,

since

by ([3:3.5) and coassociativity of 6. Thus the A-action of D!(V,§) is associative. By
B33), D'(V,6) is unitary.

Let V,W €B C, and let f:V — W be a morphism in BC. It is easy to see that
f: DY(V) — DY(W) is a morphism in AC.

To prove that the functor D' : ™ (C) — AC is strict monoidal, let (V,dy) and
(W, 8w) be objects in ZC. Then

= = AD!(V)@D! (W)

where the second equality follows from (B.3.3]), the third and the fourth from

BZTM), and the fifth from B2I2) with h = dy.
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By somewhat different arguments,

AVWAVWAVW

(V®W)

/\D’(v @D (W)’

1)
]WJ

V w 14 W

where the second equality follows from (B3.5]), the third from FZT6]), the fourth
from (B2Z1I7T), and the fifth from @ZI2) with h = dy.

Note that D!(I) = 51(1) = I by [33.6). We have shown that D' and D' are
strict monoidal. The claims for D" and D' follow in the same way. O

COROLLARY 3.3.10. Let A and B be Hopf algebras in C, andp: AQ B — 1 a
Hopf pairing. Then the functors

= (8 L B 2 AC),

I op -
D" = (A¢ et 2 ep)

are strict monoidal.

PRrROOF. The claim follows from Proposition B.3.9] and Corollary O

3.4. Yetter-Drinfeld modules

Let C = (C,®, I, c) be a braided strict monoidal category.

Let H = (H,u,n,A,¢e) be a bialgebra in C. Yetter-Drinfeld modules over H
are left or right H-modules and left or right H-comodules satisfying a compatibility
condition. Hence there are four different types of Yetter-Drinfeld modules. We will
need two of them.

DEFINITION 3.4.1. Let V be an object in C and let A : H ® V — V and
0 :V — H®V be morphisms. The triple (V;\,0) is a left Yetter-Drinfeld
module over H if (V,)\) € xC, (V,d) € #C, and in Hom¢(H @ V, H ®@ V),

(1 ®id)(id ® ey i) (6A @ id) (id ® cprp ) (A @ id) =
(L@ AN)(d® cgp ®id)(A®0), that is,
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H V

(3.4.1) -

H V

Note that (3:4.1]) is upside-down symmetric.
If (V,),6) is a left Yetter-Drinfeld module over H, then (V,§°P, A\°P) is a left
Yetter-Drinfeld module over (H, A°P &P ,°P 7°P) in CP.

REMARK 3.4.2. We look at the special case of bialgebras in C = M. In
Sweedler notation, (341 is equivalent to the following condition. For all h € H,

veV,

(3.4.2) (ha)y - v)(=nhe) @ (ha) - v)©) = hayv-1) @ he) V)
If H is a Hopf algebra, then (8:42) is equivalent to

(3.4.3) O0(h-v) = h(l)v(_l)S(h(g)) X h(g) “V(0)

for all h € H, v € V. Thus Yetter-Drinfeld modules over the group algebra in the
sense of Definition [[4.1] and Remark [[.Z.g] are left Yetter-Drinfeld modules.

ExXAMPLE 3.4.3. We determine one-dimensional Yetter-Drinfeld modules in the
category C = M. If H is a group algebra, Yetter-Drinfeld modules over H have
been determined in Example [[Z3l Let H be a bialgebra, V a one-dimensional
vector space, and let A\: H®V — Vand § : V — H®V be maps. Let x € V|,
g€ H, x: H— k be such that

x#0, dx)=g®z, Mh®zx)=x(h)zforallhe H.

Then (V,\) € gC if and only if A € Alg(H, k). Moreover, (V,6) € #C if and only if
A(g) = g® g and e(g) = 1. Finally, (V, A, ) is a Yetter-Drinfeld module over H if
and only if additionally

x(h@y)ghe) = haygx(hz))

for all h € H.

Assume that (V,\,0) as above is a Yetter-Drinfeld module over H. Then
x(h)gh = hgx(h) for each group-like element h € H. If h is an invertible group-like
element, then

L=x(1) = x(hh™") = x(h)x(h™"),
and hence x(h) # 0 and gh = hg. Let £ € Alg(H, k). Then
X(h))&(9)8(h2)) = £(h))E(9)x(h2))
and hence (x&)(h)&(g) = (Ex)(R)E(g) for all h € H. In particular, if ¢ is invertible
then £(g) # 0 and € = &x.
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DEFINITION 3.4.4. For all (X,6) € #C and (Y, ) € yC let

SO - (Xxey ¥ Hexey XN Heyex 228 y o X),

(3.4.4) W = 4R

The definition of c%,DY is upside-down symmetric. Hence

yD(Cc°?) _  IYD(C)
Cy,x = (exy )

In the next proposition we characterize the Yetter-Drinfeld condition (341 by

properties of the morphisms c%%.

PROPOSITION 3.4.5. Let V be an object in C, (V,\) € yC, and (V,8) € HC.
Then the following are equivalent.

(1) (V,A,0) is a left Yetter-Drinfeld module over H.

(2) For all X € gxC, c%jE( is a morphism in gC.

(3) c%% is a morphism in gC, where H is a left H-module by the multiplica-
tion in H.

(4) For all X € H¢, c%}(’DV is a morphism in HC.

PrROOF. (1) = (2). Let (X,Ax) € gC. Tensoring (B4AI) with X from the
right and braiding of V' and X and action with H gives the equation

H V X

(3.4.5) -

1 A

N\

XV

We will prove (2) by showing that c%l;{ Avex 18 equal to the left-hand side of (B.4.5]),
and Axgy (id ® cggc) to the right-hand side of (B:41).
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By definition and B2.12) with h = Ax,

H V X
H V X
C%&)\V@X = - )
. 1
~—< 4
X \%4
XV

which is the left-hand side of 845 since X € gC.
By definition and 2Z12) with h = Ax, and then by B2I3) with h = Ay,

H V X H V X
H VX
x A
AX®V(id®C¥g() = = = L
At
X v

X v XV

Since X € gC, the last picture is the right-hand side of (B.4.5).

(3) = (1). We have seen in the proof of (1) = (2) that (2) is equivalent to
BZ5) for all X € yC. Let X = H as a left H-module by multiplication. Then
B43) for X = H composed with idg ® idy ® n implies (1).

(2) = (3) is trivial, and (1) < (4) follows by duality from (1) < (2). O

PROPOSITION 3.4.6. Let V,W € HC and M,N € yC.

(1) Y hen = (dy @ R ) (]l @idy).

(2) C\J;gw,M = (C%?w ® idw)(idv ® C%/]VZ,)M)-

(3) c%ﬁ? = idy, ¢¥Y, = idy, where the module structure of I is ¢, and the
comodule structure is 1, respectively.

(4) Let f:V — W and g: M — N be morphisms of left H-comodules and of
left H-modules. Then (g ® f)cgg/_[ = C%?N (f®g).
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PROOF. (1) The composition (idy ® 0‘32?\,)(0%;34 ® idy) equals

V M N
<
_ _ _ YD
= 1 = 1/ = MeN
. A H/
M NV

M NV M NV

where the first equality follows from ([B.212]) with h = 0y, and the second from
coassociativity of V.
(2) is shown in the same way as (1), and (3) and (4) are easy to see. O

DEFINITION 3.4.7. Let H be a Hopf algebra in C with antipode &, and assume
that S is an isomorphism in C. For all X € gC and Y € 7C let

A2 = (Xey 2 xeney 2 g X ey =

HoXoy S84 g x gy 284, x gy 20,y g x),

The definition of E%DY does not look upside-down symmetric, but it is, and
Egg((cw) _ (Eg’(ﬁf(c))op, since

X Y
X Y X

J

<
RS
\

J [
(
Y X Y X
Y X
by first B2Z13) with h = Ax, and then BZT2)) with h = dy.
PRrROPOSITION 3.4.8. Let H be a Hopf algebra in C with antipode S, and assume

that S is an isomorphism. Let X € HC, Y € yC. Then C%}(DY is an isomorphism in
C with inverse E%@.

ProoF. We transform E%ﬁ%c%py according to Figure B4l where the second
equality follows from B2I3) with h = Ax, the third from B2I5) with h = Ay,
and the last from coassociativity and associativity of X and Y. The last picture
is the identity of X ® Y by B2.27), counitarity and unitarity of X and Y, and
B29). The equation c%?,é%z;{ = idygx follows by symmetry. O
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=YD YD __
Cy xCxy =

FIGURE 3.4.1. Part of proof of Proposition B.4.8

We now discuss the right version of left Yetter-Drinfeld modules.

DEFINITION 3.4.9. Let V be an object in C and let A : V® H — V and
0 :V — V ®H be morphisms. The triple (V,\,d) is a right Yetter-Drinfeld
module over H if (V,)\) € Cy, (V,6) € CH, and in Home(V ® H,V ® H),

(id @ p)(ey,y ®@id)(id @ oA (cy,p @ id)(id @ A) =
A®@p)(id® cy,p ®id)(6 @ A),

that is,

H

1%
(3.4.6) =
1% H
vV H

DEFINITION 3.4.10. For all (X, ) € Cy and (Y,6) € CH let

JPO (XY U9 xoyen X0 vy g x o H 99 y g X)),
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XY

yD(C [
(3.4.7) cX’Y( ) = c%?, = ]
Y X

PROPOSITION 3.4.11. Let V' be an object in C, (V,)\) € Cg, and (V,5) € CH.
Then the following are equivalent.
(1) (V,\,0) is a right Yetter-Drinfeld module over H.
(2) For all X € Cy, C%?V is a morphism in Cg.
(3) C%?V is a morphism in Cg, where H is a right H-module by the multipli-

cation in H.
(4) For all X € CH, c%jE( is a morphism in CH.

ProoF. This follows from Proposition [B.4.5] by left-right symmetry. ]

DEFINITION 3.4.12. Let H be a bialgebra in the braided strict monoidal cat-
egory C. The category of left Yetter-Drinfeld modules (right Yetter-Drinfeld mod-
ules, respectively) is denoted by ZYD(C) (YD(C)H, respectively). Morphisms in
AyYD(C) and in YD(C)H are morphisms of H-modules and H-comodules.

THEOREM 3.4.13. Let H be a bialgebra in C. Then 2YD(C) and YD(C)E are
prebraided strict monoidal categories, where the monoidal structure is the monoidal
structure of modules and comodules defined in Section - and for all X,Y in
HEYD(C) (X,Y in YD(C)H, respectively), the braiding is CXY defined in B44) (in

B4, respectively).

If H is a Hopf algebra with antipode S, and if S is an isomorphism, then the
categories LYD(C) and YD(C)H are braided strict monoidal.

PrOOF. Let VW € ZYD(C). Then V@ W € gC, and V®W E HC with
diagonal action and coaction of Section[3.2] For all X € gC, c ¢ and c % are left
H-module morphisms by Proposition [3.4.5 Hence by Proposmon 3462 ) V®W X
is a morphism of left H-modules, and V ® W € EYD(C) by Proposition

By Proposition and Proposition BZ0 the family (Cgﬁv)V,WegyD(c) is a
prebraiding. If H is a Hopf algebra, and the antipode of H is an isomorphism, then
the prebraiding of £YD(C) is a braiding by Proposition B.4.8

The claim for right Yetter-Drinfeld modules follows by left-right symmetry. O

To prove the next theorem we need the following easy identifications.

REMARK 3.4.14. (1) Let C,C’ be braided strict monoidal categories, and let
(F,¢) : C — C’ be a braided monoidal functor. Let H be a Hopf algebra in C
and H' the Hopf algebra (F,¢)(H) in C’. Then (F, ¢) induces a braided monoidal
functor YD(F, ¢) with functor

F . yD( ) —>yD( )H/,
(‘/a )‘75) = ( ( )’)\/,5/) with >‘, = F(A)(pV,Ha(S/ = (pX_/}[-IF(a)a

where morphisms f are mapped onto F'(f), and with monoidal structure .

(3.4.8)
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(2) Let H, H' be Hopf algebras in C whose antipodes are isomorphisms, and let
p: H — H' be an isomorphism of Hopf algebras. Then the functor
349 D0 YPOf YD(C)f,
o (VX 0) = (V, X, 8') with X = Aidy ® p~ 1), 8 = (idy ® p)d,

where morphisms f are mapped onto f, is a braided strict monoidal isomorphism.
In the same way YD(yp) is defined for left Yetter-Drinfeld modules.

(3) Let H be a Hopf algebra whose antipode is an isomorphism. Then H is a
Hopf algebra in C™V. It is easy to see that the functors

C*)a = (0™, (V,A) = (V. A),
() — ey, (V.6) = (V. 4),
are strict monoidal isomorphisms, and that
(3.4.10) YD) = (HYDEC))™, (V.A8) = (V. A, 4),
is a braided strict monoidal isomorphism, where in each case morphisms f are
mapped onto f.
(4) Let
FV = (id,¢) : C*¥ = C, Fp ' = (id, @) : C — C*V, where
Pxy =Crx XY =2 XY,
for all X, Y € C. It follows from the axioms of a braiding and ([.2.14]) that F*V and

—=rev . . . . . . —
F,  are inverse braided monoidal isomorphisms. Replacing ¢ by ¢ defines another
pair of inverse braided monoidal isomorphisms

(3.4.11)

(3.4.12) FE = (id,e) : C*" = C, Fer = (id, ) : C — €™, where
h Pxy =cyx XY =2 XY,

for all X,Y € C. Hence for a bialgebra (Hopf algebra, respectively) H in C,
—=rev —=rev

Fe (H) = (H?)™P,  Feg(H) = (H®P),

are bialgebras (Hopf algebras, respectively) in C. Note that Proposition 3.2.15 is
not used in this argument.

Recall the notations A_,d, in Definitions B.3.3] and for (V,A) € Cyg and
(V,8) e CH.

THEOREM 3.4.15. Let H be a Hopf algebra in C, and assume that the antipode
of H is an isomorphism. Then the functors

EYP - YD) — 5YD(C), (VoA 8) = (V. A=, 64),
FYP - JYD(C) = YD(C)if, (VA 0) = (V. A+, 00),
and where morphisms f are mapped onto f, are inverse isomorphisms, and
H
(FYP.p): YD) — HYD(C), where pxy =y 3 exy,
H
(FYP. %) : VD) = YD(C)f, where o,y =iy Veuy,

for all for all X, Y € YD(C) and allU,V € LYD(C), are inverse braided monoidal
isomorphisms.
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PROOF. (1) We first prove the claim for (F7, ). Let (F,%) be the composi-
tion of the following braided monoidal isomorphisms

g YDFS) (HeP)eer YD(S) H (Bm

yp(e)fh XL, yp(eren) BT PO, yp(erenyit B, (1 yp(c))ye,

Recall that F.  (H) = (H°P)°P. The braided strict monoidal isomorphism YD(S)
is induced from the isomorphism § : (H°P)? — H of Hopf algebras in C in
Corollary

Then for all (X, \,6) € YD(C)E, F(X,\,8) = (X, _,64), and

Pxy =Cyx F(X)@VF{Y)—= FX®Y)

for all X,Y € YD(C)&
The theorem follows by composing (F, ) and
Fip(e = (id, em>P©) : (FYD(C))™ = FYD(C).

Note that the monoidal structure of the composition is given by

2ZyD(C YD
XY = CYXCF(X)(F)(Y) CYX() CX,Y

for all X, Y € YD(C)H, since (F,p) is braided.
(2) Tt is clear that F)” and FY” are inverse functors. By (BI.I1), the inverse
of (FTJZD, ) is the monoidal functor (G,),G = F'yD7 with

Y
(3.4.13) Yuv = Gleawy.aw) ' = CVch(U())G(V)

for all U,V € £YD(C), where we used the definition of ¢ in (1).
Since (G, ) is braided, for all U,V € £yD(C),

HYD(C) YD(C)j
Zv Yuy = wV7ch(U)7éI(V)7

hence by 3413,

HyD(C) _yD(C)H _yp(C) Ji’D(C)

v vUCau)av) = UVEaw).Gw) ).y = CUV, O

Y _Hyp(c

Yoy = CVUCG(U())GH(V) =Cyy ©¢ u,v-

This implies the claim. O

The monoidal isomorphism in Theorem [3.4.13] is not strict. However, by the
next theorem there is a strict monoidal isomorphism between right Yetter-Drinfeld
modules over H and left Yetter-Drinfeld modules over H°P.

THEOREM 3.4.16. Let H be a Hopf algebra in C, and assume that the antipode
of H is an isomorphism. Then the functors

P YDC)E - EEYD(), (VA 6) = (V, A, v.u6),
Flr HCOPJJD( )—>yD( ) (V)\ 5) (V,AJr,cH,Vé),

and where morphisms [ are mapped onto f, are inverse, braided strict monoidal
isomorphisms.
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Proor. (1) By Proposition and Corollary [3.3.4] the functors
Fl = FT_[ : CH — HCOPza (‘/7)\) = (‘/7)\—)7
Fy=Ft.cH S HYC O (V,6) = (V,Cy.ud),

are strict monoidal isomorphisms.

Let (X,\x) € Cu, (V,6) € CH, and define
(X7>‘,X):F1(Xa)‘X)a (‘/75,):F2(‘/76)
We first prove the equality

VD D
(3.4.14) XA V) = XA (V)
where Ny = (Ax)- = )\EH,V(Sffl ®1idy), 6" = ¢y,md, and hence
_VD id®s’ Ax ®id cx,v
Ca vy = (X OV =S X@HeV =5 XV —5 Ve X).
1%
\%4 X H
Let 6 = | ,and Ax = | . Then by definition, §’ = , and
V H X
HYV
XV

&y - —_ D
(X, N\5),(V,8) ] (X,2x),(V,6)°

1

V X

where the second equality follows from (@ZT5).
(2) Let V € C, and define

PV) = {(\6) | (V, ) € Car, (V,6) € €T},
Pr(V)={(N,0") | (V,X) € genC, (V,8") € H*7C}.
Then & : PLV) — P"(V), (A, 0) = (N,d), where
(VX)) =F(V.A), (V.d) = F(V,0),

V X

is bijective.
Let (\,0) € PY(V), and (\,8') = ®(),0).
We claim that the following are equivalent.
(a) (V:),8) € YD(C)f.
(b) (V,X,8') € HLYD(C).
(c) For all (X, Ax) € Cy, the morphism

D) (vay - (AX) @ (VoA) = (V. A) @ (X, Ax) is in Cp.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



3.5. DUALITY AND HOPF MODULES 145

(d) For all (X, \y) € geonC, the morphism
E%EA;(MW/) (XN @ (V) = (V)@ (X, Ny) s in geonC.

By Proposition BZATT] (a) is equivalent to (c), and by Proposition B:4.8 and Propo-
sition BAH], (b) is equivalent to (d). The equivalence of (c¢) and (d) follows from
B413), since F} is a strict monoidal isomorphism.

(3) Since Fy and Fj are strict monoidal isomorphisms, it follows from (1) and

(2) that F%D is a strict monoidal isomorphism with inverse F%D.

We finally show that the functor F' = F%D is braided. Let X = (X, Ax,dx)
and V = (V; ), §) be Yetter-Drinfeld modules in YD(C), and F(X) = (X', Ny, &%)
and F(V) = (V', N, ¢) their images under F'.

We write

F:A=YDC)E - B=H2yD(C).

In the notation of (1), c%}X’iAX)’(V’(;) = 034}7\/7 and E%})?,x ), (V7.5 T Ef“(X),F(V)‘ By

X
A _ =B
BAID), cxy = Cr(x),F(v) hence

F(Eéx) = E(/l,X = Cg(v),F(X)-
O

COROLLARY 3.4.17. Let H be a Hopf algebra in C, and assume that the antipode
of H is an isomorphism. Then the functor

F: JYD(C) = e YD(C), (V. 8) = (VA (S @id)ey v 6),
and where morphisms f are mapped onto f, is an isomorphism, and

TT ~ v/ A cO e H
(F, ) : HYyD(C) — Bn YD(C), where px.y = E;J;{D(C)cx,y,

for all X,Y € LYD(C), is a braided monoidal isomorphism.

PROOF. This follows by composing the isomorphisms in Theorems and
B.416] that is, we define (F, ) = F%D(Fﬁm,w). O

3.5. Duality and Hopf modules

Let C be a strict monoidal category.

DEFINITION 3.5.1. Let V € C. A left dual of V is a triple (V*, evy, coevy ),
where V* is an object in C, and evy : V*®V — I and coevy : I — V ® V* are
morphisms in C with

(VeI S22 v g Ve v 8% 1o V) = idy-,

TV =S Ve v eV 2% Vel) =idy.

We use the notations

evy = VU/, coevy = V(_?/* .
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Hence by definition of a left dual,
v % \%4 1%

U REE
/A T 7 1%

REMARK 3.5.2. Let V € C and (V*,evy, coevy) a left dual of V.
(1) For all X,Y €C,

(3.5.2) Home(X @ V,Y) — Home(X,Y @ V*),
F— (F ®idy+)(idx ® coevy),
is bijective with inverse given by G — (idy ® evy )(G ® idy ), and
(3.5.3) Home (V' ® X,Y) = Home (X, V®Y),
F — (idy ® F)(coevy ®idx),
is bijective with inverse given by G — (evy ® idy)(idy~ ® G).
By B5.2), the pair (V,evy ) satisfies the following universal property.

For all X,Y € C and morphisms F : X ® V' — Y there is exactly one morphism
G: X — Y ®V* such that the diagram

XoV £ Y

(3.5.4) \ /
GRidy idy ®evy

YoV eV

commutes. Explicitly, G is given by G = (F ® idy~)(idx ® coevy ).

(2) We note another universal property of the pair (V*,evy) by setting Y =T
in (1).

For all X € C and morphisms F : X ® V' — I there is exactly one morphism
G : X — V* such that the diagram

XeV

r I
(3.5.5) @M /

VeV

commutes. Explicitly, G is given by G = (F ® idy~)(idx ® coevy ).

(3) If f:V — W is a morphism, and if W has a left dual (W, evy, coevy ) we
define a morphism f* : W* — V* by 350 with X = W* and F = eviy (id ® f),
G = f*, that is by the commutative diagram

WV — e oW

(3.5.6) f*@idvl PW .
ViRV s

By the universal property, idj, = idy«, and (fg)* = g*f*,if g : U —» Vis a
morphism such that a left dual (U, evy, coevy) exists.
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ExaAMPLE 3.5.3. Let C = My be the monoidal category of vector spaces.

Suppose a vector space V' has a left dual (V*,evy,coevy). Choose elements
v €V, fi € V*, 1 < i < n, with coevy (1) = >I" v, @ f;. Then V is finite-
dimensional, since for allv € V, v = >""_, vievy (f; @ v).

A finite-dimensional vector space V has the left dual (V*,evy, coevy ), where
V* = Hom(V, k) is the dual space, evy : V* @V =k, f @ v f(v), is evaluation,
and coevy is defined by coevy (1) = Z?zl v; ® fi, where (v;)1<i<n and (f;)1<i<n
are dual bases. If f: V — W is a linear map of finite-dimensional vector spaces,
then f* defined by [B.5.6) is Hom(f,id).

The left dual is uniquely determined (if it exists) in the sense of the next lemma.

LEMMA 3.5.4. Let C be a strict monoidal category and let f :V — W be a
morphism in C. Assume that (V*, evy,coevy) and (V' evi,, coevi,) are left duals
of V., and that (W*,evy,coevyy) and (W', evy,, coevyy, ) are left duals of W.

(1) There is exactly one morphism ¢ : V' — V* such that the diagram

/
CVV

VeV I

M -

VeV

commutes. Explicitly, ¢ = (ev}, @ idy+)(idys ® coevy), and ¢ is an iso-
morphism.

(2) (idy ® @)coev), = coevy.

(3) Let ¢ : W' — W* be the isomorphism ¢ in (1) for the duals of W. Let
f*rW*r = V*and f': W' — V' be the morphisms defined by the diagram
BEA) for the duals W*,V* and the duals W/, V'. Then f*i = pf’.

PRrROOF. (1) follows from the universal property (B5.3).
(2) By definition of the dual and by (1),

idy = (idy ® ev},)(coevy, ®idy)
= (idy ®@ evy)(idy @ p ® idy)(coevy, @ idy ).
Hence (idy ® ¢)coevi, = coevy by the uniqueness of G in (3.5.4) with X = I,
Y=V, and F'=idy. B _
(3) Define f : W’ — V' by the equation f*1) = ¢f. Then f satisfies the

defining commutative diagram for f’. Hence f = f’. O

LEMMA 3.5.5. Let C be a braided strict monoidal category, and V,W € C.
Assume that (V*,evy,coevy) and (W* evyy, coevy ) are left duals of V and W,
respectively.

(1) Let évy = evycy,y=, coevy = cy,y-coevy. Then (V,évy,coevy) is a left
dual of V*.
(2) Define évy,w and coevy,w by the compositions

id®cw *, v ®id evy Qeviy
—

VeVeW @ W —— I and

id®cy» y ®id
—'>

VoW aVeW
J LSVECNW 1y o ) I @ W VoWV @ W*.
Then (V* @ W*, évy,w,coevy,w) is a left dual of V@ W.
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PROOF. In both cases we prove the first equation in ([.5.1), the second follows

by symmetry.
Vv v
v \%
v \%
V \%4

(1)
where the first equality follows from (the upside-down version of) [B.2Z.I7)) and the

second from (B2.17)).
(2)

vV W
Vv w*
] [ V* wH
vV W
V* W*
where the first equality follows from [B.2.I7) and the second from [B.2.17)). O

DEFINITION 3.5.6. A braided strict monoidal category C is called rigid, if each
object has a left dual.

Let C be a rigid braided strict monoidal category. For any V € C we fix a left
dual (V,evy,coevy). (For the left dual of I we take (I,id,id).) The contravariant
functor

() :C—=C, V=V
where morphisms f are mapped onto f* is called the left duality functor.
REMARK 3.5.7. Let C be a strict monoidal category, and V € C. A right dual

of V is a triple (*V, ev},, coevy,), where *V is an object in C, and evy, : VQ*V — I
and coevy, : I = *V ® V are morphisms in C with

Cocv'v ®id

(Io*V VeoVe vV LWy e = idy-,

ev'V ®id

(VeI 28N, yory gy VO 1oy —idy.

The monoidal category C is called rigid, if each object has a left dual and a right
dual. In this sense, a rigid braided strict monoidal category is rigid, since for each
V € C with left dual (V*,evy,coevy) the triple (V*,ev},, coevi,) is a right dual,
where

vy = (Vo Vv 25 vy o v 2% 1),

coevy

coevl, = (I <Y, v g v 2205 pr g ),
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THEOREM 3.5.8. Let C be a rigid braided strict monoidal category. For all

V.,W e€C let
(3.5.7) ov,w = (evy,w ® idvew))(idv-gw+ ® coevygw),
(358) ’(/JV = (é{lv & ldv**)(ldv X COQVV*).

Then the families
e=(pvw V' oW" = (VeoW) )vwe, v=0v:V—=>VT")ve
are natural isomorphisms, and
()59 :CP=C
is a braided monoidal equivalence.
PrOOF. Let V,W € C. By Lemma and Lemma B354 ¢y and oy, are

the isomorphisms in Lemma [B5.4|(1) making the following diagrams commutative.

Vev:

3.5.9
( ) m %

evy,w

VW QVeW I
(3.5.10) \ /
v, w®id Vvew

VoW eoVeWw

It follows from Lemma [B.5.4] that ¢ and ¢ are natural isomorphisms.

We next show that ¢ is a monoidal structure of the duality functor. Let
U V,W € C. The equalities v = idy~ = ¢y are obvious. To prove that
the diagram

U@V W* S22V e g (Vv @ W)*

<PU,V®idl <PU,V®Wl

PURV,W

UV oW —/— UV eW)*
commutes, by ([B.5.4) we have to show that

eVU@V@W(<PU®V,W ® idU®V®W)(§0U,V ®idw+ @ idygvew)
ZGVU®V®W(%0U,V®W ®idygvew)(idy- ® pv,w & idvgvew)-

This is easily checked using the defining diagrams of the p-maps, the definition of
the ev-maps, and the axioms of the braiding.
Finally, the diagram

pYv,w

Ve wr 22 (Ve W)

Cv*’W*J( (CW,V)*J/

pYw,v

WV 25 (We V)
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commutes. As before we have to prove that
evivgy (Pw,v ® idwev)(cv-w+ @ idwgy)
=evivev ((cwv)" @ idwev)(pvw @ idwey).

By the defining diagrams of ¢w,v, of (ew,)* and of ¢y, the last equation is
equivalent to

eviy,y (cv+ w+ Qidwev) = evy,w (idv-gw+ @ cw,v),

and evyyy (cy- w+ @ idwey) is equal to

Vw*w Vv Vv vV w*w Vv
w [ ] w = eVWv 1dV*®W* X va)
where we moved evy twice to the left using ([B217). O

REMARK 3.5.9. Let C be a braided strict monoidal and rigid category, and let
H = (H,pu,n,A,e,8) be a Hopf algebra in C. Then by Theorem B.5.8 the dual
Hopf algebra of H is the Hopf algebra (H*, A*pp g, ¥, QQI;?H‘LL*, n*,S8%).

LEMMA 3.5.10. Let V' € C with left dual (V* evy,coevy), C a coalgebra and
A an algebra in C.

(1) If (V,\) € C, then (V*,\;) € Ca, where A\, is defined by

V*®A id®id®coevy V*®A®V®V* id®Ay ®id V* ®V®V* evy ®id V*
(2) If (V,0) € CC, then (V*,8,) € ©C, where &, is defined by

v* id®coevy V* ®V®V* id®dy ®id V* ®V®C®V* evy ®id®id C®V*

In graphical notation,

(3.5.11) | ’ | | ’ |

AV*
PrROOF. (1) It is obvious that (V*, A, is unitary. By 5.1 and associativity,
VeA A V*A A

v . Ve

that is, A (Ar ©ida) = A (id @ A).
(2) follows in the same way. O

Ve A A

In the remainder of this section, let C be a braided strict monoidal category.
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DEeFINITION 3.5.11. Let H be a bialgebra in C.

A left (right) H-Hopf module is a triple (V,\,0), where (V,)) is a left
(right) H-module, and (V) is a left (right) H-comodule such that 6 : V - HQV
(6 :V =V ® H) is a morphism of left (right) H-modules.

A left-right H-Hopf module is a triple (V, A, §), where (V, ) is a left H-
module, and (V,0) is a right H-comodule such that § : V' — V ® H is a morphism
of left H-modules. (Here, H is a left and right H-module by multiplication, and
H®V,V ®H are H-modules with diagonal action.)

We denote the categories of left, right and of left-right H-Hopf modules by C,
CH and yCH, respectively.  Their morphisms are H-module and H-comodule
morphisms.

The pictures for left, right and left-right Hopf modules are

(3.5.12)

H 1% 1% H H V
HV V H HYV
HV vV H V H

H 1% 1% H vV H

Note that the notion of a Hopf module is self-dual. The Hopf module axiom is
equivalent to saying that the module structure is a morphism of H-comodules.

THEOREM 3.5.12. Let H be a Hopf algebra in C, and (V,\,d) a Hopf module
in gCH*. Assume that V has a left dual (V*,evy,coevy). Then (V*,\.1,68) is a
Hopf module in 2C, where \, and §; are defined in [B.5.11), and

Ary = Aecrv- (S ®1id).

PRroOOF. See Figure[3.5.1] where the first equality follows from the definition of
Art, the second from BZI2) with h = ¢;, the third from the definition of §;, the
fourth from duality B5.1), the fifth from the defining equation B512]) of the left-
right Hopf module V, the sixth from B2I13) with h = Ay and from associativity
of H, the seventh from ([B2ZTI7), the eighth from [B226) and coassociativity, and
the last equality from the definitions of §; and A, and duality (B50). O

The next result is the fundamental theorem for one-sided Hopf modules of
Larson and Sweedler extended to the braided situation. We will state it in Theo-
rem [3.5.14] for left Hopf modules.

In the rest of the section let H be a Hopf algebra in C.

DEFINITION 3.5.13. Let (V,6) € #C. We say that (V) exists if

)
coHy ' sV ——=H®V
n®idy
is an equalizer diagram in C.

A left H-module (V, \) is called trivial, if A = e¢®id : H®V — V. Any object
V € C is a trivial H-module via the action of ¢.
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Al

HV*

Hv*

FI1GURE 3.5.1. Proof of the Hopf module axiom for the dual

THEOREM 3.5.14. Let (V,\,8) € #C, and assume that (“°HV, 1) exists.

(1) (a) There is a uniquely determined morphism ¥ : V. — < HV with

v Lely Lyy=v S Heov 22, gov A y),

(b) (CHV 5V L 0 HY) = ideony, .
C : — 18 e -itnear, where 18 a trivial left -moaulte.
9V = ©HV s left H-li here ©HV is a trivial left H-modul
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(d) The following is a coequalizer diagram.
A 9 H
HRV —=V —— "V
e®idy

(2) The morphisms

HoeHy ¥ poy Xy v S gev 8 ggely

are inverse isomorphisms in C, where H @ 'V is a Hopf module with
module structure pg ® ideo vy and comodule structure Ag ® ideory, .
PROOF. Let O = (VS HoV 22, g oy A 7).
(1)(a) To prove that v = O, it suffices to show that 60 = (n ® id)6.

v

+

H 1%
H v H 14

where the second equality follows from the Hopf module axiom, the third from
coassociativity of the comodule V', the fourth from ([B.2.20) and coassociativity of
H, and the last from the axiom of the antipode.

(1)(b) The equation é¢ = (n ® id)¢ implies @1 = 1. Hence v = O = ¢ by (a),
and ¥t = id, since ¢ is a monomorphism.

(1)(c),(d) The equation O\ = O(e ® id) follows by duality from (1)(a). Since ¢
is a monomorphism and © = ¥, YA = J(e ® id) = e ® V). Thus ¥ is left H-linear.

Let Z € C and h : V — Z a morphism with hA = h(e ® id). If there is a
morphism A’ : ©©HV — Z with h = b'0, then he = /9t = h'. Tt remains to show
that h = hed = hO. By definition of ©, and since hA = h(e ® id),

hO = hA(S @ idy)d = h(e ® id)(S ® idy)§ = hidy = h.

(2) By (1), associativity and coassociativity of V', and by the axiom of the
antipode,

v v

AMid®)(id®9)d = A(id ® ©)§ = T =] @ =idy.
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Note that by definition of ¢ and by (1)(c),

COHV COHV HYV H e
| | |
(3.5.13) L = .1 N = 9
I | I
gy H OV coH co Yy
Then
H COHV
coH
H I 4 I H coHV
! L I
L
L
(ld ® 19)5)\(1(1 ® L) = = == I == idH@coHV,
0
7w
I H coHV
coH
H 14 H COHV

where the second equality follows from the Hopf module axiom, the third from

B513), and the last from (1)(b).

We have shown that the morphisms in (2) are inverse isomorphisms. They are
morphisms of Hopf modules in #C, since A(id ® ¢) is left H-linear, and (id ® 9)4 is
left H-colinear. O

3.6. Smash products and smash coproducts

Let C be a braided strict monoidal category, and H a bialgebra in C.
The Yetter-Drinfeld map in Definition B.4.4] defines a generalized smash
product algebra.

DEFINITION 3.6.1. Let A be an algebra in yC and B an algebra in 7C. Let
A#B = (A® B, pagp,Na#B), where nagp =14 ® np, and

id g ®C%?A ®idp

pagp = (A® B A® B A® A® B® B 1422 A g B)

A B A B
J

I
A B

PROPOSITION 3.6.2. Let A be an algebra in yC and B an algebra in C. Then
A#B = (A® B, ppagp,Naxp) is an algebra in C.
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PROOF. Since p4 is H-linear, and pup is H-colinear,

H A A
B
H A A l B B
(3~6.1) = y e

A H B
A

It is easy to see that naxp is a unit. We prove associativity of paxp. Let A4 be
the module strucure of A and dp the comodule structure of B.
A

B A B L
papB(pagp ®id) = — 7
_ Y

A B

A A B

where the second equality follows from the second formula in (B6.1]).

A B A B A B A B A B A B

\
_ \
paxp(id ® paxp) = =
I I
B
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where the second equation follows from (B.212) with h = pa(ida ® A4). Then the
first formula in [B.6.1]) gives the picture

A B A B A B
A B A B A B

IR

1 Lo

Sl
1

A B
A B

where the last equality follows from associativity of A and B, and from the comodule
axiom for 0p and the module axiom for A4. Finally, associativity of paxp follows
from [B21I3) by moving the lower 5 = h on the left-hand side to the right and
the upper ugp = h to the left in the last picture. (]

We note that in Proposition B.6.2]
t1=ida®np: A— A#B, s :Na®idg : B— A#B

are algebra morphisms, and the multiplication map

A® B 222, A4B® A#B £2*2, A4B

is the identity morphism.

A left (right) H-module algebra in C is an algebra in the monoidal category
uC (in Cy, respectively). A left (right) H-comodule algebra in C is an algebra
in #C (in C¥, respectively).

For any monoidal category D we denote by ALG(D) the category of algebras
in D. Objects in ALG(D) are the algebras in D, and morphisms the algebra
morphisms.

REMARK 3.6.3. Let A be an algebra in C, and (A, d4) a left (right) H-comodule.
Then A is a left (right) H-comodule algebra if and only if §4 is a morphism of
algebras in C.

DEFINITION 3.6.4. Let A be a left H-module algebra in C with H-module
structure \4. The smash product algebra A#H is the object A ® H with
multiplication and unit morphism

pagn = (pa @idp)(ida @ Aagn),  Nagg =14 @ N@.

Here, A ygp is the left H-module structure on A® H given by the monoidal structure
of yC, where A and H are H-modules by A4 and pu, respectively.
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Thus A#H is the special case of Definition B.6.1] with left H-comodule algebra
B = H via multiplication pgy and H-comodule structure Ag, since
(3.6.2) pasrn = (pa ® pg)(ida ® C%ﬁx ®idpy).

PROPOSITION 3.6.5. (1) Let A be a left H-module algebra in C with H-
module structure Aa. Then (A® H, pagm, Nagr) is a right H-comodule
algebra in C with H-comodule structure axp =ida ® Apy.

(2) ALG(uC) — ALG(CH), (A,\a) — (A#H,6441), and where morphisms
@ are mapped onto ¢ ® idy, is a well-defined functor.

PrROOF. (1) By Proposition B.6.2, A#H is an algebra. We prove that paxp is
right H-colinear.

A H A H 4 g A H

OA#HMARH = = ;

A H H A H H

where the first equality follows from the bialgebra axiom, and the second from
B213) with h = Ay, and from coassociativity. Hence pagp is H-colinear, since

the second picture is (pagn @ idy)dasm)AxH)-
2) is easy to check. O
( y

PROPOSITION 3.6.6. Let A be a left H-module algebra in C. Then the functor
A(HC) = agn C, (V,Am), Aa) = (Vi Aa(ida @ Aw)),

where morphisms f are mapped to f, is an isomorphism. The inverse functor is
giwen by (V, Aazn) — (V, Ax), Aa), where

)\HZ)\A#H(’)/@idv), )\A:/\A#H(q ®idy).

ProoF. This follows directly from the definitions. (]

We now dualize. A left (right) H-comodule coalgebra is a coalgebra in C
(in CH | respectively). A left (right) H-module coalgebra is a coalgebra in gC
(in Cy, respectively).

For any monoidal category D we denote by COALG(D) the category of coal-
gebras in D. Objects in COALG(D) are the coalgebras in D, and morphisms the
coalgebra morphisms.

REMARK 3.6.7. Let C be a coalgebra in C, and (C, A¢) a left (right) H-module.
Then C' is a left (right) H-module coalgebra if and only if Ao is a morphism of
coalgebras in C.

DEFINITION 3.6.8. Let C be a left H-comodule coalgebra with H-comodule
structure . The smash coproduct coalgebra C#H is the object C ® H with
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comultiplication and counit morphism

Acpn = (Co H 2229 0o 0o n 22980, 09 H e C o H),

Ec4H =€c VEH.

Here, dcom is the left H-comodule structure on C' ® H given by the monoidal
structure of ”C, where C' and H are H-comodules by éc and Ay, respectively.

Dually to (B:62)), the smash coproduct of C#H can also be written as
(363) AC#H = (ldc & C%% X ldH)(AC ® AH),
where H € yC via ug.

PROPOSITION 3.6.9. (1) Let C be a left H-comodule coalgebra in C with
H-comodule structure dc. Then the triple (C#H, Acun,ecun) is a right
H-module coalgebra in C with H-module structure A\cxg = idc ® py.

(2) COALG(#C) — COALG(Cx), (C,dc) = (C#H, A\cxn), and where mor-
phisms @ are mapped onto p ® ide, is a well-defined functor.

PROOF. Dual to Proposition 3.6.5. O

ProprosITION 3.6.10. Let C be a left H-comodule coalgebra in C. Then the
functor

ey = e, ((Vidn),dc) = (V. (ide ® 6r)dc),

where morphisms f are mapped to f, is an isomorphism. The inverse functor is
given by (V,6cyn) — ((V,6m),0c), where

6n = (r@idy)dcun, o= ®idy)dcsun.
PrROOF. Dual to Proposition |

3.7. Adjoint action and adjoint coaction

Let C be a braided strict monoidal category, and H a Hopf algebra in C. We
discuss here the concept of the adjoint action in a general setting.

Let A be an algebra in C, V € C, A; a left A-module structure and A, a right A-
module structure on V. Then (V| A;, A;-) is an A-bimodule if the following diagram
commutes:

ARV A2 o4

Jid/\®)\r J)\T
A

Agv —2L

The category of A-bimodules in C is denoted by 4C4.
PrROPOSITION 3.7.1. The functor
ad : HCH — HC, (‘/, )\l;/\r) — (‘/, ad),

whereadzH@VﬂH@H@VmH(@V@H

2B, v o 1 Ay,
with ad(f) = f for morphisms f of H-bimodules, is well-defined.

Note that in general the functor ad is not strict monoidal.
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ProorF. (1) Let (V, A, Ar) be an H-bimodule. We show that (V,ad) is a left
H-module. Clearly, ad is a morphism in C. The unit axiom for ad is easily checked.

We have to prove the equality ad(py ® id) = ad(idg ® ad); ad(pg ® id) equals

H H V

HHYV
+

+
¥ ¥

+
14
v 1%
1%

where the first equation follows from the bialgebra axiom for H, the second from
functoriality of the braiding ([B.2.13]), and the third from the rules for the antipode
(B220) and the axioms of a module and a bimodule. By functoriality of the braiding
BZI12) with A = A\.(\; ® id), the last picture is equal to ad(idy ® ad).

(2) Let f: V — W be a morphism of H-bimodules in C. We have to show that
f is a morphism in gC, that is, fad = ad(id ® f). The latter is clear since f is a
morphism of H-bimodules in C. O

PROPOSITION 3.7.2. (1) Let (V, A\, \r) be an H-bimodule.
(a) /\l = )\,«(ad ® ldH)(ldH ® CH,V)(AH ® idv), and
(b) )\Z(SH ® ad)(AH ® idv) = )\T(idv ® SH)CH7\/.
(2) Let A be an algebra, and v : H — A an algebra morphism in C. Then
(A, M, \r) is an H-bimodule with A = p(y ® ida) and A, = p(ida @ 7),
and (A, ad) is a left H-module algebra.

PrOOF. (1)(a) and (b) follow from associativity of A, and A;, respectively, and
from coassociativity of Ay and the axiom of the antipode.

(2) It is easy to check that (A,)\;) is a left H-module, (4, \,) is a right H-
module, the bimodule axiom holds, and that n4 is H-linear. We prove that the
multiplication map pa : A® A — A is left H-linear with respect to ad, where the
action on A ® A is the diagonal action.

Let A; = (A, \,id®¢) and A, = (4,e ®id, A\,) as H-bimodules. Then

pa:AA®A — A
is a morphism of H-bimodules by associativity of p4. Thus
,uAad = ad(idH ®,U,A) THRA ®A — A

for the functorial action ad by Proposition B.7.1l It remains to prove the equation
ptaad = paadgiag, Where adgiag is the diagonal action on A ® A. The latter holds
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since

H A A

H A A H A A
Y

Y +
Haddgiag = = = ,
£y v + ¥ v +
& D i 5

vy Y
A A
A

where the second equation follows from coassociativity of H, associativity of A,

and (3ZT3)), and the third from the axiom for the antipode of H and since « is an
algebra map. The last picture is p4ad. |

DEFINITION 3.7.3. If A is an algebra and v : H — A is a morphism of algebras
in C, then ad in Proposition 3.7.2(2) is called the left adjoint action of H on A
with respect to v, and we denote it by ad,. The left adjoint action of H on H with
respect to idy is denoted by ady : H @ H — H.

LEMMA 3.7.4. If the antipode Sy of H is an isomorphism in C, then

Spadgeor = adH(1d®SH) H®H — H.

PRrROOF.
H H
H H
H H H H
H H
+H &+ ax
Y +
D @ S
- H
H H
H
H

where the first equation follows from the rules of the antipode (B:Z20]), the second

from functoriality of the braiding (B.2.12]) and (B.2.9]), the third again from (3.2.26]),
and the fourth from associativity. O
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The monoidal structure of gC and Cx defines a monoidal structure for the
category gCpx of H-bimodules in C. It follows from an easy argument (using the
functoriality of the braiding) that the tensor product of two H-bimodules is in fact
an H-bimodule. The multiplication p of H defines an H-bimodule structure on H.
Then (H, A, ¢€) is a coalgebra in ygCpy.

PROPOSITION 3.7.5. The functor
H(HCH) - gyD(C), ((‘/7 Al /\7‘)7 6) = (Vvﬂ ad, 6)a

where ad : H®V — V is the adjoint H-module structure of Proposition B, and
where morphisms [ are mapped onto f, is well-defined.

PROOF. We prove that (V,ad,§) is an object in ZYD(C).
The module structures and the comodule structure of V' are denoted by

ad=lad ) ) =

s )\r:| s 0=

Let ,qV and ,q(H ® V) be the left H-modules of Proposition B7I(1) for the
bimodules V and H ® V, respectively. By definition,

H V
H V
ad | — , and
_l’_
v
14
H \%4
H V
ad
(3.7.1) = ol
H V
H 14

since d : 4aV — aa(H ® V) is left H-linear. We prove the defining equality (B.4.1)) of
left Yetter-Drinfeld modules for (V,ad,§). By BZ1]), the left-hand side of (B:41])
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L HLJ

L
) LS

H 14 H v

is equal to

”

where the first equality follows from associativity and coassociativity and the rule
for the antipode in Proposition[B.Z.12(3). To prove the second equation we move the
third comultiplication across the braiding by (B.213]) and then use coassociativity.
By definition of the antipode, the picture simplifies to

H v
H Vv H |4

H v H v

H \%
where the first equality follows by moving ¢ across the braiding by [B212), and
the second by moving the second comultiplication across the braiding by [B213).
The last picture is the right-hand side of A1) for (V;ad, d). O

We dualize the previous notions. Let C' be a coalgebra in C, V € C, §; a left
C-comodule structure and ¢, a right C-comodule structure on V. Then (V,d;,d,)
is a C-bicomodule if (ide ® 6,)0; = (§; ® id¢)d, : V — C @V ® C. The category
of C-bicomodules is denoted by ¢CC.
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PRrROPOSITION 3.7.6. The functor

coad : 1c = He | (V,6,,6,) — (V,coad),

where coad = (V 25 Ve H 229, oV o H

id .
idg®cv,m HoH®V pH®idy H®V),

with coad(f) = f for each morphism f of H-bicomodules, is well-defined.

PROPOSITION 3.7.7. Let C be a coalgebra, and 7 : C — H a coalgebra morphism
inC. Then (C,0,,9,) is an H-bicomodule with 0; = (7®id¢)A and 6, = (ide®@m)A,
and (C,coad) is a left H-comodule coalgebra, where coad is the left H-comodule
structure defined in Proposition based on the H-bicomodule (C,d;,9,).

DEeFINITION 3.7.8. If C is a coalgebra and m : C — H is a morphism of
coalgebras in C, then coad in Proposition B.7.7is called the left adjoint coaction
of H on C with respect to 7, and we denote it by coad,. If C = H and 7 = idy,
then we write coady for coad,.

We note the dual of Proposition B0 where (H,u,n) is an algebra in the
category “CH of H-bicomodules.

PROPOSITION 3.7.9. The functor
a(1cy = ByD(C), (V,6;,0,),A) — (V, X, coad ),

where coad : V — HQV is the coadjoint H-comodule structure of Proposition [3.7.6),
and where morphisms f are mapped onto f, is well-defined.

REMARK 3.7.10. For any monoidal category C, a coalgebra C' and an algebra
A in C, there are functors

C—9, Vi (CoV,Ac@idy),
C—aC, Vi (AR V,ua ®idy),

where in both cases morphisms f are mapped onto id ® f.
In particular, there are functors gCg — ¥ (gCg) and HCH — x(H#CH). By
composition with the functors in Propositions B.7.5] and B.7.9, we obtain functors

HCr — gYD(C), V= (H® V,adygy, Ay ®@idy),
HeH o ByD(C), Vs (H®V, ug @ idy, coad gey ).
If C = My, then adjoint action and coaction on H are given by
adg : H® H = H, h® x = h1)zS(h(2)),
coady : H = H ® H, h = h(1)S(h(z)) ® hg).

Let V be an H-bimodule. Then H ® V' € #YD with H-coaction Ay ® idy and
H-action

adpggy  HOIHQRQV - HRV, gh®@v— g(l)hS(g(4)) ®g(2)1}8(g(3)),

Let V be an H-bicomodule. Then H ® V € g)}D with H-action py ® idy and
H-coaction

coadpggy HRV - HRHQV, h®v— h(l)v(_l)S(h(g)U(l)) & h(g) ® v(0)-
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3.8. Bosonization

Let C be a braided strict monoidal category, and H a Hopf algebra in C. We
introduce the important process of bosonization which transforms a bialgebra (or
Hopf algebra) in £YD(C) into a bialgebra (or Hopf algebra) in C.

DEFINITION 3.8.1. Let R be a bialgebra in £YD(C). In particular, R is an
algebra in yC and a coalgebra in C. We denote the H-action and H-coaction of
R by

AMp:H®R—R, drp:R— HQ®R.

Let (R#H, jipsm, Mrum) be the corresponding smash product algebra of Defini-
tion[3.6.4] and (R#H, Arun,eren) the corresponding smash coproduct coalgebra
in C of Definition B.6.81 We call

R#H = (R® H, Up#i, MR#H, ARAH,ERAH)
the bosonization (or the Radford biproduct) of R. Let

T=¢er®idy : R#H — H, y=nr®idy : H - R#H,
t=1dr®ny : R — R#H, Y =idr®epg : R#H — R.

We will see in Proposition B84 that R#H is in fact a bialgebra in C. The next
lemma is easily verified.

LEMMA 3.8.2. Let R be a bialgebra in BYD(C) and R#H the bosonization.
Then R#H is an algebra and a coalgebra in C, and

(1) 7 and ~ are algebra and coalgebra morphisms with 7y = idgy .

(2) ¢ is an algebra and 9 a coalgebra morphism with Y1 = idg.

(3) ¥ is right H-linear, where R#H is a right H-module induced by the algebra
morphism ~y, that is, by idgr ® pg, and R is the trivial H-module defined
ma g .

(4) ¥ is left H-linear, where R#H is a left H-module induced by the algebra
morphism vy, that is, with H-action prun(y @ idrgn), and R is a left
H-module by the given H-action on R.

(5) (idR#H ®7T)AR#H =idg® Ay : R#H — R#H ® H.

(6) (7r @idrumr)Aren : R#H — H @ R#H is the diagonal H-coaction on
R® H.

Moreover, the maps ¢ and ptr4m satisfy the claims dual to Lemma[3.8.2(3)-(6).
The following diagram describes the situation of Lemma [3.8.2]
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DEFINITION 3.8.3. Let R be a bialgebra in #YD(C) and R#H the bosonization
of R. We define functors

Fu: r(YD(C)) = rgnC,y (VAT 7)) o (VN
By B(HYD(C)) — FFHHC, (VA7 61),6%) v (V, 67 H),
where A#H = \E(idr @ A7) and §%#H = (idg @ 67)6"
and where morphisms f are mapped to f.

Note that F} is the composition

rR(EYD(C)) = r(uC) = ranC,
of the forgetful functor and the isomorphism of Proposition Similarly, F5 is
the composition

REHYD(C)) = fi(fe) = e,
of the forgetful functor and the isomorphism of Proposition B.6.10

PROPOSITION 3.8.4. Let R be a bialgebra in EYD(C) with bosonization R#H.
Let R® H be the tensor product in 2YD(C) of R and H, where H € HYD(C) via
wr and coady.
(1) (Re H,up®idy) € r(EYD(C)), and Fi(R® H) is the reqular represen-
tation of R#H, that is, R#H as a left R#H-module via [trup.
(2) R#H is a bialgebra in C.
(3) The functors Fy and Fy are strict monoidal.

PROOF. (1) By Proposition B.79] (H, pw, coady) € EYD(C), hence R® H is
an object in r(2YD(C)) with R-module structure up ® idgy. It is obvious that
Fi(R® H) is the regular representation of R#H.

(2) and (3). (a) Let V,W € g(HYD(C)). Then the diagonal action of R#H
on F1(V) ® Fi (W) is the action of R#H on F;(V ® W). This follows directly
from the definitions. In particular, Fy (V) ® Fy (W) with the diagonal R# H-action
AR (VygF (w) 18 a left R#tH-module.

(b) It is easy to see that epgpy is an algebra morphism, since eg is. By (1),
Fi(R® H) is the regular representation of R#H. By (a), the diagonal action of
R#H on R#H ® R#H defines a left R#H-module. Thus R#H is a bialgebra by
Proposition We have shown (2). Then (a) says that F is strict monoidal,
and the claim for Fy follows dually. |

Let R be a bialgebra in C, and V € £C, X € grC. Recall the Yetter-Drinfeld
morphism cyD(C) :V®X — X ®V in Definition B.4.4l For clarity we will also
write cy (c) y?)X(c’R).

LEMMA 3.8.5. Let R be a bialgebra in BYD(C), (V,8) € B(EYD(C)), and
(V,N), (X, A\x) € r(EYD(C)). Define §R#H \F#H \TFH 3y

(V,6F#H) = Fp(v,68),  (V,AR#H) = B (V) 0), (X, AFT) = Fu(X, Ax).

(1) YD(j{YD(C),R) _ YD(C,R#H)

Cve(Xax) = (V,gRAH), (X AT Ve X = X®V, as morphisms in

C.
(2) Let f : V®@X — X ®V be the morphism in (1). The following are
equivalent.
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(a) f is left R-linear.
(b) f is left R#H-linear, where V and X are left R# H-modules by \NF#H
ARH#H

Proor. (1) follows directly from the definitions.

(2) (a) = (b) follows by applying the strict monoidal functor Fj.

(b) = (a) is clear, since for all X,Y € r(EYD(C)) the restriction via the
morphism ¢ : R — R#H of the diagonal R#H-action on F1(X) ® Fi(Y) is the
diagonal R-action on X ® Y. |

LEMMA 3.8.6. Let R be a bialgebra in BYD(C) with bosonization R#H. Let
(VX 0) € g2 YD(C), and define
MNyeidy) : HRV =V, =(r®idy)6: V- H®V,
M=\ ®idy): RV =V, =W ®idy)§:V - R V.
Then (V,\H §) € £YyD(C), and
(VAT67), M%) € r(YD(C)),  (V,A",6M),8%) € B(HYD(C)).
PROOF. It is clear (see Propositions and B.6.10) that (V, \H) and (V, \F)
are modules, (V, ) and (V, %) are comodules, and
(VA M) € r(rC),  ((V,67),6%) e F(HC).
We have to prove
(1) (V,A",57) € F¥D(C),
(2) ((V,\H),\) € r(H(C), that is, A\® is H-colinear,
(3) ((V,6H),0%) € B(4C), that is, 6 is left H-linear.
We denote the left-hand side of the defining equation ([B.41]) of the YD-module
(VA 0) € ,fﬁ;’yb(C) by ¢;, and the right-hand side by ;..
(1) follows from (7 ® idy )p;(y ® idy) = (7 @ idy ) e, (y ® idy ), since 7,y are

bialgebra morphisms with 7y = idg.
(2) Note that

(3.8.1) (idR#H®7T)AR#HL= LQNH,
(382) (ﬂ'@idR#H)AR#HL: 5R®’I7H,

by Lemma B.82(5) and (6).
Let 6o, : R®V — H® R®V be the diagonal H-coaction. (2) follows from
(r®@idy)ei(t @ idy) = (7 ® idy ), (¢ ® idy ), since

(m @idyv)pi (e ®@idy) = §7AF,
(m®@idy)er(t®@idy) = (idg @ AF)ohgy,

by B81) and [B:82), and since = is a bialgebra morphism.
(3) Let Mo, : H® R®V — R®V be the diagonal H-action on R ® H. (3)
follows from (¥ ® idy ) (y ®idy) = (¥ ® idy ). (7 ® idy ), since

(0 @idy)pi(y @ idy) = 677,
(0 @idv)e,(y @idv) = \igy (idn @),
by Lemma B82(3) and (4), and since v is a bialgebra morphism. O
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THEOREM 3.8.7. Let R be a bialgebra in £YD(C) with bosonization R#H. The
functor
F: RYD(HYD(C)) = pifs YD(C),
(VAT 67), A 6T) e (V, ATHRHT ST,
where \NF#H = \E(idr @ A, and 6%#H = (idy @ §7)6%, and where morphisms f
are mapped to f, is a prebraided strict monoidal isomorphism.

PRrOOF. (1) We first show that the functor F' is well-defined.
Let V € RYD(EYD(C)). Then for all X € g(#YD(C)), the Yetter-Drinfeld
H
morphism c%ZDX(HyD(C)’R) VX - X®V is left R-linear by Proposition 3.4.9]

By Lemma [B:8352), the Yetter-Drinfeld morphism

YDC.R#H)
i) VOX 5 XV

is left R# H-linear, where V is the left R#H-comodule F5(V) and the left R#H-
module F;(V). By Proposition B.84(1), we can choose X such that Fj(X) is
the regular representation of R#H. Hence F (V) is an object in gj;yD(C) b
Proposition
(2) Conversely, let (V, \F#H §R#HY) ¢ R#HyD( C). Define M §H \E and 7
as in Lemma Then by Lemma [3.8.6]
((V7 )‘H7 5H)7 )‘R) € R(gy'D(C)), ((V= )‘H7 5H)= 6R) € R(gy’D(C))

Let X € r(2YD(C)). Then the map c%ﬁ%’%ﬁ?) in Lemma B.835(2)(b) is left
R+# H-linear by Proposition B.4.5] since V € §j§yb(0). Hence by Lemma [3.8.5]

yD(HyD(C) R) .

the map cjy, is left R-linear, and it follows that

((Vv )‘Hv 6H)= )‘Rv 6R) € RyD(HyD(C))

by Proposition

It is clear (using Lemma [B:82) that the inverse functor of F' is given by the
construction of ((V, \H §H) \E §7).

(3) The functor F' is strict monoidal, since by Proposition [3.8:4 both functors
Fy and F5 are strict monoidal. Moreover, F' is prebraided, that is, for all V, W in
RYDHYD(C)), the diagram

FV)@ F(W) —— F(VeoW)
C%?V),F(W)l F(C)\;?/V l
FW)®@F(V) —— F(W®V)
is commutative, where C%-}.(DV)’ (W) and C‘J;BV are the braidings in }5 I é{ YD(C) and
RYD(HYD(C)), respectively. This is a special case of Lemma [B.835(1). O
We next prove transitivity of bosonization in the following sense.

PROPOSITION 3.8.8. Let R be a bialgebra in £YD(C) with bosonization R#H
in C, and K a bialgebra in RYD(EYD(C)) with bosonization K#R in HYD(C).
Then the identity map

(K#R)#H — F(K)#(R#H)

of K ® R® H is an isomorphism of bialgebras in C.
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PrOOF. The multiplication of F(K)#(R#H) is defined by
K R H K RH K R H KRH

|

% _ \

I I I
K R H K R H

To prove the equality, we move the second comultiplication of H across the braiding
and then use coassociativity.
The multiplication of (K#R)#H is defined by

K R H KRH
.
I
K R H
Note that
R H K II% H K
) 8
R K R R K R

by moving the H-action of K across the braiding and then using associativity of the
H-action of K. If we modify the third picture with ([B.83]), we obtain the second
picture. We have shown that the identity is an algebra morphism.
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3.8. BOSONIZATION 169

It follows by duality that the identity is a coalgebra morphism. O

We finally show that the bosonization of a Hopf algebra is a Hopf algebra. We
first characterize the antipode of a Hopf algebra in £YD(C).

PROPOSITION 3.8.9. Let C be a coalgebra, A an algebra and R a bialgebra in
H
#YD(C).
(1) Let f € Home(C, A) be a convolution invertible map which is a morphism
in BYD(C). Then f~1 is a morphism in EYD(C).
(2) Suppose that there is a morphism S : R — R in C which is convolution
inverse to idg. Then S is a morphism in BYD(C), and R is a Hopf
algebra in LYD(C).

PROOF. It is easy to see, that Proposition [[2Z.11] holds for braided monoidal
categories instead of vector spaces. This version of Proposition [L2.ITI2]) implies
(1), since ®(f), hence also ®(f)~* and f~! are morphisms in ZYD(C). Finally, (2)
follows from (1). O

THEOREM 3.8.10. Let R be a Hopf algebra in 2£YD(C). Then the bosonization
R#H of R is a Hopf algebra in C. The antipode of R#H is the composition

RoH22Y, goRre H " o HoR

—HoRA25%% gome R 22N o Re H 22, po

SHpHQSR H®R

or equally, the convolution product (Nrer @ Sp) * (Sp @ NuEH).

PRrROOF. By Proposition B:84|2), R#H is a bialgebra in C.
(a) The first claimed expression for the antipode of R#H can be rewritten as

(3.8.4) Sy = Upp ) (rx) (S © SRR s) (114
(b) Equations B.6.2)) and [B.6:3) imply that

(3.8.5) pryH(dr @ Ny @ Nr ®idy) = idrynw,

(3.8.6) prgn(nr @idy ©@idr @ i) = Qg o) (ra)»

(3.8.7) (idr ®enp ®erQidu)Arpn = idrpH,

(3.8.8) (er®idy ®idp ® eg) Arpn :C?zga),(H,u)-

In particular, from Equations (8.8.4), (8.8.6) and (3.8.8]) we obtain that
Srun = preH(MRER @ SH @ Sk @ NMueH)ArsH
= (Nrer @ Su) * (SR @ Nuen).

We proved that the two claimed formulas define the same morphism.

(¢) The morphism nrer ® Sy is convolution invertible in Home (R#H, R#H)
with convolution inverse nreg ®idy. Similarly, Sp @ nyey is convolution invertible
in Hom¢ (R#H, R#H) with convolution inverse idg ® ngem. By (b), Spen is the
convolution inverse of (idr ® ngen) * (Mrer ® idy) in Home (R#H, R#H). The
latter is equal to idgum because of (B.8H) and (B87). Thus Sgxy is the antipode
of R#H. O

COROLLARY 3.8.11. Let R be a Hopf algebra in EYD(C). The following are
equivalent.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



170 3. BRAIDED MONOIDAL CATEGORIES

(1) The antipode of the bosonization R#H is an isomorphism in C.
(2) The antipodes of H and of R are isomorphisms in C.

PRrROOF. We write A = R#H. By Theorem[B.8T0 see also ([B.8:4)), the antipode
: _ YD YD
of R#tH is Sa = ¢y n), (rx)(SH © SRR 5 (11,0
(a) Assume that the antipode Sy of H is an isomorphism. Then the Yetter-
Drinfeld maps 6%2156)7(H7u) and C%}IEA)7(R7>\) are isomorphisms by Proposition B.4.8
Hence S4 is an isomorphism if and only if Si is an isomorphism.
(b) Assume that S, is an isomorphism. By Lemma B.82 and Lemma B2TT]

WSZl’}/SH = nglsR#H’y =idgy, SHTFSZL}/ =idg.

Hence Sy is an isomorphism. O

3.9. Characterization of smash products and coproducts

Let C be a braided strict monoidal category, and H a Hopf algebra in C.

Let R be a left H-module algebra. We have seen in Proposition 3.6.5 that the
smash product algebra R# H is a right H-comodule algebra with a right H-colinear
algebra morphism vy = n® idy : H — R#H, since 7 : k — A is a left H-module
algebra map. In this section we will show that a right H-comodule algebra with
such a morphism ~ is a smash product.

The next lemma follows easily from the definitions.

LEMMA 3.9.1. Let X,Y be algebras and f : X = Y, g : X — Y algebra
morphisms in C. Let (K,i) be an equalizer of (f,g). Then there is exactly one
algebra structure (K, px,nx) on K such that i : K — X is an algebra morphism.

With the next Theorem we generalize our result on smash product algebras
in Theorem [2.6.231 Recall the notion of the left adjoint action and left coadjoint
coaction in Definitions B.7.3] and B.7.8

THEOREM 3.9.2. Let A be a right H-comodule algebra in C with comodule struc-
ture 4. Assume that there is an algebra morphism v : H — A which is right
H-colinear, where H is an H-comodule via A.

Assume that an equalizer (R,v: R — A) of (§4,ida ® ng) exists in C. Then
R has a uniquely determined algebra structure such that v is an algebra morphism.
There are uniquely determined morphisms 9 : A — R and A\g : H ® R — R with

W= (A2 A H 8%, A g A 14, ),

Ar=(HeRYY He A, 4),

and the following hold.
(1) Y= idR.
(2) 9 is right H-linear, where A is a right H-module by pa(ida ® v) and R
is the trivial H-module defined via €.

HA (idA®'Y) 9 . . 3
(3) A H————=A—— R s a coequalizer diagram.
id®e

(4) (R, AR) is a left H-module algebra, A\p = Jad,(id ® ¢), and ¢ is left H-
linear, where R and A are left H-modules by Ar and ad,.

(5) ¥: A— Risleft H-linear, where A and R are left H-modules with module
structures pa(y ® ida) and Ag, respectively, and Ag = Gpas(y @ ¢).
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(6) ® = (R#H B AR A £y A) is a right H-colinear algebra isomorphism
with inverse ¥ = (A LENY' ® g 284H, R#H)

A
PROOF. Let 64 = . Note that
A H
A A
A A
o) ‘-l-‘ _ | |
A A H A H
A H
H H
9.2 Y =
(392) L 7
A H A H

since pa,n4 and v are H-colinear. By colinearity of p4,

A A A
A A A
A A A
093 %r\ B RURE |
A H
A H
A H

(1), (2), (3) Since 04 and id ® ny are algebra morphisms, by Lemma B9l R
has a uniquely determined algebra structure such that ¢ is an algebra morphism.
Let Ay = pa(ida®v) : AQ H— A. Then (A, A4,d4) is a right H-Hopf module.
By the version of Theorem [B.5.14] for right Hopf modules, ¥ exists and is uniquely
determined, and (1), (2), (3) hold.

(4) We next prove existence and uniqueness of Ag, that is, the diagram

id®e ad’y

(3.9.4) H®R HoA

5
A—= A0 H

ida®nu
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commutes. We first compute d4ad, (idg ® ¢).

H R
H R
H R | H R
L
angan
L L L
¥
v
_ _ B
= +— - b
+
¥ ¥ ¥ v
5
L[jj ¥
A H A H L-_é/l
A H
A H

where the first equation follows from ([B.9.3), the second from colinearity of 7, and
the equality 04¢ = (ida ® ng)t, and the third from functoriality of the braiding
BZ13) with h = ApSy, then from the rules of the antipode (B2Z26]) and from
coassociativity. The inner part of the last picture cancels because of the axiom of
the antipode and functoriality of the braiding. The resulting picture is the second
morphism in .9.4), (ida ® ng)ad, (idg ®¢).

Since ¢ is a monomorphism, it follows from Proposition 3.7.2(2) that R is a left
H-module algebra with H-action Ar. By definition of Ag, ¢ is left H-linear. The

formula for Ag follows from (1).

(5) Let © = (A 2% A H 289, 49 A 24 4). We will show that

O : (A pa(y®ida)) — (A, ady) is left H-linear. Then (5) follows, since ¢ is a
monomorphism, and the formula for Ag follows from (2) and (4). In order to prove
that Oua(y ®ida) = ad,(id ® ©), we begin with the left-hand side.

" A H A H A I 4 H A
S %
¥ v i
D @
- LK Y11
Jr
v S 5
A A A A A

where the first equality follows from H-colinearity of p4 (B3.91]), the second from
colinearity of v (B.9.2)) and the rules of the antipode ([B.2.20)), the third from functo-
riality of the braiding (3:22.12]) and since v is an algebra morphism, and the fourth
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from associativity of A. It follows from functoriality of the braiding (3.212) (move
© in the middle to the other side of the braiding) that the last picture is equal to
ad, (id ® 9).

(6) By Theorem B5T4] for right Hopf modules, ® and ¥ are inverse isomor-
phisms. It is easy to see from colinearity of 4, (39.1]), and since ¢ = (ida @ n)e
that @ is right H-colinear. Proposition 3.7.2(1)(a) implies that ® is an algebra
morphism. O

COROLLARY 3.9.3. Let R be a left H-module algebra in C with module structure
A. Let A = R#H with H-comodule algebra structure § 4, and

y=n®idy : H— R#H, :=1idr®n:R— R#H.
(1) (R,¢) is an equalizer of (84,ida @ ng) and Ag = A.
(2) Assume that the antipode Sg is an isomorphism in C. Then the morphism
HoRXES Ao Ats; A
is an isomorphism in C.

PROOF. (1) The first claim follows from the axioms for the unit and counit of
the bialgebra H. The second holds by Theorem B:9.2(5).
(2) We view V = A as an H-bimodule via v as in Definition B733] Then by
Proposition 3.7.2(1)(b),
pa(y®ida)(Sy ® ad,y)(AH ®ida)(idyg ® 1)
=pa(ida ®y)(ida ® Su)ep a(idy ® L).
This equality and the definition of Ag in Theorem [3.9.2]imply that the compositions

HoRA219 o HeoR S5 o R 2% Ag A 224 4,

HoR S R H M2, po g 120 A AL 4

coincide. The second morphism is an isomorphism, since Sy is. Moreover, the
morphism (idg ® Ag)(Ag ®idg) : H® R — H ® R is an isomorphism with inverse
(idg ® Ar)(idg @ Sp ®idR)(Ay ®idg), and the claim follows. O

We note the dual results. They follow from Lemma [3.9.1] and Theorem
for the dual category C°P.

LEMMA 3.9.4. Let X,Y be coalgebras and f : X — Y, g: X — Y coalgebra
morphisms in C. Let

f
X =Y LN Q
g
be a coequalizer diagram. Then there is exactly one coalgebra structure (Q,Ag,eq)

on Q such that p:Y — @ is a coalgebra morphism.

THEOREM 3.9.5. Let C' be a right H-module coalgebra in C with module struc-
ture Ac. Assume that there is a coalgebra morphism w : C — H which is right H -
linear, where H is a right H-module via p, and that the coequalizer (Q,9 : C — @)
of (A¢,ide ® €) exists.
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Then Q has a uniquely determined coalgebra structure such that ¥ is a coalgebra
morphism in C, and there are uniquely determined morphisms dg : Q — H®Q and

t:Q — C with
St = (C 2 Ho o 2% 1w Q),
W= (CS CwC 8258, g g 2% ¢, and
(1) Y= idQ.
(2) ¢ is right H-colinear, where @ and C are right H-comodules via 1 and by
(ide ® m)A.

(3) (Q,dq) is a left H-comodule coalgebra, ¥ is left H-colinear, where the H -
comodule structures of C' and Q) are coad, and d¢g, respectively. Moreover,
dg = (idg ® ¥)coad,t.

(4) ¢ is left H-colinear, where Q and C are left H-comodules by ég and by
(m ®ide)A, respectively. Moreover, 6g = (7 ® ¥)Act.

(5) @=(C 2 oeC e, Q+#H) is a right H-linear coalgebra isomorphism

with inverse ¥ = (Q#H LB, oo H 2 )

3.10. Hopf algebra triples

Let C be a strict monoidal braided category. Let H be a Hopf algebra in C
whose antipode is an isomorphism. In this section we study Hopf algebra triples
in C, see Definition BI0.I We will see that Hopf algebras in the category ZYD(C)
arise naturally from Hopf algebra triples in C.

DEFINITION 3.10.1. A Hopf algebra triple over H in C is a triple (A, m,7),
where m : A — H, v : H — A are morphisms of Hopf algebras in C such that
7y = idg. A morphism ® : (A, 7,v) — (A, 7',+") of Hopf algebra triples over H
is a morphism ® : A — A’ of Hopf algebras in C with 7'® = 7 and &y =+'.

If (A, 7,~) is a Hopf algebra triple over H, let
5A:(idA®7T)AA:A—>A®H, )\A:,LLA(idA(@’}/):A@H—)A,
QAZMA(id®7W8A)AAZA—>A7 EAZ,UA(’}/T(@SA)AA:A—)A.

REMARK 3.10.2. Let (A, 7,~) be a Hopf algebra triple over H. By definition,
O4 =idg*xy7S4 and X4 = yw+S4 in the convolution monoid Home (A, A). Hence

(3.10.1) Opxymr=idy, Oax X4 =naca =24 %xO4.

REMARK 3.10.3. Let G, H be groups and 7 : G — H, v : H — G be group
homomorphisms with 7y = idy. This situation is described by a semidirect
product of groups. The group H acts on ker(w) by

¢ H x ker(rr) + ker(n), (h,z) — v(R)zy(h)~"
Let ker(m) x, H be the corresponding semidirect product. Then
ker(m) xy H = G, (g,h) — g(h),

is an isomorphism of groups. For Hopf algebras we have to replace the kernel of 7
by the right (or left) coinvariant elements which is a Yetter-Drinfeld Hopf algebra,
and the object which generalizes the semidirect product of groups will be a smash
product and a smash coproduct at the same time.
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THEOREM 3.10.4. Let (A,m,) be a Hopf algebra triple over H in C with
morphisms 64, 4,04 and X4 introduced in Definition BIQIl Assume that an
equalizer (R,t : R — A) of the pair (§4,ida ® ng) exists. There is a uniquely
determined morphism 9 : A — R with ©4 = 19; (A,9 : A — R) is a coequal-
izer of (Aa,ida ® eg), and 9¢ = idr. There are uniquely determined morphisms
AR H®R — R, 0gp: R — H® R with tArp = ada(y® ), dpt¥ = (m ® ¥)coady.
Let Sp = Ag(idyg ® 9S4L)0r : R — R. Then

(1) (R, Ar,0Rr) is an object in LYD(C), and a Hopf algebra in EYD(C) with

antipode Sr, where

(a) v: (R, pr,mr) — (A, pa,n4a) is an algebra morphism in C,

(b) U: (A, Ag,ea) = (R,AR,eR) is a coalgebra morphism in C,

(¢c) tSr = Xy,

(d) ¢ is a morphism in HC, and ¥ is a morphism in gC, where A and R
are left H-comodules by (m @ ida)Aa and §g, respectively, and left
H-modules by pa(y®ida) and \g, respectively.

(2) & = (R#H B A0 A LA, ), is an isomorphism of algebras and

coalgebras in C with inverse ¥ = (A 24,4 ® A 287, R#H), where
R#H is the bosonization of R.

The situation of Theorem B.10.4]is described in the diagram

PROOF. Note that (A,d4) is a right H-comodule algebra, since ¢4 is an algebra
morphism. It follows from 7y = idy that 7 is a right H-colinear algebra morphism.
Hence by Theorem 9 is well-defined, ¥+ = idg, and (4,9 : A — R) is a
coequalizer of (Aa,ida ®eq).

Since (A, A4) is a right H-module coalgebra, and 7 is a right H-linear coalgebra
morphism, Theorem applies.

From both theorems we conclude the existence of ¥, Ag, dr, and of well-defined
algebra and coalgebra structures pr, g, Ag, g satisfying (1)(a) and (1)(b), that
(R, ARr) is a left H-module algebra, (R, dg) is a left H-comodule coalgebra, and that
® and ¥ in (2) are inverse isomorphisms of algebras and coalgebras in C. Moreover,
t: (R, Ar) = (A,ad,) and ¥ : (A, pa(y ®ida)) — (R, Agr) are morphisms in gC
by Theorem By Theorem [3.9.5]

¥: (A, coad ;) = (R,0r) and ¢ : (R,6r) = (A, (7 ®1ida)A4)

are morphisms in C.

It follows from Theorem [3.9.2)2) that also 9 : (A4,ad ) — (R, Ag) is a morphism
in yC, and from Theorem B9.5](2) that ¢+ : (R,0r) — (A, coad ;) is a morphism in
He,

We next prove that R is a coalgebra in gC. Since (A, pa(y®id4)) is a coalgebra
in gC and ¥ is a coalgebra morphism, Ar¥ = (¥ ® ¥)A4 and et = 4 are
morphisms in gC. Hence Ag and e are morphisms in gC, since ¢ is, and since
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Y1 = idg. Similarly it follows that R is an algebra in #C. It remains to prove
(I) (R, Ag,dg) is a Yetter-Drinfeld module in £YD(C).
(II) Ag is an algebra morphisms in £YD(C).
(IIT) Sg is the antipode of R satisfying (1)(c).
By (2), we may assume that R#H = A is a Hopf algebra, where

H R H R R H
(3102) Y= , T = , L= | ) |
R H H R H R
H R R
We denote action and coaction of R by Ap = | = | . The next
R H R
rules follow from the definition of p4 and A4 and BI02).
H R H R }[ H
(3.10.3) 2 ‘) 1 [9l1= ] )
4 R H H R g R
R H A R
A A I
)

o=

(3.10.4) Lf
I
R

A A
R HA
We prove (I).
H R
H R
| o[ o ®
L
9
] | = W g R
H R
H R H R
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where the first equality follows from ([B.I10.3) and the second, since A is a bialgebra.
To prove the third equality we move v and 7 to the right, since v and 7 are
morphisms of coalgebras and of algebras, and since ¢t = idg, and then use (BI0.4)
to identify Ar and dg.

To prove (II), we note that

(3.10.5) Ur =Vpua(t @),

since ¢ is an algebra morphism with ¥ = idg. Hence

R R R R

I I

L L L L R R
@109 S

9

CARK’, ’J_‘ R R

||

R R

=y
=y

where the first equality holds, since 9 is a coalgebra morphism, and the second by

(BI0H). On the other hand,

—

o

-~ —
- —

- —

—t

=

— =

=

o —

o —

<

<
===

(3.10.7)

where the first equality holds, since A4 is a bialgebra, the second follows from (3.10.4)
for the morphisms ¢ and the first 6, and the third from BI0.35]).
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(III) By (BI10.4) and the definition of Sg,

R

|

L R

| |
1 1
Sql = Sk
) )

[ I

9 R

|

R

Hence idg * Sg = nrer in Home (R, R), since S4 is the antipode of A.

Since ¢ = idg, the map II : Hom¢ (R, R) — Home (A4, A), f — of¥, is an
injective monoid morphism with respect to composition. Since ¥ is a morphism of
coalgebras, and ¢ is a morphism of algebras, 1I is a monoid morphism with respect
to convolution.

By BI00), X4 is x-inverse to © 4 = ¥ = II(idg). Since Sg is right *-inverse to
idg, it follows that X4 = II(Sg), and that Sg is left *-inverse to idg. Hence Sg is
the antipode of R by Proposition B89 Note that (1)(c) follows from X4 = II(Sg).

Since II is a monoid morphism with respect to composition,

(3.10.8) Ya=0424=23464,
follows from Sg = idrSr = Sgridg. O

Suppose that in Theorem B.10.4] the antipode of A is an isomorphism. Then
(AP 1 AP —y [P~ : (P 3 AP) is a Hopf algebra triple over HP in C.
Assume that (L, ¢, : L — A°P) is an equalizer of (§scop,id ® 0) in C.

We want to compare R and L. Recall that R and L are Hopf algebras in
HYD(C) and in B2 VD(C), respectively.

LEMMA 3.10.5. Let (A, m,v) be a Hopf algebra triple over H, and assume that
the antipode of A is an isomorphism. Let O, X4 be defined by (A,m,v) and
0 Ao, @ pgcop by (AP 7, 7).

(1) SA@ACOP = EA,

(2) QACOPQA - 8A00p7

(3) @A@ACOP == @A.

(4) Assume that the equalizer (L,vy) of (§acop,id ® ) exists. Then (L,ir) is
an equalizer of (04,1 ®id), where §4 = (1 @ida)A4.

PROOF. (1) By definition of © geop,

8460 geop = Sapa(idg ® ngl)EA,AAA
= ,LLACA7A(SA X SA)(ldA X ’YTSZl)EA7AAA
= pacaaCaa(Ymr @ Sa)An
= EAa
where the second equality follows from the rule for the antipode ([B.2.26]), and the
third from functoriality of the braiding.
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3.10. HOPF ALGEBRA TRIPLES 179

(2) By (1), and since X404 = ¥4 by B.10.9),
S4OpcorOp = 24Oy = Xy = SA@Acop,

and (2) follows, since S4 is an isomorphism.

(3) follows from (2) replacing (4, ,7) by (AP, 7, ~).

(4) Note that dgecor = EH,AéfL,, and id ® n = ¢ an ® id. O

THEOREM 3.10.6. Assume the situation of Theorem BI04, and assume that
the antipode of A is an isomorphism. Let § acop be defined by the Hopf algebra triple
(AP 1t ~) in C. Assume that the equalizer (L,t1) of (6acor,id @ 1) exists, and let
Y+ AP — L be defined by (AP, 7,~). Then the morphism T = 9, : L — R is
an isomorphism in C with T~' =Yt and 1T~ = SZILSR, and an isomorphism

T:L— (F, ) (R®P)

of Hopf algebras in Heoy YD(C), where (F, ) : gyD( ) = HowYD(C) is the braided
monoidal isomorphism in Corollary B.ATI1.

PROOF. We denote the braiding and the inverse braiding of ZYD(C) by ¢»P
and @'P. Let R’ = (F, p)(R%P), and

IR = g, 3% = (8;11 X idR)E%{,RéR,
W = MRE%%CR,m Az =Cg rAR.

Then by Corollary BZT7 R’ = (R, \j,d%) as an object in #0 YD(C), and the
Hopf algebra structure is given by the multiplication p’, and the comultiplication
AV

(1) We first show that T is an isomorphism in C with T=! = 9. and with
LLT_l = S;‘lLSR.

By Theorem 392 ©4 = 1 and O gcor = ¢,9,. Hence by Lemma B.I0.5(2)
and (3),
(3109) 19LL19 = 19L, 19LL19L = 19,
since ¢, and ¢ are monomorphisms. Let 77 = ¥ : R — L. Then by BI0.9),

T/T:19LL19LL :19LLL :idL, TTIZﬁLLﬁLL:?gLZidR,

and T' =T~ 1.

By Lemma BI05(1), SatrT™ ! = Satp9rt = SaOacort = X at. Hence the
formula for ¢z T~! follows from Theorem B.I0.4(1)(c).

(2) We want to show that T—1 is an isomorphism of Hopf algebras, that is, the
following equations hold.

( ) )\L(idH ®T1 ) 71)\3,
( ) 0T~ L= (ldH QR T~ )53%,
(c) p(T~' T ) T~ g,
(d) ALT L= (T 1T HAL.
(a) To prove that T—1 : R’ — L is left H-linear, we recall that
HoR2 R HeL2H L
are the left H-module structures of R and of L, satisfying
(3.10.10) tAr =ada(y®u),
(31011) LL)\L ZadAcop(’Y(X)LL),
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180 3. BRAIDED MONOIDAL CATEGORIES

by Theorem [B.10.4l Note that ada(y ®ida) = ad,. By Lemma B.74]

(3.10.12) ad geor (id ® S 1) = Sy tada.

Consider the following diagram.

HoR—" LR

id®Tll lTl
AL

HL ——
l-

’Y®LL‘L
A

AR A

We want to show that the upper square commutes. The lower square commutes
by BI0II). Since ¢, is injective, it is enough to prove commutativity of the large
diagram. Since R is a Hopf algebra in the Yetter-Drinfeld category, the antipode
Sg is H-linear, that is,

adAcop

SpAr = Ar(id ® Sg).
By (1), 1277 = S;"tSg. Hence it remains to prove that
SitAR = adgcon (v @ Sy t0).
This follows from (B.I0.11) and ([3.10.12)), since
SitiAr =S tada(y @)

= adgeor (id @ S M) (Y @ 0).
(b) The equations
(3.10.13) (idg ® 1)0r = (7 ®ida)A 4,
(3.10.14) (idg ® ¢p)0r = (m ®1ida)Ca,aAALL.
follow from ([BI0.4). We note that
(3.10.15) .Sk = (idy @ Sg)dh,

since the antipode Sg is left H-colinear with respect to dg, and since Sg commutes
with the braiding.
Since idy ® ¢z, is a monomorphism, (b) follows from the equality

(3.10.16) (idyg ®@ )0, T = (idy @ e, T 1)
To prove (BI0.10), we begin to compute the left-hand side.
(idg @ )0, T~ = (7 ®1da)Ca,aAAS, 1SR
= (Sg' ® 83" )eh A(r ®ida)AatSk
= (Sy' ® 81" )ey A(idy ® 1) (Sy ® idR)c RSk
= (idyg ® S;")(idy ® 1)0RSk
= (idg @ 1, T 1),

where the first equality follows from ([B.I0.14]) and then from (1), the second from the
rules of the antipode and functoriality of the braiding, the third from BI013), and
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3.10. HOPF ALGEBRA TRIPLES 181

since 0g = (Sp ® idR)c%ﬂRéh by the definition of §%, the fourth from functoriality
of the braiding, and the last from (BI0.I5) and (1).
(¢) The claim follows from the commutativity of the large diagram

RoORL T s oL 2%, A0 A

lu’R J/HL l/m
—1

) — L L A

since ¢z, is an algebra morphism, and the right square commutes. By the equa-
tion o T~ = SZILSR in (1), the rules of the antipode, and since ¢ is an algebra
morphism,

paltrT @ T™) = pa(St @Sy (t®1)(Skr ® Sr)
=S8, trcr, r(Sk ® Sk).
On the other hand,
T iy = S; i SriRTE ReR R
= SZILMRC%%(SR ® SR)E%’DRCR’R
=S " turer,r(Sr ® Sr),

where the first equality follows from (1) and the definition of yi/5, the second from
the rules of the antipode, and the last since Sg ® Sg commutes with c%% and with

CR,R-
(d) By Theorem BI0A4(1)(b), ¥, : AP — L is a coalgebra morphism. Hence
Apdr = (19L ®79L)EA,AAA; and

(3.10.17) ATt = (9 ®@91)ea aAat.

We claim that the following diagram commutes.

RT—71>L

lm

R®R Ap

lER,R

-1 -1
RoR T 1oL

Note that Ag = (V®1)A 4¢, since 9 is a coalgebra morphism with ¥« = idg. Hence

(T_l ®T_1)ERyRAR = (ﬁL ® ﬁL)EAyA(L X L)AR
= ('19L ® ﬂL)EA’A(Lﬁ ® ) A gL
= (19[, ® 79[,)(“9 X Lﬂ)EA)AAAL.

Since by BI03), ¥t = 91, we have shown that
(T71 & Tﬁl)ERvRAR = (’19L X ﬁL)EAwAAAL.
Thus the diagram commutes by BI0.17]). O
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182 3. BRAIDED MONOIDAL CATEGORIES

3.11. Notes

For monoidal and braided monoidal categories, we refer to the books [Kas95]
and [EG™15], see also [ML98]|, and [Maj95| for background information.

Important sources for our exposition of the theory are the fundamental and
concise paper [Bes97|, and [BLS15].

We thank Simon Lentner for sending us the macros for the graphical calculus
from [BLS15].

3.1. Monoidal categories were introduced in [Bén63| by Bénabou already in
1963.

B2}, B.3l Braided monoidal categories were introduced by Joyal and Street in
1986, see [JS93], [JS91].

Hopf algebras in braided monoidal categories using the graphical calculus were
studied early by Majid, see the survey article [Maj94]. In the graphical calculus
we follow the conventions of [Tak99] and [Shil9].

3.4. Yetter-Drinfeld modules in the category of vector spaces were introduced
by Yetter in [Yet90] under the name of crossed bimodules, and in braided monoidal
categories in [Bes97]. We often use the characterization of Yetter-Drinfeld mod-
ules which we have introduced in Proposition For another proof of Theo-
rem 3415 see the sketch in [Bes97, Corollary 3.5.5], and [BLS15| Theorem 3.16].
Theorem and Corollary B. 417 seem to be new. We will need them in Sec-
tion

Here, we follow the exposition in [Tak99].

3.6. The generalized smash product algebra of Definition B.6.1] was introduced
by Takeuchi for C = My in [Tak80| Section 8§].

3.7. Let H be a Hopf algebra in the braided monoidal category C = M. We
denote by £CH = H(;Cy)H the category of H-bicomodules in the category of H-
bimodules, or Hopf bimodules over H. By Woronowicz [Wor89|, #C# is a braided
monoidal category. Let V € #CH. Then V € #(yCy), and by Proposition B.7.5,
(V,ad, §) € £YD(C). Tt follows that V<°H is a subobject of V in #YD(C), and

HCH — 7YD(C), Vs Vo,

is a strict monoidal functor, and an equivalence, see [Ros98 Proposition 4],
[Sch94], [AD95| Appendix]. The equivalence between Hopf bimodules and Yetter-
Drinfeld modules was shown in the general case of braided monoidal categories C
in [BD98.

3.8. Radford’s biproduct (where C = My) was introduced in [Rad85] in 1985
when Yetter-Drinfeld modules had not yet been defined. Majid observed in [Maj93|
that the condition in [Rad85| for the biproduct can be expressed by the notion of
a Hopf algebra in #YD. Tt is shown in a short sketch in [Bes97, Theorem 4.1.2]
that the bosonization of a Hopf algebra in #D(C) is a Hopf algebra in C. In our
proof we tried to avoid checking huge pictures (see Proposition [3.87]).

Theorem .87 is stated in [Bes97, Proposition 4.2.3] with a sketch of a proof.

3.9. See [AV0O0] for the more general case of crossed products and crossed
coproducts.
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3.10. The name Hopf algebra triple was coined by Takeuchi. Radford proved
Theorem BI04 for C = My, and Bespalov proved the general case. His proof was
not published, it only appeared in the preprint version of [Bes97]. A proof of the
general case also follows from [BD98]|, where the theorem was shown by replacing
the Yetter-Drinfeld category by the equivalent category of Hopf bimodules. An
outline of the proof of Theorem B.I10.4] was given in [AV00].

Theorem seems to be new. It is needed in Section 2.3
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CHAPTER 4

Yetter-Drinfeld modules over Hopf algebras

As a special case of the theory in Chapter Bl we study Yetter-Drinfeld modules
over (usual) Hopf algebras. As an application of Section we prove that finite-
dimensional Yetter-Drinfeld Hopf algebras are Frobenius algebras.

Throughout the chapter let H denote a Hopf algebra with bijective antipode.

4.1. The braided monoidal category of Yetter-Drinfeld modules

After the introduction of Yetter-Drinfeld modules over groups in Section [[.4]
and Yetter-Drinfeld modules in braided strict monoidal categories in Section B.4]
here we discuss the category £YD(C) of Yetter-Drinfeld modules over the Hopf
algebra H in the braided monoidal category C = My of vector spaces with the flip
map as the braiding.

Let V be a left H-module and a left H-comodule with left action and left
coaction

AMHRV =V, h@xw— h-z=hx,

6:Vo>HQRV, T T(-1) @ Z()-
Then (V, A,0) is a (left) Yetter-Drinfeld module over H if
(4.1.1) O(h-v)= h(l)v(,l)S(h(g)) & h(g) - V(0)

forall h€ H and v € V.

We write g)ﬂD = g)}D(Mk) for the category of Yetter-Drinfeld modules over
H. Objects of ZYD are the left Yetter-Drinfeld modules over H, morphisms in
HYD are the H-linear and H-colinear maps. The full subcategory of £ YD consist-

ing of finite-dimensional Yetter-Drinfeld modules is denoted by gnyd.

We have seen in Section B4l that £YD is a braided monoidal category with the
following monoidal and braided structure. Let VW € gyD. The tensor product
of vector spaces V ® W becomes a Yetter-Drinfeld module with the usual diagonal
action and coaction, where for all h € H,v € V and w € W,

h'(U@U)) :h(l)-v®h(2) - w,
(v ®w) = V-1 w(-1) @ V(o) ® W(o)-

The unit object is the field k with the trivial H-module and H-comodule structure,
where h -1 = ¢(h) for all h € H, and 6(1) = 1 ® 1. The associativity and unit
constraints are the same as for vector spaces. The braiding in ZYD and its inverse
are defined by

cvw VRW =WV, v@wr vy wd vq),
c(/}W:W®V—>V®W, w®v»—>v(0)®8_1(v(_1))~w.

185
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186 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS

Yetter-Drinfeld modules can be viewed as a special case of the construction of
the Drinfeld center of any (strict) monoidal category.

DEFINITION 4.1.1. Let (C,®,I) be a strict monoidal category. The left Drin-
feld center Z;(C) of C is a braided monoidal category defined as follows. Objects
of Z/(C) are pairs (V,~), where V € C, and

y=(x:Ve®X =>X®V)xec
is a natural isomorphism such that for all X, Y € C the diagram

TX®Y

VeaXeY XYV

(4. 1 .2)
vx ®id id®vyy

XVeY
commutes. Note that the definition implies that
v =idy

for all (V,v) € Z,(C).
A morphism f : (V,y) — (W, ) between objects (V,~) and (W, ) in Z;(C)
is a morphism f: V — W in C such that for all X € C the diagram

VoX XoxeVv
f®idJ/ J{id@f
WeoX Xy XoW

commutes. Composition of morphisms is given by the composition of morphisms
in C.
For objects (V,v), (W, A) in Z;(C) the tensor product is defined by

(Viy) @ (W, A) = (Ve W,o),
such that for all X € C, the diagram

VoW eX 7X XQVeWw

(4.1.3)
idRAx vx ®id

VeXeW

commutes. The pair (I,id), where idx = id;gx for all X € C, is the unit in Z;(C).
The braiding is defined by

yw (Vo) @ (W, A) = (W) @ (V7).

The right Drinfeld center Z,(C) is defined similarly the objects being pairs
(V,7), where vy = (7x : X ® V = V ® X)xec is a natural isomorphism.

It is not difficult to see that the centers Z;(C) and Z,.(C) are braided monoidal
categories. For a proof, see [Kas95, Theorem XIII.4.2]. Note that

Z.(C) = Z(C), (Viy) = (Vir ),

is a braided monoidal isomorphism.
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4.1. BRAIDED MONOIDAL CATEGORY OF YETTER-DRINFELD MODULES 187

A monoidal isomorphism (F,¢) : C — D between strict monoidal categories
defines in the natural way a braided monoidal isomorphism between the left centers
of C and D, and similarly for the right centers. For all objects (V,v) € Z;(C) let

F=(V,y) = (F(V),A),
where for all X € C, the isomorphism g (x) is defined by the commutative diagram

ﬁF(X)

F(V)® F(X) 2% F(X)® F(V)

wv,xl @X,VJV

Fvex) 229 pxev).

In other words, if G : D — C is the inverse functor of F, for all Y € D,
W = oy v FOem)eviar)-
For morphisms f in Z;(C) we define FZ(f) = F(f). For objects (V,v) and
(W, A) in Z;(C) let
Z
PV, (W2) = PVW-

We omit the somewhat tedious proof of the next lemma.

LEMMA 4.1.2. Let (F,¢) : C — D be a monoidal isomorphism between strict
monoidal categories C and D. Then
(FZ,0%) : 21(C) = Zi(D)
s a well-defined braided monoidal isomorphism.
THEOREM 4.1.3. The functor YD — Z,(g M), mapping M € BEYD to (M,~),

where for all X € gM, vx =cpyx - M @ X = X ® M, and where morphisms f
are mapped to f, is a strict isomorphism of braided strict monoidal categories.

PROOF. Let F : £YD — Z;(yM) denote the functor of the theorem. It is
clear from Propositions and that I is well-defined, strict monoidal, and
braided.

We construct the inverse functor. Let (M,~) € Z;(gM). We define
(4.1.4) 5= (M2 Mo H 25 HeM).

Since A is unitary, the following diagram commutes.

id
M e H—"" sHoM

id®AJ Jid@id@n
vu®id

MoHH S HoMoH
Hence
(id ® 0)6 = (id ® vg)(id ® id ® n)yg (id ® n)
= (id ® v)(vg ®id)(id ® A)(id ® )
=Yaer(id® A)(id ® 1)
= (A®id)yg(id @ n)
= (A ®id)g,
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188 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS

where the third equality holds by (EI2]), and the fourth, since v is a natural
transformation. Thus § is coassociative.

Note that (¢®id)yy = id®e, since v is a natural transformation, and € : H — k
is left H-linear, where k has the trivial H-module structure. Hence (e ® id)d = id.
We have shown that (M, J) is a left H-comodule.

We claim that vy = cyM?H, where H € g M via left multiplication. For any
h € H, right multiplication 7 by h is an endomorphism of H. Since g is a natural
transformation, it follows that

(Mm@ h) = yu(idy @ rp)(m e 1)
= (rp @idp)ya(m @ 1) = m_yh @ mey = car,u(m @ h)

for all h € H, where m_1) ® m(g) = 6(m).

Proposition then implies that M is an object in ZYD.

The inverse functor G : Z;(gM) — EYD is now defined as follows. For all
objects (M,v) € Z/(gM) let G(M,~) = (M, \,6), where A\ : H® M — M is the
given H-module structure on M, and 6 : M — H ® M is defined by (@I14). Let
f:(M,y) = (M',~") be a morphism in Z;(gM), that is, f : M — M’ is H-linear,
and for all X € g M, (id® f)yx = V5 (f ®id). Then the diagram

M2 e H " HeM

J{f Jf@id Jid@f

M2 e He M

commutes. Hence f is H-colinear by definition of the comodule structures of M
and M’', and G(f) = f : G(M,v) — G(M',~') is a morphism in £YD.
It is clear from the construction of G that FG =id, GF = id. (]

REMARK 4.1.4. Theorem E.T.3] does not generalize directly to Z£YD(C) for any
braided strict monoidal category C, see also the notes at the end of Chapter [l
Indeed, when proving that vy = c}\}fH for the construction of the inverse functor,
it is used that H is a set and that for any h € H there is a morphism rj sending 1
to h.

REMARK 4.1.5. Assume that H is finite-dimensional. Then the Drinfeld double
D(H) of H is a Hopf algebra by Remark 2.8.9 The monoidal category p(m)M of
left D(H)-modules is braided and as such it is equivalent to Z,.(g.M). For a proof

we refer to [Kas95 Theorem XIIL5.1]. Hence pgyM = Z(g M) = HYD.

THEOREM 4.1.6. The functor 2YD — Z.(H¥ M), mapping M € HYD to
(M,), where for all X € IM, vx = cxm : X®M — M ® X, and where
morphisms f are mapped to f, is a strict isomorphism of braided strict monoidal
categories.

ProOOF. We dualize the proof of Theorem [£.1.3] using condition (4) in Propo-
sition The inverse functor G : Z,.(! M) — YD is defined as follows. For all
objects (M,7) € Z.(EM) let G(M,~) = (M, \,6), where § : M — H ® M is the
given H-comodule structure on M, and the left H-module structure A : HQM — M

is defined b, i
15 deted by A=(HoM 2 Mo H 9% 6.
The rest follows along the lines in the proof of Theorem O
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REMARK 4.1.7. Since #YD is a braided strict monoidal category, algebras,
coalgebras, bialgebras and Hopf algebras in 2D are defined in Chapter B

A Yetter-Drinfeld module R € g)ﬂD is an algebra in g)ﬂD if R is an algebra
such that the structure maps p: R® R — R and n : k — R are left H-linear
and left H-colinear, that is, R with the given action and coaction of H is a left
H-module algebra and a left H-comodule algebra.

An object C € gyD is a coalgebra in gyD if C is a coalgebra such that the
structure maps A: C — C®C and ¢ : C — k are left H-linear and left H-colinear,
that is, C' is an H-module coalgebra and an H-comodule coalgebra. We usually
will denote the comultiplication of a braided coalgebra C' in a Sweedler notation by

Ac:C = C®C, c— M gc?.

Let R and S be algebras in g)}D. The tensor product R® S in Z)}D is an algebra
in g)ﬂD with unit 1z ® 15 and the braided multiplication

(4.1.5) (res)(zey) =r(s—y - -z)®@sqy forallr,zeR, s,ycs.

Let C, D be coalgebras in #YD. The tensor product C ® D in ZYD is a coalgebra
in g)ﬂD with counit ec ® ep and the braided comultiplication

(4.1.6) Ale®d) = c(l)®c(2)(_1) dY ® 0(2)(0)®d(2) forallce C,de D.

A bialgebra in YD is an algebra and a coalgebra R in #YD such that the
comultiplication A: R - RQ R, x — () @ 2(?, and the counit € : R — k are
algebra maps, where R® R is the braided tensor product of R with R. In particular,
Azy) = A(x)A(y) for all z,y € R, that is,

(417) A(my) = ;13(1)(33(2)(71) . y(l)) ® $(2)(0)y(2)

A Hopf algebra R in gyD is a bialgebra in gyD such that there is a map
S : R — R of Yetter-Drinfeld modules which is the convolution inverse of idg.
Let S : R — R be a linear map which is convolution inverse to idg. Then S is a
morphism in £YD by Proposition .80

LEMMA 4.1.8. Let R be a bialgebra in g))D, If I C R is a coideal and a
subobject in LYD, then RI, IR, and (I) = RIR are coideals of R and subobjects
in £YD. In particular, R/(I) is a quotient bialgebra in 1YD.

PROOF. Let r € R and z € I. Then
A(rz) = A(r)A(z) e (ROIR)(I® R+ R®I)CRIQ R+ R® RI

by (I11). Thus RI is a coideal. In the same way it follows that IR and (I) are
coideals. It is clear that RI, IR and (I) are subobjects in ZYD. ]

For any bialgebra R in £YD, the space of primitive elements of R is
P(R)={zeR|A(z)=1®z+z®1}.
LEMMA 4.1.9. Let R be a bialgebra in gyD. Then P(R) C R is a subobject in

AyD.
PrROOF. Themap R - RQ R,z — A(z) —1®x — z ® 1, is a map of Yetter-
Drinfeld modules. and its kernel is P(R). ]

The preliminary version made available with permission of the publisher, the American Mathematical Society.



190 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS

As an application of Theorem 4. 1.6] we obtain a braided monoidal isomorphism
between Yetter-Drinfeld modules over H and over a two-cocycle deformation of H,
see Theorem [2.8.2]

DEFINITION 4.1.10. Let 0 : H ® H — k be a normalized two-cocycle. For all
M € gyD with module structure A\ : H ® M — M, h ® m — hm, and comodule
structure d : M — HRM,let 6, =6 : M — H,QM, and define A\, : H, QM — M,
h®@m h-,mforall he H m € M by

heom = o(hq),m2)o" (heym-1S(ha); he)he M)
THEOREM 4.1.11. Let 0 : H® H — k be a normalized two-cocycle. The functor
Fp : §YD = 17 YD, (M, X, 6) — (M, \s,0,),

mapping morphisms f to f is an isomorphism of categories.
For all M, N € g)ﬂD let

(Po)MN  Fo(M) @ Fy(N) = Fo,(M®@N), 2@y o(T1),Y-1))T0) @ Y(0);
and @, = ((SOU)M,N)M,NegyD- Then
(Fsy00) : YD — [2YVD
is a braided monoidal isomorphism.

PRrROOF. We define (F,, ¢, ) by the following commutative diagram of braided
monoidal isomorphisms.

AYD —— Z,(HAM)

(4.1.8) (mel J

YD —— Z.(H M)

Here, the horizontal arrows are the strict monoidal isomorphisms of Theorem
for H and H,, and the right vertical arrow is the braided monoidal isomorphism in
Lemma[LT2linduced from the monoidal isomorphism (F, ¢, ) in Proposition B.I.I0l

Let M € ZYD. The image of M in Z,.(HM) is (M,c_ p). According to
Lemma [ET2] (M, c_ ») is mapped onto (F,(M),7) in Z,.(#s M), where for all X
in T M, YF, (x) is defined by the commutative diagram

VFg (X)

FU(X)®FU(M)%FJ(M)®FU(X) .

‘/’X,MJ T(SGM,X)1
Fy(cx,m)

F,(X@M)—— F,(M®X)
To compute the H-action -, on M, let X = H, h € H, and m € M. Then
V() (h@m) = (aru) (o (hay, m1)heyme) © h)
= o by, m)o (e S(ha)s hs)hemo) © he).
Hence (id ® €)(Yr, (m)(h ® m)) = h - m in Definition We have computed

F,(M).
It is easy to see from (LI1.8) that ¢, is the monoidal structure of Proposi-
tion B.T.I0I O
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COROLLARY 4.1.12. Let ¢ : H® H — k be a normalized two-cocycle. Let
R be a Hopf algebra in LYD with multiplication and comultiplication denoted by
RO®R— R, z®@y—zy, A\:R—- ROR, z— ) @23 . Then F,(R) is a Hopf
algebra in gz)}D with multiplication and comultiplication

R® R — R7 m®yl—>U(x(,l),y(,l))x(o)y(o),
R— R®R, =~ 0’71(%‘(1)(,1), .13(2)(,1)).13(1)(0) ® J)(Z)(Q),
and the same unit, counit and antipode as R.

Proor. This follows from Theorem [.T.11] and Remark [3.2.13] O

For the following corollary we will use the two-cocycles of free abelian groups
discussed in Remark 2.7.41

DEFINITION 4.1.13. Let q = (¢;5)1<i<¢ and p = (pi;)1<i<¢ be matrices with
non-zero entries in k*. The matrices q, p are called twist-equivalent, if for all

1,j € {1,...,9},
q4ij95i = PijPji,  4ii = Pii-

COROLLARY 4.1.14. Let 0 > 1, 1 = {1,...,0}, and let G be a free abelian
group with basis (g;)ic1. Let V € SYD with basis (x;)ic1, and W € EYD with
basis (y;)ic1, and assume that z; € Vit and y; € Wi for all i € 1, where for all
1 €1, x; and n; are characters of G, that is, elements ofé = Hom(G,k*). For
all i,j € I define q;; = x;(9i), pij = 1;(9:), and assume that the braiding matrices
(gij)ijer and (pij)ijer are twist-equivalent. Then there is a normalized two-cocycle
o0 :kG ® kG — k such that

(1) v:V =N Fy,(W), z; = y; for all i €1, is an isomorphism in SYD.
(2) There is a uniquely determined map ¥ : B(V) — F,(B(W)) of No-graded
Hopf algebras in gy’D such that v is the restriction of ¥ to V.

PRrooF. (1) Note that (kG), = kG for any two-cocycle, since the group algebra
is cocommutative. By Theorem .I.T1] and Remark 2.7.4], we have to find non-zero
elements 0;; € k, ¢, € I, such that for all ¢,j € I,

_ -1
Qij = 0ij04; Pij-

Qijp;jlu if 7 <y,
1, ifi>j.

(2) Since (Fy,¢,) is a braided monoidal isomorphism by Theorem FTTT]
F,(B(W)) is a Nichols algebra of F,(W). Let m : Fo(B(W)) — B(F,(W)) be
the isomorphism of Theorem such that the restriction of = to F,(W) is the
identity. Then let ¥ be the composition of B(1) and 7~1. ]

These equations are satisfied by defining o;; =

4.2. Duality of Yetter-Drinfeld modules

By Example B.5.3] the category M of finite-dimensional vector spaces over
k is a monoidal category with left duality in the standard way. For all V € M4,
V* = Hom(V, k) is the dual space, and evaluation and coevaluation maps evy and
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coevy are defined by

(4.2.1) evy V'@V =k, fouv— f(v),

(4.2.2) coevy k= VV* 1— Zvi ® fi,

i=1
where vq,...,v, € V and fi,..., f, € V* are dual bases, that is, f;(v;) = d;; for
all1<i,j<n=dimV,orforallveV,

n

(4.2.3) > wifiv) = .

i=1

We are going to define a Yetter-Drinfeld structure on the dual vector space of a
finite-dimensional Yetter-Drinfeld module. Before that we consider bilinear forms
of Yetter-Drinfeld modules which are invariant under the action and coaction of H.

LEMMA 4.2.1. Let {, ): X XY — k be a bilinear form of vector spaces.

(1) If X, Y € gMy, then the following are equivalent.

(a) The form {, ) is left H-linear.

(b) Forallz e X,ye€Y, and h e H, (h-z,y) = (x,S(h) - y).
(2) If X,Y € I My, then the following are equivalent.

(a) The form (., ) is left H-colinear.

(b) Forallz € X andy €Y, S(x—1)){(20),¥) = Y—1){T, Y(0))-

PRrROOF. (1) (a) = (b): If the form is H-linear, then for all x € X, y € Y, and
h e H, (hqay -z, heo-y) =e(h)(z,y). Hence

(h-a,y) = (hay - 2, h)S(h)) - y) = e(h))(z,S(h2)) - y) = (2,5(h) - y).
(b) = (a): Assume (b). Then forallz € X,y €Y, and h € H,
(h1y -z, h2y - y) = (@, S(hay)he) - y) = e(h)(z,y).
(2) is shown similarly to (1). O

Lemma [£2.T] when applied to evaluation of functions, shows how a natural

Yetter-Drinfeld module structures on the dual vector space V* of any V € gnyd
can be defined.

LEMMA 4.2.2. Let V € ByD™,

(1) V* is an object in gnyd with action and coaction of H defined for all
heH,veV and feV* by
(h- f)(w) = f(S(h) - v), fenfoy(v) = S o) f(v))-

(2) The maps evy : V* @V — k and coevy : k — V @ V* defined in ([@21)
and [EZ2) are morphisms in gnyd, and (V*,evy,coevy) is a left dual
of V in the sense of Definition [3.5.11

PrOOF. (1) It is clear by Proposition [Z2Z2] that V* is a left H-module and
a left H-comodule, since the antipode of H is an algebra and coalgebra anti-
homomorphism. We check the Yetter-Drinfeld property. Let v € V, f € V*,
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and h € H. Then
hay f1yS(hey) (b - fo)) (W) = hay feS(ha) fo)(S(he) - v)
=hyS (S(he2) - v)(=1))S(hez) F((S(he) - v) o)
= h)S™H(S(h)v(-1)S*(h2)))S(h(z) f(S(he) - vo))
=8 (v (h- f)(ve))
=(h f)=n(h- o (v).

(2) By Lemma[d2.T] evy is left H-linear and H-colinear. We show that coevy
is left H-linear and left H-colinear, that is

n n
(4.2.4) Z h(l) -0 ® h(2) . fz = E(h) Z v; @ fl for all h € H,
i=1 =1
(4.2.5) Zvi(fl)fi(—l)@)vi(o) ®f¢(o) = 1®Zvi®fi-
i=1 i=1

Both equations follow by evaluating both sides at v € V| and from (£2.3]). For
([EZ3) note that Y2, vi(_1).fi(v) @ vi(g) = V(1) @ V(o).
The triple (V*,evy,coevy) is a left dual of V' by Example B53] O

DEFINITION 4.2.3. The Yetter-Drinfeld module V* in Lemma is called
the (left) dual of V.

REMARK 4.2.4. By Lemma 232 the braided monoidal category gnyd is
rigid. Let V,W € YD, and f: V — W a morphism of Yetter-Drinfeld modules.
Then f*: W* — V* defined in Remark B5.2(3) is the dual map Hom(f,id). The

canonical map
(4.2.6) VieW = (VeW), f+g— (v+w— fv)+g(w)),
is an isomorphism in £YD. The isomorphisms

v VIRWT = (Ve W),

Yy V=V
of Theorem are given explicitly by
(4.2.7) evw (f @ g)(v@w) = f(ve)g(v-1) - w),
(4.2.8) v (0)(f) = f(Su(v-1) - v0))s

forallveV,weW,and feV* ge W*
COROLLARY 4.2.5. The functor
() (YD Yo 5 HyD" v s V¥ the left dual of V.,
with f* = Hom(f,id) for morphisms f, is an equivalence, and
(v : V = V™)
defined in ([EZ8) is a natural isomorphism.
Define ¢ = (pvw)ywenype by BGZT). Then
(O 90,9) (VD)™ = FyD

is a braided monoidal equivalence, where pg : k — k*, 1 +— idg.

Vegnyd

fd

The preliminary version made available with permission of the publisher, the American Mathematical Society.



194 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS
Proor. This follows from Theorem B.5.8] Lemmal£.2.2] and Remark[£24 O

COROLLARY 4.2.6. Let R be a Hopf algebra in gnyd, and R* its left dual.
Then R* is a Hopf algebra in gnyd with unit €5, counit nf, antipode Sy, and
multiplication and comultiplication are defined for all f,g € R* and x,y € H by

(f9)(@) = f((@)0)g((z D)1y - 2®), [V (@) fP (21 -y) = f(ay),
where Ap(z) = M @ 2@ pr(z ®@y) = xy.

Proor. By Corollary .2.5] and Remark B.5.9] R* is a Hopf algebra with mul-
tiplication A% pR, r, comultiplication ‘P}E}Rﬂ}%v unit €%, counit n*, and antipode S§.
Hence the corollary follows from the formula for ¢ g in [E2ZT]). O

Note that the dual Hopf algebra R* in Corollary is the dual Hopf algebra
of Proposition when H is the trivial Hopf algebra k.

REMARK 4.2.7. Let T' be a set. A I'-graded object in YD is a pair (V,V),
where V € YD, and V = (V())er is a family V(y) C V, v € T, of subobjects
in YD with V. = @, V(7). Let I-Gr YD be the category of T-graded
Yetter-Drinfeld modules over H with graded maps in gy’D as morphisms.

If T is a monoid, then I'-Gr ZYD is monoidal. The tensor product of graded
objects V., W in gy’D is the tensor product V @ W in gy’D with diagonal grading
in Definition [LZ7l The unit object is the trivial object k in Z£YD with grading
given by k(er) = k.

If ' is an abelian monoid, then the braiding map cyw : VO W — W ®V in
HYD of I'-graded objects in £YD is a morphism in I'-Gr £YD. Hence the category
[-Gr £YD is braided monoidal with braiding c.

Let I be an abelian monoid. A bialgebra R in I-GrZYD is a bialgebra in
HYD and a I'-graded object in £YD such that pr,ng, Ag,er are I-graded. A
Hopf algebra R in I-Gr £YD is a bialgebra in I-Gr £ YD and a Hopf algebra in
HYD whose antipode is I'-graded.

COROLLARY 4.2.8. Let R be a bialgebra in I'-Gr g)ﬂD such that idg is convo-
lution invertible in Hom(R, R). Then R is a Hopf algebra in T-Gr LYD.

PRrROOF. Let Sg be convolution inverse to idr. As noted in Section .1l Sg is

a morphism in #YD by Proposition B89 which follows from a version of Proposi-
tion [[2.T1l Similarly, Sg is I'-graded by Proposition [L2.11] O

Let No-Gr gy’D]f denote the full subcategory of No-Gr#YD of locally fi-
nite graded Yetter-Drinfeld modules (V, (V(n))nen,), where V(n) is finite-

dimensional for all n € Ny. Note that No-Gr gyDM is a braided monoidal subcat-
egory, since the tensor product of locally finite Ng-graded Yetter-Drinfeld modules
is locally finite.

The duality of finite-dimensional Yetter-Drinfeld modules extends to a duality

of Nyp-Gr gyle. Define a contravariant functor

(4.2.9) ()& Ng-Gr ZyD" — No-Gr HyD"
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on objects by (V, (V(n))n>0)"®" = (D,,50 V(n)*, (V(n)*)n>0), and on morphisms
[ (Vi (V(n)nz0) = (W, (W(n))n>0) by & = @,,5¢(f[V(n))". For all objects
V., W € Nyo-Gr gy'DM, define the morphism of graded Yetter-Drinfeld modules

(4210) Yv.w = @ (p(n)v’w VI Q WrE (V@ W)*gr
n€Ny

by o(n)v,w = @y pn PV(a),we) for all n € No, where

D vwwe: D V@ ewe = P Vewe)
a+b=n a+b=n a+b=n
is viewed as a map to (@, ,,_,, V(a) ® W(b))* by the isomorphism (£Z6]). For all
V € Ng-GrHyD'" let
(1217 b= @ vV V.
neNy

Let o : k — D(k) be defined by the isomorphism k — k*, 1 + idk, in degree zero.

COROLLARY 4.2.9. Let ¢ = (pv,w)v,wen,-cr(iypys- Then

1f 1f
()0, ) : (No-Gr YD )P — No-Gr 7 VD
is a braided monoidal equivalence, and

P = (wV)VGNO_GrgyDM : idNo»GrgyDIf —s ()rerrer

is a natural isomorphism.

PRrROOF. This is a formal extension of Corollary [4.2.5] O

An Ny-graded coalgebra C is strictly graded, see Definition[[.33.9] if C'(0) is one-
dimensional, and C(1) = P(C). We say that an Ny-graded algebra A is generated
in degree one, if A(0) is one-dimensional, and A is generated as an algebra by

A(1).

COROLLARY 4.2.10. Let C be a coalgebra and A an algebra in Ny-Gr gyle.

(1) The following are equivalent.

(a) C is strictly graded.

(b) The algebra C*&" is generated in degree one.
(2) The following are equivalent.

(a) A is generated in degree one.

(b) The coalgebra A*8" is strictly graded.

PRrROOF. (1) Let B = C*&". Since (( )*#", o, ¢) is a braided monoidal equiva-
lence by Corollary £2.9] B is an algebra in No-Gr gy’le. For all n > 1 let

A" C — C®, p": B¥" — B

be the n-fold comultiplication of C' and the n-fold multiplication of B defined in-
ductively by A" = (ide @ A" H)A, u" = p(idp @ p"~ 1), and Al =idc, p! =idp.
We define the isomorphisms g, : (C*8")®™ — (C®™)*8" inductively by

0o =, P& =pocen-n(idowe @ 9F), n >3
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In the same way we define isomorphisms ¢g, ;) : (C(1)*)®" — (C(1)®")*. By the
definition of Aj» : C'(n) — C(1)®" in Definition [[3.12] the restriction of u" to the
subspace (C(1)*)®" is equal to the composition

x (Ain)”

(cy)e L9, (o)) Cn)* e

By Proposition [[314] C is strictly graded if and only if C'(0) is one-dimensional,
and Ajn is injective for all n > 2. Hence the equivalence of (a) and (b) follows,
since the maps 302,(1), n > 2, are isomorphisms.

(2) is shown dually to (1). O

Braidings of Yetter-Drinfeld modules are very important examples of braidings
of vector spaces. We define a property of braidings which characterizes braidings
of Yetter-Drinfeld modules over some Hopf algebra with bijective antipode.

DEFINITION 4.2.11. Let (V,c) be a finite-dimensional braided vector space.
Then (V,¢) is called rigid if the composition ¢’ of the three maps

id®id®coevy
_—

V*eV V*VeVeV*

evy ®id®id

MO, 1 oV @ V @ V* VBG4 oy

is bijective.

ExaMPLE 4.2.12. Let V be a vector space of finite dimension at least two. Let
¢ =idygy € Aut(V ® V) be the identity map. Then (V,¢) is a (non-interesting)
braided vector space which is not rigid by Definition 2171

PROPOSITION 4.2.13. Let V € gnyd and let ¢ = cy,v. Then ¢ = c‘_/lv In
particular, (V,c) is rigid.

PrROOF. Let v € V, f € V* and let vy,...,v, € V and f1,...,fn € V* be
dual bases. Then

n

C(fov) = Zf V(—1) " Vi)V(0) ® fi = Z( o) - Hwi)vey ® i

=1

=) ® D (S (v=1) - ))(wi)fi

[M]=

1
= v0) ® S (v - f = ey - (F QW)

.
Il

This proves the claim. O

4.3. Hopf algebra triples and bosonization

Let R be an Hopf algebra in ZYD, and a coalgebra in M. We denote the
H-action, H-coaction, comultiplication and counit of R by

AMrRH®R—R, h@r—h-r, bR R—=H®R, r—r_1) ®70),
ArR:R—>R@R, r—rMgr®, er: R — k.
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Recall that in the smash product algebra R#H and the smash coproduct coalgebra

R#H,

(4.3.1) (r#9)(s#h) = r(90) - 8)#92) D

(4.3.2) Apgu(r#th) = rO#r® _yhay @ r® g #he),
(4.3.3) erpu(r#h) = er(r)e(h)

forallr,s € R, g,h € H. The element 1#1 is the unit element in the algebra R# H .
We reformulate Theorem BI04 for the category C = £YD in the following
more direct way.

COROLLARY 4.3.1. Let (A, m,v) be a Hopf algebra triple over the Hopf algebra
H. Let R = A" = {a € A| apn)®7(a@) =a®1}. The antipodes of A and H
are denoted by S. Let

9:A— R, ar a(l)’yﬂS(a(2)).

Then R is a left coideal subalgebra of A, ¥ is a well-defined left R-linear map with
J|R = idg, and the following hold.
(1) R is an object in EYD with H-action - = A\g : HO R — R and H-coaction
Or, where for allr € R, h € H,
(@) h-r=y(ha)rv(S(he))),
(b) Or(r) = 7(r@)) ®r)-

(2) Forallac A, he H,
(a) ¥(ay(h)) = Va)e(h),
(b) d(y(h)a) = h-(a).

(3) R is a Hopf algebra in gyD, where R is a subalgebra of A, the map
¥ : A — R is a coalgebra morphism which induces a coalgebra isomorphism
AJAy(H)™ = R, and comultiplication Ag, counit egr and antipode Sr are
defined for allh € H, r € R by

(@) Ar(r) =9(rq)) ®@r@e), er(r)=calr),
(b) Sr(r) =7(r))S(re))-

(4) @ : R#H — A, r#h — ry(h), is an isomorphism of algebras and coal-
gebras with inverse ¥ : A — R#H, a — V(aq))#n(a(z)), where R#H is
the bosonization of R.

ExaMPLE 4.3.2. Let g be a primitive n-th root of unity with n > 2, and let
Tyn =k(g,z | g" =1,2" = 0,92 = qug)

be the Taft Hopf algebra of Example with A(z) =g®x + 2z ® 1 and group-
like element g. Let G be the cyclic group of order n generated by g. Define Hopf
algebra maps 7 : T, , = kG and v : kG — T, , by

m(g9) = g, m(z) =0 and ¥(g) = g.

Then 7y = idgg, and Corollary B3] applies. Since z € R, it follows from
Lemma that R = k[z]. Then R is a Hopf algebra in §YD, where

g-xz=gzg ' =qux,

dr(z)=g®u,
Ap(z) =1z +2® 1.
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COROLLARY 4.3.3. Let R be a Hopf algebra in BYD with bosonization R#H.
Define

Tr=¢cr®idy: R#H — H, ~yr=nr®@idy: H — R#H.
Then (R#H,mr,vr) is a Hopf algebra triple over H, and
t:R— (R#EH)HT v rd,
is an isomorphism of Hopf algebras in BYD.

PROOF. By Theorem B8T10, R#H is a Hopf algebra. Thus (R#H,7r,Vr) is
a Hopf algebra triple over H by Lemma B.82(1). It is clear that ¢ is an algebra
isomorphism in ZYD. The map ¢ is a coalgebra homomorphism since for all 7 € R,

19(7“(1)) 1) = 19(7“(1)7“(2)(,1)) ® T(Q)(O) =rWg 7“(2),

where we used the definition of the comultiplication of (R#H)*H and rules for ¥
in Corollary 2311 O

REMARK 4.3.4. By Corollary 3.3 and Propositions 3.6.5 and 3.6.9, there is a
unique functor from the category of Hopf algebras in Z£YD to the category of Hopf
algebra triples over H mapping a Hopf algebra R in 2£YD to (R#H,7r,vr) and
a Hopf algebra morphism ¢ to ¢ ® idy. Corollaries [£.31] and .33 imply that this
functor is an equivalence.

We recall the following convention for a smash product algebra R#H. For all
r € R, h € H we write r#h = rh, that is, we identify r#1 with r and 1#h with h.

COROLLARY 4.3.5. Let R be a Hopf algebra in YD with antipode Sg. Let
A = R#H be the bosonization of R. We denote the antipodes of A and of H by S.
(1) Forallr € R and h € H,

S(Th) = S(h)S(T(,l))SR(T(O)),

(2) The map R — R, r+— S2(r), is a well-defined algebra and coalgebra map,
and for allh € H, r € R,

(a) S*(r) = SE(S(r(-1) - 7(0)):
(b) S*(h-7) =8%(h) - S*(r),
(¢) 0r(S2(r)) = 82(r_1)) @ S (r(g))-
PROOF. (1) is a special case of Theorem B810
(2) Let r € R. Using the formula for S in (1) we compute

S?*(r) = 8(S(r—1))Sr(r()))
(Sr(r(0)))S*(r—1))
2

=S

= S(r(-1))S3(r©)S*(r(—2)
= S(ri-1)) - S&(r)

= SH(S(r-1) - r(0)-
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Then (b) and (c) follow from (a) and the Yetter-Drinfeld condition. The restriction
of 82 is a coalgebra morphism, since by the definition of Ag,
AR(8%(r)) = 8%(r1))S7(S*(r2))) ® §(r(3))
= S*(raynS(r()) © S*(r(s))
=82(rM) @ S (r@).
(Il

The theory of bosonization and Hopf algebra triples in Chapter 3 can also be
applied to graded Yetter-Drinfeld modules in #)D. We mention some results in
this context which we derive from the non-graded theory.

COROLLARY 4.3.6. Let R be an Ny-graded Hopf algebra in 2YD. Then R#H
is an Ng-graded Hopf algebra, where the grading is defined by

(R#H)(n) = R(n)#H for all n > 0.

ProoF. This follows from Theorem B.8.10, and from the explicit formulas for
the multiplication and comultiplication of R#H. O

The special class of Hopf algebra triples of the following corollary is important
for this book.

COROLLARY 4.3.7. Let A be an No-graded Hopf algebra such that H = A(0) is
a Hopf algebra with bijective antipode. Let w : A — H be the canonical projection
with w(x) =0 for all x € A(n), n > 1, and n|H = idg. Let R = A with respect
to w. Then R is an Ng-graded Hopf algebra in ZyD with grading R(n) = RN A(n)
for alln >0, R(0) =k1, and

R#H — A, r#hw—rh,

is an isomorphism of No-graded Hopf algebras, where the grading of R#H is defined
by (R#H)(n) = R(n)® H for alln > 0.

PROOF. It is clear from the definition that R(0) = k1. By definition, R is the

kernel of the graded map A 2, AR A m A® H, where H is trivially graded.

Hence R is an Ny-graded object in Z£YD by Corollary 3.1(2). The map 9 : A — R
is Nyg-graded, since the antipode of A is graded by Corollary Hence Apg is
graded by Corollary E31(3), and R is a graded coalgebra. It is clear that R is a
graded algebra. By Corollary 3.1l and Corollary 2.8 R is a graded Hopf algebra
in ZYD, and ® : R#H — A, r4#th ~— rh, is a Hopf algebra isomorphism, which is
graded. (Il

Let R be a Hopf algebra in YD with antipode Sg.
We recall the braided, strict monoidal isomorphism

(4.3.4) F:Rypdiyp) = S yD

of Theorem B.87 For any Hopf algebra K in EYD(ZYD), the image F(K) is a
Hopf algebra in ;ﬁyu By Remark A3

(F(K)#(R#H),mpk), Yr(k)) and (R#H, TR, Vr)
are Hopf algebra triples over R#H and over H, respectively.

COROLLARY 4.3.8. Let K be a Hopf algebra in RYD(EYD).
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(1) The identity map
(K#R)#H = F(K)#(R#H), 1®r@h—> 2 @71 ®h,
is an isomorphism of Hopf algebras between the bosonizations of K#R
and F(K).
(2) The map
K#R =5 (F(K)#(R#H)) U, a#tr — s#r#1,

is an isomorphism of Hopf algebras in £ YD.
(Here, (F(K)#(R#H))°H s defined with respect to the Hopf algebra
triple (F'(K)#(R#H ), TRTp k), YF(k)YR) 0ver H.)
PROOF. (1) is a special case of Theorem B87 and (2) follows from (1) and
Corollary 4331 O

PROPOSITION 4.3.9. Let R be a Hopf algebra in YD and (P,7,v) a Hopf
algebra triple in gyD over R. Then (P#H,7n ® idy,y ® idy) is a Hopf algebra
triple over R#H. Let P°T and (P#H)R#H be the sets of right coinvariant
elements. Then the embedding P — P#H, p— p® 1, induces an isomorphism

1 s F(PORY S5 (P#H)®© F#D) 0y 201,
of Hopf algebras in ;I;Iyl?.

PRrOOF. The first claim follows from Remark £.3.4]
Let K = Pf By Corollary B3.8(1), and Theorem BI04 for the triple

(P,m,7),
F(K)#(R#H) - (K#R)#H, x@r®@h—2xQr®h,
(K#R)#H — P#H, 2 ®@rQ®h — 2v(r) ® h,
are isomorphisms of Hopf algebras. Hence the composition
O: F(K)#(R#H) —» P#H, x @r & h— zv(r) ® h,

is an isomorphism of Hopf algebras. Since & is an isomorphism of Hopf algebra
triples (F(K), mp(k), Yr(k)) and (P#idy, m#idy,v#H), the restriction of ® to
the coinvariant elements defines the isomorphism of Hopf algebras in 15” ;zf }? YD in
the proposition. (I

We close this section with some useful formulas on the adjoint action.
Let R be a Hopf algebra in gyD, and adg : R® R — R the braided adjoint
action in Definition 7.3l Then
adp = (R R 22298 po Re R 290 po Ro R

idr®idr®SRr ROR®R pr(iIdr®uR) R),

that is for all z,y € R,
adR((E & y) = .’[(1)(1'(2)(_1) . y)SR(x(z)(O)).
We also write adg = ad. = ad, and ad z(y) = ad(z ® y).

EXAMPLE 4.3.10. Let R be a Hopf algebra in #YD, and z,y € R. If z is
primitive, then ad.xz(y) = 2y — (2(—1) - ¥)(0) is the braided commutator of =
and y.
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LEMMA 4.3.11. Let R be a Hopf algebra in EYD, and x,y € R. Then
adpz(y) = z(1)yS(2(2)),
where x(1)yS(x(2)) = adaz(y) is the adjoint action of x on y in the bosonization
A= R#H.
ProoF. By Corollary B3.5(1), Sr(r) = r(~1)S(r(o)) for all € R. Hence

adpa(y) = M (@ Ly - y)Sr(x® o)
= W@ S (@® _y)ae® S )
=M@ y)yS(2® (0))
= 1’(1)y8(.’[(2)).
O
PROPOSITION 4.3.12. Let R be a Hopf algebra in £YD, and let q,r,s € k and
g,h € G(H) with gh = hg. Let z,y € P(R), and assume that
op(z) =g®z, Or(y)=h®y, g-ox=qv, g-y=ry, h-a=sz
Let A = R#H be the bosonization of R. Then for all m € Ny,

B ) St ()
q

(2) Aa((adrz)™(y )) (adpa)™(y) @ 1
m—1
—|—Z< ) (H 1—qrs)) m=kokh @ (adpa)*(y).
k=0 q° 1=k
(3) Ar((adrz)™(y)) = (adpz)™ (y) @1
m m—1
+Z< ) (H 1—qrs) "k @ (adpz)* (y).
k=0 q° =
PROOF. (1) Note that for all a € R, (adgx)(a) = za — (g - a)x = (F 4+ G)(a),
where F,G € Hom(R, R) with F(a) = za, G(a) = —(g - a)x for all a € R. Then
in Hom(R, R), GF = ¢gFG. Hence (1) follows from the ¢-binomial formula in
Proposition
(2) By definition of Ay in @32), z € P,1(A), y € Pr1(A). By (1),

(adgpz)™(y) = 2" >y in Proposition 243

Hence (2) follows from Proposition ZZ43|(1) and Lemma L3111
(3) Let 9 =idg ® ¢ : A — R. The formula in (3) follows by applying ¥ ® id to
(2), since for all r € R, Ar(r) = (W ®@id)A4(r). O

4.4. Finite-dimensional Yetter-Drinfeld Hopf algebras
are Frobenius algebras

In 1969, Larson and Sweedler proved in their pioneering paper [LS69] that an
arbitrary finite-dimensional Hopf algebra is a Frobenius algebra. Extending their
ideas we next show that finite-dimensional Hopf algebras in # YD are Frobenius.
We first discuss Frobenius algebras.
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The dual vector space A* = Hom(A, k) of an algebra A is an A-bimodule by
(af)(x) = f(za), (fa)(z)= f(ax)
for all ¢,z € A and f € A*.

LEMMA 4.4.1. Let A be a finite-dimensional algebra, and f € A*. Then the
following are equivalent.

(1) The left A-module A* is free with basis f.
(2) The right A-module A* is free with basis f.

PROOF. Let can: A — A** a — (p — @(a)), be the canonical isomorphism.
Let FF: A — A* a — af. Then for all a € A, F*can(a) = fa, and the claim
follows. (]

DEFINITION 4.4.2. A finite-dimensional algebra A is a Frobenius algebra if
A = A* as a left (or by Lemma 4] equivalently right) A-module. A basis f of
A* as a left or right A-module is called a Frobenius element.

EXAMPLE 4.4.3. Let G be a finite group. Define f € (kG)* by

Cf1ifg=1,
f(g)_{o, ifg£1.

Then the elements g~ ' f, g € G, form the dual basis of the basis G of the group

algebra. Thus kG is a Frobenius algebra with Frobenius element f.

DEFINITION 4.4.4. Let A be an augmented algebra, that is an algebra together
with an algebra map € : A — k. An element A € A is called a left integral of A
if ah = e(a)A for all a € A. Tt is called a right integral of A if Aa = £(a)A for
all a € A. We denote by I;(A) and I.(A) the set of left and right integrals of A,
respectively.

Let C be a coalgebra with a distinguished group-like element 1. We denote
by I;(C*) and I.(C*) the sets of left and right integrals of C*, respectively, with
respect to the algebra map € : C* = k, f — f(1o).

LEMMA 4.4.5. Let C be a coalgebra with a distinguished group-like element
lc € C, and let A € C*. Then A € I.(C*) if and only if for all c € C,

)\(C(l))C(Q) = )\(C)lc.
PROOF. By definition, A € I.(C*) if and only if for all f € C*, c € C,
Ae) f(e)) = Ale) f(1c) or f(Ac))ee) = f(Ale)le),
that is, if and only if for all c € C, X(c())c2) = A(c)lc. O

If A is an algebra and X C A is a subspace, then we denote the left and right
annihilators of X by

I(X)={acA|laz=0foralze X}
r(X)={a€ Alza=0forall z € X}.
LEMMA 4.4.6. Let A be a Frobenius algebra with Frobenius element f.
(1) For all right ideals I of A and all left ideals J of A,
dim{(I) =dim A/I, dimr(J)=dimA/J.
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(2) Let € : A — k be an augmentation of A. Then I;(A) and I.(A) are
one-dimensional, and f(I;(A)) #0, f(I.(A)) #0.

PRrROOF. (1) The assumptions imply that the maps I(I) — (A4/1)*, a — fa,
and r(J) = (A/J)*, a — af, are bijective.

(2) follows from (1), since [;(A) = r(A™") and I.(A) = [(A"). Note that for
AeI.(A), T e ;(A), A,T # 0 implies that f(A) # 0, f(I') #0. O

Frobenius algebras can be described by various equivalent conditions. In this
context the notion of a Casimir element is useful. If A is an algebra, and z;,y;,
1 < i < n, are elements in A, then Z?:l z; ®y; € AR A is called a Casimir
element of A if for all x € A,

n n
wai QY = Zl'z Q@ Yix.
i=1 i=1

LEMMA 4.4.7. Let A be an algebra, x;,y; € A, 1 < i < n, and assume that
Yo xi @i is a Casimir element of A. Then

A:A— AR A, mHwaié@yi:Zm@yix,
=1 i=1

is coassociative and left and right A-linear, where the A-module structures of A® A
are defined by the multiplication in A.

ProoF. For all z € A,

(A®idg)A(z) = Z Alzz;) Q@y; = Z T D Y; @ Yi,

i=1 1<i,j<n
n

(ida ® A)A(z) = Zmi ® Ays) = Z T @ YiTj @ Yy,
i=1 1<i,j<n

and equality follows, since Y"1 z; @ yizj = > o zjz; @y forall 1 <j<n. O

PROPOSITION 4.4.8. Let A be a finite-dimensional algebra, and f : A — k a
linear map. Define

F:A® A— Hom(A A), z®@y+— (a— zf(ya)).
The following are equivalent.
(1) A is a Frobenius algebra with Frobenius element f.
(2) F is bijective.
(3) There are an integer n > 1 and x;,y; € A for all 1 <i < n such that for
all x € A,
() @ = X0, @i f(yia),
(b) &= S, flaw,)y.
(4) There is a linear map A : A — A® A such that
(a) (4, A, f) is a coalgebra.
(b) The map A : A — A® A is left and right A-linear, where the A-
module structures of A® A are defined by the multiplication in A.
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PRrROOF. (1) < (2) The map F' is the composition of
ARA - ARA", 2@y =z fy,

and the isomorphism A ® A* — Hom(A4, A), 2 ® ¢ — (a +— zp(a)).
(2) = (3) Choose z;,y; € A, 1 < i < n, with F(O_!" , 2; ® y;) = ida. By
definition of F'; equation (a) follows. Hence for all z,y € A

13 ) = 32 sam) o) = £ (238 = flo)

We have shown that fY | f(zx;)y; = fa for all z € A. Since A is a Frobenius
algebra with Frobenius element f, the second equation (b) follows.

(3) = (1) Let € A with «f = 0. Then 2 =0 by (3)(a).

(2) = (4) Choose z;,y; € A,1 <i <nwith F(} " x; ® y;) = ida. By defini-
tion and injectivity of F, Y7 | ; ® y; is a Casimir element of A. By Lemma .27,
it defines a left and right A-linear coassociative map A : A -+ A® A. By equations
(3)(a) and (3)(b), f is a counit for A.

(4) = (3) Choose z;,y; € A, 1 <i <n, with A(1) = >, 2; ® y;. Then (3)
follows using (4)(b) and that f is a counit. O

Let A be an algebra and a coalgebra. By Proposition [£.4.8 A is a Frobenius
algebra if A : A - A® A is a map of (A4, A)-bimodules. This last condition
is equivalent to the commutativity of two diagrams. Note that condition (4) in
Proposition 4.8 implies that A is finite-dimensional. Hence Frobenius algebras
can be defined in monoidal categories.

DEFINITION 4.4.9. Let C be a strict monoidal category. A Frobenius algebra
in C is a quintuple (A, u.n, A, ), where A is an object in C, (4, i, n) is an algebra
and (A, A, ¢) is a coalgebra in C such that

A A A A A A

AA 4 A A A

Recall that H is a Hopf algebra with bijective antipode. The next theorem says
that a finite-dimensional Hopf algebra in gyD is a Frobenius algebra, that is, a
Frobenius algebra in the category of vector spaces. In general it is not a Frobenius
algebra in 2D, since the Frobenius element f is not a morphism of Yetter-Drinfeld
modules (see Example Z4T5]). The Hopf algebra H acts on f by a character which
in general is not trivial.

We recall some notation from Section[3:5l Let R be a Hopf algebra in C = 2YD.

Let V' € C be finite-dimensional. By Lemma E22] (V* evy,coevy) is a left
dual of V', where V* as an object in C is defined in Lemma with evaluation
and coevaluation maps as for vector spaces.

Let (V,6) € Cf, and (V,\) € grC. Then (V* \,) € Cr and (V*,6§;) € BC by
Lemma [35.101 If we use the notation

Ar@v)=rv, \e(f@71) = fr, §v) =vo @vay, 0(f) = fi-1) ® flg

The preliminary version made available with permission of the publisher, the American Mathematical Society.



4.4. FROBENIUS ALGEBRAS 205

forallr € R, f € V*, v €V, then
S fio(v) = fo)vpy,  frv) = f(rv).
In this notation, the left R-module structure A, is defined by
)\7‘+ : R® V* — V*, r& f — (7‘(71) . f)SR(T(O))

If (V, \, §) is a Hopf module in xC%, then by Theorem B.5.14l (V*, A4, &;) is a Hopf
module in £C.

Integrals in the dual algebra R* of the coalgebra R are defined with respect to
the augmentation R* — k, f +— f(1). Note that R* has two algebra structures.
The dual vector space R* is an algebra by the dual algebra structure of the coalgebra
R and by the algebra structure of the dual braided Hopf algebra. For clarity we
denote the dual braided Hopf algebra by R*b*.

LEMMA 4.4.10. For any finite-dimensional Hopf algebra R in LYD, the algebra
structure of (ROPOP)*PT js R*°P where R* is the dual algebra of the coalgebra R.

PROOF. The algebra structure of (R°°P°P)*b" is defined as the composition
R*® R* 2% (Re R 220 (Re R)* 28 R*.
Let can be the isomorphism
can: R"@R* > (R®R)", fegr— (z@y— f(z)9(y)),
and 7: R® R — R® R the flip map. By (M),

orr=(R"OR % (RoR)* 5 (Ro R)* 22, (Ro R)).

Hence the multiplication of (R°POP)*br ig

R &R ™ (RoR)* 5 (R R)* 28 R*,

THEOREM 4.4.11. Let R be a finite-dimensional Hopf algebra in g)}D.

(1) The antipode of R is bijective.
(2) Both the algebra R and the dual algebra R* of the coalgebra R are Frobe-
nius algebras. Non-zero elements in I,.(R*) are Frobenius elements of R.

PRrROOF. (a) Multiplication and comultiplication define R as a Hopf module in
rCE. By Theorem B.5.12, R* is a Hopf module in £C. Hence by Theorem B.5.14]
the multiplication map

R® co RR* - R*
is bijective. Thus ©fR* is a one-dimensional object in ZYD. Let 0 # X € ©ER*
and let x be the character of H given by h -\ = x(h)A for all h € H. If the left
R-module structure on R* is denoted by R® R* — R*, r ® f + r o f, then for all
r,x € R,

(roX)(z) = (ri—1) - N(Sr(r0))) = MSr(X(r(=1))7(0))T)-

Hence the composition

R% RS8R I R
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is bijective, where ¢(r) = x(r1))r@), F(r) = Ar for all » € R. Therefore Sg
is bijective. Moreover, R is a Frobenius algebra with Frobenius element A. By
definition of the left R-comodule structure of R*,

cofips — {xe R | MazM)z® = X\(z)1 for all z € R},

where we write A(z) = () @ 22 for all 2 € R. Hence °fR* = I.(R*) by
Lemma .25

(b) To prove the remaining claim that the dual algebra of the coalgebra R is
Frobenius, we apply (a) to (R°P°P)*Pr. Hence (R°°P°P)*P is a Frobenius algebra,
and the dual algebra R* is Frobenius by Lemmas 410 and {471 O

Let us say that a one-dimensional Yetter-Drinfeld module kz € YD is given
by (g,x) with g € G(H), x € Alg(H, k), if action and coaction of H have the form

h-xz=x(h)z, o=z)=g®z.
COROLLARY 4.4.12. Let R be a finite-dimensional Hopf algebra in LY D.
(1) I;(R),Ir(R) C R and I;(R*), I.(R*) C R* are one-dimensional subobjects
. H
mn gVD.
(2) Sr(li(R)) = I.(R).
(3) There are g € G(H) and x € Alg(H,k) such that the Yetter-Drinfeld

structures of I.(R) and I;(R) are given by (g,x), and the Yetter-Drinfeld
structures of I;(R*) and I.(R*) are given by (g7, x1).

PROOF. By Theorem EZATIl [;((R°P°P)*P) = [.(R*) is a one-dimensional
Yetter-Drinfeld module. By the self-duality of finite-dimensional Hopf algebras in
BYD, I;(R) is an object in £YD. Let T be a basis of [;(R), and x a character of
H with h-T' = x(h)T for all h € H. Then for all xz € R,

(2)Sr(I') = Sp(al) = Sp(x(—1) - I)Sr(z(0)) = SR(T)Sr(X(2(-1))(0))-

Hence Sg(T') is a right integral, since e(Sr(x(z(-1))7(0))) = €(x). We have shown
that Sk induces an isomorphism [;(R) = I.(R) of Yetter-Drinfeld modules. Then
also I;((R®PP)*P) = [ (R*) and I,.((R°P°P)*Pr) = [;(R*) are isomorphic objects
o H
in gYD.

Let the Yetter-Drinfeld modules I;(R), I.(R) be given by (g,x), and I;(R*),
I.(R*) by (¢',x'). f0# A € I.(R), 0 # X € I.(R*), then for all h € H,

X (MAA) = (h- N)(A) = (xSr) (R)AA),

9AA) = A Ao (A) = Szl (9AA),
and Y/ = x 1, ¢’ = g1, since A(A) # 0 by Lemma 2.6 0
We apply the previous theorem to a special situation. The assumptions of the
next theorem in particular hold for any finite-dimensional Nichols algebra in #YD.

THEOREM 4.4.13. Let R = @, R(n) be a finite-dimensional No-graded con-
nected Hopf algebra in BYD. Let N > 0 be the largest n > 0 with R(n) # 0.
Then R(N) is one-dimensional. Let 0 # A € R(N), and define A : R — k by
pry(r) = A(r)A for allr € R.

(1) Let x1,...,x¢ be a basis of R(1), and assume that R is generated as an
algebra by R(1), that is, R is pre-Nichols. Let x;, ---x;, be a non-zero
monomial in x1,...,x: of mazimal length. Thenl = N, z;, ---x;, is a

basis of R(N), and R(n) #0 for all0 <n < N.
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(2) R is a local algebra with mazimal ideal RT = @fvzl R(37).

(3) A is a basis of I.(R) = I;(R), X is a basis of I.(R*) = I;(R*), and R is a
Frobenius algebra with Frobenius element \.

(4) Let 0 < n < N. The map R(n) x R(N —n) =k, (z,y) — Azy), is a
non-degenerate bilinear form, and dim R(n) = dim R(N — n).

PROOF. We may assume that N > 1. Let 1 <n < N, and = € R(n). Then
oA =0=Azx =¢e(z)A,

since R is an Ny-graded algebra, and R(N 4+ n) = 0. Thus A is a non-zero left and
right integral of R. Hence A is a basis of R(N), since R is a Frobenius algebra
by Theorem 4.1l and its space of left or right integrals is one-dimensional by
Lemma [£4.6] Since R is an Ny-graded coalgebra, by Lemma 1.3.6,

n—1

Alz) 1@z +2®1+ D R() @ R(n—i).

i=1

Hence
AMzM)z® = A(2)1 = 2WA(z®),
and A is a non-zero left and right integral of R*. Again by Theorem 4TIl I,.(R*)
and I;(R*) are both one-dimensional with basis A\. We have proved (3), and (1)
is now obvious. (2) holds for any finite-dimensional Ny-graded algebra with one-
dimensional degree 0 part, since R is nilpotent.
By Theorem 4Tl X is a Frobenius element of R. Hence the multiplication

maps R — R*, x — Az, and R — R*, z — z\, are bijective. They induce injections
R(n) = R(N—n)*, z = Az, and R(N —n) — R(n)*, y — y\, which proves (4). O

COROLLARY 4.4.14. Let R and S be finite-dimensional Ng-graded connected
Hopf algebras in BYD. Let 7 : R — S be a surjective No-graded algebra homo-
morphism, and assume that m(R(N)) # 0, where N > 0 is the largest n > 0 with
R(n) # 0. Then m is bijective.

PROOF. Since 7 is surjective and Ny-graded, the top-degree of S is N. By
Theorem 4T3} R(N) and S(N) are one-dimensional. Let Ag be a basis of R(N).
Then Ag = 7(AR) is a basis of S(N). We denote the integrals of R* and S* defined
by Ar and Ag in Theorem 4T3 by Ar and Ag. Let Fr : R — R*, r — Arr, and
Fs:S — 5% s+— Ags be the induced isomorphisms. Since Az = Ag7m, we obtain
that

Fr=(R5 S L5 5% = RY).
Hence 7 is bijective. O

EXAMPLE 4.4.15. Let m > 2, and ¢ a primitive m-th root of unity. Let G = (g)
be the cyclic group of order m, and T, ,,, the Taft Hopf algebra in Examples 2.4.10l
and L3.2 with projection 7 : Ty, — kG and R = T¢5¢. Then R = k(z | 2™ = 0)
is an m-dimensional Hopf algebra in $YD with integral 2™~1. The G-action is
defined by g - x = qx. The linear map
M R—k, AN2')=6im-1, 0<i<m-—1,

is an integral in R* and a Frobenius element. Note that A is not a morphism in
GYD, since AN(g- 2™ 1) =qg 1 £1.
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Finally, motivated by Theorem 413l we discuss a more general class of Frobe-
nius algebras.

DEFINITION 4.4.16. Let R = @,,,R(n) be a finite-dimensional Ny-graded
algebra with multiplication x and unit . A PBW deformation of R is an
associative algebra (R, v,n), such that for all k,1 > 0,

kl—1
(v = W(RH) & RO € D RG)
i=0
REMARK 4.4.17. Traditionally one defines a PBW deformation of a finite-
dimensional Ny-graded algebra R as an Ny-filtered algebra A such that gr A =& R.
It is easy to see that the two definitions are equivalent.

PROPOSITION 4.4.18. Let R = P, R(n) be a finite-dimensional No-graded
algebra. Let N € N and let X : R — k be a linear map with A(R(n)) = 0 for all
n # N. Assume that for any n > 0 the bilinear form

R(n) x R(N —n), (z,y) = Azy),

is non-degenerate. Then R(N) # 0, R(n) = 0 for all n > N, and any PBW
deformation of R is a Frobenius algebra with Frobenius element \.

PRrROOF. For any n > N, A(zy) = 0 for all (z,y) € R(n) x R(N — n), since
R(N —n) = 0. Thus R(n) = 0 by the non-degeneracy of the bilinear form. For a
similar reason, R(N) # 0 since R(0) # 0.

Let (R, v,n) be a PBW deformation of R and let € R be non-zero. Let n < N
be such that = € @), R(i), z ¢ @), R(i). Then, by assumption, there exists
y € R(N —n) with A(v(z ® y)) = A(zy) # 0. Therefore Az # 0, that is, (R,v,n) is
a Frobenius algebra with Frobenius element A. |

COROLLARY 4.4.19. Let R = @, 5o R(n) be a finite-dimensional No-graded
connected Hopf algebra in 2YD. Then any PBW deformation of R is a Frobenius
algebra.

Proor. This follows from Theorem .4.13] and Proposition . 4.18 |

EXAMPLE 4.4.20. A standard example of a non-trivial PBW deformation is the
Clifford algebra
CLV.q) =T(V)/(v* —q(v) [vEV)
of a quadratic form ¢ on a finite-dimensional vector space V. Indeed, one can show
that gr (Cl(V, q)) is isomorphic to the exterior algebra of V. Thus Cl(V,q) is a
Frobenius algebra by Corollary

4.5. Induction and restriction functors for Yetter-Drinfeld modules

In the following Propositions [£.5.1] and Corollaries L5.3] 4.5.5 we assume
that K, H are Hopf algebras with bijective antipodes, and ¢ : K — H is a map of
Hopf algebras.

For Yetter-Drinfeld modules V' € ﬁyD and W € gyD, we define

HomZ(V,W) = {f | f:V — W left K-linear and left H-colinear},
where W is a K-module by Ay (¢ ® idw ) and V is an H-comodule by (¢ ® id)dy .
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PROPOSITION 4.5.1. Let H be the right K-module with right module structure
H® K — H, h®kw— ho(k).

1) Let V € EYD. The induced module H @5 V is an object in LYD with
K ] H
left action - and left coaction §, where

h - (h/ ®v) = hh/ @ v, d(hev)= h(1)<p(v(_1))8(h(3)) & (h(g) ® 11(0))

forallh, e HveV.
(2) The induced module construction in (1) defines a functor

0. KYD 5 ByD, Vs HogV,

mapping morphisms f:V — V'’ onto idy R f.
(3) Let V € gyD, W e gyD. The maps

Hom L (V, W) = Homu yp (H @5 V,W), f = (h@ v hf(v)),
Homu yp (H @5c V, W) 5 HomfL (V, W), F s F(y@idy),
are inverse bijections.

ProoF. (1) Clearly, (V, (¢ ® id)dy,idy ® ng) is an H-bicomodule. By Re-
mark B7I0 (H ® V,p,coad) € EYD. Themap 6 : H@xg V — H® (H ®x V) is
well-defined since

d(hep(k) @ v) =haye(k))e(v—1))S(@(k@s) )) (h(z)) @ (h2)ye(k2)) ® v())
Zh(1)tp((kv) ) (h(3 )@( ( ) 0))
=i(h ® kv)

forall h € H, k € K, v € V. Thus the Yetter-Drinfeld structure of H ® V' induces
the claimed Yetter-Drinfeld structure of H Qg V.

(2) Let V,V' € BYD, and f : V — V'’ a morphism in £YD. Then the map
dg® f: HRgV — H®g V'is left H-linear. It is left H-colinear, since coad in
the proof of (1) is left H-colinear.

(3) Let f € Hom%(V, W), and F = ®(f). Then F is a well-defined left H-linear
map, since f is K-linear. To see that F' is H-colinear, let h € H, v € V. Then
dw (f(v)) = p(v—1)) ® f(v(), since f is H-colinear. Hence

dw(F(h®wv)) =dw(hf(v)) = hayp(v—1))S(hs)) @ he)f(vo)
— (id @ F)5(h ®wv).

The map n®idy : V - H®g V, v+— 1 ® v, is K-linear and H-colinear. Hence ¥
is well-defined, and ® and ¥ are inverse bijections. O

We note that the construction of M (g, V') in Definition is a special case
of the induction functor in Proposition 5.1 Let G be a group, g € G, and
¢ 1 kGY — kG the Hopf algebra map induced by the inclusion of the centralizer GY
into G. Any left kG9-module V' is an object in 83 YD with coaction d : V — kGIQV/,
v+ g ®v, and the given G9-action. Then ¢.(V) = M(g,V) € EYD.

The cotensor product, see Definition 2.2.9] defines a restriction functor.

PROPOSITION 4.5.2. Let K be the right H-comodule with comodule structure
(idK(X)(p)AK K-> K®H.

The preliminary version made available with permission of the publisher, the American Mathematical Society.



210 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS

(1) Let W € #YD. The cotensor product KOgW is a subobject in EYD of
K ® W with K-action - and K -coaction §, where
z-(y@w) =z20yS(rs) @ p(Ee)w, (zRw)=121) @R QW
forallz,ye K, weW.
(2) The cotensor product in (1) defines a functor
o ByD - KyD, W KOgW,
where morphisms f: W — W' are mapped onto idOf.
(3) The maps
Hom{! (V,W) % Homu yp (V, KOgW), f = (v v_1) @ f(v(0))),

Homu yp (V, KOgW) = HomfL(V, W), F i (¢ @ idw)F,
are inverse bijections.

PRrROOF. (1) Consider W as a trivial right K-module and a left K-module via
Aw (¢ ® idw ). By Remark BI7I0) the triple (K ® W, ad, Ak ® idy) is an object in
gyD. Moreover, H ® W is a left K-module via the action

k(h @ w) = @(ka))hS(p(k))) ® o(ke2))w
forke€ K, he H, we W, and hence (K ® H® W,ad, Ax @idggw) € KYD. The
H-coaction dy : W — H @ W of W is a K-bimodule map by the Yetter-Drinfeld

condition for W, and hence id ® dyy : K @ W — K ® H® W is a morphism in
EYD. Let
K

§V=(d®eidy)(Ax @idy) : KW - K® H® W.
Then ¢’ is left K-linear and left K-colinear by construction, and we conclude that
KOgW =ker(§' —id ® dw) is a Yetter-Drinfeld submodule of K @ W.
(2) Let f : W — W’ be a morphism in #YD. Thenidx @ f: KW — KW’
is a morphism in %yl). The following diagram commutes.

KoW 2799  proHew
id;ﬁ@fl JidK®idH®f
5/7id®5w/
KoWw Ko HoW

Hence f induces a morphism KOy f: KOgW — KOgW' in EYD.

(3) Let f € Hom& (V, W), and F = ®(f). Then F(v) € KOzW for allv e V,
since f is H-colinear. Hence F' is a well-defined K-colinear map. To see that F' is
K-linear, let x € K, v € V. Then

F(av) = 2(yv-1)S(z3)) ® f(z2)v0) = 2 - F(v),
since f is K-linear.
The map e ® idw : KOgW — W, >0 2 @ w; — Yoy e(z)w;, is left K-
linear and left H-colinear, where W is a left K-module by restriction via ¢, and

KOgW is a left H-comodule by(y ® id)dxo,w. Hence ¥ is well-defined, and @
and ¥ are inverse bijections. (Il

COROLLARY 4.5.3. The functor . is left adjoint to ¢*.
PRrROOF. This follows from Propositions L5.1)(3) and E5.2(3). O
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REMARK 4.5.4. Propositions [£5.1k3) and [£.5.2(3) show that the forgetful func-
tor #YD — H M has the left adjoint functor V +— H ® V, and that the forgetful
functor £YD — x M has the right adjoint functor W — K @ W.

We need the following special cases of the induction and restriction functors.

COROLLARY 4.5.5. (1) Assume that ¢ is surjective. Let V. = (V,\,9)
be an object in EYD. Assume that A = N (p ® idy), where V is a left
H-module by ' : H®V — V. Then

(V)2 (VN (¢ ®idy)s) in GYD,

and the Yetter-Drinfeld modules V and (V, X', (¢ ® idy)d) have the same
braiding map.

(2) Assume that o is injective. Let V = (V,\,6) be an object in LYD. Assume
that § = (p ® idy)d’, where V is a left K-comodule by §' : V — K V.
Then

(V)= (V,Ae®idy),d') in KD,

and the Yetter-Drinfeld modules V' and (V, A(¢ ® idy),d’) have the same
braiding map.

PRrROOF. (1) The map p.(V) = HRgV = V, h®@v — N(h®v), is an
isomorphism in YD, since ¢ is surjective. Its inverse is the map V — H @k V,
v+~ 1 ®wv. The braiding of (V, X, (¢ ® idy)d) is defined by

c(v@w) = pv—))  wve) =cry(vw)
for all v,w e V.
(2) The map KOV — (V, M(¢®idy), d’) induced by e®idy is an isomorphism
in KYD, since ¢ is injective. Its inverse is the map given by v v(—1) ®V(0), Where

\%4 )‘—/> K@V, v v_1) ®uvq) denotes the K-comodule structure. The braiding of
(V, M(¢ ® idy ), ") is defined by

c(v@w) = p(v_))  wve) =cyy(vw)
for all v,w e V. (Il

Let G be a group. The braided vector space (V,cy,v) of a Yetter-Drinfeld
module V € gyD does not determine the Yetter-Drinfeld module V' nor the group
G uniquely. We first want to decide when two Yetter-Drinfeld modules over groups
have isomorphic braidings.

A left G-module V is called a faithful G-module, if the identity element is the
only element g € G such that g-v = v for all v € V. If V is a faithful G-module,
we can identify G with a subgroup of Aut(V'), and the action of G on V with the
application of automorphisms to elements of V.

DEFINITION 4.5.6. Let G be a group and V € gyD. Then V is called an
essential Yetter-Drinfeld module over G if V is a faithful G-module, and the
group G is generated by the elements g € G with V, # 0.

COROLLARY 4.5.7. Let G be a group and V € gy’D with representation

p:G—=Auw(V), g— (v g-v).

The preliminary version made available with permission of the publisher, the American Mathematical Society.



212 4. YETTER-DRINFELD MODULES OVER HOPF ALGEBRAS

Let G(V) = p(G1), where G1 C G is the subgroup of G generated by all g € G with
Vg #0. Let V=V as a vector space with G(V')-action and G(V')-grading given by

p(g) v =plg)(v), Vg = D Va
heG1,p(h)=p(g)

forallge Gy andv eV.

(1) Ve ggg)yp is an essential Yetter-Drinfeld module, and

(VY, Cv)v) = (V, 0‘77‘7).

(2) A direct sum decomposition V.= @,.; Vi of V in YD is a direct sum

Vi of Vin V) yD.

decomposition V= D G(V)

iel

PROOF. (1) The vector space V is a Yetter-Drinfeld module over G; by Corol-
lary 4.5.5(2), where ¢ is the inclusion map G; € G. Then V is a Yetter-Drinfeld
module over p(G1) = G(V) by Corollary 4.5. 5(1), where ¢ is the surjective map

Gy — G(V), g p(g). Hence V € G(V v)YD with the same braiding as V, and it is
an essential Yetter-Drinfeld module by cgvnstructlon
(2) is obvious from the definition of V. O

If G, H are groups, and ¢ : G — H is an isomorphism of groups, we denote the
induced category equivalence between the categories of Yetter-Drinfeld modules by

YD(p) : GYD = GYD,  (V,A,6) = (VA ' ®@idy), (¢ ®@idy)s).

Note that ¢. = YD(p) by Corollary 4.5.5.

In the next proposition we formulate a criterion to decide when Yetter-Drinfeld
modules over groups have isomorphic braidings. Recall that braided vector spaces
(V,¢) and (W, d) are isomorphic, if there is a linear isomorphism f : V — W such
that d(f ® f) = (f ® f)c. We then write (V,¢) = (W, d).

PRrROPOSITION 4.5.8. Let G, H be groups, and let V € g)ﬂD and W € 2yD.
Define Ve gg‘v,iyp and W € g%;yp as in Corollary 5T Then the following
are equivalent:

(1) The braided vector spaces (V,cv,v) and (W, cw,w) are isomorphic.
(2) There is a group isomorphism ¢ : G(V) — G(W) such that
YD(p)(V) =W G(W)yD
(3) There is a linear isomorphism f :V — W such that
ngf—l = f(f/g) for all g € G(V).
Proor. By Corollary 5.7 we may assume that

G=G(V),V=VegyyD, and H=G(W),W =W € &) VD.

(1) = (2): By definition there is a linear isomorphism f: V — W with
(f® NHevy =cww (f @ f).

We denote by @ : Aut(V) — Aut(W), ®(g9) = fgf~ ' for all g € Aut(V), the
induced group isomorphism. Let g € G and 0 # v € V;;. Then there are elements
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h; € H, 0 # w; € Wy, for all 1 <i <n,n>1, with f(v) = > 1" w; and h; # h;
for all 4 # j. Hence for all v/ € V,

(f® Pevivwev) = flg-v) @ flv) =Y flg-v) ©w;

i=1

=cww(f® floe) ZCWW w; ® f(v Zh f(v') @ w;.

i=1

Hence n = 1, and h; = ®(g). We conclude that f(V,) € Wg(g). Let X be the set
of all g € G with V,; # 0. It follows that

= GB f(Vg) € GB Wa(g)5

geX geX

and therefore, f(Vy) = Wy for all g € G, and Wg(, = 0 for all g € G\ X.
Hence ®(G) = H, since by assumption G is generated by X, and H is generated
by {h € H | W), # 0}.

This proves (2), since ¢ : G — H, g — ®(g), is an isomorphism of groups, and
f:YD(p)(V) — W is an isomorphism of Yetter-Drinfeld modules over H.

(2) = (3): Let f : YD(¢)(V) — W be an isomorphism of Yetter-Drinfeld
modules over H. Then for all v € YD(¢)(V) and g € G,

w(g)-v=yg), flp(g) v)=(g)(f(v)),

since f is an H-linear map. Hence ¢(g) = fgf~!. Since f is an H-graded map,
and YD(¢)(V)(q) = Vg, (3) follows.

(3) = (1): Let g € G,v € V; and v' € V. Then by (3), f(v) € Wyyp-1, and
hence

eww (f @ f)loewv ) eww (f(v) @ f(0") = faf 71 (f(v) © f(v)
9(") ® f(v) = (f ® flevy (v @)

This proves the Proposition. (Il

We now consider Yetter-Drinfeld modules over groups with diagonal braidings.

It is clear from the definition that finite direct sums of one-dimensional Yetter-
Drinfeld modules have diagonal braiding.

PROPOSITION 4.5.9. Let n € Ny and let (V,¢) and (W,d) be n-dimensional
braided vector spaces. Let x1,...,x, be a basis of V, y1,...,Yn a basis of W and
Qij,pij €k for all 1 <1i,5 < n such that

o(z; ® x5) = qijr; @ @i, d(yi ®Y;) = Pijy; @Y
for all1 <4,5 <mn. Then the following are equivalent:

(1) The braided vector spaces (V,c) and (W, d) are isomorphic.
(2) There is a permutation o € S,, such that

Gij = Po(io(j) for all 1 <i,5 <n.

PROOF. Let G be a free abelian group with basis (¢;)1<i<n. Define characters
Xisni of G by x;(9i) = qij, nj(g;) = pij for all 1 < i,j < n. Let V € §YD and
W e gy’D with z; € VX', y; € Wl forall 1 <i<n. Thenc=cyy, d=cww.
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By definition, Ve G yD is the direct sum of the one-dimensional Yetter-

Drinfeld modules ka;, 1 <1 < n, over G(V), and W S G(W)y’D is the direct sum
of the one-dimensional Yetter-Drinfeld modules ky;, 1 < i < n, over G(W).

Clearly, (2) implies (1). Assume now (1). By Propositionm

YD(e)(V) =W in gy VD,

where ¢ : G(V) — G(W) is an isomorphism of groups. Then YD()(V) is the direct
sum of the one-dimensional Yetter-Drinfeld modules kz; over G(W), 1 < i < n.
By Krull-Schmidt there is a permutation o € S, such that kz; = ky,(;) as Yetter-
Drinfeld modules over G(W) for all 1 <4 < n. This proves (2), since the braidings

of V and YD(¢)(V) and of W and W coincide. O

COROLLARY 4.5.10. Let G be a group and V € gnyd with representation
p:G— Aut(V). Let G1 C G be the subgroup generated by all g € G with V,; # 0.
Then the following are equivalent.

(1) The braided vector space (V,cv,y) is of diagonal type.

(2) V is a direct sum of one-dimensional G1-modules.
Assume that p(G1) is finite, k is algebraically closed and char(k) does not divide
the order of p(G1). Then (1) and (2) are equivalent to

(3) p(Gy) is abelian.

PROOF. Assume (1). We prove (2). By assumption, there is a basis x1, ...,z
of V and scalars ¢;; € k* for 1 <4,j <n with

evy (T ® x5) = qijT; @ x5
for all 1 < ¢,j < n. Let H be a free abelian group with basis (g;)1<i<, and
characters (x;)1<i<n of H with x;(g;) = ¢;; for all i,5. Let W € ZYD with
basis (y;)1<i<n and y; € Wi for all 4. Then (Vievyv) =2 (W,ew,w). Hence by
Proposition M58(2), V is a direct sum of one-dimensional Yetter-Drinfeld modules

gg“; YD. This implies (2), since G(V) = p(G1).

Assume (2). Then p(Gy) is abelian, hence (3) holds. Moreover, by Lemma[[.4.5]

V is a direct sum of one-dimensional Yetter-Drinfeld modules in g%;yp Thus

(V,evy) = (V, cy ) is of diagonal type, which proves (1).
Finally, (3) implies (1) by Proposition [LZ.6l O

COROLLARY 4.5.11. Let G be a group and V € gnyd. Let G1 C G be the
subgroup generated by all g € G with Vy # 0. Assume that (V,cy,v) is of diagonal
type, and that 'V is a faithful G1-module. Then G1 is abelian.

PRrROOF. Let p : G — Aut(V) be the representation of the G-module structure
of V. By Corollary 510l p(G1) is abelian. Hence G is abelian, since V' is a
faithful G1-module. O

The assumption on the faithfulness of V in Corollary [£.5.11]can not be dropped,
as Example [4.5.12] shows.

EXAMPLE 4.5.12. The dihedral group D, of order 8 is generated by two ele-
ments r, s with relations 7* =1, s = 1,sr = 3s. Let t; = r*“'s for all i € Z. Then
for all ¢, j € Z, t; = t; if and only if ¢ = j (mod 4), and t;t;t; = to;—j, tf = 1. The
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group D, is generated by t; and ¢4, and the set {¢; | 1 < ¢ < 4} is stable under the
adjoint action of Dy.

Let ¢, =1l and g, = —1forall 1 <i < 4. Thus Dy — {1,-1}, g ¢4, is a
group homomorphism. We define a Yetter-Drinfeld module V' € gin with basis
xt;, 1 < i <4, where the Dy-action and coaction is defined by

G- Ty, = EgTgpg-1, O(Ty,) =t @y,
for all g € Dy, 1 <¢ < 4. We set x; = zy, for all ¢ € Z. Note that
li-xj = —%2i—j, T -T; =740 foralli,jeZ.

Let p : Dy — Aut(V) be the representation of the action of Dy on V. Then
p(t1) = p(ts), p(ta) = p(ts), and the automorphisms p(¢1) and p(t4) commute.
Hence p(Dy) is abelian. Assume that the characteristic of k is not two, and let

Y1 =21+ T3, Y2=T2— T4, Y3=2T1—T3, Y4=2T2+ Ty.

Then V = @?:1 ky; is a direct sum of one-dimensional Yetter-Drinfeld modules
over p(Dy4). Thus (V,cv,v) is of diagonal type. Moreover, V=Va Va5, where
Vi = kyis @ kya, Vo = kys @ kys, and 2|V @ Vi = idy,gv,. It follows from
Proposition that B(V) is isomorphic to B(Vi) @ B(V2). The braidings of
V1 and V4 are of Cartan type with Cartan matrix As, see Definition Then
by Theorem [[6.3.17, the Nichols algebras of V;, 1 < ¢ < 2, have dimension 8, and
dim B(V) = 64.

4.6. Notes

M.Jl The Drinfeld center was introduced around 1990 independently by Drin-
feld, Majid [Maj91] and Joyal and Street [JS91]. Theorem [£.13]is due to Drin-
feld, see [Maj94], Example 1.3, where a proof is given from the point of view of
Tannaka-Krein reconstruction theory.

Let H be a Hopf algebra in a braided monoidal category (C,c). The functor in
Theorem identifies #YD(C) with a subcategory of the centre Z;(yC) which
is described in [Bes97], Proposition 3.6.1. The Hopf algebra H defines a Hopf
algebra H = (H, cy,—) in Z(C). By [BV13], Remark 2.15, fYD(Z,(C)) = Z,(uC)
as braided categories.

Theorem L TTT] was shown in [MO99], Theorem 2.7, by direct computations
in the category of two-sided Hopf modules which is equivalent to Z£YD.

The notion of a rigid braided vector space was introduced by Lyubashenko. Let
(V,c) be a finite-dimensional braided vector space which is rigid. Following ideas
of Lyubashenko, it was shown by Schauenburg (see the exposition by Takeuchi
[Tak00]) that there is a coquasitriangular Hopf algebra (H,o) and a right H-
comodule structure on V such that c is the braiding arising from ¢. Then V has
the structure of a Yetter-Drinfeld module in YD I? such that ¢ = cy,y.

M4 An early proof of Theorem [Z4T11}(2) was given in [FMS97| using (-
Frobenius extensions.

Let R be a finite-dimensional Hopf algebra in gyD. If A C R is an H-stable
subalgebra with Ag(A) C A® R, in particular, a right coideal subalgebra in #)D,
then by [ST16], Theorem 5.3, A is a Frobenius algebra, R is free as a left and as a
right A-module, and A is a direct summand in R as a left and as a right A-module.
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This is a braided version of a fundamental result of Skryabin [Skr07]; its proof is
based on [Skr07] and [SVOO06].

Freeness of R over Hopf subalgebras in gyD was shown earlier by Takeuchi,
see [Tak00], and in [SchO01] extending the arguments in [NZ89].

Corollary A4.T4] is taken from [AGnO03|, Theorem 6.4.

Example £.5.12lis Example 6.5 in [MS00]. The Nichols algebra there was
computed in a different way; the elements y1, y2, y3, y4 were proposed by Grana.
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CHAPTER 5

Gradings and filtrations

Several objects in this book like algebras, coalgebras and Yetter-Drinfeld mod-
ules, admit a natural filtration or a grading by a monoid more general than the
natural numbers. In particular, Nichols systems in Chapter [[3] will be graded by
N§ for some 6 > 1. In this chapter we discuss filtrations and gradings of this type.

Assuming standard results on the Jacobson radical of algebras we study the
coradical filtration, and its associated graded coalgebra. We prove a weak version of
the Theorem of Taft and Wilson which allows us to give a rather detailed description
of the first part A; of the coradical filtration of a pointed Hopf algebra A with
abelian group G(A). This description is useful to determine the structure of A
when gr A is given.

5.1. Gradings

Let I" be a set.

Recall the definition of the category I'-Gr My of I'-graded vector spaces in
Section [Tl By Proposition [LT.T7 I'-Gr My can be identified with the category of
left (or right) comodules over kI

Let V be a I'-graded vector space. A graded subspace U C V is a subspace
and a graded vector space U = @@ acr U(a) satisfying the following equivalent
conditions.

(1) U(w) =UNV(a) forall a €T.

(2) U(a) CV(a) for all a € T.
The intersection of a family of graded subspaces of V is a graded subspace. The
category I'-Gr My is abelian. Let X,Y be objects in I-Gr My, X’ € X and

Y’ C Y graded subobjects, and f : X — Y a graded map. For all v € T let
fv : X(v) = Y(7) be the restriction of f. Then

ker(f) = @ ker(f,), im(f) = Pim(f,), X/X' =P X(7)/X' ().

yel’ yel’ yel’

FIY) =ker(X LY = Y/Y)

are all graded.

Assume that I" is a monoid with unit element e.

By Definition [LZ7] I'-Gr M is a monoidal category with diagonal grading on
the tensor product V @ W of I'-graded vector spaces V, W. By Remark [[.2.8] the
monoidal categories I-Gr My, and ¥I' M, can be identified.

217

The preliminary version made available with permission of the publisher, the American Mathematical Society.



218 5. GRADINGS AND FILTRATIONS

A T-graded algebra A is an algebra in I'-Gr My, that is, A is an algebra
(with unit 14 = 1), A= @, A(e) is I'-graded such that
(5.1.1) A(B)A(y) C A(Bry) forall B,y €T,
(5.1.2) 14 € A(e),
that is, the multiplication and unit maps are graded.

A T'-graded coalgebra C is a coalgebra in the monoidal category I'-Gr M.
Thus C = P, C(a) is a I'-graded vector space and a coalgebra with comultipli-

cation A : C — C ® C and counit € : C — k such that A and ¢ are graded, that
is,

(5.1.3) A(C(a)) C @ CB)C(y) forallael,
Br=a
(5.1.4) e(C(a)) =0 forall a e T\ {e}.

Note that (BI2) and (BI4) are redundant if the monoid T' is cancellative,
that is, if «, 8,7 € M with ay = By or ya = (5 implies that o = .

LEMMA 5.1.1. Assume that I' is cancellative.

(1) Let C = @, Cla) be a graded vector space and a coalgebra such that
A(C(a)) € Dpy—a C(B) ® C(y) for all « € T'. Then for all a # e,
e(C(a)) =0.

(2) Let A = @ - A() be a graded vector space and an algebra such that
A(B)A(y) C A(By) for all B,y €T. Then 14 € A(e).

PROOF. (1) We give an indirect proof. Let x € C'(«) with o # e. Assume that
e(z) # 0. Since A is graded and T is cancellative, we can write

n
Alx) =Y 2 @ yi, x; € Claw),y; € C(B;) for all 1 < i < m,
i=1
where o, 8; € T, a;8; = a for all ¢, and where y1,...,y, are linearly independent.
Since Y1, wie(y;) = @ € C(a), there exists j € {1,...,n} such that z; € C(a)
and e(z;) # 0. Hence a;j = o and 8 = e, since T is cancellative. It follows that
z =1 ¢e(z)y ¢ C(a), since y; € C(e). Thus e(z) = 0 for all z € C() with
a #e.
(2) Let 14 = @, cr Gas where aq € A(a) for all a € T'. Let 1’ = ae. Since I is
cancellative, © = 142 = 1’z for all z € A(a) with « € T'. Hence 14 =1’ € A(e) by
uniqueness of the unit element of an algebra. O

Let A be a I'-graded algebra. The multiplication map g : A Q@ A — A is
determined by its components
(5.1.5) peq s AB) @ A(y) = A(BY), =@y ay,

for all z € A(B), y € A(y) and B,y €T.
Let C = @, C(a) be a I'-graded coalgebra with graded projection maps
o =75 1 C — C(a) for all a € T. We write

(5.1.6) Agy 1 C(BY) CC 2 Co0 22 0(B) @ Cy), By eT,

for the (8,~)-th component of the comultiplication A.
A T'-graded left A-module V is a left A-module in I-Gr My, that is, a I'-
graded vector space and a left A-module V' with graded structure map AV — V.
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A T-graded left C-comodule is a left C-comodule in I'-Gr My, that is, a T'-
graded vector space and a left C-comodule V with graded structure map V' — C®V.

LEMMA 5.1.2. (1) Let A be a T'-graded algebra, and V a T-graded left

A-module.

(a) If U C V is a graded subspace and an A-submodule, then U is a
I'-graded A-module.

(b) If U CV is a submodule, then @
of V.

(2) Let C be a I'-graded coalgebra, and V' a I'-graded left C-comodule.

(a) IfU CV is a graded subspace and a subcomodule, then U is a graded
C'-comodule.

(b) Assume that T' is cancellative. If U C V is a subcomodule, then
D.cr UNV(y) is a graded subcomodule of V.

yer UNV(7) is a graded submodule

PRrROOF. (1) is obvious.
(2)(a) Let 6 : V — C ® V be the comodule structure of V. For all « € T,

(U(e)) € (CeU)n(CeV)(a)=(CaU)a),

since C ® U C C' ® V is a graded subspace. Hence U is a graded C-comodule.

(2)(b) Let U" = @, cr UNV(y). We prove that U’ is a subcomodule of V..
Then the claim follows from (a).

Let a € T, and u € U N V(a). Since V is a graded C-comodule, there are
an integer r > 1, B;,v; € I for all 1 < ¢ < r, such that 8;7; = « for all 4, and
d(u) € @;_, C(B:i) @ V(). Since T is cancellative, we may assume that §; # f;
for all 7 # j. Hence

su) e (CrU)NEPCB) @ V() = _EB CB)@UNV(y)CCal,

i=1

where the last equality follows by choosing bases in C(3;) for all 1. O

COROLLARY 5.1.3. Let C be a I'-graded coalgebra and A a T'-graded algebra.
Then Homg, (C,A) C Hom(C, A) is a subalgebra with respect to the convolution
product. If f € Homg, (C, A) is invertible in Hom(C, A), then f~' € Hom,, (C, A).

PRrOOF. This follows from Proposition [LZTI[@), since the maps ®(f) and
®~1(f) are both graded. O

Assume that T" is an abelian monoid with neutral element 0.

Then we define a braiding on the monoidal category I'-Gr My by the usual flip
map of vector spaces VRW - WV, vQuw—w®u, forallve V, weW.

A T-graded bialgebra (H,H) is a bialgebra in I'-Gr M, that is, (H,H) is a
graded algebra and a graded coalgebra, and H is a bialgebra.

A T'-graded Hopf algebra H is a graded bialgebra such that there exists a
graded linear map S : H — H which is convolution inverse to idg.

COROLLARY 5.1.4. Let H be a I'-graded bialgebra, and assume that H is a Hopf
algebra. Then the antipode of H is a graded map. Thus H is a graded Hopf algebra,
and H(0) C H is a Hopf subalgebra.

PROOF. The antipode S = id ™! is graded by Corollary .13l In particular,
H(0) is stable under S. Hence H(0) C H is a Hopf subalgebra. O
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REMARK 5.1.5. The preceding notions can be generalized. Replace the category
My by an abelian braided monoidal category C with arbitrary direct sums. If I' is an
abelian monoid, and (V, V) and (W, W) are I-graded objects in C, then the braiding
cvw : VOW = W®YV is I'-graded; for all 3,y € I', ey, induces an isomorphism
V(B)@W(y) = W(vy)®V(p), since the braiding is a functorial isomorphism. Thus
the category I'-GrC of I'-graded objects in C is braided monoidal. A special case is
the category I'-Gr £ YD defined in Remark 271

5.2. Filtrations and gradings by totally ordered abelian monoids

Let T" be an abelian monoid with monoid structure 4+. The neutral element is
denoted by 0. If < is a total order on I', we define the following conditions for the
pair (T, <).

(M1) For any a € T the set {8 € I'| 8 < a} is finite.
(M2) For any «, 3, € T" the relation a < 8 implies that a + v < 8+ 7.

EXAMPLE 5.2.1. Let 6 be a positive integer and let I' = N§. Write
a< Bfora=(ay,...,a9) €T, B=(by,...,by) €T

if Z?:l a; < Z§=1 b; or if Zle(ai —b;) = 0 and there exists 1 < ¢ < 6 such that
a; < b; and a; = b; for all 1 < j < i. Then (T, <) satisfies conditions (M1) and
(M2). In particular, I' = Ny with the natural ordering satisfies the conditions (M1)
and (M2).

In the remainder of this section we assume a total ordering < on the abelian
monoid I satisfying (M1) and (M2).
A monoid M is called positive if 0 is its only unit.

LEMMA 5.2.2. The monoid I satisfies the following.
(1) Let « €T\ {0}. Then a > 0.

(2) The monoid T' is torsion-free, cancellative, and positive.

PRrROOF. (1) Assume that & < 0. Then --- < 3o < 2a < @ < 0 by (M2), which
is a contradiction to (M1).

(2) Let « € T\ {0}. Then 0 < a < 2a+-- < (m — 1)a < ma by (1) and by
(M2). Thus ma # 0 for all m > 1, and hence I is torsion-free.

Let o, B,y € I' with a« + v = 8+ ~. Then both a < 5 and 8 < a contradict to
(M2). Hence oo = 3, that is, I' is cancellative.

Let o € T be a unit. If o # 0, then a« > 0 and —a > 0 by (1), and hence
0=a+ (—a) > a >0, a contradiction. Thus T is positive. ]

Graded vector spaces often come from natural filtrations, and filtrations are a
useful tool to study graded objects.

A T-filtration of a vector space V is a family F(V) = (Fo(V))aer of sub-
spaces of V' such that

Fo,(V)CF(V) foralla,f e, a<p,
V=[] F.V).
ael’

A T-filtered vector space is a pair (V,F(V)), where V is a vector space and
F(V) is a filtration of V.
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Let I'-Filt My be the category of I'-filtered vector spaces. Objects are the
I-filtered vector spaces, and a morphism between filtered vector spaces (V, F(V))
and (W, F(W)) is a k-linear map f : V — W which is filtered, that is,

f(Fa(V)) C Fo (W) for all « € T.

We define
Homg (V, W) = {f € Hom(V, W) | f is filtered}.

The tensor product of (V, F(V)) and (W, F(W)) is the tensor product V @ W of
vector spaces with filtration defined by

FoVOW)= Y Fg(V)® F(W) forall a €T.
B+y<a

The category I'-Filt My is monoidal with this tensor product and unit object k
with filtration Fi, (k) =k for all @ € I'. Again the associativity and unit constraints
are the same as for vector spaces, and I'-Filt My is braided monoidal with the flip
of vector spaces as braiding.

REMARK 5.2.3. Filtered objects can be defined in more general categories than
vector spaces. In particular, for a Hopf algebra H with bijective antipode, the cat-
egory I'-Filt #YD of I'-filtered Yetter-Drinfeld modules over H is braided
monoidal with the monoidal structure and the braiding of £2YD.

A filtered vector space V' in I'-Filt My is called locally finite if F,, (V) is finite-
dimensional for all a € I'. We denote the full subcategory of I'-Filt My of locally
finite vector spaces by I-Filt M.

A coalgebra filtration of a coalgebra C' is a vector space filtration of C,
F(C) = (Fa(C))aer, such that

(5.2.1) A(Fo(C) S Y F3(C)® F,(C) foralla e,
B+v<a

A filtered coalgebra (C, F(C)) is a coalgebra in the monoidal category I'-Filt My,
that is, a coalgebra C with a coalgebra filtration F(C'). Note that the counit
e : C' = k is always a filtered map.

We want to prove two useful results about filtered coalgebras. We first look at
their simple subcoalgebras.

PROPOSITION 5.2.4. Let C be a coalgebra with a coalgebra filtration F(C). Then
any simple subcoalgebra of C' is contained in Fy(C').

PrOOF. Let D C C be a simple subcoalgebra. Since Fy(C) N D is a sub-
coalgebra of C, it is enough to prove that Fy(C) N D is non-zero. Let o € T be
minimal such that F,(C) N D # 0, and let x € F,(C) N D be a non-zero ele-
ment. If A(z) € Fy(C) ® D, then z = (id ® ) A(z) € Fo(C), and we are done. If

A(z) ¢ Fy(C)®D, then there exists f € C* = Hom(C, k) such that f(z(1))x) # 0
and f(Fp(C)) = 0. Since f(x(1))x2) € F<a(C) N D, we obtain a contradiction to
the minimality of . |

If C is a one-dimensional coalgebra, then there is a unique group-like element
10, and C = klc.
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COROLLARY 5.2.5. Let C' be a coalgebra with coalgebra filtration F(C). If
Fo(C) is one-dimensional, then Fy(C) is the unique simple subcoalgebra of C. The
coalgebra C' has a unique group-like element which spans Fo(C').

PROOF. The subcoalgebra Fy(C) is one-dimensional, hence simple. Thus the
claim follows from Proposition 5.2.41 |

COROLLARY 5.2.6. Let C be a coalgebra with coalgebra filtration F(C), and
0#V € M® with comodule structure 6 : V. — V ® C. Then there is a non-zero
element v € V with 6(v) € V & Fy(C).

PROOF. By the Finiteness Theorem [Z.1.3] for comodules, V' contains a simple
subcomodule U C V. By Proposition 222.T3|(2), there is a simple subcoalgebra
D C C with §(U) C U ® D. Hence the claim follows from Proposition 5241 O

An algebra filtration of an algebra A is by definition a vector space filtration
F(A) = (Fa(A))aer of A such that

(5.2.2) Fy(A)Fg(A) C Foyp(A) foralla,peTl,
(5.2.3) 14 € Fy(A).

A filtered algebra (A, F(A)) is an algebra in I'-Filt My, that is, an algebra A
with an algebra filtration F(A).

EXAMPLE 5.2.7. Let A be an algebra and let X be a subset of A generating
the algebra A. The standard Ny-filtration F(A) of A defined by X is the algebra
filtration

Fo(A) =kly, Fo(A)=(XU{la})" foralln>1,
where (X U {14})™ C A is the subspace generated by all elements aj - - - a,, with
a1y .. 0n € X U{la}.

ExAMPLE 5.2.8. Let A and T" be as in Example B.2.7 Let I be an index set,
and for all 4 € I let o; € '\ {0} and X; C X such that X = U;e;X;. Then F(A)
with

F.(A) = > kX, X,

n>0,i1,...,in €1,
ajy +-tag, <a

for all a € I', where kX, --- X; =kl for n =0, defines an algebra filtration of A
by T

A filtered bialgebra (H, F(H)) is a bialgebra in I'-Filt My, that is, (H, F(H))
is a filtered coalgebra and a filtered algebra, and H is a bialgebra.

A filtered Hopf algebra (H,F(H)) is a bialgebra in I'-Filt My such that
there exists a filtered map S : H — H which is convolution inverse to idg.

Next we discuss convolution inverses of maps on coalgebras. Let C be a
coalgebra and A an algebra. Recall that Hom(C, A) is an algebra, where the
product is the convolution of maps and the unity is ne. Define the iterations
A" C — C®P ) >0, of A inductively by
(5.2.4) A'=id:C -0, A"=(ide® A" A foralln>1.

If (C, F(C)) is a filtered coalgebra, then

A™(F,(C)) C > Fo(C)® F,, (C)®...® F,, (C)
aptart+-Fap=a

foralln>0and a €T.
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PROPOSITION 5.2.9. (Takeuchi’s Lemma) Let (C, F(C)) be a filtered coalgebra,
A an algebra, and f: C — A a linear map.

(1) Assume that f(Fo(C)) = 0. Then ne — f is invertible in Hom(C, A) with

muerse

e =Y

n>0

(2) Assume that the restriction f| : Fo(C) — A of f is invertible. Let
g € Hom(C, A) with g|Fy(C) = (f|Fo(C))~t. Then f is invertible in
Hom(C, A) with inverse

ft=9> (== fo)"
n>0

(3) Assume that Fy(C) = kle is one-dimensional. If f(1¢) = 14, then f is
invertible with inverse

F7r= =

n>0
PROOF. (1) Let € I". Then the set
{(n,oq,09,...,00) |0 >0,a1,...,a, €T\ {0},a1 + -+, <}

is finite. Since f(Fp(C)) = 0, there exists N(a) € Ny such that

a1+Fap<a
for all n > N(a). Thus >, -, f" is a well-defined linear map, and

N(a)

(Zr)@=% re
n>0 n=0
for all x € F,(C). Let x € F,(C). Then
N(a)
7]6 — <an> $(1))1A - x(l) < Z f CL'(Q) >
n>0 n=0
N(a) N(a)
=D M) =Y )
n=0 n=0
= ne(z).
Thus (ne — f)(Z:n20 f™) =mne, and (ano f™)(ne — f) = ne by a similar calcula-

tion.
(2) By assumption (ne — fg)(Fo(C)) =0 and (ne — gf)(Fo(C)) = 0. Hence

f9Y (me—fo)" =me, Y (me—gf)"gf =ne

n>0 n>0

by (1). This proves (2).
(3) follows from (2) with g = ne. O
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COROLLARY 5.2.10. Let C be a filtered coalgebra and A a filtered algebra. Then
Homygy(C, A) € Hom(C, A) is a subalgebra. If f € Homg(C, A) is invertible in
Hom(C, A) with inverse f=1 and the filtrations of C and A are locally finite, then
f_l S Homﬁlt(C, A)

PrOOF. It is clear from the definitions that Homgy(C, A) € Hom(C, A) is a
subalgebra. Let f € Homg(C, A) be invertible in Hom(C, A). Then ®(f) in
Proposition [[2TT] is a filtered endomorphism of C'® A, and ®(f) is invertible by
Proposition [LZTTY[Z). If the filtrations of C and A are locally finite, the filtration of
A®C is locally finite, and then ®(f)~! is filtered. In this case f~* € Homgy(C, A)
by Proposition [L2Z.TTI[2). a

COROLLARY 5.2.11. (1) Let (H,F(H)) be a filtered bialgebra, such that
the filtration is locally finite. Assume that H is a Hopf algebra with an-
tipode S. Then S(Fo(H)) C Fo(H) for all « € T. Thus H is a filtered
Hopf algebra, and Fo(H) C H is a Hopf subalgebra.

(2) Let H be a bialgebra with a coalgebra filtration F(H). If Fy(H) is one-
dimensional, then H is a Hopf algebra with antipode

S= Z(na —id)™.
n>0
If Fo(H) C H is a subbialgebra and a Hopf algebra, then H is a Hopf alge-
bra. If Fo(H) is a Hopf algebra with bijective antipode, then the antipode
of H is bijective.

PROOF. (1) The antipode is filtered by Corollary B.2Z.T0l In particular, Fo(H)
is a Hopf subalgebra of H.

(2) Assume that F(H) C H is a subbialgebra and a Hopf algebra with antipode
Sr,()- Then the restriction of id : H — H to Fy(H) is invertible. Hence idy
is invertible by Proposition B.2Z9[2), and H is a Hopf algebra. If in addition the
antipode of Fy(H) is bijective, then the dual algebra Fo(H )P also is a Hopf algebra
with antipode Sg, (), where Sg, () is the linear inverse of Sg, (). The dual algebra
H°P is a bialgebra with the same coalgebra filtration (F,(H)P)aer, and Fo(H)°P
is a Hopf subalgebra of H°P. Hence H°P is a Hopf algebra by the argument we
have just shown. Thus the antipode of H is bijective.

If Fy(H) is one-dimensional, then the formula for the antipode follows from

Proposition B.2Z9@) with f = id. a

COROLLARY 5.2.12. Let H = @, . H(a) be a bialgebra and a graded coalgebra.
If H(0) =klpy, then H is a Hopf algebra with antipode

= (ne—id)".
n>0

If H(0) C H is a subbialgebra and a Hopf algebra, then H is a Hopf algebra. If
H(0) is a Hopf algebra with bijective antipode, then the antipode of H is bijective.

PrOOF. This follows from Corollary 5.2.11(2), where we use the coalgebra
filtration associated to the grading of H. O

PRroPOSITION 5.2.13. Let H be a Hopf algebra with bijective antipode, and R
be a bialgebra in YD with an Ny-coalgebra filtration (R,)n>0, and Ry = k1. Then
R is a Hopf algebra in LYD with bijective antipode.
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Proor. By [@32) the filtration
HCRi#HCRy#HC---CR#H

is a coalgebra filtration of the bosonization R#H. By Proposition B84(1), R#H
is a bialgebra. Since the antipode of H is bijective, R#H is a Hopf algebra with
bijective antipode by Corollary 5.2.11(2). By Proposition 5:22.9(3), idg is convolu-
tion invertible, hence R is a Hopf algebra in £YD by Proposition Then the
antipode of R is bijective by Corollary B.8.11] O

Graded and filtered vector spaces are related by the functors
gr : I-Filt My — I'-Gr My, filt : I'-Gr My — I'-Filt M.
For a filtered vector space V with filtration F(V') let

Foo(V) = 0 if a =0,
el to Fg(V) if @ # 0, where 8 =max{y €T |y < a}.

Then we define
gtV =P Fa(V)/Fea(V).
acl
For all & € T let
P =P Fa(V) = Fa(V)/F<a(V) = (erV)(a)
be the canonical epimorphism. If f: (V,F(V)) — (W, F(W)) is a morphism, the
induced map gr f is defined by
grfigrV —=grW, po(v)— pa(f(v)) forallve Fo(V), ael.
For a graded vector space V with gradation V we define filt(V, V) = V with filtration

V)=EP Ve

B<a

for all « € T. If f : (V,V) — (W, W) is a morphism in Gr ML, then we define
ilt(f)=f:V-oW.

Note that grfilt = idr_gy A, - Usually information is lost by applying the functor
gr. But in some cases properties of the filtered object can be derived from the
associated graded object. A first example of this type is given in the next lemma.

LEMMA 5.2.14. Let f : (V,F(V)) — (W,F(W)) be a morphism of filtered
vector spaces. If gr f is surjective, then f is surjective. If gr f is injective, then f
1s injective.

PROOF. Assume that f is surjective. We show by induction that the restriction
fa i Fo(V) = Fo (W) of f is surjective. This is true for a = 0, since fo = (gr f)(0).
Let o € T, 8 = max{y € T'|y < a}, and assume that fg is surjective. Then f,
is surjective, since fz and the quotient map (gr f)(a) are. The second claim one
proves analogously. O

The functor filt is a braided strict monoidal functor, that is, filt maps the unit
object of I'-Gr M to the unit object of I'-Filt My, and if V and W are graded
vector spaces, then filt(V) ® filt(W) = filt(V ® W). To enlarge gr to a monoidal
functor we need some linear algebra lemmas.
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REMARK 5.2.15. Let I be an index set, and (I;);e; a family of subsets of I.
Let (V;);es be a family of vector spaces. Then, by the definition of the direct sum,

N®v- & v

jeJiel, i€Njes 1
The next lemma essentially shows that gr is a monoidal functor.

LEMMA 5.2.16. Let V. and W be vector spaces with T'-filtrations F(V) and
F(W). Then for all a € T,

(| (VOF,(W)+Fs(V)@W)= Y Fs(V)® F(W).

BHv>a B+v<a
Proor. Choose subspaces Xg C V and Yg C W for all 8 € I" such that
Fp(V) = Fep(V) @ Xg, Fg(W)=F3(W)®Ys

for all B € T'. Then Fy(V) = Xo and Fo(W) =Yy. Let @ € I'. Then
| VeF,W)+FsV)eW)= (| P XpoYy,

B+v=>a B+yza g'<p
or v/ <y
Yo FB(WV)eFR,W)= P XpoaY,.
Bty<a B+ <a
Clearly,
B+ >a=3Pyel:B+y>a,f 25,7 >
for all 5',7" € T'. Hence the lemma follows from Remark |

ProPOSITION 5.2.17. The functor gr : I'-Filt My — I'-Gr My maps the unit
object to the unit object. For all VW € I'-Filt My there is a graded linear isomor-
phism

ovw i gr(VoW) -grVeegW
such that for all o, B,y € T with f+v =« and allv € Fg(V), w € F,(W),
ev.w (@) (pa(v @ w)) = pg(v) @ py(w).
The family ¢ = (‘PV7W)V,WeGrMuE is a natural isomorphism of bifunctors, and
(gr,p1) is a braided monoidal functor.
PrOOF. For all a € T let
@) =qa:V = V/FeoV), ¢V =qo: W = W/F. (W)
be the canonical epimorphisms. Define
fa:VOW = @ V/Fes(V) @ W/Fey(W)
Bry=a

by fa(v@w) =325, _,8(v) ®gy(w) forallv eV, we W.
Let 8,8',v,7 € I' with B+v > o, '+ = a, and let v € F/(V), w € F,, (W).
If 34+~ > a, then 8> 3 or v > +'. In this case

Fo(VROW)CV ®F (W) + Fep(V) 2 W.
If 3+v=aqa,then 8> orv>+"or 8=p",~v=+, and hence
fa(v@w) = qp (v) @ gy (w).
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Hence

ker(fo| Fa(V @ W)) () (V& Fy(W)+ Fep(V)@ W)

Btv>a
S B(V)e B (W)
BHy<a
by Lemma [[LTTT] and Lemma (216l and f, induces an isomorphism
pyw(a)gr(VoW)(a) = (grV g W)(a).

The remaining claims of the proposition are easy to check. O
The functor gr : I'-Filt gyD — I-Gr gyD is defined in the obvious way

for filtered objects in g)}D, H a Hopf algebra with bijective antipode, instead of

vector spaces. For filtered Yetter-Drinfeld modules V, W, the isomorphism ¢y i in
Proposition 5.2.17] is an isomorphism of graded Yetter-Drinfeld modules.

COROLLARY 5.2.18. Let H be a Hopf algebra with bijective antipode.
(gr,o ') : T-Filt ZyD - T-Gr yD
is a braided monoidal functor.

ProOF. Follow the proof of Proposition (.2.17) a

REMARK 5.2.19. The braided monoidal functor(gr,»~!) of Proposition (.2.17]
preserves filtered algebras, coalgebras, bialgebras, and Hopf algebras. We describe
these constructions explicitly.

(1) Let C be a coalgebra with coalgebra filtration F(C) = (Fi(C))aer. Then
gr (C) = @ er Fu(C)/F<a(C) is a graded coalgebra.

The counit of gr (C) is given for a« € T', x € Fo(C) and T € F,(C)/F<(C) by
e(T) =¢e(z)if =0, and e(Z) =0 if « # 0.

The comultiplication A on F,(C)/F<,(C), where a € T, is defined in the
following way: Let x € Fo(C) and T € F,(C)/F<(C). We can write

A)= >, D mea
B+y=al€Lg

where the Lg with 5 € T" are disjoint finite index sets, and y; € F3(C), z; € Fo—g(C)
forall B € I" and | € Lg. Then

A@ = Y Y mem,
B+y=al€Lg
where 7; € Fg(C)/F<3(C) and 71 € F,(C)/F<~(C) for all 8,y € T with 8+~ = «
and all [ € Lg.

(2) Let (A, F(A)) be a filtered algebra. Then gr (A) = P, A(a) is a graded
algebra with unit element 1 € Fy(A) = gr (4)(0) and multiplication defined for all
B,v €T by

Fp(A)/F<p(A) @ Fy(A)[F<y(A) = Fp14(A)/Fepiny(A), TRY = T7.

(3) Let (H,F(H)) be a filtered bialgebra. Then gr (H) is a graded bialgebra
with coalgebra and algebra structure described in (1) and (2), respectively. If
(H,F(H)) is a filtered Hopf algebra with antipode S, then gr(H) is a graded
Hopf algebra with antipode S, where S(T) = S(z) for all « € T', © € F,(H) and

Z,8(x) € Fo(H)/Feo(H).
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ExAMPLE 5.2.20. Let g be a finite-dimensional Lie algebra of dimension m
with basis x1,...,Zm. Let (U,(g))n>0 be the standard algebra filtration defined
by the generating set g, that is, Uy(g) = k1 and U,(g) = > p_, g* for all n > 1.
By the coproduct formula in Example [[224] U(g) is a filtered bialgebra with the
standard filtration, where the elements of g are primitive. Then by the theorem of
Poincaré, Birkhoff and Witt, gr U(g) is a commutative polynomial algebra in the
variables T1,...,Tm € (grU(g))(1) = (g +k1)/k1, with A(Z;) =17+ 7; ® 1 for
all 7.

Let 9 > 1and I' = Ng the totally ordered abelian monoid defined in Exam-
ple.2Z1l Let a1, ..., oy be the standard basis of Z?. We describe a general method
to construct N§-graded Hopf algebras in ZYD.

PROPOSITION 5.2.21. Let H be a Hopf algebra with bijective antipode. Let
0>1,T=Nf, and I = {1,...,0}. Let R be a Hopf algebra in YD and (M;);cr
a family of subobjects of R in YD. Assume that the algebra R is generated by
Yoier Mi = @,;c; M, and that M; C P(R) for alli € I. For all o € T' define

Fo(R) = > M;, ---M; , gr(R)(a)=F.(R)/F<a(R),
n>0,41,...,in €1,
iy o tag, <a

where M;, --- M; =k, if n=0. Then
(1) Fo(R) C R is a subobject in LYD for all a € T.
(2) F(R) = (Fa(R))aer is an algebra and a coalgebra filtration of R.
(3) gr(R) = @,ergr (R)(a) is a I-graded Hopf algebra in YD which is
generated as an algebra by the subspaces gr (R)(«y), i € I, and for all
i€l gr(R)(a;) = M,; in BYD.

PRrROOF. (1) and the first part of (2) are obvious. To prove that F(R) is a
coalgebra filtration, we show by induction on n > 1 that for all iy,...,4, € I,
i € My, ...,x;, € M; ,and o =y, + -+,

Ag(wi, - 2i,) C Y Fa(R) ® Fy(R).
Bty<a
This is clear for n = 1, since x;, is primitive. Assume by induction that
Ap(wiy---23,) C Y F(R)® Fy(R),
B+y<a’
where o = «;, + -+ «;,. Then
Ap(wi, - mi,) € (2, @ 14+1®x;,) Y F3(R) @ Fy(R)
B+r<a’

= Y @i Fs(R) @ Fy(R) + @i,y - Fp(R) @ x4, ) F (R)),
<o’

and the claim follows.
(3) follows from Corollary (.2.T8 Note that

Fo,(R)=k+M; +Miy1+ -+ My, Feo,(R)=k+ M1+ -+ M.
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5.3. The coradical filtration

We use the notation of UL and X+ from Remark 2.2.0] where V is a vector
space, and U C V and X C V* are subspaces. By definition, X+ is the kernel of
the map px : V = X*, v (f = f(v)).

LEMMA 5.3.1. Let V,W be vector spaces, and let X C V*, Y C W* be sub-
spaces. Identify V* @ W* with a subspace of (V@ W)* wia the canonical monomor-
phism of Lemma 223 Then X @Y C (V@ W)*, and

XeY)r=XteoW+VeYt
mVoW.
PRrROOF. Note that
pxay = (VoW 2805 x* gy  C (X@Y)").
Hence (X @ Y)* =ker(pxgy) = X+ @ W +V @ Y+ by Lemma [LTT1l O

LEMMA 5.3.2. Let C be a coalgebra, and let I,,, n > 1, be ideals of C* with
o Clp1 €I, S C L O™
Define
R(C) =T CR(C)=1I3 -+ CFy(C) =L, C--- CC.
Assume that I;1; C Iy for alli,5 > 1. Then

A(F,(C)) C in(C) ® F—i(C) for alln > 0.
i=0

Proor. Let Iy = C*. Then I;1; C I;y; for all 4,j > 0 by assumption. Let
n>0,0<i<n+1, fel,and g € I,41—;, and ¢ € F,(C). Then fg € 1,41 and
0= (fg)(c) = flc))g(c)). Hence

Ale) € (L@ Ipr-i)t = @C+C@ Ly,
by Lemma 531l Let F_1(C) = 0. We conclude that
n+1

A(Fo(C) € (N (Fia(C)® C + C @ Fi(C)),
=0

and hence A(F,(C)) C >, Fi(C) ® F,_;(C) by Lemma [5.2.T6 O

DEFINITION 5.3.3. Let C be a coalgebra. The coradical Corad(C) is the sum of
all simple subcoalgebras of C. One says that C is cosemisimple if C' = Corad(C).

PROPOSITION 5.3.4. Let C be a coalgebra, and (C;)icr a family of subcoalgebras
of C.
(1) Let D C C be a simple subcoalgebra. If D C Y
somet € I.
(2) Assume that (C;)icr is a family of pairwise different simple subcoalgebras.
Then Y ,c; Ci = @, Ci.
(3) Let D C C be a subcoalgebra, and assume that C = @, ; Ci. Then
D=, (DNCy).

i1 Ci, then D C Cj for
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ProoF. (1) By Theorem 213 simple subcoalgebras are finite-dimensional.
Hence we may assume that I is finite and C' is finite-dimensional. Then it suffices
to prove the claim for I = {1,2}. So assume that D C C; + Cy and D ¢ C.
Then there exist f € (C; + C2)*, d € D such that f|C; = 0, f(d) # 0. Then
0 # d1yf(d2)) € Oy since A(D) C C1 ® Cy + Ca ® C. Thus the coalgebra D N Cy
is non-zero and hence D C Cs by simplicity of D.

(2) Assume that ), ; C; is not direct. Then there exists j € I such that
c;n Ziel\{j} C; #0. Then C; C Ziel\{j} C; by simplicity of C;. Hence C; C C;
for some i # j by (1), a contradiction to the simplicity of C;.

(3) Again we may assume that C is finite-dimensional. Then the claim follows
by duality, since the ideals in a direct product of algebras are direct products of
ideals. Here is a more direct argument. Let x = } ,_;x; € D, where z; € C;
for all ¢+ € I and I is finite. We have to show that x; € D for all i« € I. Let
i € I and let f; € C* such that f;|C; = ¢ and f;|C; = 0 for all j # i. Then
T, = x(l)fi(.%'(Q)) eD. (|

The following corollary justifies the definition of cosemisimplicity.

COROLLARY 5.3.5. Let C be a coalgebra, and M the set of its simple subcoal-
gebras.

(1) Corad(C) = Pge s S-
(2) Let D C C be a subcoalgebra. Then Corad(D) = D N Corad(C).

ProOOF. This is a consequence of Proposition £.3.4(2) and (3). O

It follows from Proposition £.3.4(2) that group-like elements in a coalgebra are
linearly independent, since they span one-dimensional subcoalgebras. Thus we have
given another proof of Proposition [[.LT.0l

REMARK 5.3.6. We recall some standard properties of the Jacobson radical
Rad(R) of a ring R.

(1) [Lam91l (4.5)] By definition, Rad(R) is the intersection of the maximal
left ideals of R. Then Rad(R) is the intersection of the maximal right
ideals of R.

(2) [Lam91l Ex.4.10] Let ¢ : R — S be a surjective ring homomorphism.
Then preimages of maximal left ideals of S are maximal left ideals of R
and hence p(Rad(R)) C Rad(S).

(3) [Lam91l (4.6),(4.14),(3.5)] Assume that R is a finite-dimensional alge-
bra. Then R/Rad(R) is a semisimple algebra. Hence it follows from the
theorem of Wedderburn-Artin that Rad(R) is the intersection of the max-
imal (two-sided) ideals of R. In particular, if R is finite-dimensional and
simple, then Rad(R) = 0.

(4) [Lam91l (4.5)] Rad(R) is the largest ideal I of R such that 1 — r is
invertible for all r € I.

(5) [Lam91l (4.12)] If R is a finite-dimensional algebra, then Rad(R) is the
largest nilpotent ideal of R.

PROPOSITION 5.3.7. Let C be a coalgebra. Then Corad(C)+ = Rad(C*).

ProoF. Let f € Rad(C*). Let D C C be a simple subcoalgebra. Then
Corollary 2228 implies that D* is a simple algebra. By Remark E3.6l[2]), the image

The preliminary version made available with permission of the publisher, the American Mathematical Society.



5.3. THE CORADICAL FILTRATION 231

of f under the restriction map C* — D* is contained in Rad(D*), and Rad(D*) =0
by Remark E.3.61[). Hence f € Corad(C)*.

Conversely, let f € Corad(C)t. Since Corad(C)' is an ideal of C*, by Re-
mark B30 it is enough to show that ¢ — f is invertible in C*. Let D C C
be a finite-dimensional subcoalgebra. It follows from Corollary 222§ and Re-
mark B.3.6B) that Corad(D)t = Rad(D*). Hence the image fp of f under the
restriction map C* — D* is contained in Corad(D)* = Rad(D*), and ¢ — fp is
invertible by Remark[B.3.6[]). Then by Corollary ZT24] e — f is invertible in C*. O

THEOREM 5.3.8. Let C be a coalgebra, Cy C C a subcoalgebra with canonical
map 7 : C — C/Cy be the canonical map. Let I = Cy-, C,, = (I"TH)L foralln > 1,
and F(C) = (Cp)n>0-

(1) (a) Foralln >0, C, C Cpyq and A(Cy,) € D0 Cs @ Cry.
(b) If Corad(C) C Cy, then F(C) is a coalgebra filtration of C.
(¢) Forall1<i<n,C,=A"YC,.12C+C®C,_;).
(d) Foralln>1,
(n+1)
C,, = ker(C A% o) T2 (o) RmD),
(2) Assume that C is a bialgebra, Cy C C' is a subbialgebra, and assume that

Corad(C) C Cy. Then F(C) is a bialgebra filtration of C. If Cy is a Hopf

algebra, then C is a Hopf algebra, and F(C) is a Hopf algebra filtration

of C.

PrOOF. (1)(a) By Remark Z2Z.6|[), Cy = I*. Thus Lemma [5.3.2] yields that

A(C,) €Y Ci®@Cpy forall n > 0.
i=0
(1)(b) Assume that Corad(C) C Cy. By (1)(a) and by Theorem T3] it is
enough to show that any finite-dimensional subcoalgebra D C C is contained in
C,, for some n > 0. For a finite-dimensional subcoalgebra D, the restriction map
7w : C* — D* is a surjective algebra map. Let J = 7(I). By Proposition (3.1
I = Cy C Corad(C)* = Rad(C"),

and hence J C Rad(D*). Moreover, for all d € D and n > 0, d € C,, if and only if
d € (J*™HL in D. Since D* is a finite-dimensional algebra, its radical is nilpotent
by Remark B.3.61[F). Hence J"+! = 0 for some n > 0, and D C C,,.

(1)(c) Since (It @ C + C ® (I"1~1)+ = (I' ® ["*1~%)L by Lemma 3.1 we
conclude that A™1(C;_1 ® C + C ® C,,_;) = (I'I"T =1+ = C,.

(1)(d) By definition, I = Cg- = im((C/Cp)* LA C*). Hence
I ={z e C| fir(zq) - far1T(@(ns1) =0, f1,- -, fas1 € (C/Co)*}
 ker(C ALy o)) 22 0o va )y

(2) To show that C;C,,—; C C,, for all for all n > 0, 0 < i < n, we proceed
by induction on n. If n = 0, then CyCy C Cy by assumption. Let n > 1. For all
0<i<nand fel,ge I we have to show that (fg)(C;C,_;) = 0. By (1)(a),

n—1i

A(C;) < Z Cr®Cig, A(Ch—;) C Z Cr®Cp_it.
k=0 =0
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Hence

(f9)(CiCni) C© > F(CkCY(CigCrir).

0<k<i
0<i<n—i

Let 0 < k <4, 0 <1 <n—i Then f(CrC))g(Ci—tCp—i—;) = 0. Indeed, if
k+1=0,then k =0and !l =0 and f(CoyCp) =0, since f € I. If k+1 > 0, then
9(Ci—kCpn—;—1) = 0 by induction, since it —k+n—i—l=n—k—Il <nandge€ I

If Cy is a Hopf algebra, then the restriction of the identity map idg to Cjy is
invertible, hence C' has an antipode S by Proposition B2Z0i2), and S(Cy) C Cp.
Since S is a coalgebra anti-homomorphism, (1)(b) implies that

A(S(C)) S D S(C) ®S(Cy) € S(Co) ®C +C @S(Cr)
i+j=n
for all n > 0. Hence it follows from (1)(c) by induction on n that S is a filtered
map. ([l

DEFINITION 5.3.9. Let C' be a coalgebra. For all n > 0 let
C, = (Rad(C*)"+1)+.

Then Cy C Cy C Cy C --- C C is called the coradical filtration of C. We define
grC = @nzo Cpn/Cr_1.

The coradical filtration is a coalgebra filtration of C' by Theorem with
Cp = Corad(C), hence Cj- = Rad(C*) by Proposition 53.71 By Theorem B.3.8(1),
the coradical filtration can be defined inductively by
(5.3.1) Cy = Corad(C), C,=A"Co@C+C®C,_1)
for all n > 1.

COROLLARY 5.3.10. Let A be an algebra, C' a coalgebra with coradical Cy, and

f:C — A alinear map. Then f is convolution invertible if its restriction to Cy is
convolution invertible in Hom(Cy, A).

PRrROOF. This follows from Proposition [(.2.0(2) and the existence of the corad-
ical filtration. O

DEFINITION 5.3.11. An Ny-graded coalgebra C' = €P,,~, C(n) is called corad-
ically graded if the coradical filtration (C),)n>0 of C is given by

C, =P c)
i=0
for all n > 0.

COROLLARY 5.3.12. Let A be a bialgebra such that H = Corad(A) is a subbial-
gebra of A. Then gr A with respect to the coradical filtration is a coradically graded
bialgebra. If H is a Hopf algebra, then gr A is a Hopf algebra. If H is a Hopf
algebra with bijective antipode, then gr A is a Hopf algebra with bijective antipode.

ProOF. By Theorem 538(2) with Cy = Corad(A), the coradical filtration of
A is a bialgebra filtration. Thus gr A is a bialgebra by Proposition B.2.171 The
remaining claims follow from Corollary 5.2.11 applied to filt(gr A). |
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PROPOSITION 5.3.13. Let C' = P,,5, C(n) be an No-graded coalgebra. Assume
that C(0) is cosemisimple. Then the following are equivalent.

(1) C is coradically graded.
(2) Foralln>2, Ay -1 :C(n) = C(1) @ C(n—1) is injective.
PRrROOF. We denote the coradical filtration of C by (C,)n>o0-
(1) = (2): Let 02z € C(n),n>2. Then z ¢ C\,_1 = @?:_01 C(4), since C' is
coradically graded. Hence Ay ,_1(z) # 0 by (531, since

Ax) € é(](i) RCMN—1)CCrC+C1)RCn—1)+CRCh_s.
i=0
(2) = (1): The natural filtration
coccoeaclccoecmadc..-

is a coalgebra filtration. Hence Cy C C(0) by Proposition 524 Since C(0) is
cosemisimple, it follows that Cy = C(0).
Let n > 1. The inclusion C(n) C C,, follows easily by induction, since

A(C(n) @ CH)® Cln—i) SCO)0C+C & (6_9 C(i)).
1=0

i=0

Hence @) ,C(i) C C,. We prove equality by induction on n > 0. Suppose
there are integers n > 1, m > n and elements z; € C(i), 0 < i < m, with
z =Y,z € Cy Then Az) € Co ® C + C ® C,—y by (E31). By induction,
Choq = EB?;OI C(i). Hence Ay ,,—1(x) = 0. Then Ay —1(zy,) =0, and z,,, = 0 by
(2). O

Recall from Proposition [[314] that (2) in Proposition B.3.13] is equivalent to
the injectivity of A, ; for all 4,7 > 0.

COROLLARY 5.3.14. Let C be a connected Ng-graded coalgebra. Then the fol-
lowing are equivalent.

(1) C is strictly graded.
(2) C is coradically graded.

Proor. This follows from Proposition (.3.13] and Proposition [[L3.14} O
PROPOSITION 5.3.15. Let C be a coalgebra. Then gr C' is coradically graded.

PROOF. By definition, Cj is cosemisimple. By Proposition [5.3.13] it is enough
to prove that Ay ,_; for grC is injective for all n > 2. We choose subspaces
X, CC,n>1, with C, = C,_1 & X,, for all n > 1. Then

Cl ® Cn71 = CO X Cn,1 —+ X1 X anl + Xl ® Cn72
for all n > 2. Hence, by (L3.3),
n
AC)CY Ci@Ch i CCLRC, +C1&C, 1 +C®Cy s

=0
gCO®C+X1®Xn71+C®Cn72‘
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Since A1 (Cy® C + C® Cy,_3) = Cp,_1, the map
A CL)Ch = (X190 X, 1+ CoRC+CRC,_9)/(CoxC+C®C,_2)

induced by A is injective. Thus A; ,,—; is injective. O

COROLLARY 5.3.16. Let A be a Hopf algebra with coradical filtration (An)n>o0
and let H = Agy. Assume that H is a Hopf subalgebra of A with bijective antipode.
Let m : grA — H be the canonical graded projection, that is, w(x) = 0 for all
r €grA(n), n > 1, and n|H = idy. Define R = gr A with respect to «, and
R(n) = RngrA(n) forn>0.

(1) R is an Ny-graded Hopf algebra in BYD with grading (R(n))n>o. The
map

R#H — gr A, r#h — rh,

is an isomorphism of Ng-graded Hopf algebras, where the Ng-grading of
R#H is given by (R#H)(n) = R(n) ® H for alln > 0.

(2) R is strictly graded.

(3) R is generated as an algebra by R(1) if and only if A is generated as an
algebra by Aj.

Proor. (1) follows from Corollary E3.7]
(2) By Corollary 5312 gr A is a coradically graded Hopf algebra with bijective
antipode. For all n > 2, let

A1 A(n) = A1) @ A(n—1), AF,_; : R(n) = R(1) ® R(n — 1)

be the (1,7 — 1)-th component of the comultiplications of A and R. The maps
A’f"nfl are injective by Proposition 5.3.13l Let ¢ : A® R — A ® R be the isomor-
phism given by ¢(a ® x) = aS(x1)) ® 2(g) for all a € A, 2 € R. Then for all
reR, heH,

pAA(z) = pzMa® @2 ) =2V ®a®.

From these formulas it follows for all n > 2 that Af, _, is injective, since Af', _,
is injective. Hence R is strictly graded by Proposition

(3) follows from (1), since A is generated by A; if and only if gr A is generated
by AQ D AI/AO~ U

REMARK 5.3.17. A Hopf algebra H is called cosemisimple if it is cosemisimple
as a coalgebra. It is known that the antipode of a cosemisimple Hopf algebra is bi-
jective, see [Lar71l Thm. 3.3]. Therefore in Corollary (316l the assumption on the
bijectivity of the antipode of the Hopf algebra H can be dropped by Corollary
A similar remark applies to Corollary and to Proposition

PROPOSITION 5.3.18. Let H be a cosemisimple Hopf algebra with bijective an-
tipode. Let R be an Ny-graded Hopf algebra in YD, and assume that R is strictly
graded. Then the Ng-graded Hopf algebra R#H is coradically graded and has a
bijective antipode.

ProOF. Let A = R#H. By Corollary and the definition of the mul-
tiplication, comultiplication and antipode of A, A is an Ny-graded Hopf algebra
with A(0) = 1#H. Hence A(0) is cosemisimple. By Corollary (212l A is a Hopf
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algebra with bijective antipode. By the definition of A4 and the rule for ¢ in
Corollary [3.T](2)(a),
(0 @ida)Aa(zh) = 9(zDa® C1yhay) © 2@ ) he)
— 2 2@

for all x € R, h € H. Thus for all n > 2, Af,kl is injective, since Aﬂ%l is
injective. Hence A is coradically graded by Proposition [£.3.13 O

5.4. Pointed coalgebras

By Definition[[.3.3] a coalgebra C is called pointed if every simple subcoalgebra
of C' is one-dimensional. A bialgebra or a Hopf algebra is pointed if its underlying
coalgebra is pointed.

If C is pointed, then

G(C) = {D C C| D is a simple subcoalgebra}, g — kg,
is bijective.
PRrROPOSITION 5.4.1. Let C' be a coalgebra. Then the following are equivalent.
(1) C is pointed.
(2) Corad(C) = P eq(c) ky-
(3) Any simple right C-comodule is one-dimensional.
(4) Any simple left C-comodule is one-dimensional.

PRrROOF. (1) implies (2) by Proposition 5:3:4Y(2), and (2) implies (1) by Propo-
sition £:34[(1). We prove that (1) and (3) are equivalent.

Assume (1) and let (V, d) be a simple right C-comodule. Then C(V) is simple by
Proposition Z2.13(1), and C(V) = kg for some g € G(C) by (1). Thus 6(v) =v®g
for all v € V, hence (3) holds.

Assume now (3) and let D be a simple subcoalgebra of C. Let V' be a simple
right subcomodule of D. By (3), there exist 0 # v € V and d € D with A(v) = v®d,
e(d) = 1. Since v € D, it follows from the axiom of the counit that v = e(v)d.
Hence D = kd since D is a simple coalgebra, that is, (1) holds.

The equivalence of (3) and (4) follows from the category isomorphism between
right comodules over C' and left comodules over C°°P and from the equivalence of

(1) and (3). 0

If C is pointed, then it follows from Proposition [(.4.1] that there is a bijection
from G(C') to the set of isomorphism classes of simple left (respectively right) C-
comodules mapping a group-like element g to the isomorphism class of a simple one-
dimensional comodule V with basis v and - (v) = g®v (respectively dy (v) = v®g).

PROPOSITION 5.4.2. (1) Let C be a coalgebra with a coalgebra filtration
F(C) = (Fo(C))n>0- If Fo(C) is a pointed coalgebra, then C' is pointed,
and Corad(C) C Fy(C).

(2) A connected Ny-graded coalgebra is pointed.

(3) Let C, D be coalgebras, f: C — D a coalgebra map, and assume that C is
pointed. Then f is a filtered map with respect to the coradical filtrations.

(4) Let C,D be coalgebras, and ©m : C — D a surjective coalgebra homo-
morphism. Then Corad(D) C w(Corad(C)). If C is pointed, then D is
pointed, and G(C) — G(D), g — 7w(g), is surjective.
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Proor. (1) follows from Proposition (2.4, and (2) is a special case of (1).

(3) Since C is pointed, f(Cp) is a sum of one- or zero-dimensional subcoalge-
bras of D, hence contained in Dy. Using the inductive definition of the coradical
filtration, it follows easily by induction on n that f(C,) C D, for all n > 0.

(4) Let (Cpn)n>0, Co = Corad(C'), be the coradical filtration of C.

Then F(D) = (Fo(D))n>0, Fn(D) = w(Cy) for all n > 0, is a coalgebra
filtration of D. Hence Dy = Corad(D) C w(Cy) by Proposition (.2:41 The rest is
clear. (]

COROLLARY 5.4.3. (1) A pointed bialgebra H is a Hopf algebra if and
only if G(H) is a group (under multiplication in H).
(2) Let H be a pointed Hopf algebra with antipode S. Then S is bijective, and
S(I) =1 for any Hopf ideal I C H.

ProOOF. (1) If H is a Hopf algebra, then the monoid G(H) is a group by
Proposition 241l Let H be a pointed bialgebra with coradical filtration (Hy,),>o-
Then Hy = kG(H) by Proposition B4l Hence, by Corollary 5.2.11, if G(H) is a
group then H is a Hopf algebra with bijective antipode.

(2) By Proposition 5.4.2, H/I is a pointed Hopf algebra with antipode induced
by the antipode of H. By the proof of (1), the antipodes of H and of H/I are
bijective. This implies that S(I) = I. O

COROLLARY 5.4.4. Let H be a bialgebra, J an index set, and for all j € J,
xz; € H, gj,h; € G(H) with gj_l,hj_1 € G(H) and
A((E]) =0;9x; +2; & hj.
Let G be a subgroup of G(H) containing all g;, h; with j € J. Assume that H is

generated as an algebra by G and by the elements x;, j € J. Then H is a pointed
Hopf algebra, and G = G(H).

PRrROOF. Let X = {z; | j € J}. For all n > 0, let F,,(H) be the k-span of all
monomials aias - - - @y, where m > 0, a; € X UG for all 1 < i < m, and such that
a; € X for at most n indices i. Then (F,,(H))n>0 is a coalgebra filtration of H with
Fy(H) = kG. Hence, by Propositions 5.4.2(1) and B4l H is pointed, G = G(H),
and H is a Hopf algebra by Corollary 5.4.3. |

Corollary B4 shows that for any Lie algebra g, the universal enveloping alge-
bra U(g) is a pointed Hopf algebra, and 1 is the only group-like element of U(g).
We will use the same argument for the deformed universal enveloping algebras in
Chapter Bl

We extend Proposition [L3.10l from strictly graded coalgebras to pointed coalge-
bras. By a theorem of Heyneman and Radford the next theorem holds for arbitrary
coalgebras. We will only need the pointed version.

THEOREM 5.4.5. Let C,D be coalgebras, and f : C — D a coalgebra map.
Assume that C is pointed and the restriction of f to Cy (defined by the coradical
filtration) is injective. Then gr f :egrC — grD and f are injective.

PrOOF. Since C' is pointed, f induces a coalgebra map grf : grC — grD
by Proposition 5.4.2. By Lemma (5214 it is enough to show that gr f is injective.
Corollary [£.3.5(2) implies that (gr f)1 : (gr C)1 — (gr D), is injective. Hence we can
assume that C, D are Ny-graded coalgebras, f is graded, and C is coradically graded.
In this case the theorem follows easily by induction from Proposition B.313(2). O
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COROLLARY 5.4.6. Let C be a pointed coalgebra. Let (Cp)n>0 and ((gr C)n)n>o0
be the coradical filtrations of C' and gr C, respectively. Then for alln > 0, the inclu-
sion C,, C C defines an injective coalgebra map gr Cp, — (grC), = @}_,(gr C)(k).

ProOF. By Theorem 547 the induced map gr C,, — gr C is injective. For all
k > n, the map (gr C,,)(k) — (gr C)(k) is zero. Hence (grCy,)(k) = 0 for all k > n,
and the corollary follows from Proposition a

We next give a short proof of a weak version of the Taft-Wilson theorem. This
weak version is enough to prove Corollary [5.4.9] and [5.4.16] below which are useful
to lift information of gr A to A for pointed Hopf algebras A with abelian group
G(A).

THEOREM 5.4.7. Let A be a pointed Hopf algebra, and let (A,)n>0 be its corad-

ical filtration.
(1) Foralln>1, A, = Zg,heG(A) Ay (g, h), where for all g,h € G(H),

Ap(g,h)={z € A, |A(x) =g@z+2Q@h+uwithu e Ay_1®@A,_1}
(2) A1 =KkG(A) + X, heca) Pon(4).

PROOF. Let 7: gr A — A(0) be the projection onto elements of degree 0, and
R = (gr A)®°H with respect to 7. Let G = G(A). By Proposition [5.3.15 and Corol-
lary gr A is coradically graded, R is strictly graded, and the multiplication
map R#kG — gr A is a graded isomorphism.

(a) We first prove the theorem for R, that is,

(1) for all m > 1,
R,={z€eR,|Ar(x)=1Qz+2®1+u, whereu € R,,_1 @ R,,_1},

(2) Ry =kl@ P(R).
By Corollary 5314 R is coradically graded. Hence (2)’ follows immediately. To
prove (1)’, let € R(n), n > 1. Then by Lemma 1.3.6(2),
n—1
Ap(x)€l@a+az0 1+ P R() @ R(n—1).
i=1
This proves (1)’, since R is coradically graded.
(b) Now we prove the theorem for gr A.
(1) Let n > 1 and x € (gr A),. To prove that z € }__ ;5 An(g, h), it suffices
to assume that © € (gr A)(n), x = r#h, where h € H, r € R(n) with 6(r) =g ®r,
g € G. Here § : R - H ® R is the H-coaction of R. Then

Agp(r)el@r+re@l1+ el 'R(i)® R(n — 1),
Agr 4(7) Egh @z + 7@ h+ O R(\)#KG @ R(n — i)#kG.

Hence = € (gr A),(gh, h), and (1) follows.

If n =1, then Ay a(z) = gh ® v + 2 ® h. This proves (2).

(¢) Now we prove the theorem for A.

(1) Let x € A, n > 1, and T the residue class of z in A,/A,—1. By (b), we
can assume that

A a(T) € g@T+T @ h+ @) (gr A)(i) ® (gr A)(n —i).
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Hence there are a,b€ A,,_1 and v € A,,_1 ® A,,_1 with

Alx)=g®@((x+a)+(x+b)@h+wv
=gRr+r@h+(gR®a+bRh+v)
EgRr+rh+ A, 1 ® A, 1.

(2) For all g,h € G, let
Agp={rcA|A(z) =gz +2®h+u, where u € kG @ kG}.
By (1) we know that Ay =3 ;cq Agn- So we have to show that
Agn =Py n(A) +kG.

The inclusion D is trivial. To prove the other inclusion, let z € A, ), and let
u € kG ® kG with

Alz)=g@z+zh+u.
It follows from coassociativity of A that
(5.4.1) u®h+ (A®id)(u) =g®u+ (id® A)(u).

Let u = Z@beG g0 ® b, where aqp € k for all a,b € G. By subtracting
Y acc Qaaa from x, we may assume that oy, = 0 for all a € G\ {g,h}. Now
we express all terms in (541]) as a linear combination of monomials a ® b ® ¢ with
a,b,c € G. For any b € G with g # b # h, by looking at the coefficients of g @ b®b
and b® b® h in (B.41) it follows that o = app = 0. Then for any a,b € G with
g # a # b # h, by looking at the coefficient of a ® b ® b we obtain that o, = 0.
Finally, if g # h, then by looking at the coefficients of g ® ¢ ® g and h ® h ® h we
get ag g = app = 0. It follows that v = ag4 g ® h. Then x + agrh € Py p(A4),
which proves (2). O

Let A be a pointed Hopf algebra, and G = G(A). Note that the coradical
filtration (A,),>0 of A is stable under the adjoint action of G, since the subspaces
A, C A, n >0, are left and right kG-submodules of A by restriction. This follows
from their inductive definition in (B31]). Assume that G is abelian. Then G acts
on Py ;,(A) by the adjoint action. For all g,h € G, and x € G, let

PY,(A)={a € Pyu(4) | uau~' = x(u)a for all u € G}.

LEMMA 5.4.8. Let A be a finite-dimensional pointed Hopf algebra. Assume that
G = G(A) is abelian, and char(k) = 0. Then for all g,h € G, Py ,(A) CkG.

PROOF. We may assume that h = 1, since Py, ,(A4) = P;;(A)h. Choose
a € P;,(A) with canonical image @ in A;/Ag. Since Ag 4(@) =g®@a+a® 1, we
see that @ € V = R(1) € §YD, where the Yetter-Drinfeld structure is given by

S(@)=g®a, wu-a=wuau ' =aforalucd,

since a € Py (A). Thus @ € V;. Now finite-dimensionality of A implies finite-
dimensionality of B(V') by Example Therefore @ = 0 and a € kG. O

The preliminary version made available with permission of the publisher, the American Mathematical Society.



5.4. POINTED COALGEBRAS 239

COROLLARY 5.4.9. Let A be a finite-dimensional pointed Hopf algebra. Assume
that G = G(A) is abelian, and that k is algebraically closed, and char(k) = 0. Let
(An)n>0 be the coradical filtration of A. Then

A1 =40 ® @ P;,h(A)?
(g:hx)
9,h€G e£XEG

and for all g,h € G, € # x € é, the canonical map Ay — Ay/Ag induces an
isomorphism Py, (A) =N P, (grA).

ProoF. (1) By Lemma 548 Theorem (547 and Proposition [[4.0] it follows
that

(5.4.2) Ai=Ads P D PYLA.
cAxel 9.eC

Lete # x € G. To prove that the sum Zg,hEG’ P;fh(A) is direct, let for all g, h € G,
agn € PY,, and assume that Y-, agn = 0. Then

0=24( agn) =D (90 Y agn)+ Y (D> agn®h).

g,heG geG heG heG geG
Since Ao N 3°, heq Pon(A) = 0 by (BL2), we obtain that }, 5 agn = 0 for all
g € G, hence
O:AA(ZagJI) =g® Zagyh—i— Zag,h@h: Zagyh®h,
hea@ hea hea hea

and ag, = 0 for all g,h € G.
(2) By (1), the canonical map A; — A;/Aj induces an isomorphism

D P - A= B P,
(9,hx) ~ (g,h,x)}g,hGG,s;ﬁxeé
g,heGe#xeCG

Since gr A is coradically graded by Proposition [5.3.150] the equality follows from (1)
for gr A instead of A. For all g,h € G, ¢ # x € @, the canonical map induces
a linear map PY, (A) — P),(grA). Since the direct sum of these maps is an
isomorphism, the maps P;fh(A) — P;fh(gr A) are bijective for all g, h, x. O

To describe a decomposition of A; as in Proposition [(.4.9] for certain infinite-
dimensional Hopf algebras, we need some standard results on locally finite repre-
sentations of abelian groups.

DEFINITION 5.4.10. Let G be an abelian group, and V a kG-module. For all
X € G, we define

VO ={yeV| forall g€ G, (g—x(g9))*v =0 for some s > 1}.

Recall that VX = {v € V' | gv = x(g)v for all g € G}.
LEMMA 5.4.11. Let G be an abelian group, V a kG-module, S, T C G subsets,
and x € G.

(1) VX C VX CV are kG-submodules, and (V)X = V()
(2) Let p,v € G with p #v. Then V) N V®) =0 and (VW) = 0.
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(3) Let (Vi)ier be a family of kG-modules. Then (B, ; Vi) 0 = D.c: V;(X).
(4) Let V,W be kG-modules, and assume that

@ VOO ED W) as kG-modules,
XES x€T

where for all y € S, VX £ 0, and for all xy e T, WX £0. Then S =T,
and VOO = WX g5 kG-modules for all x € S.

PROOF. (1) is obvious, since G is abelian.
(2) Let . € VW N V) For all g € G, there is an integer s > 1 with

(9 — n(g))’z = 0,(g — v(g))°x =0, and
(v(g9) — u(9))**z = (9 — 1(g)) — (9 — v(9)))*z = 0.
Thus = = 0, and therefore V*) N V) = 0. Hence (V)" C VW) q ¥ =,
(3) is obvious, and (4) follows from (2) and (3). O
From now on we assume in this section that k is algebraically closed.

LEMMA 5.4.12. Let G be an abelian group, and V a finite-dimensional kG-
module with representation p : G — Aut(V). Then there is a basis of V such that
for all g € G, the representing matriz of p(g) is upper triangular.

PROOF. Let g € G. Since k is algebraically closed, there is an eigenvalue A of
p(g). Let Vy » = {v € V | gv = Av}. Since G is abelian, Vj » is a G-subspace of V.
If V, » =V for all g, A, the lemma is obvious. Hence we may assume that V, x C V
for some g, A\. By induction on dim V, there is a non-zero element v; € V' such that

kvy is G-invariant. Again by induction there are elements v, ..., v, € V such that
their residue classes are a basis as claimed in the lemma for V/kv;. Then the basis
v1,...,0, of V has the required property. O

PROPOSITION 5.4.13. Let G be an abelian group, and V a locally finite kG-
module. Then V = @Xeé Vo,

PROOF. We can assume that V is finite-dimensional. We prove the proposition
by induction on the dimension of V. Let dimV =n > 1, and assume the theorem
holds for kG-modules of dimension < n. Let p : kG — End(V') be the representation
of G.

(1) Assume that for all ¢ € G, p(g) has exactly one eigenvalue x(g). By
Lemma [5.4.12] there is a basis of V such that for all g € G, the representing matrix
(@i;(9))1<i,j<n of p(g) with respect to this basis is upper triagonal. Hence for all
g€ G, 1<1i<mn, ai(g) = x(g9). This implies that x(gh) = x(g)x(h) for all
g,h € G, hence y € G. Moreover, V = VX since p(g) — x(g) is nilpotent for all
gEG. Forall pe G, pu+#y, VW =0 by Lemma BEATT(2).

(2) Now we assume that there is an element g € G such that p(g) has at least
two eigenvalues. Let V = @, V; be the decomposition of V into generalized
eigenspaces of p(g)

Vi={veV](g—\)°v=0 for some s > 1}

with eigenvalue A;;, 1 < ¢ < n. Then n > 2. Since G is abelian, V; C V is a
kG-submodule for all 1 <4 < n. By induction, the claim holds for all V;, 1 < i < n.
The claim for V follows from Lemma B4TTI(3). O
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COROLLARY 5.4.14. Let G be an abelian group, V a locally finite kG-module,
U CV akG-submodule, and S C G a subset.

(1) IfV =P,es VY, then U = @, g UX.
(2) If V=, cs VX, thenU =@, 5 U*.
Proor. By Proposition B.AI3 U = @, .4 UX). Hence (1) and (2) follow
from Lemma BZ4TT] O

COROLLARY 5.4.15. Let G be an abelian group, V a locally finite kG-module,
U CV akG-submodule, and S, T C G disjoint subsets such that

U=@ux, v/U=EPWw/u)x

XES x€T
Then
Vv=Ua@Vvy, U=V~
x€eT x€S

PROOF. By Proposition BAT3 V = @, s VY @ D, o5 V) and
By =viv=@vore @ v,

x€T XES xe@\S

since by Lemma [F.4.11)(2),(3), for all xy € T, (V/U)X) = (V/U)X, and for all x € G,
UX) =Ux if y € §,and UX) =0, if x ¢ S. Since for all x € T, (V/U)X = 0
implies that VX = 0, we may assume that (V/U)X # 0 for all x € T. We conclude
from Lemma [F.Z11(4) that V) = UX for all x € S, VX) = VX for all x € T, and
V) =0 for all x € @\ (S UT). This proves the claim. O

PROPOSITION 5.4.16. Let k be algebraically closed, A a pointed Hopf algebra
with coradical filtration (A,)n>0, and abelian group G = G(A). Let R = (gr A)®°*¢
with respect to the projection of gr A onto degree 0. Assume that V = R(1) € gyD
is finite-dimensional. Then the following hold.

(1) Ay is a locally finite kG-module under the adjoint action.
(2) Assume that V. =&, VX. Then

A =de H PLA,

(g:hx)
9,h€Ge#£XEC

and for all g,h € G, e # x € @, the canonical map Ay — A1 /Ag induces
an isomorphism P), (A) =N PY,(grA).

PRrOOF. (1) The coradical filtration is stable under the adjoint action of G. By
Theorem .47,

(5.4.3) Ar=Ag+ D Pua(A).
g,heG(A)

By Corollary £.3.16, multiplication defines an isomorphism gr A & R#kG of Ny-
graded Hopf algebras, hence as kG-modules under the adjoint action. In particular,

(5.4.4) Ay /Ao 2 V#KG as kG-modules,
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where g- (v®h) =g-v®hforall g,h € G, v € V. Hence A1 /Ay is a locally finite
kG-module.

Let g,h € G. Then P, ;,(A)/k(g — h) is embedded into A; /A as a kG-module.
Hence P, ;,(A)/k(g — h) and P, ;,(A) are locally finite.

Then it follows from (B43]) that A; is locally finite.

(2) By (044), A1/Ap = Gas;éxe@(Al/AO)X' Hence

Ar=Ace P (A%, Ao= (A,
eséxeé

by Corollary with § = {e}, T = G\ {e}. Then by Corollary F.414(2) and
EZL3), for all e # x € G, (A)X =32 e Pyn(A). The claim in (2) now follows
by the same argument as in part (2) of the proof of Corollary |

5.5. Graded Yetter-Drinfeld modules

Let T be an abelian monoid, and H a I'-graded Hopf algebra with bijective
antipode.

The category I'-Gr My is braided monoidal, where the braiding is the flip map-
ping (see Section [B.1]), and H is a Hopf algebra in I'-Gr My. We study the Yetter-
Drinfeld category ZYD(I-Gr My) defined in Section B4l An object V in this
category is an object V in #YD such that V = @, V(a) is a graded vector
space, and the module and comodule structure maps H@V — Vand V - H®V
are graded.

If H is trivially graded, that is, H(0) = H and H(«) = 0 for all non-zero o € T,
then an object in ZYD(I-Gr My) is an object in £YD which is a graded vector
space V = @, V() such that V(o) C V are subobjects in YD for all a € T,
that is, V € I‘—GrgyD.

LEMMA 5.5.1. Let V € ZYD(I-Gr My,).

(1) Let U C V be a T'-graded subspace and a submodule and subcomodule.
Then U is a subobject of V in BYD(I-Gr My).

(2) If U CV is aT'-graded H-subcomodule, then HU is the smallest subobject
of V in LYD(T-Gr My) containing U.

(3) Assume thatT' is cancellative. If U CV is a I'-graded H-submodule, then
UH* is the smallest subobject of V in LYD(T-Gr My) which contains U.
Here, UH* is the smallest H-subcomodule of V' containing U .

PRrROOF. (1) follows from Lemma 5.1.2(1)(a) and (2)(a).

(2) Since U is a graded vector space, HU is a graded H-submodule of V. Let
0:V = HRV, v v_1)®v(), be the comodule structure of V. Then for all h € H
and v € U, §(hu) = hyu—1S(he)) @ h2)u). Hence HU is an H-subcomodule
of V, and the claim follows from (1).

(3) By definition, V' is a right H*-module with vf = f(v(_1))v() for all v € V,
f € H*. By Corollary 2218 UH* is the smallest subcomodule of V' containing
U. By Lemma 5.1.2(2)(b), @, (UH*) NV () is a graded subcomodule of V', and
UC P, cr(UH*) NV (), since U is graded. Hence @, . (UH*)NV(a) = UH".
Forallhe Hyue U and f € H*,

h(uf) = flu1))hue) = (heyu)(ha) fS(hay))-

acl
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Hence UH* is a left H-submodule of V', since U C V is an H-submodule. The
claim follows from (1). O

The category ZYD(I-Gr My) is a braided monoidal category with monoidal
structure and braiding as in g)ﬂD.

Let C = ZYD(I-Gr My). Algebras, coalgebras, bialgebras, and Hopf algebras
in C are called I'-graded algebras, coalgebras, bialgebras, and Hopf algebras
in YD, respectively.

LEMMA 5.5.2. Let R be a I'-graded bialgebra in gy’D, and
PR)={zeR|A(z) =21+ 1®z}.
Then P(R) is a I'-graded subobject of R in 2YD.

PROOF. The maps R 2, R®Rand R — RRR,r — r®l+1®r, are [-graded
maps in gyD. (Il

Graded objects in C are defined as in Remark The category No-GrC is
monoidal with (V @ W)(n) =P, ;—, V(i) ® W(j) for all n > 0, where V, W € C.
It is braided with the braiding of C, since the braiding cyw : VO W — W ® V in
C of graded objects is graded.

We construct the tensor algebra as an Ny-graded Hopf algebra in C.

Let V € C. The tensor algebra

T(V)=EP1"(V), T°(V) =k, T"(V) = V=" for all n. > 0,
n>0
is an Ny-graded algebra with multiplication given by concatenation, that is, for all
0,5 20,
i =id : T'(V) @ TV (V) — T (V).

Then T(V) is an Ny-graded algebra in the monoidal category C, where T"(V) is
the n-fold tensor product of graded Yetter-Drinfeld modules for all n > 0. Thus
action and coaction of H are defined by

h'(v1®---®vn):h(l)vl®---®h(n)vn
5(U1®"'®Un) :'Ul(—l)"'Un(—l)®U1(0)®"‘®Un(0)
forall he H, vy,...,v, € V, n > 0.

EXAMPLE 5.5.3. Let I' = N§ as in Example B.2.1] and let ay,...,ag be the
standard basis of Z. Assume that V = @le V; is a direct sum decomposition in
HYD. We define an Nj-grading on V by setting

V() =V, for all i, and V() =0 for all o € Ng \{a,...,ap}.
Note that for all ny,...,ng € Ny,

0 0
T(V)(Zniai) C T™(V), where n = an
i=1 i=1

The tensor algebra has the usual universal property.

LEMMA 5.5.4. Let V be an object and R an algebra in C. For any morphism
f:V = R inC there is exactly one morphism ¢ : T(V) — R of algebras in C such
that o(v) = f(v) for allv e V.
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PROOF. Let p(v1 ®---®uy,) = f(v1) - f(v,) forall vy,...,v, €V, n>0. O

PROPOSITION 5.5.5. Let V € C.
(1) There exists a uniquely determined map A : T(V) — T(V)QT(V) of
algebras in C such that

Av)=1@v+ov®1 forallvelV.

The algebra T(V) is an Ng-graded Hopf algebra in C with comultiplication
A and counit 7r0T(V) :T(V) =k, and S(v) = —v for allv € V, where S
is the antipode of T(V).

(2) Let R be a bialgebra in C and f : V. — P(R) a homomorphism in C.
Then there is exactly one map ¢ : T(V) = R of bialgebras in C such that
o) = f(v) forallveV.

PROOF. (1) It is clear from the universal property of the tensor algebra that A
exists and is uniquely determined. We show that 7'(V') with comultiplication A and
counit € = 7r0T(V) : T(V) — k becomes an Ny-graded bialgebra in C. It is easy to see
by induction that the comultiplication is Ng-graded, since for all 7, j the braiding of
T(V) maps TH(V) @ T7(V) onto T7 (V) @ T*(V). By the universal property of the
tensor algebra it is enough to check the axioms of coassociativity and counitarity
on elements of V which is obvious, since the elements of V' are primitive. Finally
T(V) has an antipode by Proposition Then for all v € V, S(v) = —v, since
v is primitive and e(v) = 0 by definition.

(2) By the universal property of the tensor algebra there is exactly one map
¢ : T(V) — R of algebras in C with ¢|V = f. By the same argument as before, ¢
is a coalgebra map, since it is enough to check the equalities Ap = (¢ ® p)A and
ep = ¢ on elements of V. g

We formulate a graded version of Corollary 33l Let H be a I'-graded Hopf
algebra. The category of graded Hopf algebra triples over H is defined as
follows. The objects of this category are triples (4, w,7), where A is a I'-graded Hopf
algebra, and 7w : A — H, v : H — A are I'-graded Hopf algebra homomorphisms
with 7y = idg. A morphism between graded triples (A4, 7,7), (A’,7',v') is a T-
graded Hopf algebra homomorphism ® : A — A’ with 7/® = 7 and &y = +/.

Recall that C = HYD(T-Gr My,).

THEOREM 5.5.6. Let H be a I'-graded Hopf algebra with bijective antipode.

(1) Let R be a Hopf algebra in C. Then (R#H,nr,Yr) is a graded Hopf
algebra triple over H, where the grading of R#H is the tensor product
grading. Moreover, (R#H)°H is a graded subspace of R#H, and

R — (R#H)H 1 r#1,
is an isomorphism of Hopf algebras in C.

(2) Let A be a I'-graded Hopf algebra, and 7 : A — H and v : H — A graded
Hopf algebra homomorphisms with vy = idg, and define the Hopf algebra
R#H with R = A®°H . Then R is a Hopf algebra in C with induced grading
R(a) = RN A(a) for alla € T, and

O : R#H — A, r#h — ry(h),
is a graded Hopf algebra isomorphism with m1g = 7® and ®yg = v.
PRrROOF. Adapt the proof of Corollary E3.3] replacing My by ¥I' M. O
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5.6. Notes

A variant of Proposition [5.2.91 was formulated first in [Tak71l Lemma 14]
for the coradical filtration.
A version of Lemma [5.2.16] was already used in [Swe69, Lemma 9.1.5].

5.3l We present the classical theory of the coradical filtration. See [Swe69],

[Mon93|, [Rad12] for a slightly different exposition without using properties of
the Jacobson radical.

5.4l For a proof of the general case of the Theorem of Heyneman and Radford
see Theorem 5.3.1], and in generalized form Theo-
rem 4.7.4].

Our proof of Theorem [(.4.7] follows [AS00Db|. The proof of Corollary [.4.18] is
inspired by Lemma 4.4].

Let C be a pointed coalgebra, G = G(C), and (C), ), >0 the coradical filtration
of C. For all g,h € G, let P, ,(C) C P;,(C) be a vector subspace such that
Pyn(C) =k(g—h)® P, ;,(C). The Theorem of Taft and Wilson [TW74] says that
Theorem B.47(1) holds for C, and C1 = Co €D, jcq Py 1(C). See [Mon93| The-
orem 5.4.1] and Theorem 4.3.2] for a proof. In the situation of Proposi-
tion we have shown that P, ,(A) = ., P, is a possible choice for the
Theorem of Taft and Wilson.

In Lemma [5.4.17] Proposition 5.4.13] and Corollary we prove some stan-
dard results on locally finite representations of abelian groups following the presen-
tation of Dixmier in [Dix96], Theorem 1.3.19, for nilpotent Lie algebras.
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CHAPTER 6

Braided structures

In Chapter [l we defined the Nichols algebra of a braided vector space where the
braiding comes from a Yetter-Drinfeld module structure. It is possible to develop
the basic theory of braided Hopf algebras and Nichols algebras for arbitrary braided
vector spaces. This will be done in the following two chapters.

In Section we study quotient theory of pointed braided Hopf algebras, in
particular of pointed Hopf algebras where the braiding is the twist map. In Corol-
lary we describe the Hilbert series of a quotient; in Section [I.T], this leads to
a formula which compares the Hilbert series of the Nichols algebra with the Hilbert
series of the tensor algebra.

However, more sophisticated tools like Cartan graphs and root systems can not
be discussed in this context, and therefore in later chapters we will turn back again
to categories of Yetter-Drinfeld modules.

6.1. Braided vector spaces

Let (V, ¢) be a braided vector space. Recall from Definition that we have
defined linear maps ¢, , € Aut(VE™ ®@ V) for all m,n > 0. In particular, by

Corollary [7.10]
(6.1.1) Cln = Cntni- - C1,
(6.1.2) Cp,1 = C1C2 -~ Cp.

If V is an object of a braided strict monoidal category, the braid group acts on
tensor powers of V' as in Lemma [[.7.0

LEMMA 6.1.1. Let V be an object in a braided strict monoidal category with
braidingc=cyy : VRV =V ®V. Then for allm,n > 1,

Cv®m7v®n =Cm,n-
PROOF. See the proof of Lemma [L717] a

DEFINITION 6.1.2. Let (V) ¢) be a braided vector space, and m,n > 0. A linear
map f: V®" 5 V& commutes with the braiding of V if

(613) (f ® idV)Cl,m = Cl,n(idV X f), (ldv ® f)CmJ = Cn,l(f X idv),
that is, if the diagrams

vevem Zhyengy vemgy Ly @ yen
J{idv &f lf@idv lf@idv J{idv &f
vever L yengy vergV v g ver
commute.
247
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248 6. BRAIDED STRUCTURES

Let V € EYD be a Yetter-Drinfeld module over some Hopf algebra H with
bijective antipode. Then any linear map f : V¥ — V%" which is a morphism
of Yetter-Drinfeld modules commutes with the braiding, since the braiding is a
functorial isomorphism. Thus equations (6.1.3)) are a substitute for the functoriality
of the braiding.

Equations ([6.I.3]) can be described by the pictures (8.2.12)) and [B.2.13]), where
h=f,and X; =V =Yj for all 4, j.

LEMMA 6.1.3. Let (V,c) be a braided vector space.

(1) The set of linear maps between tensor powers of V which commute with the
braiding of V is closed under composition, addition, scalar multiplication
and tensor products.

(2) All left multiplications with elements of kB, on V™ n > 1, commute
with the braiding of V.

(3) If f: VE™ 5 V& m n >0, is a linear map commuting with the braiding
of V', then the following diagrams commute for all v > 0:

yoer ® yem Cr,m y [ Om ® Vor yem ® v er C""’"'} Vor ® Vem
lid‘/@r Rf lf@id‘/@T J/f@id‘/@r J/idv®7‘ f
Vergyen I, yen g yer Von g yer S, yer g yen

(4) If f : VP — V&I g VO 5 VO pqrs > 0, are linear maps
commuting with the braiding of V', then the following diagram commutes:

Ver g yer e yer Q Ver

lf@g Jgé@f

Ve g YO L, yos @ 8

PROOF. (1) is obvious for composition, addition and scalar multiplication of
linear maps, and follows for tensor products from Corollary [T TO(H), (G-

(2) follows from (1), since the equation cjcac; = cacico implies that ¢ and hence
each ¢; € End(V®"), 1 <4 <n — 1, commutes with the braiding.

(3) We prove the commutativity of the first diagram by induction on 7. The
commutativity of the second diagram follows in the same way. For r = 0 the first
diagram is trivially commutative, and for » = 1 it is commutative, since f commutes
with the braiding. In the diagram

Vevergyem N,y g yem g yer U yem gy g yer
Jid‘/@id‘,@,,@f lid‘/@f@idv@. lf@id‘/@id‘,@r
Vevergyen T ygyengysr Ut yengy g yer

the first square commutes by induction, and the second square commutes, since f
commutes with the braiding. The claim follows since by Corollary [LTTI0(), the
composition of the upper and lower horizontal maps is ¢,1,m and ¢,41,,, respec-
tively.

(4) follows from (3) by using that f ® ¢ = (id ® ¢)(f ® id). O
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REMARK 6.1.4. Let (V,c) be a braided vector space. For clarity, we denote
by V€™ n > 0, a vector space satisfying the universal property with respect to
multilinear maps. Let C(V) be the strict monoidal category with objects V®"
n > 0, and linear maps as morphisms. The monoidal structure is the functor

C(V) X C(V) = C(V), (VEm, VEm) i v,

where morphism (f, g) are mapped onto f ® g. Let C(V,¢) be the strict monoidal
subcategory of C(V') with the same objects V®™, m > 0, and where the morphisms
are the linear maps f : V®™ — V®* m n > 0, which commute with c. By
Lemma[6.T.3(1), C(V, ¢) is a monoidal subcategory of C(V'). For all m,n > 0, let

C(vem yen) = Cmn : VoM @ e 5 yOn g yOm,

By Lemma [6.1.3((4), (cx,v)x,vec(v,) is a natural isomorphism. Hence C(V,c) is a
braided strict monoidal category by Corollary [L7.10(4) and (5).

DEFINITION 6.1.5. Let (V, ¢) be a braided vector space, and U C V a subspace.
Then
(1) U is a categorical subspace of V if
c(UV)=VeUand c(VU)=UQRYV,
(2) U is a braided subspace of V if c(U®U) =U @ U,
(3) V/U is a braided quotient space of V' if
c(UV+VeU)=UV+VeU.

A subspace U C V of a Yetter-Drinfeld module V' € gy’D with braiding cy v
is categorical if it is a subobject in £YD.

REMARK 6.1.6. Let (V,¢) be a braided vector space.
A subspace U C V is categorical if and only if ¢ induces bijections

e VIURV S VeV/IU, e:VeV/U—V/IUsV.

If U; and U, are categorical subspaces of V', then Uy N Uy C V is categorical,
and C(Ul X Ug) =U; @ Uj.

If U C V is a categorical subspace, then U is a braided subspace, and V/U is
a braided quotient space.

If U C V is a subspace, then V/U is a braided quotient space if and only if
there exists a (uniquely determined) braiding

c:VUV/U—-V/URV/U
such that the quotient map 7 : V — V/U is a map of braided vector spaces.

LEMMA 6.1.7. Let (V,c) be a braided vector space, and f : VE™ — V& with
m,n > 0 be a linear map commuting with the braiding of V.. Then ker(f) C V&™
and im(f) C VE™ are categorical subspaces.

PRrROOF. By taking the kernels of the vertical maps in the commutative dia-
grams in Lemma G.T3[B) with » = m, we see that

Cmm(VE™ @ ker(f)) = ker(f) @ VE™, cppm(ker(f) @ VE™) = VO™ @ ker(f).

By taking the images of the same vertical maps with » = n we see that im(f) is a
categorical subspace of V&m, (]
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DEFINITION 6.1.8. Let I' be a set. A I'-graded braided vector space is a
braided vector space (V,¢) which is a I'-graded vector space V = @, . V(7) such
that ¢(V(y) @ V(A) = V(A) @ V(y) for all v, A € T

yel

LEMMA 6.1.9. Let T be a set, (V,c) a I'-graded braided vector space, and v € T.
(1) V() CV is a categorical subspace.

(2) The linear map V.5 V() C V commutes with ¢, where 7 15 the pro-
jection map.

PRrROOF. (1) is obvious.

(2) The diagrams in Definition with f = (V =5 V() C V) commute,
since by (1) they commute on V ® V/(A) and V(A\) @ V for all A € T O

COROLLARY 6.1.10. Let (V,c) be a braided vector space. Then (T(V),cTV))
is an Ng-graded braided vector space, where by definition for all m,n > 0, the
restriction of cTV) to VE™ @ VO™ js ¢,y .

Proor. We have to show that for all r,s,t > 0,
(6.1.4) csytcmTScns = cnSthmcsytTr.

By Lemma B3|, ¢ commutes with the braiding of V. Hence the first dia-
gram in Lemma [E.T3@) with f = ¢;; commutes. This proves (6.1.4]), since by
Corollary [LTIOE), ¢, 5¢r s = Crsit = CrstCr. O

6.2. Braided algebras, coalgebras and bialgebras

We discuss algebra and coalgebra structures on a braided vector space.
Recall from Remark [6.1.4] the definition of the braided strict monoidal category
C(V,¢) for a braided vector space (V,¢). The results of Chapter Bl apply to C(V c).

DEFINITION 6.2.1. A braided algebra is a quadruple A = (A, pu,n,¢) such
that (A, c) is a braided vector space and (A4, i1, n) is an algebra in C(A, c¢) (that is,
(A, p,m) is an algebra and p and n commute with ¢). A braided coalgebra is a
quadruple C = (C, A, ¢, ¢) such that (C,¢) is a braided vector space and (C, A, ¢)
is a coalgebra in C(C, c).

A homomorphism or a map of braided algebras (coalgebras) A — B is
a braided linear map (A, ¢) — (B, d) which is also an algebra (coalgebra) map.

REMARK 6.2.2. Let (A, u,7,c) be a braided algebra. Then (A, u,n) is an alge-
bra in the category C(A, c) by definition.

(1) By Proposition B:224] for any three algebras B,C, D in C(A,c), the tensor
product of B and C, denoted by B®C, is an algebra in C(A,c), and the alge-
bra structures on (BQC)®D and on B®(C®D) coincide. In particular, for any
m > 1 the m-fold tensor product (A®™, pgem,naem) of the algebra A is uniquely
determined as an algebra in C(A4, ¢).

A similar remark holds for braided coalgebras using Proposition

(2) By Lemma 613, compositions and tensor products of algebra morphisms
in C(A, ¢) are algebra morphisms in C(A,¢). (They commute with ¢ by definition
of a morphism in C(4,c¢).)

PROPOSITION 6.2.3. Let ¢ : A — B be a map of braided (co)algebras. Then
for any m > 1, @®™ . A®™ — B®™ s q map of (co)algebras.
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PrOOF. Assume that A = (A, ua,n4a,c) and B = (B, up,ns,d) are braided
algebras. We prove the claim by induction on m. For m = 1 the claim is trivial.
Assume that m > 2. Then

,—1

O i pwm = @O (L aom-1 @ pLa)C] oy
—1
ppen—1 ® pp)e®* el

= (
= (ppom-1 @ pp)d] m_10%*™ = ppen (¥ ® ¥M),
where the first equation holds by definition of the tensor product, the second follows
from induction hypothesis and since ¢ is an algebra map, the third follows since ¢ is
a braided linear map, and the last one holds again by definition of pgem. Similarly,
©®™Mn 49m = npem. Hence p®™ is an algebra map.

For coalgebra maps the proof is analogous. ([l

DEFINITION 6.2.4. Let A = (A, u,n, A,¢,¢) be a 6-tuple such that (A4, u,n,c)
is a braided algebra and (A4, A, e,c¢) is a braided coalgebra. Then A is a braided
bialgebra if A: A - A®A and € : A — k are algebra maps.

A braided Hopf algebra is a braided bialgebra with an antipode, that is, a
convolution inverse of the identity map.

A homomorphism or a map of braided bialgebras (respectively Hopf
algebras) is a homomorphism of braided algebras and of braided coalgebras.

A braided bialgebra A is a bialgebra in C(4, ¢).

Since the antipode S of a braided Hopf algebra A is convolution inverse to the
identity, S is a unitary and augmented map, that is, S(1) = 1, and e(S(x)) = e(x)
for all z € A.

LEMMA 6.2.5. Let A be a braided algebra, coalgebra or bialgebra, and I an ideal,
coideal or bi-ideal of A such that A/I is a braided quotient space. Then A/I is a
braided algebra, coalgebra or bialgebra, such that the quotient map A — A/I is a
homomorphism of braided algebras, coalgebras or bialgebras.

PROOF. Obviously, the structure maps of A/I commute with the quotient
braiding of A/I. O

PROPOSITION 6.2.6. Let A be a braided Hopf algebra with antipode S and braid-
mng c.
(1) & commutes with ¢, in particular, (S ® S)c=c¢(S® S).
(2) Sp=puc(S®S).
(3) AS = (S®S)cA.

PRrROOF. (1) Since S is the convolution inverse of the identity in Hom(A, A),
by Proposition [[2.19] S is the composition of the maps

(6.2.1) AT Ao A 9T g A 1aBe, g

where G is the isomorphism G = (1 ® id4)(ida ® A). Hence S commutes with the
braiding of A, since n ®id4, G~! and id4 ® € all commute with the braiding of A.
(2) and (3) follow from Proposition and (1). O

The preliminary version made available with permission of the publisher, the American Mathematical Society.



252 6. BRAIDED STRUCTURES

DEFINITION 6.2.7. Let A = (A, u,n, A, e, c) be a braided bialgebra. Let
Aop = ('A7 Mc_17 77’ A’ E’ C_l),
AP = (A, p,m,c A e 7.

PROPOSITION 6.2.8. Let H be a braided bialgebra.

(1) H°P and H®°P are braided bialgebras.
(2) If H is a braided Hopf algebra, then the following are equivalent.
(a) The antipode of H is bijective.
(b) H°P is a braided Hopf algebra.
(¢c) HP is a braided Hopf algebra.
(3) If H is a braided Hopf algebra with bijective antipode, then
(a) H°P and HP are braided Hopf algebras with antipode S~1.
(b) §: H°P — HCP s an isomorphism of braided Hopf algebras.

ProoF. (1) follows from Proposition 3.2.15. Since § commutes with the braid-
ing by Proposition [6.2:6, (2) and (3) follow from Proposition 3.2.15 and Corol-

lary O
REMARK 6.2.9. The crucial axiom for a braided bialgebra is the equality

(6.2.2) Ap=(p® p)ea(A® A),

which can be written as

(6.2.3) Azy) = 2We(z? @ yW)y@

for all x,y € A, where A ® A is viewed as a left and a right A-module by multipli-
cation on the left and the right tensorand, respectively.

LEMMA 6.2.10. (1) Let A be a braided algebra, and Vy,...,V,, n > 2,
categorical subspaces. Then Vi ---V,, is a categorical subspace of A.
(2) Let A be a braided bialgebra, and I a categorical coideal of A. Then AI, 1A
and AT A are categorical coideals of A.
(3) Let C be a braided coalgebra, and assume that the braided vector space C
is No-graded. Then for alln > 1, Ic(n) = ker(Ayn) C C is a categorical
subspace.

PrOOF. (1) By induction, it is enough to consider the case when n = 2. Since
@ A® A — A commutes with the braiding of A, the image of the categorical
subspace Vi ® V5 is categorical.

(2) follows easily form (623]) and (1).

(3) By Lemma B9, the map f = (C ™ C(n) C C) commutes with ¢, and
C(n) C C is categorical. Hence it follows from Lemma [G.13] and Lemma [G1.7]
that the map fO"A®(—1 . C — C®" commutes with ¢, and that the subspace
ker(An) = C(n) Nker(fEA®M=1) of C' is categorical. O

PROPOSITION 6.2.11. (1) Let A be a braided Hopf algebra. Then the
braiding ¢ of A is determined by the multiplication, the comultiplication,
and the antipode of A. More precisely,

(6.2.4) ez ®y) =S AP yM)S(y?)
forall z,y € A.
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(2) Let A, B be braided Hopf algebras with antipodes Sx, Sp. Let o : A — B
be a morphism of algebras and of coalgebras. Then Spp = ¢S4, and @ is
a map of braided vector spaces.

PROOF. (1) The formula for the braiding follows from ([E23]).

(2) The equality Spp = ¢S4 is shown as for usual Hopf algebras in Proposi-
tion [LZT7(@]). Since ¢ commutes with the multiplication, the comultiplication and
the antipodes of A and B, it is braided linear by (1). O

We note an application of (624 to the group-like elements G(A) of a braided
Hopf algebra.

PROPOSITION 6.2.12. Let A be a braided Hopf algebra. Then the following are
equivalent:
(1) G(A) is multiplicatively closed.
(2) G(A) is a subgroup of the group of invertible elements of A.
(3) For allg,h € G(A), c(g@h)=h®yg.

PROOF. (1) = (3). Let g,h € G(A). Then gh € G(A), and by ([€24),
clg@h) =g (ghogh)h ' =h®yg.

(3) = (2). Let g,h € G(A). Then A(gh) = gc(g ® h)h = gh ® gh by [©23). By
Proposi(ti;)n B.2063), A(S(9) = (S®8)(g®g) = S(9) ®S(g). Hence g=* € G(A),
since S(g) = g~ L.

(2) i (1)gis trivial. O

PROPOSITION 6.2.13. Let A be a braided pointed Hopf algebra with antipode S
and braiding c.

(1) The following are equivalent.
(a) S is bijective.
(b) FEvery group-like element in A is invertible in A°P.
(2) Assume that for all g € G(A),
1

g@g =g '®g clg'®g) =gog "
Then S is bijective.

ProoOF. (1) (a) = (b). Since S is bijective, S : A°® — A is an algebra isomor-
phism by Proposition [6.2.8(3)(b). Let g € G(A). Then S(g) is invertible in A with
inverse g, and hence g is invertible in A°P.

(b) = (a). By (b), the inclusion map Corad(A°?) = kG(A) — A°P has a
convolution inverse, which maps a group-like element of A to its inverse in A°P.
Hence the braided bialgebra A°P has an antipode by Proposition B.2.9, and S is
bijective by Proposition [6.2.8((2).

(2) Every element g € G(A) is invertible in A°P, since uc=*(g® ¢g~') = 1 and
pe= (g7 ® g) = 1 by the assumption in (2). Hence S is bijective by (1). O

DEFINITION 6.2.14. A braided algebra is called braided commutative, if
pe = p. A braided coalgebra is called braided cocommutative, if cA = A.

As a corollary of Proposition [6.2.8 and (6.24]), we now can see that a braided
Hopf algebra with a general braiding is usually neither braided commutative nor
braided cocommutative.
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COROLLARY 6.2.15. Let A be a braided Hopf algebra with braiding c. If A is
braided commutative or braided cocommutative, then ¢ = id ARA-

PROOF. Assume that A is braided commutative. Then the bialgebra A°P in
Proposition [6.2.8 is a Hopf algebra with antipode S. Hence c¢(z ® y) = ¢~} (z ® y)
for all z,y € A by [6.24) for A and A°P. If A is cocommutative, then AP is a
Hopf algebra with antipode S, and again we obtain ¢ = ¢~ 1. O

DEFINITION 6.2.16. Let A be a braided algebra with braiding c¢. Let x,y € A.
The braided commutator of x,y is the element
[z,y]c = 2y — pe(z @ y).
PROPOSITION 6.2.17. Let A be a braided bialgebra.
(1) Let x,y € A. Then Alx,yl. = [A(z), A(y)]., where the braided commuta-
tor on the right-hand side is taken in AQA.
(2) Let x,y € P(A). Then
A[:C>y]c = [w7y]c ®1+1® [xay}c + (idA®A - 02)($ ® y)
PROOF. (1) The formula follows from
Apc = paga(A@ A)e = pagace 2(A® A),
where the first equality holds since A is an algebra map, and the second follows
from Lemma [6.T3|{), since A commutes with the braiding.
(2) By (1),
Az, yle =[Az), Al =1@z+2z0L10y+y® 1]
=1®z,10y+[10z,y®1+[z®1,10yl.+[z®1,y® 1.

The maps A - ARA, x — 1@z, and A - A®A, v — x ® 1, are braided algebra
morphisms. Hence

[zyle@l=lzeLy®l, 1&@y.=[10z11y,
and (2) follows from
(6.2.5) l®z,y®ll.=0,
(6.2.6) 22L,1Ry. =10y —F(z®y).

Recall that the braiding of A®A is co 9 = caciczca by Corollary [L7I0l Hence
fagacz2(z@101Qy) = paga(l®@c(z®@y) ®1) = *(z®y), and [B2Z0) follows.
To prove ([6.2.3), let c(z ® y) = >, yi @ z;, where z;,y; € A for all . Then
MA@ACZQ(l Rreyel) = MA@A(Z?:1 ¥ ®1®1®x;) = c(x ®y), which implies
. U

6.3. The fundamental theorem for pointed braided Hopf algebras

We define left and right coideal subalgebras of a braided Hopf algebra A as
in Chapter 1. A left coideal subalgebra K of A is a subalgebra such that
A(K) C A® K. Similarly, a right coideal subalgebra K of A is a subalgebra
such that A(K) C K ® A.

Let K be a left coideal subalgebra with ¢c(K®A) C A®Q K. Then AQK C A®A
is a subalgebra, and A ® K is an (A ® K, K)-bimodule, where A ® K is a right
K-module by multiplication on the right tensorand. Hence for any left K-module
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V with structure map A\, AQ K g V=2 ARV is an A ® K-module, hence a left
K-module by restriction via A with the braided diagonal action

AQidagv id 4 ®c®idy
_—

KQAQV AQK@ AoV 448Cdv, y o Ao KoV *22Y Ag V.

If K C A is a right coideal subalgebra with ¢(A® K) C K ® A, and V is a right
K-module, then V ® A is a right K-module in the same way by the braided diagonal
action.

The following type of Hopf modules for braided Hopf algebras is an important
tool in this section.

DEFINITION 6.3.1. Let A be a braided Hopf algebra with braiding c.

(1) Let K C A be a left coideal subalgebra with ¢(K ® A) C A® K. A left
Hopf module V € 4 M is a left K-module V and a left A-comodule such
that the comodule structure map dy : V — A® V is left K-linear, where
A®YV is aleft K-module by the braided diagonal action.

(2) Let K C A be aright coideal subalgebra with c(A® K) C K® A. A right
Hopf module V € M# is a right K-module V and a right A-comodule
such that the comodule structure map dy : V — V ® A is right K-linear,
where V ® A is a right K-module by the braided diagonal action.

Hopf modules in ‘f}./\/l and M’I“(, respectively, form an abelian category, where
morphisms are left A-colinear left K-linear and right A-colinear right K-linear
maps, respectively. In particular, A is an object in ]A(M, and in MIA}, where the
A-comodule structure is given by the comultiplication of A, and the K-module
structure by restriction of the multiplication in A. More generally, if K C K’ C A
are left or right coideal subalgebras, then K’ C A is a subobject in %M or in M4

For a braided Hopf algebra A with braiding ¢ we introduce the following nota-
tion.

S(A) = {K | K is a left coideal subalgebra of A, ¢(K ® A) = A® K},
Q(A) ={I| 1 is a coideal and right ideal of A, c(I ® A) = AR I}.

For a coideal I C A, we define A°A/T = {z € Az @2® =z @1}
The next theorem is the fundamental theorem for braided pointed Hopf alge-
bras.

THEOREM 6.3.2. Let A be a braided pointed Hopf algebra with braiding c. As-
sume that c(a® g) =g®a foralla € A, g € G(A).

(1) The maps
(K e&(A) | G(ANK is a group} = Q(A), K — KtA, T AT

are mutually inverse bijections.

(2) Let K € 6(A) and assume that G(A)NK is a group. Then Hopf modules
n ?}M and in M?}Cﬁ, are free over K. In particular, any left coideal
subalgebra K C K' C A is free as a left and as a right K-module, and
K C K’ is a direct summand as a left and as a right K-module.

(3) Let I € Q(A), and define K = A®°A/T. Then there is a left K-linear and
right A/I-colinear isomorphism A~ K @ A/I.

In (3), the module and comodule structures are the standard ones: A is a left

K-module by restriction, a right A/I-comodule by z — zW @z and K ® A/ is
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a left K-module by multiplication on the first tensorand, and a right A/I-comodule
by comultiplication on the second tensorand.

We note that in Theorem [6.3.2] G(A) is a group under multiplication by Propo-
sition Thus if K € &(A), then G(A) N K is a group if and only if for any
g € G(A) N K, the inverse g~! is in K. If all elements of G(A) have finite order,
this last condition is always guaranteed. But if g € G(A) is an element of infinite
order, then the condition fails for the left and right coideal subalgebra k[g] C A.

Before we prove the theorem, we need some preparations.

LEMMA 6.3.3. Let A be a braided Hopf algebra with braiding c.

(1) Let K € &(A). Then KT A € Q(A).
(2) Let I € Q(A). Then K := A4/ € G(A), and g=' € K for all elements
geGANK.

PROOF. (1) Since the augmentation map of A commutes with the braiding,
and ¢(K ® A) = A ® K by assumption, it follows that ¢(KT ® A) = A®@ K.
Since the multiplication of A commutes with ¢ and with ¢~ !, we obtain from this
equality that ( KTA® A) C A@ KTA and ¢ ' (A®@ KTA) C KTA® A. Thus
((KTA® A)=A® KTA.

By Lemma [[L.T.14] Kt is a coideal of A. Hence KA is a coideal of A, since
(KT@A) CAR K.

(2) Let m : A — A/I be the canonical map. By Lemma[25.0] K is a left coideal
of A. To see that K C A is a subalgebra, note that A ® I is an A® A-submodule,
and A® A/I is an A®A-quotient module of A® A as a right A® A-module. Here,
the assumption ¢(I ® A) C A® I is used. Let z € K and y € A. Then

(zy) M @ 7((2y) @) = (ida ® 7)((2V @ 2) (yM @ y?)))
= @ &) © y?)

(z@ 1)y 0y®)

2y @ (y®).

Thus the map (idg @ m)A : A - A® A/I is left K-linear, where A ® A/I is a
left K-module by multiplication on the first tensorand. In particular, if z,y € K,
then xy € K. Since ¢(I ® A) = A® I, the braiding of A induces an isomorphism
c: A/ I® A— A® A/I such that the diagrams

ARA—S 3 A0 A AQARA—2 s A0 AR A
7T®idAj( J{idA®Tr idA®7T®idAJ( lid,q@idA@Tr
AJT® A5 A0 A/l AQAT®A 2 A Aw AJI

commute, where €21 = (c®id4/r)(ida ®¢). Let

p: A= AR A/l x— (ida @ m)A(x) — 2z @ 7(1),
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thus K = ker(y). Since the comultiplication of A commutes with the braiding we
obtain a commutative diagram

AQA——S s ARA

‘P@idAJ JidA Q¢

AQATOA- S A A® Al

and it follows that ¢(K ® A) = A® K.
Finally, let ¢ € G(A) N K. Then g ® 7(g9) = g ® m(1). By multiplying with
g 2 ® g~ ! from the right, we see that ¢~! € K. ]

The next lemma is the braided version of Proposition (for left coideal
subalgebras).

LEMMA 6.3.4. Let A be a braided Hopf algebra with braiding ¢, and K C A
a left coideal subalgebra with ¢(K ® A) C A® K. Let A = A/KTA. Then the
canonical map

can: AQx A > AR A, z®y— zy® ®W,
is bijective.
PROOF. For any right A-module X, the maps
Py : XA XA z20a— zaM @a?,
@;(1 T XRA—-X®A, x®ab—>x$(a(1))®a(2),
are inverse bijections. In particular, the restriction of ® 4 induces a bijection
P:AQK - AQK.
Clearly, there is a unique right A-module structure on A ® K given by

AQK @ A48 4o Ag Kk M99, 4o K.

Then

ViAo Ko A2 4o KeA 2% AgK e A
is bijective. Let 3 : A® K — A and us : K ® A — A be the restrictions of
the multiplication map. The square in the following diagram is commutative, since
A:A— A®A is a braided algebra map, and ¢ commutes with the braiding of A.

ARK @ A ta@daidadue & jop @ A g A— 50

ida®e®ida—ida®pu2

ARK® A ARA—""5 A A/JKYA——0
Since both rows are exact, ® induces the isomorphism can. |

LEMMA 6.3.5. Let B C A be a ring extension, and assume that B is a direct
summand of A as a left or as a right B-module. Then the sequence

0BCAX Aoz A

is exact, where i1(z) =z ® 1, i2(x) = 1@z for all x € A.
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PrROOF. Let f: A — B be a left or right B-linear map such that f|B = idg.
IfreAwithe®1l=1®zin A®p A, then x = f(z) € B. O

PROPOSITION 6.3.6. Let A be a braided Hopf algebra with braiding c, and let
K C A be aleft coideal subalgebra with c(K®A) C AQK (a right coideal subalgebra
with c(A® K) C K ® A, respectively).

(1) Assume that any non-zero Hopf module V in M (M2, respectively)
contains a non-zero Hopf submodule which is K-free. Then any Hopf
module in LM (M3, respectively) is K -free.

(2) Assume that A is pointed and
(a) forallge G(A)NK, g7t € K,

(b) forallg € G(A) anda € K, c(a®g) = gR®a (c(¢g®a) =a®y,
respectively).
Then any Hopf module in 5+ M (M, respectively) is K -free.

PROOF. We only prove the version for left coideal subalgebras.

(1) This is a standard application of Zorn’s Lemma. Let V be a non-zero Hopf
module in 4 M and let S be the set of K-linearly independent subsets X of V/
such that ) _ Kz is a Hopf module in ﬁ./\/l. The set S is partially ordered by
inclusion. Clearly, § € S and the union of any totally ordered subset of S is an
element of S. Hence by Zorn’s Lemma there is a maximal element X of S. Let
U =) ,cx Kz and assume that U # V. Then V/U is a non-zero Hopf module in
f(/\/l. By assumption there is a Hopf submodule V' of V strictly containing U such
that V' /U is K-free. This is a contradiction to the maximality of X. Hence U =V
and V is K-free.

(2) Let 0 # V € £ M. Then there is a simple A-subcomodule W C V. Since
A is pointed, W is one-dimensional with basis element v such that dy (v) = g ® v,
where g € G(A). Then 6y (Kv) C A(K)dy (v) C A® Kv, since K is a left coideal of
Aand ¢(K®A) C A® K. We will show that Kv is K-free. Then the claim follows
from (1), since Kv € #M. The map ¢ : K — Kv, x + v, is a left K-linear
epimorphism. Note that by (b), for all z € K,

Sy (zv) = (M @ 2P (go0v) = 2Wg @ 2P,
Hence the kernel of ¢ is a left coideal of A, since for all z € ker(y),
0=dy(zv) = tWg @ 2Py, hence 0 =z @ Py,

Assume that ker(¢) # 0. Since A is pointed, ker(p) contains a simple left A-
subcomodule of the form ka, 0 # a € K, A(a) = h®a, h € G(A). Then a = he(a),
hence h € ker(p) C K. By (a), h™! € K. Since ker(y) is a left ideal of K, we
obtain the contradiction 0 # h™la = £(a) € ker(yp). O

DEFINITION 6.3.7. Let C be a coalgebra, and V € M. Then V is an injective
C-comodule if for all U, W € M, for all injective C-colinear maps i : U — W,
and for all C-colinear maps f : U — V there is a C-colinear map g : W — V with
f=gi.

Recall from Lemma [[2T0 that the functor X — (X ® C,idx ® A) is right
adjoint to the forgetful functor M — M.

PROPOSITION 6.3.8. Let C be a coalgebra, and V€ MC. The following are
equivalent.
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(1) V is an injective C-comodule.
(2) There is a vector space X such that 'V is isomorphic to a direct summand
of X ® C as a right C'-comodule.

PROOF. (1) = (2). The comodule structure map ¢ : V. — V ® C' is injective
and right C-colinear. By (1), there is a C-colinear map g : V @ C — V with
g0 =idy, and V@ C = 6(V) @ ker(g).

(2) = (1). Since a direct summand of an injective comodule is injective, it is
enough to show that X ®C' is injective for any vector space X. Let i : U — W be an
injective C-colinear map, and f : U — X ® C' a C-colinear map. By Lemma [[.2.10
there is a linear map g : U — X such that f(u) = g(u())®@u(y) forallu € U. Choose
a linear map g, : W — X with g = gyi. Then g : W = X ®C, w — g1(w(o)) ®w(y)
is C-colinear, and f = gaqi. O

PRrROOF OF THEOREM [6.3:21 We first prove (2). Let K C K’ C A be left
coideal subalgebras. Hopf modules in [A}M are K-free by Proposition Recall
that A is a Hopf module in f}./\/l, and K C K’ C A are Hopf submodules. Hence
K’ and K'/K are K-free by Proposition Thus the inclusion K C K’ of left
K-modules splits.

By Proposition [6.2.13] the antipode S of A is bijective. Hence AP is a braided
Hopf algebra with braiding ¢!, and S : A — AP is an isomorphism of coalge-
bras by Proposition Thus AP is a pointed coalgebra. Since K € G(A),
clTAK) C e (A® K) = K ® A. Hence K C AP is a right coideal subalge-
bra. By definition,

G(AP) ={ge A| A(g) = c(9®@9g)}-

Hence G(A°P) = G(A). It is now clear that the assumptions of Proposition
are satisfied for the right coideal subalgebra KP of A“°P?. Hence Hopf modules in
Mﬁcc(:; are free over K. Note that AP is a Hopf module in MIA}C;?,, and K C K'
are Hopf submodules. Thus K’ is free as a right K-module, and K C K’ is a direct
summand as a right K-module.

(1) Both maps are well-defined by Lemma [6.3.3] and the claim follows from

(a) Let K € &(A), and define I = KT A. Then K = A®4/1,
(b) Let I € Q(A), and define K = A4/, Then I = Kt A.

Proof of (a). The following diagram

0 K—" 3 A2 Age A

J{Ll l= loan
0—— AT 3 A — 5 AR AJI
is commutative with exact rows, where ¢; and (o are the inclusion maps, and the
lower sequence is the defining sequence of A°°4/1. The upper sequence is exact by
Lemma [6.3.5 and (2). Hence K = A®°4/1,
(b) Let # : A — A/I be the quotient map. By definition, for all z € K,
M @n(x?) = z@n(1), hence n(x) = (z)m(1). Thus K+ A C I. By Lemma[6.3.4]
it suffices to show that the composition

DAk AL AQA/KTA— A0 AJLL 2@y — oy @ n(y?),

is bijective.
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We have seen in the proof of Lemma [6.3.3((2) that the A/I-comodule structure
map A - A® A/l 2 — (M @ 1(z?), is left K-linear, where A ® A/I is a
left K-module by multiplication on the first tensorand. Hence A ®x A is a right
A/I-comodule with structure map

A9k A= ARk AR A/ 2@y — z®yV @ n(y?),

and ® is a surjective right A/I-colinear map, where A ® A/I is an A/I-comodule
with coaction idy ® A,4/7. We have to show that ® is injective. Since by Proposi-
tion 5.4.2(2), A/I is pointed and G(A) — G(A/I) is surjective, it remains to show
by Proposition 22214 that for all g € G(A) the induced map

D(kr(g)) : (A@x A)(kr(g)) = A (A/I)(kn(g))
is bijective. Since A is free as a right K-module by (2), it follows that
(Aek A)(kr(g)) = A®k Akr(g)).

It is clear that (A/1)(kw(g)) = kn(g). Moreover, A(km(g)) = Kg, since for all
T € A,

z € Alkn(g)) <= 2V e@r@?)=z@7(g) <= 297! €K,

where the last equivalence follows from the assumption that cla® ¢~ ') =g ' ®a
for all ¢ € A. Thus we are reduced to show that

A®g Kg— A®n(g), 2 ®ag - z(ag)V @ 7((ag)?) = zag ® 7(g),

is bijective. But this is obvious since the multiplication map A R Kg — A is
bijective with inverse z — xg~! @ g.

(3) Let A= A/I. Since K is a direct summand of the left K-module A by (2),
it follows from Lemma that A is a direct summand if the right A-comodule
A® A. Hence A is an injective A-comodule by Proposition

Since A is pointed, the map G(4) — G(A4), g — g, is surjective by Propo-

sition 5.4.2. Choose a map v : G(4) — G(A) with y(g) = g for all g € G(A).
Then the linear map f : kG(A) — A, g+ v(g), is right A-colinear. Note that f is
convolution invertible, since v maps group-like elements to invertible elements in A.
Since A is injective as a right A-comodule, f can be extended to a right A-colinear
map h: A — A, which is convolution invertible by Corollary 5.3.101

Define

Oh): AR A= ARA, @7+ zh(yW) @ y?@),

U(h): AR A— A®k A, 2§ — x ® h(Y).
Then ®(h) is bijective by Proposition [L2.T1(2), since v is invertible. Since h is
right A-colinear, can¥(h) = ®(h). Hence ¥(h) is bijective by (1). Thus the map
ARk K@A - ARk A, a®2®7 — a® xh(y), is bijective. Since K is a right
K-direct summand of A by (2), the induced map K ® A — A is bijective. a

We next prove a graded version of the decomposition in Theorem [6.3.2(3).

LEMMA 6.3.9. Let C be an Ng-graded coalgebra, X,Y and E Ng-graded right
C-comodules, and i : X — Y an injective No-graded right C-colinear map. If E
is an injective C'-comodule, and f : X — FE is an Ny-graded right C-colinear map,
then there is an Ng-graded right C-colinear map g : Y — E with gi = f.
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PRrROOF. Since FE is an injective comodule, there is a right C-colinear map
g:Y — FE with gi = f. Define g : Y — F by g(y) = g(y)(n) for all y € Y(n),
n > 0. Then g is a graded map with gi = f, and g is right C-colinear, since for all
y € Y(n), n > 0, the homogeneous part of degree n of §(g(y)) = (g ® ide)(0(y)) is
5(g(y)) = (g @ide)(3(y))- O

For any Ng-graded vector space V. = @, .,V (n) such that V(n) is finite-
dimensional for all n > 0, we denote by -

Hy =Hy(t) =) dimV(n)t"
n>0
the Hilbert series of V.

COROLLARY 6.3.10. Let A be a braided Hopf algebra with an Ng-grading as
a vector space such that A is a connected Ng-graded algebra and coalgebra. Let
I C A be an Ny-graded coideal and right ideal with ¢(I ® A) = A® I, and define
K = Ac© A/I'
(1) There is an Ny-graded left K-linear and right A/I-colinear isomorphism
A2 K® A/I, where K C A is an Ny-graded subalgebra.
(2) If A(n) is finite-dimensional for alln > 1, then Ha = HxHayr.

PROOF. Since A is connected, it is pointed by Proposition 5.4.2, and Theo-
rem applies. It follows easily from the definition that K C A is an Ny-graded
subalgebra. Let m : A — A/I be the quotient map. Note that I(0) = 0 since
I is a coideal. Hence A/I = @, ~,A(n)/I(n) is an Ng-graded coalgebra with
(A/T)(0) = A(0) = k1. The map f : (A/1)(0) = A(0) C A is Ny-graded and
right A/I-colinear, where A is a right A/I-comodule with coaction (idy ® 7)A. By
Theorem B.3:2(3), A is an injective right A/I-comodule. Hence by Lemma [(6:3.9]
f can be extended to an Ny-graded right A/I-colinear map v : A/I — A. By
Corollary E.3.10] v is convolution invertible. Then we have shown in the proof of
Theorem [6.3.2](3), that the map

KA/l - A, x7+— zv(y),

is bijective. This proves (1), and (2) is an immediate consequence of (1). O

6.4. The braided tensor algebra

We now introduce graded braided structures, but at this moment we will study
only Ny-gradings.

DEFINITION 6.4.1. Let I' be an abelian monoid. A I'-graded braided algebra
(coalgebra, respectively) is a braided algebra (coalgebra, respectively) A with
a I'-grading as a vector space such that A is a I'-graded braided vector space and
a [-graded algebra (coalgebra, respectively). A I'-graded braided bialgebra is
a braided bialgebra with a I'-grading as a vector space such that A is a I'-graded
braided vector space and I'-graded as an algebra and as a coalgebra. A I'-graded
braided Hopf algebra is a I'-graded braided bialgebra with an antipode.

PROPOSITION 6.4.2. Let A =(P,,5, A(n) be an No-graded braided bialgebra.

(1) Assume that the subbialgebra A(0) is a braided Hopf algebra. Then A is
a braided Hopf algebra.
(2) If the antipode of A(0) in (1) is bijective, then the antipode of A is bijective.
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Proor. (1) We apply Proposition B2.9(2)) to the Ny-filtered coalgebra with
filtration A(n) = P,,, A(i),n > 0. The restriction of the id4 to A(0) is invertible,
since A(0) has an antipode. Hence A has an antipode.

(2) The braided bialgebra A°P is an Ny-filtered bialgebra, and (A°P)(0) is the
braided bialgebra A(0)°P. Hence the antipode of A is bijective by (1) and Proposi-

tion G.2.8(2). O

Recall that by Corollary .. T0lthe tensor algebra T'(V) is an Ng-graded braided
vector space with braiding given for all m,n > 0 by

Cmp  VET @ VET 5 VO g O™,

For all n > 1, we denote the n-fold multiplication map of an algebra A with
multiplication p by p" : A2+t 5 A Thus p' is the multiplication of A, and
p = p(idg @ pn=t). We set u® = ids. If A is a braided algebra, it follows by
induction on n that p™ commutes with the braiding of A for all n > 0.

PROPOSITION 6.4.3. Let (V,c) be a braided vector space, and A a braided alge-
bra.

(1) The tensor algebra T(V') is an Ny-graded braided algebra.

(2) For every map of braided vector spaces f : V. — A there is a unique
morphism of braided algebras ¢ : T(V) — A such that |V = f. If A is
an Ny-graded braided algebra, and f(V) C A(1), then ¢ is Ng-graded.

ProoF. (1) It is clear that the unit map n : k — T(V) commutes with the
braiding of T'(V). The identity maps V&™ @ V& — V&mtn my n > 0, are the
components of the multiplication of the tensor algebra T'(V'), hence they commute
with the braiding by Corollary [7I0(5). Thus T(V) is an Ny-graded braided
algebra.

(2) We have to show that the algebra map ¢ : T(V) — A determined by
|V = f is a map of braided vector spaces.

For all m,n > 1 the following diagram commutes, where ¢ denotes the braiding
of V and A, respectively.

V@m ® V®n f®m,®f®n A®7n ® A®n Hm,—1®un—1 A ® A
f®n®f®m Hﬂ,—1®um—l

on R 1 em s AN ® A®m AR A

This is clear for the left square, since f is a map of braided vector spaces. The
right square commutes by LemmaB.1.3/(4), since y™~! and p"~! commute with the
braiding of A. The commutativity of the outer square implies that ¢ : T(V) — A
is a map of braided vector spaces. O

LEMMA 6.4.4. Let A be a braided bialgebra. Then the map
fiA—=ARA, a—a®1+1®a,

commutes with the braiding of A, and P(A) ={a € A|A(a) =a®1+1R®a} isa
categorical subspace of A.

ProoF. By assumption, n : k - A and A : A - A®A commute with the
braiding of A. Hence by LemmalG.T3(1), f = n®ida +id4 ®n and A — f commute
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with the braiding of A. Then P(A) = ker(A — f) C A is a categorical subspace by
Lemma O

LEMMA 6.4.5. Let (C,c) be a braided vector space, and let A : C' — C & C and
e : C =k be linear maps. Assume that
(1) e commutes with the braiding of C,
(2) (5 ® ldc)A = idc,
(3) A is a braided linear map.
Then A commutes with the braiding of C.

Proor. The diagram

CeC—S 50 C

lA@A lA@A

C2,2

C®2 @ (%2 —— C%? @ C®?
JE@idc@idc®2 J{idc®2 ®e®ido
CoC®2 22 0020

commutes, since the upper part commutes by (3), and the lower part by (1) and
Lemma [6.1.7 Hence (A ® idg)c = c1,2(ide ® A) by (2), and similarly one proves
that (ide ® A)e = c21(A ®id¢). Thus A commutes with the braiding of C. O

PROPOSITION 6.4.6. Let (V,c) be a braided vector space. The tensor algebra
T(V) is an Ng-graded braided Hopf algebra with comultiplication A and counit €
given by A(v) =v®1+1Q®wv, e(v) =0, forallveV.

ProOOF. (1) By Proposition £43(1) and Remark E2Z2(1), T(V)QT(V) and
T(V) are algebras in C(T'(V), T (V)). By the universal property of the tensor algebra
there are algebra maps

A:T(V) = T(V)RT(V), e:T(V)—k,

determined by A(z) =z®1+1Qwx, e(x) =0, z € V. To see that T'(V) is a braided
bialgebra, it remains to prove
(a) € commutes with the braiding of T'(V), and (idpv) ® €)A = idpy),
(E ® idT(V))A = idT(V);
(b) A commutes with the braiding of T'(V'), and A is coassociative.

(a) Since e(V®") = 0 for all n > 0, it is easy to see that ¢ commutes with
the braiding. Hence by Remark 6.2.2(2), idpvy ® € and € ® idp(yy are algebra
morphisms in C(T(V),cT(V)). Then the equations in (a) follow from the universal
property of the tensor algebra.

(b) The linear map f : T(V) = T(V)QT(V), a — a®1+1®a, is a morphism of
braided vector spaces by Lemma and Lemma [6.1.3/(4). Hence the restriction
of f to V is braided, and by Proposition [643(2), A : T(V) — T(VQT(V) is
braided. By Lemma [645] and (a), A commutes with the braiding of T'(V).

We can now prove coassociativity. The maps

idpy @ A:T(V)RT(V) = T(V)Q(T(V)RT(V)),

A®idry) : TV)RT(V) = (T(V)QT(V))2T(V)
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are algebra maps by Remark [6.2.2(2). By Remark [6.2.2/(1),
TWMR(T(WV)QT(V)) = (T(V)T(V))®T(V) as algebras.

Hence the diagram

(V) T(V)QT(V)
lA lidT(V)(@A
A®idr(v)
T(V)®T(V) T(V)eT(V)QT(V)
commutes, since it commutes on V.
Finally, T(V') has an antipode by Proposition [5.2.9((3). |

PROPOSITION 6.4.7. Let V' be a braided vector space, and A a braided bialgebra.
For every map of braided vector spaces f : V. — P(A), there is a unique morphism of
braided bialgebras ¢ : T(V) — A such that |V = f. If A is a connected Ny-graded
bialgebra, and im(f) C A(1), then ¢ is No-graded.

PROOF. Recall that P(A) C A is a categorical, hence a braided subspace by
Lemma 644l By Proposition [6.4.3], there is a uniquely determined map of braided
algebras ¢ : T(V) — A extending f. It remains to show that ¢ is a coalgebra map,
that is, the diagrams

TWV)—2 4 TWV)—% 4
P JA \ /
PRy k

T(V)QRT(V) —= ARA

commute. By Proposition .23l ¢ ® ¢ is an algebra map. Hence all maps in
the diagrams are algebra maps, and it is enough to prove commutativity on the
generators in V. It is clear from the assumption on f that both diagrams commute
on elements of V. O

REMARK 6.4.8. By Proposition [6.4.7] any morphism f : V — W of braided
vector spaces defines a morphism T'(f) : T(V) — T(W) of Ny-graded braided Hopf
algebras determined by T'(f)|V = f. Thus the tensor algebra construction is a
functor from braided vector spaces to Ny-graded braided Hopf algebras.

By Proposition [6.4.6] the tensor algebra of a braided vector space is an Np-
graded coalgebra. In the next theorem we compute the components of its comulti-
cation (see Definitions 1.2.26(1) and [312I).

THEOREM 6.4.9. Let (V,c) be a braided vector space, and n > 2. The comulti-
plication of T'(V) is denoted by A.
(1) Foralll1<i<n-—1, A; ;i = Sin—i in End(V®").
(2) Ayn =S, in End(V®").

PRrROOF. See the proofs of Theorem and Corollary [[L9.7 O
Finally we note a useful property of Ny-graded braided coalgebras.

PROPOSITION 6.4.10. Let C' be an Ng-graded braided coalgebra which is a strictly
graded coalgebra. Then CQC' is strictly graded.

ProoOF. This follows from Proposition [[L3.17 O
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6.5. Notes

[6.1], The definitions of maps commuting with the braiding and of braided
algebras, coalgebras, and Hopf algebras are taken form [Tak00] and [Tak05], see
also [HH92].

Proposition 6.2.11 and Corollary are observed in [Sch98].

The non-braided version of Theorem is a result of [Mas91]. We
follow the proof sketched in the end of [Sch90]. The freeness of Hopf modules is
shown by an argument in [Rad78].

Theorem for a connected Hopf algebra in the braided category £YD is
shown in |[AA™T14], Proposition 3.6.

In [Khal5|, Section 6.2, another proof of Proposition is given by
explicit calculations in the group algebra of the braid group.

We want to mention the construction of an Ny-graded braided Hopf algebra
which is dual to T'(V) in Section [64] see [Ros95], [Sch96], [Tak05], or [Khal5|,
Chapter 6.

Let (V,c¢) a braided vector space, and T(V) = @,,~, V®" be the braided vec-
tor space with braiding ¢7(V) defined in Corollary T(V) is a Ny-graded
coalgebra with comultiplication given by

A(U1®"'®Un) :Z(Ul®"'®7}i)®(ﬂi+1®"'®vn)
i=0
for all n > 0, vy,...,v, € V. We define another algebra structure on T'(V') by

(Ul®"'®vi)'(Uz‘+1®"'®vn) = Z Cw(v1®"'®vn)
WES; n—i
for all n > 0, v1,...,v, € V. Recall from Definition [L81] that S;,_; denotes the
set of all i-shuffles in S,,. Then T'(V') with multiplication and comultiplication just
defined and braiding ¢7(V) is an Ny-graded braided Hopf algebra called the shuffle
algebra of (V,¢) and denoted by Sh(V).

Sh(V) is Sweedler’s shuffle algebra in [Swe69], Chapter XII, when ¢ is the
twist map. If V' is finite-dimensional, then Sh(V) is isomorphic to the graded dual
of T(V).

Let S : T(V) — Sh(V) be the algebra morphism with S(v) = v for all v € V.
Then S is a morphism of Ny-graded braided Hopf algebras, and for all n > 0, the
n-th component of S is the braided symmetrizer map

Sp=> cy: VI VO

wWES,,
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CHAPTER 7

Nichols algebras

In this short chapter we first define and characterize the Nichols algebra of a
braided vector space, and of Yetter-Drinfeld modules over any Hopf algebra with
bijective antipode. We proceed exactly as we did for Yetter-Drinfeld modules over
groups in Chapter [l

In Section we introduce the important non-degenerate duality pairing of
Nichols algebras. This is the starting point of the theory of reflections of Nichols
algebras in Part 3 of the book. In the last section we define differential operators
for Nichols algebras. In the case of Yetter-Drinfeld modules over groups they are
skew derivations which form a very efficient tool for computations, for example to
decide whether an element of the Nichols algebra is non-zero.

7.1. The Nichols algebra of a braided vector space
and of a Yetter-Drinfeld module

In Section [6.4] we have defined the tensor algebra T(V) of a braided vector
space (V, ¢) as an Ny-graded braided Hopf algebra. In this section we define a basic
universal quotient Hopf algebra of T(V'). Recall the definition of the maps A~ in
Definition

DEFINITION 7.1.1. Let (V,¢) be a braided vector space. Then
B(V.c) = B(V) = T(V)/ @ ker(A[)
n>2
is called the Nichols algebra of (V,c¢). Let
I(V,¢) = I(V) = @ ker(A7M).
n>2
As a vector space, B(V) = @@,,5 B" (V) is Np-graded, where

B (V) =kl, BYV)=V, and B"(V) = V& /ker(AT")) for all n > 2.
THEOREM 7.1.2. Let (V,¢) be a braided vector space.
(1) (a) I(V) is the largest coideal of T(V) contained in @, ~, VE"
(b) I(V) is the only coideal I of T(V') contained in ®n>_2 Ve such that
P(T(V)/I)=V.
(2) I(V) is a categorical subpace of T(V'), and B(V') is an Ng-graded braided
graded Hopf algebra quotient of T(V). As a coalgebra B(V') is strictly

graded, and as an algebra it is generated by B*(V) = V.
(3) Foralln>2let S, : V&™ — VO be the braided symmetrizer map. Then

BV)=kloV o@D Ve /ker(S,).

n>2

267

The preliminary version made available with permission of the publisher, the American Mathematical Society.
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PRrOOF. (1) is a special case of Theorem

(2) The subspace I(V) C T(V) is categorical by Lemmas GI3|2) and
Thus Lemma 6.2.10 implies that the ideal of T'(V') generated by I(V) is a coideal.
Hence I(V) is an ideal of T(V') by (1)(a). The coalgebra B(V) is strictly graded by
(1). Hence T(V)/I(V) is a braided quotient bialgebra of (V') by Lemma[6.2.5] and
the quotient T'(V)/I(V) is an Ny-graded braided vector space by Definition
Finally, B(V) has an antipode by Proposition E.2.9(3).

(3) follows from Theorem [6.4.9] since by definition

BV)=ka VeV /ker(Arn).
n>2
O

The following rather pathological example shows some phenomena, which are
out of the scope of the current developments.

EXAMPLE 7.1.3. Let V be a vector space and let ¢ = idygy. Then (V,c¢) is a
braided vector space, and for all n > 2, S,, = nlidyen : V¥ — V®? Thus

B(V) = T(V) if char(k) = 0,
| T(V)/(VP) if char(k) = p > 0.
If char(k) = p > 0 and V is finite-dimensional, then the Nichols algebra B(V) is a

finite-dimensional Ny-graded braided Hopf algebra. By Lemma 4.6, B(V) is not
a Frobenius algebra if dim V' > 2, since

BV)=koVaeVe?g...over-b
and the space V®@~1 of left and right integrals is not one-dimensional.

REMARK 7.1.4. By Proposition [6.4.7] any morphism f : V — W of braided
vector spaces induces a morphism T'(f) : T(V) — T(W) of Ny-graded braided
bialgebras. Since T'(f) is an Ny-graded coalgebra map, it maps I(V) to I(W).
Hence f defines a morphism B(f) : B(V) — B(W) of Ny-graded braided Hopf
algebras determined by B(f)|V = f. Thus the construction of the Nichols algebra
is a functor from braided vector spaces to Ny-graded braided Hopf algebras.

LEMMA 7.1.5. Let (V,¢) be a braided vector space, and U C 'V a braided sub-
space. Then the inclusion map defines an injective map B(U) — B(V') of No-graded
braided Hopf algebras.

PROOF. Since ¢((U® U) = U @ U, T(U) C T(V) is an Ny-graded braided
subcoalgebra, and it follows from the definition that I(U) = I(V) N T(U). O

DEFINITION 7.1.6. Let (V,¢) be a braided vector space. An Ny-graded con-
nected braided Hopf algebra R is a pre-Nichols algebra of V, if

(N1) R(1) 2V as braided vector spaces, where the braiding of R(1) is induced
by the braiding of R,
(N2) R is generated as an algebra by R(1).

A pre-Nichols algebra of V' is a Nichols algebra of V, if
(N3) R is strictly graded, that is, P(R) = R(1).

THEOREM 7.1.7. Let (V,c) be a braided vector space.
(1) B(V) is a Nichols algebra of V.
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(2) Let R be a pre-Nichols algebra of V and f : R(1) =V an isomorphism
of braided vector spaces.

(a) There is exactly one morphism m : R — B(V') of No-graded braided
Hopf algebras such that f is the restriction of m to R(1), and m is
surjective.

(b) 7 is bijective if and only if R is a Nichols algebra of V.

PrROOF. (1) is shown in Theorem [[T2] and (2) follows as in the proof of
Theorem [[LG.I8 O

COROLLARY 7.1.8. Let A be a braided bialgebra. Assume that A =@, -, A(n)
is an No-graded vector space such that A is a connected Ny-graded braided algebra
with A(1) = P(A). Let V C A(1) be a categorical subspace of A. Then the subal-
gebra K[V] generated by V is a subcoalgebra of A, and an Ny-graded braided Hopf
algebra isomorphic to B(V).

PRrROOF. By Lemma 6.2.10, the subspaces V™ C A, n > 0, are categorical. The
subalgebra B = k[V] is an Ny-graded braided algebra with B(n) = V™ for alln > 1.

Since V' C P(A), e(v) = 0 for all v € V. Hence e(v) = 0 for all v € V™ with
n > 1. We show by induction on n that A(B(n)) C @, B(i) ® B(n — i) for all
n > 1. This is clear for n = 0. Let € B(1), y € B(n), n > 0, and assume that

Aly) =y @ y® e P B(i) ® B(n —i).
=0

Then
Alzy) = (z@1+10z) (Y 0 y?)
— 2y @y @ 4 e(r @y W)y®

n n
€Y B(1)B(i)® B(n—1i)+ Y _c(B(1) ® B(i))B(n — i).
i=0 i=0
Hence A(zy) € @?:01 B(i) ® B(n+ 1 —1), since ¢(B(1) ® B(i)) = B(i) ® B(1) for
all 4.
We have shown that k[V] is an Ny-graded braided bialgebra. It is strictly graded
as a coalgebra, since P(A) = A(1). Hence k[V] = B(V) by Theorem [[.T7(2). O
COROLLARY 7.1.9. Let (V, ¢) be a braided vector space, and let S be the antipode
of B(V,c).
(1) S is bijective, and for allz € V, S(z) = —=x.
(2) B(V,c)°? = B(V,c™ 1), and I(V,e) = I(V,c1).
(3) S : B(V)°P — B(V)P is an isomorphism of No-graded braided Hopf
algebras.

ProOF. (1) and (3) follow from Propositions and [6:2.8(2)(c). For (2)

note that B(V, ¢)°°P is a pre-Nichols algebra of (V, ¢~!), and that P(B(V,c)P) = V.
Hence B(V,c)®? = B(V,c™!) by Theorem [LI7(2), and B(V,c) = B(V,c™!) as
algebras. 0

REMARK 7.1.10. Let (V,¢) be a braided vector space. The defining ideal I(V)
of the Nichols algebra is an Np-graded and categorical subspace and a coideal of
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T(V). Hence for all N > 2,

In(WV) = EB ker(Sy,)

2<n<N

is an Ny-graded coideal of T'(V'), and a categorical subspace. The two-sided ideals
(In(V)) of T(V) generated by In(V) are coideals and categorical subspaces by
Lemma 6.2.10. Hence the quotients T'(V')/(In(V)) are pre-Nichols algebras of V.

We apply Theorem [6:32]to the Hopf algebra quotient B(V) of the tensor algebra
of a braided vector space. In particular, it turns out that the Hilbert series of B(V)

only depends on the dimensions of the kernels of all the maps S,,_1 1 : V& — V&7
n > 2.

PROPOSITION 7.1.11. Let (V,¢) be a braided vector space, 7 : T(V) — B(V) the
canonical surjection, and K = T(V)*°BWY) where T(V) is a right B(V')-comodule
by (idpoy @ m)A.

(1) K C T(V) is an No-graded left coideal subalgebra, and there is an No-
graded, left K-linear and right B(V')-colinear isomorphism

T(V) = K @ B(V).

(2) For alln > 2, K(n) = ker(Sp,—11 : VO — V™) and K(n) contains
all primitive elements of T(V) of degree n. As a right ideal of T(V), the
defining ideal I(V') of B(V) is generated by €B,,~, K (n).

PRrOOF. (1) By Theorem [[T.2(2), I(V) is a categorical Ny-graded coideal and
ideal of T(V'). Thus K is a left coideal subalgebra of T (V') by Theorem 6321 and
the remaining claim is a special case of Corollary

(2) By definition, K = €,,~, K(n), where for all n > 0,

Kn)={zecv® |20 erz?@)=2z1}.

In particular, K(0) = k1, and K(1) = 0. Recall that for z € V®" and n > 2,
Alz)=1®z+z@1+ Z?;ll Ain—i(z), where A; ,,_; = S; ,—; by Corollary [
Hence
n—1
zeK(n) <= 10m,(z) + Y (dye: @ T )(Sin—i(x)) =0
i=1

< m(z) =0, and forall 1 <i¢<n-—1,
(idv@i ® Wn,i)(Sim,i(x)) =0.
Since ker(m,,) = ker(S,,) for all m > 1, we conclude that
Kn)={zecV® | S,(x)=0,5,_;""Sin_i(x) =0forall 1 <i<n-—1}
= ker(Sn_l’l),

where the last equality holds by Corollary [L8B]) and ().

Primitive elements x of T'(V) of degree n are contained in I(V), hence in
K = T(V)eTW)/IV) by definition. Finally, I(V) = K+T(V) follows from Theo-
rem O
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COROLLARY 7.1.12. Let (V,c) be a finite-dimensional braided vector space, and
d,, = dimker(S,_11 : V" — V@) for all n > 2. Then

HT(V)(t) = HB(V) (t) (1 + Z dntn).

n>2

ProOOF. This follows from Proposition [[.T.11] and K(0) =k1,K(1)=0. O

We now extend the definition of the Nichols algebra of a braided vector space in
the obvious way to Yetter-Drinfeld modules. The Nichols algebra becomes a Hopf
algebra in the braided category #YD and not just a braided Hopf algebra. Thus
we extend Section from C = gyD, G a group, to C = g)}D, H a Hopf algebra
with bijective antipode.

DEeFINITION 7.1.13. Let H be a Hopf algebra with bijective antipode, and
Ve gy’D. Then

B(V) =T(V)/ @ ker(A1")
n>2

is called the Nichols algebra of V.

An Ny-graded connected Hopf algebra R in gyD is a pre-Nichols algebra
of V if

(N1) R(1) 2V in £YD,

(N2) R is generated as an algebra by R(1).
A pre-Nichols algebra of V is a Nichols algebra of V, if

(N3) R is strictly graded, that is, P(R) = R(1).

THEOREM 7.1.14. Let V € HYD.
(1) B(V) is a Nichols algebra of V.
(2) Let R be a pre-Nichols algebra of V and f : R(1) = Voan isomorphism

o H

mn 7YD.

(a) There is exactly one morphism © : R — B(V) of Ng-graded Hopf
algebras in YD such that f is the restriction of m to R(1), and 7 is
surjective.

(b) 7 is bijective if and only if R is a Nichols algebra of V.

PROOF. See the proof of Theorem [[.1.7] or |

Direct sum decompositions of Yetter-Drinfeld modules give rise to very impor-
tant gradings of the Nichols algebra.

COROLLARY 7.1.15. Let I' be an abelian monoid, H a I'-graded Hopf algebra
with bijective antipode, and let V,W be I'-graded objects in LY D.

(1) The Nichols algebra B(V) is a I'-graded Hopf algebra quotient of T(V') in
BYD, where B(V)(y)NV =V (y) forally €T, and B(V) = @,,~, B"(V)
is a decomposition into I'-graded subobjects in HYD.

(2) Let f : V. — W be a morphism of '-graded objects in 2YD. Then there
is a unique morphism B(f) : B(V) — B(W) of I'-graded Hopf algebras in
HBYD such that B(f)|V = f. If f is injective (surjective, bijective) then
B(f) is injective (surjective, bijective, respectively).
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Proor. (1) By Proposition [5.5.5] the tensor algebra T'(V) is a I'-graded Hopf
algebra in gyD. Hence for all n > 2, the map

n— 8
A s VE C T(V) AL pvyen T plyyen

is a I'-graded map of Yetter-Drinfeld modules, and I(V)(n) = ker(A;») and B™(V)
are -graded objects in Z£YD.

(2) The uniqueness of B(f) is clear. The existence of B(f) as a morphism of
No-graded Hopf algebras in #YD follows by the argument in Remark [I.4l The
morphism B(f) restricted to B(V)(n), where n € Ny, is induced by f®" and hence
it is I'-graded. Indeed,

B()V(r)-- Vi) = f(V(n) - f(V(m)) € BW)(7)

for all n € Ny and v,71,...,7 € I' with v = v1 + --- + 7,. The claim on the
surjectivity of B(f) is obvious. The injectivity of B(f) for an injective f follows
from the equations

Apn O = fET AL,

for all n € Ng. O

REMARK 7.1.16. In Corollary [T.T.I5l(2), ker(f) is clearly contained in ker(B(f)).
In general, however, ker(B(f)) is larger than the ideal generated by ker(f). Indeed,
assume that k has characteristic 2. Let ¢ € Z and V = V(1,2) € 2YD as in
Example Then V = V, and there is a basis v1,v2 of V with g - v1 = vy,
g-v2 =v; +ve. Let W =kw € ZYD with §(w) = g ® w, g-w = w. Then there
is a unique morphism f : V — W of Yetter-Drinfeld modules with f(ve) = w and
ker(f) = kv;. Moreover, B(W)(2) = 0 and

B(V)(2) = V®? /span, {v}}.
Hence v3 € ker(B(f)) but vZ ¢ (v1).

Nichols algebras of Yetter-Drinfeld modules play an important role in the clas-
sification theory of Hopf algebras. They appear naturally as subalgebras of graded
Hopf algebras associated to the coradical filtration.

COROLLARY 7.1.17. Let A be a Hopf algebra, and assume that its coradical
H = Corad(A) is a Hopf subalgebra of A with bijective antipode. Let gr A be the Ng-
graded Hopf algebra associated to the coradical filtration of A, and let w:grA — H
be the projection onto elements of degree 0. Then

RZACOH={$€A|l‘(1)®ﬂ'(l‘(2))=l‘®1}

is a Hopf algebra in gyD. The space V.= P(R) of primitive elements in R is an
object in LYD, the subalgebra of R generated by V is isomorphic to B(V) as an
No-graded Hopf algebra in YD with grading R(n) = RNgr A(n) for alln > 0, and

B(V)#H C R#H =grA
is a Hopf subalgebra.

Recall from Remark (E.3.17 that the assumption on the bijectivity of the an-
tipode of H can be dropped.
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Proor. By Corollary R is a strictly No-graded Hopf algebra in £YD,
and R#H = gr A. Hence the subalgebra k[V] C R generated by V is a pre-Nichols

algebra of V. It is strictly Ng-graded as a subcoalgebra of the strictly graded
coalgebra R. By Theorem [[TT4 k[V] = B(V). O

7.2. Duality of Nichols algebras

DEFINITION 7.2.1. Let X,Y be vector spaces, and let (, ): X ® Y — k be a
bilinear form. The extended form of (, ) is the unique bilinear form

(,):TX)RT(Y)—=k

on the tensor algebras such that

(7.2.1) (1,1) =1,
(7.2.2) (T™(X), T™(Y)) =0 for all n #m,
(7.23) (on -+ 220,192 ) = [ [ (@030

i=1
foralln>1,1<i<n,x; € X,y;, €Y.
Rule [Z23)) is the natural choice from a categorical point of view, since it makes
sense in any monoidal category instead of vector spaces. Recall that a bilinear form

(,): X®Y — kis non-degenerate if the induced maps X — Y™*, z — (y — (x,y)),
and Y — X*, y— (x — (x,y)), are injective.

LEMMA 7.2.2. Let X,Y be vector spaces, and { , ) : X @ Y — k a bilinear
form. Let (, ): T(X)®T(Y) — k be the extended form of (, ).

(1) If {, ) is non-degenerate, then the extended form is non-degenerate.

(2) If (, ) is non-degenerate, X,Y are finite-dimensional, and (Y,d) (respec-
tively, (X,c)) is a braided vector space, then (X,c) (respectively, (Y,d))
is a braided wvector space, where the braiding of X (respectively, Y ) is
uniquely determined by the equation

(c(2),y) = (2, d(y))
for all z € T?*(X), y € T2(Y).
(3) Let (X,c) and (Y,d) be braided vector spaces, and assume that

(c(x),y) = (x,d(y))
for allx € T*(X), y € T*(Y). Then
(Sn(2),y) = (x,5n(y))
forallx e T"(X),y e T*(Y), n > 1.
PROOF. (1) We show that T"(X) — T™(Y)*, x — (y — (,y)), is injective for
all n > 2. Let x € T"(X) and suppose that (z,y) = 0 for all y € T™(Y"). Write

=) ._, x;Qx};, where z1,...,z, are linearly independent in X, and 2, € T" (X))
for all 5. Then for all y € T"~*(Y) and y € Y,

0= (2,9 @y) =D (w:,y)(x}y) = <Z(:¢;, y’)xi,y> .

i=1 i=1
Hence (2},y’) = 0 for all 4, and the claim follows by induction. The injectivity of
T"(Y) — T™(X)* follows in the same way.
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(2) We assume that (Y,d) is a braided vector space (the case when (X, c¢) is
braided is treated in the same way). Since the extended form (, ) of {, ) is
non-degenerate and X, Y are finite-dimensional, the map

THX) = TM(Y)" z = (y = (2,9)),
is an isomorphism for all n > 0. In particular, if n = 2, we can define for each
r € T?(X) a unique element c(z) € T?(X) such that (c(z),y) = (x,d(y)) for all
y € T3(Y). Then c: X ® X — X ® X is an isomorphism. We have to check the
braid relation ¢jcaci = cacica on X®3. Note that by construction,

(7.2.4) (ci(x),y) = (@, dn—i(y))
forallz e T"(X),y e T*(Y)and 1 <i<n-—1.
In particular for all z € T3(X), y € T3(Y),
(crezcr(2),y) = (2, dadida(y)) = (2, d1d2di (y)) = (c2c1c2(2), ).

Hence cicac(z) = cacica(z) for all x € T3(X) by non-degeneracy of (, ).
(3) It follows from the assumption in (3) that the braidings of X and Y satisfy
(CZ4). Hence by Remark [[8@ for any w € S, with reduced decomposition

(ily s 7it)7
(cw(®),y) = (ciy -+ €3, (2),y) = (&, dn—i, -+ dn—iy (¥) = (@, dwgww, (¥))
for all z € T"(X), y € T"(y). Then (3) follows from the definition of S,,. O

THEOREM 7.2.3. Let (X, ¢), (Y,d) be braided vector spaces, { , ) : X @ Y =k
a bilinear form, and ( , ) the extended form of (, ). If (c(x),y) = (z,d(y)) for all
r € T?(X) and y € T*(Y), then there exists a unique bilinear form

() TX)eT(Y)—k
extending the given form on X ® Y such that
(7.2.5) 1,1)=1,
(7.2.6) (T™(X), T™(Y)) =0 for all n # m,
and for all w,z € T(X) and y,z € T(Y)
(7.2.7) (wz,y) = (w,y?)(z,yV),
(7.2.8) (z,y2) = (@, y)(zD, 2).

If the form { , ) : X ® Y — k is non-degenerate, then the defining ideals of the
Nichols algebras of X and Y are given by

(7.2.9) I(X)=T(Y)" ={z e T(X)| (x,T(Y)) = 0},
(7.2.10) 1Y) = T(X)* = {y € T(V) | (T(X),y) = O}.

PROOF. We define a bilinear form (, ) : T(X)® T(Y) — k by (C23), (C216),
and

for all z € T"(X), y € T*(Y), n > 0, where we have used Lemma [[.22(3). To
prove (T270),let n >1,1<i<n-—1,and w € T" 4 X), x € THX), y € T"(Y).
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Then, by Lemma [T.2.23)),

(wz,y) = (wz, Sp(y))
= (wz, (Si ® Sn— Z)Si,nfi(y)) (by (LEI0))
= (Sn—i(w) ® Si(x), Sin—i(y)) (by Lemma [T.2.2/[3]))
= (Sp—i(w) ® Si(x), Ain—i(y)) (by Theorem [L.9.])
= (Sn—i(w),y®)(Si(2),yV) (by (Z2.4))
= (w,y?)(z,y).

Equation (C.2.8) is proved in the same way, beginning with
(z,y2) = (Sn(2),y2), if v € T"(X).

The uniqueness of the form (, ) on the tensor algebras is clear by induction using

@2.1).
If (,): X®Y — k is non-degenerate, then the extended form ( , ) is
non-degenerate by Lemma [(22)(]). Hence, for all n > 2,

{z eT(X) | (2, T"(Y)) = 0} = {z € T"(X) [ (Sn(x), T"(Y)) = 0}
= ker(S,)
= I(X)(n),

where the last equality holds by Corollary [L9.7 Thus I(X) = T(Y)* by ([TZ6),
and I(Y) = T(X)" is shown in the same way.

DEFINITION 7.2.4. Let (V,¢) be a finite-dimensional braided vector space, and
let (, ): T(V*)®QT(V) — k be the form of Definition [[.ZT]extending the evaluation
V*®V — k. The dual braiding c¢: V*® V* — V* ® V* is defined by

(7.2.11) c(fog)hvow) =(f®gcvew)
for all f,g e V* and v,w € V.

Note that the dual braiding of a finite-dimensional braided vector space is a
well-defined braiding by Lemma [[2:2)(2). We finally can formulate the very useful
duality property of Nichols algebras.

COROLLARY 7.2.5. Let (V,¢) be a finite-dimensional braided vector space, and
let B(V) and B(V*) be the Nichols algebras of V' and V* with respect to ¢ and to
the dual braiding, respectively. Then there is a unique non-degenerate bilinear form
(,):B(V*)®B(V) = k extending the evaluation map {, ) : V*®@V — k such

that
(7.2.12) (1,1) =1,
(7.2.13) (B"(V*),B™(V)) =0 for all n # m,

and for all f,g € B(V*) and v,w € B(V)

(7.2.14) (fg,v) = (f,0®)(g,0M),
(7.2.15) (f,ow) = (P ) (fD w).
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ProoF. We apply Theorem [[.2.3] to the evaluation form (, ): V* @V — k.
By dividing out the radicals I(V*) = T(V)* and I(V) = T(V*)* of the form in
(,): T(V*)®@T(V) = k in Theorem [.2.3] we get a non-degenerate form on the
Nichols algebras satisfying all the claims. The uniqueness of the form is clear by

CZId). O

REMARK 7.2.6. We note that the form in Corollary is defined explicitly
as follows. Let (, ): T(V*) @ T(V) — k be the extended form of the evaluation
(,)Y:V*®V = k. Then (, ): B(V*)®B(V) — k is defined by

<fn...f1,v1...vn> — (fn®...®f178n(vl®...®vn))
forall f; e V* v; €V, 1<i<mn,n>2, where
Sp(v1 @+ @ vp) = A1n(v1 @ - @ vp,)
is defined with respect to the tensor algebra T'(V').

Let H be a Hopf algebra with bijective antipode. We apply the results in this
section to Yetter-Drinfeld modules.

LEMMA 7.2.7. (1) Let X,Y € YYD, and let { , ) : X®@Y — k be a
bilinear form with extended form (, ). If {, ) is a morphism in HYD,
then (', ) is a morphism in EYD, and

(c(x),y) = (z,c(y))

for allz € T*(X), y € T*(Y).
(2) LetV € LYD be finite-dimensional. Then the dual braiding of the Yetter-
Drinfeld braiding cyv is the braiding of the (left) dual V* in EYD.

PRrROOF. (1) We show by induction that the extended form restricted to the
subspace T"(X) @ T™(Y) for n > 1 is H-linear and H-colinear. Let n > 2, h € H,
andz € X,yeY,ueT" 1(X),ve T (V). Then

(hy - (u®@ ), hiay - (y@v)) = (hay - u @ hyx, hes) -y @ hgy - v)
= (h1) - w, by - v) bz, hesy - y)
= (hq) - u, hesy - v)e(hz) (@, )
= (hy - u, hegy - v){z,y)
= e(h)(u,v){z,y) = e(h)(u @ 2,y ® v),
where the second last equation follows from induction hypothesis. In a similar way
one proves that the extended form of (, ) is H-colinear.

To show that the braidings are adjoint under the form (, ), let z,2’ € X and
¥,y €Y. Then

(cz@2),y®y) = (z(—1) 2’ @20,y @ Y)

= (zy -2 y><x(o> v)

=(5" (y( 1) @y N @, y©)) (by Lemma EL2.TI2))
= ("Y1 ><x Y(0)) (by Lemma E2.TI())
=(@®ay1) ¥ @yo)
=22, c(y®y)).
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(2) follows from (1), since the evaluation map V* ® V' — k is a morphism in
HYD by Lemma 211 O

COROLLARY 7.2.8. Let V € BYD be finite-dimensional. Then there is a unique
non-degenerate bilinear form (, ) : B(V*) ® B(V) — k exatending the evaluation

map (, ) :V*@V — k satisfying ((2Z12)-[C215), and for allh € H, v € B(V),

feBVr),
(7.2.17) fenlfysv) =8 o) {f,v0)

PRrROOF. By Lemma 7.2.7 we can apply Corollary to V with the Yetter-
Drinfeld braiding. This proves the first part of the claim. By the proof of Theo-
rem [[23 with X = V* Y =V, the form (, ) on the Nichols algebras is induced
from the form (, ) : T(V*) @ T(V) — k, defined by (C23), (C2.0), and

(frv) = (f,Sn(v)) = (Sn(f),v)
for all f € T"(V*), v € T"(V), n > 0. Here, (, ) is the extended form of the
evaluation form. The form (, ) : T(V*) ® T(V) — k is a morphism in Z£YD since
the maps S, and by Lemma 7.2.7 the extended form (, ) are morphisms in ZYD.
Hence the induced form on the Nichols algebras is a morphism in £YD. Thus

([C210) and ([Z2.17) follow from Lemma [£2.1] O

7.3. Differential operators for Nichols algebras

Differential operators for braided Hopf algebras can be defined as linear maps
in the general context of graded coalgebras. We restrict ourselves here to the
discussion of first order differential operators.

DEFINITION 7.3.1. Let C = @,,~,C(n) be an Ny-graded coalgebra with pro-
jection maps 7, : C — C(n), n > 0. We write A(z) = (V) @ 2(?) for the co-
multiplication of 2 € C. For any linear form f : C(1) — k we define linear maps
by

b:C—C, zr fr(zM)2®, 05 :C—C, x— 2 fr(z®).

Thus 8%(C(n)) € C(n —1), 33(C(n)) € C(n —1) for all n > 1, 84(C(0)) = 0,
0%(C(0)) =0, and for all z € C(n), n > 1,

9p(z) = (f ®id)Arn-1(2), Of(x) = ([d @ f)An—1.1(2).
REMARK 7.3.2. Let C be an Ny-graded and connected coalgebra. Recall from
Section [LL3 that Ic = €,,~,ker(Ayn) is the largest coideal of C' contained in
®,, C(n), and B(C) = C/I¢ is the universal strictly graded quotient coalgebra
of C with C(1) = B(C)(1).
We note some immediate consequences of Definition [[.3.1]
(1) The following diagrams commute for all f € C'(1)*

A

B(C) -1 B(C) o) -2

c— C’—>

3
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where we have used the same notation for 9} and 8; for the coalgebras C and B(C),

respectively.

(2) For all f,ge C(1)* and z € C,
(7.3.1) A0 (x)) = 2V ® 05(2?),
(7.3.2) A% (z)) = 05 (=) @ 2@,
(7.3.3) 950, = 9,05

As always we denote the kernel of the counit e by C* = @,~, C(n). Let
7 : C — B(C) be the canonical surjection of coalgebras. -

For9=0"or 9 =20" a subspace I C C' is called 0-invariant, if dy (I) C I for
all f e C(1)*

We formulate the next proposition for 7. There is also a d'-version of the
proposition which is proved in the same way.

PRrROPOSITION 7.3.3. Let C' be an Ny-graded connected coalgebra.
(1) Assume that C is strictly graded.
(a) If x € CF and 0%(x) = 0 for all f € C(1)*, then x = 0.
(b) Any 0" -invariant subspace of CT is zero.
(2) Ic is the largest O"-invariant subspace of CT.

PROOF. (1) (a) Let x = Y1, 4, z; € C(i) for all 1 <14 < n, and assume that
d3(x) =0 for all f € C(1)*. Then for all 1 <i <n, d}(x;) =0 for all f € C(1)",
hence A;_11(z;) = 0. By Proposition [.314] A,;_; ; is injective for all 4 > 2, and
Ay, is bijective by definition. Thus = = 0.

(b) Let I € C* be a d"-invariant subspace. Assume that I # 0. Let n > 1 and
e =" 2 €I witha; € C(i) forall 1 <i<n,z,#0,and INY7 C(i) = 0.
Then 9} (z) € IN Z;:ll C(3) for all f € C(1)* by the 0"-invariance of I and since
I C C*. Hence 9%(x) = 0 for all f € C(1)* by assumption on n. This contradicts
(a). Hence I = 0.

(2) By Lemma [[L3I3I[ID), for all n > 2, Ayn = (Ayp—1 ® Aj1)A,—1,1. Hence
for all z € ker(Ain), Ap—1,1(x) € ker(Ayn-1) ® C(1), since Ay: is the identity. This
proves that Io is J"-invariant.

Let I C CT be a d"-invariant subspace. Then 7(I) C B(C)™ is a subspace with
93(n(I)) = mn03(I) C m(I) for all f € C(1)* by Remark [[3.21 Hence n(I) = 0 by

(1)(b). |
Proposition [[.3.3] is very useful if we want to know whether a given element
x € B(C)(n), n > 2, is non-zero. If x # 0, then there are linear forms fi,..., f, in

B(C)(1)* such that 0% ---0% () # 0 in k.

PROPOSITION 7.3.4. Let (V,c¢) be a braided vector space. Then the defining
ideal I(V)) C T(V) of the Nichols algebra of V is generated as a T(V)-module, in
particular as an ideal of T(V), by

U {zeT™(V)|0}(z) =0 forall feV"}.

n>2

PROOF. For alln >2and f € V*, 97 | T"(V) = (idpn-1(v) ® f)Ap—1,1. Thus

T™(V)n m ker(9}) = ker(4,-1,1)
fevx
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for all n» > 2. Since A,_11 = S,,—11 by Theorem [[.9.1] the claim follows from

Proposition [[LTTT(2). O

Let H be a Hopf algebra with bijective antipode. The maps 9} and 8; for
graded Yetter-Drinfeld Hopf algebras are skew derivations in the sense of the next
lemma.

LEMMA 7.3.5. Let R be an Ny-graded connected Hopf algebra in EYD, and
assume that V- = R(1) is finite-dimensional. Then for all f € V* and z,y € R,

(1) O5(ay) = 205(y) + 05, (S(f1) - v,
(2) 8lf($y) = $(0)3‘lg—1(x(71)),f(y) + (9;(:5)31
If x €V, then 8}(:10) = f(z) = 6}(96)
PRrROOF. (1) Let 2,y € R(n), n > 1. Since R is a graded connected coalgebra,

we can write

Al)ex®@1+ Yy a@z+ Y ReR>),

leL i>2
Aly) ey 1+ b@z+» R R(>),
leL i>2

where L is a finite index set, and a;,b; € R(n — 1), ; € R(1) for all [ € L. Hence
by multiplying A(z)A(y) = A(zy) we obtain

Alry) cexy @1+ bez @z + Z(az @x)(y® 1)+ ZR@ R(i).
leL leL i>2
For alll € L, (a; ® ;) (y ® 1) = ay(x1(—1) - ¥) ® 21(0), hence
(id® f)((a @ x)(y @ 1)) = ar(zi—1y - y) f(T100) = ar(S(f=1)) - ¥) fo)(z1)
by definition of the H-coaction of V* in Lemma Thus
Of(xy) =Y abif(z)+ Y a(S(fi—1)  v)fo) (1)

leL leL
— 205 (y) + 0, (DS 1) - v
(2) This proof is very similar to the proof of (1). We write

Alz)el®z+ Yy m@a+ Y Rl)R,

leL i>2
Aly) el@y+> m @b+ R(i)®R,
leL i>2
where z; € R(1),a;,b; € R(n—1) for all { € L.
Finally, 9%(z) = f(z) = aﬁ(x) for z € V follows by definition. O

REMARK 7.3.6. Let R be a pre-Nichols algebra of a finite-dimensional Yetter-
Drinfeld module V' € gyD. Then the function

0" :V* — Hom(R, R), fr~ 0},
is uniquely determined by the rules in Lemma In other words, if
d:V* - Hom(R,R), fwdy,
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is a linear map satisfying
(1) df(.’by) = xdf(y) + df(o) ($)S(f(—1)) Y for all f € V*a T,y € Ra
(2) dy(z) = f(z) forall fe V¥, z €V,
then dy = 9 for all f € V*. For the proof note that df(1) = 0 by (1), and if
d¢(z) = 8}(1‘) and df(y) = a;(y), then by (1), ds(zy) = 8}(:103/)
A similar uniqueness property holds for d'.

We now consider the case when H = kG is a group algebra. We show that
then the maps 6}2 are skew derivations.

DEFINITION 7.3.7. Let G be a group and V € &YD a finite-dimensional Yetter-
Drinfeld module over the group algebra of G. We choose a basis z1,...,zy of G-
homogeneous elements, and for all 1 < i < 6 let g; € G with 6(z;) = g; ® x;. Let
f1,---, fo be the dual basis of (z;)1<i<¢ in V*. Let R be a pre-Nichols algebra of
V. We define

o=} :R—>R, 1<i<0.

COROLLARY 7.3.8. Assume the situation of Definition [[.3.7.
(1) The linear maps 07 : R — R, 1 <1i < 6, are determined by
(a) 07(1) =0, 07 (z;) = 0i; forall1 <i,5 <6,
(b) 0f (zy) = 0] (y) + 0} (x)gi -y for all1 <i <0, x,y € R.
(2) If R = B(V), then for any non-zero element x € B(V)*, 0 (z) # 0 for
some 1.
(3) If R = T(V), then I(V) is the largest subspace I C T(V)T such that
Or(I) C 1T foralll < i < 0. As a right ideal, 1(V) is generated by
Unsa{z € T%(V) | 80(z) = 0 for all 1 < i < 0}.
PRrROOF. (1) follows from Lemma [Z3.5(1), since for all i, §(f;) = g; ' @ f;. If
fevs f= Zle o fi with scalars «; € k, then 0% = Zle a;07. Hence (2) and
(3) follow from Propositions [[:3.3] and [[:34 O

EXAMPLE 7.3.9. In the situation of Definition [[.3.7] let 1 < i < 6, and assume
that there is a scalar ¢; € k such that g; - z; = g;x;. It is easy to check by induction
that forall t > 2,1 <5 <80,

05 (a7) = 03 (t) gy "
Hence, by Corollary [[3.8 z! € Ig if and only if (s),, = 0 for some 2 < s < ¢.

EXAMPLE 7.3.10. We go back to Example [[10.3]and assume that n = 3. Then
0y ={(12),(23),(13)}. Let g1 = (12), g2 = (23), g3 = (13), and let V5 be the
Yetter-Drinfeld module over S3 with basis x;, t € O, and

0(x) =t @xp, S+ T4 = —Tgs,

for all s,t € Oz. Let a = x(12), b = z(23), ¢ = x(13). Then the following quadratic
relations hold in B(V3).

(7.3.4) a2=0,0=0, =0,
(7.3.5) ab+ bc+ ca =0,
(7.3.6) ba + ac+ cb = 0.
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Indeed, it is easily checked that the skew derivations 8;: with ¢ € Oy annihilate
the left-hand sides of the relations. Thus the claim follows from Corollary [[.3.8](2).
Multiplying (Z3:3]) with a on the right and b on the left gives the equations

aba 4+ bca =0, bab+ bca = 0.
Hence
(7.3.7) aba = bab.

Let A = abac. It is easy to check that A is a right integral of B(V3), that is, Aa = 0,
Ab =0, Ac = 0. To see that A is non-zero, we compute derivations.

Jl. (abac) = aba,
0. (aba) = ady. (ba) = a(gz - a) = —ac,
0r.(ac) = a.
Hence 0. 0%.0;. 0% (A) = —1.

By choosing the ordering a < b < ¢ of the generators and by writing relations

(C34)-[C3.6]) and (Z37) as
a2=0, ¥ =0, =0,
ca = —ac —be, c¢b= —ac— ba,
bab = aba,

we conclude that the monomials
(7.3.8) 1,a,b,c,ab,ac, ba, be, aba, abe, bac, abac

span the vector space B(V3). Since A is a non-zero integral in B(V3), the relations
in (C34)-(C316) generate the ideal I(V3) by Corollary AT for S = B(V3).

The monomials in (Z.3.8]) are non-zero since A # 0 and 9}, 0. (abc) # 0. Finally,
the monomials of degree two are linearly independent by definition, and those of
degree three because no two of them have the same S3-degree. Thus (Z38) is a
basis of B(V3) (which proves in a second way that the ideal I(V3) is generated by
[C34)—([31)). Thus the Hilbert series of B(V3) is

Hpvy () =1+3t+42 + 3% +t* = (1 + 1) (L + t + 7).
7.4. Notes

[T.Il The denotation Nichols algebra and pre-Nichols algebra appeared first in
[AS00a] and [Mas08], respectively.

We extend the description of Nichols algebras via bilinear forms in [AGn99|
to Nichols algebras of braided vector spaces.

[7.3l Already Nichols [Nic78| used “twisted derivations” in the context of
Nichols algebras.
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CHAPTER 8

Quantized enveloping algebras and generalizations

Quantized enveloping algebras are non-commutative and non-cocommutative
Hopf algebra analogues of enveloping algebras of finite-dimensional complex semi-
simple Lie algebras or of Kac-Moody algebras. They enjoy great attention far
beyond the theory of Hopf algebras. Our intention with this chapter is to study
quantized enveloping algebras and related Hopf algebras using standard tools in
the theory of pointed Hopf algebras. Structural results related to root systems will
be discussed in Chapter

Let n € N and let A = (aij); je{1,....n} be a symmetrizable Cartan matrix.
Let D = (d;)1<i<n be a family of positive integers such that (d;ai;)i jeq1,...n} 18
symmetric. For any non-negative integers m,r with m > r l