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0 Introduction

While a lot of classes of Nichols algebras are well understood today, there exist
some classes where there is not really much known about and that are only
accessible superficially through computer calculations. The main interest of
this thesis is one of them, the class of finite dimensional Nichols algebras over
braided vector spaces of non-abelian group type. A list of such examples can
be found in [§]. In a recent attempt to find out more about this specific class
of finite dimensional Hopf algebras, PBW deformations of such algebras were
studied in [B]. A meaningful question to ask is, when a PBW deformation of
such an algebra is semisimple, which seams to be a generic property (generic
meaning true for a dense subset of deformations).

We basically continue the work in [5] and take a look at the next small-
est dimensional examples, the three 576-dimensional Nichols algebras of this
type. One of these three belongs to the family of Fomin-Kirillov algebras,
which is where we start in section 2] While giving some assertions about all
Fomin-Kirillov algebras, we in particular with very few computer calculations
almost classify, when the PBW deformations of this 576-dimensional algebra
are semisimple, which is a previously unknown result. For the summary, refer
to subsection In section |3| we will take a look at some of the reoccurring
traits in all of the solved examples. We will use this in subsection [3.3] where
we discuss the other two 576-dimensional examples, to give some conjectures
about the semisimplicity of the PBW deformations. These are Conjecture [3.12
and Conjecture Since there is no known go-to approach to handle these
kind of algebras, the results presented here are the outcome of some very time
consuming experimentation. Therefore sadly there was no time left to handle
the two examples in detail and check if the conjectures hold.



1 Preliminaries

Let k denote a field. All our algebras will be associative and unital over the
field k. If A is an algebra, we associate k1l with k.

Definition 1.1. Let A be an algebra. An element e € A that satisfies e = ¢
is called idempotent. Two idempotents e;,eos € A are called orthogonal,
if eeg = 0 = ege;. They are called isomorphic, if there exists elements
e12,€21 € A, such that

€1€12€2 = €12, €2€21€1 = €21,

€12€21 = €71, €21€12 = €2.

A subset {e;; |1 <i,5 <m} C A, meNis called a set of matrix units in A4,
if Y27 e =1 and e;jen = djpey for all 1 <, j, k.l <m.

Lemma 1.2. Let A be an algebra and let e1,es € A be idempotents. If e; and
e are conjugate, i.e. if there exists a unit u € A, such that ue; = equ, then e;
and es are isomorphic idempotents.

Proof. Setting e;o = e;u~! and es; = uey, the four relations are elementary. [

Remark 1.3. Observe that if eq, es are isomorphic idempotents, then ejeqs =
e1e1€e1269 = e1e1262 = €12 and similarly ejoes = €12 and we also get those re-
lations for es;. Moreover for idempotents being isomorphic is an equivalence
relation: It is clear that it is reflective and symmetric. If eq, es, e3 are idempo-
tents such that eq, eo and ey, e are isomorphic, and e1s, €21, €13, €31 are elements
that yield those isomorphisms, then e; and es are isomorphic with ess := ea1€13
and e3q := e31€19.

Proposition 1.4. Let A be an algebra, m € N and let ey, ... e, € A be a set of
pairwise orthogonal and isomorphic idempotents, such that er;l e; = 1. Then
there exists a set of matriz units {e;; |1 <1i,j < m} C A, where e;; =e;.

Proof. Define e;; = ¢; forall 1 <7 <m and for 1 <1 < j < mlet e;; and e;; be
elements in A with whom e; and e; become isomorphic. Considering Remark
observe that those e;; and ej; can be chosen, such that e;;je;, = e;, for all
1<4,5,k <m. Finally for 1 <14,5,k,l <m, j # k we have e;jer; = e;jejeren =
0, since e; and ej, are orthogonal. O

Remark 1.5. If A is an algebra with an idempotent e € A\ {0}, than eAe
becomes an algebra with 1.4, = e (in general not a subalgebra of A).

Proposition 1.6. Let A be an algebra, and ey, es idempotent elements in A.
The following are equivalent:

(1) ex and eq are isomorphic idempotents.
(2) e1A and ea A are isomorphic right A modules.
(3) Aey and Aey are isomorphic left A modules.

In that case e1Aey and es Aes are isomorphic algebras.
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Proof. We show that (1) and (2) are equivalent. The equivalency of (1) and (3)
is obtained analogously. Suppose (1) holds, and let eja, e2; € A be elements
with whom e; and es become isomorphic. Define the following right A module
morphisms:

¢:e1A — edA, era — eara
P :iesA — e A, esa — ejaa.

¢ is well defined, since for a € A we have esja = esesa € es A and if eja = 0,
then es1a = es1era = 0. Similarly ¥ is well defined. Since ejses; = e and
eg1€12 = ea, ¢ and 1) are inverse to each other. Hence (2) holds.

Now suppose (2) holds, and let ¢ : e;A — e3A be a right A module iso-
morphism. Define ez; := ¢(e1) and ej3 := ¢ 1(ez). Then egzeq; = eag, since
€1 € exA and eje;s = e since ey € ey A. Moreover ege; = ¢(er)ey =
¢(ere1) = é(e1) = e, since ¢ is a right A module morphism and similarly
e1262 = e12. Finally egre12 = ¢(e1)e1n = dlerern) = dlern) = d(d () = ez
and similarly ejae91 = e1. Hence (1) holds.

Now if (1) holds and ejs, e21 € A are elements with whom e; and es become
isomorphic, define the linear maps

¢ 2€1A61 — €2A€2, e1aeq —r €21a€12

1P egAes — e1Aeq, esaes — e12aes7.

These are well defined, since for a € A we have esaeis = esegiaeises € egAesy
and if ejae; = 0 then esjae1s = esjejaeiers = 0 and similarly for . More-
over for a € A we have (d(e1aer)) = ejsearaeisear = ejae; and similarly
d(Y(eaaeq)) = esaeq, hence ¢ and ¢ are inverse to each other. Now ¢(ey) =
¢(erler) = earer12 = ey and if a,b € A, then

(;5(61@61611)61) = 621&81[)612 = 621&812621[)612 = ¢(61a€1)¢(€1b61).
Hence ¢ is an algebra isomorphism. O

Proposition 1.7. Let A be an algebra, m € N. If there exists a set of matriz
units {e;; |1 <i,j <m} C A, then

A= My (R)

as algebras, where R is the subalgebra of A of all elements commuting with all
eij, 1 <i,5 < m. Furthermore e;1Aenn — R, eriaerr — Z;nzl ep1a€ey 1S an
algebra isomorphism.

Proof. The statement is proven in [6] Proposition 2.26 for rings. It is easy to see,
that the two given ring isomorphisms are linear, i.e. algebra isomorphisms. [

Corollary 1.8. Let A be an algebra, m € N and let eq,...,e, € A be a set of
pairwise orthogonal and isomorphic idempotents, such that Y .-, e; =1. Then

A Mm(elAel)
as algebras.

Proof. Follows by combining Propositions [T.4] and O



2 PBW deformations of Fomin-Kirillov algebras

In this section we will take a look at PBW deformations of Fomin-Kirillov
algebras. We are in particular interested in the PBW deformations of the 576-
dimensional Fomin-Kirillov algebra, which is one of the next smallest example of
PBW deformations of a finite dimensional Nichols algebra of non-abelian group
type that was not yet handled in [5]. We want to find out precisely which PBW
deformation is semisimple and which is not. We almost succeed in doing so,
as Theorem 2241 and Theorem 2.30] almost characterize when a deformation is
semisimple, with the exception of two cases. Those two cases are talked about

in Conjecture [2.26]
Suppose that k is a field with characteristic # 2 and let a1,y € k. Also

assume there exists an A € k, such that A?> = o;. We will fix one such A and
denote it /o

Notation 2.1. We will often have multiple elements, that are indexed by one or
more indexes, for example z;;, 1 <4,j < n. To avoid confusion in products of
those elements we will sometimes denote

$12'_'>'$1n =212213 1 T1(n—1)Lln

xln';xu =T1inT1(n—1) * " T13T12

for ascending and descending sequences. In particular, if n = 1 then 15 - -x1, =
—

1 and x1,---x12 = 1.
—

2.1 The general case
We begin with a general definition and by lining out some general properties.

Definition 2.2. For n € N, n > 3, let D,,(a1,a2) denote the algebra with
generators x;;, 1 < 1,5 < n and relations

zi =0,

Tij+ x5 =0,

TijTik + TjpThi + ThiTij = Q2 if #{i,j,k} =3,
TijThi — Tri%ij; =0 if #{3,7,k,1} =4

for all 1 < 4,4, k,l < n. Since chark # 2 the first row of relations are implied
by the second row. For a; = as = 0 we get &, = D, (0,0), commonly called
Fomin-Kirillov algebra.

Remark 2.3. There is a unique action of the symmetric group S,, on Dy, (aq, as)
such that 7 - 2;; = Zr()r(j) and 7 (xy) = (7-2)(7-y) for all 1 < 0,5 < n,
T € Sp, ,y € Dp(ag,as).

Remark 2.4. The smallest case where n = 3 has already been solved in [5] in
section 2, so we will not handle this case here. We are in particular interested in
the second smallest case, that is n = 4. It is known from computer calculations,

that D4(a1, a2) has dimension 576 for all o, ay. From [5], Proposition 1.2. it
thus follows, that Dy(ay,as) is indeed a PBW-Deformation of €4 = D4(0,0).
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Similar to [5], Theorem 2.13., we obtain that these also must be all PBW defor-
mations. The reason we do not need a a3 for the last relations is the following;:
Assume z;;x — TRy = as if #{i,j, k, 1} = 4. Then we get
Q3 =TijTp — TTij = —(TjiTr — TpaTji)
=— (1)) - (wiyrp — vRvig) = —(if) - a3 = —az.
Hence a3 = 0, since char(k) # 2.
Notation 2.5. In D, (a1, as), n > 3 let

Yij = Tij + /0
for all 1 <4,j <n. Note that 7 - y;j = Yr(i)r(;) for all m € S,,.

Remark 2.6. Note that y;;z;; = xiy;; = /a1y for all 1 < 4,5 < n. This
means multiplying any = € D, (a1, az) left by y;; pulls out all of the z;; that
start monomials in  and exchanges them for scalars in k. Similarly, multiplying
x right by y;; pulls out all of the z;; that end monomials in x.

Lemma 2.7. Let n > 3 and 1 < i,5,k < n, such that #{i,j,k} = 3. In
Dy (a1, as) the relations

2
Yij +Yji = 2y/oq YijYji =0 Yij = 2v/0ayij
hold. Moreover
TijTikTjk = TjkTikTij
LijLkjLhi = LhilkjLij
and
YijYikYjik = YjikYikYij
YijYkiYki = YkiYkjYiz-
Proof. The relations in the first row are elementary. Now
TiTikTik = (TikThj + ThjTji — O2) T,
= —a1Tip + Tij (TjpTri + Tiiij — Q2) — Q2T
= - (a:ik + zki) + TpjTriTi; — Q2 (l‘kj + a:jk)
= TjkTikTij
and acting with (kji) on that relation yields
ThiTkjTij = TijThjThi-
Using this we get
YijYikYjk — YjkYikYij
= @i TipTik + 01 (TiTik + TigTik + TikTik) + a1 (T + Tik + T8 + /1)
— TjpTikTij — Q1 (xjkxik + rjpxi + .%'ka”) —o (CL‘jk + Zik + x5 + \/041)
=y Q1 (Sﬂijivik + Tii% ik + TikXjp — TjpTik — TjkpLij — xlk%g)
=y (xijl‘jk + TjpThi + Thi®ij — (TjiTik + TipTrj + Jfkjiﬁji))

=yai (a2 —az) =0
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and acting with (kji) yields
YkiYkiYis — YigYrkiYki = 0.
]

Lemma 2.8. Letn > 3 and 2 < m < n —1. Moreover let 1 < i < n and
1<j1,. s dm < n, such that #{j1,...,jm} =m and i & {j1,...,jm}. Finally
let 1 < s <t<m. Then the following relations hold in D, (ay, as):

Yijr ** Yijom Yisjstr ~ Yisie
=Yjejers " Yiege Yis " YigerYijorr = YigeYigs Yigesn " Yijm
=Yjuders " Yiuge Usdstr - 36) - Wigy = Yign)
and

Proof. The second relation follows by acting with (j;j;—1 - - js) on the first. We
proof the first by induction on ¢: For t = s+ 1 the relation follows using Lemma
and the fact that vy = yryi; if #{i,5,k,1} = 4:

o .yijm,

Yiji * Yijm Yjsjsor1r = Yija ._.>'y7:jsfl YijsYijsy1 Yjsjor1 Yijora _

i Yids—1 Yisiser Yijorr Yigo Yijsa " Yigm
= yjsjs+1 yz]l ';;yij571 yijs+1 yz]s yijs+2 .;;yZ]m
If m = s+1 then the only possibility for ¢ is £ = s+1 and the statement is shown.
So suppose s + 1 < m and that the relation holds for some s +1 <t <m — 1.
Then we get using Lemma 2.7}

Yijr *  Yigm Yjsderr " " YjsieYisies

“Yjsjsrr " Yisge Yia .;;yijs—l Yijsrr = Yigo Yijs Yijey .;;yzjm Yjsjeta

“Yjsjsyr " Yjsie Yija ._.>.yij571 Yijoyr " YijeYijs Yijer1Yiejer Yijeso _

myjsjs+1 © Yjsde Yiga .;;yijs—lyijs-f—l Yi Yisger1 Yigera Yigs Yigeso ';;yijm

“Yjsgssr " YjsieYisgerr Yiq .;}'yijsfl Yijorr " " YigiYijey1Yigs Yigeio ';'yljm
This finishes the induction. O

Remark 2.9. To show Lemma [2.8] only relations for the y;; were used that also

hold for the generators x;;. Hence we can exchange all y for x and the claim
would still hold.

Lemma 2.10. Letn >3 and 1 < k < n—1. Moreover let 1 < i < n and
1 <j1,..,Jk <n, such that #{j1,...,jx} =k and i & {j1,...,jrx}. Then the
following relation holds in Dy, (aq, az):

E E
2

Z T (zif, - i) = (=1)2 (a2)%, if k is even,
o e 0, if k is odd.

mE<(ig1 - Jr)>
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Proof. A similar relation was shown in [7], Lemma 3.2. for the case a; = 1, a9 =
0. We do a similar proof. First the case k = 1:

Tijy + Tjri = Tigy — Tij, =0
The case k = 2 is just the defining relation:
Tijy Tijy T Tjrjaii + TjpiTiojy = — (Tjyilije + Tjoji Tjri + TijyTjajy) = — 02

Now suppose k& > 3 and the claim holds for £k — 1 and k& — 2. Denote jy := i
and for a € Z denote ju := jo mod (k+1), for example jry1 = jo = i. Let
o = (joj1 - jr). Then o'(js) = jsys for all 0 <1 < k. Hence for 1 <1<k —1
we have

kil _— kil . - ... . . - . - . . . .. . .
g ) (xjojl T gCjojk) =0 : (xjojl Ljogi—1Ljoi Liogier Liodise x]o]k)
_ k=l o o o e . N T
=g ’ (xjojl © Ljogioa (xJOJLJrlx]LJrl]l Ljir151 Lo 042) Ljojit2 x]o]k)
— k=l T . - B
=0 : (xJOJI x]ojz_1x]0ﬂ+1x]0ﬂ+2 x]O]kal+1]l

= TiiinLioqn * Lioji—1Tioqi Liogiee =" Lioje
— Q2T jojy * Lhoqi—1Ljojige * xjojk)
—_— kil . . DRI . . - . ... - . . .
=0 ' (x]()]l Liogi—1Ljogi+1 x]()]k) Liojn
k—1
= Ljojn0 ’ (‘Tjojl Lo Ljodige T xjojk)

k—1
— 020 ’ (mjojl  Lhoqi—1Lhodige T xjojlc)

Now note that
k-1
o : (m.jO.jl  Thogi—1Lhodigr T le)jk)

=iy _igr—141 " Pie—rie—1Lin—1do * " Lip—1e—1-1

(i ; k-l o o
=(joj1 - Jr-1) ) (xjojl v 'xjoak_l)
and
k—1
g ' (le)jl  TjoqiLjojige " xjojk)
L rgr—141 " Lhr—ieLie—1d1 " Lin—1dr—1-1
— (4,4 o \k—i-1 L o
_(.71]2]k>) . (lejz "'lejk)
as well as
k—1
o : (xjojl Lhogio1Lhogige " xj()jk)
“Ljg—igr—141 " Lir—rie—1Tik—1d1 " LTir—1ie—1-1
i : k—l-1
—(31]2"']k—1) : (lejz "'lejk—l)
and finally

k g
o ('Tj()jl T wjojk) = TjrjoLirga Ljrjn—1

=5, Grdz ) (Tage T -
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Piecing this all together we can calculate the sum from the claim:

k
(w45, - i) = k—l(.......)
m mlh x”k - o x]oh x]o]k
mEe<(if1 k) > =0
k—1
. . B e E=lp
=Tjoiy  Thogi T O (Tjogy =" Tjogi) + o (Tjogy  Thoja)

~

1

—_— . . ... . . p— . . y y ... y 71 . . . ... . .
=Tjoji *** Tjoji — Tiojx (J1J2* Jk) Tjijs t Tjrjs)

k—1

k l
§ .70]1 Tk 1 (xj()jl...xjojk—l) Ljoj
=1

. CNk—l—
— Lijoj Z(]l]Z - Jk) L. (Tjija " Tjujn)
=1

k -1
— Qg E j1,72 “Jh— 1 '(wjljz"'lejk_l)

k
= <Z(]O]1 e 'jk*l)k_l (xjojl T ijjk—l)) Liojn
=1
k

— Tjojk 2(31]2 o 'jk)k_l_l ) (:C.jl.j2 T m.jl.jk)
=1

k -1
— Qg g ]1.72 “Jh— 1 : (xj1j2 o 'lejk—l)

Now for the first and second sum, we can use the induction hypothesis for k — 1
and for the third sum for k — 2. If k£ is even, k — 1 is odd and k£ — 2 is even,
hence the above sums equal

k=2 K2 A
O-a:jojk — Lo 00—y (—1) 2 (OZQ) 2 = (—1)2 (0[2)

[N

If k£ is odd, k — 1 is even and k — 2 is odd, hence the above sums equal

k=1 k=1 k=1 k=1
(=1) 7 (a2) 7 - @jojp — Tjoji - (=1) 7 (a2) 7 —a2-0=0.

This finishes the proof. O

Lemma 2.11. Letn > 3 and 1 < m < n — 1. Moreover let 1 < i < n and
1 <41,y dm < n, such that #{j1,...,jm} =m and i & {j1,...,jm}. Finally
let G =< (ij1---jm) > be the subgroup of S, of order m + 1 generated by
(ij1 -+ Jm). Then for 1 < k < m the following relation holds in Dy (aq,az):

(m+1) (*Oég)g if k is even
Z Z T (%‘jgl "'Iijsk) — Ukt Wk )
I<s1<zsn<m neC 0, if k is odd.
Proof. First denote jo := i and for a € Z we denote ju = jo mod (m+1), for
example j,41 = Jjo = ¢ For 0 < [ < m denote m; := (jojl'-'jm)l e G.
Finally for the sake of readability, during this proof we denote [st] := x4 for all
1<s,t<n.
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Let 1 <s; <...<s <m. Then

7 ([Jods: ] -+ [Jodsi]) = [idsy+1] -+ - idsi+1] -

Hence the sum in the claim is

Z Z [jljsri‘l] e [jljsk"l‘l]

1<s1<...<sx<m =0

We want to reorder that sum. Every summand can be indexed by an element
in {(l,s1,...,86) : 0<1<m,1<s1 <...<s, <m}. The size of this set is
(m +1)(7}). Now consider the following sum:

m—k
S = Z Z Z . ([]l]m][]l]mc])

1=0 I+1<s1<...<sp<m 7€ (f1Jsy Jsy)>

First of all this sum has

L im— 1 m
k+1 = 1
w0y (") = ()
1=0
summands, i.e. the same amount as the sum from the claim. Now consider a
summand [Jjs,+1] - [JiJsett)s 0 <1 <m,1 <81 < ... < 8 <m from the first
sum. If I < sg4+1 mod (m+1) <...< s+ mod (m+1)thenl <m—k
and this summand corresponds to

id-([jljsfl]---{jljsgc}) where s} == s, +1, 1 <t < k.

from the second sum. If not then let I, s},..., s, € {{}U{s;+1 mod (m+1) :
1 <t <k}, such that I’ < s} < ... < s}. In particular I’ < m — k. Since
Il <s1+1l<...<sp+1land s +1 mod (m+ 1) < [, there must exist a
permutation m €< (jijg; ... Js ) > that reverses this process, i.e. m(jir) = ji,
W(jS;) = Js;+1 mod (m+1); 1 <t < k. Hence we can correspond the original
summand with one from the second sum:

- ([jl'js;] [jl'js;CD = [udsi+] -+ lidsi+i]

Observe that this correspondence is injective on the indexes and since both sums
have the same amount of indexes, the correspondence is bijective on indexes.
Hence the sum from the claim is equal to S. Now observe that we can in fact
use Lemma[2.10] to calculate S. If k is odd, then S = 0. If k is even, then m > 2
and

m—k
k m+1 k
S=> 2 (—012)2—<k+1>(—042)2-
=0 +1<s1<---<sp<m
This proofs the claim. O

Notation 2.12. Let m € N and denote

L]
m +1 m—
Am = (M + 1)«/0[1 + (;’; " 1)\/OZ1 2k (—Ozg)k € k.

w3

k=1

10
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The first few values of A, are

A =20

Ao = 3] — Qg

Az =4y/aqg (o — )

Ay = 50@ — 1010 + ag

As = 2y/a1 (3af — 10a102 + 3a3) = 2y/ay (a1 — o) (g — 3a) .
Lemma 2.13. Letn >3 and 1 < m < n—1. Moreover let 1 < i < n and
1< j1y.veydm < n, such that #{j1,...,jm} =m and i ¢ {j1,...,jm}. Finally

let G =< (ij1-+-jm) > be the subgroup of S, of order m + 1 generated by
(ij1 -+ Jm). Then the following relations hold in Dy (a1, a):

(1) > rea™ Wijy ** Yigm) = Am-

(2) o (Yiji - Yijo) T Yijy - Yij,) =0 for allo,m € G, 0 # .

Proof. (1): Let m € G. Consider the summands of the product 7 (ysj, - - - ¥ij,.) =
Yr(iyw(r) " Yn(i)x(Gn) that we get by simply multiplying the polynomials and
without using any defining relations. The only summand of degree 0 is simply
Va1, The summands of degree 1 < k < m are

m—k m—k
Vol Ta@in(s,) T En(ns,) = VAL T (l“ijsl ngk) ;

where 1 < 51 < ... < s < m. Hence using Lemma we obtain

TeG
m
o m m—k
= E Vo + E g E T\ Tijg, - ’xijsk
TeG k=1 1<s1<...<sp<m

:(m+1)m+imm—k Z Zﬂ"(l‘ijsl"'l‘ijsk)
k=1

1<s1<...<sp<m 7we€G

SRR VIR VO [

k=1, k even

L%
m m+1 —
=(m+1)y/a1 + E <2k: n 1) Vaq 2k (—ag)k =\m
k=1

(2): We show the relation for o = id. The other relations are obtained by
acting with G on that relation. Let w € G\ {id}, i.e. m = (ij1 -+ jm)® for some
1 < s < m. Consider first the case where s = m. Then (i) = j,, and 7(j1) = 4.
Hence
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Now consider the case where s < m. Observe that (i) = js and 7(ji) = Jr+s
for all 1 < k < m — s. This means

Yijs " Yii™ Wigs ** Yigm—.)
“Yigy  Yigm Yjedssr " Yisgm
TYisjsrr " Yisim Yiq .;;yijs—lyijs#»l ';}.yijm Yijs
Since 7(jm—s4+1) = %, multiplying the above relation with 7 - (yi5,,_,,,) = Yj.i
from the right yields
Y Yigm T (l/z‘jl '_';yz'jmfsyijmfsﬂ) =0.

If s =1 then this is the claim, if not one can simply multiply this relation right
by the remaining 7 - (yijmfs+2 e yijm) and get the claim.
(3): Using (1) and (2) we obtain

Yiin * Yig Yigs * Yige = Yigs ** Yijo | Am = D T Wiy Vi)

2.2 The semisimple case

In this section we will fix n € N, n > 3 and assume A;---A,—1 # 0. The
main result of this section is Theorem where we show (using some com-
puter calculations), that in most cases the 576-dimensional algebra Dy(a1, ag)
is semisimple and isomorphic to May (k).

Notation 2.14. In D, (a1, as), denote for all for all 1 <i<mn—1

1
Ui IZE Yi(i+1) - Yin

wo =1

Wi :=Wi—1V; = V1 - V4

For example, if n = 4 then

W = V1V2V3 = my12y13y14y23y24y34-
1A2A3

Observe that v; is a special case of the elements handled in Lemma [2.13

12



2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

Remark 2.15. Let 1 < m < n — 1. Note that in w,, = v1---v,,, we can shift
any v;, 1 <1 < m to the left according to Lemma ie. Wy € v;Dy(ag, as).
Shifting v;41 - - - vy, to the left exposes

(m..n)((m_l)..n).((l+1).n)ful
1
=N Yitmt) Yinlime - Yiir1) = v;

n—1u

on the right, i.e. wy, € Dp(a1,az)v;. This means, considering Lemma mw),
that multiplying a € D, (a1, az) left by w,, we can pull any v, that start
products in a into w,, and thus ignoring them in a, and similarly by multi-
plying right by w,, we can ignore any v; that end products in a. Another
similar shifting is also possible: In w,,, first shift y,,n41) that starts vy,
to the left. This will cause y(m—1)(m+1) to be shifted to the front of vy, 1
and thus can be shifted to the left of w,,—;. Continuing this way we obtain

Wy, € ym(m+1)y(m—1)(m+1)';yl(mﬂ)Dn(ah as).

Lemma 2.16. For all for all1 <m <n—1 and m < s <t <n the following
relations hold in Dy (a1, az):

Wm—1Ys(s+1) """ Yst = Ys(s+1) """ Yst (S(S + 1) . ~t) *Wm—1
Yts * Ye(t—1)Wm—1 = (t({t = 1) -+ 8) - W1 Yes -~ Ye(r—1)-
Proof. The statement is trivial for m = 1, since wg = 1. Suppose m > 2. Using
Lemma, [2.8 we obtain for all 1 < ¢ <m — 1, since i < s:
VilYs(s+1) " Yst = Ys(s+1) """ Yst (5(3 + ]-) te t) )
Yts * Yt(t—1)Vi = (@t —=1)8) vy “Yt(t—1)-
Since wy,_1 is a product of those v;, the claim follows. O

Proposition 2.17. Let 1 < m < n — 1. The element w,, is an idempotent in
Dy (a1, a2). Moreover Wy, —10mWm—1 = WpWm—1 s an idempotent isomorphic
to Wy, .

Proof. We do induction on m. If m = 1, then w; = v; is an idempotent
according to Lemma 3) and woviwy = v1 = wy. Now suppose m > 2 and
Wm—1 is an idempotent. Combining Lemmas [2.13|(3) and we obtain

W Wm =Wm—-1VmWm—1Um = Wm—-1UmUm (m T Tl) cWm—1
=W 1Vm (M- N) - Win—1 = Wi 1Win—1Vm = Win—1Um = Wiy
Hence w,, is an idempotent. Similarly
Wm—-1VmWm—-1Wm—-1UmWm—-1 =Wm—-1VmWm—-1VmWm—1
=Wn—1VmUm (M- N) - Wiy 1 Wi —1

=Wy 1V (M- M) - Wiy 1 Wiy —1

=Wm—1Wm—1VmWm—1 = Wm—-1VmWm—1

13



2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

and thus w,, w,,_1 is an idempotent. If we denote e; := w,, and e := Wy, Wy, _1,
then define €15 := e, €91 := e1. Since

€162 =W WnWm—-1 = WnWn—-1 = €2

€2€1 =WmWm—1Wm = WnWn-1Wm—-1Um = WnWmnm—-1Vm = WnpWn = Wy = €1
we immediately obtain

€1€12€2 =€1€2€2 = €1€2 = €3 = €12 €2€21€] =€2€1€1 = €2€] = €1 = €21
€12€21 =€2€1 = €1 €21€12 =€1€2 = €2
and hence e; and ey are isomorphic idempotents. O

Lemma 2.18. Let 1 < m < s < t < n. In Dy(ai,as) the following relation
holds:

Yste(t - n) (s n)(wm—1)(t---n)(s- - m)(wWnm-1)(s---m)(t- - m)(Wn-1)ys
Proof. If m = 1, then the relation follows immediately since wg = 1 and yg:y:s =

0. Suppose m > 2. Consider the following construction: Let A\g = 1 and for all
1<i<m-—11let

’ 7)‘m—i 1! /
Ui -*fyi(mﬂ) © Yin Wy ~=Vy Uy,
n—i
o
"o m—1 ) "o 1N
U; S S W Yi(i4+1)" " Yitm—-1)Yi(m+1) * " Yin W; =y A
m—1—iAn—i -
A2
"o.__ m—1i me__ oo
V; w,; = 1

i ~—m%(m+l)'_‘;yi<n—l)

Below we will show the following three relations:
(1) (s---n)(
(2) (s--n)(wm—1)(s---m)(wy, 1) = (s n)(wn-1)
(3) (- n)(wy )t m)(wm—) = (- -n)(wy 1) (- m)(wm-1)-

Combining (1), (2) and (3), we obtain

Wip—1) (5 M) (Wim—1) = (5 1) (Wm-1)

=(t--n)(s - n)(wm-1)(t---n)(s- - m)(wy_1)(s---m)(t---m)(wm-1),

since the permutations (¢---n) and (s---m) commute. Now observe, that since
YstYit¥is = YisYiryst for all 1 <i < m — 1 and since (¢t---n)(s---n)(n — 1) =t,
(t---n)(s---n)(n) = s we can shift

Ysi(t---n)(s---n)(wm_1) = (st)(t---n)(s- - n)(Wn—1)Ys,

Moreover ys; and (t---n)(s---m)(w_,

indexes in {m,n}, i.e. (t---n)(s---m)(w

) commute, since w!//_; has no y with

"' _,) has no y with indexes in {s,t}.

14
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Similarly, since (s---m)(t---m)(m) =t, (s---m)(¢t---m)(m + 1) = s we can
shift

Yst(s---m)(t---m)(wm—1)yes = (st)(s---m)(t- - m)(Wm-1)ystys =0,
which finishes the proof.
Regarding (1): Since (m---s)(s---n) = (m---n), (1) is equivalent to
(1) (W Vi1 = () (W Wy

(via acting with (m---s) = (s---m)~1). First recall Remark and observe
that wm—1 € Dpla1, @2)YinYim—1)" - Yig+1) for all 1 <7 < m — 1. Lemma
—
3) implies Wy 1YinYi(m—-1) " Yi(i+1) = Am—iWm—1 for all 1 <7 <m — 1,
—
and thus by acting with (m---n) we obtain

(m--- n)(wmfl)yimyi(mfl)'<'_'yi(i+1) = Am—i(m---n)(wn-1)
for all 1 <4 <m — 1. Hence for i = m — 1 we obtain
(M- n)(Wrm—1) W1 = (M- 1) (Wy—1)V1 - VU1

1
:(m T ’I’L)(U)m_l)’Ul C o Um—2 \ Ym—1)mY(m—-1)(m+1) """ Ym-1)n
n—m-+1

(m- 1) (Win—1)Y(m—1)m ((m = 1)m)(v1 -+ vy —2)
1

1 Ym—1)(m+1) """ Yim—1)n

)\n—m—Q—
M
>\n7m+1

—(m- 1) (wn—1)(m = Dm)(vr - V).

=(m - n)(Wm—1)((m = 1)m)(vy - Vpm_2) Ym—1)(m+1) " Y(m-Dn

If m = 2 we are finished, so suppose m > 3. Now for 1 < i < m — 2 we have
((m =1)m)((m = 2)(m —1)m) - ((i + 1) - -m)(Yi(i+1) - - Yim)
=Yim [ Yi(i+1)
and hence

() (wn1) (= Dym) -+ (41) -+ m) 01+ 1)

=(m--- n)(wm—l)yim';yi(iﬂ)

. 1
(m=1m)---(i---m)(vy---vi—1) N Yilme1) o Yin

(m--n)(wm-1)((m = 1)m) -+ (i---m) (v1 - vi1) vj.

The last equality is implied by the relation at the beginning of the proof of (1).
Thus inductively we obtain

(m e ﬂ)(wm—1)wm—1 = (m R n)(wm—l)’Ul e Up—1

=(m- - n)(wm-1)vy Vg = (M n) (W )W)y,

which is equivalent to (1).
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Regarding (2): If m = 2 there is nothing to show, so suppose m > 3. It is
equivalent to show

(1) (W YWy = (- 7) (w1 Yl
Therefore we reverse the process in (1), with leaving out the y;,,. If one
wishes to, one can check on some examples for m > 4, that it is indeed
necessary to do this step before (3). So in (1) we already discussed, that
, s <i<m-—29. i
W1 € Dn(a17a2)yz(m—1)<_yz(z+1) for all 1 < i < m — 2. Lemma 3)

implies w,,_1 =

Win—1Yi(m—1)"_Yi(i+1) for all 1 < i < m — 2, and thus

Am—1—i

by acting with (m---n) we obtain

1

)\mflfi

(m--n)(wm-1) = (m-- n)(wm—l)yi(mfl)';yi(iﬂ)

for all 1 <7 < m — 2. Now we inductively pull those y in, first for ¢ = 1, up to
i =m — 2 and get

1
(m---n)(wpm-1) :(m"'n)(wm_l)m
Y(m—2)(m—1)Y(m—3)(m—1)Y(m—3)(m—2) " * .y1(m—1).gy12
1
=(m--- n)(wm_ﬁm

ylz';y1(m—1) Ym=3)(m—=2)Y(m—-3)(m—-1)Y(m—2)(m—1)

The last equality just uses Lemma multiple times to shift first the y(,—1)(,)
to the right, then y,_2).) up to the y,). It basically reverses the process
in Remark [2.15] but just for the last few y. Finally observe that for 2 < i <
m — 2 the product y;(i11) " Yi(m—1) commutes with vg- forall 1 < j < i, and
ﬁyi(iﬂ)-nyi(m_l)vg = v}. Hence, considering that v, ; = v}/ _;, we
obtain

(m- ) (Wi 1) Wy = (M= 0) (Win—1)V] -+ Vg
=(m - n)(Wm-1)vY vy g = (Mo n) (w1 )wl, g,
which proves (2).
Regarding (3): Acting with (n---t), observe that (3) is equivalent to

"
m—1

"

wh _1(mem)(Wpm—1) = wh g (nm) (Wep—1)-

Again consider Remark and observe that wm—1 € Yii+1) -+ - YimDn (a1, a2)
for all 1 <4 <m — 1. Lemma [2.13(3) implies ¥;(i+1) = ** YimWm—1 = App—iWm—1
for all 1 <4 <m — 1, and thus by acting with (n---m) we obtain

yi(z’+1);'yz‘(m—1)ym(n ) (Wim—1) = Ap—i(n - m) (Wm—1)

16
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for all 1 <47 <m — 1. Hence for i = m — 1:

Wi (o) (Wi 1) =07+ vg g (e om) (Wi 1)

" " A1

= '_')"Um72 An—m-&-l Ym—-1)(m+1) """ Ym-1)n (’I’L T m) (wmfl)

)\2
=V1 Vo 3 Y(m-)(m4 1) Ym-1) (-1 (7 ) (Wi 1)
n—m-+1

=ola((m=D)m+ 1) (0= 1) (o]l ) (o) (W),
If m = 2 we are finished, so suppose m > 3. Now if 1 < i <m — 2, then for

o = A y y y y
et 1) Yi(me—1)Yi 1) Y
i Mo 1—idni i(i+1) _ i(m—1)Yi(m+1) in

observe that

((A+Dm+1)(n=1) - ((m—1)(m+1)(n—1)(])
)\m—i
Zmyi(mH)'_')'yi(nfl)yi(iﬂ)'_'>'yi(m71)yin-

By construction we can use Lemma [2.§] to shift the first n — 1 — m factors of v}’
in the product v;’vl’-’ to the left for all 1 < j < i < m — 2 (this would not have
worked for the v}) and thus with the above we get

((+Dm+1)--(n=1))---((m=1)(m+1)---(n—-1))

(v o) (- -m) (wim—1)
=((i+1)(m+1)---(n=1))-((m—1)(m+1)-(n—-1))

(”i,';vélq)ﬁyi(mﬂ)';yi(n—n(n cm) (Wy—1)

=i (i(m+1)---(n=1)) -+ ((m = 1(m+1)---(n—1))

(0 )+ ) ()

Hence inductively we obtain

Wy (0o m)(Wm—1) =07 vl g (0 m) (Wi 1)
=tV (e m) (Wi —1) = wigl (e m) (wm-1),

which proves (3). O
Proposition 2.19. Assumen >4 and let 1 <m <n —1. Then
€; 1= Wpm—_1 ((mn)lvm) Wyn—1, 0<i<n—-m

forms a set of orthogonal idempotents in the algebra wy,—1 Dy (a1, @) Wy—1 and
Z?;Om €; = Wm—1-
Proof. Note that eg = wp,wy,—1. We have shown that w,,_1 is an idempotent

in Proposition (if m = 1 then w1 = wy = 1 is trivially idempotent).
Using Lemma 1) we obtain:

n—m n—m
[
E € = Wpm—1 E (m---n)" v | W1 = Wim—1 1 W—1 = Wp—1.

=0 =0

17
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Next we show, that e; and e; are orthogonal for 0 < ¢ < 5 < n —m. For
readability, we ignore the factors i, n—m < k <n-—1, in this part (assuming
A = 1 for all k, so to speak), since they are not necessary for the orthogonality.
Let s=m+iandt=m+j. Then m <s <t <nand

(m T 'fl) *Um = (m T n)l (ym(erl) e ynm) - ys(erl) Ysn Ysm™ - ys(sfl)
(m--- ﬂ)j *Um = yt(t+1)'_'>'ytn ytm'_';yt(tfl)-
Observe that if ¢ = 0, then ysn - yss—1) = 1, and if j = n — m, then
—
Yi(t+1)" " Ytn = 1 and thus, setting v, = 1, we get
—
€; =Wm—1 ys(erl) YsnYsm* - ys(sfl) Wm—1 = Wm—1 Usysm'_';ys(sfl) Wm—1
€j =Wm-—1 Utytm;'yt(t—m Wm—1-
Since according to Lemma 2) and s < t we have
Yts yt(t 1)Z/s(s+1) Yst
:(t(t - 1) U S) ’ (ys(s+l)'_'>'yst) ys(s+1) Yst = 0,
and thus
Ytm: " Yt(t—1)Us
—
=Ytm' Ye(s—1)Yts" " Yet—1)Ys(s+1) " YstYs(t+1)" Ysn = 0.
With this, using Lemma [2.16] we obtain
€€ = wm—lvtytm‘;'yt(t—l)wm—1Usysm';ys(s—1)wm—1
= Wm—1Vt Ytm* " "Yt(t—1)Vs (S e n) CWm—1Ysm™ " "Ys(s—1)Wm—1 = 0
— —
Now note that ygm: - ys(s—1) and vy commute. Using Lemma we obtain
—
€i€j =Wm—1VsYsm" " "Ys(s—1)Wm—1VtYtm" " Yt(t—1) Wm—1
— —
zvt(t- <) (Wi 11/3)(t en)(s - m)(wm—1)
(s m)(Yem: - 1) Win—1)Ysm Ys(s—1)
=ve(t---n)(v )( (s n)(wm 1)( (s m)(wpn—1)
(s m)(t-- )(wm 1)(s M) (Yt - 'yt(tfl))ysm' " Ys(s—1) = 0.
— —
The last product is equal to 0 according to Lemma [2.18] since the last factor of

(t---n)(vs) is ys¢, and the first factor of (s« m)(Ytm = Yee—1)) 18 Yes-
Finally for 0 <7 < m — n we have

n—m
eie; =e; | Wym—1 — E ej | = ewm—1 = e,
Jj=0,j#i
implying that e; is idempotent. O

18
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Assumption 2.20. For all1 <m <n —1 the elements
€ = Wm—1 ((mn)zvm) Wm—1, 0<i<n—-m
form a set of isomorphic idempotents in the algebra wy,—1Dy (a1, o)W —1.

Remark 2.21. In section [2.5] we will give some discussion to when Assumption
[2:20) holds. The result of that is, that it holds in particular in the case where
n=4and af — a3 # 0, i.e. besides A\;A\a\3 # 0 we also need oy + ag # 0. This
does however rely on some computer calculations. The assumption is also not
true for any aq, as, if n = 3.

Theorem 2.22. Let 1 <m <n—1 and suppose Assumption[2.20 holds. Then
Wyn—1Dp (a1, @) Wi—1 = My —mt1 (W Dy (a1, 2)wyy,)
as algebras. Moreover
Dn(a1,a2) = My (wDy (a1, az)w)
as algebras.
Proof. Let
€ 1= Wpm_1 ((mn)’vm) Win—1, 0<i<n—m.

From Proposition and Assumption we obtain that those e; form a set
orthogonal and isomorphic idempotents in the algebra wy,—1Dy (a1, @2)wWm—1
and Y. " €; = wy,—1. Using Corollary we obtain the algebra isomorphy

Wy —1Dp (1, @2)Wip—1 = My 11 (€0Wm—1Dn (1, a2)wm-1¢€0)
and egWy—1 = WynWm—1Wm—1 = WpWm_1 as well as w169 = WmWm—_1
and according to Proposition [2.17| w,,w,,—1 is isomorphic to w,,, hence using
Proposition [I.6] we obtain

eOU)m—lpn (0417 042)1Um—160 = men (a17 a?)wm

as algebras. This proves the first part of the theorem. Now using this part
inductively, starting with m = 1 and iterating up to m = n — 1 yields

Dy (a1, o) =woDy(aq, az)wy = My, (w1 Dy (0, az)wy)
=My, (My—1 (w2 Dy (o1, a2)ws))
& 2 My (M- (- (M2 (wn—1Dn(a1, a2)wn-1)) )

=My (wDp (a1, a2)w),
which implies the second part of the theorem. O]

Computer calculations show, that the following proposition holds.

Proposition 2.23. If n =4, then

wDy (e, ag)w = k.

19
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It is rather simple to check that wy;;w € kw for all 1 <4,j <4, but so far
I did not find a general proof.

Theorem 2.24. In the case n = 4, if a1 + az # 0 (as well as A\jA2A3 # 0, as
presumed in this whole section), then

Dy(au, a2) = Moy(k)

as algebras. In particular dim Dy(ay, a) = 576 and Da(aq, an) is simple and
semisimple.

Proof. Assumption [2:20] holds in this case, as discussed in Remark [2:21] So the
theorem follows by combining Theorem and Proposition [2.23 O

Remark 2.25. Theorem [2:24] relies on Assumption [2:20] and Proposition [2:23]
which both rely on computer calculations.

For the following, final conjecture of this section, we will revoke the require-
ment that A\ --- A, # 0.

Conjecture 2.26. If n = 4 and (aq — ag) (1 + a2) # 0, then Dy(aq, as) is
semisimple.

To prove the Conjecture there would be only two cases left that were not
handled in Theorem The one where o1 # 0, 3a; — ag = 0 and the one
where a; = 0, ag # 0. What backs up this conjecture is on one hand that
I calculated a lot of different subalgebras that definitely do not contain any
elements from the radical in both these cases, which was true for multiple of
those subalgebras in the cases a? = a2. Moreover I partially calculated the
trace forms in both these cases and at least the first 25 rows of its matrix form
are linearly independent in the case where 3a; = s (that is not much, but also
not true in the case where o = a2) and at least 118 rows in the case where
a1 =0, ag # 0. On the other hand the behaviour discussed in section [3| backs

up this conjecture as well.

2.3 The non-semisimple case

In this section we will restrict to the case where n = 4 and (1 — ) (a1 + a2) =
0. This is precisely the case that was not proven (or conjectured) semisimple in
the previous section for n = 4. In Theorem [2.30| we will show, that the algebra
is indeed not semisimple in this case.

Notation 2.27. Let

¢ =2(3a1 — az)(a1 + a2)(ag — ag)
t =(z12 + 213)° + (212 + 214)” + (213 + 714)°
29 =(tx12 — 1'12t)2 +c
23 =(tryz — x13t)* + ¢
=(

24 tT14 — 1‘14t)2 +c

Observe that ¢ is invariant under the subgroup S({2,3,4}) of S4, and that
z3 = (23)z9, 24 = (24)2 as well as z4 = (34)z3. Also observe that tx1s — z19t =
T13T14%12 T £14213T12 — £12213%14 — T12T14213-

20
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Lemma 2.28. The following relations hold for 2 <i,j <4, i # j:

2o+ 23424 =c¢C zizj =0 zfzczi.

Moreover zox;; = xij22 for all (i,7) € {(1,2),(1,3),(1,4),(3,4)}.

Proof (relies on computer calculations). We will start with the second relations.
First observe that

(tr12 — x12t)T12 = —212(tX12 — T121),
which implies 20712 = 1222. Using Lemma we obtain

(t$12 - $12f)$34 = ($13$141712 + T14T13T12 — T12T13T14 — 56121"14%13) T34
=T13214%34T12 — T14T13T43%12 — 12013014734 + 12214213743
=T34214213212 — T43213214T12 — T34L12214T13 + T43212213%14

=T34 ($14$13C€12 + T13214T12 — T12214T13 — !1712£E13$14) = $34(t$12 - £E127f),

which implies zox34 = x3422. We now want to show that
(tz12 — 219t) 213 =T13(tT12 — T10t)?

which implies 29213 = x1322. Now using that txi1o — T2t = X13T14212 +
214%13T12 — T12%13%14 — 12214213 and calculating (tz1o — l‘lgt)g without using
any relations except x?j = a; we obtain the following 12 terms:

(213214712)° + (T12714713)% + (T14713712)% + (T12213214)°
+T13214212014T13%12 + T12214713T12T13T14 — 5012(30143313)23312
+X14T13T12813T14T12 + T12T1314T12214T13 — T12(T13714) 12
—a1(z13714)? — o1 (T14213)* — 40

The order in which I have written this sum is not arbitrary: First computer
calculations that

(z13714712)? + (T12214713)% = 20103.

By acting with (34) we obtain
(5014310139312)2 + (IE12$13.3$14)2 = 20410637

hence the first row of terms is equal to 4ay a%, hence 213 commutes with the first
row. Now computer calculations also show, that z13 multiplied from the left to
the second row is the same as multiplying the third row from the right with =3
and z13 multiplied from the left to the third row is the same as multiplying the
second row from the right with x13. Hence x13 commutes with the second and
third row combined. Finally we have

Z13 (1?131714$13$14 + $14$131?141713) = 1T14T13%14 + T13014213214%13

= (213%14013% 14 + T14213T14213) T13,

thus z13 commutes with the 4th row, which in total implies that 13 commutes
with (tz1a — x12t)2. It follows that zox13 = 21320 Acting with (34) we obtain
22T14 = T1422.
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We can conclude that z5, z3 and z4 commute with each other. Hence for the
orthogonality it is enough to show 2923 = 0, since z2z4 = 0 is obtained from that
by acting with (34) and z5z4 = 0 is obtained by acting with (234). Computer
calculations yield

Z9Z23 — O7
as well as
20+ 23+ 24 =cC

Similar to the proof of Lemma 3) we can conclude from the above, that
22 =c¢z; for all 2 < i < 4. O

;=

Lemma 2.29. Assume (a1 + az)(a1 — ag) = 0. Then the following relations
hold:

22%23 =T2323 + T1424,

2924 =X13%23 + T2424.
Moreover z9Ds(av1, ag) C Dy(aq, 2)za + Dy, an)zs + Dylar, az)zy.

Proof (relies on computer calculations). The first relation is obtained via com-
puter calculations (it does not hold if (a; + az)(a1 — a2) # 0). The second
relation is obtained by acting with (34) on the first. Now combining these two
relations with Lemma we obtain that zo2;; € Da(an, a2)zo+Da(ar, a2)z3+
Dy, az)zq for all 1 < 4,5 < 4. Acting with (23) and (24) we obtain the
same for 23Tij and 24Zij. Hence z2D4(a1, 042) C 'D4(041, 042)22 + 'D4(Oq, (12)2’3 +
D4(Q1,OLQ)Z4. O

Theorem 2.30. Assume (a1 + az)(a; — ag) = 0. Then (22D4(ay, az))? = 0.
It follows that the ideal generated by the elements w - 2o, ™ € Sy, is a subset of
the Jacobson radical of Dy(ay, as), implying that Dy(aq, ) is not semisimple.

Proof. It is enough to show that 29D (a1, ag)ze = 0. This follows from the fact
that zoD4(a1, ) C Dylan, a2)z2 + Da(ar, az)zz + Da(aq, az)zq, as shown in
Lemma [2:29] as well as z;22 = 0 for all 2 < i < 4 according to Lemma[2.28] O

Remark 2.31. Assume (a1 + ag)(ag — ag) = 0. If @3 = as = 0, then computer
calculations show that the Jacobson radical is generated by the generators x;;,
1 < ¢ < 5 < 4, hence the quotient over the Jacobson radical has dimension
1. So assume a; # 0. Computer calculations show that the ideal generated
by the elements 7 - zo, m € S; has dimension 288 if a; = as and dimension
240 if ay = —asp. This is however not the entire Jacobson radical: Computer
calculations also show that in the case where a3 = —asy the right ideal I :=
(r12213 — T13712) A satisfies I* = 0, hence the (two-sided) ideal generated by
the elements m(x12213 — £13212), ™ € Sy is contained in the Jacobson radical.
This ideal has dimension 552. Thus the quotient over this ideal is commutative
and has dimension 24. Calculating the trace form yields that this quotient is
semisimple, which implies that this ideal coincides with the Jacobson radical.
For the other case, where a; = a9, we obtain, that the right ideal I :=
(112213 + T12T14 + T12T023 + T13T03 + T14T12 + 1) A satisfies I° = 0. Hence
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the two-sided ideal generated by the same elements must lie in the Jacobson
radical and as it turns out again has dimension 552. Computer calculations also
show, that the 24 dimensional quotient over that ideal is semisimple, hence the
Jacobson racial is equal to that ideal.

2.4 Conclusion

In section we showed that Dy(a1,as) is semisimple if aq(3a1 — ag)(a; —
ag)(a1 + az2) # 0 and conjectured that is also semisimple in the case where just
(a1 — ag)(ag + a2) # 0. In section we showed that Dy(aq,as) is indeed
not semisimple if (a3 — as)(ag + ag) = 0. We summarize this in the following
corollary.

Corollary 2.32. Assuming Conjecture to be true, the algebra Dy(ay, )
is semisimple if and only if (a1 — a2)(ay + ag) # 0.
2.5 Discussing Assumption

We find ourselves in the context of section so we have a fixedn € N, n > 3
and assume A1 --- A,_1 # 0. If needed, also recall Notation

In this section we will discuss a specific assumption that is very easy to
check for algebras with low dimension and which is true in the case n = 4 where
a? # a3 (see Remark. At the end of the section (Proposition we will
show that this assumption implies Assumption [2.20)

Assumption 2.33. Suppose there exists an invertible element u € Dy (a1, )
satisfying

va=(12)-au
for all a € Dp(aq, @2).

Proposition 2.34. Suppose that Assumption[2.33 holds. Then for all w € S,
there exists an invertible element u, € D, (a1, a2) satisfying

Ur @ = T - QUL
for all a € Dp(aq, a2).

Proof. We define V; := {u € Dy(a1,a2)|Va € Dy(a1, ) : ua =7 -au} for all
m € Sp,. Observe that Viq is the center of D, (a1, a2), and 1 € Viq is invertible.
If u € V; and v € V, for some 7,0 € Sy, then for a € D, (a1, @) we have

wa =uo-av = (70) - auv,
hence uv € V,,. We also obtain
cua=o0-(uo'a)=0-((rc"") - au) = (ono™")-aoc-u,

hence 0 -u € V,;,—1. This means that we only need to calculate these elements
for one element of every cycle type of S,, (since the cycle types are the conjugacy
classes) and by acting with the group we obtain the other ones. By assumption
there exists an invertible element u € V(;12). This implies that there exists an
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invertible element in V{;;) for every 1 <i < j <n, by acting with the group, as
shown above. If v is a unit in V{;;) and w is a unit in V{3, then vw is a unit
in Vi;jy(w). Since S, is generated by the the 2-cycles (ij), it follows that there
exists a unit in every V., m € S,, implying the proposition. L]

Remark 2.35. Assume n = 4. We will use computer calculations to show, that
Assumption [2.33|holds if a2 —a3 # 0. With some techniques of linear algebra, we
can calculate the spaces V; := {u € Dy(a1,a2) |Va € Dy(a1,a2) : ua =7-au},
for all m € S4. The result is that V; is at least one dimensional (meaning the
dimension is one if we assume that «; and as are algebraically independent)
for all 7 € Sy and for all ay,as € k. As it turns out, choosing a normalized
u € V{12), u # 0, such that u € V(i) for all a1, az € k (u is uniquely determined
that way), calculations show u? = —8(a? —a3)®. This implies that u is invertible
if and only if a2 # a3. We assumed A3 # 0, so we have that a; # ap. Hence if
we also assume a; # —ap we get that u is invertible, implying the assumption.

Another interesting conclusion is, that if af = a2, then u? = 0, hence
(ua)? = (12)-au?a = 0 for all a € Dy(ay, as), implying that u lies in the Jacob-
son radical of D4(aq, ) and thus giving another argument that the algebra is
not semisimple. The right ideal (which is equal to the two-sided ideal) generated
by u has dimension 16, if a1 = as and dimension 8 if a; = —as.

Lemma 2.36. For1 <m <n—1, setting \o = 1, the following relations hold:

/\n—m/\m—l
)\nfl
Anf?n)\rnfl
T

W1 (M- M) - Wiy Wiy = Wn—1,

Wyn—1 (n . m) cW—1 Wi —1 =

In particular, the left hand sides coincide.

Proof. The statement is trivial for m = 1. So assume m > 2. We start with the
first relation. Therefore, consider the following construction: Let A\g = 1 and
forall 1 <i<m—1Ilet

/ ,_)‘n—i—l o /
vy = Yim w; =] g,
)\n—i
o = An—i—1 Yi(it1) Y w! =" !
i i(i+1)" " "Yim TR B A
>\m717i>\n71’ -

Below we will show the following three relations:

(1) wpm—1 (M- n) W1 = W1 W,,_1,

1

(2) wm—1 Wy, = W1 Wy, _q,

(3) W W1 = 7A“’—)\’:i’1"‘1wm,1.

Combining (1), (2) and (3) implies the first relation of the claim. Regarding
(1): First observe, that the factors of (m---n) - w,,_1 are

1
o) U = s v s ) U s < i< m—
(m TL) Vi Mo Yi(i4+1) _ Yitm—-1)Yi(m+1) _ YinYim 1<i<m-—1
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We start with shifting y(m—1)(m+1) - “Ym—1)n in the factor for i =m — 1 to the
—
left of (m---n) - wy,_1, according to Lemma [2.8}

(m...n>.wm71 = (m--~n)~(v1-~-vm,1)

1
:A il (m T TL) . (y(nz—l)nL';)'y(m—l)(n—l)
((m—=1m---(n=1)) - (01" Vm-2) Ym-1)n)
1
:my(m—l)(mﬂ)';y(m—l)n

(m--n)((m = 1)m---(n = 1)) - (U1 Vm—2) Ym—-1)m-

Observe that wp,—1 € Dn(1, @2)Ym—1)(m+1) " * Y(m—1)m, SO We can exchange
the Y(m—1)(m+1)" " “Ym—1)n that we pulled to the left for the scalar A\, .. In

total we get

W1 (M- 1) - W1
=Wyt (m--n)(m—1m---(n—1)) (v Vyp_2)V),_1.

Now if m = 2, we are done with this step. If m > 3, assume that there exists
some 1 < k < m — 2, such that

W1 (M- 1) - W1
() (= 1) (= 1) (k4 1) (- 1))
'(Ul"'vk)vfc+1"'1’;@—1-
Acting with (m---n)(m—=1)---(n—=1))---((k+1)---(n—1)) on vy we get

1
myk(erl) '_')'yknyk(mfl) '<'_'yk(k+1)ykm-

We pull everything except yi.,, to the left:

(=) (= 1) (0= 1)+ (k1) (0= 1))

. (q}l...q)k)v;c+1...v;n71

:)\1 (m-n)(m—=1)--(n—-1))---((k+1)---(n—1))
n—k
(Wt - Yk—ny (k- (n = 1)) - (U1 -+ Uk—1) Ykn) Vky1 - Ups
1

= myk(erl) '_';yknyk(mf 1) '('_'yk(kJrl)
(m-e-m)(m—=1) -+ (n=1)) -+ (k- (0 = 1)) - (01 Vkm1) YomVhar -+ Vi

As discussed in Remark , we can exchange Yg(m41) " “Ykn¥k(m—1)" " "Yk(k+1)
— —
left into w;,_1 for the scalar A, _;_1. This yields

W1 (M- 1) - Wy
w1 (M- n)((m—1)(n—1))- (k- (n—1))

. (Ul . 'Uk?—l)v;g .o .U;n—l
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This finishes (1).
Regarding (2): This step is basically the same as step (2) in the proof of
Lemma Above we already used that w,,—1 € D,(aq, ag)yi(m,1)~<-_~yi(,-+1)

for all 1 < 7 < m — 2. Hence wy,_1 =

S Wm=1Yi(m—1)" Yi(i+1) for all
1 <i < m—2. Now we inductively pull those y in, first for ¢ = 1, up to
i =m — 2 and get

1

Wm—1 =Wm-—1 my(m—Q)(m—l)y(m—3)(m—1)y(m—3)(m—2) T yl(m—l)';'yu
1

=Wm—1 myl?_’)'yl(mfl) T Y(m—3)(m—2)Y(m—-3)(m—-1)Y(m—2)(m—1)

The last equality just uses Lemma @ multiple times to shift first the y(,_2)(,)
to the right, then y(,,_3)(.) down to the yy(. It basically reverses the process
in Remark but just for the last few y. Finally observe that for 2 < i <
m — 2 the product y;(;11) - Yi(m—1) commutes with v§ forall 1 < j < i, and
ﬁyi(i+1)-~-yi(m_1)vl’- = o/, Hence, considering that v/, ; = vl _,, we
obtain

Wm—1 w;n_l = wnL—l’Ull e 'U:n_l = w7n—lvl1/ e U:-:l_l = wm—lw;:l_ly
which proves (2).
Regarding (3): In Remark it was also discussed that we have w,,_1 €
Yi(i+1) " “YimDa(aq, ) for all 1 < i < m — 1. Hence starting with i = m — 1
down to i = 1, we can exchange the y in v for the scalar \,,—;, i.e. the whole

1" 3 .
w,, _; vanishes:

)\nfm' : ')\n72 >\1' : ')\mfl
" o — N
Wy Wp—1 =

Wm—1 = W —1-
)\nferl' : ')\nfl )\1' . ')\m72

This implies (3).
Now the second relation. Consider the following construction: Let A\g = 1
and forall 1 <7< m —1 let

)\ .
/. \n—i—1 r /
v = Yin w; =i - v,
An_i «
)\ .
" n—i—1 ” " "
v i m———YinYi(m—1)" " “Yi(i+1) wy =y vy
K3 1 T
/\m—l—i)\n—i A <~

Below we will show the following three relations:

(1) (n---m) - Wyp—1 Wyp—1 = Why_1 Wip—1,

(2) w;n_l Wyp—1 = wa—l Wm—1,

(3) Wp—r w4 = 7A“’—)\*:i’1"‘1wm,1.

Combining these implies the second relation of the claim. Regarding (1): First
observe, that the factors of (n---m) - w,,—1 are

1 .
(n---m) v = myi(iﬂ)'_')'yi(mq)ymyim-;yi(nq) 1<i<m-—1
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The last factor where i = m — 18 Y(m—1)n¥Ym-1)m" " Ym—1)(n—1)- NOW Wy, 1 €
—
Ym—-1)m" " Ym—1)(n—1)Pa(a1, a2), hence we can exchange this for the scalar
_

)\n—m:

(n...m).wmilwmil = (n...m).(vl...vmil)wmil

1
:)\7(” coem) - (V1 Vm—2 Ym—1)m)Y(m—1)ym" * Y(m—1)(n—1) Wm—1
n—m-+1 -
An—m
:)\7(” T m) ' (Ul CrUm—2 y(mfl)m) Wm—1
n—m-+1
An—
:)\nimy(mfl)n(n e m)((m - 1)777,) ' (Ul e Um—2) Wm—1
n—m-+1

=v/ (- (m—=1)) (U1 Vm2) W1

Now if m = 2, we are done with this step. If m > 3, assume that there exists
some 1 < k < m — 2, such that

(ne-m) - W1 W1
vl ety (e (k1) (01 0) W,
Acting with (n---(k+ 1)) on v we get

1
Eyknyk(kﬂ) '_')'yk(nq)-

Now again we have w,,_1 € yk(k+1)-_->~yk(n,1)7)4(a1, a2, hence we can exchange
this for the scalar A\,,_x_1:
Vg g (- (ko 1)) (1 0) W

An—k—1
= ;nik Uﬁn_l-évfﬁl(n v (k1) (v vp— yk(lc+1)) W1

)\nfkfl ’

N Ume1 Uk ¥kn (e (R D) (KRR 1)) - (01 0p—1) Wi
n—k A

/

e gt (2 K) - (01 vt .
In total we get (n---m) - (V1 VUppe1) Wp—1 = Ul V] Win—1 = Why_1 Wyp—1.
+—

Regarding (2): We again use that wm,—1 € Yi(i+1) - Yim—1)DPn(a1, az) for
—
all 1 <7< m — 2. Hence w,,,_1 = Yi(i+1)" " Yi(m—1)Wm—1 forall1 <i<
—
m — 2. Now we inductively pull those y in, first for ¢ = 1, up to ¢ = m — 2 and
get

Am—1—i

1
mym'_’;yumq) T Y(m—3)(m—2)Y(m—-3)(m—-1)Y(m—2)(m—1)Wm—1

1
*my(m—m(m—ny(m—?,)(m—1)y(m—3)(m—2) T yl(m—l)';ylzwm—l

Wm—1 =

The last equality just uses Lemma multiple times to shift first the y(,,_2)()
to the left, then yq,_3).) down to the y(). It is the same process as in
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Remark but just for the first few y. Finally observe that for 2 < i <
m — 2 the product ¥;(m—1)- - ¥i@i+1) commutes with U; forall 1 < j < ¢, and
—

1 / ] : : / !
X1 Vililm—1)YiGi+1) = ;- Hence, considering that v, ; = v, _;, we
obtain
/ o / . 1" o
Wy—1 Wm—-1 = ’Um71'<'_"l}1wm,1 = Um71'<'_"l}1 Wm—1 = Wy 1 Wm—1,

which proves (2).
Regarding (3): In Remark it was also discussed that we have w,,_; €
Dy (o1, @2)YinYitm—1)" - Yi(i+1) for all 1 <4 < m — 1. Hence starting with
—
i =m — 1 down to i = 1, we can exchange the y in v/ for the scalar A\,,_;, i.e.
the whole w!! _; vanishes:
)\n—m' : ')\n—2 )\1' : ')\m—l

" _ — — w _ )\nfm/\mflw
-1 = m—1— — ~y  Wm-1-
m—1 Y >\n—1

Wm—1 W,
n—m-+1""° '/\n—l >\1' . ')\m—2
— —

This implies (3) and finishes the proof. O

Lemma 2.37. For 1 <m <n —1 the following relation holds:

W1 (M- 1) - W1 Y (MM - Wiy —1

=Wy—1 (N M) - W1 Ynm (WM + Wiy 1.

Proof. 1t is trivial for m = 1, so assume m > 2. Observe that the claim cannot
be solved trivially from this previous Lemma, since ¥, cannot be shifted to the
right of (nm)w,,—1, nor can it be shifted to the left of w,,—1. It can however be
shifted to the left of (m---n)-wy,—1 and to the left of (n---m) - wy,—1. We will
basically redo the first two steps of the previous lemma, but with leaving enough
of the (m---n) - wy,—1 intact so that we can shift y,,,, to the left of it. Then we
handle the right hand side similar to the second relation of the previous lemma.
Consider the following construction: Let \j =1 and for all 1 <i<m —1 let

/ ,_)‘n—i—l ! /
U = Yim w; ==V - U,
)\nfi
o __)\n,l;ly y Yiny w! =" !
i 1 v Jii+1)" " Yi(m—1)YinYim ;Y1 "
APV ' '
)\ .
" n—i—1 " " "
vy = Yin w; =y vy
)\n—i -

We will divide the relation from the claim in the following steps:

(1) wpm—1 (M- n) - W1 = W1 W, _1,

"

/ —
2) W1 Wy, = Win—1 Wy, 1,

1

1" —
3 Wip—1Ynm = ynm(nm) * W15

n —
Wy 1Wm—-1 = (Tl e m) cWm—-1 Wm—1,

(2)
3)
(4) Wi Wm—1 = Wiy W1,
(5)
(6)

6) Ynm(mm)(n---m) - - wpm_1=M--M) - Wn—-1Ynm-
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Observe that (1) is precisely step (1) of the first relation in Lemma and
step (5) is precisely step (1) of the second relation of that lemma. Also (3) and
(6) are trivial at this point.

Regarding (2): This step is basically the same as step (2) of the first relation
of the preceding Lemma but with one significant difference. We again use that
Wm-1 € Dn(ocl,a2)ymyi(m_1)~;yi<i+1> for all 1 < i < m — 1. Hence wy,—1 =

3 1 Wi —1YinYi(m—1)"  Yiti+1) for all 1 < i < m — 1. Now we inductively pull
m—i —

those y in, first for i = 1, up to i = m — 1 and get

1
Wm—1 —wmflmy(m—l)ny(m—2)ny(m—2)(m—1) o 'ylnyl(m—l)'<'_'y12

1
=Wm—1 mym'_yyumq)ym U Ym—2)(m—1)Y(m—-2)nY(m—-1)n

The last equality just uses Lemma multiple times to shift first the y(,_1)(,)
to the right, then y(,,_2)(.) down to the y,(.). It basically reverses the process in
Remark but just for the last few y. Finally observe that for 2 <i<m—1
the product yiiy1) " Yi(m—1)Yin commutes with v; for all 1 < j < 4, and
)\%yi(iﬂ) “Yi(m—1)¥YinV; = v; . Hence we obtain

iz _ "
m—1 = Wm—1Wy, 1,

/ _ / / . "
W1 Wiy = Wy 1] =+ Vhy 1 = Wip—1 V] =+ 0
which proves (2).
Regarding (4): The last factor of w;,,_;, where i = m—1, i8S Y(m—1)nY(m—1)m-
Now w1 € Ym—1)ymPa(a1, a2), hence we can exchange y(m—1)m for Ai:

" " "
Wy Win—1 = (V) ** Uy 1) Win—1

)\nfm /

:m)\l(vg U2 Y(m—1)n) Wm—1

An—m "

= Ym-nn((m = 1n) - (0] - vy, _9) Wi
>\n—m+1

=vp—1((m = 1)n) - (o -+ vy _g) Wi 1.

Now if m = 2, we are done with this step. If m > 3, assume that there exists
some 1 < k < m — 2, such that

"
Wip—1 Wm—1

V-1 O (n(m = 1) (k4 1)) - (o] - - vf) w1

Z
Acting with (n(m —1)---(k + 1)) on v} we get
—

An—k—l
AkAn—k

SV YknYk(k+1) - Yr(m—1)Ykm-

(n(m—1)---(k+1)) - (yk(kJrl)'_'}'yk(mfl)yknylcm)

+—

Now again we have wy,—1 € Yp(r+1)- - YkmDPa(a1, a2), hence we can exchange
—
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this for the scalar A:

v%—l';'vgzﬂ(n(m - 1)';'(]‘5 + 1)) (V] vg) Wi

An—k—1 " "

:m)\kvmq'(‘_'vkﬂ(”(m -1) k+1))- (U/f T Ufclq yk(k+1)) Wm—1

{_(
Ak
:)\7’“1@%’_1. o yin ((m = 1) (k4 1) (k(k 4 1)) - (0] -+ 0 1) Wy
n—k <~ —

ool (nm = 1) R) - (0 ) w

1"
m—1

finishes (4) and the proof. O

In total we get (vf---v/_ )Wt = V10 wp_1 = w_| wyp_1. This
—

We will now show that Assumption 2:33] implies Assumption [2:20]

Proposition 2.38. Let 1 < m < n—1 and suppose Assumption [2.33 holds.
Then

€i 1= Wm-—1 ((m"'n)i'vm) Wmn—1, 0<i<n-—m
forms a set of isomorphic idempotents in the algebra wy,—1Dp (a1, @2)Wm—1.

Proof. We already discussed that these elements are idempotents in Proposition
Let 0 < i <n—m—1. We show that e; is isomorphic to e;;1. Using
Lemma it is enough to construct a unit u € wy,—1Dp (a1, a2)Wp—1, such
that we; = e;jyju. Let @ = (m---n) and let u, be the invertible element
obtained from Proposition 2.34] Now define u := wp,—1UrWy,—1. Lemma [2.36]
implies that u is indeed invertible in wy,—1Dy, (a1, @2)Wp—1:

1 -1
UWm—-1Uy Wm—1 = Wy 1UgWmpm—1U; Wp—1 = Wp-1 7T Wp—-1 Wn-1

_ )\nfm )\mfl
An—l

-1 -1
= Wm—-1Uy Wm—-1UgWm—-1 = Wm—-1Uy Wm—1 U.

—1
Wm—-1 = Wm—-1T *Wm—1 Wm—1

Now denote s = m + ¢ and observe that

1
3 Ys(s+1) _)ysnysm '_'}'ys(sf 1)-

ce . i . —
(m---n)'-opy P

Since s < n — 1, the first sequence y,(s41)" - “Ysn is not 1 and in particular ends
—

with ys,. Now Lemma [2:37) says that

Wr—1 (M- 1) - W1 Y (MM - Wiy —1

=Wy (N M) - W1 Y (WM + Wiy 1.

First, since the factors of (n---m) - wp,—1 start with y;,yjm, 1 <j <m—1, we
can shift y,,, on the right hand side as follows:

W1 (M- 1) - Win—1 Y (NM) - Wi —1

=Wim—1 Ynm (MM) (R M) - Wp—1 (NM) - Wy 1.
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Acting with (s---mn) = (s---(n —1))(n---m) on that equation yields

- -
(s (n=1))-((n... M) - Wp—1 Wn—1) Ysn (s~<-_~m) W1
:(S~ . (7’L — 1))(n . m) “Wim—1Ysn (sem) ((TL . m) W1 wm—l) .
Now we multiply this equation from the left side with ys,11) " Ys(n1) and from

the right with ysm- - yss—1). We observe that on both sides of the equation,
—

we can shift all of these yy; to ysp, using Lemma [2.8] precisely canceling some
permutations:

(n ce. m) *Wm—1Wm—1 ys(s—i-l)'_')'ysnysm'_';ys(s—l) Wm—1
Z(Tl e m) *Wm—1 ys(s+1)';'ysnysm's'ys(sfl) (TL e m) *Wm—1 Wm—1-
Note that this shifting from the right side is only possible since s < n — 1 and
would not be possible for s = n (for the same reason it is not possible to shift
in ys, from the left, which is the reason we need Lemma [2.37]in the first place

and can not rely on Lemma [2.36). Multiplying both sides with ﬁuﬂ from
the left gives

Up (N M) - Wy 1 W1 (M) Uy W1

:uﬂ(n...m).wm_l (m...n)i.Um(n...m).wm_lwm_l.

Finally, shift u, to obtain
it+1

Wyp—1 U Wyp—1 (M- 1)" VU Wiy 1 = W1 (M- - 0) T 0, Wiy 1 U W1

This is precisely ue; = e;4+1u, which finishes the proof. O
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3 Reoccurring traits

In this section we will take a look at PBW deformations of some other finite
dimensional Nichols algebras over braided vector spaces of non-abelian group
type that are defined by a quandle and a 2-cocycle. Interestingly, all of the solved
examples of this type have something in common (see Remark, which leads
to conjectures about the two other unsolved 576-dimensional examples at the
end of the section (Conjecture and Conjecture [3.13)).

As always let k be a field with characteristic # 2.

3.1 Nichols algebras defined over quandles

We will give a quick overview of how a Nichols algebra is defined from a quandle
and a 2-cocycle. This process is described in more detail in [9] or [IJ.

Definition 3.1. A quandle is a set X together with an operation>: X x X —
X, such that x>z = z, z>(y>z) = (zpy)>(ax>z) for all z,y, z € X and such that
the map X — X, y — x>y is bijective for all x € X. The enveloping group
of X is the group given by generators g,, * € X and relations ¢g,gy, = garyGa
for all z,y € X. We denote it with Gx.

To a quandle X we associate the vector space Vx that has basis v,, v € X.
A 2-cocycle on X is a map ¢ : X x X — K, such that ¢q(y, z)q(z,y> z) =
q(z,2)q(x > y,z > 2) for all z,y,z € X. Given such a 2-cocycle g, the map
¢ € Auty (Vx ® Vx), defined linearly by

c(vy ® vy) = q(2, Y) Vapy ® Uy for all z,y € X,

is a braiding on Vx, hence (Vx,c) is a braided vector space (the reverse is
also true, i.e. if ¢ is just a map, then ¢ is a braiding if and only if ¢ is a 2-
cocycle). From a braided vector space we obtain the Nichols algebra B(Vx) (see
[9], section 1), which is basically the algebra with generators v,, z € X and
relations involving the braiding c¢. We denote this Nichols algebra with Bx.

Example 3.2. Let G be a group and let X C G be the conjugacy class of one
element in G. Then X becomes a quandle via x>y = zyz~! for all 2,y € X.

Remark 3.3. Let X be a quandle with a 2-cocylce ¢ on X. There is an intrinsic
group action of Gx on B defined by g - vy = ¢(2,y)vzsy. This group action is
invariant under the defining relations of the enveloping group. The reason this
group action is well defined on By is because it commutes with the braiding:
For z,y,z € X we have

9u - (c(vy ®v5)) =gz - (q(y, 2)vypz @ vy)
=q(y, 2)q(x,y > 2)q(2, Y)Van (yoz) @ Vavy
=q(z,2)q(z >y, x> 2)q(x, y)v(azby)b(wbz) & Vgpy
=c(q(z,9)q(7, 2)Vapy @ Vapz)
=c (9o - (vy ®02)).
Without going to much into detail, if D is a PBW deformation of Bx, then
the above defined action must also be a well defined action on D. This dras-

tically reduces the possibilities for actual PBW deformations in the set of all
deformations of Bx.
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3 REOCCURRING TRAITS

Remark 3.4. A list of known examples of such Nichols algebras defined by quan-
dle and 2-cocycle can be found at [8]. It is known for n = 3,4, 5 (and conjectured
for n > 6), that the Fomin-Kirillov algebra &, is isomorphic to the Nichols alge-
bra given by the quandle X = {(ij) |1 <i < j <n} CS,, witho>7m =oro™?
for all 7,0 € X and 2-cocycle g defined by

1, ifx(i) < 7(j),
~1

Q(ﬂ-7 (Z])) = {

, otherwise,

where 1 <i < j<nandmx e X. If we divide from Gx the relations 972, = id for
all 7 € X (which we can do since g2 acts trivially on Bx), we obtain S,,. Then

the group action on &, from Remark coincides with the one from Remark
23

3.2 Semisimplicity of PBW deformations

We take a look at some type of elements that seem to correlate with the semisim-
plicity of a PBW deformation of a Nichols algebra defined over quandle and
2-cocycle. The group action plays an important role here.

Definition 3.5. Let X be a quandle, g a 2-cocycle on X and let D be a PBW
deformation of Bx. Let g € Gx and denote

Dy:={acD|ab=g-ba forall be D}.

If g is the neutral element, then Vj is the center of D. Also observe that these
defining relations are very similar to the defining relations of the enveloping

group.

Proposition 3.6. Let X be a quandle, q a 2-cocycle on X and let D be a PBW
deformation of Bx. Let g,h € Gx. The following hold:

D,D), C Dy, h-Dy = Dyghr-

In particular if g and h are conjugate, than Dy and Dy, are isomorphic vector
spaces.

Proof. If a € Dy, b € Dy, then for all ¢ € D we have
abc = ah - (¢)b = (gh) - (¢)ab,
hence ab € Dgyj. Moreover we have
h-ab="h-(ah ™ -b)=h-((gh™')-ba) = (hgh™')-bh-a,

hence h-a € Djgp-1. Similarly we obtain h=! *Dpgr-1 C Dp—1pgn-1p = Dy, i.e.
Dhgh—l C h"Dg. [

Remark 3.7. Let X be a quandle, ¢ a 2-cocycle on X and let D be a PBW
deformation of Bx. If z,y € X then there must exist a z € X, such that
z>x =y. Then D, is isomorphic to g, - Dy, = D, 4.9 = Dqg... =Dy,
Proposition 3.8. Let X be a quandle, q a 2-cocycle on X and let D be a PBW
deformation of Bx. Suppose there exists a g € Gx and a u € Dy \ {0} that is

nilpotent. Then D is not semisimple.
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3 REOCCURRING TRAITS

Proof. It is enough to show that the right ideal generated by u (which is also
a two-sided ideal by definition of u) consists only of nilpotent elements. So let
x € D and let m € N, such that " = 0. In (uxz)™ we can shift all the u to the
right, obtaining

m

(ux)™ =g-xg*-x--- g™ -xu™ =0.

Hence ux is nilpotent. O

Remark 3.9. In [B], the generic semisimplicity (meaning there exists a dense sub-
set of semisimple PBW deformations) were solved for the two smallest Nichols
algebras, the 12-dimensional one and the 72-dimensional one. Moreover, the
generic semisimplicity of PBW deformations of one of the next bigger Nichols
algebras, the 576 dimensional Fomin-Kirillov algebra, was almost solved in
section All of those algebras correspond to a quandle X and a 2-cocycle
g. In all of those cases there was a common theme: The spaces D,, where
D = D(ay,...,qx) is a PBW deformation of By, g € Gx, a1,...a; € k, al-
ways had a relatively small dimension in all of the semisimple cases, sometimes
even 0. The dimension of the center corresponded to the amount of simple fac-
tors. Obviously non of this spaces contained a nilpotent element (since it would
then not be a semisimple case according to the preceding proposition). But
one could ask when do these elements in D, become nilpotent. The interesting
result was that there always existed a g € Gx, and an element v € D, with the
property u? = pv, where v € D\ {0} and p € k and such that p = 0 if and only
if the algebra was not semisimple. Even more: In the non-semisimple case that
space Dy degenerated and had a bigger dimension than in the semisimple case.

Take for example the 12-dimensional case. The PBW deformations D =
D(a1, az) are semisimple if and only if (3a; — ae)(a; + a2) # 0. Corresponding
to that there exists a u € Dy, , such that u* = (3a; — ag)*(a1 + az)v, where
v # 0 in any case (also u is not invertible here). The space Dy, has dimension
1 in the semisimple case and dimension 2 in the non-semisimple case if a; # 0.
If @y = ag = 0 it has dimension 3. The center D;q has dimension 3 in both
cases except if &y = ag = 0, where the dimension is 4.

In the 72-dimensional case, the PBW deformations D = D(aq, ag, a3) are
semisimple if and only if ag (a3 + (a1 + a2)(3a; — az)?) # 0. Here we even
find an element w in the center D;q with the property

u? = alg (ag + (o1 + a2)(3aq — aQ)Q)l v,
where v # 0 in any case, k,I > 1 (also u is invertible here). The center has
dimension 2 in the semisimple case and dimension > 2 in the non-semisimple
case.

Finally for the PBW deformations D = D4y, as) of the 576-dimensional
Fomin-Kirillov algebra, if we reduce G x to Sy, any m € Sy, m # id has an element
u € Dy, such that u? = (a; — a2)* (a1 + az)'v, where v # 0 in any case, k,l > 1
(u is invertible here, see also Remark . In the (presumedly semisimple)
case where (a1 — an) (a1 + a2) # 0, all D, m € S,,, have dimension 1 (including

the center). In the other case, the center has dimension 1 if @ = —ay # 0,
dimension 7 if @ = ag # 0 and dimension 14 if a3 = as = 0. The spaces for
all other 7 # id have dimension 2 if a3 = —ag # 0, dimension 3 if a; = as #0

and dimension 8 if a; = ap = 0.
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3 REOCCURRING TRAITS

From those results one could conjecture that the reverse of Proposition
is also true, i.e. a PBW deformation D is not semisimple if and only if there
exists a g € Gx with a nilpotent element in D,. However, I did not found any
real logical argument backing up that conjecture so far.

3.3 Two other 576-dimensional Nichols algebras

In [§] there are two other examples of Nichols algebras of dimension 576 apart
from the Fomin-Kirillov algebra £. We obtain the PBW deformations in a
similar fashion as we did with &,.

Example 3.10. Let X be the quandle of the six 2-cycles of Sy (which form a
conjugacy class) and let ¢ be the 2-cocycle on X that is constantly —1. The
PBW deformations of Bx are the 576-dimensional algebras D = D(ay, o, a3)
generated by v, x € X and relations

v2:a1 forall z € X,
V(12)V(13) T V(13)V(23) + V(23)V(12) = Q2
V(12)V(14) T V(14)V(24) + V(24)V(12) = Q2

V(12)Y(23
V(12)V(24

)

)
YU(23)V(13) T V(13)V(12) = X2
U(24)V(14) T V(14)V(12) = X2
V(13)V(14) T V(14)V(34) T V(34)V(13) = Q2
V(13)V(34) T V(34)V(14) T V(14)V(13) = Q2
V(23) V(24 )
U(23)V(34) T V(34)V(24) T V(24)V(23) = Q2

V(i) V(kl) T V(R V(ij) = O3 if #{i,7,k,1} =4,

)
)
)+
)+
)
)
)y T V(24)V(34) + V(34)V(23) = Q2
)

where a1, as, az € k. Observe that unlike in the Fomin-Kirillov case, here an as
is needed, since the 2-cocycle, and thus the group action, is different. We have
D(0,0) = Bx. Computer calculations show that there exist elements v € D,
x € X with the property

u? = (=201 + a3)4(a1 — g + a3)3(a1 + 3ag + as)v,

where v # 0 (and this is the only scalar that we obtain in such ways). Proposi-
tionimplies that the deformation is not semisimple if (—2a; +a3)*(a; — s+
az)?(a1+3az+a3) = 0. The generic dimension (i.e. if we assume that a; and oz
are algebraically independent) of the center of D is 4. The generic dimension of
D, is 2. The dimension is > 2 if (—2a; +a3)* (1 —as+a3)3 (a1 +3az+as) = 0.

Example 3.11. Let X be the quandle of conjugacy class of the six 4-cycles of Sy
and let ¢ be the 2-cocycle on X that is constantly —1. The PBW deformations
of Bx are the 576-dimensional algebras D = D(ay,ag,as) generated by v,
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3 REOCCURRING TRAITS

z € X and relations

vi=qa; forallzec X,
V(1234)V(1423) T V(1423)V(1243) T V(1243)V(1234) = Q2
V(1234)V(1342) + U(1342)V(1423) + V(1423)V(1234) = 02
V(1234)V(1243) T V(1243)V(1324) T V(1324)V(1234) = Q2
U(1234)V(1324) T V(1324)V(1342) T V(1342)V(1234) = Q2
V(1423)V(1342) T V(1342)V(1432) T V(1432)V(1423) = 2
V(1342)V(1324) T U(1324)V(1432) + V(1432)V(1342) = 02
V(1423)V(1432)
( )

+ V(1432)V(1243) T V(1243)V(1423) = 2
V(1243)V(1432) T V(1432)V(1324) T V(1324)V(1243) = Q2

V(ijkt)V(ikji) T Vakia Ve = a3 if #{1, 5,k 1} = 4,

where a1, ag, a3 € k. We have D(0,0) = Bx. Computer calculations show that
there exist elements in u € Dy, , x € X with the property

u2 = (720[1 + a3)6(4a1 — 200 + 043)3(4041 + 6 + 013)'0,

where v # 0 (and this is the only scalar that we obtain in such ways). Proposi-
tion [3.8 implies that the deformation is not semisimple if this scalar is 0. The
generic dimension of the center of D is 1. The generic dimension of D, is also
1. If the above scalar is 0, then the dimension of D, is at least 2.

The behaviour in the preceding two examples is the same as in the solved
cases described in Remark This justifies the following two conjectures.

Conjecture 3.12. The algebra D(ay, ag, as) from Example 18 semisimple
if and only if (—201 + ag) (a1 — a2 + ag)(ag + 3as + az) # 0. In the semisimple
case we have an algebra isomorphy D(ay, az, ag) = (Mia(k))?.

Conjecture 3.13. The algebra D(ay, s, a3) from Example is semisimple
if and only if (—201 +as)(da; —2as+a3) (4o +6az+as) # 0. In the semisimple
case we have an algebra isomorphy D(aq, ag, ag) = Moy (k).
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