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Abstract: Data profiling describes the activity of extracting implicit metadata, such as schema
descriptions, data types, and various kinds of data dependencies, from a given data set. The
considerable amount of research papers about novel metadata types and ever-faster data profiling
algorithms emphasize the importance of data profiling in practice. Unfortunately, though, the current
state of data profiling research fails to address practical application needs: Typical data profiling
algorithms (i. e., challenging to operate structures) discover all (i. e., too many) minimal (i. e., the
wrong) data dependencies within minutes to hours (i. e., too long). Consequently, if we look at the
practical success of our research, we find that data profiling targets data cleaning, but most cleaning
systems still use only hand-picked dependencies; data profiling targets query optimization, but hardly
any query optimizer uses modern discovery algorithms for dependency extraction; data profiling targets
data integration, but the application of automatically discovered dependencies for matching purposes
is yet to be shown - and the list goes on. We aim to solve the profiling-and-application-disconnect
with a novel data profiling engine that integrates modern profiling techniques for various types of data
dependencies and provides the applications with a versatile, intuitive, and declarative Data Profiling
Query Language (DPQL). The DPQL enables applications to specify precisely what dependencies are
needed, which not only refines the results and makes the data profiling process more accessible but
also enables much faster and (in terms of dependency types and selections) holistic profiling runs. We
expect that integrating modern data profiling techniques and the post-processing of their results under
a single application endpoint will result in a series of significant algorithmic advances, new pruning
concepts, and a profiling engine with innovative components for workload autoconfiguration, query
optimization, and parallelization. With this paper, we present the first version of the DPQL syntax and
its semantics, which introduces a fundamentally new line of research in data profiling.

Keywords: data profiling; query language; functional dependencies; unique column combinations;
inclusion dependencies

1 About Data Profiling and Application Requirements

Structural metadata is a set of rules that shape datasets, their formats, evolution, correctness,
and accessibility. For this reason, metadata is an essential input to many data management
processes ranging from data exploration [Fe18; Ro09] over data integration [DR02; Zh10]
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and data cleaning [IC15; VA18] to query optimization [KPN22; Pa00] and machine
learning [Ch19; KPN20] to name only a few. Due to the importance of metadata, most
database management systems store not only the data but also structural information, such as
data types, basic statistics, and constraints. This is only a fraction of the structural metadata
that characterizes a dataset, and actually having access to it is a lucky case because many
formats and systems for storing datasets do not even provide any metadata. For this reason,
data engineers (and scientists) conduct data profiling [Ab18] to extract metadata from
raw data. This first manual and meanwhile largely automated process has been improved
significantly over the past 30 years. To give a few examples, we can now automatically
mine unique column combinations [Bi20], functional dependencies [PN16], inclusion
dependencies [Dü19], order dependencies [SP22], matching dependencies [Sc20] and many
more in exact and various relaxed versions [CDP16]. In the quest to meet application needs
and user skills, the corresponding data profiling algorithms have been built into practical data
profiling tools, such as Metanome [Pa15a], Desbordante [De22], or Viadotto [Vi22]. Despite
these technological advances, data profiling still requires complicated and often manual
post-processing efforts to make use of the discovered metadata in different applications.

To illustrate the current limitations in data profiling, consider the following example: In a
data integration scenario, a data engineer is looking for possible foreign-key candidates
between two to-be-integrated datasets 𝑅 and 𝑆. A suitable foreign-key candidate is an
inclusion dependency (IND) 𝑋 ⊆ 𝑌 where the attributes 𝑋 and 𝑌 are from different datasets
and the target 𝑌 is a key candidate, i. e., a unique column combination (UCC). The standard
approach would be to, first, discover all INDs and UCCs and, then, filter the required
statements for the actual results. This process introduces the following major issues:

Discovery of too many results: Many data profiling algorithms are exponential in their
output complexity because the amount of syntactically valid and, hence, discoverable
metadata is huge. They usually restrict the outputs to only minimal (or maximal) metadata
statements, but the metadata result sets still often outgrow storage capacities and the
data itself [Dü19; Pa15b]. Any semantic metadata selection is usually conducted as a
post-processing step and deferred to the metadata application. If these applications could
formulate their metadata requirements as pruning rules for the profiling of the data, giant
result sets could be avoided. In our example, only very few INDs overlap with a UCC, such
that a clever profiling run would never need to enumerate all INDs and UCCs.

Discovery of the wrong results: To limit the size of metadata result sets, the profiling
algorithms restrict the enumeration to only minimal (or maximal) statements. It is possible
to derive any valid metadata statement from these collections, but the inference requires
complex post-processing procedures based on different axiomatizations [Ab18]. If the INDs
in our example are all maximal and the UCCs are all minimal, then the needed foreign-key
candidates might be formed by an IND-UCC-combination in which neither the IND is
maximal nor the UCC is minimal; and apart from linking the two dependency statements,
additional inference work based on IND- and UCC-axioms is needed. A sophisticated
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profiling algorithm would do this already during metadata discovery, which requires a
standardized profiling language to configure the algorithm executions accordingly.

Discovery in the wrong way: All state-of-the-art data profiling tools operate on a one-type-
at-a-time basis, which means that they offer distinct discovery functionalities for every type
of metadata. To fulfill a certain metadata need, a user must first decompose the application
demands into these different metadata types. For each type, the best algorithm then
needs to be selected and parameterized. The latter involves specifying whether relaxation,
approximation, parallelization, disk-swapping, etc. is needed and if yes, to what degree. The
user must also configure algorithm-specific parameters, such as window sizes, search depths,
or filter sizes. This complexity prevents many users from applying modern data profiling
tools. For the foreign-key discovery example, the data engineer needs to parameterize
an IND and UCC algorithm and combine the results, which is something that a holistic,
application-driven data profiling tool with a simple, declarative query language should be
able to do automatically.

Discovery that takes too long: Data profiling algorithms are highly optimized, extremely
effective metadata discovery tools; they are still output bound, and the outputs grow
exponentially with the input sizes. For this reason, even the most effective algorithms
may take hours to days to enumerate complete metadata sets for certain inputs [Kr16].
The only way to achieve further significant performance improvements is to pull the
application-specific selection of the metadata statements from the preprocessing into the
profiling algorithms. This requires a generic language for pruning rules and holistic profiling
algorithms that discover multiple types of metadata simultaneously. In our example, we aim
to discover INDs and UCCs simultaneously and, for this, need to specify the relationship
between them. These relationships can be specified with a data profiling query language
and translate directly into pruning rules for the discovery.

A holistic data profiling engine with a standardized Data Profiling Query Language (DPQL)
would resolve all four mentioned issues: The declarative query language serves to formulate
exactly what metadata statements are needed, such that only truly required results (not too
many) and carefully linked results (not the wrong) are discovered. Based on the explicit
metadata queries, the data profiling engine can automate the parameterization (not in the
wrong way) and optimize the discovery strategy (not too long). In this paper, we introduce
the first version of such a data profiling query language and provide concrete examples of its
usage. DPQL is a generic, SQL-like language that serves to specify metadata requirements
across different metadata types. From a user perspective, DPQL is an intuitive interface to
filter and join metadata statements that are transparently discovered on demand.

Holistic data profiling via a standardized, declarative metadata query language is a fundamen-
tally new approach to data profiling and should have a major impact on how data profiling
algorithms and tools are developed in the future. The descriptions of the DPQL language in
this paper focus on the three most popular data dependencies, which are UCCs, FDs, and
INDs, but they generalize to all other types of dependencies and metadata statements.
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In the subsequent sections, we first introduce a small running example with a practical
DPQL query (Sect. 2). Then, we discuss related work on data profiling and profiling-related
query languages (Sect. 3) and recap the definitions of UCCs, FDs, and INDs (Sect. 4).
Afterward, we introduce DPQL’s SELECT-FROM-WHERE syntax and result format (Sect. 5). We
then present the novel functions that can be used within a DPQL query and explain their
purposes (Sect. 6). As an evaluation of DPQL, we consider different application areas of
data profiling and formulate their demands in DPQL (Sect. 7). In the end, we motivate novel
research challenges inspired by DPQL (Sect. 8) and summarize our proposal (Sect. 9).

2 A Running Example

ID Name Evolution Location Sex Weight Size Type Weak Strong
25 Pikachu Raichu Viridian Forest m/f 6.0 0.4 electric ground water
29 Nidoran Nidorino Safari Zone m 9.0 0.5 poison ground gras
32 Nidoran Nidorina Safari Zone f 7.0 0.4 poison ground gras
63 Abra Kadabra Cerulean Cave m/f 19.5 0.9 psychic ghost fighting
64 Kadabra Simsala Cerulean Cave m/f 56.5 1.3 psychic ghost fighting

(a) Pokemon
Title Biome Region

Viridian Forest gras Kanto
Safari Zone gras Kanto

Cerulean Cave rock Kanto
Fuchsia City fighting Kanto

Anemonia City water Jotho

(b) Locations

Firstname Rank Pokecount
Marcian 8 38
Sebastian 5 42
Alexander 2 19
Thorsten 1 2

Elisa 9 73

(c) Trainers

Trainer Pokemon
Marcian 64

Elisa 29
Elisa 32

Sebastian 25
Sebastian 64

(d) Teams

Tab. 1: A running example with a small excerpt of Pokémon data.

1 SELECT
2 X AS ForeignKey, Y AS Key
3 FROM
4 CC(Pokemon,Locations,Trainers,Teams) X,
5 CC(Pokemon,Locations,Trainers,Teams) Y
6 WHERE
7 IND(X,Y)
8 AND UCC(Y)
9 AND SPLIT(X,Y)

10 AND SIZE(Y) <= 2
11 AND CARDINALITY(X) >= 2

List. 1: Find all foreign-key candidates between the
tables Pokemon, Locations, Trainers, and Teams.

As an introduction to DPQL, let us ex-
amine a small example with the Poké-
mon data shown in Tab. 1. In this exam-
ple, we aim to discover all foreign-key
relationships between the tables in the
Pokémon dataset. A foreign-key is an
integrity constraint between two lists
of attributes that requires an inclusion
dependency between the attribute lists
and a unique column combination on
the referenced attribute list. In some
domain-specific settings, we might also
want these relationships to cover at
most two attributes, to link attributes
from different tables, and to have at
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least two different values in the foreign-key columns. All these conditions can be formulated
in a single DPQL query, such as the one shown in List. 1. Following the SQL syntax, the
SELECT clause defines the output to be pairs of attribute lists X and Y, which represent the
needed ForeignKey and Key attributes, respectively. The FROM clause specifies the search
space for X and Y with the help of the CC() function that describes all possible column combi-
nations of its arguments; for this, DPQL needs to be able to fetch attribute information from
relations. The WHERE clause specifies the constraints on the metadata that we are looking for:
the IND X⊆Y and the UCC Y should be valid (IND(X,Y) and UCC(Y)), X and Y should be from
different relations (SPLIT(X,Y))), the size of the foreign-key should not be greater than two
(SIZE(Y) <= 2), and X should contain at least two different values (CARDINALITY(X) >= 2).
The answer to this query contains the tuples ( [Trainer], [Firstname]), ( [Pokemon], [ID]),
and ( [Location], [Title]), which are precisely the foreign-keys of the Pokémon dataset.

To obtain the result of a DPQL query, a novel data profiling engine is needed that can parse
the filter criteria from the query and apply them effectively. Note that the query implies
many implicit profiling constraints, e. g., that X and Y need to be of the same size, both
column combinations need to be lists while column combinations that do not appear in
INDs can be interpreted as sets, and the results should be minimal/maximal according to
dependency axioms. These constraints do not need to be specified and can automatically be
derived by the profiling engine and algorithms. To the best of our knowledge, not a single
existing data profiling system can consider all such profiling constraints.

For demonstration purposes, we implemented a very early query processing prototype for
the DPQL language that can answer the queries shown in this paper. With the prototype, we
executed the foreign-key query of List. 1 on the TPC-H (425 MB, 7 Tables, and 56 Attributes)
and the MusicBrainz (104 GB, 232 Tables, and 1 562 Attributes) datasets: The foreign-key
query on the TPC-H dataset yields 19 foreign-key candidates containing all seven true
foreign-key constraints; in contrast, a full profiling run yields 52 maximal INDs and 408
minimal UCCs that still need to be combined. The foreign-key query on the MusicBrainz
dataset yields 7 625 foreign-key candidates; in contrast, a full profiling run yields 209 572
unary INDs and 496 minimal UCCs that still need to be combined. These experiments
demonstrate that DPQL queries can produce smaller and more specific results; it enables
holistic profiling and new pruning rules for faster executions.

We need to emphasize that most real-world datasets are much wider and longer than our tiny
Pokémon example dataset; additionally, they often lack descriptive labels, offer only cryptic
values, and are hard to parse. For this reason, automatic data profiling starting at the source
data and delivering suitable results directly to the applications – just as we did with the
foreign-key query – is highly needed. DPQL is a first and essential building block for this.
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3 Related Work

Most of the research on data profiling focuses primarily on improving existing data
profiling algorithms including aspects, such as their scalability [Sc20; SGI19; SP22],
relaxation [Ca21b; CDP16; Li20; WHL21], or dynamics [Ca21a; Xi22]. Consequently,
many very effective algorithms exist for the discovery of basic metadata [HN17; HPN21],
unique column combinations [Bi20; WLL19], functional dependencies [PN16; WLL19],
inclusion dependencies [Dü19; Pa15c], order dependencies [SP22; Sz17], matching depen-
dencies [Sc20; Wa17], denial constraints [BKN17; PAN21] and many further. All these
algorithms target only one type of dependency and try to enumerate complete result sets;
they are written in different languages and serve quite heterogeneous interfaces and result
formats, which makes them relatively difficult to apply in real-world settings.

So far, very little research has been done on holistic profiling techniques. Some works exist
that consider UCCs and FDs simultaneously [Eh16; Hu99] or reason about FDs and INDs
jointly [HL18]. These approaches demonstrate the potential of holistic data profiling w.r.t.
runtime improvements, but a query language is needed to cover more than two types of
dependencies and semantically combine and filter the results.

Data profiling tools aggregate profiling algorithms and present them as services to the user.
They make the algorithms easier to operate and store the results in some tool-specific but at
least type-unified format. The open-source research framework Metanome [Pa15a] was the
first data profiling tool to support the discovery of various types of metadata. Another very
recent profiling tool inspired by Metanome is Desbordante [De22]. Meanwhile, commercial
products, such as Viadotto [Vi22], developed the idea further and professionalized the
concepts. All these tools effectively ease the profiling for non-expert users, but since they
do not offer any metadata management features, they effectively shifted the problem from
complicated-to-operate data to complicated-to-operate metadata.

A promising approach to the metadata management concern is to store the discovered
metadata in the form of data profiles in a database. In this way, users can issue SQL
queries to find, join, and filter the metadata according to their specific application needs. A
practical implementation of this idea, which works nicely with Metanome, is the metadata
management system Metacrate [Kr17a]. Metacrate proposes effective, relational storage
formats for various types of metadata, and SQL as a flexible and generic query language.
Another metadata store that focuses on statistical metadata rather than structural metadata
is Splash [FL10]. Similar to Metacrate, Splash is based on SQL and tries to persist all
metadata. The general approach of persisting the metadata, though, comes with various
issues: Synchronization of data and metadata is expensive, metadata contains a lot of
redundancy, schemata with many types (UCCs, INDs, FDs, ODs, . . . ) and relaxations
(partial, approximate, conditional, . . . ) become incomprehensible, and, most importantly,
metadata sets are huge if they are stored in their entirety. Standard SQL also appears to be
an unfavorable match for working with metadata, which is why we propose a novel query
language and a profiling engine that collects the metadata at query time.
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As part of our related work, we also consider the enormous space of business intelligence
systems with data profiling capabilities, including IBM InfoSphere, Talent Data Quality,
Informatica Data Explorer, Trillium Software Data Profiling, OpenRefine, SAP Business
Objects, and many, many more. Apart from the fact that many data profiling features of
these tools are still behind state-of-the-art in research, they suffer from the same metadata
management and accessibility issues as the whole field of data profiling.

Because metadata statements, and data dependencies in particular, are defined on schema
level, a data profiling query language needs to be able to access schema elements.
SchemaSQL [LSS96] is an SQL extension that already offers these capabilities: The
queries can access database-, relation-, and attribute-names, join values with labels, compare
schema elements, and alter them. The only schema operation needed for data profiling,
though, is referring to attribute lists. For this reason and because SchemaSQL also lacks
data profiling features, we create a new SQL-like dialect.

Defining SQL extensions or entirely new query languages to query derived information is
not a novelty. In the data mining area, which is closely related to data profiling, various
efforts have been made to extend SQL with data mining capabilities. For example, MINE
RULE is a keyword extension to discover rules [MPC+96; MPC98] and the profile function
is Splash’s extension to extract estimated joint probability density functions [FL10]. Data
mining algorithms have also been defined via user-defined functions [OP11] or virtual
views [Bl12]. Similar extensions would be possible also for data profiling algorithms, but a
query language specifically designed for data profiling is easier to understand, clearer in
semantics and result formats, and better to be parsed into data profiling pruning rules.

The SQL-like data mining language RQL [Ch17] is a query language for discovering exact,
extended and relaxed functional dependencies. It is the closest challenger of our proposal,
but it can discover only simple if-then-statements and no arbitrary complex metadata
constructs with different types of metadata. The extension of RQL to a more comprehensive
data profiling language would change not only the language, but also its execution engine
significantly. Therefore, we propose a novel, more intuitive query language.

4 Data Dependencies

Throughout the paper, we follow established notations for data profiling [Ab18]: Because
these notations consider schemata and data to be ordered (e. g. by their physical order on disk),
we use the terms attribute and column, as well as record, tuple, and row interchangeably.
We denote a relational schema as 𝑅 and instances of 𝑅 as 𝑟. Letters from the start of the
alphabet denote attributes (𝐴, 𝐵, 𝐶, 𝐷, . . . ∈ 𝑅) and letters from the end of the alphabet
denote attribute lists (. . . ,𝑊, 𝑋,𝑌, 𝑍 ⊆ 𝑅). Attributes in these lists can be accessed via
index, e. g., as 𝑋𝑖 . For some metadata statements, the order of the attributes in attribute lists
is important (e. g. INDs) and for others it is not (e. g. UCCs and FDs). We, therefore, name
these lists column combinations and let the profiling algorithm infer, based on the type of
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dependency, whether a combination needs to be interpreted as a list or a set. The notations
𝑅[𝑋] and 𝑡 [𝑋] denote projections of schema 𝑅 and tuple 𝑡 on the attributes 𝑋 , respectively.
With these notations, we define UCCs, FDs, and INDs as follows:

Definition 1 (Unique column combination (UCC)) Given a schema 𝑅 with instance 𝑟 , a
UCC 𝑋 with 𝑋 ⊆ 𝑅 is valid in 𝑟 , iff ∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑟, 𝑖 ≠ 𝑗 : 𝑡𝑖 [𝑋] ≠ 𝑡 𝑗 [𝑋].

Definition 2 (Functional dependency (FD)) Given a schema 𝑅 with instance 𝑟, the FD
𝑋 → 𝐴 with 𝑋 ⊆ 𝑅 and 𝐴 ∈ 𝑅 is valid in 𝑟 iff ∀𝑡𝑖 , 𝑡 𝑗 ∈ 𝑟 : 𝑡𝑖 [𝑋] = 𝑡 𝑗 [𝑋] ⇒ 𝑡𝑖 [𝐴] = 𝑡 𝑗 [𝐴].

Definition 3 (Inclusion dependency (IND)) Given the schemata 𝑅 and 𝑆 with instances
𝑟 and 𝑠, respectively, the IND 𝑅[𝑋] ⊆ 𝑆[𝑌 ] (abbreviated 𝑋 ⊆ 𝑌 ) with attribute lists 𝑋 ⊆ 𝑅

and 𝑌 ⊆ 𝑆, and cardinalities |𝑋 | = |𝑌 | is valid iff ∀𝑡𝑖 ∈ 𝑟, ∃𝑡 𝑗 ∈ 𝑠 : 𝑡𝑖 [𝑋] = 𝑡 𝑗 [𝑌 ].

Considering our running example in Tab. 1, we find that, for example, {Name, Sex} is
a UCC, {Type}→{Weak} is an FD, and {Location}⊆{Title} is an IND. Because UCCs
indicate keys, FDs indicate value associations, and INDs indicate referential integrity, these
three dependencies are among the most important metadata statements. For more details on
axiomatization, inference rules, and minimality/maximality properties, we refer to [Ab18].
In the context of this paper, it should be sufficient to understand that all profiling-related
aspects are pushed down to the profiling engine and/or algorithm(s).

5 Data Profiling Query Language

The Data Profiling Query Language (DPQL) is a variant of SQL that follows the popular
SELECT-FROM-WHERE syntax. A central element of this syntax is the column combination
function CC(). This function allows DPQL to access schema elements as values. In the
following, we first introduce the CC() function and, then, discuss the DPQL query syntax.

5.1 DPQL Column Combination Function

Data profiling is about discovering metadata statements on column combinations. With
the column combination function CC(), the user can refer to these groups of attributes
and, then, specify restrictions and connections for them. The parameter list of the CC()
function is a list of relational attributes from which the column combinations should be
drawn. For example, CC(Pokemon.ID, Pokemon.Size) describes the following list-based
column combinations: {∅, [Pokemon.ID], [Pokemon.Size], [Pokemon.ID, Pokemon.Size],
[Pokemon.Size, Pokemon.ID]}. We can enumerate these from the list of attributes when
considering the power set lattice of these attributes [Ab18]. While the CC() function defines
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the origin of the columns, we later introduce further restrictions on column combinations
that filter concrete patterns of specific dependency types. Note that the CC() function in
DPQL is used as a declarative construct to define sets of column combinations, which can
be named in the queries. CC() provides the context for the data profiling and describes the
search space for the profiling algorithms, but it is not supposed to be fully materialized.

The attributes for a CC() call can be provided explicitly, collectively via their relations, or as
negations; we can also specify concrete column combination sets as literals. Tab. 2 provides
an overview of the specification options for column combinations:

Attributes: The most basic call of the CC() function lists all relational attributes that should
be considered for the generation of column combinations. If the parameter contains attributes
from different tables, these attributes will also form column combinations. For many types of
metadata, such as FDs, UCCs, and INDs, all attributes of a column combination must stem
from the same relation and the profiling algorithms will prune the search space accordingly;
for some types, such as MDs and DCs, mixed column combinations are needed, though.

Relations: By specifying relations in the CC() parameter lists, we denote all attributes of
the respective relations. This shortcut is well established in the data profiling community, as
most data profiling algorithms operate on this abstraction level.

Negations: With negations, the user can exclude certain attributes from relations in a CC()
call. In Tab. 2, we consider all attributes in the Pokemon relation and exclude only the
Pokemon.ID attribute from it. The negation is particularly useful to profile the majority of
attributes while excluding certain irrelevant attributes, such as empty, generated, or binary
attributes. Note that negative statements supersede positive statements, and a negative
statement without a positive relation is redundant.

Literal: Instead of modeling the search space with the CC() function, sets of column
combinations can also be specified explicitly with a literal statement. A literal groups one or
multiple column combinations, which are represented as attributes in square brackets, into a
set in curly brackets. A literal takes the place of any CC() call and can contain arbitrary many
column combinations, which the profiling uses exactly as specified. If the literal cannot be
parsed into a valid column combination, an error is thrown. The option to provide fixed
column combinations is important to ask specific profiling questions, such as "Where does
this foreign-key point to?" or "Which attributes functionally depend on this key candidate?".

Parameter Example Description: All CCs formable with . . .
Attributes CC(Pokemon.ID,Pokemon.Size) the provided attributes.
Relations CC(Pokemon,Teams) the attributes of the provided relations.
Negations CC(Pokemon,!Pokemon.ID) all attributes but the provided exceptions.
Literals {[Pokemon.ID,Pokemon.Size], exactly the two provided column combinations.

[Trainers.Rank]}

Tab. 2: Specification options for column combination sets.
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Because the order of column combinations matters for INDs (and some other dependencies),
column combinations in DPQL queries are always considered as lists, i. e., the order of
attributes in column combinations is meaningful. However, for set-based data dependencies,
such as UCCs and FDs, the profiling engine automatically prunes redundant results.

5.2 DPQL Query Syntax

We now introduce the SELECT-FROM-WHERE syntax of DPQL and provide further examples
of DPQL queries. The queries use the CC() function to reference column combinations
(short CCs) and the functions UCC(), FD(), and IND() to specify dependencies (and their
interactions); we provide more details on the metadata discovery functions later in Sect. 6.

1 SELECT
2 X AS Left, Y AS Right
3 FROM
4 CC(Pokemon,Trainers) X,
5 CC(Pokemon,Trainers) Y
6 WHERE
7 FD(X,Y)

List. 2: Find all functional dependencies in the
relations Pokemon and Trainers.

SELECT The SELECT clause defines the
column combinations that shall appear in
the query’s result. Each listed column com-
bination translates into a column in the
relational output, and every row in the re-
lational output is a set of column combina-
tions that answers the DPQL query. Column
combinations refer to the search spaces de-
fined by the CC() calls in the FROM clause,
and can be renamed with the AS keyword.
List. 2 shows a DPQL query with a sim-
ple SELECT clause that selects the left- and right-hand-sides of functional dependen-
cies within the relations Pokemon and Trainers. Result tuples of this query would be
( [Pokemon.Type], [Pokemon.Weak]) or ( [Trainer.Rank], [Trainer.Pokecount]), which rep-
resent the FDs Type→Weak and Rank→Pokecount. Note that SELECT describes a projection
on the column combinations defined in the FROM clause and, therefore, does not need to list
all CCs – if we require only left-hand-sides, we would project on X alone in List. 2.

1 SELECT
2 X AS Dependent, Y AS Referenced
3 FROM
4 CC(Pokemon) X,
5 CC(Locations,Teams) Y
6 WHERE
7 IND(X,Y)

List. 3: Find all inclusion dependencies from the
relation Pokemon to either Locations or Teams.

FROM The FROM clause uses the CC()
function (or literals) to specify the search
space of the profiling. Every CC()-defined
set of column combinations needs to be
named, such that it can be referenced in
the SELECT and/or WHERE clause. The DPQL
query in List. 3 demonstrates the discovery
of inclusion dependencies in the Pokémon
example with two different CC() sets. The
results of this query contain all X and Y
column combination pairs, for which the X
values link Pokemon to Y values in either Locations or Teams.
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1 SELECT
2 X Determinant, Y AS Unique
3 FROM
4 CC(Teams,Trainers) X,
5 CC(Pokemon) Y
6 WHERE
7 UCC(Y)
8 AND (IND(X,Y) OR FD(X,Y))

List. 4: Find all unique column combinations that
are a target of a functional or inclusion dependency.

WHERE The WHERE clause is a logical
filter expression. It defines the metadata
patterns that serve a specific application
need and follows SQL operator precedence.
While the FROM clause restricts the data
profiling process to certain tables (and at-
tributes), the WHERE clause can be used to
formulate conditions and metadata patterns
that further prune the metadata search space.
Handed over to the actual data profiling,
these restrictions can greatly reduce runtime
and memory consumption. Expressions in
the WHERE clause are based on data profiling functions that cover different types of meta-
data statements, such as UCC(), FD(), and IND(), and additional restrictions on column
combinations, such as SIZE(), MIN(), and MAX() (more details in Sect. 6). Filter criteria
can be linked via AND and OR, and any valid answer to a DPQL query needs to fulfill
the entire WHERE clause. An example with a slightly larger WHERE clause than before is
shown in List. 4: The query asks for all inclusion and functional dependencies that point to
unique column combinations. Both ( [Pokemon.Name,Pokemon.Sex], [Pokemon.ID]) and
( [Teams.Pokemon], [Pokemon.ID]) are valid answers to the query, the former being the FD
{Name,Sex}→{ID} and the latter the IND {Pokemon}⊆{ID}; the result does not differentiate
FDs and INDs, but the way this query is issued (via OR) indicates that this information is
irrelevant for the application.

5.3 DPQL Result Format

In contrast to SQL, which queries database records, DPQL extracts statements about the
schemata, i. e., combinations of attributes and their interactions. These schema statements
are compositions of column combinations, which introduce special challenges for the output
format. To understand these challenges and our design decisions for overcoming them, we
first describe the straightforward case and address the complicated situations afterwards.

Basic DPQL Results

A DPQL query returns a result in relational format: The SELECT clause determines the
schema of the result table by turning every provided column combination variable, which
is a CC() call, into a relational attribute. The name of each result attribute is equal to the
column combination’s variable name or, if provided, its AS-alias. Each row in the result
relation is a valid response to the DPQL query; structurally, a response row is a set of
column combinations, which is a set of attribute lists. For example, Tab. 3 lists the results of
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our introductory foreign-key example (see List. 1). Each of the three result tuples describes
a valid foreign-key candidate according to the specified filter criteria.

ForeignKey Key

[Teams.Pokemon] [Pokemon.ID]
[Teams.Trainer] [Trainers.Name]
[Pokemon.Locations] [Location.Name]

Tab. 3: The result table for the DPQL query from List. 1 with column combinations X and Y.

Finding the most effective strategy for obtaining DPQL query results will be subject to
extensive future research, but a possible way of processing the foreign-key query with state-
of-the-art algorithms is as follows: We first discover all INDs, which are {Pokemon}⊆{ID},
{Trainer}⊆{Firstname}, {Location}⊆{Title}, and {Strong}⊆{Biome}; then we discover
all UCCs, which are {ID}, {Weight}, {Name, Sex}, {Name, Size}, {Title}, {Firstname},
{Rank}, {Pokecount}; after obtaining both type-specific profiling results, we intersect the
IND right-hand-sides and the UCCs with a subset-aware comparison (i. e., if any subset
of a right-hand-side is a UCC, the IND-UCC-pair is valid); this leaves us with the INDs
shown in Tab. 3; finally, we apply the size and origin filters, which do not change the
results. This process demonstrates that DPQL queries can be answered automatically with
state-of-the-art profiling technology, although this way of processing is terribly expensive.

Normalization

While the foreign-key example is an ideal case of a result table, the relational result structure
for data profiling statements has a major size issue when it comes to more complex result
sets: Because every row in the table represents a unique valid result, DPQL queries with
more than one dependency in the output column combinations generate a lot of redundancy.
For illustration purposes, consider the DPQL query in List. 5 that aims to profile all unique
column combinations in the relations Pokemon and Trainers. Because these UCCs are
associated with two independent CC() calls, every combination of a Pokemon UCC and
a Trainers UCC is a valid answer to the query. We show the list of results in Tab. 4.

1 SELECT
2 X AS PokemonUCCs,
3 Y AS TrainersUCCs
4 FROM
5 CC(Pokemon) X,
6 CC(Trainers) Y
7 WHERE
8 UCC(X)
9 AND UCC(Y)

List. 5: Find all UCCs in Pokemon and Trainers.

PokemonUCCs TrainersUCCs

{𝐼𝐷} {𝐹𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒}
{𝐼𝐷} {𝑅𝑎𝑛𝑘}
{𝐼𝐷} {𝑃𝑜𝑘𝑒𝑐𝑜𝑢𝑛𝑡}
{Name, Sex} {𝐹𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒}
{Name, Sex} {𝑅𝑎𝑛𝑘}
{Name, Sex} {𝑃𝑜𝑘𝑒𝑐𝑜𝑢𝑛𝑡}
. . . . . .

Tab. 4: UCCs of List. 5 in one result.
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1 SELECT
2 X, Y, Z

3 FROM
4 CC(Pokemon,Trainers,Teams) X,
5 CC(Pokemon,Trainers,Teams) Y,
6 CC(Pokemon,Trainers,Teams) Z
7 WHERE
8 IND(X,Y)
9 AND FD(Y,Z)

List. 6: Find all INDs that point to FDs.

The redundancy that we find in this result
table can be described as a join or multival-
ued dependency [Ab18]. The redundancy
introduced with such dependencies grows
quadratically with increasing data volume,
which is problematic considering that data
profiling result sets grow exponentially with
the input schema sizes – even the increased
pruning capabilities of DPQL cannot re-
solve this general issue.

In a first solution attempt, we might reject
DPQL queries with non-correlated column
combinations, but the redundancy issue also exists for properly correlated column com-
binations: The DPQL query in List. 6 asks for all inclusion dependencies that point to
functional dependencies; the result should list both the INDs and FDs. Now, if an IND
points to multiple FDs or an FD is the target of multiple INDs, we generate duplicate, i. e.,
redundant IND and FD outputs, respectively. So, we again observe redundancy from join or
multivalued dependencies in the results. To resolve these dependency-caused redundancies,
relational database theory suggests schema normalization. For this reason, we propose
normalized outputs for DPQL queries and, hence, potentially multiple result tables. The
algorithm for creating these tables is shown in Algorithm 1. It creates a table for every pair
of column combinations that appears together in at least one binary dependency, such as an
IND or FD (Lines 3-6); then, it creates separate tables for individual column combinations
that are not linked to other column combinations (Lines 7-10). In this way, DPQL results
can be represented without their inherent redundancy.

Algorithm 1 Creation of the normalized DPQL result schema
1: procedure createResultSchema(𝑑𝑝𝑞𝑙𝑄𝑢𝑒𝑟𝑦)
2: resultSchema← ∅
3: for every binary dependency 𝐷 (𝑋,𝑌 ) in the WHERE clause of the 𝑑𝑝𝑞𝑙𝑄𝑢𝑒𝑟𝑦 do
4: if there is no table 𝑇 (𝑋,𝑌 ) or 𝑇 (𝑌, 𝑋) with 𝐷’s two CCs 𝑋 and 𝑌 in resultSchema then
5: if both 𝑋 and 𝑌 are selected in the SELECT clause then
6: create the table 𝑇 (𝑋,𝑌 ) and store it in resultSchema
7: for every CC 𝑍 in the SELECT clause of the 𝑑𝑝𝑞𝑙𝑄𝑢𝑒𝑟𝑦 do
8: if there is no table 𝑇 (𝑍), 𝑇 (𝑋, 𝑍) or 𝑇 (𝑍, 𝑋) with this CC in resultSchema then
9: if 𝑍 is selected in the SELECT clause then

10: create the table 𝑇 (𝑍) and store it in resultSchema
return 𝑟𝑒𝑠𝑢𝑙𝑡𝑆𝑐ℎ𝑒𝑚𝑎

With normalization, the output of the DPQL query in List. 1 remains one table with
schema {[ForeignKey, Key]}. The output of the DPQL query in List. 5, though, becomes
{[PokemonUCCs], [TrainerUCCs]} and the output of the DPQL query in List. 6 becomes
{[X, Y], [Y, Z]}. To reconstruct the single, not-normalized result table or to read a full result
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row, we simply join the individual result tables on common column combinations (e. g. Y
for the query in List. 6); the reconstruction of unrelated result tables requires a cross join.

In summary, we recommend normalizing DPQL query results for result compaction. The
non-normalized, single relation results can always be obtained by joining the result tables,
which is useful, for instance, if a DPQL query is embedded into an SQL query.

Extension Columns

Many data profiling results, such as functional and inclusion dependencies, simply mark a
special relation between column combinations. These relations can be expressed with the
(normalized) relational result format on column combinations. However, the data profiling
toolbox offers a plethora of metadata statements, relaxations, and conditions that provide
additional information about the properties of a column combination or column combination
relationship. Therefore, we propose to extend DPQL result schemata dynamically with
additional columns that store well-defined, metadata-dependent information. The rationale
here is simple: If a DPQL function, such as UCC(), FD(), or IND(), extracts more than a
relationship of column combinations, the DPQL engine adds a DPQL function-specific,
additional column to the output schema. In theory, we can assume that the union of all
possible extension columns is implicitly present in all DPQL query results and the fields
are NULL by default, but in practice, these columns should be hidden if they are empty. We
now briefly introduce some basic extension columns for popular data profiling metrics
(see Tab. 5). It is worth noting that the table is incomplete and needs to be extended in the
development process of the data profiling engine:

Name Property Type Values
Approximate Relaxation boolean true if validity is not certain
Partial Relaxation float Fraction of records that fulfill the statement
Conditional Relaxation string Condition for defining the statement’s scope
Minimum Statistic <target type> Minimum value of the target CC
Maximum Statistic <target type> Maximum value of the target CC
Histogram Statistic string Value distribution in the target CC
Denial Special string Denial constraint expression on the target CC
Matching Special string Matching dependency expression on the target CC
Order Special string Order dependency expression on the target CC

Tab. 5: Extension columns that relax metadata statements or belong to special metadata statements.

Relaxation: Any relational metadata statement can be relaxed in different ways [CDP16]:
We can, i. a., make the statement approximate signaling that the statement’s validity is not
guaranteed, partial to restrict the statement’s validity to a certain percentage of records, or
conditional to tie the statement’s validity to specific constraints. Such relaxations have been
implemented for many data profiling algorithms and are required by many data profiling
applications. With the extension columns, we can also return them in DPQL results.
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Statistic: Data profiling often targets basic statistics, such as a column combination’s
min-, max-, avg-, or median-values, NULL-counts, data types, histograms, lengths- and
size-measurements, or frequent item sets. The results of such profiling tasks can easily be
stored in extension columns.

Special: Some special data dependencies, which are frequently extensions of functional
dependencies, can describe more complex relationships between column combinations.
This includes, for example, matching dependencies (MDs) [Fa08], order dependencies
(ODs) [GH83], and denial constraints (DCs) [Be11]. The extra information hidden in these
relationships can be similarity functions and thresholds (see MDs), order directions (see
ODs), or entire first-order logic statements (see DCs). While the column combinations of
these dependencies are stored in the normal CC-columns of the relational DPQL result sets,
the engine adds extension columns for the dependency-specific details.

As shown in Tab. 5, extension columns can be typed to improve their accessibility for
applications. The standard for basically all existing data profiling tools and algorithms is to
provide all results as strings; therefore, typed extension columns can add some additional
information. The concept of extension columns adapts well to the dynamic nature of data
profiling, as it allows a flexible combination of properties. For example, Tab. 6 shows the
result of a DPQL query that discovered all partial, conditional matching dependencies.
Although no existing data profiling algorithm can actually discover such dependencies,
there is certainly a practical use for them in, for instance, data integration. The result table
lists the two column combinations of this dependency (Pokemon and PoMos), the matching
dependency condition (Matching), and the two relaxations (Partial and Conditional) in
one relational table. Each entry in this result relation – in this case, only one entry – is an
answer to the discovery query. The shown example describes the matching dependency
{Pokemon[Name] ≈Jac,0.92 PoMos[ID]} → {Pokemon[Sex] ≈Lev,1.0 PoMos[Gender]},
which is true for 97% of the tuples under the condition {Weight > 0 ∧ Name ≠ ’Mewtwo’}.

Pokemon PoMos Partial Conditional Matching
[Pokemon.Name, [PoMos.ID, 0.97 {Weight > 0∧ [(Jaccard, 0.92),
Pokemon.Sex] PoMos.Gender] Name ≠ ’Mewtwo’} (Levenstein, 1.0)]

Tab. 6: Result of a DPQL query that discovered all partial, conditional matching dependencies.

6 DPQL Functions

The purpose of DPQL is to restrict data profiling activities and their results in such a way
that only truly needed metadata is delivered to the application. To filter and combine the
column combinations purposively, DPQL offers a variety of functions that are applied in
the WHERE clause. This section introduces the most important DPQL functions.
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Metadata Discovery Functions

Metadata discovery functions are the core of DPQL. These functions represent the data pro-
filing services that were traditionally implemented as separate algorithms. In this paper, we
already used three metadata discovery functions in the various examples, namely UCC(<CC>),
FD(<CC>,<CC>), and IND(<CC>,<CC>) for unique column combinations, functional dependen-
cies, and inclusion dependencies, respectively. The reading order of column combinations
in dependency functions is from left to right: First, the dependent/cause/included part,
then the referenced/effect/containing part. Throughout this paper, we showed example
queries with UCCs, FDs, and INDs, but thanks to extension columns (see Sect. 5.3), the
functional concept extends seamlessly to all other types of metadata, such as order depen-
dencies (OD(<CC>,<CC>)), matching dependencies (MD(<CC>,<CC>)), or denial constraints
(DC(<CC>,<CC>)). Short DPQL queries with a single metadata function call can be used
as an interface for existing data profiling algorithms, but the strength of DPQL lies in the
combination of metadata functions. With a good understanding of the discovery functions, a
query engine can combine multiple functions into a single, holistic profiling task and, then,
optimize execution orders, share intermediate results for additional search space pruning,
and re-use temporary data structures.

To support possibly all variations of data profiling, we need a standard to pass optional
configuration parameters to metadata functions. For example, suppose we want to relax a
dependency as discussed in Sect. 5.3 or force the declarative query into a certain execution
strategy, which is to bypass the automatic query optimizer. In such cases, we can specify
these objectives as parameters in the metadata functions. Passing parameters to DPQL
functions is done via named parameters with the <parameter>=<value> syntax. This syntax
ensures that parameter specifications are order-invariant and differ from column combination
specifications. To enforce, for instance, a partial functional dependency that has at least a
coverage of 95% of the tuples, we could write FD(X, Y, partial=0.95) or to force the
engine to discover approximate INDs with the FAIDA method [Kr17b], we write IND(X, Y,
approximate=true, method=’FAIDA’). We acknowledge that this is not the most idiomatic
approach for a declarative query, but it addresses the variety of data profiling demands and
the fact that data profiling is still a quickly evolving discipline.

Result Restriction Functions

CARDINALITY: The CARDINALITY(<CC>) function counts the number of distinct values in a
column combination. It can be used together with numeric comparators (i. e., <,<=,=,>=,>)
in filter statements to restrict valid column combinations to those that have a certain
(minimum or maximum) cardinality. We have seen this function already in the query of
Tab. 1, where we demanded foreign-keys to hold at least two different values.
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1 SELECT
2 X, Y

3 FROM
4 CC(Pokemon) X,
5 CC(Pokemon) Y,
6 CC(Teams) Z
7 WHERE
8 FD(X,Y) AND SIZE(X) < 3
9 AND IND(Y,Z) AND SIZE(Y) = SIZE(X)

List. 7: Find FDs with less than three attributes
in Pokemon that functionally determine an IND of
same size into the Teams relation.

SIZE: The SIZE(<CC>) function can be
used to restrict the number of attributes
in a column combination to a fixed, min-
imum or maximum size. Recall that the
CC() function creates a (virtual) power-set-
shaped lattice of column combinations of
various sizes. With the SIZE() function and
a numeric comparator (i. e., <,<=,=,>=,>),
we can bind the sizes of certain column
combinations to numeric values or the sizes
of other column combinations (see List. 7).
In this way, SIZE() effectively prunes the
search space with a simple criterion that
many profiling algorithms can already pro-
cess.

1 SELECT
2 X AS ForeignKey, Y AS Key
3 FROM
4 CC(Pokemon,Teams,Trainers) X,
5 CC(Pokemon,Teams,Trainers) Y
6 WHERE
7 UCC(Y) AND IND(X,Y) AND MIN(X)

List. 8: Find foreign-key candidates with attribute
sets of minimal size – effectively unary INDs.

MIN and MAX: To keep metadata re-
sults concise, data profiling algorithms dis-
cover only result sets of minimal (UCCs,
FDs, MDs, . . . ) or maximal (INDs) de-
pendencies; via dependency axioms, all
non-enumerated dependencies can be de-
rived from these sets. Now that we combine
dependencies into patterns via DPQL, min-
imality/maximality properties are less clear.
Consider, for example, the query in List. 8.
The answer to this query might be an (X,Y)-
tuple, where neither Y is a minimal UCC
nor X⊆Y is a maximal IND – this is what makes the traditional application of data profiling
results such a hard task. To lead the results in a useful and clear direction, we can define
specific CCs to be MIN(<CC>) or MAX(<CC>). Minimizing means that we cannot remove a
single attribute from the CC without violating the entire query result; maximizing means
that we cannot add any further attribute. By default, all profiling functions but IND() produce
minimal results; IND() and combinations with this function produce maximal results.

CONTAINS: The DPQL function CONTAINS(<CC>,<CC>) specifies that in every valid result,
the first column combination contains all attributes of the second column combination. To
understand the usefulness of this function, again consider the example query in List. 8.
Assume we want, as an output of this query, not the actual IND-UCC-pair that answers the
query but instead the maximal IND and minimal UCC that frame these solutions. Hence, we
specify three outputs X, Y, and Z constrained to UCC(X), IND(Y,Z), and CONTAINS(Y,X), then
X⊆Y (referring to attributes here; not INDs!) with minimal X and maximal Y and Z column
combinations.
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1 SELECT
2 X, Y

3 FROM
4 CC(Pokemon,Teams,Trainers) X,
5 CC(Pokemon,Teams,Trainers) Y
6 WHERE
7 UCC(X) AND UCC(Y) AND PAIR(X,Y)

List. 9: Find redundant keys in multiple relations.

SPLIT and PAIR: Column combinations
in DPQL query results are, by default,
unrelated unless some metadata function
connects them. Occasionally, however, we
want to filter results such that certain col-
umn combinations in a result (= a row in
the result table) are either paired (= po-
tentially different attribute lists but from
the same relation) or split (= different at-
tribute lists from different relations). The
PAIR(<CC>,<CC>) and SPLIT(<CC>,<CC>)
functions allow the user to specify these requirements in a DPQL query. We recall that
in our introductory example on foreign-key discovery (see List. 1) the source and target
columns should stem from different relations; this was ensured with the SPLIT() function.
If we would like to discover, for example, redundant keys (= more than one UCC in the
same table) in multiple relations (see List. 9), we need the PAIR() function to co-locate X
and Y. Note that PAIR() and SPLIT() are commutative operations, so that e. g. PAIR(X,Y) =
PAIR(Y,X).

7 DPQL in Practical Applications

Data profiling has many applications in data management and data analytics. To evaluate
our data profiling query language, we selected a few representative scenarios from different
applications to showcase the implementation of their profiling activities in our novel dialect.

Data linkage: Our foreign-key discovery example from List. 1 has been drawn from a data
engineering task that aims to connect previously unconnected datasets or datasets for which
the foreign-key relationships have been lost. The discovered combinations of INDs and
UCCs present an application with structurally valid constraint candidates.

1 SELECT
2 W, X, Y, Z

3 FROM
4 CC(Pokemon) V, CC(Pokemon) W,
5 CC(Pokemon) X, CC(Pokemon) Y,
6 CC(Locations) Z
7 WHERE
8 IND(V,Z,partial=0.8)
9 AND UCC(W,partial=0.95)

10 AND FD(X,Y,partial=0.90)

List. 10: Find partial dependencies in the Pokemon
relation for error detection.

Data cleaning: Metadata is an important
asset for error detection and correction. A
cleaning system could, for instance, issue
the DPQL query in List. 10 to discover par-
tial INDs, UCCs, and FDs in the Pokemon re-
lation. The system would then check the re-
sults for meaningful but not 100% correct re-
sults. We should, for example, find the IND
Location ⊆ Title, the UCC {Name, Sex},
and the FD Type→ Weak. If one of these is
indeed partial and not exact, we can use the
dependency to identify and possibly correct
the erroneous records [MA20].
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Q 1 SELECT
2 UCC_C, IND_L, IND_R

3 FROM
4 CC(Pokemon.Name,Pokemon.Sex) UCC_C,
5 {[Pokemon.Location]} AS IND_L,
6 {[Locations.Title]} AS IND_R
7 WHERE
8 UCC(UCC_C) AND IND(IND_L,IND_R)

List. 11: Find a specific UCC and IND.

Query optimization: Research on op-
timizing SQL queries with profile-
able metadata has generated many ap-
proaches, ranging from various query
rewriting strategies over physical exe-
cution optimization techniques to cost-
based query plan rewriting rules [Ko22].
For illustration purposes, consider an
example of a distinct semi-join fil-
ter, which is an SQL query of the
form SELECT DISTINCT Name, Sex FROM
Pokemon WHERE Location IN {SELECT Title FROM Locations}; The DPQL query in
List. 11 checks if {Name, Sex} is unique to remove the DISTINCT operator and if
Location ⊆ Title is an IND to remove the entire WHERE clause.

1 SELECT
2 X, Y

3 FROM
4 CC(Pokemon,PoMos) X,
5 CC(Pokemon,PoMos) Y
6 WHERE
7 MD(X,Y,partial=0.95,
8 conditional=true)

9 AND SPLIT(X,Y)

List. 12: Find partial conditional MDs.

Data integration: Schema matching is an
integral part of data integration. One flavor
of schema matching are structure-based
approaches [RB01]. The partial conditional
matching dependency that we discussed in
Sect. 5.3 is such a structure that describes
matching attributes (the MD) with some
failure tolerance and context information
(the conditional properties). To discover
the partial conditional MDs between the
Pokemon and PoMos relations, we can use
the DPQL query in List. 12.

1 SELECT
2 UCC_C, FD_L, FD_R, IND_L, IND_R

3 FROM
4 CC(P,L,T,T) UCC_C,
5 CC(P,L,T,T) FD_L, CC(P,L,T,T) FD_R,
6 CC(P,L,T,T) IND_L, CC(P,L,T,T) IND_R
7 WHERE
8 UCC(UCC_C) AND FD(FD_L,FD_R)
9 AND IND(IND_L,IND_R)

List. 13: Find UCCs, FDs and INDs in all tables;
table names in CC() calls were shortened for brevity.

Data exploration: A look at the metadata
of a relational dataset often helps to under-
stand its structure and implicit logic better.
Because data often comes without metadata,
data profiling is conducted to gather pos-
sibly many insights from a given instance.
The DPQL query in List. 13 does exactly
this: It collects all UCCs, FDs, and INDs
that are true in our Pokémon example. The
normalized output presents the results in
three tables – one for each dependency.

Q
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8 Future Work

The data profiling query language (DPQL) that we introduced in this paper is an essential
building block for a new generation of data profiling systems. For its practical implementation,
we envision a database-like system that covers all standard query processing components.
The setup of this system, however, is more like a virtually integrated database [DHI12] or,
in modern terms, a DataLakehouse [Ar21], because the system answers metadata questions
in a virtual fashion, across potentially multiple datasets, and without manipulating the
data itself. Due to the size and complexity of this system, we expect that DPQL will spark
innovative research on at least the following components:

Query parser: The DPQL queries require a parsing component that translates them into
logical (and physical) execution plans. We assume that DPQL can be combined with SQL,
but this imposes interesting parsing challenges. Another challenge for the parser (and all
other components) is that further iterations of DPQL must be able to introduce new features,
such as additional metadata types, metadata properties, or filter functions, because data
profiling – in contrast to relational query processing – is a still evolving area.

Query optimizer: Despite their similarities with SQL queries, DPQL queries translate
into quite different execution plans, for which other optimization rules apply. For query
optimization, novel approaches for indexing, caching, query rewriting, operator ordering etc.
need to be found. Effective approaches for selecting the most efficient execution strategy
(e. g. UCCs first, INDs first, or both at the same time?) and automatically inferring empty
results (e. g. from CC(Pokemon,!Pokemon) or SIZE(CC(Team))>3) are crucial for the system.

Query execution engine: The actual data profiling might change significantly given the new
application-specific pruning rules and the potential of holistically combining profiling runs.
Given the many existing profiling algorithms (and new techniques of the future), research
will need to investigate which algorithms to combine, how to combine algorithms, and how
to integrate them into one system. Considering the comprehensive amount of metadata types
and discovery flavors, we expect a lot of future research on the actual query processing.

9 Summary

In this paper, we proposed DPQL, a declarative query language for the discovery of data
dependencies and other metadata statements. DPQL is the first uniform data profiling
language and an essential building block for a new generation of data profiling systems. The
SQL-like language relieves data scientists from deploying complex profiling algorithms,
and it renders most of the expensive and difficult post-processing efforts obsolete. Due
to the increased filter- and pruning-capabilities, we expect significant efficiency gains for
DPQL-based data profiling activities. With DPQL, we started to close the gap between
data profiling results and actual applications needs; now, much research is needed for the
technical design of the language and its profiling capabilities.
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