
Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
AG Programmiersprachen und -werkzeuge

Domain-Specific Consistency Constraints for
Java Bytecode

MOTIVATION
Java bytecode is a very versatile intermediate representation to which several
languages (Java, Scala, Groovy, etc.) are compiled. For all available libraries,
even if they are closed-source, the bytecode is always present, which is why
many code analysis tools today process Java bytecode. The programming lan-
guages and tools group is developing a toolkit for program analyses and transfor-
mations of Java bytecode. The toolkit is named Modular Bytecode Engineering
and Analysis based on Models, or ModBEAM for short. It contains a metamodel
of Java bytecode defined in the ECORE format of the “Eclipse Modeling Frame-
work” (EMF) which is the prevalent standard in model-driven engineering (MDE).
ModBEAM also provides and Eclipse plug-in which can represent Java bytecode
files as models according to its metamodel. This allows the usage of a wide vari-
ety of model analysis and transformation tools, available in the EMF ecosystem,
to inspect and possibly modify the bytecode model; this facilitates developing
modular and powerful bytecode-based tools. Afterwards, ModBEAM can again
generate regular Java bytecode from the model, such that the possibly modified
bytecode can be executed.

ASSIGNMENT
Java bytecode has some consistency constraints (for example the type of the
returned value must fit the declared method result type) which can easily be vi-
olated by code transformations. The ECORE formalism for metamodels already
allows defining consistency constraints in terms of predicates in the Object Con-
straint Language (OCL). A number of OCL predicates have already been defined
for the ModBEAM metamodel corresponding to basic constraints from the Java
Virtual Machine Specification. In this assignment further constraints should be
identified and defined in OCL. Possible sources of such advanced constraints are
architectural patterns (e.g., in the Abstract Factory pattern, only the factory is al-
lowed to call the constructor of certain classes) or permissions in defined in Java
modules.

FURTHER READING
• Christoph Bockisch, Gabriele Taentzer, Nebras Nassar, and Lukas Wydra.
Java bytecode verification with ocl why, how and when? Journal of Object
Technology, 19(3):3:1–16, October 2020. Special Issue dedicated to Martin
Gogolla on his 65th Birthday. doi:10.5381/jot.2020.19.3.a13

• Jordi Cabot and Martin Gogolla. Object constraint language (ocl): A
definitive guide. volume 7320, pages 58–90, 06 2012. doi:10.1007/
978-3-642-30982-3_3

INFO

Bytecode, MDE

Java, EMF, OCL

Bachelor or Master
Thesis

Theory
Practice

CONTACT
Prof. Dr. Christoph Bockisch

bockisch@
mathematik.
uni-marburg.de

https://doi.org/10.5381/jot.2020.19.3.a13
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
bockisch@mathematik.uni-marburg.de
bockisch@mathematik.uni-marburg.de
bockisch@mathematik.uni-marburg.de
mailto: bockisch@mathematik.uni-marburg.de?subject=Anfrage%20Thesis%20Bytecode-constraints

