
Can Local Optimality Be Used for E�cient Data

Reduction?

Christian Komusiewicz[0000−0003−0829−7032], Nils Morawietz?

Fachbereich Mathematik und Informatik, Philipps-Universität Marburg,
Marburg, Germany

{komusiewicz,morawietz}@informatik.uni-marburg.de

Abstract. An independent set S in a graph G is k-swap optimal if there
is no independent set S′ such that |S′| > |S| and |(S′ \S)∪ (S \S′)| ≤ k.
Motivated by applications in data reduction, we study whether we can
determine e�ciently if a given vertex v is contained in some k-swap opti-
mal independent set or in all k-swap optimal independent sets. We show
that these problems are NP-hard for constant values of k even on graphs
with constant maximum degree. Moreover, we show that the problems
are ΣP

2 -hard when k is not constant, even on graphs of constant maxi-
mum degree. We obtain similar hardness results for determining whether
an edge is contained in a k-swap optimal max cut. Finally, we consider a
certain type of edge-swap neighborhood for the Longest Path problem.
We show that for a given edge we can decide in f(∆ + k) · nO(1) time
whether it is in some k-optimal path.

Keywords: local search, independent set, max-cut, longest path, NP-hardness

1 Introduction

Local search and data reduction are two widely successful strategies for coping
with hard computational problems. Local search, which applies most naturally
to optimization problems, aims at computing good heuristic solutions by using
the following generic approach: De�ne a local neighborhood relation on the set of
feasible solutions. Then, compute some feasible solution S. Now check whether
there is a better solution S′ in the local neighborhood of S. If this is the case,
then replace S by S′. Otherwise, output the locally optimal solution S and stop.

Local search algorithms have been explored thoroughly from a practical and
theoretical point of view [2,8,9,10,14]. The theoretical framework most closely
related to our investigations is parameterized local search. Here, the local search
neighborhood comes equipped with an operational parameter k that bounds
the radius of the local search neighborhood. The size of the neighborhood is
assumed to be polynomial in the input size for every �xed value of k. For example,
in Independent Set one is given a graph G and asks for a largest vertex

? Supported by the Deutsche Forschungsgemeinschaft (DFG), project OPERAH,
KO 3669/5-1.

To appear in Proceedings of the 12th International Conference on Algorithms
and Complexity (CIAC '21), Larnaca, Cyprus, May 2021. © Springer.

set S such that no two vertices in S are adjacent. The feasible solutions are
the independent sets of G. A natural neighborhood with a radius k is the k-
swap neighborhood: Two vertex sets S and S′ are in their respective k-swap
neighborhoods if |S ⊕ S′| ≤ k, where ⊕ denotes the symmetric di�erence of two
sets. In LS-Independent Set, one is then given a graph G, an independent
set S, and an integer k and asks whether the k-swap neighborhood of S contains
a larger independent set S′. LS-Independent Set can be solved in ∆O(k) · n
time [6,10]; the currently best �xed-parameter algorithm for LS-Independent
Set is e�cient in practice, solving the parameterized local search problem for k ≈
20 even on large real-world graphs [10]. Summarizing, for moderate values of k,
a k-swap optimal independent set can be computed faster than an optimal one.

In data reduction, the idea is to preprocess any instance of a hard problem
by identifying those parts of the instance that are easy to solve. Usually, data
reduction algorithms are stated as a collection of data reduction rules which
can be applied if a certain precondition is ful�lled and reduce the instance size
whenever they apply. Two classic trivial reduction rules for Independent Set
are as follows: First, remove any vertex v that has no neighbors in G and add
it to the independent set that is computed for the remaining instance. Second,
remove any vertex v that has two degree-one neighbors.

In this work, we aim to explore the usefulness of local search or, more pre-
cisely, of local optimality, in the context of data reduction for hard problems.
The correctness of the �rst reduction rule above is rooted in the observation
that v is contained in every maximum independent set. Similarly, the correct-
ness of the second rule is rooted in the fact that v is contained in no maximum
independent set. Most of the known data reduction rules employ this principle
and the crux of proving the correctness of a data reduction rule lies in proving
that v is contained in all or no optimal solution. In general, given a vertex v and
computing whether v is contained in a largest independent set is just as hard
as computing an optimal solution in the �rst place. This is why data reduction
rules use speci�c preconditions that allow proving optimality of including or
excluding v without computing an optimal solution.

One may avoid such speci�c preconditions by relying on locally optimal solu-
tions instead of optimal solutions: If we could compute e�ciently that a vertex v
is not contained in a locally optimal solution for some local search neighbor-
hood, then we could remove v from the graph. Conversely, if we could compute
e�ciently that some vertex v is contained in every locally optimal solution, then
we could remove v and its neighborhood from the graph as described above. The
hope is that, since computing locally optimal solutions is easier for suitable local
search neighborhoods, this approach could help in circumventing the previous
dilemma: to say something about the optimal solution, one more or less needs
to compute it. Going back to the Independent Set problem, we would like to
determine whether a given vertex is in some k-swap optimal independent set.

Some Locally Optimal Independent Set (∃-LO-IS)
Input: An undirected graph G = (V,E), a vertex v ∈ V , and k ∈ N.
Question: Is v contained in some k-swap optimal independent set in G?

If the answer is no, then v can be removed fromG without destroying any optimal
solution. We may also ask whether v is in every locally optimal independent set.

Every Locally Optimal Independent Set (∀-LO-IS)
Input: An undirected graph G = (V,E), a vertex v ∈ V , and k ∈ N.
Question: Is v contained in every k-swap optimal independent set in G?

If the answer is yes, then v belongs to every optimal independent set and we
can apply a data reduction rule that removes v and its neighbors and adds v to
the independent set that is computed for the remaining graph. Motivated by the
usefulness of e�cient algorithms for these two problems in data reduction for
Independent Set, we study their complexity. We consider related problems
for two further classic NP-hard problems: Max Cut and Longest Path.

Our Results. For Independent Set our results are decidedly negative. ∃-LO-IS
and ∀-LO-IS are NP-complete and coNP-complete, respectively, even if k = 3
and ∆ = 4 and also if k = 5 and ∆ = 3. These results are tight 1 in the
following sense: when k = 1 or when ∆ = 2, then both problems can be solved
in polynomial time. Moreover, when k is not constant, we show that the problems
are even ΣP

2 -complete and ΠP
2 -complete, respectively. Thus, both problems are

substantially harder than LS-Independent Set. For Max Cut the situation
is similar: Deciding whether some edge is contained in a k-swap optimal cut or
in every k-swap optimal cut is NP-complete and coNP-complete even if k = 1
and ∆ = 5. Moreover, if k is not constant then the problems are, again, ΣP

2 -
complete and ΠP

2 -complete, respectively.
Finally, we consider Longest Path with a certain edge-swap neighborhood.

We show that for this neighborhood we can determine in f(∆+ k) · nO(1) time
whether some edge is contained in a k-optimal path. If the answer is no, then
this edge can be safely removed from the input graph. Since Longest Path
is NP-hard on cubic graphs, our results indicate that there are scenarios in
which testing for the containment of edges in locally optimal solutions is a viable
approach to obtain data reduction rules for NP-hard problems.

Related Work. A related problem is to determine if there is a maximal (and,
thus, 1-swap optimal) independent set S containing only vertices of a speci�c
subset of vertices U ⊆ V [3,12]. In other words, this problem asks for a 1-swap
optimal independent set containing no vertex of V \ U , a generalization of the
complement problem of ∃-LO-IS for k = 1. This problem is NP-hard even on
graphs where Independent Set can be solved in polynomial time, like bipartite
graphs [3]. In the scope of 1-swaps, the Independent Set Reconfiguration
problem was analyzed extensively [1,4,5,13]. Here, we are given two independent
setsX and Y of a graph G and an integer k and we want to determine if there is a
sequence S1, . . . , Sr of independent sets such that S1 = X, Sr = Y , |Sj | ≥ k for
all j ∈ [1, r], and |Sj⊕Sj+1| = 1 for all j ∈ [1, r−1]. Hence, one wants to add or

1 For even k, an independent set is k-swap optimal if and only if it is (k − 1)-swap
optimal [10]. Thus, only odd values of k are interesting.

remove a single vertex at a time and transform X into Y without decreasing the
size of the current independent set below k. This problem is PSPACE-complete
even on bipartite graphs [13].

The proofs of statements marked with a (*) are deferred to a full version.

2 Preliminaries

Sets and Graphs. For a set A, we denote with
(
A
2

)
:= {{a, b} | a ∈ A, b ∈ A}

the collection of all size-two subsets of A. For two sets A and B, we denote
with A⊕B := (A \B) ∪ (B \A) the symmetric di�erence of A and B.

An (undirected) graph G = (V,E) consists of a set of vertices V and a set of
edges E ⊆

(
V
2

)
. For vertex sets S ⊆ V and T ⊆ V we denote with EG(S, T) :=

{{s, t} ∈ E | s ∈ S, t ∈ T} the edges between S and T . Moreover, we de-
�ne EG(S) := EG(S, S). For a vertex v ∈ V , we denote with NG(v) := {w ∈ V |
{v, w} ∈ E} the open neighborhood of v in G and with NG[v] := NG(v) ∪ {v}
the closed neighborhood of v in G. Analogously, for a vertex set S ⊆ V , we de-
�neNG[S] :=

⋃
v∈S NG[v] andNG(S) := NG[S]\S. IfG is clear from the context,

we may omit the subscript. Moreover, we denote with ∆(G) := max{|NG(v)| |
v ∈ V } the maximum degree of G.

A sequence of distinct vertices P = (v0, . . . , vk) is a path or (v0, vk)-path of
length k in G if {vi−1, vi} ∈ E(G) for all i ∈ [1, k]. We denote with V (P) the
vertices of P and with E(P) the edges of P .

Satis�ability. For variable set Z, we de�ne the set of literals L(Z) := Z ∪ {¬z |
z ∈ Z}. A literal set Z̃ ⊆ L(Z) is an assignment of Z if |{z,¬z} ∩ Z̃| = 1
for all z ∈ Z. For a subset X ⊆ Z of the variables we denote with τZ(X) :=
X ∪ {¬z | z ∈ Z \ X}, the assignment of Z where all variables of X occur
positively and all variables of Z \ X occur negatively. A clause φ ⊆ L(Z) is
satis�ed by an assignment τ of Z if φ∩ τ 6= ∅, and we write τ |= φ. Analogously,
a set Φ ⊆ P(L(Z)) of clauses is satis�ed by τ if τ |= φ for all φ ∈ Φ, and we
write τ |= Φ.

3 Independent Set

In this section, we analyze the complexity of ∃-LO-IS and ∀-LO-IS. First, let us
set the following notation. Let G = (V,E) be a graph and let k be an integer. We
call a subset W ⊆ V a k-swap in G if |W | ≤ k. A set S ⊆ V is an independent
set if {v, w} 6∈ E for all v, w ∈ S. Further, an independent set S is k-swap
optimal in G if there is no k-swapW in G such that S⊕W is an independent set
and |S| < |S⊕W |. We will make use of the following observation on improving k-
swaps.

Observation 1 ([10, Lemma 2]) Let S be an independent set for a graph G =
(V,E) and let k be an integer. Then, S is k-swap optimal if and only if there is no
swap C ⊆ V of size at most k such that G[C] is connected and |S⊕C| = |S|+1.

Observation 2 An instance (G, v, k) of ∀-LO-IS is a yes-instance if and only
if (G,w, k) is a no-instance of ∃-LO-IS for every w ∈ N(v).

First, we observe that we can solve ∃-LO-IS in polynomial time for the
following almost trivial cases. Note that for k = 1, we ask whether a vertex is
contained in some maximal independent set.

Proposition 1 (*). ∃-LO-IS and ∀-LO-IS can be solved in polynomial time
if k = 1 or ∆ ≤ 2.

We now show that we cannot improve upon Proposition 1, neither in terms of k
nor in terms of ∆.

Theorem 3 (*). ∃-LO-IS is NP-complete and ∀-LO-IS is coNP-complete
even if k = 3 and ∆ = 4.

Theorem 4. ∃-LO-IS is NP-complete and ∀-LO-IS is coNP-complete even
if k = 5 and ∆ = 3.

Proof. First, we show the statement for ∃-LO-IS via reducing from SAT. Given
an instance I = (Z,Φ) of SAT, we construct in polynomial time an equivalent
instance I ′ = (G = (V,E), v∃, k) of ∃-LO-IS where k = 5 and where G has
maximum degree three. We may assume that every clause has size three, every
variable of Z occurs twice positively and twice negatively in Φ, and every variable
occurs at most once per clause since SAT remains NP-hard in this case [15].

Let ψ denote the number of clauses and let Φ = {φ1, . . . , φψ}. We start with
an empty graph G and add for every variable z ∈ Z a cycle (z1,¬z1, z2,¬z2, z1).
We add for every clause φi = {`1, `2, `3} ∈ Φ the subgraph Gφi = (Vφi , Eφi)
shown in Fig. 1a. The graph Gφi

contains the vertex ui, for each j ∈ {1, 2, 3,∨},
the path (aij , b

i
j , c

i
j , d

i
j , e

i
j), and the edges {bi1, ai∨}, {bi2, ai∨},{bi∨, ui}, and {bi3, ui}.

We connect a gadget Gφ with the cycles of the variables of φ as follows: for
every j ∈ [1, 3] we add the edge {`1j , aij} if `1j is not connected to any clause gadget
already. Otherwise, we add the edge {`2j , aij}. Since every variable occurs twice

positively and twice negatively in Φ, the vertices `1j and `
2
j are each connected to

exactly one subgraph Gφi
at the end of the construction. The idea behind Gφi

is
that every 5-swap optimal independent set S for G containing the vertices ai1, a

i
2,

and ai3, also contains the vertex ui. Hence, if no vertex representing any literal
of φi is contained in S (that is, if φi is not satis�ed), then ui is contained in S
which will imply that v∃ is not contained in S by the remaining gadgets.

Next, we add a binary tree with leaf vertices {ui | φi ∈ Φ}, the set of
inner vertices T , and root r to G. Afterwards, we remove all edges of this
tree and connect every parent vertex p with his two child vertices c1 and c2
by adding the subgraph Gp = (Vp, Ep) shown in Fig. 1b. This subgraph con-
tains the vertices of the binary tree p, c1 and c2, the vertices p′, q, q13 , q

2
3 , and

a cycle (p0, p
1
1, p

1
2, p

1
3, p

1
4, p5, p

2
4, p

2
3, p

2
2, p

2
1, p0). Further, the set Ep contains the

edges {p13, q13}, {p23, q23}, {p11, c1}, {p21, c2}, {p, p′}, {p′, q}, and {p′, p0}.
Finally, we add a path (v0, v1, v2, v3, r) to G and set v∃ := v1. This completes

the construction of I ′. Note that the constructed graph has a maximum degree of

ai1

bi1

ci1

di1

ei1
ai2

bi2

ci2

di2

ei2
ai3

bi3

ci3

di3

ei3

ai∨

bi∨

ci∨

di∨

ei∨

ui

(a) The subgraph Gφi for a clause φi =
{`1, `2, `3} ∈ Φ. Black vertices belong
to Vφi(τ) with τ ∩ φi = {`2}.

p11

p12

p13 p14
p5

p21

p22

p23p24

q13 q23

c1 c2

p0

p′

p

q

(b) The subgraph Gp for some parent ver-
tex p ∈ T with the child vertices c1 and c2.
Black vertices are contained in every 5-swap
optimal independent set containing v∃.

Fig. 1: The gadgets of the reduction of Theorem 4.

three. We show that I is a yes-instance of SAT if and only if I ′ is a yes-instance
of ∃-LO-IS.

(⇒) Suppose that I is a yes-instance of SAT. Thus, there is an assignment τ
for Z such that τ |= Φ. Let φi = {`1, `2, `3} be a clause of Φ and let τ be an
assignment of Z. We set

Vφi(τ) := {bij , dij | `j ∈ τ} ∪ {aij , cij , eij | `j 6∈ τ} ∪
{
{bi∨, di∨} τ |= {`1, `2}
{ai∨, ci∨, ei∨} otherwise

.

Note that Vφi
(τ) is an independent set. We set S := {`1, `2 | ` ∈ τ}

⋃
φi∈Φ Vφi

(τ)∪
{p′, p11, p13, p5, p23, p21 | p ∈ T}∪{v1, v3}. That is, S contains the vertices represent-
ing the literals of τ , the vertices of the clause gadgets according to τ , the black
vertices of Vp shown in Fig. 1b for every p ∈ T , and the vertices v3 and v1 = v∃.
By construction, S is an independent set. It remains to show that S is 5-swap
optimal. To this end, we observe the following.

Claim 1 (*). For each vertex w ∈ V \S with |N(w)∩S| ≤ 1, we have |N(w)| = 1.

Since a 5-swap W for S with |S ⊕ W | > |S| has to contain two distinct
vertices w1, w2 ∈ V \S with |N(w1)∩S| = |N(w2)∩S| = 1 we obtain by Claim 1
and the fact that degree-one vertices in G have pairwise distance at least six,
that there is no such W . Consequently, S is a 5-swap optimal independent set
in G with v∃ = v1 ∈ S.

(⇐) Suppose that I ′ is a yes-instance of ∃-LO-IS. Thus, there is a 5-swap
optimal independent set S in G with v∃ = v1 ∈ S. We �rst observe the following.

Claim 2 (*). Let p ∈ T with the child vertices c1 and c2. If p 6∈ S and p′ ∈ S,
then |N(c1) ∩ S| ≥ 2 and |N(c2) ∩ S| ≥ 2.

Note that this also implies, that c1 6∈ S and c2 6∈ S.
Recall that r is the root of the binary tree and that r′ is the unique neighbor

of r in Gr. Now, observe that {v1, v3, r′} = {v∃, v3, r′} ⊆ S and {v0, v2, r} ⊆ V \S
as, otherwise, S would not be a 5-swap optimal independent set in G. Thus, by
Claim 2 one can show inductively, that for all vertices c of the binary tree it
holds that |N(c)∩S| ≥ 2. Consequently, this also holds for the leaves of the tree,
namely the vertices {ui | i ∈ [1, ψ]}. Hence, for every φi ∈ Φ it holds that ui 6∈ S
and that bi∨ ∈ S or bi3 ∈ S.

We set τ = {` ∈ L(Z) | {`1, `2} ∩ S 6= ∅} and show that τ |= Φ. Note
that τ contains at most one of z and ¬z since S is an independent set. Let φi =
{`1, `2, `3} be a clause of Φ, we show that τ |= φi. First, we show that if there
is some j ∈ {1, 2, 3,∨} with N(aij) ∩ S = {bij}, then S is not 5-swap optimal.

Since S is an independent set, it holds that cij 6∈ S. If dij 6∈ S, then S⊕{aij , bij , cij}
is an independent set and, thus, S is not 5-swap optimal. Otherwise, dij ∈ S and,

thus, eij 6∈ S. Hence, S ⊕ {aij , bij , cij , dij , eij} is an independent set and, thus, S is
not 5-swap optimal.

We may thus assume that if aij 6∈ S, then N(aij) is a subset of S containing `1

or `2. We now use this fact to argue that at least one literal vertex adjacent to
any vertex aij is contained in S and, thus, φi is satis�ed by τ . Recall that bi∨ ∈ S
or bi3 ∈ S. Consequently, if bi∨ ∈ S, then |N(ai∨)∩S| ≥ 2 and, therefore, {bi1, bi2}∩
S 6= ∅. Hence, there is some j ∈ {1, 2, 3} such that bij ∈ S and, thus, N(aij) ⊆ S.
As a consequence, {`1j , `2j} ∩ S 6= ∅ and, therefore, `j ∈ τ . Hence, φi is satis�ed
by τ . Consequently, I is a yes-instance of SAT.

Due to Observation 2 and the fact that N(v0) = {v∃} it follows that (G, v0, k)
is a yes-instance of ∀-LO-IS if and only if I ′ is a no-instance of ∃-LO-IS.
Consequently, ∀-LO-IS is coNP-hard even if k = 5 and where the input graph
has a maximum degree of three. ut

Corollary 1. For every �xed odd k ≥ 5, ∀-LO-IS is coNP-complete and ∃-LO-
IS is NP-complete even if ∆ = 3.

Proof. Let k ≥ 7 and let I = (G = (V,E), v∃, 5) be an instance of ∃-LO-
IS constructed as in the proof of Theorem 4. By adding for every degree-one
vertex w in G a path Pw with k − 5 vertices to G and connecting w with one
endpoint of Pw, we obtain an equivalent instance I ′ = (G′, v∃, k) of ∃-LO-IS. ut

Next, we analyze the case where the swap distance k is unbounded.

Theorem 5 (*). ∀-LO-IS is ΠP2 -complete (∃-LO-IS is ΣP2 -complete) if ∆ = 3.

4 Max Cut

We now analyze the complexity of deciding whether an edge is a cut edge of
some locally optimal cut for the Max Cut problem. We formally de�ne cuts
and their local neighborhoods as follows. Let S, T ⊆ V . The pair (S, T) is a cut
in G if S ∪ T = V and S ∩ T = ∅. A cut (S, T) is a k-swap optimal cut in G if

B1
M2 M1

B2

Fig. 2: A (2, 3)-enforcer F = (B1 ∪B2 ∪M1 ∪M2, FE).

there is no k-swap W in G such that |E(S′, T ′)| > |E(S, T)| where S′ = S ⊕W
and T ′ = T ⊕W = V \ S′. Let A,B ⊆ V . We say that A and B are in the same
part of the cut if A ∪ B ⊆ S or A ∪ B ⊆ T . Moreover, A and B are in opposite
parts of the cut if A ⊆ S and B ⊆ T or vice versa.

Every Locally Optimal Max-Cut (∀-LO-MC)
Input: An undirected graph G = (V,E), an edge e ∈ E, and k ∈ N.
Question: Is e contained in every k-swap optimal cut in G?

Analogously, we ask in Some Locally Optimal Max-Cut (∃-LO-MC) if e
is contained in some k-swap optimal cut in G.

For every �xed value of k, we can check in polynomial time if a given cut (S, T)
is k-swap optimal in G. Consequently, we obtain the following.

Lemma 1. For every �xed value of k, ∀-LO-MC is contained in coNP and
∃-LO-MC is contained in NP.

We now show that both problems are hard, even for constant k and ∆. In
the reduction, we use a graph called (2, 3)-enforcer which is shown in Fig. 2. For
a (2, 3)-enforcer F , we denote F (i) := Bi ∪Mi for i ∈ {1, 2}.

Proposition 2 (*). Let G be a graph with ∆(G) = 5. If G contains a (2, 3)-
enforcer F = (B1 ∪B2 ∪M1 ∪M2, E

′) as an induced subgraph, then for every 1-
swap optimal cut (S, T) in G it holds that F (1) and F (2) are in opposite parts
of the cut.

Theorem 6. ∃-LO-MC is NP-complete and ∀-LO-MC is coNP-complete even
if k = 1 and ∆ = 5.

Proof. We reduce SAT to ∃-LO-MC. Given an instance I = (Z,Φ) of SAT, we
construct in polynomial time an equivalent instance I ′ = (G = (V,E), e∃, k) of
∃-LO-MC where k = 1 and where G has a maximum degree of �ve. We can
assume without loss of generality that every clause has size three, every variable
of Z occurs twice positively and twice negatively in Φ, and every variable occurs
at most once per clause since SAT remains NP-hard in this case [15]. Further,
we let ψ denote the number of clauses and we assume that ψ = 2r for some
even r.

Let Φ = {φ1, . . . , φψ}. We start with a balanced binary tree with r+ 1 levels.
We denote with Lp := {upq | q ∈ [1, 2p]} the vertices of the pth level of the tree
for all p ∈ [0, r]. The leaf urq represents the clause φq for all q ∈ [1, ψ]. Further,

we add a (2, 3)-enforcer F∃ with B1 = {w1
∃, w

2
∃} and B2 = {w1

∀, w
2
∀} and, for

each variable v ∈ Z, a (2, 3)-enforcer Fv with B1 = {v, v′} and B2 = {¬v,¬v′}.
The idea is that Fv(1) corresponds to the true-assignment of v and that Fv(2)

corresponds to the false-assignment of v since v ∈ Fv(1) and ¬v ∈ Fv(2). By
Proposition 2, Fv(1) and Fv(2) are in opposite parts of every 1-swap optimal
cut for G. Thus, for every 1-swap optimal cut (S, T) for G, both S ∩ L(Z)
and T ∩ L(Z) are assignments for the variables of Z.

For each clause φq ∈ Φ and each literal ` ∈ φq we add the edge {`, urq}.
Furthermore, we connect the vertices of L1 ∪ {w2

∃} to a cycle of length three
and for p ∈ [2, r − 1] we connect the vertices of Lp to a cycle of length 2p.
Finally, we add the edges between u01 and each of the vertices w1

∀, w
2
∀, and w

1
∃

and set e∃ = {w1
∃, u

0
1}. This completes the construction of I ′. We now show

that I is a yes-instance of SAT if and only if I ′ is a yes-instance of ∃-LO-MC.
(⇒) Suppose that I is a yes-instance of SAT. Thus, there is Z̃ ⊆ Z such

that τZ(Z̃) satis�es Φ. We set

S := F∃(1) ∪
⋃

odd p∈[1,r−1]

Lp ∪
⋃
v∈Z̃

Fv(1) ∪
⋃

v∈Z\Z̃

Fv(2)

and T = V \S and show that (S, T) is a 1-swap optimal cut in G and contains e∃.
Note that for every ` ∈ L(Z) it holds that ` ∈ S if and only if ` ∈ τZ(Z̃).

By construction, G has a maximum degree of �ve. Thus, for every vertex v in
any enforcer it follows directly that at least half of the neighbors of v are in the
opposite part of the cut of v. Further, since for every v ∈ Lp, p ∈ [1, r−1], it holds
that |NG(v)∩(Lp−1∪Lp+1)| = 3 and, thus, by construction of (S, T) that at least
half of the neighbors of v are in the opposite part of the cut of v. The same also
holds for the root u01 since u01 ∈ T and NG(u01) ∩ S = L1 ∪ {w1

∃}. Since Lr ⊆ T ,
it remains to show that for every q ∈ [1, ψ], |NG(urq) ∩ S| ≥ 2. By de�nition

of (S, T) it follows that |NG(urq) ∩ Lr−1 ∩ S| = 1. The fact that τZ(Z̃) |= Φ
implies that φq ∩ S 6= ∅. Consequently, for every v ∈ V , at least half of the
neighbors of v are in the opposite part of the cut of v. Therefore, (S, T) is
a 1-swap optimal cut in G and contains e∃.

(⇐) Let (S, T) be a 1-swap optimal cut in G which contains e∃. By Proposi-
tion 2, we may assume without loss of generality that F∃(1) ⊆ S and F∃(2) ⊆ T .
Further, for every v ∈ Z, either Fv(1) ⊆ S or Fv(2) ⊆ S. We set Z̃ := {v ∈ Z |
Fv(1) ⊆ S} and show that τZ(Z̃) |= Φ. Note that for every literal ` ∈ L(Z) it
holds that ` ∈ τZ(Z̃) if and only if ` ∈ S.

Claim 3 (*). For every p ∈ [0, r], it holds that Lp ⊆ S if p is odd and Lp ⊆ T
if p is even.

As a consequence, urq ∈ T for all q ∈ [1, ψ]. Since (S, T) is 1-swap opti-
mal in G, it holds that urq has at least two neighbors in S: the single neighbor
in Lq−1 and at least one neighbor in NG(urq) \Lq−1 = φq and, thus, S ∩ φq 6= ∅.
Consequently, τZ(Z̃) |= Φ.

Thus, ∃-LO-MC is NP-complete if k = 1 and ∆ = 5. Due to Proposition 2
and the fact that the (2, 3)-enforcer F∃ contains both w1

∃ and w1
∀, we know

v1 v2 v3 v4 v5

a) b) c)

Fig. 3: The three possible kinds of minimal improving (1, k)-swaps: a) appending
an edge to one of the endpoints, b) replacing an edge {u, v} with a (u, v)-path of
length at most k, and c) removing one endpoint and appending a path of length
two to its neighbor in the path.

that for every 1-swap optimal cut (S, T) in G it holds that w1
∃ ∈ S if and

only if w1
∀ ∈ T . Hence, I ′ = (G, e∃, 1) is a no-instance of ∃-LO-MC if and

only if I ′′ = (G, e∀, 1) is a yes-instance of ∀-LO-MC, where e∀ := {w1
∀, u

0
1}.

Consequently, ∀-LO-MC is coNP-complete if k = 1 and ∆ = 5. ut

Theorem 7 (*). ∀-LO-MC is ΠP2 -complete and ∃-LO-MC is ΣP2 -complete
even if ∆ = 3.

5 Longest Path

Finally, we consider Longest Path which is NP-hard even on cubic graphs [7].
Again, we want to �nd out whether some small part of the graph is contained
in a locally optimal solution. We consider the following neighborhood.

De�nition 1. Let k be an integer. Two paths P1 and P2 are (1, k)-swap neigh-
bors, if 1) the relative ordering of the common vertices of P1 and P2 is equal
in both paths and 2) |E(P1) \ E(P2)| ≤ k and |E(P2) \ E(P1)| ≤ 1 or |E(P1) \
E(P2)| ≤ 1 and |E(P2) \ E(P1)| ≤ k.

All three kinds of minimal improving (1, k)-swaps are shown in Fig. 3.

Some Locally Optimal Path (∃-LO-Path)
Input: An undirected graph G = (V,E), an edge e∗ ∈ E, and k ∈ N.
Question: Is e∗ contained in some (1, k)-swap optimal path P ∗ in G?

First, we observe that, unfortunately, the problem is hard already for �xed k.

Theorem 8 (*). ∃-LO-Path is contained in NP for every �xed value of k and
NP-hard for every k ≥ 2.

We now show that on bounded-degree graphs, we can obtain an e�cient algo-
rithm for small k. Our algorithm is based on a su�cient and necessary condition
for the existence of a (1, k)-swap optimal path in G containing a speci�c edge.
To formulate the condition, we de�ne two collections of vertex sets. We denote
for every integer k and every pair of distinct vertices v, w ∈ V with Vk(v, w) :=
{V (P) \ {v, w} | P is an (v, w)-path with 2 < |V (P)| ≤ k + 1} the collection of
sets of inner vertices of (v, w)-path with length at most k. Moreover, for every
vertex v ∈ V we denote by V2(v) := {{x, y} | x, y ∈ V, (v, x, y) is a path in G}
the collection of subsets of Ṽ ⊆ V \{v}, such that G contains a path P of length
two starting in v with V (P) = Ṽ ∪ {v}.

Lemma 2. Let e∗ = {v∗, w∗} be an edge which is not isolated and let k ≥ 2.
There is a (1, k)-swap optimal path P ∗ containing e∗ if and only if there are (not
necessarily distinct) vertices s, s′, t′ and t such that there is an (s, t)-path P in G
containing the edges e∗, {s, s′}, {t′, t}, the vertices N(s)∪N(t), and where V (P)
is a hitting set for Vk(s, s′) ∪ V2(s′) ∪ Vk(v∗, w∗) ∪ V2(t′) ∪ Vk(t′, t).

Proof. (⇒) Let P ∗ be a (1, k)-swap optimal path containing e∗. Then, V (P ∗)
contains at least two vertices and, thus, there are vertices s, s′, t′, t ∈ V such
that P ∗ contains the edges e∗, {s, s′}, and {t′, t}. Moreover, V (P ∗) containsN(s)∪
N(t) as, otherwise, P ∗ is not (1, k)-swap optimal. Assume towards a contradic-
tion, that V (P ∗) is not a hitting set for Vk(s, s′)∪V2(s′)∪Vk(v∗, w∗)∪Vr(t′, t)∪
V2(t′).

Case 1: V (P ∗) is not a hitting set for Vk(x, y) for some {x, y} ∈
{{s, s′}, {v∗, w∗}, {t′, t}}. Then, there is some Ṽ ∈ Vk(x, y) such that there is
some (x, y)-path P ′ in G of length at most k and V (P ′) = Ṽ ∪ {x, y}, such
that V (P ′) ∩ V (P ∗) = {x, y}. Replacing the edge {x, y} by the (x, y)-path P ′

is an improving (1, k)-swap, since Ṽ 6= ∅. This contradicts the fact that P ∗

is (1, k)-swap optimal in G.
Case 2: V (P ∗) is not a hitting set for V2(x) for some x ∈ {s′, t′}.

Then, there is some Ṽ ∈ V2(x) such that there is some path P ′ of length two
in G starting in x with V (P ′) = Ṽ ∪ {x} and V (P ′) ∩ V (P ∗) = {x}. Hence,
replacing the edge {x, x′} by the path P ′ is an improving (1, k)-swap, since P ′

contains two edges. This contradicts the fact that P ∗ is (1, k)-swap optimal in G.
(⇐) Suppose that there are vertices s, s′, t′, t ∈ V such that there is an (s, t)-

path P in G containing the edges e∗, {s, s′}, {t′, t}, the vertices N(s)∪N(t), and
where V (P) is a hitting set for Vk(s, s′)∪ V2(s′)∪ Vk(v∗, w∗)∪ Vk(t′, t)∪ V2(t′).

Since P contains 1) at least one inner vertex of every (s, s′)-path in G of
length at least two and at most k, and 2) at least one inner vertex besides s′ of
every path of length two starting in s′, there is no improving (1, k)-swap that
removes {s, s′} from P . This also holds for the edge {t′, t}. Since V (P) is a hitting
set for Vk(v∗, w∗), P contains at least one inner vertex of every (v∗, w∗)-path
in G of length at least two and at most k.

In the following, we will show, that every path P ∗ which can be reached by an
arbitrary number of improving (1, k)-swaps, also ful�lls all properties of P . Note
that this implies that there is a (1, k)-swap optimal path P ∗ in G containing e∗.

Since e∗ is not an isolated edge and P contains the vertices N(s) ∪ N(t),
and the edges e∗, {s, s′}, {t′, t}, we obtain that P contains at least three vertices.
Hence, not all edges of P can be removed by a single improving (1, k)-swap.
Note that an improving (1, k)-swap can only remove a vertex from the path if
this vertex is one of the endpoints.

By the above, none of the edges e∗, {s, s′}, or {t′, t} can be removed by an im-
proving (1, k)-swap. Hence, for every improving (1, k)-swap neighbor P ′ of P it
holds that V (P) ⊆ V (P ′), P ′ contains the edges e∗, {s, s′}, and {t′, t}. Moreover,
since N(s)∪N(t) ⊆ V (P), we obtain that P ′ is also an (s, t)-path. Consequently,
one can show via induction, that for every path P ∗ which can be reached by an ar-
bitrary number of improving (1, k)-swap starting from P , that P ∗ is an (s, t)-path

containing the edges e∗, {s, s′}, and {t′, t}, the vertices N(s)∪N(t), and V (P ∗)
is a hitting set for Vk(s, s′) ∪ V2(s′) ∪ Vk(v∗, w∗) ∪ V2(t′) ∪ Vk(t′, t). ut

Theorem 9. ∃-LO-Path can be solved in time O(f(∆+k) ·n4) for some com-
putable function f .

Proof. Let I = (G = (V,E), e∗ = {v∗, w∗}, k) be an instance of Some Lo-
cally Optimal Path. First, if e∗ is an isolated edge, then, there is exactly
one path P ∗ = (v∗, w∗) in G that contains the edge e∗. This path is (1, k)-swap
optimal in G if and only if G does not contain a path with two edges. Hence,
to determine if I is a yes-instance of Some Locally Optimal Path, we only
have to check if G contains a path with two edges, which can be done in O(n2)
time. Second, if e∗ is not an isolated edge, then, due to Lemma 2, it is su�cient
to check if there are vertices s, s′, t′, t ∈ V such that there is an (s, t)-path P
in G containing the edges e∗, {s, s′}, and {t′, t}, the vertices N(s) ∪ N(t), and
where V (P) is a hitting set for Vk(s, s′)∪ V2(s′)∪ Vk(v∗, w∗)∪ Vk(t′, t)∪ V2(t′).
In the following, we describe how we can check in O(f(∆+ r) · n4) time, if such
a path exists.

For every combination of vertices s ∈ V, s′ ∈ N(s), t ∈ V, and t′ ∈ N(t), we
compute the collections Vk(s, s′),V2(s′),Vk(v∗, w∗),Vk(t′, t), and V2(t′). Let V :=
Vk(s, s′)∪V2(s′)∪Vk(v∗, w∗)∪Vk(t′, t)∪V2(t′). Each of these collections contains
at most ∆k−1 sets of size at most k − 1 and each can be computed in O(∆k)
time. Moreover, for each set V ′ ∈ Vk(x, y) it holds that V ′ ⊆ Nk/2[x]∪Nk/2[y],
where Nk/2[u] denotes the set of vertices having distance at most k/2 to u.
Hence, V ∗ :=

⋃
V ′∈V V

′ is a subset of
⋃
x∈{s,s′,v∗,w∗,t′,t}N

k/2[x]∪N2[s′]∪N2[t′].

Consequently, there is some λ ∈ O(∆max(k/2,2)) such that |V ∗| ≤ λ.
Next, we check for each V ′ ⊆ V ∗ if it is a hitting set for V. If this is the case,

then we check if there is an (s, t)-path P in G containing the edges e∗, {s, s′},
and {t′, t} such that V ′ ∪ N(s) ∪ N(t) ⊆ V (P). This can be done by checking
if there is an ordering π = (x1, . . . , x`) of the vertices of Ṽ := V ′ ∪ N(s) ∪
N(t) ∪ {s, t, v∗, w∗} such that there are pairwise vertex-disjoint (xi, xi+1)-paths
for all i ∈ [1, ` − 1] where x1 = s, x2 = s′, x`−1 = t′, x` = t, and v∗ and w∗

are consecutive in π. This can be done in g(|Ṽ |) · n2 time [11] for some com-
putable function g. Since we check all combinations of s, s′, t′, and t as well as
every possible hitting set for V, the algorithm is correct and has overall running
time O(n2 ·∆2 · λ · 2λ · (λ+ 4 + 2∆)! · g(λ+ 4 + 2∆) · n2) ⊆ O(f(∆+ k) · n4). ut

6 Conclusion

We proposed a generic approach to the design of data reduction rules via local
optimality and examined its viability for well-known NP-hard problems. It seems
interesting to �nd further positive applications of this approach along the lines
of the Longest Path problem. One might, for example, consider extensions of
the (1, k)-swap neighborhood for paths. Finally, regardless of the connection to
data reduction, it seems interesting in its own right to study which properties of
locally optimal solutions can be computed e�ciently.

References

1. Rémy Belmonte, Tesshu Hanaka, Michael Lampis, Hirotaka Ono, and Yota Otachi.
Independent set recon�guration parameterized by modular-width. In Proceedings
of the 45th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG '19), Vall de Núria, Spain, June 19-21, 2019, Revised Papers, volume
11789 of Lecture Notes in Computer Science, pages 285�297. Springer, 2019.

2. Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An e�cient lo-
cal search algorithm for minimum vertex cover. Journal of Arti�cial Intelligence
Research, 46:687�716, 2013.

3. Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot,
and Florian Sikora. Extension of vertex cover and independent set in some classes
of graphs. In Proceedings of the 11th International Conference on Algorithms and
Complexity (CIAC '19), volume 11485 of Lecture Notes in Computer Science, pages
124�136. Springer, 2019.

4. Keren Censor-Hillel and Mikaël Rabie. Distributed recon�guration of maximal
independent sets. J. Comput. Syst. Sci., 112:85�96, 2020.

5. Mark de Berg, Bart M. P. Jansen, and Debankur Mukherjee. Independent-set re-
con�guration thresholds of hereditary graph classes. Discret. Appl. Math., 250:165�
182, 2018.

6. Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances A. Rosamond,
Saket Saurabh, and Yngve Villanger. Local search: Is brute-force avoidable? J.
Comput. Syst. Sci., 78(3):707�719, 2012.

7. M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar hamiltonian
circuit problem is NP-complete. SIAM J. Comput., 5(4):704�714, 1976.

8. Jiong Guo, Sepp Hartung, Rolf Niedermeier, and Ondrej Suchý. The parameterized
complexity of local search for TSP, more re�ned. Algorithmica, 67(1):89�110, 2013.

9. David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy
is local search? Journal of Computer and System Sciences, 37(1):79�100, 1988.

10. Maximilian Katzmann and Christian Komusiewicz. Systematic exploration
of larger local search neighborhoods for the minimum vertex cover problem.
In Proceedings of the Thirty-First AAAI Conference on Arti�cial Intelligence,
(AAAI '17), pages 846�852. AAAI Press, 2017.

11. Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint
paths problem in quadratic time. J. Comb. Theory, Ser. B, 102(2):424�435, 2012.

12. Mehdi Khosravian Ghadikolaei, Nikolaos Melissinos, Jérôme Monnot, and Aris
Pagourtzis. Extension and its price for the connected vertex cover problem.
In Proceedings of the 30th International Workshop on Combinatorial Algorithms
(IWOCA '19), volume 11638 of Lecture Notes in Computer Science, pages 315�326.
Springer, 2019.

13. Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set
recon�guration on bipartite graphs. ACM Trans. Algorithms, 15(1):7:1�7:19, 2019.

14. Dániel Marx. Searching the k-change neighborhood for TSP is W[1]-hard. Oper.
Res. Lett., 36(1):31�36, 2008.

15. Craig A. Tovey. A simpli�ed NP-complete satis�ability problem. Discret. Appl.
Math., 8(1):85�89, 1984.

	Can Local Optimality Be Used for Efficient Data Reduction?

