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Abstract—Many companies provide their customers
with digital services for analytical purposes that are
backed by modern expert machine learning models
specifically trained for individual appliances. These
models are often easy to train, but the deployment
and operation of numerous individual machine learning
models is a resource-intensive challenge. Due to hidden
features in the individual appliances, consolidating all
expert models into one model is often not possible.
However, certain groups of models with similar appli-
ances usually can be combined without (significant) loss
in performance. To find these groups without knowl-
edge of the actual hidden features, this paper proposes
the consolidation algorithm ModelForge, which is based
on a novel embedding strategy for model clustering.
The Prediction Loss strategy embeds arbitrary models
into Euclidean space in a way that close models share
similar properties and can, therefore, effectively be
consolidated. We validate ModelForge across four di-
verse domains, which are energy forecasting, timeseries
anomaly detection, weather postprocessing, and house
price prediction, to show that it yields more accurately
consolidated models than previous works and alterna-
tive embedding strategies.

Indexr Terms—machine learning, clustering, model
consolidation

I. INTRODUCTION

In the rapidly evolving landscape of digital services,
artificial intelligence (AI) and machine learning (ML) tech-
nologies play a crucial role in analyzing vast quantities of
sensor data and providing valuable insights to customers.
A common challenge in this domain is the resource-
intensive requirement of deploying and operating vast
amounts of expert models for individual customers and
their specific appliances. An energy consumption forecast-
ing service for heating installations, for example, provides
value by enabling energy optimizations, predictive mainte-
nance, and cost reduction. Accurate energy forecasts, how-
ever, depend on numerous, appliance-specific and usually
hidden, but constant factors, such as the building size,
insulation type, heating strategies, and building location.
While these constants are learned by the individual expert
model they are not explicitly available.

To partially consolidate expert models with similar hid-
den properties, previous work proposed CAML (Clustering
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Fig. 1. Workflow of ModelForge consisting of the three sequential
stages Embedding, Clustering and Consolidating.

and Aggregating Machine Learning models) [1], a model
clustering framework that utilizes Cross Performance as
a distance function to quantify model similarity. The
distance function measures how accurately two models
perform on each other’s data and creates a distance matrix
for all models from these measurements. While being
effective for capturing functional similarity, this approach
suffers from two significant limitations: Since it violates
the triangle inequality, it lacks mathematical metricity
and, because of the construction of a full distance matrix,
it has quadratic runtime complexity.

Building upon the results of CAML, this paper presents
enhanced methodologies for model clustering and aggre-
gation that specifically address the discussed limitations
with the help of a novel embedding strategy. Our proposed
framework ModelForge, which is depicted in Fig. 1, em-
beds machine learning models into Euclidean space based
on their predictions on a carefully constructed reference
dataset, clusters similar models, and creates consolidated
representatives. This approach better captures the nu-
anced relationships between models with varying underly-
ing parameters while at the same time also enhancing the
scalability of the representation construction by reducing
computational complexity from ¢&(n?) for computing a
distance matrix to &'(n) for generating embeddings.

In our evaluation, we consider four use cases from
diverse domains: energy forecasting of heat generators [1],
timeseries anomaly detection [2]-[5], probabilistic weather
forecast postprocessing [6] and house price prediction [7].
The datasets of these use cases incorporate varying hid-
den characteristics, regional climate patterns and price



markets as well as varying patterns within timeseries, for
a meaningful assessment of ModelForge’s generalizability.
More specifically, our contributions are the following;:

e Prediction Loss: We propose an effective embedding
strategy for arbitrary expert models that projects
the models into an Euclidean space and preserves
model similarities for subsequent clustering steps; we
compare Prediction Loss to alternative embedding
strategies and show its effectiveness for computing
model distances in comparison to the existing Cross
Performance distance measure.

o ModelForge: We introduce ModelForge, an expert
model consolidation framework that composes three
steps: model embedding, model clustering and model
consolidation. With Prediction Loss, Euclidean dis-
tance and K-Means [8] clustering, it achieves an av-
erage accuracy improvement of ~ 3.5% compared to
existing approaches; because the embedding provides
transformations into Euclidean spaces, the framework
is significantly faster and supports various clustering
algorithms and performance optimizations.

e Model Consolidation Datasets: In addition to the
energy consumption dataset, we create three further,
diverse benchmarking datasets for model consolida-
tion evaluations in the domains anomaly detection,
weather forecasting, and price prediction; this enables
consistent evaluations of consolidation approaches
across different applications.

In Section II, we provide an overview of the background
and related work in model clustering and consolidation;
we specifically discuss the Cross Performance distance
function and its weaknesses. Section III then proposes our
main contribution ModelForge and the Prediction Loss
embedding strategy for machine learning models in Eu-
clidean space for clustering and consolidation. Section IV
introduces the three additional evaluation datasets and
discusses their background and construction. In Section V,
we use these datasets to systematically evaluate the dif-
ferent embedding strategies. Finally, we summarize our
findings in Section VI.

II. BACKGROUND & RELATED WORK

This section discusses hidden parameters and the chal-
lenges they pose in machine learning (Section II-A). Sub-
sequently, we give an overview of metric spaces and their
implications to clustering (Section II-B). Lastly, we discuss
the existing Cross Performance distance measure and its
properties (Section II-C).

A. Hidden Parameters

We target use-cases where hidden features that describe
constant, setup-specific, but non-explicit information are
prevalent. They cannot be learned directly, but influence
the behavior of a trained model. Hidden features are
constants in a specific training setup, i.e., for a single
machine learning model, but may vary across different

models. Because they are constant factors, their static
impact on model outcomes is learned implicitly but it does
not (necessarily) translate into other setups.

For example, we can use various sensors and settings, i.e.
outside temperature, heating curve settings, and temper-
ature target values to train energy consumption forecast-
ing models for individual residential heating appliances.
The actual forecasts are, then, also impacted by hidden
features, such as building size and insulation, roof type,
window coverage and glazing, inhabitant number etc.
that are specific to individual heating systems, implicitly
considered during model training, and usually not known
by the provider of the energy consumption forecasting
models. Because of these hidden features, consolidating
all expert models in one global model greatly impacts
the forecasts’ accuracy; such a global model could, for in-
stance, not distinguish an office building and a residential
building. However, many installations share very similar
properties and, therefore, hidden parameter values, such
as the typical four-person family in an urban, modernized
one-family home. It is, therefore, important to consolidate
models carefully w.r.t. their hidden features.

B. Metric Spaces

A metric space provides a mathematical framework for
measuring distances between individual elements of a set.

Definition 1: Metric Spaces: Let X be a set of objects
with a distance function d : X x X — R*. d is a metric iff
it satisfies the following properties for all x,y,z € X:

d(x,y) >0 Non-Negativity
d(x,x)=0 Identity
d(x,y) =d(y,x) Symmetry

d(x,z) <d(x,y) +d(y,2)

While various distance functions may be formulated
to quantify dissimilarity between data points, only those
satisfying all four properties qualify as proper metrics.

Different clustering algorithms, including hierarchical
clustering [9] and spectral clustering [10], are capable of
operating without distance metrics. In many specialized
fields, such as time series clustering, non-metric distances,
e.g., Dynamic Time Warping [11] or shape-based distance
measures [12], are commonly utilized. Nonetheless, proper
distance metrics possess mathematical properties that of-
fer substantial computational benefits:

Triangle-Inequality

Reliable convergence: The convergence guarantees of
numerous clustering algorithms depend strongly on metric
properties. For instance, K-means [8] leverages Euclidean
distance, a proper metric, that satisfies the triangle in-
equality to reliably converge to a local optimum [13].
Employing non-metric distance functions may result in
oscillatory behavior where the algorithm fails to con-
verge [14].

Spatial consistency: Metric properties ensure spatial
consistency within the feature space. The triangle inequal-



ity, in particular, formalizes the intuitive notion that if
point x is close to point y, and y is close to point z, then
x and z cannot be arbitrarily distant. This property is
essential for the formation of coherent clusters that align
with human intuition regarding grouping.
Computational optimizability: Many algorithmic opti-
mizations in clustering leverage metric properties through
the use of index structures like ball-trees [15] and KD-
trees [16], which both rely fundamentally on the triangle
inequality to prune the search space. Clustering algorithms
like DBSCAN [17] utilize these indices to reduce the num-
ber of distance calculations required during neighborhood
queries to reduce runtime.

C. Cross Performance

Cross performance [1] is a distance measure for arbitrary
machine learning models that defines the distance of two
models to be the average loss of the two models on
each other’s test sets. Formally, the distance is defined
as follows:

Definition 2: Cross Performance: For any two models m;
and m; with their respective test sets (X;,Y;) and (X;,Y;)
and a loss function I, the Cross Performance d(m;,m;) of
m; and m; is calculated as:

dlmi,m) = S(m(X). 1) + (X 1)). (1)

To analyze the properties of d(mj;,m;), we now review
Cross Performance in terms of metricity according to
Definition 1.

a) Non-Negativity: If I is non-negative, e.g., the mean
squared error (MSE), then d(m;,m;) >0 and d fulfills non-
negativity.

b) Identity:  The identity property requires
d(mi,m;) = 0, which holds only if I(m;(X;),Y;) = 0.
This requires a perfect prediction model, which, in
practice, is rarely the case. Hence, d violates identity.

¢) Symmetry: With simple rearrangements of the
definition of d, it can easily be shown that d(m;,m;) =
d(mj,m;). Therefore, d fulfills symmetry.

d) Triangle Inequality: Because m; and m; as well as
(X;,Y;) and (X;,Y;) are arbitrary, we can choose mj (x) = 2x,
my(x) = x, and m3(x) = —2x with (X;,Y1) = ({5},{10}),
(X2,12) = ({0},{0}), and (X3,Y3) = ({5},{-10}). If we,
then, choose the MSE for I, we get d(m,mp) = 12.5,
d(my,m3) = 112.5, and d(my,m3) =400. Since 400 > 12.5+
112.5, d violates the triangle inequality.

Because d violates the identity and triangle inequality
properties, Cross Performance is not a metric. For this
reason, Cross Performance works only with clustering
algorithms, such as hierarchical clustering, that do not re-
quire metrics and are usually more expensive to calculate.
The distance matrix calculation for hierarchical clustering,
specifically, has a quadratic runtime in @("22_ 1) with n
objects and, hence, many expensive Cross Performance
distance calculations that make the approach inapplicable

to large datasets. The metric violations also impact the
accuracy of Cross Performance, allowing for a more accu-
rate, metric-based distance calculation in ModelForge.

We also differentiate model consolidation from model
compression techniques, such as knowledge distillation or
pruning. While sharing the goal of efficiency, these meth-
ods typically apply to single, over-parameterized models
(often neural networks), whereas ModelForge is model-
agnostic and designed to consolidate a large portfolio of
heterogeneous expert models, addressing a distinct M-to-
N consolidation problem.

III. MODELFORGE

In this section, we present our machine learning model
consolidation approach ModelForge. ModelForge takes a
set of expert machine learning models M as input and
groups similar models with the aim of consolidating every
group into one representative model. All models m; € M
have the same shape of input feature(s) x and target
variable(s) y, i.e., m; : x — y. For simplicity and w.l.o.g. we
consider x € R” and y € R in this section, but other feature-
and prediction-domains, such as categorical features and
probabilistic targets, are also supported in ModelForge.

We first provide an architectural overview of the con-
solidation framework (Section III-A). Because we aim to
create a clustering approach based on metric spaces, we
focus on an embedding-based distance calculations in this
framework. To find an effective embedding strategy, we
introduce three possible embedding strategies for machine
learning models including Prediction Loss, which is the
strategy that will ultimately perform best (Section III-B).
All three strategies rely on the identification of either
representative reference models (Set-based) or represen-
tative data points (Point-based). For this reason, we sub-
sequently introduce possible selection strategies including
the eventually best performing set-based Uniform Target
Entropy strategy (Section III-C). Although ModelForge
supports any combination of embedding and selection
strategies, we show later in Section V that Prediction Loss
embedding with Uniform Target Entropy selection is the
overall most effective model consolidation strategy.

A. Architectural Overview

The ModelForge framework consists of three stages,
which are Embedding, Clustering and Consolidation as
depicted in Fig. 1. Given a dataset of machine learning
models and their associated training and testing data,
ModelForge first leverages a similarity preserving embed-
ding strategy to extract a vector representation for each
model that effectively projects the model into Euclidean
space; models with similar behavior, i.e., similar hidden
features are placed nearby. Then, ModelForge applies a
clustering algorithm, which is K-Means with Eucledian
distance in our setup, on the embedded models to group
similar models (and their associated training and test-
ing data). ModelForge finally consolidates each identified



cluster of similar expert models into one cluster model
by merging the training data of the contained models
and, then, simply training a new model with the same
architecture as the expert models but on the combined
training data. This cluster model serves as representative
for all setups in this cluster. Slight differences in the hidden
features can make this cluster model a bit weaker than
the individual expert models, but as we will later see in
Section V the increased amount of training data usually
compensates for this disadvantage such that the increment
in loss is small.

B. Embedding strategies

Fig. 2 taxonomizes consolidation approaches, showing
how ModelForge focuses on creating output-based em-
beddings of models rather than using pairwise distances,
such as Cross Performance. These approaches can gen-
erally be classified into input-, structure-, and output-
based categories, on the condition whether they ascertain
model similarity via the input data of a model, its internal
architecture, or its resulting output. Prior research [1] has
already explored the former two methodologies, revealing
their inadequacy in producing accurate model consoli-
dations. This shortcoming prompted the introduction of
Cross Performance, an output-based pairwise distance
measure. ModelForge, therefore, also builds upon out-
put based model clustering approaches. To create metric
spaces for the clustering and, in this way, improve the
clustering performance, it specifically focuses on the family
of strategies that produces model embeddings. We intro-
duce three strategies for embedding a model based on its
outputs: leveraging its raw prediction (Prediction Value,
i.e., what it predicts), its prediction error ( Prediction Loss,
i.e., how wrong it is), or its feature attributions ( Prediction
Ezplanation, i.e., why it made the prediction). Each of
these can be combined with either a point-based selection
strategy or a set-based selection strategy, which we later
discuss in more detail in Section III-C.

For the point-based selection strategy, we select (or sam-
ple) from all training sets of all models a set of s training
data points (x(),y)), where x/) € RV is an |N| dimen-
sional feature vector and yU ) € R the corresponding ground
truth target value. With X = [x() x) ... x®] we describe
the k selected feature vectors and with ¥ = [y(!) y() . y(#)]
the corresponding ground truth values.

For the set-based selection strategy, we select from
all models a set of s different models m; with their
entire respective training sets (X),Y()). Each XxU) =
(1) 2 (")} is the set of feature vectors of model

o
] ) J ) )
m; and YU) = [y&l), y§2)7..., y§">} the corresponding ground

truth values. The set of the s selected feature vector sets
is denoted as X = [X(l),X(z),...,X(”] and the set of the s
corresponding ground truth training values is denoted as
P=ym y@ . yO)

1) Prediction Value: The concept of employing predic-
tions for embedding a machine learning model is based on

[x
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Fig. 2. Taxonomy of model consolidation approaches.

a fundamental principle of supervised learning: A model’s
outputs encapsulate the learned mapping from the input
features to the target variable. These predictions represent
the essence of the learned behavior of a model, thus pro-
viding a functional signature of the model’s performance.

When two models produce similar predictions across a
shared set of inputs, we can reasonably infer that these
models have learned similar mappings of the feature values
to the target variable, regardless of their architectural
differences.

The Prediction Value embedding e; of any model m;
is constructed for a point-based selection strategy by
calculating its predictions over the set of selected points
X =[x, x@ . x0)]. Hence, the embedding is defined as:

e = [6-1)76(2),...,653)] with el(j) = m;(xY)) (2)

where e; € R® is the resulting embedding vector for
model m;. Each component of this embedding corresponds
to the model’s prediction on a specific point from our
selected set.

For a set-based selection strategy, s different models
with their associated training sets are selected among all
models. With X = [X(l),X@),...,X(‘Y)], the embedding is
computed as the mean prediction value of m; on each X():

\x(/‘)\

with e< = . Zmi(xja)) (3)

2) Prediction Loss: The Prediction Value embedding
captures a model’s behavior through its raw outputs;
hence, it does not account for how well these predictions
align with the ground truth. The Prediction Loss embed-
ding strategy addresses this limitation by incorporating
performance metrics into the model’s representation space.

The Prediction Loss strategy is predicated on the prin-
ciple that models should be differentiated not only by
what they predict but also by how well they predict.
By embedding models in a space defined by their errors
rather than their raw predictions, this approach creates
a performance-aware representation that naturally sepa-
rates high-performing models from lower-performing ones
across various input scenarios.



Let 1:R*xRY — R be a loss function that quantifies
the discrepancy between a model’s prediction m,-(x(j)) and
the actual observed value y/) € R. In conjunction with
the point-based selection strategy, the Prediction Loss
embedding for a model m; is, then, formally defined as:

Ve e with e = 1(mGOLHUY) ()

ei=le; e, .

where ¢; € R® is the resulting embedding vector for
model m;, with each component corresponding to the
model’s prediction error on a specific sample.

With the set-based selection strategy and the selected
multi-sets X and ¥, the Prediction Loss is computed by
calculating a model m;’s loss on every selected training set
(xU),y()) with the loss function I:

= 1(mi(x),

with eg

egs)] with elm

i € e

mi(x§">)],Y(j))
()

3) Prediction Explanation: The Prediction Explanation
strategy leverges Shapley values [18]-[20], from coop-
erative game theory, providing an approach to feature
attribution in machine learning models. They quantify
the contribution of each individual feature to a model’s
prediction for a specific data point.

In the context of model embeddings, Shapley values
serve a dual purpose: They not only explain feature impor-
tance for a given input but also provide a mechanism to
embed models themselves. The key insight is that models
with similar behavior should attribute similar importance
to features for the same input, resulting in embeddings
where similar models m; and m; have only small distances
between them when evaluated on the same data.

For a model m;, the Shapley value ¢; , for feature a when
explaining a prediction is generally defined as [20]:

IS|'(IN| —|S| —
¢i7a =
sgNZ\{a} VIt

DY i(SU fa) — mi(S)]

(6)

where N is the complete set of all features, S represents
a subset of features excluding feature a and m;(S) de-
notes the model’s effective output when considering only
features in set S. The combinatorial weights W
ensure fair attribution across all possible feature combina-
tions [20].

A critical aspect of computing Shapley values is deter-
mining the model’s effective output m(S) when features are
excluded from a combination S. These tests are realized by
using a background distribution. Let X = [)C(U,x(z)7 ...,x(5>]
be a selected set of s points with each x() € RV for
which we wish to compute Shapley values. Moreover,
let X =[xV %2 .. "] be the background distribution
consisting of n reference points. For any subset S C N, we
define a mixed instance zg based on x) and X. The a-th
component of zg, denoted Z(S ), is defined as:

ifaesS

()
(a) Xa
g = 7
5 {x&’) ifa¢s @)

() (1)

where x’ is the value of feature @ in instance j, %,  is
the value of feature a in a randomly chosen background
sample 7).

Using the expected value approach, the model evalu-
ation m;(S) is computed as the expected value over the
background distribution [20]:

m;(8) = Eg g [mi(zs)]- (8)
Note that because zg depends on x{/), the resulting m;(S)
and therefore the calculated Shapley values @i 4 are spec1ﬁc
to the instance x/), which will be further denoted as ¢

For a pomt—based selection strategy, we now compute
our embedding vector ¢; € R* for a model m;, derived from
the analysis of the data points x/) € X, as the mean of the
features’ Shapley values to gain an understanding of the
overall sample importance for each instance x(/):

IN|

) (2 )
e; = [eg ),el( ),...,efs)] with e;’ |N| Z q)m (9)
For a set-based selection strategy with
X =[x x® . X)), the Prediction Explanation

embedding for model m; is, then, computed as mean of
the feature importances of each sample within X):

| D vy
| ‘N| Z Z¢la

(10)

U _

with e;

e

R

C. Selection strategies

This section outlines concrete point- and set-based se-
lection strategies for the embedding strategies described in
Section ITI-B. These selection strategies are used in Mod-
elForge to choose training points X and Y or training sets
X and ¥, respectively. All strategies except the random
strategies use the ground truth target values (potential ¥
and ¥ values) in their selection heuristics.

1) Point-Based: Point-based selection strategies iden-
tify a set of individual data points from the full corpus of
training data of all models. In the following, we present
five point-based selection strategies.

a) Random: The random selection strategy chooses n
individual data points randomly. This approach provides
an unbiased representation of the overall data distribution.

b) Min/Maz: This strategy selects s samples based
on the extremes of the target variable distribution. More
specifically, the Min/Max strategy selects the s samples
with the lowest/highest target values. This approach helps
characterize model behavior at the boundaries of the
prediction space, where models often exhibit the greatest
variability in performance.

¢) Uniform: The uniform selection strategy first sorts
all data points according to their target values, then
selects s samples at regular intervals across this sorted
distribution. This ensures a representative coverage across
the entire range of target values, providing insight into
the behavior of the model across the complete spectrum
of prediction scenarios.



d) Percentile Random: This strategy implements a
two-step selection process: First, it filters the combined
training data to include only points falling between the
25th and 75th percentiles of the target variable distri-
bution. Then, it randomly selects s data points from
this filtered set. By focusing on the interquartile range,
this approach emphasizes model behavior in the most
common cases while reducing the influence of points at
the boundaries of the prediction space.

2) Set-Based: Set-based selection strategies sample en-
tire training sets from the corpus of the training sets of all
models. In the following, we discuss ten strategies for this
selection objective:

a) Random: The Random selection strategy ran-
domly samples s different training sets from the corpus
of models. This approach provides a method for creating
diverse sample sets without introducing specific biases.

b) Min/Maz/Uniform Median/Variance/Entropy:
The Min/Max/Uniform Target strategies first aggregate
the training sets by their target values y. The aggregations
can use either median, variance, or entropy. Afterwards,
the strategies sort the training sets by these aggregates to,
then, select the s sets with the lowest aggregates (Min),
the highest aggregates (Max), or a uniform distribution of
aggregates (Uniform).

IV. CRAFTING MODEL DATASETS

In the following, we describe the construction of four
machine learning model datasets, which we use in Sec-
tion V for validation: The dataset Heating contains en-
ergy consumption models, Anomaly contains timeseries
anomaly detection models, Weather contains weather sta-
tion postprocessing models and Housing contains house
pice prediction models. Table I provides an overview of
the datasets with their metadata and properties. In this
section, we discuss the datasets and their models in more
detail; further details are listed in our Github repository.®.

A. Heating Dataset

The Heating dataset consists of timeseries data of 919
heating devices, including oil-/gas boilers as well as heat
pumps. The timeseries contain the daily aggregated mea-
sured energy consumption that was used for residential
heating along with additional sensor recordings and fea-
tures. The features include i.a. outdoor temperature, mean
target supply temperature, and yearly seasonality. All
features have been z-normalized and, then, used to train
919 Random Forest [25] and Gradient Boosting Tree [26]
models to predict the daily energy consumption of the
different heating devices.

B. Anomaly Dataset

The Anomaly dataset comprises univariate timeseries
collected from the NASA-MSL [2], NASA-SMAP [2],
IOPS [3], and KDD-TSDA [4], [5] datasets. We removed

Thttps://github.com/UMR-Big-Data- Analytics/ModelForge

timeseries that had no anomaly in their training- or test
set, which results in a total number of 357 timeseries. Each
datapoint within these timeseries is labeled with a binary
indicator: 1 for anomalous and 0 for normal. With the time
series, we trained 357 XGBoost [27] models with a window
size of 50 observations in forecasting anomaly scores. For
a threshold agnostic evaluation, we measure the detection
quality with the ROC-AUC metric [21], [22].

C. Weather Dataset

The Weather dataset serves to enhance temperature
forecasts at a height of 2 meters. It contains 48-hour lead
time predictions derived from the European Center for
Medium-Range Weather Forecasts (ECMWF) 50-member
ensemble, as presented in [6]. The predictions are sourced
from the THORPEX Interactive Grand Global Ensemble
(TIGGE) archive [28] and are complemented by observed
weather station data provided by the Deutscher Wet-
terdienst (DWD). We used 537 surface weather stations
across Germany and all their meteorologically relevant
predictor variables with 2 meter temperature observations
provided by the DWD to train 499 models in postprocess-
ing and improving ECMWF forecasts. More specifically,
we trained probabilistic XGBoost models with Natural
Gradient Boosting [29] in predicting the mean and stan-
dard deviation of a gaussian target distribution in the
years 2007 to 2015; the training excluded 38 weather sta-
tions with missing observational data and the recordings
of 2016 (182,218 samples) are used for validation. The
performance of the models is measured with CRPS [23],
[24]. In contrast to the datasets original publication [6],
we hide any station specific information (e.g. geolocation
or height) during the training process to deliberately
introduce hidden features in the setup.

D. Housing Dataset

The Housing dataset originates from a dataset published
by the real estate internet platform Immoscout24 and the
German Forschungsdatenzentrum Ruhr (FDZ Ruhr). It in-
cludes all residential properties published on Immoscout24
between January 2007 and June 2024. In total it contains
17,528,584 houses with various characteristics, such as
price, size and broad location on a 1 km? grid. We further
enriched the data with additional information made avail-
able by the German Federal Statistical Office and other
official authorities; these include information about the
labor market [30], house price indices [31], construction
industry [32], wage index [33], economy data [34], build-
ing land prices [35], building permits [36], consumption
propensity [34], financial interest rates [37], age struc-
ture [38] and population development [39]. Categorical fea-
tures with more than two unique values, such as property
type, energy efficiency class or equipment standard, are
encoded using dummy variables. We finally partitioned
the data by county and, then, trained 389 XGBoost [27]
models (one per county) to predict house prices. By hiding
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TABLE I
DATASETS FOR EVALUATION WITH THEIR ASSOCIATED METADATA.

Training Data

Name Source Applied Loss No. models No. Features Min Moean Max
Heating Proprietary MAE 919 6 58 293 937
Anomaly  [2]-[5] ROC AUC [21], [22] 357 50 1,435 85,604 1,149,900
Weather (6] CRPS [23], [24] 499 34 515 3,522 3,651
Housing (7] MAPE 389 109 1,197 32,757 6,371,308

all geographic details of individual real estates, such as
cities, counties or geo-locations, all trained models are
effectively based on hidden features.

V. EXPERIMENTS

Our experiments demonstrate that ModelForge con-
structs meaningful clusters for the consolidation of ma-
chine learning models. First, we describe the experimental
setup (Section V-A). Then, we assess the effectiveness of
the different embedding strategies with varying parame-
terizations (Section V-B) and examine the effect of the
embedding size (Section V-C). Afterwards, we analyze
the space associated with our suggested Prediction Loss
embedding, which shows that the space is benign and, as
a result, not susceptible to the curse of dimensionality [40]
(Section V-D).

A. Ezxperimental Setup

To evaluate our approach, we use the measure from [1] to
compare the consolidated model’s prediction error against
the average error of its constituent expert models, assess-
ing the performance trade-off. This comparison allows us
to assess how the consolidated models perform in contrast
to the original expert models. Because the proposed evalu-
ation measure used the mean absolute error (MAE) as loss
function /, we adapt it to use the respective loss function
of the individual expert models: For each cluster C; and
a given loss function /, we compute the error y; of the
consolidated cluster model m] across all test sets (X;,Y;)
of the expert models M within cluster C;:

LY (), ()

W= (11)
l |Cl‘ m;eC;

Because [ is a loss function, we compute the inverse of [
denoted as 7!, if for some specific [ larger values indicate
better scores, e.g. for ROC AUC [21], [22].

To derive an aggregate performance measure for a clus-
tering, we compute the weighted mean over all clusters.
The weight corresponds to the cluster size, with N =
Y5 | |Ci| being the total number of models, k denoting the
number of clusters, and |G| being the size of cluster i:

1 k
IJ:NZ\CJ‘M (12)
i=1

Because the magnitudes of loss functions [ vary for
different datasets, we divide the consolidation score u for
a clustering with k clusters with the score of a baseline

clustering that also used k clusters. We use the geometric
mean to aggregate these relative scores for all chosen k,
because for relative scores, the arithmetic mean can lead
to deceptive conclusions [41].

We chose Cross Performance as baseline method in our
evaluation. Because Cross Performance produces a dis-
tance matrix, it uses hierarchical clustering with complete
linkage [1]. Our embedding strategies, in contrast, use K-
Means [8] for clustering. We note that computing the full
distance matrix for the Heating dataset (n=919) took over
207 minutes on our test machine, whereas generating the
ModelForge embeddings for the same set took less than 3
minutes. Further performance tests are skipped here due
to space limitations and can be viewed on our Github
repository. For all experiments, we consolidate each cluster
into one model by merging the training sets of all its
models and, then, training a new model.

B. Effectiveness of Embedding Strategies

We begin by showing that Prediction Loss indeed cap-
tures the behavior of models in its embeddings better than
the other embedding strategies. For this experiment, we
combine every embedding strategy with every selection
strategy. For each datasets, i.e., Anomaly, Heating, Hous-
ing, and Weather, we run every embedding-selection com-
bination 50 times with varying numbers of target clusters
k. We choose k evenly spaced in the interval of 0.5% to
25% of the respective datasets’ size. For percentages higher
than 25%, clusters become too small to observe meaningful
differences between the embedding strategies; for percent-
ages below 0.5%, the clusters usually cannot capture the
hidden features any more as they become too large. As
the performance is not sensitive to the embedding size
s (see Section V-C), we use a constant s = 10 for the
experiments. Because for every dataset the magnitude of
the evaluation score pu differs due to different loss functions
(ROC AUC™!, MAE, MAPE, CRPS), this experiment
considers the relative score improvement/deterioration
w.r.t. the score of the already existing Cross Performance
strategy. We show the relative scores for the embedding-
selection combinations aggregated over all four datasets
in Fig. 3 and per dataset in Fig. 4. The embedding
strategies are color-coded and the selection strategies are
structure-coded. The *-symbol marks the best embedding-
selection combination per embedding strategy and scores
that exceed the inspection range of £5% relative score are
annotated to the right of the bars.
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Fig. 3. Relative u scores of all embedding-selection strategies ag-
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Fig. 3 shows that both Prediction Value and Predic-
tion Loss embeddings perform in general better than
Cross Performance. We attribute this improvement to the
fact that distance calculations on these embeddings have
metric properties and in particular satisfy the triangle
inequality, which Cross Performance does not fulfill. The
Prediction Fxplanation embedding shows clearly worse
scores than all other strategies. The explainability scores
consequently do not characterize the properties of the
models as well as the prediction values or losses. The
performance breakdowns per dataset in Fig. 4 show the
same general insights. For Anomaly and Weather, however,
the choice of a proper selection strategy is important to im-
prove upon the performance of Cross Performance: First
of all, the measurements show that set-based selections
are, in general, superior to point-based selections, which
is because these embeddings consider more samples and
taking coherently entire training sets is also often advan-
tageous. Furthermore, Max selections perform better than
Min selections, because maxima help the embeddings to
capture model behaviors better in generally more difficult
settings and minima often tend towards trivial predictions,
such as time series with hardly any anomalies or energy
consumption predictions in summers; overall, however,
Uniform sampling delivers the most characteristic embed-
dings, as both Maxz and Min introduce a bias towards
overly noisy or silent training sets. The aggregation, which
is either FEwntropy, Variance, or Median, does not play
a significant role when being used in conjunction with
Mazx or Uniform selection; all three seem to characterize
the target value distributions similarly well. Across all
measurements, Prediction Loss with set-based Uniform
Entropy selection is the on average best performing and

Anomaly Heating

Uniform Median [@7z7Z
Uniform Entropy [y Rando
Uniform Variance v Max Median [
andom Max Variance

Random

Max Variance [(@WAVAVAVera®. Uniform Mex
Max Entropy Ay, Max M
\hx \'1rnnco Max Variance
Entropy Uniform Varia
Umfmm ]\lmlnn * Uniform Median
Tin Median Uniform Entropy
Umfonn Enuup» Min Variance [Mpavava
arget Min Median
Uniform Target meorm Variance
Uniform Variance Tin Variance
in Variance Mm \le(hgm (-
Min Entropy Umform Entropy
Uniform Target [ ntropv (2222
Uniform Target [ l\[ax Entropy (Wawarari
Uniform Entropy YAy, Max Entropy

Random |WAVArara.e.emm.

Uniform Median {840y « Percentile Random Target
Cross Performance * Uniform Target
Uniform Variance Random

Min Entropy

Tax Target [————— Randon |—
Max Target, [— Percentile Rmdnm Target |IE——
Max Entropy (M., niform Target |E—
andom \lm Variance [@WAVAVaraee
Min Median WAV Min Target [EE——
Min Target Min Median
Min Entropy [MAAryaraama Min Entropy [WAVerereeema

Max Variance VA

Randorm [messsss—
Max Median Uniform Target [ee—
Min Entropy (W, Uniform Median Ay,
andom Cross Performance
Percentile Random Target Random

Min Target |Su———
Max Median WAy
Mf:x Median [MVAVAraa i

Uniform Entropy
Pescentile Random Target
ax Variance |IANANANAAVEvaawami

n
\
\
\
\
\
\
\
N

Variance | MVAVAVAr Ay, o,
Percentile Rm.lom Target |E———— ot
n Target n

111 | Uniform V
Min Varance [ eVAvararer ... Max Enuop»
Min Median WAy, Max Target,
Percentile Random Target |I— Min Target
andom Min Target
0.96 0.98 1.00 0.90 0.95 1.00 1.05

Agg. Relative i (ROC AUC™!) Agg. Relative 1 (MAE)

Housing Weather

Max Variance Percentile Random Target
Uniform Median * Max Entropy [
Uniform Entropy Percentile Random Target

Iin Entropy Tax Variance avare
Random Uniform Entropy |VArara,
Max Median Cross Performance

*
Tax Median [@vaverera
Uniform Target
Uniform Variance pavarerer
Uniform Target |me—
Uniform Entropy [@vaaara.
[m Variance v

Max Median e
Umfonn Target, |We——
Uniform Median [@avaara:
Max Target [—— Percentile Rxndom Target [W——
Min Median [ Max Entropy pavavarare
andom andorn |WAVAyaaa

Min Entropy |y
Min Median My

Uniform Variance
Max Median W
Max Entropy
Min Entropy [Mwawara

Min Median

Uniform Entropy e
Max Variance [wavavera
‘Min Variance

Uniform Median pavaverea

Uniform Target
Percentile Random Target

Tax Target Min Entropy
Uniform Variance {@7avaees Max Target
Random [Mvaveverevi Random

Percentile Random Target |m— Random e
Uniform Target, [e— Uniform \chnn Vi~
fin Variance [@avaaeaa ariance [PAVAVAaraA
Max Entropy Max Target
Min Target Max Median
Min Target Min Median v,

Cross Pufurma.uu lax Variance |Wawerereee
Uniform Variance
Uniform Variance [@yavavavaaa
Percentlle Random Target Min Variance
Uniform Entropy |SZavasayesyss.ea andom
Uniform Median [y Random [e—
Min Entropy VA, Min Entropy
Uniform_ Target [ Randorn [em—
[—
[——

“‘*

andom

ledian (VAN AYArAererymemaL Max Target,
Max Variance {MAVAarayayayayiaai Uniform Entropy
lox Katropy

Min Median [MVAVAarayer.mmea

Umfom. Variance VAVAVAY AV AV 949447 A Mm‘T\rgeL

Variance (WAlANAYAVArawwawmama Min Target

Mz\x Entropy Min Target
0.90 1.00 110 100 101 1.02

Agg. Relative i (MAPE) Agg. Relative i (CRPS)

Cross Performance
mmm Prediction Loss

Prediction Value BN Point-Based W& Set-based

msm Prediction Explanation

Fig. 4. Relative u scores of all embedding-selection strategies for
each dataset. Lower values indicate better performance.

most stable clustering strategy.

To evaluate the impact of the model consolidation on
the effectiveness of the models, we now measure the
absolute i scores for every embedding strategy (with their
respective best selection strategies) on all four datasets for
increasing numbers of clusters k. The results are shown
in Fig. 5. For solid lines, we re-trained new models for
every cluster; for the dashed line of the Prediction Loss
strategy, we selected the most effective model per cluster
as a representative. These dashed lines demonstrate that
re-training produces clearly more effective models than
model selection. Overall, the measurements show that the
U scores tend to improve (= decrease) with an increasing
number of clusters, i.e., models. Due to many hidden
features especially in the Anomaly and Housing datatsets,
more specialized expert models yield better performances.
For Heating models, we can reduce the number of models



Anomaly
T T T T T

T
2.00 q

1.90 V/\- J

u (ROC AUC!
z

{B
.

0.00 0.05 0.10 0.15 0.20 0.25
Share retained models

Housing
T

0.30 ' ' '
0.5
2020
-
5

0.00 0.05 0.10 0.15 0.20 0.2f
Share retained models

(MAPE)

Prediction Value Uniform Median
Prediction Loss Uniform Entropy

Heating

5.00] \ 1

4.00 1

1 (MAE)

3.00 1

0.00 0.05 0.10 0.15 0.20 0.25
Share retained models

Weather

1.00

o 0.95

< 0.90
0.85

0.00 0.05 0.10 0.15 0.20 0.25
Share retained models

CRPS

I

Prediction Explanation Uniform Median

— Cross Performance

Retraining Representative

Fig. 5. Absolute u scores of the three embedding strategies and
Cross Performance with their respective best selection strategies for
increasing numbers of clusters k in 0.5% to 25% of the dataset sizes.

to 10% compared to 25% without really loosing accuracy
and the Weather models even improve their accuracy when
reduced to 5 — 10%, because the cluster models can be
trained on larger training sets than the expert models.
So in general, model consolidation might sacrifice a little
accuracy, but for a significant reductions in the numbers
of models; the appropriate choice of k is use case specific,
though. Regardless of k, Prediction Loss is consistently
performing best (or almost best).

C. Influence of Embedding Size

We will now investigate the influence of the embedding
size s on the performance scores U to demonstrate the
insensitivity of the embedding strategies towards s. For
this, we again consider every embedding strategy with its
respective best selection strategy, calculate the absolute u
scores on all four datasets with varying embedding sizes s,
and plot the results in Fig. 6. Based on Fig. 5, we set k to
represent the share of 0.2 of the Anomaly models, 0.15 of
the Heating models, 0.2 of the Housing models, and 0.05
the of Weather models.

The measurements in Fig. 6 first of all show that
the general noise of the consolidation is higher than the
impact of the embedding length s. Only for very small
embeddings s < 3, we observe some significant performance
drops indicating that aggressively small embeddings can
be detrimental to performance. For increasing embedding
sizes s, we can interpret slightly positive or negative trends
into the noisy measurements of the different embedding
strategies, but with s > 3 the concrete size is ultimately
not that important: For the four consolidation scenarios,
the noise-removed improvement / deterioration trends
affect the p scores only slightly with increasing s. Hence,
ModelForge can achieve meaningful clusterings with rel-
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Fig. 7. Normalized Mutual Information (NMI) of clusterings across
four datasets for different embedding size s w.r.t. a base clustering
with s = 20.

atively small embedding sizes and, hence, comparatively
low computation and memory costs.

To further understand the stability of the consolidation
scores, we turn to similarity of the resulting clustering
when varying s. For this, we extracted the cluster labels of
the models computed with Prediction Loss and Uniform
Entropy as selection strategy for varying s and computed
the Normalized Mutual Information (NMI) between the
clustering and a baseline clustering with s = 20. Higher
NMI values indicate greater clustering similarity. The
results in Fig. 7 indicate that the similarity with the base
clustering rises sharply until s =5 and then settles at a
high level or gaining minor similarity for all datasets and,
hence, explaining the observation that s has only minor
effects on the consolidation scores because the produced
clusterings are similar to each other.

D. Inspection of the embedding spaces

Our final experiment analyses the embedding space
of the Prediction Loss strategy showing that it is well-
natured and not affected by the curse of dimensional-
ity [40]. The curse of dimensionality refers to various
phenomena that can arise when analyzing data in high-
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dimensional spaces. The volume of the space grows expo-
nentially with the number of dimensions, causing data to
become sparse and distances between points to potentially
become meaningless due to the loss of numerical contrast;
hence, distance-based algorithms may degenerate. This is
also known as concentration effect [42].

Fig. 8 shows the NN(p)-distance graphs across four
datasets at varying embedding sizes s € {3,5,10,20} using
Uniform Entropy selection. NN(p) is the distance to the p-
th nearest neighbor, with p =5 in our analysis. Solid lines
represent distances to the p-th nearest neighbors, while
dashed lines show distances to k-th furthest neighbors. All
embeddings are scaled to fit within a unit hypercube of
side length 1. The x-axis indicates the sorted distances of
each point to its p-th nearest/furthest neighbor. We chose
p =S5 because it provides a good balance between local
detail and global structure. For all datasets and values of s,
a notable difference between the p-th furthest and nearest
neighbor can be observed, which indicates that distances
are still meaningful because for any given query point we
can clearly differentiate near and far away other points.

Fig. 9 shows 2D UMAP [43] projections of the Prediction
Loss embedding spaces with Uniform Entropy and s = 10
for all four datasets on a 2D plane. The coloring indicates
the Ly-norm of the embeddings in the original space;
the log-scale increases the contrast of the coloring. In
the case of the Prediction Loss embedding, the L;-norm
can be interpreted as a proxy for the models’ losses on
the evaluated training sets during construction time; a
higher L;-norm corresponds to higher prediction errors
on the used training sets. For the Heating, Housing and
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Fig. 9. 2D UMAP visualizations of the embedding spaces of Predic-
tion Loss embedding with Uniform Entropy selection (s = 10).

Weather dataset, the visualization reveals a U-shaped
structure, whereas the Anomaly dataset exhibits several
disconnected regions. For the former datasets, embeddings
with larger Ly-norms and, hence, larger average losses can
be found at both ends of the U, while better performing
models with smaller L;-norms are located around the
bottom of the U. To understand this phenomenon, we took
five models from both ends of the U and tested them on
respective training sets that were used for constructing the
embedding. The results showed that the two groups can be
distinguished by the average difference of prediction and
the actual values exhibiting negative values for one group
and positive values for the other group. Consequently,
models seem to diverge into two main behavioral paths:
Some models systematically overestimate, while others
underestimate the target variable. The observation shows
that the embedding spaces do preserve implicit model
properties.

VI. CONCLUSION

In this paper, we introduced ModelForge, a system
for the embedding, clustering and consolidation of ma-
chine learning models. The embedding-based consolidation
approach can utilize different embedding and selection
strategies. Our evaluations, however, demonstrate that
Prediction Loss embedding with Uniform Entropy selec-
tion achieves the most accurate consolidated models and
also clearly outperforms related work.
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