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0 Introduction

While a lot of classes of Nichols algebras are well understood today, there exist
some classes where there is not really much known about and that are only
accessible superficially through computer calculations. The main interest of
this thesis is one of them, the class of finite dimensional Nichols algebras over
braided vector spaces of non-abelian group type. A list of such examples can
be found in [8]. In a recent attempt to find out more about this specific class
of finite dimensional Hopf algebras, PBW deformations of such algebras were
studied in [5]. A meaningful question to ask is, when a PBW deformation of
such an algebra is semisimple, which seams to be a generic property (generic
meaning true for a dense subset of deformations).

We basically continue the work in [5] and take a look at the next small-
est dimensional examples, the three 576-dimensional Nichols algebras of this
type. One of these three belongs to the family of Fomin-Kirillov algebras,
which is where we start in section 2. While giving some assertions about all
Fomin-Kirillov algebras, we in particular with very few computer calculations
almost classify, when the PBW deformations of this 576-dimensional algebra
are semisimple, which is a previously unknown result. For the summary, refer
to subsection 2.4. In section 3 we will take a look at some of the reoccurring
traits in all of the solved examples. We will use this in subsection 3.3, where
we discuss the other two 576-dimensional examples, to give some conjectures
about the semisimplicity of the PBW deformations. These are Conjecture 3.12
and Conjecture 3.13. Since there is no known go-to approach to handle these
kind of algebras, the results presented here are the outcome of some very time
consuming experimentation. Therefore sadly there was no time left to handle
the two examples in detail and check if the conjectures hold.
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1 Preliminaries

Let k denote a field. All our algebras will be associative and unital over the
field k. If A is an algebra, we associate k1A with k.

Definition 1.1. Let A be an algebra. An element e ∈ A that satisfies e2 = e
is called idempotent. Two idempotents e1, e2 ∈ A are called orthogonal,
if e1e2 = 0 = e2e1. They are called isomorphic, if there exists elements
e12, e21 ∈ A, such that

e1e12e2 = e12, e2e21e1 = e21,

e12e21 = e1, e21e12 = e2.

A subset {eij | 1 ≤ i, j ≤ m} ⊂ A, m ∈ N is called a set of matrix units in A,
if
∑m
i=1 eii = 1 and eijekl = δjkeil for all 1 ≤ i, j, k, l ≤ m.

Lemma 1.2. Let A be an algebra and let e1, e2 ∈ A be idempotents. If e1 and
e2 are conjugate, i.e. if there exists a unit u ∈ A, such that ue1 = e2u, then e1
and e2 are isomorphic idempotents.

Proof. Setting e12 = e1u
−1 and e21 = ue1, the four relations are elementary.

Remark 1.3. Observe that if e1, e2 are isomorphic idempotents, then e1e12 =
e1e1e12e2 = e1e12e2 = e12 and similarly e12e2 = e12 and we also get those re-
lations for e21. Moreover for idempotents being isomorphic is an equivalence
relation: It is clear that it is reflective and symmetric. If e1, e2, e3 are idempo-
tents such that e1, e2 and e1, e3 are isomorphic, and e12, e21, e13, e31 are elements
that yield those isomorphisms, then e2 and e3 are isomorphic with e23 := e21e13
and e32 := e31e12.

Proposition 1.4. Let A be an algebra, m ∈ N and let e1, . . . em,∈ A be a set of
pairwise orthogonal and isomorphic idempotents, such that

∑m
i=1 ei = 1. Then

there exists a set of matrix units {eij | 1 ≤ i, j ≤ m} ⊂ A, where eii = ei.

Proof. Define eii = ei for all 1 ≤ i ≤ m and for 1 ≤ i < j ≤ m let eij and eji be
elements in A with whom ei and ej become isomorphic. Considering Remark
1.3, observe that those eij and eji can be chosen, such that eijejk = eik for all
1 ≤ i, j, k ≤ m. Finally for 1 ≤ i, j, k, l ≤ m, j 6= k we have eijekl = eijejekekl =
0, since ej and ek are orthogonal.

Remark 1.5. If A is an algebra with an idempotent e ∈ A \ {0}, than eAe
becomes an algebra with 1eAe = e (in general not a subalgebra of A).

Proposition 1.6. Let A be an algebra, and e1, e2 idempotent elements in A.
The following are equivalent:

(1) e1 and e2 are isomorphic idempotents.

(2) e1A and e2A are isomorphic right A modules.

(3) Ae1 and Ae2 are isomorphic left A modules.

In that case e1Ae1 and e2Ae2 are isomorphic algebras.
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1 PRELIMINARIES

Proof. We show that (1) and (2) are equivalent. The equivalency of (1) and (3)
is obtained analogously. Suppose (1) holds, and let e12, e21 ∈ A be elements
with whom e1 and e2 become isomorphic. Define the following right A module
morphisms:

φ : e1A→ e2A, e1a 7→ e21a

ψ : e2A→ e1A, e2a 7→ e12a.

φ is well defined, since for a ∈ A we have e21a = e2e21a ∈ e2A and if e1a = 0,
then e21a = e21e1a = 0. Similarly ψ is well defined. Since e12e21 = e1 and
e21e12 = e2, φ and ψ are inverse to each other. Hence (2) holds.

Now suppose (2) holds, and let φ : e1A → e2A be a right A module iso-
morphism. Define e21 := φ(e1) and e12 := φ−1(e2). Then e2e21 = e21, since
e21 ∈ e2A and e1e12 = e12 since e12 ∈ e1A. Moreover e21e1 = φ(e1)e1 =
φ(e1e1) = φ(e1) = e21, since φ is a right A module morphism and similarly
e12e2 = e12. Finally e21e12 = φ(e1)e12 = φ(e1e12) = φ(e12) = φ(φ−1(e2)) = e2
and similarly e12e21 = e1. Hence (1) holds.

Now if (1) holds and e12, e21 ∈ A are elements with whom e1 and e2 become
isomorphic, define the linear maps

φ : e1Ae1 → e2Ae2, e1ae1 7→ e21ae12

ψ : e2Ae2 → e1Ae1, e2ae2 7→ e12ae21.

These are well defined, since for a ∈ A we have e21ae12 = e2e21ae12e2 ∈ e2Ae2
and if e1ae1 = 0 then e21ae12 = e21e1ae1e12 = 0 and similarly for ψ. More-
over for a ∈ A we have ψ(φ(e1ae1)) = e12e21ae12e21 = e1ae1 and similarly
φ(ψ(e2ae2)) = e2ae2, hence φ and ψ are inverse to each other. Now φ(e1) =
φ(e11e1) = e21e12 = e2 and if a, b ∈ A, then

φ(e1ae1e1be1) = e21ae1be12 = e21ae12e21be12 = φ(e1ae1)φ(e1be1).

Hence φ is an algebra isomorphism.

Proposition 1.7. Let A be an algebra, m ∈ N. If there exists a set of matrix
units {eij | 1 ≤ i, j ≤ m} ⊂ A, then

A ∼= Mm(R)

as algebras, where R is the subalgebra of A of all elements commuting with all
eij, 1 ≤ i, j ≤ m. Furthermore e11Ae11 → R, e11ae11 7→

∑m
k=1 ek1ae1k is an

algebra isomorphism.

Proof. The statement is proven in [6] Proposition 2.26 for rings. It is easy to see,
that the two given ring isomorphisms are linear, i.e. algebra isomorphisms.

Corollary 1.8. Let A be an algebra, m ∈ N and let e1, . . . , em ∈ A be a set of
pairwise orthogonal and isomorphic idempotents, such that

∑m
i=1 ei = 1. Then

A ∼= Mm(e1Ae1)

as algebras.

Proof. Follows by combining Propositions 1.4 and 1.7.
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2 PBW deformations of Fomin-Kirillov algebras

In this section we will take a look at PBW deformations of Fomin-Kirillov
algebras. We are in particular interested in the PBW deformations of the 576-
dimensional Fomin-Kirillov algebra, which is one of the next smallest example of
PBW deformations of a finite dimensional Nichols algebra of non-abelian group
type that was not yet handled in [5]. We want to find out precisely which PBW
deformation is semisimple and which is not. We almost succeed in doing so,
as Theorem 2.24 and Theorem 2.30 almost characterize when a deformation is
semisimple, with the exception of two cases. Those two cases are talked about
in Conjecture 2.26.

Suppose that k is a field with characteristic 6= 2 and let α1, α2 ∈ k. Also
assume there exists an λ ∈ k, such that λ2 = α1. We will fix one such λ and
denote it

√
α1.

Notation 2.1. We will often have multiple elements, that are indexed by one or
more indexes, for example xij , 1 ≤ i, j ≤ n. To avoid confusion in products of
those elements we will sometimes denote

x12· · ·→ x1n :=x12x13 · · ·x1(n−1)x1n

x1n· · ·← x12 :=x1nx1(n−1) · · ·x13x12

for ascending and descending sequences. In particular, if n = 1 then x12· · ·→ x1n =

1 and x1n· · ·← x12 = 1.

2.1 The general case

We begin with a general definition and by lining out some general properties.

Definition 2.2. For n ∈ N, n ≥ 3, let Dn(α1, α2) denote the algebra with
generators xij , 1 ≤ i, j ≤ n and relations

xii = 0,

xij + xji = 0,

x2ij = α1 if i 6= j,

xijxjk + xjkxki + xkixij = α2 if #{i, j, k} = 3,

xijxkl − xklxij = 0 if #{i, j, k, l} = 4

for all 1 ≤ i, j, k, l ≤ n. Since chark 6= 2 the first row of relations are implied
by the second row. For α1 = α2 = 0 we get En = Dn(0, 0), commonly called
Fomin-Kirillov algebra.

Remark 2.3. There is a unique action of the symmetric group Sn on Dn(α1, α2)
such that π · xij = xπ(i)π(j) and π · (xy) = (π · x)(π · y) for all 1 ≤ i, j ≤ n,
π ∈ Sn, x, y ∈ Dn(α1, α2).

Remark 2.4. The smallest case where n = 3 has already been solved in [5] in
section 2, so we will not handle this case here. We are in particular interested in
the second smallest case, that is n = 4. It is known from computer calculations,
that D4(α1, α2) has dimension 576 for all α1, α2. From [5], Proposition 1.2. it
thus follows, that D4(α1, α2) is indeed a PBW-Deformation of E4 = D4(0, 0).
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2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

Similar to [5], Theorem 2.13., we obtain that these also must be all PBW defor-
mations. The reason we do not need a α3 for the last relations is the following:
Assume xijxkl − xklxij = α3 if #{i, j, k, l} = 4. Then we get

α3 =xijxkl − xklxij = −(xjixkl − xklxji)
=− (ij) · (xijxkl − xklxij) = −(ij) · α3 = −α3.

Hence α3 = 0, since char(k) 6= 2.

Notation 2.5. In Dn(α1, α2), n ≥ 3 let

yij := xij +
√
α1

for all 1 ≤ i, j ≤ n. Note that π · yij = yπ(i)π(j) for all π ∈ Sn.

Remark 2.6. Note that yijxij = xijyij =
√
α1yij for all 1 ≤ i, j ≤ n. This

means multiplying any x ∈ Dn(α1, α2) left by yij pulls out all of the xij that
start monomials in x and exchanges them for scalars in k. Similarly, multiplying
x right by yij pulls out all of the xij that end monomials in x.

Lemma 2.7. Let n ≥ 3 and 1 ≤ i, j, k ≤ n, such that #{i, j, k} = 3. In
Dn(α1, α2) the relations

yij + yji = 2
√
α1 yijyji = 0 y2ij = 2

√
α1yij

hold. Moreover

xijxikxjk = xjkxikxij

xijxkjxki = xkixkjxij

and

yijyikyjk = yjkyikyij

yijykjyki = ykiykjyij .

Proof. The relations in the first row are elementary. Now

xijxikxjk = (xikxkj + xkjxji − α2)xjk

= −α1xik + xkj (xjkxki + xkixij − α2)− α2xjk

= −α1 (xik + xki) + xkjxkixij − α2 (xkj + xjk)

= xjkxikxij

and acting with (kji) on that relation yields

xkixkjxij = xijxkjxki.

Using this we get

yijyikyjk − yjkyikyij
= xijxikxjk +

√
α1 (xijxik + xijxjk + xikxjk) + α1 (xij + xik + xjk +

√
α1)

− xjkxikxij −
√
α1 (xjkxik + xjkxij + xikxij)− α1 (xjk + xik + xij +

√
α1)

=
√
α1

(
xijxik + xijxjk + xikxjk − xjkxik − xjkxij − xikxij

)
=
√
α1

(
xijxjk + xjkxki + xkixij − (xjixik + xikxkj + xkjxji)

)
=
√
α1 (α2 − α2) = 0
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2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

and acting with (kji) yields

ykiykjyij − yijykjyki = 0.

Lemma 2.8. Let n ≥ 3 and 2 ≤ m ≤ n − 1. Moreover let 1 ≤ i ≤ n and
1 ≤ j1, . . . , jm ≤ n, such that #{j1, . . . , jm} = m and i /∈ {j1, . . . , jm}. Finally
let 1 ≤ s < t ≤ m. Then the following relations hold in Dn(α1, α2):

yij1 · · · yijm yjsjs+1
· · · yjsjt

= yjsjs+1
· · · yjsjt yij1 · · ·→ yijs−1

yijs+1
· · · yijtyijsyijt+1

· · ·
→
yijm

= yjsjs+1
· · · yjsjt (jsjs+1 · · · jt) · (yij1 · · · yijm)

and

yjtjs · · · yjtjt−1
yij1 · · · yijm

= (jtjt−1 · · · js) · (yij1 · · · yijm) yjtjs · · · yjtjt−1
.

Proof. The second relation follows by acting with (jtjt−1 · · · js) on the first. We
proof the first by induction on t: For t = s+1 the relation follows using Lemma
2.7 and the fact that yijykl = yklyij if #{i, j, k, l} = 4:

yij1 · · · yijm yjsjs+1
= yij1 · · ·→ yijs−1

yijsyijs+1
yjsjs+1 yijs+2

· · ·
→
yijm

=
2.7
yij1 · · ·→ yijs−1 yjsjs+1 yijs+1yijsyijs+2 · · ·→ yijm

= yjsjs+1
yij1 · · ·→ yijs−1

yijs+1
yijsyijs+2

· · ·
→
yijm

If m = s+1 then the only possibility for t is t = s+1 and the statement is shown.
So suppose s+ 1 < m and that the relation holds for some s+ 1 ≤ t ≤ m− 1.
Then we get using Lemma 2.7:

yij1 · · · yijm yjsjs+1 · · · yjsjtyjsjt+1

= yjsjs+1 · · · yjsjt yij1 · · ·→ yijs−1yijs+1 · · · yijtyijsyijt+1 · · ·→ yijm yjsjt+1

= yjsjs+1
· · · yjsjt yij1 · · ·→ yijs−1

yijs+1
· · · yijtyijsyijt+1

yjsjt+1
yijt+2

· · ·
→
yijm

=
2.7
yjsjs+1 · · · yjsjt yij1 · · ·→ yijs−1yijs+1 · · · yijtyjsjt+1yijt+1yijsyijt+2 · · ·→ yijm

= yjsjs+1
· · · yjsjtyjsjt+1

yij1 · · ·→ yijs−1
yijs+1

· · · yijtyijt+1
yijsyijt+2

· · ·
→
yijm

This finishes the induction.

Remark 2.9. To show Lemma 2.8, only relations for the yij were used that also
hold for the generators xij . Hence we can exchange all y for x and the claim
would still hold.

Lemma 2.10. Let n ≥ 3 and 1 ≤ k ≤ n − 1. Moreover let 1 ≤ i ≤ n and
1 ≤ j1, . . . , jk ≤ n, such that #{j1, . . . , jk} = k and i /∈ {j1, . . . , jk}. Then the
following relation holds in Dn(α1, α2):

∑
π∈<(ij1···jk)>

π · (xij1 · · ·xijk) =

{
(−1)

k
2 (α2)

k
2 , if k is even,

0, if k is odd.
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2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

Proof. A similar relation was shown in [7], Lemma 3.2. for the case α1 = 1, α2 =
0. We do a similar proof. First the case k = 1:

xij1 + xj1i = xij1 − xij1 = 0

The case k = 2 is just the defining relation:

xij1xij2 + xj1j2xj1i + xj2ixj2j1 = − (xj1ixij2 + xj2j1xj1i + xij2xj2j1) = −α2

Now suppose k ≥ 3 and the claim holds for k − 1 and k − 2. Denote j0 := i
and for a ∈ Z denote ja := ja mod (k+1), for example jk+1 = j0 = i. Let

σ := (j0j1 · · · jk). Then σl(js) = js+l for all 0 ≤ l ≤ k. Hence for 1 ≤ l ≤ k − 1
we have

σk−l · (xj0j1 · · ·xj0jk) = σk−l ·
(
xj0j1 · · ·xj0jl−1

xj0jlxj0jl+1
xj0jl+2

· · ·xj0jk
)

=σk−l ·
(
xj0j1 · · ·xj0jl−1

(
xj0jl+1

xjl+1jl − xjl+1jlxj0jl − α2

)
xj0jl+2

· · ·xj0jk
)

=σk−l · (xj0j1 · · ·xj0jl−1
xj0jl+1

xj0jl+2
· · ·xj0jkxjl+1jl

− xjl+1jlxj0j1 · · ·xj0jl−1
xj0jlxj0jl+2

· · ·xj0jk
− α2xj0j1 · · ·xj0jl−1

xj0jl+2
· · ·xj0jk)

=σk−l ·
(
xj0j1 · · ·xj0jl−1

xj0jl+1
· · ·xj0jk

)
xj0jk

− xj0jkσk−l ·
(
xj0j1 · · ·xj0jlxj0jl+2

· · ·xj0jk
)

− α2σ
k−l ·

(
xj0j1 · · ·xj0jl−1

xj0jl+2
· · ·xj0jk

)
Now note that

σk−l ·
(
xj0j1 · · ·xj0jl−1

xj0jl+1
· · ·xj0jk

)
=xjk−ljk−l+1

· · ·xjk−ljk−1
xjk−lj0 · · ·xjk−ljk−l−1

=(j0j1 · · · jk−1)k−l ·
(
xj0j1 · · ·xj0jk−1

)
and

σk−l ·
(
xj0j1 · · ·xj0jlxj0jl+2

· · ·xj0jk
)

=xjk−ljk−l+1
· · ·xjk−ljkxjk−lj1 · · ·xjk−ljk−l−1

=(j1j2 · · · jk)k−l−1 · (xj1j2 · · ·xj1jk)

as well as

σk−l ·
(
xj0j1 · · ·xj0jl−1

xj0jl+2
· · ·xj0jk

)
=xjk−ljk−l+1

· · ·xjk−ljk−1
xjk−lj1 · · ·xjk−ljk−l−1

=(j1j2 · · · jk−1)k−l−1 ·
(
xj1j2 · · ·xj1jk−1

)
and finally

σk (xj0j1 · · ·xj0jk) = xjkj0xjkj1 · · ·xjkjk−1

= −xj0jk(j1j2 · · · jk)−1 · (xj1j2 · · ·xj1jk) .

8



2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

Piecing this all together we can calculate the sum from the claim:

∑
π∈<(ij1···jk)>

π (xij1 · · ·xijk) =

k∑
l=0

σk−l (xj0j1 · · ·xj0jk)

=xj0j1 · · ·xj0jk + σk (xj0j1 · · ·xj0jk) +

k−1∑
l=1

σk−l (xj0j1 · · ·xj0jk)

=xj0j1 · · ·xj0jk − xj0jk(j1j2 · · · jk)−1 · (xj1j2 · · ·xj1jk)

+

(
k−1∑
l=1

(j0j1 · · · jk−1)k−l
(
xj0j1 · · ·xj0jk−1

))
xj0jk

− xj0jk
k−1∑
l=1

(j1j2 · · · jk)k−l−1 · (xj1j2 · · ·xj1jk)

− α2

k−1∑
l=1

(j1j2 · · · jk−1)k−l−1 ·
(
xj1j2 · · ·xj1jk−1

)
=

(
k∑
l=1

(j0j1 · · · jk−1)k−l
(
xj0j1 · · ·xj0jk−1

))
xj0jk

− xj0jk
k∑
l=1

(j1j2 · · · jk)k−l−1 · (xj1j2 · · ·xj1jk)

− α2

k−1∑
l=1

(j1j2 · · · jk−1)k−l−1 ·
(
xj1j2 · · ·xj1jk−1

)
Now for the first and second sum, we can use the induction hypothesis for k− 1
and for the third sum for k − 2. If k is even, k − 1 is odd and k − 2 is even,
hence the above sums equal

0 · xj0jk − xj0jk · 0− α2 (−1)
k−2
2 (α2)

k−2
2 = (−1)

k
2 (α2)

k
2 .

If k is odd, k − 1 is even and k − 2 is odd, hence the above sums equal

(−1)
k−1
2 (α2)

k−1
2 · xj0jk − xj0jk · (−1)

k−1
2 (α2)

k−1
2 − α2 · 0 = 0.

This finishes the proof.

Lemma 2.11. Let n ≥ 3 and 1 ≤ m ≤ n − 1. Moreover let 1 ≤ i ≤ n and
1 ≤ j1, . . . , jm ≤ n, such that #{j1, . . . , jm} = m and i /∈ {j1, . . . , jm}. Finally
let G =< (ij1 · · · jm) > be the subgroup of Sn of order m + 1 generated by
(ij1 · · · jm). Then for 1 ≤ k ≤ m the following relation holds in Dn(α1, α2):

∑
1≤s1<...<sk≤m

∑
π∈G

π ·
(
xijs1 · · ·xijsk

)
=

{(
m+1
k+1

)
(−α2)

k
2 , if k is even,

0, if k is odd.

Proof. First denote j0 := i and for a ∈ Z we denote ja := ja mod (m+1), for

example jm+1 = j0 = i. For 0 ≤ l ≤ m denote πl := (j0j1 · · · jm)l ∈ G.
Finally for the sake of readability, during this proof we denote [st] := xst for all
1 ≤ s, t ≤ n.

9



2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

Let 1 ≤ s1 < . . . < sk ≤ m. Then

πl · ([j0js1 ] · · · [j0jsk ]) = [jljs1+l] · · · [jljsk+l] .

Hence the sum in the claim is∑
1≤s1<...<sk≤m

m∑
l=0

[jljs1+l] · · · [jljsk+l]

We want to reorder that sum. Every summand can be indexed by an element
in {(l, s1, . . . , sk) : 0 ≤ l ≤ m, 1 ≤ s1 < . . . < sk ≤ m}. The size of this set is
(m+ 1)

(
m
k

)
. Now consider the following sum:

S :=

m−k∑
l=0

∑
l+1≤s1<...<sk≤m

∑
π∈<(jljs1 ···jsk )>

π · ([jljs1 ] · · · [jljsk ])

First of all this sum has

(k + 1)

m−k∑
l=0

(
m− l
k

)
= (m+ 1)

(
m

k

)
summands, i.e. the same amount as the sum from the claim. Now consider a
summand [jljs1+l] · · · [jljsk+l], 0 ≤ l ≤ m, 1 ≤ s1 < . . . < sk ≤ m from the first
sum. If l < s1 + l mod (m + 1) < . . . < sk + l mod (m + 1) then l < m − k
and this summand corresponds to

id ·
([
jljs′1

]
· · ·
[
jljs′k

])
where s′t := st + l, 1 ≤ t ≤ k.

from the second sum. If not then let l′, s′1, . . . , s
′
k ∈ {l}∪ {st + l mod (m+ 1) :

1 ≤ t ≤ k}, such that l′ < s′1 < . . . < s′k. In particular l′ < m − k. Since
l < s1 + l < . . . < sk + l and sk + l mod (m + 1) < l, there must exist a
permutation π ∈< (jl′js′1 . . . js′k) > that reverses this process, i.e. π(jl′) = jl,
π(js′t) = jst+l mod (m+1), 1 ≤ t ≤ k. Hence we can correspond the original
summand with one from the second sum:

π ·
([
jl′js′1

]
· · ·
[
jl′js′k

])
= [jljs1+l] · · · [jljsk+l]

Observe that this correspondence is injective on the indexes and since both sums
have the same amount of indexes, the correspondence is bijective on indexes.
Hence the sum from the claim is equal to S. Now observe that we can in fact
use Lemma 2.10 to calculate S. If k is odd, then S = 0. If k is even, then m ≥ 2
and

S =

m−k∑
l=0

∑
l+1≤s1<···<sk≤m

(−α2)
k
2 =

(
m+ 1

k + 1

)
(−α2)

k
2 .

This proofs the claim.

Notation 2.12. Let m ∈ N and denote

λm := (m+ 1)
√
α1

m
+

bm2 c∑
k=1

(
m+ 1

2k + 1

)
√
α1

m−2k
(−α2)

k ∈ k.

10
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The first few values of λm are

λ1 = 2
√
α1

λ2 = 3α1 − α2

λ3 = 4
√
α1 (α1 − α2)

λ4 = 5α2
1 − 10α1α2 + α2

2

λ5 = 2
√
α1

(
3α2

1 − 10α1α2 + 3α2
2

)
= 2
√
α1 (3α1 − α2) (α1 − 3α2) .

Lemma 2.13. Let n ≥ 3 and 1 ≤ m ≤ n − 1. Moreover let 1 ≤ i ≤ n and
1 ≤ j1, . . . , jm ≤ n, such that #{j1, . . . , jm} = m and i /∈ {j1, . . . , jm}. Finally
let G =< (ij1 · · · jm) > be the subgroup of Sn of order m + 1 generated by
(ij1 · · · jm). Then the following relations hold in Dn(α1, α2):

(1)
∑
π∈G π (yij1 · · · yijm) = λm.

(2) σ (yij1 · · · yijm)π (yij1 · · · yijm) = 0 for all σ, π ∈ G, σ 6= π.

(3) (yij1 · · · yijm)
2

= λmyij1 · · · yijm .

Proof. (1): Let π ∈ G. Consider the summands of the product π (yij1 · · · yijm) =
yπ(i)π(j1) · · · yπ(i)π(jm) that we get by simply multiplying the polynomials and
without using any defining relations. The only summand of degree 0 is simply√
α1

m. The summands of degree 1 ≤ k ≤ m are

√
α1

m−k
xπ(i)π(js1 ) · · ·xπ(i)π(jsk ) =

√
α1

m−k
π ·
(
xijs1 · · ·xijsk

)
,

where 1 ≤ s1 < . . . < sk ≤ m. Hence using Lemma 2.11 we obtain∑
π∈G

π (yij1 · · · yijm)

=
∑
π∈G

√α1
m

+

m∑
k=1

√
α1

m−k ∑
1≤s1<...<sk≤m

π ·
(
xijs1 · · ·xijsk

)
=(m+ 1)

√
α1

m
+

m∑
k=1

√
α1

m−k ∑
1≤s1<...<sk≤m

∑
π∈G

π ·
(
xijs1 · · ·xijsk

)

=(m+ 1)
√
α1

m
+

m∑
k=1, k even

√
α1

m−k
(
m+ 1

k + 1

)
(−α2)

k
2

=(m+ 1)
√
α1

m
+

bm2 c∑
k=1

(
m+ 1

2k + 1

)
√
α1

m−2k
(−α2)

k
= λm

(2): We show the relation for σ = id. The other relations are obtained by
acting with G on that relation. Let π ∈ G \ {id}, i.e. π = (ij1 · · · jm)s for some
1 ≤ s ≤ m. Consider first the case where s = m. Then π(i) = jm and π(j1) = i.
Hence

yij1 · · · yijmπ (yij1 · · · yijm) = yij1 · · · yijm π · (yij1) π · (yij2 · · · yijm)

= yij1 · · · yijmyjmi π · (yij2 · · · yijm) = 0.

11
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Now consider the case where s < m. Observe that π(i) = js and π(jk) = jk+s
for all 1 ≤ k ≤ m− s. This means

π
(
yij1 · · · yijm−s

)
= yjsjs+1

· · · yjsjm

Hence we can use Lemma 2.8 with t = m:

yij1 · · · yijmπ
(
yij1 · · · yijm−s

)
=yij1 · · · yijm yjsjs+1 · · · yjsjm
=yjsjs+1 · · · yjsjm yij1 · · ·→ yijs−1yijs+1 · · ·→ yijmyijs

Since π(jm−s+1) = i, multiplying the above relation with π · (yijm−s+1
) = yjsi

from the right yields

yij1 · · · yijmπ
(
yij1 · · ·→ yijm−syijm−s+1

)
= 0.

If s = 1 then this is the claim, if not one can simply multiply this relation right
by the remaining π ·

(
yijm−s+2

· · · yijm
)

and get the claim.
(3): Using (1) and (2) we obtain

yij1 · · · yijm yij1 · · · yijm = yij1 · · · yijm

λm − ∑
π∈G\{id}

π · (yij1 · · · yijm)


= λmyij1 · · · yijm .

2.2 The semisimple case

In this section we will fix n ∈ N, n ≥ 3 and assume λ1 · · ·λn−1 6= 0. The
main result of this section is Theorem 2.24, where we show (using some com-
puter calculations), that in most cases the 576-dimensional algebra D4(α1, α2)
is semisimple and isomorphic to M24(k).

Notation 2.14. In Dn(α1, α2), denote for all for all 1 ≤ i ≤ n− 1

vi :=
1

λn−i
yi(i+1)· · ·→ yin

w0 :=1

wi :=wi−1vi = v1 · · · vi
w :=wn−1.

For example, if n = 4 then

w = v1v2v3 =
1

λ1λ2λ3
y12y13y14y23y24y34.

Observe that vi is a special case of the elements handled in Lemma 2.13.

12
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Remark 2.15. Let 1 ≤ m ≤ n − 1. Note that in wm = v1 · · · vm we can shift
any vi, 1 ≤ i ≤ m to the left according to Lemma 2.8, i.e. wm ∈ viDn(α1, α2).
Shifting vi+1 · · · vm to the left exposes

(m · · ·n)((m− 1) · · ·n) · · · ((i+ 1) · · ·n) · vi

=
1

λn−i
yi(m+1)· · ·→ yinyim· · ·← yi(i+1) =: v′i

on the right, i.e. wm ∈ Dn(α1, α2)v′i. This means, considering Lemma 2.13(3),
that multiplying a ∈ Dn(α1, α2) left by wm we can pull any v′i that start
products in a into wm and thus ignoring them in a, and similarly by multi-
plying right by wm we can ignore any vi that end products in a. Another
similar shifting is also possible: In wm, first shift ym(m+1) that starts vm
to the left. This will cause y(m−1)(m+1) to be shifted to the front of vm−1
and thus can be shifted to the left of wm−1. Continuing this way we obtain
wm ∈ ym(m+1)y(m−1)(m+1)· · ·← y1(m+1)Dn(α1, α2).

Lemma 2.16. For all for all 1 ≤ m ≤ n− 1 and m ≤ s < t ≤ n the following
relations hold in Dn(α1, α2):

wm−1ys(s+1) · · · yst = ys(s+1) · · · yst (s(s+ 1) · · · t) · wm−1
yts · · · yt(t−1)wm−1 = (t(t− 1) · · · s) · wm−1 yts · · · yt(t−1).

Proof. The statement is trivial for m = 1, since w0 = 1. Suppose m ≥ 2. Using
Lemma 2.8 we obtain for all 1 ≤ i ≤ m− 1, since i < s:

viys(s+1) · · · yst = ys(s+1) · · · yst (s(s+ 1) · · · t) · vi
yts · · · yt(t−1)vi = (t(t− 1) · · · s) · vi yts · · · yt(t−1).

Since wm−1 is a product of those vi, the claim follows.

Proposition 2.17. Let 1 ≤ m ≤ n − 1. The element wm is an idempotent in
Dn(α1, α2). Moreover wm−1vmwm−1 = wmwm−1 is an idempotent isomorphic
to wm.

Proof. We do induction on m. If m = 1, then w1 = v1 is an idempotent
according to Lemma 2.13(3) and w0v1w0 = v1 = w1. Now suppose m ≥ 2 and
wm−1 is an idempotent. Combining Lemmas 2.13(3) and 2.16 we obtain

wmwm =wm−1vmwm−1vm = wm−1vmvm (m · · ·n) · wm−1
=wm−1vm (m · · ·n) · wm−1 = wm−1wm−1vm = wm−1vm = wm.

Hence wm is an idempotent. Similarly

wm−1vmwm−1wm−1vmwm−1 =wm−1vmwm−1vmwm−1

=wm−1vmvm (m · · ·n) · wm−1wm−1
=wm−1vm (m · · ·n) · wm−1wm−1
=wm−1wm−1vmwm−1 = wm−1vmwm−1

13
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and thus wmwm−1 is an idempotent. If we denote e1 := wm and e2 := wmwm−1,
then define e12 := e2, e21 := e1. Since

e1e2 =wmwmwm−1 = wmwm−1 = e2

e2e1 =wmwm−1wm = wmwm−1wm−1vm = wmwm−1vm = wmwm = wm = e1

we immediately obtain

e1e12e2 =e1e2e2 = e1e2 = e2 = e12 e2e21e1 =e2e1e1 = e2e1 = e1 = e21

e12e21 =e2e1 = e1 e21e12 =e1e2 = e2

and hence e1 and e2 are isomorphic idempotents.

Lemma 2.18. Let 1 ≤ m ≤ s < t ≤ n. In D4(α1, α2) the following relation
holds:

yst(t · · ·n)(s · · ·n)(wm−1)(t · · ·n)(s · · ·m)(wm−1)(s · · ·m)(t · · ·m)(wm−1)yts

= 0.

Proof. If m = 1, then the relation follows immediately since w0 = 1 and ystyts =
0. Suppose m ≥ 2. Consider the following construction: Let λ0 = 1 and for all
1 ≤ i ≤ m− 1 let

v′i :=
λm−i
λn−i

yi(m+1) · · · yin w′i :=v′1 · · · v′i,

v′′i :=
λm−i

λm−1−iλn−i
yi(i+1)· · ·→ yi(m−1)yi(m+1) · · · yin w′′i :=v′′1 · · · v′′i ,

v′′′i :=
λ2m−i

λm−1−iλn−i
yi(m+1)· · ·→ yi(n−1) w′′′i :=v′′′i · · ·← v

′′′
1 .

Below we will show the following three relations:

(1) (s · · ·n)(wm−1)(s · · ·m)(wm−1) = (s · · ·n)(wm−1)(s · · ·m)(w′m−1),

(2) (s · · ·n)(wm−1)(s · · ·m)(w′m−1) = (s · · ·n)(wm−1)(s · · ·m)(w′′m−1),

(3) (t · · ·n)(w′′m−1)(t · · ·m)(wm−1) = (t · · ·n)(w′′′m−1)(t · · ·m)(wm−1).

Combining (1), (2) and (3), we obtain

(t · · ·n)(s · · ·n)(wm−1)(t · · ·n)(s · · ·m)(wm−1)(s · · ·m)(t · · ·m)(wm−1)

=(t · · ·n)(s · · ·n)(wm−1)(t · · ·n)(s · · ·m)(w′′′m−1)(s · · ·m)(t · · ·m)(wm−1),

since the permutations (t · · ·n) and (s · · ·m) commute. Now observe, that since
ystyityis = yisyityst for all 1 ≤ i ≤ m− 1 and since (t · · ·n)(s · · ·n)(n− 1) = t,
(t · · ·n)(s · · ·n)(n) = s we can shift

yst(t · · ·n)(s · · ·n)(wm−1) = (st)(t · · ·n)(s · · ·n)(wm−1)yst,

Moreover yst and (t · · ·n)(s · · ·m)(w′′′m−1) commute, since w′′′m−1 has no y with
indexes in {m,n}, i.e. (t · · ·n)(s · · ·m)(w′′′m−1) has no y with indexes in {s, t}.

14
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Similarly, since (s · · ·m)(t · · ·m)(m) = t, (s · · ·m)(t · · ·m)(m + 1) = s we can
shift

yst(s · · ·m)(t · · ·m)(wm−1)yts = (st)(s · · ·m)(t · · ·m)(wm−1)ystyts = 0,

which finishes the proof.
Regarding (1): Since (m · · · s)(s · · ·n) = (m · · ·n), (1) is equivalent to

(m · · ·n)(wm−1)wm−1 = (m · · ·n)(wm−1)w′m−1

(via acting with (m · · · s) = (s · · ·m)−1). First recall Remark 2.15 and observe
that wm−1 ∈ Dn(α1, α2)yinyi(m−1)· · ·← yi(i+1) for all 1 ≤ i ≤ m − 1. Lemma

2.13(3) implies wm−1yinyi(m−1)· · ·← yi(i+1) = λm−iwm−1 for all 1 ≤ i ≤ m − 1,

and thus by acting with (m · · ·n) we obtain

(m · · ·n)(wm−1)yimyi(m−1)· · ·← yi(i+1) = λm−i(m · · ·n)(wm−1)

for all 1 ≤ i ≤ m− 1. Hence for i = m− 1 we obtain

(m · · ·n)(wm−1)wm−1 = (m · · ·n)(wm−1)v1 · · · vm−1

=(m · · ·n)(wm−1)v1 · · · vm−2
1

λn−m+1
y(m−1)my(m−1)(m+1) · · · y(m−1)n

=(m · · ·n)(wm−1)y(m−1)m((m− 1)m)(v1 · · · vm−2)

1

λn−m+1
y(m−1)(m+1) · · · y(m−1)n

=(m · · ·n)(wm−1)((m− 1)m)(v1 · · · vm−2)
λ1

λn−m+1
y(m−1)(m+1) · · · y(m−1)n

=(m · · ·n)(wm−1)((m− 1)m)(v1 · · · vm−2)v′m−1.

If m = 2 we are finished, so suppose m ≥ 3. Now for 1 ≤ i ≤ m− 2 we have

((m− 1)m)((m− 2)(m− 1)m) · · · ((i+ 1) · · ·m)(yi(i+1) · · · yim)

=yim· · ·← yi(i+1)

and hence

(m · · ·n)(wm−1)((m− 1)m) · · · ((i+ 1) · · ·m)(v1 · · · vi)
=(m · · ·n)(wm−1)yim· · ·← yi(i+1)

((m− 1)m) · · · (i · · ·m) (v1 · · · vi−1)
1

λn−i
yi(m+1) · · · yin

=(m · · ·n)(wm−1)((m− 1)m) · · · (i · · ·m) (v1 · · · vi−1) v′i.

The last equality is implied by the relation at the beginning of the proof of (1).
Thus inductively we obtain

(m · · ·n)(wm−1)wm−1 = (m · · ·n)(wm−1)v1 · · · vm−1
=(m · · ·n)(wm−1)v′1 · · · v′m−1 = (m · · ·n)(wm−1)w′n−1,

which is equivalent to (1).

15
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Regarding (2): If m = 2 there is nothing to show, so suppose m ≥ 3. It is
equivalent to show

(m · · ·n)(wm−1)w′m−1 = (m · · ·n)(wm−1)w′′m−1

Therefore we reverse the process in (1), with leaving out the yim. If one
wishes to, one can check on some examples for m ≥ 4, that it is indeed
necessary to do this step before (3). So in (1) we already discussed, that
wm−1 ∈ Dn(α1, α2)yi(m−1)· · ·← yi(i+1) for all 1 ≤ i ≤ m − 2. Lemma 2.13(3)

implies wm−1 = 1
λm−1−i

wm−1yi(m−1)· · ·← yi(i+1) for all 1 ≤ i ≤ m − 2, and thus

by acting with (m · · ·n) we obtain

(m · · ·n)(wm−1) =
1

λm−1−i
(m · · ·n)(wm−1)yi(m−1)· · ·← yi(i+1)

for all 1 ≤ i ≤ m− 2. Now we inductively pull those y in, first for i = 1, up to
i = m− 2 and get

(m · · ·n)(wm−1) =(m · · ·n)(wm−1)
1

λ1 · · ·λm−2
y(m−2)(m−1)y(m−3)(m−1)y(m−3)(m−2) · · · y1(m−1)· · ·← y12

=(m · · ·n)(wm−1)
1

λ1 · · ·λm−2
y12· · ·→ y1(m−1) · · · y(m−3)(m−2)y(m−3)(m−1)y(m−2)(m−1)

The last equality just uses Lemma 2.8 multiple times to shift first the y(m−1)(·)
to the right, then y(m−2)(·) up to the y2(·). It basically reverses the process
in Remark 2.15, but just for the last few y. Finally observe that for 2 ≤ i ≤
m − 2 the product yi(i+1) · · · yi(m−1) commutes with v′j for all 1 ≤ j < i, and

1
λm−1−i

yi(i+1) · · · yi(m−1)v′i = v′′i . Hence, considering that v′m−1 = v′′m−1, we

obtain

(m · · ·n)(wm−1)w′m−1 = (m · · ·n)(wm−1)v′1 · · · v′m−1
=(m · · ·n)(wm−1)v′′1 · · · v′′m−1 = (m · · ·n)(wm−1)w′′m−1,

which proves (2).
Regarding (3): Acting with (n · · · t), observe that (3) is equivalent to

w′′m−1(n · · ·m)(wm−1) = w′′′m−1(n · · ·m)(wm−1).

Again consider Remark 2.15 and observe that wm−1 ∈ yi(i+1) · · · yimDn(α1, α2)
for all 1 ≤ i ≤ m− 1. Lemma 2.13(3) implies yi(i+1) · · · yimwm−1 = λm−iwm−1
for all 1 ≤ i ≤ m− 1, and thus by acting with (n · · ·m) we obtain

yi(i+1)· · ·→ yi(m−1)yin(n · · ·m)(wm−1) = λm−i(n · · ·m)(wm−1)

16



2 PBW DEFORMATIONS OF FOMIN-KIRILLOV ALGEBRAS

for all 1 ≤ i ≤ m− 1. Hence for i = m− 1:

w′′m−1(n · · ·m)(wm−1) = v′′1 · · · v′′m−1(n · · ·m)(wm−1)

=v′′1 · · ·→ v
′′
m−2

λ1
λn−m+1

y(m−1)(m+1) · · · y(m−1)n(n · · ·m)(wm−1)

=v′′1 · · ·→ v
′′
m−2

λ21
λn−m+1

y(m−1)(m+1) · · · y(m−1)(n−1)(n · · ·m)(wm−1)

=v′′′m−1((m− 1)(m+ 1) · · · (n− 1))
(
v′′1 · · ·→ v

′′
m−2

)
(n · · ·m)(wm−1).

If m = 2 we are finished, so suppose m ≥ 3. Now if 1 ≤ i ≤ m− 2, then for

v′′i :=
λm−i

λm−1−iλn−i
yi(i+1)· · ·→ yi(m−1)yi(m+1) · · · yin

observe that

((i+ 1)(m+ 1) · · · (n− 1)) · · · ((m− 1)(m+ 1) · · · (n− 1))(v′′i )

=
λm−i

λm−1−iλn−i
yi(m+1)· · ·→ yi(n−1)yi(i+1)· · ·→ yi(m−1)yin.

By construction we can use Lemma 2.8 to shift the first n− 1−m factors of v′′i
in the product v′′j v

′′
i to the left for all 1 ≤ j < i ≤ m − 2 (this would not have

worked for the v′i) and thus with the above we get

((i+ 1)(m+ 1) · · · (n− 1)) · · · ((m− 1)(m+ 1) · · · (n− 1))

(v′′1 · · · v′′i )(n · · ·m)(wm−1)

=((i+ 1)(m+ 1) · · · (n− 1)) · · · ((m− 1)(m+ 1) · · · (n− 1))

(v′′1 · · ·→ v
′′
i−1)

λ2m−i
λm−1−iλn−i

yi(m+1)· · ·→ yi(n−1)(n · · ·m)(wm−1)

=v′′′i (i(m+ 1) · · · (n− 1)) · · · ((m− 1)(m+ 1) · · · (n− 1))

(v′′1 · · ·→ v
′′
i−1)(n · · ·m)(wm−1)

Hence inductively we obtain

w′′m−1(n · · ·m)(wm−1) = v′′1 · · · v′′m−1(n · · ·m)(wm−1)

=v′′′m−1· · ·← v
′′′
1 (n · · ·m)(wm−1) = w′′′m−1(n · · ·m)(wm−1),

which proves (3).

Proposition 2.19. Assume n ≥ 4 and let 1 ≤ m ≤ n− 1. Then

ei := wm−1
(
(m · · ·n)i · vm

)
wm−1, 0 ≤ i ≤ n−m

forms a set of orthogonal idempotents in the algebra wm−1Dn(α1, α2)wm−1 and∑n−m
i=0 ei = wm−1.

Proof. Note that e0 = wmwm−1. We have shown that wm−1 is an idempotent
in Proposition 2.17 (if m = 1 then wm−1 = w0 = 1 is trivially idempotent).
Using Lemma 2.13(1) we obtain:

n−m∑
i=0

ei = wm−1

(
n−m∑
i=0

(m · · ·n)i · vm

)
wm−1 = wm−1 1wm−1 = wm−1.
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Next we show, that ei and ej are orthogonal for 0 ≤ i < j ≤ n − m. For
readability, we ignore the factors 1

λk
, n−m ≤ k ≤ n− 1, in this part (assuming

λk = 1 for all k, so to speak), since they are not necessary for the orthogonality.
Let s = m+ i and t = m+ j. Then m ≤ s < t ≤ n and

(m · · ·n)i · vm = (m · · ·n)i
(
ym(m+1) · · · ymn

)
= ys(s+1)· · ·→ ysn ysm· · ·→ ys(s−1)

(m · · ·n)j · vm = yt(t+1)· · ·→ ytn ytm· · ·→ yt(t−1).

Observe that if i = 0, then ysm· · ·→ ys(s−1) = 1, and if j = n − m, then

yt(t+1)· · ·→ ytn = 1 and thus, setting vn = 1, we get

ei =wm−1 ys(s+1)· · ·→ ysnysm· · ·→ ys(s−1) wm−1 = wm−1 vsysm· · ·→ ys(s−1) wm−1

ej =wm−1 vtytm· · ·→ yt(t−1) wm−1.

Since according to Lemma 2.13(2) and s < t we have

yts· · ·→ yt(t−1)ys(s+1)· · ·→ yst

=(t(t− 1) · · · s) ·
(
ys(s+1)· · ·→ yst

)
ys(s+1)· · ·→ yst = 0,

and thus

ytm· · ·→ yt(t−1)vs

=ytm· · ·→ yt(s−1)yts· · ·→ yt(t−1)ys(s+1)· · ·→ ystys(t+1)· · ·→ ysn = 0.

With this, using Lemma 2.16, we obtain

ejei = wm−1vtytm· · ·→ yt(t−1)wm−1vsysm· · ·→ ys(s−1)wm−1

= wm−1vt ytm· · ·→ yt(t−1)vs (s · · ·n) · wm−1ysm· · ·→ ys(s−1)wm−1 = 0

Now note that ysm· · ·→ ys(s−1) and vt commute. Using Lemma 2.8 we obtain

eiej =wm−1vsysm· · ·→ ys(s−1)wm−1vtytm· · ·→ yt(t−1)wm−1

=vt(t · · ·n)(wm−1vs)(t · · ·n)(s · · ·m)(wm−1)

(s · · ·m)(ytm· · ·→ yt(t−1)wm−1)ysm· · ·→ ys(s−1)

=vt(t · · ·n)(vs)(t · · ·n)(s · · ·n)(wm−1)(t · · ·n)(s · · ·m)(wm−1)

(s · · ·m)(t · · ·m)(wm−1)(s · · ·m)(ytm· · ·→ yt(t−1))ysm· · ·→ ys(s−1) = 0.

The last product is equal to 0 according to Lemma 2.18, since the last factor of
(t · · ·n)(vs) is yst, and the first factor of (s · · ·m)(ytm · · · yt(t−1)) is yts.

Finally for 0 ≤ i ≤ m− n we have

eiei = ei

wm−1 − n−m∑
j=0,j 6=i

ej

 = eiwm−1 = ei,

implying that ei is idempotent.
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Assumption 2.20. For all 1 ≤ m ≤ n− 1 the elements

ei := wm−1
(
(m · · ·n)i · vm

)
wm−1, 0 ≤ i ≤ n−m

form a set of isomorphic idempotents in the algebra wm−1Dn(α1, α2)wm−1.

Remark 2.21. In section 2.5 we will give some discussion to when Assumption
2.20 holds. The result of that is, that it holds in particular in the case where
n = 4 and α2

1 − α2
2 6= 0, i.e. besides λ1λ2λ3 6= 0 we also need α1 + α2 6= 0. This

does however rely on some computer calculations. The assumption is also not
true for any α1, α2, if n = 3.

Theorem 2.22. Let 1 ≤ m ≤ n− 1 and suppose Assumption 2.20 holds. Then

wm−1Dn(α1, α2)wm−1 ∼= Mn−m+1 (wmDn(α1, α2)wm)

as algebras. Moreover

Dn(α1, α2) ∼= Mn! (wDn(α1, α2)w)

as algebras.

Proof. Let

ei := wm−1
(
(m · · ·n)i · vm

)
wm−1, 0 ≤ i ≤ n−m.

From Proposition 2.19 and Assumption 2.20 we obtain that those ei form a set
orthogonal and isomorphic idempotents in the algebra wm−1Dn(α1, α2)wm−1
and

∑n−m
i=0 ei = wm−1. Using Corollary 1.8, we obtain the algebra isomorphy

wm−1Dn(α1, α2)wm−1 ∼= Mn−m+1 (e0wm−1Dn(α1, α2)wm−1e0) ,

and e0wm−1 = wmwm−1wm−1 = wmwm−1 as well as wm−1e0 = wmwm−1
and according to Proposition 2.17 wmwm−1 is isomorphic to wm, hence using
Proposition 1.6 we obtain

e0wm−1Dn(α1, α2)wm−1e0 ∼= wmDn(α1, α2)wm

as algebras. This proves the first part of the theorem. Now using this part
inductively, starting with m = 1 and iterating up to m = n− 1 yields

Dn(α1, α2) =w0Dn(α1, α2)w0
∼= Mn (w1Dn(α1, α2)w1)

∼=Mn (Mn−1 (w2Dn(α1, α2)w2))
∼= · · · ∼= Mn (Mn−1 (· · · (M2 (wn−1Dn(α1, α2)wn−1)) · · · ))
∼=Mn! (wDn(α1, α2)w) ,

which implies the second part of the theorem.

Computer calculations show, that the following proposition holds.

Proposition 2.23. If n = 4, then

wD4(α1, α2)w ∼= k.
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It is rather simple to check that wyijw ∈ kw for all 1 ≤ i, j ≤ 4, but so far
I did not find a general proof.

Theorem 2.24. In the case n = 4, if α1 + α2 6= 0 (as well as λ1λ2λ3 6= 0, as
presumed in this whole section), then

D4(α1, α2) ∼= M24(k)

as algebras. In particular dimD4(α1, α2) = 576 and D4(α1, α2) is simple and
semisimple.

Proof. Assumption 2.20 holds in this case, as discussed in Remark 2.21. So the
theorem follows by combining Theorem 2.22 and Proposition 2.23.

Remark 2.25. Theorem 2.24 relies on Assumption 2.20 and Proposition 2.23,
which both rely on computer calculations.

For the following, final conjecture of this section, we will revoke the require-
ment that λ1 · · ·λn−1 6= 0.

Conjecture 2.26. If n = 4 and (α1 − α2) (α1 + α2) 6= 0, then D4(α1, α2) is
semisimple.

To prove the Conjecture there would be only two cases left that were not
handled in Theorem 2.24: The one where α1 6= 0, 3α1 − α2 = 0 and the one
where α1 = 0, α2 6= 0. What backs up this conjecture is on one hand that
I calculated a lot of different subalgebras that definitely do not contain any
elements from the radical in both these cases, which was true for multiple of
those subalgebras in the cases α2

1 = α2
2. Moreover I partially calculated the

trace forms in both these cases and at least the first 25 rows of its matrix form
are linearly independent in the case where 3α1 = α2 (that is not much, but also
not true in the case where α2

1 = α2
2) and at least 118 rows in the case where

α1 = 0, α2 6= 0. On the other hand the behaviour discussed in section 3 backs
up this conjecture as well.

2.3 The non-semisimple case

In this section we will restrict to the case where n = 4 and (α1 − α2) (α1 + α2) =
0. This is precisely the case that was not proven (or conjectured) semisimple in
the previous section for n = 4. In Theorem 2.30 we will show, that the algebra
is indeed not semisimple in this case.

Notation 2.27. Let

c =2(3α1 − α2)(α1 + α2)(α1 − α2)

t =(x12 + x13)2 + (x12 + x14)2 + (x13 + x14)2

z2 =(tx12 − x12t)2 + c

z3 =(tx13 − x13t)2 + c

z4 =(tx14 − x14t)2 + c

Observe that t is invariant under the subgroup S({2, 3, 4}) of S4, and that
z3 = (23)z2, z4 = (24)z2 as well as z4 = (34)z3. Also observe that tx12− x12t =
x13x14x12 + x14x13x12 − x12x13x14 − x12x14x13.
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Lemma 2.28. The following relations hold for 2 ≤ i, j ≤ 4, i 6= j:

z2 + z3 + z4 = c zizj = 0 z2i = czi.

Moreover z2xij = xijz2 for all (i, j) ∈ {(1, 2), (1, 3), (1, 4), (3, 4)}.

Proof (relies on computer calculations). We will start with the second relations.
First observe that

(tx12 − x12t)x12 = −x12(tx12 − x12t),

which implies z2x12 = x12z2. Using Lemma 2.7 we obtain

(tx12 − x12t)x34 = (x13x14x12 + x14x13x12 − x12x13x14 − x12x14x13)x34

=x13x14x34x12 − x14x13x43x12 − x12x13x14x34 + x12x14x13x43

=x34x14x13x12 − x43x13x14x12 − x34x12x14x13 + x43x12x13x14

=x34 (x14x13x12 + x13x14x12 − x12x14x13 − x12x13x14) = x34(tx12 − x12t),

which implies z2x34 = x34z2. We now want to show that

(tx12 − x12t)2x13 =x13(tx12 − x12t)2

which implies z2x13 = x13z2. Now using that tx12 − x12t = x13x14x12 +
x14x13x12− x12x13x14− x12x14x13 and calculating (tx12− x12t)2 without using
any relations except x2ij = α1 we obtain the following 12 terms:

(x13x14x12)2 + (x12x14x13)2 + (x14x13x12)2 + (x12x13x14)2

+x13x14x12x14x13x12 + x12x14x13x12x13x14 − x12(x14x13)2x12

+x14x13x12x13x14x12 + x12x13x14x12x14x13 − x12(x13x14)2x12

−α1(x13x14)2 − α1(x14x13)2 − 4α3
1

The order in which I have written this sum is not arbitrary: First computer
calculations that

(x13x14x12)2 + (x12x14x13)2 = 2α1α
2
2.

By acting with (34) we obtain

(x14x13x12)2 + (x12x13x14)2 = 2α1α
2
2,

hence the first row of terms is equal to 4α1α
2
2, hence x13 commutes with the first

row. Now computer calculations also show, that x13 multiplied from the left to
the second row is the same as multiplying the third row from the right with x13
and x13 multiplied from the left to the third row is the same as multiplying the
second row from the right with x13. Hence x13 commutes with the second and
third row combined. Finally we have

x13 (x13x14x13x14 + x14x13x14x13) = α1x14x13x14 + x13x14x13x14x13

= (x13x14x13x14 + x14x13x14x13) x13,

thus x13 commutes with the 4th row, which in total implies that x13 commutes
with (tx12 − x12t)2. It follows that z2x13 = x13z2. Acting with (34) we obtain
z2x14 = x14z2.
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We can conclude that z2, z3 and z4 commute with each other. Hence for the
orthogonality it is enough to show z2z3 = 0, since z2z4 = 0 is obtained from that
by acting with (34) and z3z4 = 0 is obtained by acting with (234). Computer
calculations yield

z2z3 = 0,

as well as

z2 + z3 + z4 = c.

Similar to the proof of Lemma 2.13(3) we can conclude from the above, that
z2i = czi for all 2 ≤ i ≤ 4.

Lemma 2.29. Assume (α1 + α2)(α1 − α2) = 0. Then the following relations
hold:

z2x23 =x23z3 + x14z4,

z2x24 =x13z3 + x24z4.

Moreover z2D4(α1, α2) ⊂ D4(α1, α2)z2 +D4(α1, α2)z3 +D4(α1, α2)z4.

Proof (relies on computer calculations). The first relation is obtained via com-
puter calculations (it does not hold if (α1 + α2)(α1 − α2) 6= 0). The second
relation is obtained by acting with (34) on the first. Now combining these two
relations with Lemma 2.28, we obtain that z2xij ∈ D4(α1, α2)z2+D4(α1, α2)z3+
D4(α1, α2)z4 for all 1 ≤ i, j ≤ 4. Acting with (23) and (24) we obtain the
same for z3xij and z4xij . Hence z2D4(α1, α2) ⊂ D4(α1, α2)z2 +D4(α1, α2)z3 +
D4(α1, α2)z4.

Theorem 2.30. Assume (α1 + α2)(α1 − α2) = 0. Then (z2D4(α1, α2))2 = 0.
It follows that the ideal generated by the elements π · z2, π ∈ S4, is a subset of
the Jacobson radical of D4(α1, α2), implying that D4(α1, α2) is not semisimple.

Proof. It is enough to show that z2D4(α1, α2)z2 = 0. This follows from the fact
that z2D4(α1, α2) ⊂ D4(α1, α2)z2 + D4(α1, α2)z3 + D4(α1, α2)z4, as shown in
Lemma 2.29, as well as ziz2 = 0 for all 2 ≤ i ≤ 4 according to Lemma 2.28.

Remark 2.31. Assume (α1 + α2)(α1 − α2) = 0. If α1 = α2 = 0, then computer
calculations show that the Jacobson radical is generated by the generators xij ,
1 ≤ i < j ≤ 4, hence the quotient over the Jacobson radical has dimension
1. So assume α1 6= 0. Computer calculations show that the ideal generated
by the elements π · z2, π ∈ S4 has dimension 288 if α1 = α2 and dimension
240 if α1 = −α2. This is however not the entire Jacobson radical: Computer
calculations also show that in the case where α1 = −α2 the right ideal I :=
(x12x13 − x13x12)A satisfies I4 = 0, hence the (two-sided) ideal generated by
the elements π(x12x13 − x13x12), π ∈ S4 is contained in the Jacobson radical.
This ideal has dimension 552. Thus the quotient over this ideal is commutative
and has dimension 24. Calculating the trace form yields that this quotient is
semisimple, which implies that this ideal coincides with the Jacobson radical.

For the other case, where α1 = α2, we obtain, that the right ideal I :=
(x12x13 + x12x14 + x12x23 + x13x23 + x14x12 + α1)A satisfies I5 = 0. Hence
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the two-sided ideal generated by the same elements must lie in the Jacobson
radical and as it turns out again has dimension 552. Computer calculations also
show, that the 24 dimensional quotient over that ideal is semisimple, hence the
Jacobson racial is equal to that ideal.

2.4 Conclusion

In section 2.2 we showed that D4(α1, α2) is semisimple if α1(3α1 − α2)(α1 −
α2)(α1 +α2) 6= 0 and conjectured that is also semisimple in the case where just
(α1 − α2)(α1 + α2) 6= 0. In section 2.3 we showed that D4(α1, α2) is indeed
not semisimple if (α1 − α2)(α1 + α2) = 0. We summarize this in the following
corollary.

Corollary 2.32. Assuming Conjecture 2.26 to be true, the algebra D4(α1, α2)
is semisimple if and only if (α1 − α2)(α1 + α2) 6= 0.

2.5 Discussing Assumption 2.20

We find ourselves in the context of section 2.2, so we have a fixed n ∈ N, n ≥ 3
and assume λ1 · · ·λn−1 6= 0. If needed, also recall Notation 2.14.

In this section we will discuss a specific assumption that is very easy to
check for algebras with low dimension and which is true in the case n = 4 where
α2
1 6= α2

2 (see Remark 2.35). At the end of the section (Proposition 2.38) we will
show that this assumption implies Assumption 2.20.

Assumption 2.33. Suppose there exists an invertible element u ∈ Dn(α1, α2)
satisfying

u a = (12) · a u

for all a ∈ Dn(α1, α2).

Proposition 2.34. Suppose that Assumption 2.33 holds. Then for all π ∈ Sn
there exists an invertible element uπ ∈ Dn(α1, α2) satisfying

uπ a = π · a uπ

for all a ∈ Dn(α1, α2).

Proof. We define Vπ := {u ∈ D4(α1, α2) | ∀a ∈ D4(α1, α2) : ua = π · a u} for all
π ∈ Sn. Observe that Vid is the center of Dn(α1, α2), and 1 ∈ Vid is invertible.
If u ∈ Vπ and v ∈ Vσ for some π, σ ∈ Sn, then for a ∈ Dn(α1, α2) we have

uva = uσ · a v = (πσ) · a uv,

hence uv ∈ Vπσ. We also obtain

σ · u a = σ ·
(
uσ−1 · a

)
= σ ·

(
(πσ−1) · a u

)
= (σπσ−1) · a σ · u,

hence σ ·u ∈ Vσπσ−1 . This means that we only need to calculate these elements
for one element of every cycle type of Sn (since the cycle types are the conjugacy
classes) and by acting with the group we obtain the other ones. By assumption
there exists an invertible element u ∈ V(12). This implies that there exists an
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invertible element in V(ij) for every 1 ≤ i < j ≤ n, by acting with the group, as
shown above. If v is a unit in V(ij) and w is a unit in V(kl), then vw is a unit
in V(ij)(kl). Since Sn is generated by the the 2-cycles (ij), it follows that there
exists a unit in every Vπ, π ∈ Sn, implying the proposition.

Remark 2.35. Assume n = 4. We will use computer calculations to show, that
Assumption 2.33 holds if α2

1−α2
2 6= 0. With some techniques of linear algebra, we

can calculate the spaces Vπ := {u ∈ D4(α1, α2) | ∀a ∈ D4(α1, α2) : ua = π ·a u},
for all π ∈ S4. The result is that Vπ is at least one dimensional (meaning the
dimension is one if we assume that α1 and α2 are algebraically independent)
for all π ∈ S4 and for all α1, α2 ∈ k. As it turns out, choosing a normalized
u ∈ V(12), u 6= 0, such that u ∈ V(12) for all α1, α2 ∈ k (u is uniquely determined
that way), calculations show u2 = −8(α2

1−α2
2)5. This implies that u is invertible

if and only if α2
1 6= α2

2. We assumed λ3 6= 0, so we have that α1 6= α2. Hence if
we also assume α1 6= −α2 we get that u is invertible, implying the assumption.

Another interesting conclusion is, that if α2
1 = α2

2, then u2 = 0, hence
(ua)2 = (12) ·a u2a = 0 for all a ∈ D4(α1, α2), implying that u lies in the Jacob-
son radical of D4(α1, α2) and thus giving another argument that the algebra is
not semisimple. The right ideal (which is equal to the two-sided ideal) generated
by u has dimension 16, if α1 = α2 and dimension 8 if α1 = −α2.

Lemma 2.36. For 1 ≤ m ≤ n− 1, setting λ0 = 1, the following relations hold:

wm−1 (m · · ·n) · wm−1 wm−1 =
λn−mλm−1

λn−1
wm−1,

wm−1 (n · · ·m) · wm−1 wm−1 =
λn−mλm−1

λn−1
wm−1.

In particular, the left hand sides coincide.

Proof. The statement is trivial for m = 1. So assume m ≥ 2. We start with the
first relation. Therefore, consider the following construction: Let λ0 = 1 and
for all 1 ≤ i ≤ m− 1 let

v′i :=
λn−i−1
λn−i

yim w′i :=v′1 · · · v′i,

v′′i :=
λn−i−1

λm−1−iλn−i
yi(i+1)· · ·→ yim w′′i :=v′′1 · · · v′′i .

Below we will show the following three relations:

(1) wm−1 (m · · ·n) · wm−1 = wm−1 w
′
m−1,

(2) wm−1 w
′
m−1 = wm−1 w

′′
m−1,

(3) w′′m−1 wm−1 = λn−mλm−1

λn−1
wm−1.

Combining (1), (2) and (3) implies the first relation of the claim. Regarding
(1): First observe, that the factors of (m · · ·n) · wm−1 are

(m · · ·n) · vi =
1

λn−i
yi(i+1)· · ·→ yi(m−1)yi(m+1)· · ·→ yinyim 1 ≤ i ≤ m− 1
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We start with shifting y(m−1)(m+1)· · ·→ y(m−1)n in the factor for i = m− 1 to the

left of (m · · ·n) · wm−1, according to Lemma 2.8:

(m · · ·n) · wm−1 = (m · · ·n) · (v1 · · · vm−1)

=
1

λn−m+1
(m · · ·n) · (y(m−1)m· · ·→ y(m−1)(n−1)

((m− 1)m · · · (n− 1)) · (v1 · · · vm−2) y(m−1)n)

=
1

λn−m+1
y(m−1)(m+1)· · ·→ y(m−1)n

(m · · ·n)((m− 1)m · · · (n− 1)) · (v1 · · · vm−2) y(m−1)m.

Observe that wm−1 ∈ Dn(α1, α2)y(m−1)(m+1) · · · y(m−1)m, so we can exchange
the y(m−1)(m+1)· · ·→ y(m−1)n that we pulled to the left for the scalar λn−m. In

total we get

wm−1 (m · · ·n) · wm−1
=wm−1 (m · · ·n)((m− 1)m · · · (n− 1)) · (v1 · · · vm−2)v′m−1.

Now if m = 2, we are done with this step. If m ≥ 3, assume that there exists
some 1 ≤ k ≤ m− 2, such that

wm−1 (m · · ·n) · wm−1
=wm−1 (m · · ·n)((m− 1) · · · (n− 1)) · · · ((k + 1) · · · (n− 1))

· (v1 · · · vk)v′k+1 · · · v′m−1.

Acting with (m · · ·n)((m− 1) · · · (n− 1)) · · · ((k + 1) · · · (n− 1)) on vk we get

1

λn−k
yk(m+1)· · ·→ yknyk(m−1)· · ·← yk(k+1)ykm.

We pull everything except ykm to the left:

(m · · ·n)((m− 1) · · · (n− 1)) · · · ((k + 1) · · · (n− 1))

· (v1 · · · vk)v′k+1 · · · v′m−1

=
1

λn−k
(m · · ·n)((m− 1) · · · (n− 1)) · · · ((k + 1) · · · (n− 1))

·
(
yk(k+1) · · · yk(n−1)(k · · · (n− 1)) · (v1 · · · vk−1) ykn

)
v′k+1 · · · v′m−1

=
1

λn−k
yk(m+1)· · ·→ yknyk(m−1)· · ·← yk(k+1)

(m · · ·n)((m− 1) · · · (n− 1)) · · · (k · · · (n− 1)) · (v1 · · · vk−1) ykmv
′
k+1 · · · v′m−1

As discussed in Remark 2.15, we can exchange yk(m+1)· · ·→ yknyk(m−1)· · ·← yk(k+1)

left into wm−1 for the scalar λn−k−1. This yields

wm−1 (m · · ·n) · wm−1
=wm−1 (m · · ·n)((m− 1) · · · (n− 1)) · · · (k · · · (n− 1))

· (v1 · · · vk−1)v′k · · · v′m−1
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This finishes (1).
Regarding (2): This step is basically the same as step (2) in the proof of

Lemma 2.18. Above we already used that wm−1 ∈ Dn(α1, α2)yi(m−1)· · ·← yi(i+1)

for all 1 ≤ i ≤ m − 2. Hence wm−1 = 1
λm−1−i

wm−1yi(m−1)· · ·← yi(i+1) for all

1 ≤ i ≤ m − 2. Now we inductively pull those y in, first for i = 1, up to
i = m− 2 and get

wm−1 =wm−1
1

λ1 · · ·λm−2
y(m−2)(m−1)y(m−3)(m−1)y(m−3)(m−2) · · · y1(m−1)· · ·← y12

=wm−1
1

λ1 · · ·λm−2
y12· · ·→ y1(m−1) · · · y(m−3)(m−2)y(m−3)(m−1)y(m−2)(m−1)

The last equality just uses Lemma 2.8 multiple times to shift first the y(m−2)(·)
to the right, then y(m−3)(·) down to the y2(·). It basically reverses the process
in Remark 2.15, but just for the last few y. Finally observe that for 2 ≤ i ≤
m − 2 the product yi(i+1) · · · yi(m−1) commutes with v′j for all 1 ≤ j < i, and

1
λm−1−i

yi(i+1) · · · yi(m−1)v′i = v′′i . Hence, considering that v′m−1 = v′′m−1, we

obtain

wm−1 w
′
m−1 = wm−1v

′
1 · · · v′m−1 = wm−1v

′′
1 · · · v′′m−1 = wm−1w

′′
m−1,

which proves (2).
Regarding (3): In Remark 2.15 it was also discussed that we have wm−1 ∈

yi(i+1) · · · yimD4(α1, α2) for all 1 ≤ i ≤ m − 1. Hence starting with i = m − 1
down to i = 1, we can exchange the y in v′′i for the scalar λm−i, i.e. the whole
w′′m−1 vanishes:

w′′m−1 wm−1 =
λn−m· · ·→ λn−2
λn−m+1· · ·→ λn−1

λ1· · ·→ λm−1
λ1· · ·→ λm−2

wm−1 =
λn−mλm−1

λn−1
wm−1.

This implies (3).
Now the second relation. Consider the following construction: Let λ0 = 1

and for all 1 ≤ i ≤ m− 1 let

v′i :=
λn−i−1
λn−i

yin w′i :=v′i· · ·← v
′
1,

v′′i :=
λn−i−1

λm−1−iλn−i
yinyi(m−1)· · ·← yi(i+1) w′′i :=v′′i · · ·← v

′′
1 .

Below we will show the following three relations:

(1) (n · · ·m) · wm−1 wm−1 = w′m−1 wm−1,

(2) w′m−1 wm−1 = w′′m−1 wm−1,

(3) wm−1 w
′′
m−1 = λn−mλm−1

λn−1
wm−1.

Combining these implies the second relation of the claim. Regarding (1): First
observe, that the factors of (n · · ·m) · wm−1 are

(n · · ·m) · vi =
1

λn−i
yi(i+1)· · ·→ yi(m−1)yinyim· · ·→ yi(n−1) 1 ≤ i ≤ m− 1
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The last factor where i = m−1 is y(m−1)ny(m−1)m· · ·→ y(m−1)(n−1). Now wm−1 ∈
y(m−1)m· · ·→ y(m−1)(n−1)D4(α1, α2), hence we can exchange this for the scalar

λn−m:

(n · · ·m) · wm−1 wm−1 = (n · · ·m) · (v1 · · · vm−1)wm−1

=
1

λn−m+1
(n · · ·m) · (v1 · · · vm−2 y(m−1)m)y(m−1)m· · ·→ y(m−1)(n−1) wm−1

=
λn−m
λn−m+1

(n · · ·m) · (v1 · · · vm−2 y(m−1)m)wm−1

=
λn−m
λn−m+1

y(m−1)n(n · · ·m)((m− 1)m) · (v1 · · · vm−2)wm−1

=v′m−1(n · · · (m− 1)) · (v1 · · · vm−2)wm−1.

Now if m = 2, we are done with this step. If m ≥ 3, assume that there exists
some 1 ≤ k ≤ m− 2, such that

(n · · ·m) · wm−1 wm−1
=v′m−1· · ·← v

′
k+1(n · · · (k + 1)) · (v1 · · · vk)wm−1.

Acting with (n · · · (k + 1)) on vk we get

1

λn−k
yknyk(k+1)· · ·→ yk(n−1).

Now again we have wm−1 ∈ yk(k+1)· · ·→ yk(n−1)D4(α1, α2), hence we can exchange

this for the scalar λn−k−1:

v′m−1· · ·← v
′
k+1(n · · · (k + 1)) · (v1 · · · vk)wm−1

=
λn−k−1
λn−k

v′m−1· · ·← v
′
k+1(n · · · (k + 1)) · (v1 · · · vk−1 yk(k+1))wm−1

=
λn−k−1
λn−k

v′m−1· · ·← v
′
k+1ykn(n · · · (k + 1))(k(k + 1)) · (v1 · · · vk−1)wm−1

=v′m−1· · ·← v
′
k+1v

′
k (n · · · k) · (v1 · · · vk−1)wm−1.

In total we get (n · · ·m) · (v1 · · · vm−1)wm−1 = v′m−1· · ·← v
′
1 wm−1 = w′m−1 wm−1.

Regarding (2): We again use that wm−1 ∈ yi(i+1)· · ·→ yi(m−1)Dn(α1, α2) for

all 1 ≤ i ≤ m− 2. Hence wm−1 = 1
λm−1−i

yi(i+1)· · ·→ yi(m−1)wm−1 for all 1 ≤ i ≤
m− 2. Now we inductively pull those y in, first for i = 1, up to i = m− 2 and
get

wm−1 =
1

λ1 · · ·λm−2
y12· · ·→ y1(m−1) · · · y(m−3)(m−2)y(m−3)(m−1)y(m−2)(m−1)wm−1

=
1

λ1 · · ·λm−2
y(m−2)(m−1)y(m−3)(m−1)y(m−3)(m−2) · · · y1(m−1)· · ·← y12wm−1

The last equality just uses Lemma 2.8 multiple times to shift first the y(m−2)(·)
to the left, then y(m−3)(·) down to the y2(·). It is the same process as in
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Remark 2.15, but just for the first few y. Finally observe that for 2 ≤ i ≤
m − 2 the product yi(m−1)· · ·← yi(i+1) commutes with v′j for all 1 ≤ j < i, and

1
λm−1−i

v′iyi(m−1)· · ·← yi(i+1) = v′′i . Hence, considering that v′m−1 = v′′m−1, we

obtain

w′m−1 wm−1 = v′m−1· · ·← v
′
1wm−1 = v′′m−1· · ·← v

′′
1wm−1 = w′′m−1wm−1,

which proves (2).
Regarding (3): In Remark 2.15 it was also discussed that we have wm−1 ∈

Dn(α1, α2)yinyi(m−1)· · ·← yi(i+1) for all 1 ≤ i ≤ m − 1. Hence starting with

i = m− 1 down to i = 1, we can exchange the y in v′′i for the scalar λm−i, i.e.
the whole w′′m−1 vanishes:

wm−1 w
′′
m−1 =

λn−m· · ·→ λn−2
λn−m+1· · ·→ λn−1

λ1· · ·→ λm−1
λ1· · ·→ λm−2

wm−1 =
λn−mλm−1

λn−1
wm−1.

This implies (3) and finishes the proof.

Lemma 2.37. For 1 ≤ m ≤ n− 1 the following relation holds:

wm−1(m · · ·n) · wm−1 ynm (nm) · wm−1
=wm−1(n · · ·m) · wm−1 ynm (nm) · wm−1.

Proof. It is trivial for m = 1, so assume m ≥ 2. Observe that the claim cannot
be solved trivially from this previous Lemma, since ynm cannot be shifted to the
right of (nm)wm−1, nor can it be shifted to the left of wm−1. It can however be
shifted to the left of (m · · ·n) ·wm−1 and to the left of (n · · ·m) ·wm−1. We will
basically redo the first two steps of the previous lemma, but with leaving enough
of the (m · · ·n) ·wm−1 intact so that we can shift ynm to the left of it. Then we
handle the right hand side similar to the second relation of the previous lemma.
Consider the following construction: Let λ0 = 1 and for all 1 ≤ i ≤ m− 1 let

v′i :=
λn−i−1
λn−i

yim w′i :=v′1 · · · v′i,

v′′i :=
λn−i−1
λiλn−i

yi(i+1)· · ·→ yi(m−1)yinyim w′′i :=v′′1 · · · v′′i ,

v′′′i :=
λn−i−1
λn−i

yin w′′′i :=v′′′i · · ·← v
′′′
1 .

We will divide the relation from the claim in the following steps:

(1) wm−1 (m · · ·n) · wm−1 = wm−1 w
′
m−1,

(2) wm−1 w
′
m−1 = wm−1 w

′′
m−1,

(3) w′′m−1ynm = ynm(nm) · w′′m−1,

(4) w′′m−1wm−1 = w′′′m−1wm−1,

(5) w′′′m−1wm−1 = (n · · ·m) · wm−1 wm−1,

(6) ynm(nm)(n · · ·m) · wm−1 = (n · · ·m) · wm−1 ynm.
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Observe that (1) is precisely step (1) of the first relation in Lemma 2.36, and
step (5) is precisely step (1) of the second relation of that lemma. Also (3) and
(6) are trivial at this point.

Regarding (2): This step is basically the same as step (2) of the first relation
of the preceding Lemma but with one significant difference. We again use that
wm−1 ∈ Dn(α1, α2)yinyi(m−1)· · ·← yi(i+1) for all 1 ≤ i ≤ m − 1. Hence wm−1 =

1
λm−i

wm−1yinyi(m−1)· · ·← yi(i+1) for all 1 ≤ i ≤ m − 1. Now we inductively pull

those y in, first for i = 1, up to i = m− 1 and get

wm−1 =wm−1
1

λ1 · · ·λm−1
y(m−1)ny(m−2)ny(m−2)(m−1) · · · y1ny1(m−1)· · ·← y12

=wm−1
1

λ1 · · ·λm−1
y12· · ·→ y1(m−1)y1n · · · y(m−2)(m−1)y(m−2)ny(m−1)n

The last equality just uses Lemma 2.8 multiple times to shift first the y(m−1)(·)
to the right, then y(m−2)(·) down to the y2(·). It basically reverses the process in
Remark 2.15, but just for the last few y. Finally observe that for 2 ≤ i ≤ m− 1
the product yi(i+1) · · · yi(m−1)yin commutes with v′j for all 1 ≤ j < i, and
1
λi
yi(i+1) · · · yi(m−1)yinv′i = v′′i . Hence we obtain

wm−1 w
′
m−1 = wm−1v

′
1 · · · v′m−1 = wm−1v

′′
1 · · · v′′m−1 = wm−1w

′′
m−1,

which proves (2).
Regarding (4): The last factor of w′′m−1, where i = m−1, is y(m−1)ny(m−1)m.

Now wm−1 ∈ y(m−1)mD4(α1, α2), hence we can exchange y(m−1)m for λ1:

w′′m−1 wm−1 = (v′′1 · · · v′′m−1)wm−1

=
λn−m

λ1λn−m+1
λ1(v′′1 · · · v′′m−2 y(m−1)n)wm−1

=
λn−m
λn−m+1

y(m−1)n((m− 1)n) · (v′′1 · · · v′′m−2)wm−1

=v′′′m−1((m− 1)n) · (v′′1 · · · v′′m−2)wm−1.

Now if m = 2, we are done with this step. If m ≥ 3, assume that there exists
some 1 ≤ k ≤ m− 2, such that

w′′m−1 wm−1

=v′′′m−1· · ·← v
′′′
k+1(n(m− 1)· · ·

←
(k + 1)) · (v′′1 · · · v′′k )wm−1.

Acting with (n(m− 1)· · ·
←

(k + 1)) on v′′k we get

λn−k−1
λkλn−k

(n(m− 1)· · ·
←

(k + 1)) · (yk(k+1)· · ·→ yk(m−1)yknykm)

=
λn−k−1
λkλn−k

yknyk(k+1)· · ·→ yk(m−1)ykm.

Now again we have wm−1 ∈ yk(k+1)· · ·→ ykmD4(α1, α2), hence we can exchange
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this for the scalar λk:

v′′′m−1· · ·← v
′′′
k+1(n(m− 1)· · ·

←
(k + 1)) · (v′′1 · · · v′′k )wm−1

=
λn−k−1
λkλn−k

λkv
′′′
m−1· · ·← v

′′′
k+1(n(m− 1)· · ·

←
(k + 1)) · (v′′1 · · · v′′k−1 yk(k+1))wm−1

=
λn−k−1
λn−k

v′′′m−1· · ·← v
′′′
k+1ykn(n(m− 1)· · ·

←
(k + 1))(k(k + 1)) · (v′′1 · · · v′′k−1)wm−1

=v′′′m−1· · ·← v
′′′
k+1v

′′′
k (n(m− 1)· · ·

←
k) · (v′′1 · · · v′′k−1)wm−1.

In total we get (v′′1 · · · v′′m−1)wm−1 = v′′′m−1· · ·← v
′′′
1 wm−1 = w′′′m−1 wm−1. This

finishes (4) and the proof.

We will now show that Assumption 2.33 implies Assumption 2.20.

Proposition 2.38. Let 1 ≤ m ≤ n − 1 and suppose Assumption 2.33 holds.
Then

ei := wm−1
(
(m · · ·n)i · vm

)
wm−1, 0 ≤ i ≤ n−m

forms a set of isomorphic idempotents in the algebra wm−1Dn(α1, α2)wm−1.

Proof. We already discussed that these elements are idempotents in Proposition
2.19. Let 0 ≤ i ≤ n − m − 1. We show that ei is isomorphic to ei+1. Using
Lemma 1.2, it is enough to construct a unit u ∈ wm−1Dn(α1, α2)wm−1, such
that uei = ei+1u. Let π = (m · · ·n) and let uπ be the invertible element
obtained from Proposition 2.34. Now define u := wm−1uπwm−1. Lemma 2.36
implies that u is indeed invertible in wm−1Dn(α1, α2)wm−1:

uwm−1u
−1
π wm−1 = wm−1uπwm−1u

−1
π wm−1 = wm−1 π · wm−1 wm−1

=
λn−mλm−1

λn−1
wm−1 = wm−1 π

−1 · wm−1 wm−1

= wm−1u
−1
π wm−1uπwm−1 = wm−1u

−1
π wm−1 u.

Now denote s = m+ i and observe that

(m · · ·n)i · vm =
1

λn−m
ys(s+1)· · ·→ ysnysm· · ·→ ys(s−1).

Since s ≤ n− 1, the first sequence ys(s+1)· · ·→ ysn is not 1 and in particular ends

with ysn. Now Lemma 2.37 says that

wm−1(m · · ·n) · wm−1 ynm (nm) · wm−1
=wm−1(n · · ·m) · wm−1 ynm (nm) · wm−1.

First, since the factors of (n · · ·m) ·wm−1 start with yjnyjm, 1 ≤ j ≤ m− 1, we
can shift ynm on the right hand side as follows:

wm−1(m · · ·n) · wm−1 ynm (nm) · wm−1
=wm−1 ynm (nm)(n · · ·m) · wm−1 (nm) · wm−1.
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Acting with (s· · ·
←
mn) = (s· · ·

→
(n− 1))(n · · ·m) on that equation yields

(s· · ·
→

(n− 1)) · ((n . . .m) · wm−1 wm−1) ysn (s· · ·
←
m) · wm−1

=(s· · ·
→

(n− 1))(n · · ·m) · wm−1 ysn (s· · ·
←
m) ((n · · ·m) · wm−1 wm−1) .

Now we multiply this equation from the left side with ys(s+1)· · ·→ ys(n−1) and from

the right with ysm· · ·→ ys(s−1). We observe that on both sides of the equation,

we can shift all of these ykl to ysn, using Lemma 2.8, precisely canceling some
permutations:

(n . . .m) · wm−1wm−1 ys(s+1)· · ·→ ysnysm· · ·→ ys(s−1) wm−1

=(n · · ·m) · wm−1 ys(s+1)· · ·→ ysnysm· · ·→ ys(s−1) (n · · ·m) · wm−1 wm−1.

Note that this shifting from the right side is only possible since s ≤ n − 1 and
would not be possible for s = n (for the same reason it is not possible to shift
in ysn from the left, which is the reason we need Lemma 2.37 in the first place
and can not rely on Lemma 2.36). Multiplying both sides with 1

λn−m
uπ from

the left gives

uπ (n . . .m) · wm−1wm−1 (m · · ·n)i · vm wm−1
=uπ (n · · ·m) · wm−1 (m · · ·n)i · vm (n · · ·m) · wm−1 wm−1.

Finally, shift uπ to obtain

wm−1 uπ wm−1 (m · · ·n)i · vm wm−1 = wm−1(m · · ·n)i+1 · vm wm−1 uπ wm−1

This is precisely uei = ei+1u, which finishes the proof.
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In this section we will take a look at PBW deformations of some other finite
dimensional Nichols algebras over braided vector spaces of non-abelian group
type that are defined by a quandle and a 2-cocycle. Interestingly, all of the solved
examples of this type have something in common (see Remark 3.9), which leads
to conjectures about the two other unsolved 576-dimensional examples at the
end of the section (Conjecture 3.12 and Conjecture 3.13).

As always let k be a field with characteristic 6= 2.

3.1 Nichols algebras defined over quandles

We will give a quick overview of how a Nichols algebra is defined from a quandle
and a 2-cocycle. This process is described in more detail in [9] or [1].

Definition 3.1. A quandle is a set X together with an operation . : X×X →
X, such that x.x = x, x.(y.z) = (x.y).(x.z) for all x, y, z ∈ X and such that
the map X → X, y 7→ x . y is bijective for all x ∈ X. The enveloping group
of X is the group given by generators gx, x ∈ X and relations gxgy = gx.ygx
for all x, y ∈ X. We denote it with GX .

To a quandle X we associate the vector space VX that has basis vx, x ∈ X.
A 2-cocycle on X is a map q : X × X → K×, such that q(y, z)q(x, y . z) =
q(x, z)q(x . y, x . z) for all x, y, z ∈ X. Given such a 2-cocycle q, the map
c ∈ Autk(VX ⊗ VX), defined linearly by

c(vx ⊗ vy) = q(x, y) vx.y ⊗ vx for all x, y ∈ X,

is a braiding on VX , hence (VX , c) is a braided vector space (the reverse is
also true, i.e. if q is just a map, then c is a braiding if and only if q is a 2-
cocycle). From a braided vector space we obtain the Nichols algebra B(VX) (see
[9], section 1), which is basically the algebra with generators vx, x ∈ X and
relations involving the braiding c. We denote this Nichols algebra with BX .

Example 3.2. Let G be a group and let X ⊂ G be the conjugacy class of one
element in G. Then X becomes a quandle via x . y = xyx−1 for all x, y ∈ X.

Remark 3.3. Let X be a quandle with a 2-cocylce q on X. There is an intrinsic
group action of GX on B defined by gx · vy = q(x, y)vx.y. This group action is
invariant under the defining relations of the enveloping group. The reason this
group action is well defined on BX is because it commutes with the braiding:
For x, y, z ∈ X we have

gx · (c(vy ⊗ vz)) =gx · (q(y, z)vy.z ⊗ vy)

=q(y, z)q(x, y . z)q(x, y)vx.(y.z) ⊗ vx.y
=q(x, z)q(x . y, x . z)q(x, y)v(x.y).(x.z) ⊗ vx.y
=c (q(x, y)q(x, z)vx.y ⊗ vx.z)
=c (gx · (vy ⊗ vz)) .

Without going to much into detail, if D is a PBW deformation of BX , then
the above defined action must also be a well defined action on D. This dras-
tically reduces the possibilities for actual PBW deformations in the set of all
deformations of BX .
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Remark 3.4. A list of known examples of such Nichols algebras defined by quan-
dle and 2-cocycle can be found at [8]. It is known for n = 3, 4, 5 (and conjectured
for n ≥ 6), that the Fomin-Kirillov algebra En is isomorphic to the Nichols alge-
bra given by the quandle X = {(ij) | 1 ≤ i < j ≤ n} ⊂ Sn, with σ . π = σπσ−1

for all π, σ ∈ X and 2-cocycle q defined by

q(π, (ij)) =

{
1, if π(i) < π(j),

−1, otherwise,

where 1 ≤ i < j ≤ n and π ∈ X. If we divide from GX the relations g2π = id for
all π ∈ X (which we can do since g2π acts trivially on BX), we obtain Sn. Then
the group action on En from Remark 3.3 coincides with the one from Remark
2.3.

3.2 Semisimplicity of PBW deformations

We take a look at some type of elements that seem to correlate with the semisim-
plicity of a PBW deformation of a Nichols algebra defined over quandle and
2-cocycle. The group action plays an important role here.

Definition 3.5. Let X be a quandle, q a 2-cocycle on X and let D be a PBW
deformation of BX . Let g ∈ GX and denote

Dg := {a ∈ D | ab = g · b a for all b ∈ D}.

If g is the neutral element, then Vg is the center of D. Also observe that these
defining relations are very similar to the defining relations of the enveloping
group.

Proposition 3.6. Let X be a quandle, q a 2-cocycle on X and let D be a PBW
deformation of BX . Let g, h ∈ GX . The following hold:

DgDh ⊂ Dgh h · Dg = Dhgh−1 .

In particular if g and h are conjugate, than Dg and Dh are isomorphic vector
spaces.

Proof. If a ∈ Dg, b ∈ Dh then for all c ∈ D we have

abc = ah · (c)b = (gh) · (c)ab,

hence ab ∈ Dgh. Moreover we have

h · a b = h · (a h−1 · b) = h · ((gh−1) · b a) = (hgh−1) · b h · a,

hence h · a ∈ Dhgh−1 . Similarly we obtain h−1 · Dhgh−1 ⊂ Dh−1hgh−1h = Dg, i.e.
Dhgh−1 ⊂ h · Dg.

Remark 3.7. Let X be a quandle, q a 2-cocycle on X and let D be a PBW
deformation of BX . If x, y ∈ X then there must exist a z ∈ X, such that
z . x = y. Then Dgx is isomorphic to gz · Dgx = Dgzgxg−1

z
= Dgz.x = Dgy .

Proposition 3.8. Let X be a quandle, q a 2-cocycle on X and let D be a PBW
deformation of BX . Suppose there exists a g ∈ GX and a u ∈ Dg \ {0} that is
nilpotent. Then D is not semisimple.
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3 REOCCURRING TRAITS

Proof. It is enough to show that the right ideal generated by u (which is also
a two-sided ideal by definition of u) consists only of nilpotent elements. So let
x ∈ D and let m ∈ N, such that um = 0. In (ux)m we can shift all the u to the
right, obtaining

(ux)m = g · x g2 · x · · · gm · xum = 0.

Hence ux is nilpotent.

Remark 3.9. In [5], the generic semisimplicity (meaning there exists a dense sub-
set of semisimple PBW deformations) were solved for the two smallest Nichols
algebras, the 12-dimensional one and the 72-dimensional one. Moreover, the
generic semisimplicity of PBW deformations of one of the next bigger Nichols
algebras, the 576 dimensional Fomin-Kirillov algebra, was almost solved in
section 2. All of those algebras correspond to a quandle X and a 2-cocycle
q. In all of those cases there was a common theme: The spaces Dg, where
D = D(α1, . . . , αk) is a PBW deformation of BX , g ∈ GX , α1, . . . αk ∈ k, al-
ways had a relatively small dimension in all of the semisimple cases, sometimes
even 0. The dimension of the center corresponded to the amount of simple fac-
tors. Obviously non of this spaces contained a nilpotent element (since it would
then not be a semisimple case according to the preceding proposition). But
one could ask when do these elements in Dg become nilpotent. The interesting
result was that there always existed a g ∈ GX , and an element u ∈ Dg with the
property u2 = pv, where v ∈ D \ {0} and p ∈ k and such that p = 0 if and only
if the algebra was not semisimple. Even more: In the non-semisimple case that
space Dg degenerated and had a bigger dimension than in the semisimple case.

Take for example the 12-dimensional case. The PBW deformations D =
D(α1, α2) are semisimple if and only if (3α1−α2)(α1 +α2) 6= 0. Corresponding
to that there exists a u ∈ Dg(12) , such that u2 = (3α1 − α2)2(α1 + α2)v, where
v 6= 0 in any case (also u is not invertible here). The space Dg(12) has dimension
1 in the semisimple case and dimension 2 in the non-semisimple case if α1 6= 0.
If α1 = α2 = 0 it has dimension 3. The center Did has dimension 3 in both
cases except if α1 = α2 = 0, where the dimension is 4.

In the 72-dimensional case, the PBW deformations D = D(α1, α2, α3) are
semisimple if and only if α3

(
α3 + (α1 + α2)(3α1 − α2)2

)
6= 0. Here we even

find an element u in the center Did with the property

u2 = αk3
(
α3 + (α1 + α2)(3α1 − α2)2

)l
v,

where v 6= 0 in any case, k, l ≥ 1 (also u is invertible here). The center has
dimension 2 in the semisimple case and dimension > 2 in the non-semisimple
case.

Finally for the PBW deformations D = D4(α1, α2) of the 576-dimensional
Fomin-Kirillov algebra, if we reduceGX to S4, any π ∈ S4, π 6= id has an element
u ∈ Dπ, such that u2 = (α1−α2)k(α1 +α2)lv, where v 6= 0 in any case, k, l ≥ 1
(u is invertible here, see also Remark 2.35). In the (presumedly semisimple)
case where (α1−α2)(α1 +α2) 6= 0, all Dπ, π ∈ Sn, have dimension 1 (including
the center). In the other case, the center has dimension 1 if α1 = −α2 6= 0,
dimension 7 if α1 = α2 6= 0 and dimension 14 if α1 = α2 = 0. The spaces for
all other π 6= id have dimension 2 if α1 = −α2 6= 0, dimension 3 if α1 = α2 6= 0
and dimension 8 if α1 = α2 = 0.
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From those results one could conjecture that the reverse of Proposition 3.8
is also true, i.e. a PBW deformation D is not semisimple if and only if there
exists a g ∈ GX with a nilpotent element in Dg. However, I did not found any
real logical argument backing up that conjecture so far.

3.3 Two other 576-dimensional Nichols algebras

In [8] there are two other examples of Nichols algebras of dimension 576 apart
from the Fomin-Kirillov algebra E4. We obtain the PBW deformations in a
similar fashion as we did with E4.

Example 3.10. Let X be the quandle of the six 2-cycles of S4 (which form a
conjugacy class) and let q be the 2-cocycle on X that is constantly −1. The
PBW deformations of BX are the 576-dimensional algebras D = D(α1, α2, α3)
generated by vx, x ∈ X and relations

v2x = α1 for all x ∈ X,

v(12)v(13) + v(13)v(23) + v(23)v(12) = α2

v(12)v(14) + v(14)v(24) + v(24)v(12) = α2

v(12)v(23) + v(23)v(13) + v(13)v(12) = α2

v(12)v(24) + v(24)v(14) + v(14)v(12) = α2

v(13)v(14) + v(14)v(34) + v(34)v(13) = α2

v(13)v(34) + v(34)v(14) + v(14)v(13) = α2

v(23)v(24) + v(24)v(34) + v(34)v(23) = α2

v(23)v(34) + v(34)v(24) + v(24)v(23) = α2

v(ij)v(kl) + v(kl)v(ij) = α3 if #{i, j, k, l} = 4,

where α1, α2, α3 ∈ k. Observe that unlike in the Fomin-Kirillov case, here an α3

is needed, since the 2-cocycle, and thus the group action, is different. We have
D(0, 0) = BX . Computer calculations show that there exist elements u ∈ Dgx ,
x ∈ X with the property

u2 = (−2α1 + α3)4(α1 − α2 + α3)3(α1 + 3α2 + α3)v,

where v 6= 0 (and this is the only scalar that we obtain in such ways). Proposi-
tion 3.8 implies that the deformation is not semisimple if (−2α1+α3)4(α1−α2+
α3)3(α1+3α2+α3) = 0. The generic dimension (i.e. if we assume that α1 and α2

are algebraically independent) of the center of D is 4. The generic dimension of
Dgx is 2. The dimension is > 2 if (−2α1+α3)4(α1−α2+α3)3(α1+3α2+α3) = 0.

Example 3.11. Let X be the quandle of conjugacy class of the six 4-cycles of S4

and let q be the 2-cocycle on X that is constantly −1. The PBW deformations
of BX are the 576-dimensional algebras D = D(α1, α2, α3) generated by vx,
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x ∈ X and relations

v2x = α1 for all x ∈ X,

v(1234)v(1423) + v(1423)v(1243) + v(1243)v(1234) = α2

v(1234)v(1342) + v(1342)v(1423) + v(1423)v(1234) = α2

v(1234)v(1243) + v(1243)v(1324) + v(1324)v(1234) = α2

v(1234)v(1324) + v(1324)v(1342) + v(1342)v(1234) = α2

v(1423)v(1342) + v(1342)v(1432) + v(1432)v(1423) = α2

v(1342)v(1324) + v(1324)v(1432) + v(1432)v(1342) = α2

v(1423)v(1432) + v(1432)v(1243) + v(1243)v(1423) = α2

v(1243)v(1432) + v(1432)v(1324) + v(1324)v(1243) = α2

v(ijkl)v(lkji) + v(lkji)v(ijkl) = α3 if #{i, j, k, l} = 4,

where α1, α2, α3 ∈ k. We have D(0, 0) = BX . Computer calculations show that
there exist elements in u ∈ Dgx , x ∈ X with the property

u2 = (−2α1 + α3)6(4α1 − 2α2 + α3)3(4α1 + 6α2 + α3)v,

where v 6= 0 (and this is the only scalar that we obtain in such ways). Proposi-
tion 3.8 implies that the deformation is not semisimple if this scalar is 0. The
generic dimension of the center of D is 1. The generic dimension of Dgx is also
1. If the above scalar is 0, then the dimension of Dgx is at least 2.

The behaviour in the preceding two examples is the same as in the solved
cases described in Remark 3.9. This justifies the following two conjectures.

Conjecture 3.12. The algebra D(α1, α2, α3) from Example 3.10 is semisimple
if and only if (−2α1 +α3)(α1−α2 +α3)(α1 + 3α2 +α3) 6= 0. In the semisimple
case we have an algebra isomorphy D(α1, α2, α3) ∼= (M12(k))4.

Conjecture 3.13. The algebra D(α1, α2, α3) from Example 3.11 is semisimple
if and only if (−2α1+α3)(4α1−2α2+α3)(4α1+6α2+α3) 6= 0. In the semisimple
case we have an algebra isomorphy D(α1, α2, α3) ∼= M24(k).
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Kirillov algebra. arXiv:1310.4112v2, 2014.

[3] M. Graña, I. Heckenberger and L. Vendramin, Nichols algebras of group
type with many quadratic relations. Advances in Mathematics 227 (2011)
1956–1989.

[4] I. Heckenberger, A. Lochmann and L. Vendramin, Braided racks, Hur-
witz actions and Nichols algebras with many cubic relations. arXiv:
1103.4526v2, 2011.

[5] I. Heckenberger and L. Vendramin, PBW deformations of a Fomin-
Kirillov algebra and other examples. arXiv:1703.10632, 2017.

[6] A. Knapp, Advanced Algebra. Birkhäuser, 2nd printing, 2015.
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